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Abstract

Systems developed for predicting both the action and the
amount of time someone might take to perform that action
need to be aware of the inherent uncertainty in what humans
do. Here, we present a novel hybrid generative model for
action anticipation that attempts to capture the uncertainty
in human actions. Our model uses a multi-headed attention-
based variational generative model for action prediction
(MAVAP), and Gaussian log-likelihood maximization to
predict the corresponding action’s duration. During train-
ing, we optimise three losses: a variational loss, a nega-
tive log-likelihood loss, and a discriminative cross-entropy
loss. We evaluate our model on benchmark datasets (i.e.,
Breakfast and 50Salads) for action forecasting tasks and
demonstrate improvements over prior methods using both
ground truth observations and predicted features from an
action segmentation network (i.e., MS-TCN++). We also
show that factorizing the latent space across multiple Gaus-
sian heads predicts better plausible future action sequences
compared to a single Gaussian.

1. Introduction
The fundamental challenge behind reasoning about hu-

man actions is the inherent uncertainty behind what hu-
mans do. Sources of uncertainty that accompany human ac-
tions are nontrivial and manifold, even for the most straight-
forward tasks, such as predicting what someone might do
next after observing her take a cup. There are variations
in the possible action that follows an observed action se-
quence, variations in how people perform a particular ac-
tion sequence, and variations in the time that people require
to complete the same action, to name a few. Therefore,
systems designed for fundamentally humanistic endeavours
should adopt solutions capable of modelling the probabilis-
tic nature of human actions.

In the current paper, we focus on the problem of mod-
elling the temporal dynamicity of human actions, with the
goal of predicting the plausible action, or action sequence,

that follows. This task, commonly known as action antic-
ipation, has gained significant traction from the research
community in recent years, mainly due to the development
of high-quality datasets along with their associated chal-
lenges [5, 6] and its practical implications on human-robot
collaboration.

Our approach towards tackling the action anticipation
problem draws inspiration from deep generative mod-
els [26], a class of neural networks that have shown promise
in approximating complex and high-dimensional probabil-
ity distributions. Recent work has further demonstrated
their success in capturing crucial aspects of human rea-
soning [17], such as language understanding [10], inten-
tion and goal inference from actions [11, 12, 30], and even
emotion inference from observed expressions [22]. Specifi-
cally, we build upon the variational recurrent neural network
(VRNN) [4], a time-series deep generative model, and pro-
pose novel modifications catered to tackle the uncertainty in
human actions.

Besides predicting the action (sequence) that accompa-
nies an observed action sequence, another crucial aspect of
the action anticipation task is to predict the duration of the
corresponding action. Current approaches often treat both
action and duration prediction as independent of one an-
other [7, 19]. However, it is straightforward to suggest that
action and duration are fundamentally related constructs.
We capture this idea by imposing conditional dependencies
between the duration and action prediction. Specifically,
we condition the duration prediction model on both the pre-
dicted action and the variational distribution that generates
the predicted action.

In summary, the contributions of this paper include:

• a novel multi-headed attention-based variational recur-
rent neural network architecture for action anticipa-
tion.

• a generative model that specifies the conditional de-
pendencies between action, the variational distribution
that generates the action, and its corresponding dura-
tion.



2. Related Works
In the current section, we draw the reader’s attention

to recent ideas and methods related to the action sequence
forecasting task. This task is a subset of the action antic-
ipation problem and involves predicting the future action
sequence that follows an observed action sequence.

A literature review suggests two overarching approaches
toward tackling the action sequence forecasting task. On the
one hand, some researchers use neural networks to model
the future action sequence as a complex, non-linear, and de-
terministic function of the observed action sequence. [1]
proposed a two-step approach to tackle the action sequence
forecasting task. In the first step, an RNN-HMM network is
used to infer the action sequence from the frames of the ob-
served video segment. The action sequence is subsequently
fed into either a convolutional or recurrent neural network
that predicts the future action sequence. In contrast, [9]
argued that both frame- and annotation-level features con-
tain unique information that would facilitate the prediction
of the future action sequence; they modelled the future ac-
tion sequence as a function of both the frames from the
observed video segment and their corresponding action la-
bel. [21] proposed adapting sequence-to-sequence mod-
els to action sequence forecasting tasks. Unlike the previ-
ous two approaches, their model only takes RGB frames of
the observed video segment as input. Despite not having
access to the action labels of the observed video segment,
[21] empirically demonstrated how a GRU-based encoder-
decoder architecture, trained by minimising both an optimal
transport loss and a modified cross-entropy loss, can learn
the complex mapping between the observed RGB frames
and the unseen sequence of future action labels. Finally,
[27] proposed a novel method of summarising information
from the observed sequence. Instead of using temporal net-
works, their method involves aggregating both recent and
long-term temporal history using non-local blocks [29]. Ex-
perimental results demonstrate that while long-term aggre-
gation sometimes play a part in anticipation, recent actions
are more informative in determining the immediate future.

In contrast to the aforementioned deterministic ap-
proaches, some researchers choose to model the future ac-
tion sequence as a probabilistic function of the observed ac-
tion sequence. [7] proposed an uncertainty-aware antici-
pation model that involves sampling a future action from
a softmax distribution with parameters learned from a de-
terministic recurrent neural network. The subsequent ac-
tions are recursively predicted one at a time, with the pre-
viously predicted actions providing estimates for the to-be-
predicted action. Instead of simply learning a probability
distribution of the future action, [19] attempted to model
the generative process governing both the action sequence
and their inter-arrival times by combining Variational Auto-
Encoder (VAE) with temporal point process models. At

each timestep during training, their Action Point Process
VAE learns a latent distribution conditioned on the past and
current actions. The conditional latent distribution is sam-
pled at inference time to generate future actions. Finally,
[23] proposed a differentiable context-free grammar that
is trained in an adversarial manner to learn the stochastic
production rules from the distribution of the training data.
The ability to choose multiple production rules facilitated
the generation of multiple plausible future action sequences
during inference. Overall, the probabilistic methods that we
have described above reflect the fundamental notion of un-
certainty in humanistic endeavours that we have previously
alluded to in the opening paragraph. On the one hand, ac-
tion prediction is often a one-to-many prediction problem,
with more than one plausible action following an observed
action sequence. On the other hand, duration is a random
variable that varies within and across actions. Complex ac-
tions such as frying an egg often require more time than
simpler ones such as taking a cup, and there are also vari-
ations in the amount of time people require to complete a
particular action. These considerations led us to adopt a
stochastic approach to the action sequence forecasting task.
Specifically, our approach parallels that of [19] - we assume
that variations in observed action and duration arise from a
latent random variable. Our goal is to learn the distribution
of both actions and duration through a generative model.

3. Forecasting actions using a generative model
3.1. Problem

A video of a human performing an activity is given. Our
model observes an initial segment of the video and is tasked
to forecast the following action sequence. Formally, we de-
note the actions observed in the initial part of the video as
a1:n = (a1, · · · , an) with duration d1:n = (d1, · · · , dn),
with n referring to the number of unique action labels in
the observed video segment, and di refers to the number of
consecutive frames annotated with ai. Here, we normalise
di using the mean µd and standard deviation σd of all action
duration in the training set, such that

di =
di − µd

σd
∀i ∈ {1, · · · , n}. (1)

Finally, the future unseen ground truth action sequence is
denoted as an+1:N with duration dn+1:N , with N referring
to the total number of unique action labels in the video.

3.2. Model Overview

During training, our model learns parameters of a latent
distribution generating a1:n and d1:n via a multi-headed
attention-based variational recurrent neural network

During inference, the action decoder computes the con-
ditional probability of the next action given the latent vari-
able, while the duration decoder computes the conditional



Figure 1. Model Overview. The multi-headed attention-based variational recurrent neural network encoder generates (sample from latent
distribution) the latent variable zn. Then action decoder is conditioned on both latent variable zn and the recurrent hidden state hn to
obtain context cn to generate the next action. Duration generator predicts the parameters of the duration distribution, conditioned on the
predicted action and the context cn. Then we sample the duration for each future action from the duration distribution.

probability of the duration given both the latent variable and
the predicted action. This method is applied recursively to
predict an+1:N and dn+1:N (Figure 1).

3.3. Modelling the Observed Action Sequence

We use a multi-headed attention-based variational re-
current neural networkto model the variability in the ob-
served action sequence. Similar to [4], we introduce a
series of time-step wise latent random variables to model
the observed sequence. However, the conditional prior
distribution is no longer a multivariate Gaussian distri-
bution, but a weighted sum of K multivariate Gaussians
with means {µ1

prior, ...,µ
k
prior} and diagonal covariance

{σ1
prior, · · · ,σk

prior}, where K refers to the number of
attention heads. Notably, the parameters of each Gaus-
sian head are estimated through independent neural network
ϕk
prior functions of the state variable hn−1 of an RNN:

µk
prior = ϕµk

prior(hn−1) (2)

σk
prior = softplus(ϕσk

prior(hn−1)) (3)

From these estimated K Gaussian heads, we sample the la-
tent variable zn−1 from the prior distribution q as follows:

q(zn−1|x1:n−1) ∼ N (µprior,σprior), (4)

µprior =

K∑
k=1

γk
prior × µk

prior (5)

σprior =

K∑
k=1

γk
prior × σk

prior, (6)

where γk
prior is the learned attention weight on the k-th

Gaussian head.
The latent variable zn in equation 4 encodes the variabil-

ity in the temporal structure of the action sequence prior to

the incoming action. The temporal structure for every in-
coming action from the observed part of the video is also
captured using the posterior distribution p, which is also a
Gaussian distribution implemented via K dedicated Gaus-
sian heads:

(µk
pos,σ

k
pos) = ϕk

enc([ϕa(an), ϕd(dn),hn−1]). (7)

The encoder network takes in the hidden state of the RNN
and an embedding of the nth action an and its correspond-
ing duration dn using feature extractor networks ϕa and ϕd,
respectively. The parameters of posterior distribution are
obtained in a manner similar to that of the prior distribu-
tion(eq. 5 and 6), but with different set of learned attention
weights γk

pos for k ∈ {1, · · · ,K}:

p(zn|a1:n,d1:n) ∼ N (µpos,σpos). (8)

We sample a latent variable zn from the posterior distribu-
tion p using reparameterization trick [14]:

zn = µpos + σpos ⊙ ϵ, (9)

where ϵ ∼ N (0,1) is a multivariate standard Gaussian dis-
tribution.

The hidden state of the Encoder RNN is subsequently
updated as

hn = RNNenc(hn−1, [ϕa(an), ϕd(dn), ϕz(zn)]), (10)

where ϕz is a feature extractor over the latent variable.

3.4. Prediction

Our Multi-headed Attention-based Variational Ac-
tion Prediction (MAVAP) follows a three-step approach.
First, we compute a context vector cn+1 by concatenating
the latent variable zn with the state variable hn of the en-
coder RNN:

cn+1 = ϕcon([ϕz(zn),hn]), (11)



where cn+1 is a multi-layer perceptron.
Next, we use our action decoder ϕact, a multi-layer per-

ceptron, to compute a score vector sn+1 from the previously
obtained context vector cn+1, before applying a softmax
function to obtain the next action ân+1:

sn+1 = ϕact(cn+1) (12)
ân+1 = softmax(sn+1), (13)

where ϕact is the action decoder network.
Finally, we use our duration decoder ϕdur, a multi-layer

perceptron, compute the parameters of the duration distri-
bution r:

r(dn+1|an+1, cn+1) ∼ N (µdur, σdur), (14)
where (µdur, σdur) = ϕdur([cn+1, sn+1]) (15)

We predict both the action and duration sequences by
recursively updating the hidden state of the encoder RNN
using the predicted action and duration:

hn+2 = RNNdec(hn+1, [ϕa(an), ϕd(dn), ϕz(zn+1)]),
(16)

where xn+1 is obtained from predicted an+1 the one-hot
encoding of predicted action an+1 and predicted duration
dn+1.

3.5. Training

Following the protocol in [7], we generate N−1 training
examples from a single training video with N actions. For
each training example, the final action serves as the target
for the generator model, while the first N − 1 actions serve
as the observed sequence. This sampling strategy allows
us to learn the temporal dependence between all possible
observed sequences and predicted actions. Such diversity
helps learn a more varied latent posterior distribution p and
duration generator distribution r.

We train the network by minimising three loss functions.
Firstly, we minimise is the KL-divergence between the con-
ditional prior and posterior distributions for every observed
action:

Lkld =
∑
n

KL(p(zposn |a1:n,d1:n)||q(zn|a1:n,d1:n)).

(17)
Next, we minimise the cross-entropy loss between the

target and predicted action:

Lact = −
∑

an+1 ⊙ log(ân+1), (18)

where an+1 is ground truth one-hot label for the predicted
action.

Finally, we minimise the Gaussian negative log-
likelihood (GaussianNLL) loss on the parameters of the du-
ration distribution:

Ldur = log(σdur) +
(dn+1 − µdur)

2

2σ2
dur

. (19)

It is worth noting that minimizing the GaussianNLL loss
is equivalent to maximizing the likelihood of the duration
being generated by the duration distribution.

These loss functions are used in a multi-task manner; the
total loss is the sum of all three losses.

4. Experiments
4.1. Datasets and Implementation details

We evaluate our model on both the Breakfast [16] and
50Salads [28] datasets.

The 50 Salads [28] dataset consists of 50 videos of 25
actors making salads based on recipes provided beforehand.
The videos are recorded with a resolution of 640×480 at 30
frames per second. The actors performed 17 different fine-
grained actions, and the gaps between these actions are an-
notated using a background class. The average video length
is 6.4 minutes, with 20 action instances per video. The pub-
lished dataset provided five splits, and all the results pre-
sented here are averaged over the five splits.

The Breakfast [16] dataset consists of 77 hours of pro-
cedural videos or 4.1 million frames of 52 actors making
breakfast that yields 48 fine-grained action classes. The
videos are recorded with a resolution of 320 × 240 at 15
frames per second. With an average duration of 2.3 minutes,
videos on the Breakfast dataset are comparably shorter than
that of the 50 Salads dataset. There are 48 fine-grained ac-
tion classes, with an average of 6 action instances per video.
All the results presented here are averaged over the four pre-
defined splits dataset [16].

The models are implemented on PyTorch and trained for
20 epochs using the Adam optimizer with a learning rate of
0.0001 and batch size set to 1. We set the dimensions of the
latent and hidden states to 64 for both datasets.

In our network, ϕprior and ϕenc are implemented as two-
layered neural network with ReLU activation, ϕx, ϕz, and
ϕcon are implemented as a linear layer with ReLU activa-
tion. Finally, ϕact and ϕdur are linear functions over their
respective inputs.

4.2. Model Evaluation

We evaluate our proposed framework with three conven-
tional approaches to the action anticipation task. We eval-
uate our model’s ability to forecast future action sequences
in the first approach. Here, we follow the protocol in [1] -
our model observes 10% or 20% of the video, with the goal
of predicting the subsequent 10%, 20%, 30%, and 50 %.



Observation 20% 30%
Prediction 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast
RNN [1] 60.4 50.4 45.3 40.4 61.5 50.3 45.0 41.8
CNN [1] 58.0 49.1 44.0 39.3 60.3 50.1 45.2 40.5

Time Cond. [13] 64.5 56.3 50.2 44.0 66.0 55.9 49.1 44.2
Temp. Agg. [27] 65.5 55.5 46.8 40.1 67.4 56.1 47.4 41.5

Unc. Awa. [7] 53 44.1 39.7 34.9 53.9 44.5 40.2 35.5
MAVAP (Ours) 69.1 54.1 45.4 35.1 70.9 56.2 47.6 38.1

50 Salads
RNN [1] 42.3 31.2 25.2 16.8 44.2 29.5 20.0 10.4
CNN [1] 36.1 27.6 21.4 15.5 37.4 24.8 20.8 14.1

Time Cond. [13] 45.1 33.2 27.6 17.3 46.4 34.8 25.2 13.8
Temp. Agg. [27] 47.2 34.6 30.5 19.1 44.8 32.7 23.5 15.3

Unc. Awa. [7] 38.1 30.1 26.3 16.5 40.0 29.2 23.7 15.5
MAVAP (Ours) 43.3 35.4 28.4 17.4 43.8 31.8 27.2 14.2

Table 1. Comparison of action sequence forecasting on Breakfast
and 50Salads with state-of-the-art. All methods take as input the
ground-truth observed action sequences.

Mean over classes (MoC) accuracy is computed for each
configuration. Next, we evaluate our model on an action
sequence prediction task. Here, the model observes 1 or 2
actions, with the goal of predicting the remaining actions.
Finally, we evaluate our model on the next action prediction
task. We report top-k accuracy for action sequence predic-
tion, and next-action prediction.

4.3. Action Sequence Forecasting with Ground-
Truth Annotations

We first evaluate our proposed method’s ability to fore-
cast future action sequences by providing our model with
ground-truth annotations of the observed video segment.
Ground-truth annotations are consistent and without errors,
ensuring fair comparison across different algorithms. For
each example in the test set, we generate 50 samples and
use the mode of the predicted distribution to compute the
Mean over Classes (MoC) accuracy.

As shown in Table 1, the performance of our proposed
method is comparable with, but does not outperform the
current state-of-the-art (i.e., [27]). One possible reason for
this might pertain to the unsuitability of the Gaussian distri-
bution for action forecasting tasks.

Nonetheless, we managed to observe consistent im-
provements over the stochastic model recently proposed
in [7] on both datasets and across all configurations. Com-
paring both modelling approaches illuminates the potential
reasons for this performance improvement. Notably, both
approaches differ in the specification of the relationship be-
tween action and duration. In our approach, we impose con-
ditional dependencies between action and duration to cap-
ture the idea that duration is a random variable that funda-
mentally depends on the action variable. In contrast, [7]
models both duration and action as independent of one an-
other. Both approaches also differ in the parameterization of
the action and duration probability distributions. In [7], the

Observation 20% 30%
Prediction 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast
RNN [1] 18.1 17.2 15.9 15.8 21.6 20.0 19.7 19.2
CNN [1] 17.9 16.4 15.4 14.5 22.4 20.1 19.7 18.8

Time Cond. [13] 18.4 17.2 16.4 15.8 22.8 20.4 19.6 19.8
Unc. Awa. [7] 28.9 28.4 27.6 28.0 32.4 31.6 32.8 30.8

Cycle Cons. [8] 25.9 23.4 22.4 21.5 29.7 27.4 25.6 25.2
Temp. Agg. [27] 37.1 31.8 30.1 27.1 39.8 34.2 31.9 27.8

Attention [21] 23.0 22.3 22.0 20.9 26.5 25.0 24.1 23.6
MAVAP w/ MS-TCN++ 69.1 52.6 43.5 32.9 68.0 53.7 44.6 35.5

50 Salads
RNN [1] 30.6 25.4 18.7 13.5 30.8 17.2 14.8 9.8
CNN [1] 21.2 19.0 16.0 9.9 29.1 20.1 17.5 10.9

Time Cond. [13] 32.5 27.6 21.3 16.0 35.1 27.0 22.0 15.6
Unc. Awa. [7] 24.9 22.4 19.9 12.8 29.1 20.5 15.3 12.3

Cycle Cons. [8] 34.7 28.4 21.8 15.2 34.4 23.7 18.9 15.9
Temp. Agg. [27] 34.7 25.9 23.7 15.7 34.5 26.1 19.0 15.5
Adv. Gram. [23] 39.5 33.2 25.9 21.2 39.5 31.5 26.4 19.8
Attention [21] 39.3 31.4 27.0 23.9 41.7 32.7 31.4 26.4

MAVAP w/ MS-TCN++ 43.5 32.4 27.5 16.1 42.5 30.8 25.4 14.8

Table 2. Comparison of action sequence forecasting on Breakfast
and 50Salads with state-of-the-art. All methods use features gen-
erated by action segmentation networks to predict future actions.

action and duration distributions are parameterized simply
as non-linear functions of the observed video segments.

In contrast, we adopt a generative approach that is sim-
ilar to that in [19]. Specifically, we use a latent distribu-
tion, parameterized as a non-linear function of the observed
video segments, to generate the parameters of action and
duration distributions. Our strategy to impose conditional
dependencies amongst actions and duration, and the ex-
pressivity conferred by the inclusion of the latent variable
allows us to better model the uncertainty in human action
sequences than previous stochastic approaches.

4.4. Action Sequence Forecasting with Predicted
Features

Here, we test the robustness of our current model by
feeding it features predicted from the observed video seg-
ment by an action segmentation network, MS-TCN++ [18].
As shown in Table 2, we managed to achieve superior per-
formance over existing approaches across both datasets and
overall configurations when frame-level MS-TCN++ fea-
ture scores of the observed video segment were fed as in-
put to our model. We acknowledge that this vast improve-
ment over existing approaches might result from the action
segmentation network that we deploy in the current work.
Nonetheless, these results demonstrate our model’s capa-
bilities in adapting to noising input signals. They also attest
to our model’s flexibility in leveraging recent developments
in action recognition and action segmentation methods for
action forecasting tasks.



Observation 20% 30% average
Prediction 10% 20% 30% 50% 10% 20% 30% 50%
# Gauss Breakfast

1 69.1 53.7 44.9 34.8 70.9 55.9 47.2 38.1 51.8
3 69.2 54.2 45.1 35.0 71.0 56.2 47.5 38.1 52.1
5 69.1 53.9 44.8 34.3 71.0 56.1 47.2 37.5 51.7
8 69.1 53.9 44.8 34.5 70.9 55.9 47.0 37.5 51.7

10 69.1 53.9 45.6 35.0 70.9 56.1 47.7 38.0 52.0
12 69.1 54.1 45.4 35.1 70.9 56.2 47.6 38.1 52.1
15 68.9 52.8 43.8 33.6 70.8 55.3 46.3 37.0 51.1

# Gauss 50 Salads
1 42.1 30.9 23.7 16.5 42.2 28.4 23.1 13.8 27.6
3 42.0 33.0 25.7 18.0 42.7 29.7 24.5 14.7 28.8
5 45.2 34.2 26.9 16.3 42.7 30.4 25.4 13.1 29.3
8 44.6 33.3 27.7 16.8 44.0 31.4 26.1 14.5 29.8

10 43.9 34.0 27.6 17.8 43.6 31.4 27.2 14.5 30.0
12 43.4 35.4 28.4 17.4 43.8 31.8 27.3 14.2 30.2
15 43.1 32.1 27.0 17.6 42.6 31.0 25.8 14.4 29.2

Table 3. Ablation results on Breakfast and 50Salads with different
number of Gaussian heads.

(a) Breakfast

(b) 50 Salads

Figure 2. Qualitative results for action sequence forecasting (ob-
serve: 30%; predict: 50%) using ground-truth and MS-TCN++
scores on both Breakfast and 50Salads

(a) Breakfast

(b) 50 Salads

Figure 3. Per-class accuracy for action sequence forecasting on
both Breakfast and 50Salads datasets.

4.5. Action Sequence Forecasting Qualitative Re-
sults

Both datasets have different modelling requirements.
With an average of approximately six actions per sequence,
the prediction accuracy on the Breakfast dataset is mainly
dependent on the model’s ability to predict the correspond-
ing action’s duration. In contrast, an action sequence in the
50Salads dataset contains approximately 20 actions. The



prediction accuracy on the 50Salads dataset would require
a model sensitive to such variabilities.

Qualitative results presented in figure 2 demonstrate our
model’s ability to adapt to the requirements of each dataset.
On the Breakfast dataset, our model can correctly estimate
the remaining duration of the last observed action when it
spills into the observed period. On the 50Salads dataset, our
model predicts, with reasonable accuracy, the variability in
a sequence of actions.

Per-class accuracy results on both Breakfast and 50Sal-
ads revealed surprising variations in performance across
classes. On the Breakfast dataset, some action classes,
like ”spoon sugar”, ”fry egg”, ”stir milk”, have almost
near-perfect accuracy. In contrast, our model often fails to
predict others classes, like ”take cup”, ”take plate”, ”take
knife”. On the 50Salads dataset ”cut cucumber”, ”peel cu-
cumber”, ”cut cheese”, were the best performing action.
One possible explanation for these findings pertains to the
qualitative nature of each action. For instance, actions such
as ”fry egg” have more utility than others like ”add salt and
pepper”. This might lead our model to underestimate the
predictions of action classes with lesser utility.

4.6. Effect of the number of Gaussian heads on Ac-
tion Sequence Forecasting Performance

Multi-headed attention networks often permit a more nu-
anced state representation of the input sequence than single-
head networks. Adapting multi-headed attention networks
to latent space models designed for action anticipation tasks
can potentially lead to a more pronounced factorization of
the latent space, which is of greater effectiveness in mod-
elling the variability in the input action and duration se-
quences.

However, our experimental findings revealed that the
positive effect of multi-headed attention networks on fore-
casting performance depended on the dataset. As shown in
Table 3, increasing the number of Gaussian heads did not
improve the average forecasting performance on the Break-
fast dataset. In contrast, we observe that increasing the
number of Gaussian heads from 1 - to 12 improved aver-
age forecasting accuracy by 2.6%. This dataset-dependent
effect is an interesting one that warrants further analysis.
One potential reason for this might pertain to the length of
the action sequence.

4.7. Action Sequence Prediction

In the current section, we evaluate the action sequence
generation capability of various deterministic and stochas-
tic action prediction architectures. Given the observed ac-
tion(s), the model is tasked to predict the sequence of ac-
tions that might follow. Each architecture observes either 1
or 2 actions and predicts the rest of the actions.

A total of six encoder-decoder architectures were evalu-

Model
(Encoder-Decoder)

Observed
actions

Accuracy
Top-1 Top-2

RNN-Linear 1 29.68 32.64
2 22.63 29.41

GRU-GRU 1 22.75 25.32
2 32.14 33.94

LSTM-LSTM 1 25.38 26.69
2 33.08 34.91

DMM-Linear 1 19.34 22.45
2 27.61 31.56

VRNN-Linear 1 23.45 26.87
2 44.62 52.91

MAVAP (Ours) 1 27.65 37.24
2 51.03 63.87

Table 4. Comparing different encoder-decoder models while pre-
dicting remaining actions in the sequence. Results are on the
Breakfast dataset.

ated, namely 1) an RNN encoder with a linear layer decoder
that is inspired by [1], 2) a GRU for both encoder and de-
coder, 3) an LSTM for both encoder and decoder, 4) a Deep
Markov model (DMM) encoder [15] and a linear layer de-
coder, 5) a VRNN encoder with a linear layer decoder, and
6) our proposed model without the duration prediction mod-
ule. We report both the Top-1 and Top-2 accuracy scores of
each architecture in Table 4.

Results in Table 4 neatly highlight the positive rela-
tionship between network complexity and model perfor-
mance. Notably, networks with rich internal state repre-
sentation, such as those with gated architectures (i.e., GRU
and LSTM), performed significantly better than those with-
out (i.e., RNN-Linear, DMM). Furthermore, they highlight
the utility of modelling the observed variability of action
sequences via latent random variables - the best perform-
ing models are the VRNN-Linear network and our proposed
model. Overall, the results of this experiment highlight the
value of modelling temporal variability via a latent random
variable and learning the temporal dependencies across ac-
tions.

4.8. Next Action Prediction

In this section, we evaluate the performance of our vari-
ational action prediction model on its ability to predict the
class of the next action segment after observing one or
more past actions (i.e., next action anticipation). Here, our
method outperforms prior approaches regardless of whether
predicted features or ground-truth annotations were used
(Table 5). Once again, we observe the benefits of modelling
the input sequence with attention-weighted Gaussian heads
over those with a single Gaussian [7, 19].



Method (Features) Accuracy
With Features

Predictive+
Transitional (Resnet50) [20] 32.3

Temp. Agg.(I3D) [27] 47.0
MM-Transformer
(I3D, Flow, Human-Obj.) [25] 48.4

MAVAP (Ours w/ MS-TCN++) 65.9
With Ground Truth

Predictive+
Transitional [20] 43.0

Unc. Awa. [7] 57.8
APP-VAE [19] 62.2
Temp. Agg. [27] 64.7
MAVAP (Ours) 70.1

Table 5. Comparison of next action prediction on Breakfast dataset

5. Discussion & Conclusion
Models developed for reasoning about what we do have

to contend with the probabilistic nature of human actions.
Here, we build upon existing works on stochastic recur-
rent networks to present a hybrid generative model for ac-
tion forecasting: actions are predicted using a multi-headed
attention-based variational recurrent module, while the time
taken to complete the action (i.e., duration) is predicted us-
ing a generative Gaussian likelihood maximisation. The
model is trained end-to-end by optimising three loss func-
tions, two generative losses and one discriminative loss.

Overall results of our model are promising and demon-
strate the utility of our novel architecture. Our full model
performed comparably with the state-of-the-art on two
benchmark datasets on the action sequence forecasting task.
Our variational action prediction model outperformed de-
terministic encoder-decoder models and stochastic deep
Markov models on the action sequence prediction task. It
also outperformed the state-of-the-art on the next action
prediction task.

We intend to build on the current work by investigating
the effects of parameterising the latent space with different
probability distributions and the interaction between atten-
tion heads and action sequence length on forecasting perfor-
mance. We also plan to build on this current work by fur-
ther examining the semantics of latent space in variational
frameworks. Specifically, we would like to investigate if we
can use variational frameworks to model human Theory of
Mind [24]. Indeed, a line of work in the domain of compu-
tational cognitive science has demonstrated the viability of
latent space models in capturing how humans draw mental
state inferences from observed actions [2, 3, 12]. However,
these works have only been explored in constrained game-
like environments. Thus, it would be interesting to explore

whether such models can generalise to real-life situations.
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