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Dynamic compressibility of air in porous structures
at audible frequencies
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Laboratoire d’Acoustique assocau CNRS, URA 1101, Facultes Sciences du Mans, Avenue Olivier
Messiaen, BP 535, 72017 Le Mans Cedex, France

Viggo Tarnow
Department of Applied Engineering Design and Production, DTU, Akademivej Bygning 358,
DK 2800 Lyngby, Denmark

(Received 24 February 1996; revised 9 June 1997; accepted 16 June 1997

Measurements of dynamic compressibility of air-filled porous sound-absorbing materials are
compared with predictions involving two parameters, the static thermal permeaddjlayd the
thermal characteristic dimensioA’. Emphasis on the notion of dynamic and static thermal
permeability—the latter being a geometrical parameter equal to the inverse trapping constant of the
solid frame—is apparently new. The static thermal permeability plays, in the description of the
thermal exchanges between frame and saturating fluid, a role similar to the viscous permeability in
the description of the viscous forces. Using both parameters, a simple model is constructed for the
dynamic thermal permeability’ (w), which is completely analogous to the Johnsoml. [J. Fluid

Mech. 176, 379(1987] model of dynamic viscous permeabilik{ w). The resultant modeling of
dynamic compressibility provides predictions which are closer to the experimental results than the
previously used simpler model where the compressibility is the same as in identical circular
cross-sectional shaped pores, or distributions of slits, related to a given© 1997 Acoustical
Society of America.S0001-49607)00310-X]

PACS numbers: 43.20.Gp, 43.20.Jr, 43.55[HG]

INTRODUCTION dependence of compressibility to nonacoustical measure-
ments was performed later by Attenborougim this paper

In air-filled sound-absorbing media, the frequency de-the porous material was modeled as a log-normal size distri-
pendence of the compressibility, which varies from the iso-bution of tortuous slits widths. Pore size distribution can be
thermal to the adiabatic value when frequency increasesletermined nonacoustically for some materials. A parameter
plays an important role when a precise prediction of soundvhich characterizes the high-frequency behavior of com-
absorption versus frequency is needed. Berbrs sug- pressibility, i.e., the thermal characteristic dimension, was
gested(1942 that at low frequencies the cycle of condensa-identified by Champoux and AllaftiThis parameten\’ is
tion and rarefaction of the enclosed air is isothermal due tawice the ratio between the pore volurig and surfaces,
the thermal exchanges between air and frame. The frequenand is sometimes referred to as the Kozeny radils:
dependence of compressibility was calculated by Zwikker=2V,/S,. It generalizes the notion of hydraulic radius for
and Kostef for pores in the form of circular cross-sectional the case of arbitrary geometries of the frame and reduces to it
shaped cylinders and slits. Other shapes of pores were stufibr the case of cylindrical pores. This definition was inspired
ied later’ It may be noticed that for cylindrical pores the by the definition of the characteristic viscous dimension
compressibility depends on the shape of the cross sectiofJohnsoret al®9 A, which characterizes the viscous inter-
For a given hydraulic radius (r is two times the ratio of the action between air and frame at high frequencies. At suffi-
area to the perimeter of the cross seckighis dependence ciently high frequencies the thermal exchanges between air
can be neglected in a first approximation. In porous media@nd frame mainly occur in a small layer close to the frame,
with other geometries of the frame, the frequency depenwhere temperature depends on the local distance to the frame
dence of compressibility was the sam@wikker and (as if the frame-air interface was plané\ normalized dy-
Kosten? Attenborougt Allard et al®) as in circular cross- namic compressibility3(w) will be used in the present work,
sectional shaped pores. The radius is related to the flow relefined by
sistivity with an adjustable factor which takes into account
the specificity of the geometry for the different porous  B(w) 1
frames. The adequation of such models is limited by the fact K, {P= Po 2 @
that cylindrical pores generally do not exist in porous media.
A gqualitative description of the effect of pore constrictionswhere K, is the adiabatic bulk modulus of aip, the air
was given by Zwikker and KostenA precise description of density at rest, andp) and (p) the macroscopic acoustic
compressibility in a pore made up of an alternating sequencpressure and density, respectiveliy the present paper, the
of circular cross-sectional shaped cylinders was performedymbol() denotes an intrinsic air-phase averag®hen fre-
by Champoux and StinséhAn aim to relate the frequency quency increaseg(w) tends to
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TABLE I. Viscous and thermal parameters for both porous media.

Flow Viscous Thermal
resistivity permeability Characteristic thermal permeability
oNm™s kg m? dimensionA’ m M’ kg m?
Foam 6000 03108 6.1x10°* 0.3 1.3x10°8
Glass wool 2300 08108 2.1x1078 0.03 1.7x10°8
8 eral expression for the dynamic viscous permeablity)
Blo)=1—(y=D)(1+i) 1. (2)  defined by
In this equation,d’ =(2v'/w)*? is the thermal skin depth K(w)
(with »"=»/Pr, v being the kinematic viscosity and Pr the H{v)=— V{p), 4

Prandtl number and y is the specific heat ratio. The imagi- g
nary part inB(w) produces absorption, whereas the real part

is related to the speed of sound. The characteristic dimenwhere¢ is the porosity(1-volumen concentration of frame

sionsA’ andA can be evaluated from the attenuation or thematena}, and({v) is the macroscopic velocity field. Isotropy

wave speed of ultrasonic pulses successively measured wiffwf the porous sqlid Is assumgd for simplicity. For anisotropic
different gases saturating the porous frah&he parameter struc.turesk.(w) IS a symmgtnc tensor of rank two. Numeri-
A’ can also be obtained with the BET methbdf measur- f:al simulations and gxpenments have shown that the model-
ing specific surfacegpore surfaceS; for a unit mass of ing by Jhohnsoret al.is \k/ery LObUSti | f th .
frameg. The frame, at liquid nitrogen temperature, adsorbs a. In the presen.t'wo.r ' a.t ermat analogue o the dynamic
multimolecular layer of the surrounding gésypton can be viscous permeability is defined by setting at any frequency
chosen to increase the sensitivity for the case of glass wools ,
and reticulated foams, becauSg is much smaller than for (7= k'(w) ﬂ (p), (5)
the case of powders and materials generally measured Kk ot
measurement of the adsorbed volume of krypton provides an
evaluation ofS,, and the specific volum&, is deduced where(7) is the macroscopic excess temperature in air,and
from the two densities of the frame and the solid, or fromis the coefficient of thermal conduction. The quankty w)
direct measurement of the porosity and frame density. Previhas the same dimensionslgs») (length squared When the
ous measurements of' obtained from both method®ET  frame has a sufficient thermal capacity for the compressibil-
and ultrasonic measurementse in a good agreemett. ity B(w) to reach the isothermal valugat low frequencies,
Acoustic measurements are performed on layers set onthe excess temperaturecan be considered to vanish at the
rigid impervious baking. The frame of the porous media ispore walls(this replaces the no-slip condition=0 for vis-
always supposed to be motionless. The flow resistivity of theeous flow and a static “thermal permeability’k, exists.
studied media is smallsee Table)l For these materials, at This parameter provides the missing low-frequency thermal
low frequencies, where the transition between the isothermahformation and is shown to be equal to the inverse trapping
and adiabatic compressibility occurs, it may be shown in theonstant of the porous frangthe trapping constant is defined
context of the Biot modéf that the frame tends to become for instance in Ref. 14 and in Appendix BNe suggest that
motionless due to the weakness of the viscous forces. Ahe functionk’(w) can be modeled in a manner similar to the
simple model for the frequency dependence of compressibilpermeability functiork(w) with the parameterd’, k;, and
ity consists in replacing the porous structure by an equivalerporosity ¢. A general connection betwe#n(w) andg(w) is
one with circular cross-sectional shaped pores having a ralso established, leading to a simple expression for the com-
dius equal toA’. The asymptotic behavior of the predicted pressibility functionB(w). Developments and justifications
compressibility at high frequencies is correct. When fre-are reported in the different Appendices A, B, and C.
quency decreases, the frequency dependence of compress- Precise and fast evaluations of compressibility are now
ibility is difficult to predict, due to the increasing range of available with a new method developed by Tarndwased
the thermal interaction between frame and air. The samen measurement of the frequency and the quality factor of
problem arises for the viscous interaction at low frequenciesthe quarter-wavelength resonance in a closed tube where a
One approach consists in using a low-frequency parametelayer of porous material is set. Predictions with the new
the viscous static permeability related to the flow resistivitymodel are compared to measurements performed with the
o by method developed by Tarnow.
P 3) It is t.o be. noted that .the homogeqization of. the visco-
0= 7T, thermal linearized acoustic equations in a gas-filled porous
where 7 is the viscosity of air. The flow resistivity and the structure has been previously considered by Sanchez-
permeability are easily measurable, and when frequencialencia and Lev}f These authors stated the microscopic
tends to zero provide the essential information concernindgpoundary value problem which enables calculating the mac-
the viscous interaction. With the parametdrsk,, and for-  roscopic coefficient{7)/{p) [—iwk’(w)/¢« in our nota-
mation factora.,/ ¢, Johnsoret al!® have suggested a gen- tions] from the microstructures. However, no attempt was
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made to extract from this definition a simple modeling of theB. Dynamic thermal permeability
frequency dependence of compressibility. A previous at-
tempt to generalize Johnset al. model of dynamic perme-
ability k(w) to the compressibility functioB(w) was made
by Champoux and Allarl However, the thermal permeabil-
ity function was not considered and the role played by th
Inverse trapping Cor_‘?ta"‘% was not ap_parent. The concept Two linearized equations which link pressure, density,
of thermal permeability and the resulting modeling&ffv) .and temperature variations of air considered as an ideal gas,

\(/j\{ere sqgggsted by one of the authors in a thesl?he equation of thermal conduction and the equation of state,
Issertation. may be written(see for example Ref.)3

In a porous material having a rigid frame filled by air, a
macroscopic description of the thermal exchanges between
frame and air is needed to predict the compressibility of the
equivalent fluid. This description will be obtained with the

enelp of the concept of dynamical thermal permeability.

T J J
I. DYNAMIC PERMEABILITY FUNCTIONS KV2r= P_O (Pocu a_?_ Pon a_ft))’ (12)
A. Dynamic viscous permeability 0
In a porous medium, a static flow which corresponds to 9P _ Po ( &—T+T P (13)
an averaged fluid velocityv) is related to the gradient of the ot poTo Po 5t Ot

averaged pressuié by the Darcy law: . .
gedp (P by y In these equationd,; and P, are the static temperature and

_ @ v 6 pressure, an@, andC, are the specific heatper unit masp
#v)= 7 {p)- ©) at constant volume and pressure, respectively. The acoustic

: : .__densityp is related to the velocity b
In the frequency domain, and for disturbances charactenze% yp y by

by a long wavelengtiin>1, wherel is typical of the pore or ap
grain size this static law can be replaced by 1 " PoVv. (14)
- @ \v/ 7 Eliminating dp/dt between Eqgs(12) and (13), and making
B{V) (), (7) j
7 use of the relation
wherek(w) is the dynamic permeability. It has been shown poT
by Johnsoret al° (see also Avellaneda and Torquatap- g % (Cp-Cp)=1, (15)
pendix D thatk(w) could be replaced at high frequencies by 0
the following asymptotic expression, analogoug2p which is valid for ideal gas, gives, in the volumveof air,
vo 0 P P
1= | 1) 7| ® e, T ® ewy 16

where «,, is the tortuosity,A is the viscous characteristic
dimension, andS=(2v/w)*? is the viscous skin depth. As-
suming that the three parametefss a.,/ ¢ (formation fac-
tor), kg, and A, provide a sufficient information on the ge-
ometry, an approximation fok(w) between the high- and
the low-frequency range has been worked out by Johnso
et all® The permeabilityk(w) is the frequency response of =0 (redV). (17)

an invariant, causal, linear system, and the poles, the zeros,

and the branch points &f(w) are located on the imaginary Equation(16) and the boundary conditiofl7) describe the
negative axis in the complex plane. Analytical functions thermal diffusion in the fluid. They constitute the thermal
having these properties are expected to provide fairly goo§ounterpart of the linearized equatiopg(av/dt)= Vv
approximations fok(w) in the intermediate real frequency — VP (reV) andv=0 (re dV) for inertial/viscous effects.
range, if they tend to the limits given by Eq$) and(8) for ~ [The term (7+ {/3)V(V -v), where(is the second viscosity,
small and largew. The following expression, which satisfies IS not written in the above Navier—Stokes equation because
all the required properties, was suggested as the Simp|egtcompre55|bll|ty of air may be assumed at the pore scale,

The thermal capacity and conductivity of the frame, for usual
porous media, is generally very large compared to air. In a
first approximation the frame can be considered as a thermo-
stat, and the acoustical temperaturat the contact surface
ﬁv with the frame can be set equal to zero:

possible ansatz: see Appendix A, EQLASC).] This suggests the definition of a
e “thermal permeability” k' (w) by means of Eq(5), in anal-
k(w)=ko/[(1-(M/2)iw)"*~iw], (9 ogy with Eq. (4). The use of the denomination “thermal
whereM is the following dimensionless shape factor: permeability” is not completely appropriate, because a per-
meability (viscous or magnetjas related to vectors, and the
_ 8a-kKo (10) thermal permeability links two scalar quantities. Neverthe-
PAZ less, the designation is used to emphasize the formal similar-
and the dimensionless frequeri@yis defined as |ty_ W|.th the viscous permeability. In Appendix A, .the first-
principles definition of the frequency-dependent viscous and
e [ Koo (11) thermal permeabilities and the recipe for their calculation are
v ¢ derived through the generalization of the homogenization
1997 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997 Lafarge et al.: Porous structures 1997
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procedure employed by Zhou and Sh¥tig the purely vis-  and the reduced frequency
cous case.

Whenw—0 and the frame is considered as a thermostat, ' = ﬂ, ﬁ_ (24)
the excess temperature in &) is proportional to the pres- v ¢
sure derivatived(p)/dt and a thermal Darcy's law is ob- This modeling depends on three independent geometrical pa-
tained rameters, for instanck), M’, andF’=1/¢. These param-
eters play the same role as parametgrsM, andF in the
& )— ( ). (18)  previous description of the viscous permeability.

The real constank,=lim,_ k’(w) plays the role of a Il. DYNAMIC COMPRESSIBILITY
static thermal permeability. Under some conditions exam-

ined in Appendices A and B, it is related to the trapping  T0 describe sound propagation at the macroscopic level

constant’ I' of the frame by in rigid air-saturated material, the knowledge of two re-
sponse factors will be required. One is the dynamic tortuos-
ky="1/T. 19y
(The definition ofl" is recalled in Appendix B. V)
The trapping constant can be predicted from numerical  poa(w) — == —V{(p), (29

simulations for simple geometrig$Schwartzet all%. Ex-
perimentally, nuclear magnetic resonanidR), which is  obviously related to the dynamic viscous permeability
used to characterize the geometry of porous fraBémley [a(w)=—rvd/iwk(w)]. A second convenient response fac-
et al?9), could provide experimental evaluations Bf The  tor is the normalized dynamic compressibiligfw), defined
excitation corresponds to the induced parallelism of nucleaby Eqg. (1), which can be rewritten:
spins in water. Two physical phenomena, a large de-
o ! : : B(w) ¥p)
excitation in the saturating fluid, and a noninstantaneous re-
laxation on contact with the frame, have prevented until now Ka dt
an evaluation ofl' by NMR for plastic foams and glass [This is obtained by using Eq14) and the identit) V -v)
wools. = V-({v), which is valid for materials having an uniform
Whenw is large, the harmonic compressions/dilatationsporosity; see for example Pridet al?* and Marle??] With
become adiabatic anehC(7)/(p)— 1. More precisely, tak- this definition B(w)—1 when w—. Looking for plane
ing into account the presence of a thin thermal boundaryvave solutions varying as epfgx—wt)], Egs.(25) and(26)

—— == Vv (26)

layer at the pore walls yielfs yield the propagation constant and characteristic impedance
(p> / of the medium
(1)= p PR 1- (1+|)A,}, (20 o\ 12
o=p q=w<a(w),8(w) K_a) ) (27)

where it has been assumed that the pressure is a local
constant—a condition justified in Appendix A—and that the
temperature profile in the boundary layer is the same in the
limit of high frequencies as that near a flat surface. This
excludes more complicated and “fractal” pore surfaces. Thelhusa andg provide all pertinent information on the propa-
asymptotic expression fdt’ () that can be deduced from gation in the medium.

12
(28)

(5) and (20) is The scaled compressibilit§(w) is directly related to the
,¢ , thermal permeabilitk’ (w) by means of the relation
14
K'(0)=— 1= (1+1) | (21) Iwk(w)
Blo)=y+(y=1) 7 (29

The exact frequency dependence ldf{w) in the whole ¢

range of frequencies needs an exact description of the georf: Proof is given in Appendix A. Using Eq22), the follow-
etry of the frame. However, as shown in Appendix C, theing simple model for frequency dependence of dynamic
function k' (w) verifies the same general analytical proper-scaled compressibility has thus been obtained:

ties ask(w). An approximate expression depending on a M’ 121-1
small number of parameters can be obtained by following the  B(w)=y—(y—1)|1 (1— - 1o i } ,
method developed by Johnset al. described in Sec. | A. (30)
The following three parameters expression may be suggested
for k' (w): Y7 where the shape factdvl’ and reduced frequency’ are
) ) expressed by Eq$23) and(24) in terms of the parameters
K'(0)=ki/[(L—(M'12)in")"*~i5'], (22 K, A’, and .
which involves the following(dimensionless shape factor It may be noticed that a similar expression f&fiw) was
M’ proposed by Champoux and AllafEqg. (19) of Ref. §]. It is,
however, written in such a way that a mixing occurs between
M’ =8ko/ pA "2, (23)  the inertialiviscous and thermal parameters, and it coincides
1998 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997 Lafarge et al.: Porous structures 1998
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with the present one only if the adjustable parameteris  distributione(b) is used, defined from the variable, —«
set equal toga., /k; . The present derivation gives a physical <w<, related tob by b=exg—wIn 2], and the distribu-
meaning too’ in Ref. 8 and shows that E¢L9), which was  tion f for w, given by

extrapolated from an expression valid for cylindrical pores,

is a reasonable general hypothesis for the frequency depen- 1

f =
dence of compressibility. (W) v\2m

exfd — (w—w,)?/2v?]. (38

The precise meaning @{b) can be deduced from E¢L0)
of Ref. 25, which gives the viscous permeabilky when
Il. VISCOUS AND THERMAL PERMEABILITY IN a,=1
CYLINDRICAL PORES AND IN SYSTEMS OF SLITS
WITH A LOG-NORMAL DISTRIBUTION FOR ¢ (> 2
THE SEMI-THICKNESS ko=73 fo b®e(b)db. (39
A. Cylindrical pores Let s(b)db be the total area of slits of semi-thickness be-
In a cylindrical pore having a cross section with dimen-tweenb andb+ db per unit area of porous material. A direct
sions much smaller than the wavelength, velositis per-  consequence of the definition sfb) is
pendicular to the cross section, and the pressure is uniform
over a cross section. Thus the viscous and thermal problem xs(b)d b= . (40)
happen to have exactly the same mathematical form. This 0
identity was noted befofé® and it leads to the following

obvious relations, valid for cylindrical pores: The permeability can be written

1 0
K'(0)=k(Pr ), (3D =3 | bs(byab, 41
0
ko=ko. 32 ands(b) is related toe(b) by
M=M" 33 s(b)= ge(b). (42)
A=A", (34 For a unit volume of porous material, the volume of air is
_1 35 equal tog, and the area related to the surface of the pores in
U™ % (39 contact with air inside the volume, is twice the numbkeof
A test for the model consists in predicting the compressibilthe pores, which is given by
ity with Eq. (30), and comparing with exact calculations, for = s(b)
circular, triangular, or rectangular cross-sectional shaped cy- N= J TS db. (43
0

lindrical pores. The characteristic dimensions are equal to

two times the ratio of the area to the perimeter of the crosshe characteristic dimensions are given by
section. The viscous permeability can be calculated for the

different shape$? Results of the exact calculations, and cal- A A= f” e(b) db - "
culations performed with Eq30), are close to each other. It 7 |Jo b (44
may be noticed that for cylindrical pores the thermal static ]
permeability can be evaluated by measuring the flow resisTh€y can also be obtained from E¢80) and(37) of Ref. 7,

tivity o which can be used to evaluatein Eq. (8) of the present
paper. Equation&35) and(41) of Ref. 7 can also be used, but
a=nlko, (36)  the right-hand sides of both equations must be multiplied by
) a., . The different methods give the same result
ki=ko=nlo. (37
A=A"=2b, exd — (v In 2)%/2]. (45)

B. Systems of slits with a log-normal distribution for When the system of parallel slits is canted at an arglthe

the semi-thickness two characteristic lengths are given by the above expres-
The study, restricted to the viscous interaction, of a sysSions, andk, andk, are given by

tem of parallel slits with a log-normal distribution for the k.= ko= p(b23) exd 2(v In 2)2], (46)

semi-thicknes$, was initially performed by Yamamoto and
Turgut? This study was adapted by Attenborodigh order ~ whereb, is related tow, by b,=exd —w, In 2]. The char-

to predict the dynamic tortuosity and compressibility in po-acteristic dimensions and the thermal permeability depend on
rous media. A brief description of the model, with further b, andv, and not on tortuosityr,.=1/co€ . Whenv =0,
developments to predict the dependence of the characteristibese expressions give the same results as for a simple slit of
dimensionA’ and the transition frequency for the compress-semi-thicknes®,. The dynamic normalized compressibility
ibility on the parameters of the model, are given in whatB(w) can be evaluated from the dynamic tortuosity. A sim-
follows. These developments also present a nontrivial illuspler and equivalent evaluation can be obtained more directly
tration of the model described in the previous sections. Aby using

1999 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997 Lafarge et al.: Porous structures 1999
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FIG. 1. Predicted normalized compressibiligyw) for a slit and a system of
slits, related toA’=0.2 mm; slit ; system of slitgwith v = 0.5
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Blw)= f:ﬂb(me(b)db, @)

where B,(w) is the compressibility in a slit having a semi-
width b, given by

FIG. 2. Measured and predicted normalized compressibfliy) for the

w12 —iw\ 12 foam. Measuremen®OO; predictionM’=0.3 ; predictionM’ =1
Bp(w)=1+(y—1)tan bl —— b (circular cross-sectional shaped tube- — —; prediction with Attenbor-
b v’ v’ ’ ough’s model ------- :
(48)
The asymptotic expression @f(w) when w— o, compared of the peaks compared to the small value of the shift, which
to Eq.(2), provides the same expression fof as Eq.(45). IS close to 50 Hz.
When w—0, Eq.(29) can be rewritten
_— IV. TWO EXAMPLES
lw 0
Blw)=y+(y—1) P (49 The compressibility of air in a reticulated plastic foam

and a glass wool with thin fibres of diameter close tpré

and the asymptotic expression Bfw) given by Egs.(47)  has been evaluated with a new method which is simpler than
and(48) provides the same expression fd(0) as Eq(46).  the classical one where the acoustic impedance is measured
The compressibility is represented in Fig. 1 fox’ for a layer successively backed by an impervious rigid plate,
= 0.2 mm, andy=0 and 0.5. In the first case the compress-and set in front of a quarter-wavelength cavity. This new
ibility is the same as in a slit of semi-thicknelsss0.1 mm.  method is described in Ref. 15. The measured compressibili-
In the second casdy, and ky are given by Eqgs(45) and ties are represented in Fig. 2 for the foam and Fig. 3 for the
(46). The high-frequency representation gfw) [Eq. (2)]is  glass wool. The uncertainty of the measurements is about
already a good approximation at 2500 Hz, for both cases. AD.04 for the imaginary and the real part of the compressibil-
very low frequencies, the imaginary part gfw) depends ity at 100 Hz. The measured values are more spread about
linearly on w, as indicated by Eq(49). At last, whenv than predicted by this uncertainty, probably due to the fact
increases from 0 to 0.5, the maximum for the imaginary partthat the different samples of both materials studied cannot be
at the transition frequency, is shifted toward the low frequen-characterized by identical acoustic parameters. The previous
cies. This shift is not obvious in Fig. 1, due to the broadnessneasurements by Champoux and Stifig8npresent a

2000 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997 Lafarge et al.: Porous structures 2000
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agreement with measurementsi\if is fixed at the measured
value. For both materials, predictions obtained from the
model developed by Attenboroufthave been compared
with the measured compressibility. The measured tortuosity
for both materials is smaller than 1.05 and the difference
between the evaluations obtained from E@S) and(41) of

Ref. 7, and Eq.(47) of the present work, are negligible.
Equation (45) has been used to relate and b, with the
measured value ol’, and the high-frequency behavior of
compressibility is the same as for the cylindrical model. For
the first material, the best fit between prediction and mea-
surement is obtained far=0. The predicted compressibility

is represented fay =0, b,=A’/2. An increase ob, b,, and

v, being related by Eq45), does not noticeably modify the
location of the maximum of the imaginary part, but simulta-
neously, the maximum decreases and becomes noticeably
smaller than the measured value. For the second material, the
predicted compressibility is also represented fw+0,

_ b,=A'/2. The dependence of compressibility @nb,, and

v, being related by Eq45), is very weak, and the agreement
- between prediction and measurement is not improved when
v increases. The weak dependence of the compressibility on
— v for frequencies higher than the transition frequency, and
the behavior of the imaginary part around the transition fre-
= guency, can also be observed in Fig. 1.

As indicated in Sec. |, it has not be possible to evaluate
— ki nonacoustically from the measurement of the trapping
constant by methods involving NMR. Without a comparison
between acoustic and precise nonacoustical measurement of
k¢, itis only possible to verify that the order of magnitude of
the acoustical evaluations &f,, under the hypothesis that

14 | ULILLLL LUILLLLLLL ILLLLL

02 LLURERALL ULILLLLLL LI LULALL

NORMALIZED COMPRESSIBILITY

° IR et oo Eqg. (30) is valid, are not unphysical. Using the measured
10 102 3 0* values forA’, the coefficienM’ has been adjusted to obtain
FREQUENCY Hz the correct transition frequency where the imaginary part of

B is maximum. The values of the thermal permeabikfy
FIG. 3. Measured an_d _predicted compressibiB(yi))_fqr glass woo_l. Mea- indicated in Table | have been evaluated by using (EQ)
surementOO0; predictionM’=0.03 - ; predictionM’ =1 (circular 5y the information of measuredl’ and fittedM’. The
cross-sectional shaped tybe—— —; prediction with Attenborough’s X .
model - . Darcy permeabilitiek, were obtained by independent mea-

surements of the flow resistivity. The measured porosities

are indicated in Table I. The method of measuring porosity is
slightly smaller order of magnitude of the error. Their evalu-close to the one described in the book by Zwikker and
ations were obtained with a Kundt tube. MeasuremenKosten?
method developed by one of the authors can be performed With the adjusted value df1’, the agreement between
quickly, and frequencies lower than 50 Hz can be reachegrediction and experience is very good for foam. It is not as
easily. The characteristic dimensiof$ have been measured good for glass wool because the fibers do not have a suffi-
with the BET method described in the Introduction. cient thermal capacity for the compressibility to reach the

The measured dimensions’ are indicated in Table I. isothermal value at low frequencies, and the imaginary part

For both materials, the compressibility is compared with theof 8 does not reach the predicted value for the maximum. In
one in a circular cross-sectional shaped pore of ra@us an aim of simplicity, the model has not been modified to take
equal toA’, which is obtained by settinyl’=1 in Eq.(30).  this effect into accountThe effect of the small thermal ca-
The agreement between prediction and measurement is popacity of the frame has been studied by Tarrfévee Ap-
for the foam and very bad for the glass wool for the cylin- pendix B for a simple criterion which ensures that this effect
drical model. An unambiguous result is that the cylindricalis small) The important fact for the glass wool is that the
model withR= A" does not predict the location of the tran- transition frequency predicted by the one parameter model
sition frequency where the imaginary part of the compressfwith this parameter being equal to the characteristic length
ibility is maximum. The distance between the predicted and\’) is very far from the actual frequency. This is related to
measured location is very large for glass wool, and noticethe very small value oM’, which must be equal to one if
able for plastic foam. For both materials, the model based othe circular cross-sectional shaped model is valid. The vol-
the system of slits does not provide predictions in betteume of fiber per unit volume of glass wool is very small,
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about 1/1000. A previous stutfyon periodic lattices of the thermal permeability have been used, which characterize
spheres indicates that the modeling of the viscous permeabilhe thermal exchanges between air and frame in the high-
ity by Eq. (9) is robust, butM becomes very small at low and low-frequency range, respectively. Due to the complex-
concentrations. The same trend is observed experimentallfy of the frame of these materials, it has not been possible to
for M'. In fact, exact calculations of the various parametercompare the acoustically evaluated static permeability with
are not difficult to perform for regular arrays of cylinders in predicted values. Comparison with measurements of related
a dilute limit and the mentioned behavidt,M’'—0 with  quantities like the trapping constant would be an interesting
¢—1 can be checked explicitf?. For identical circular complement to the present study.

pores and slitsM’=1 and 0.66, respectively. For the log-

normal distributionM’ increases witlv and is always larger ACKNOWLEDGMENT

than 0.66. These representations cannot be used WHen
<1 to predict compressibility.

By inspection of the Johnsoet al. function (9) it may
be observed that in a limi—0, a simple, one relaxation
time, “Debye” scaling® occurs k/ko— 1/(1 — i@), as long
as the frequency fulfilld1 @< 1—which is the case for most APPENDIX A: MICROSTRUCTURAL APPROACH

Of the reIaXationaI pattern. Disregarding effeCtS related to the Under the excitation of an external harmonic source

finite thermal capacity of the solid, the same trend will occuryith frequencyw, the air motion inside the porous material is
for the thermal quantities, and we may expect that for smalkompletely characterized, at the microscopic level, by values
M’ a “Debye” scaling will apply tok’ (as long asM'@"  of the velocity v(r,w), excess pressume(r,w), and excess
<1). In terms of the compressibility this means that we temperatureq(r,w). In the framework of linearized acoustics,
should, in this limit, obtain B~y—(y—1)[~i®@'/(1  ajr being considered as an ideal gas, these variables obey the

—iw")]. It can be easily verified that this simple form 8f  following coupled equations in the porous domain
could have been used in Fig. 3 in place of the given two

The authors thank A. Gededhaboratoire de Chimie
des Surfaces, University of Paris )Mor the measurements
of the specific surfaces.

parameters predictiofM’=0.03, A’ =2.1x 10 % m). —iwpov=—Vp+ Vv +(n/3+{)V(V-v), (Ala)
The above simple form fg8 can be used to recover in a 1

more direct manner the given valkg=1.7x10"8 m? of the —io 5 (p—(Po/Tg)1)=—V"v, (Alb)

thermal permeability for glass wool. The characteristic fre- 0

guencyf . where In{8) is maximum corresponds in this case —iwpoCpr=—iwp+ V27, (Alc)

to w’'=1, i.e., the thermal permeability can be estimated by . .
means of the relatioky= v’ ¢/(2mf ). With f,~200 Hz, as ;I;g;anebgtjgdary conditions at the contact surface with the
indicated by the measurements in Fig. 3, we obthjn
=1.68x 10" m? in agreement with the previous result. For v=0, (redV) (A1d)
glass wool the simplified Debye expression @®related to
very small concentrations can be used to evallgte

For foam, the acoustically measured thermal permeabil- 7=0, (redV). (Ale)

ity is I_arger than the viscous permeability by a factor close torp,o general solution of EqgAla)—(Ald) for any nontrivial

4. This factor is equal to 2 for glass wool. Like glass wool, grame geometry would be difficult, if not impossible. For
reticulated foam can be considered a fibrous material. It may, ;2 nce significant coupling effects between viscous and
be noticed that a fibrgus material having_parallel fibers, in &hermal effects can occur if the porous material contains
f_Iovy parallel to the fibers, can be considered as one porgyiies which are weakly coupled with the main pores. Nev-
limited by the surface of the fibers. In that case, the thermalejess; for the materials studied, i.e., air-filled glass wools
and the viscous permeability are equal. If the flow is perpenz g reticulated foams, the frame is made of fibers which

dicular to the fibers, the thermal permeability is the same ag.c\ny 5 small part of the volume, and the interplay between
in the previous case, but the viscous permeability is approxigiscous and thermal effects can be neglected in a first ap-

mately decreased by a factor 012321n_ fact, an exact calcu-  ,qyimation. One may identify a dimensionless small param-
lation for reg“'ggga”ays of cylinders in a dilute limit predicts gier ¢ i the problem that would enable significant simplifi-
this factor of 2" The fibers in the porous foam are not .atigns for the viscous permeability and thermal permeability

parallel and their sections are more like triangles than circles.;iclation. Like in the work by Zhou and Shéfithis small
We do not know whether taking into account these details 0, ameter is defined as the ratio between two length scales,

the structure yields the desired factor of 4 for foam. e=1/L, in which the small scalé is given by the typical

pore size, and the large scédlas given by the product of the
V. CONCLUSION air sound speed=K,/pg and an intrinsic viscous relax-
ation time ®,=12/v. The characteristic frequencym29, is
The present study presents a simple extension to thermal rough estimate of a viscous rollover frequency where,
effects of an approach worked out by Johneoml. for vis-  when o increases, a transition occurs between a viscous
cous effects. This modeling uses two parameters for predicdominated regime and an inertia dominated regime. The
ing the dynamic compressibility of air in reticulated foams Prandtl number Pr is of order (~0.71 for aij and the
and glass wools. The thermal characteristic dimension anthermal rollover frequency where a transition occurs between

and
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isothermal and adiabatic regimes, is expected to be on the y—1

same order as the viscous rollover frequency. For air saturat- 1@ Po— ——— Pr

. . . . _4 . y

ing usual acoustic materials with=10"" m, € is on the

order of 10°4. —iw Prro=—iwpy+ V. (A5e)
By expressing time in units af, and lengths in units of

|, Egs.(Ala)—(Ald) may be written in dimensionless form These equations are supplemented by absorbing conditions
on the air—solid interface

1
=; (Vy-vot Vy-vy), (A5d)

1 1
—iwv=—sz+V2v+ §+7—§7 V(V-v), (A2a) vo=0, v;=0,.. (redV), (A5f)
70=0,... (redV). (A5g)
) y—1 -1
o p-—= Prr =?V'V, (A2b)  Equation(A5a) shows thap,, independent of coordinage
may be regarded as the externally applied pressure. Equa-
—iw Prr=—iwp+V?r, (A2c)  tions(A5e), (A5a), and(A5g) then indicate that, to the low-
est order, the temperature field originates from a spatially
v=0 (redV), (A2d)

uniform, harmonic, heating in the air domain, with perfect
_ absorbing conditions on the solid boundaries. Equation
7=0 (redVv). (A2e) (A5c) indicates that to the lowest order, the velocity field
Here,p is in units ofL %2/ pyl® following the assumption that may be regarded as incompressible onytezale.
the macroscopic pressure gradient should be on the same The fieldsp,, vy, and 7, are solutions to two indepen-
order asznu/1? in accordance with Darcy’s law6). Simi-  dent set of linear equations, Eq§c), (A5d), and (A5f) on
larly, 7 is in units ofL773/p§f<I3 following the assumption one hand, and Eq9A5d) and (A5g) on the other hand.
that the pressure derivativép/dt should be on the same Hence, they may be formally expressed as linear operators
order ask7/1? in accordance with the thermal analogue of acting on the source termsV,py and —iwpy, i.e.,
Darcy’s law (18). As in the Zhou and Sheng treatméft,

these assumptions are justified by our consistent derivation P1=P(X.y) (= VxPo), (AGa)
of the two “Darcy’s laws” from Eqgs.(A2a) to (A2e). The Ve=V(XV)-(—V A6b
following thermodynamic identities were used in writing 0=V(XY)- (= VxPo), (ABb)
Egs.(A2b) and(A2c): To=0(X,y)(—iwpg). (A6C)
Po y-1 The linear operator®, P, andV are, respectively, scalar,
ToPon_ y (A33) vector, and second rank tensor operators. By substituting
Egs.(A6a)—(A6c) into the two independent set noted above,
_ 7Cp A3b we get the generic equations satisfied by the operd&to¥s
K= "pr (A3D)  ande
A brief discussion of the validity of boundary condition VyP—iw\7—V§\7=T, (A7a)
(A2e) is given in Appendix B. -
The existence of a small parameterassociated with V,-V=0, (A7b)
rapid fluctuations in the structure of the air-filled porous do- - o
main can now be taken into account using the well-known V=0 (redVv) (AT7c)

method of homogenization. We assume that the differeng,q
fields depend on two scales: a slow scafer/L and a fast

scaley=x/e=r/l. We shall derive the globdmacroscopig ~io Pro-v;e=I, (A83)
equations governing sound propagation using a two-scale ex-
pansion 0=0 (redV). (A8b)
V(X,Y) =Vo(X,y) + Vg (X,y) + - | (Ada) In Fhese equationsand| are the unit seco.nd rank tensor and
unit scalar operatorf1);;=14g;; whered;; is the Kronecker
P(X,Y)=pPo(X,y)+ epr(X,y)+ -, (Adb)  symbol. Given the solution® and®, the dynamic viscous
and thermal permeabilitidd w) andk’(w) may be directly
T(X,Y) = 1o(X,Y) + €Ty (X,y) + -, (A4c)  calculated by averaging, and 7, over they variable
V=€V, tV,. (Add) (Voly=(V(x.¥))y- (= Vo), (A9)
Substituting (A4a)—(A4d) into (A2a)—(A2e) and collecting (T0)y=(O(X,y))y(—iwpg). (A10)

powers ofe yields the leading order equations
Comparing Egs(A9) and(A10) with the two dynamic Dar-

Vypo=0, (A58)  cy's laws(4) and (5), we get
—iwVg=—V,po— Vyp1+ Vv, (ASb) E(w):¢(\7(x,y))y (A11)
V,-vp=0, (Abc)  as the definition of the permeability tensor, and
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K'(w)=¢(®), (A12) u

o - —-DV2u=s (reV) (B1)
as the definition of thescalaj thermal permeability. The ot
dimensi_on_less pezzrmeabilities given btyll_) and_(A12) must u=0 (redV), (B2)
be multiplied byl < to recover the dimensionalized quantities
in Egs. (4) and (5). whereu is the concentration of solute per unit volume of

The remaining microscopic equat|m5d) may serve to Saturating fIUId At equilibriumﬁu/&t=0, and the trapping
establish the general connexit29) between thermal perme- constant is given by
ability and compressibility. Averagin@A\5d) gives I'=s/((u)¢D). (B3)

The trapping constant is related to threean survival timed
of solute particles by

6=1T ¢D. (B4)

iw

y—1 1
Po——~ P ro>y) =2 (Vxe{voly +(Vy-va)y).
(A13)

The second term on the right-hand side (8f13) is now o )
shown to be zero. LeVg be a large sphere of radig  ApPlication of Eq.(B3) gives
centered at the origin. Then 6=(u)/s. (B5)

1 1
<Vy'V1>y:V_ f V,-vi(x,y)dy= Vo f vi-n dy. 2. Frequency-dependent mean survival time and
R JVR R J VR relation with thermal permeability
The surface)V consists of two parts:Sg); is the part of the
pore surface withi'Vg, and Sg). is the part of the surface
of the large sphere within the pore domain. Using the bound
ary conditionv;=0 on (Sg); we have

A similar survival problem can be defined in harmonic
regime when the excitable solute is created with a spatially
constant densitge '“!. The frequency-dependent mean sur-
vival time is defined by(Torquato and Avellanedd

<Vy'V1>v:viR f(s endy, o) =(u(@)is. (B6)

Re whereu(w) solves the diffusion-controlled problem
and lettingR— we finally arrive at —ieu—DV2u=s (reV), (B7)
(Vy-vq)y=0. (A14) U=0 (redV). (88)

By using Eq.(A14) and Egs(A10) and(Al12), the averaged

equation(A13) can then be rewritten wheres is a spatial constant. Note thé¢0) is just the stan-

dard static survival timéB4).
K'(w) ALS A comparison between Eq&7) and(B8) and the ther-
1) lo.  (ALS) mal diffusion equations Eq$16) and (17) shows identical

This ratio represents the dimensionless, frequency—depende‘?lrtOblems (with substitutions s= =iwp/poC,, u=7, D

L . ) ) . . =v'=klpyC,) provided the pressunecan be considered as
compressibility function8(w). [Reintroducing dimensional- . P . .
ized variables on the left-hand side of E@15) a factor a spatial constant at the pore scale. It was noted in Appendix

L@p/v appears where tilded quantities are reference quantlA that this constancy follows from the simple two-scale

fies. Using the identifications =L 7%pgl% L analysiq see Eq(A5a)] and that it is a reasonable hypothesis

— Kalpo(%v), andT=l, it may be checked that this Logt;?needmaterlals studied. Hence, the following identity is
factor coincide with the adiabatic bulk modulls .] Rein- '

troducing dimensionalized variables on the right-hand side of k'(w)=v"¢80(w), (B9)
Eq. (A15), the productk’ (w)w must be writter{k’ (w)/1?]
X (wl?/v) and the final result is

=V, (Vo)y/ —iwpg=y+(y—1)Pr

wheref(w) corresponds t® = v’. Settingw=0 in Eq.(B9)
and using(B4) yields relation(19) between static thermal

iw k' (w) permeabilityk; and trapping constarit.
Blo)=y+(y=1) 7 s (A16)
with »' = v/Pr 3. Condition on the heat capacity of the porous solid
So far we have assumed the validity of the boundary
APPENDIX B: RELATION WITH DIFFUSION- conditions7=0 on the air—solid interface. A static thermal
CONTROLLED REACTIONS permeability exists and an isothermal low-frequency limit for

the compressibility lim_ o B(w)=7y is obtained by using
Eq. (A16). This assumption is justified only in a limit where
The trapping constant can be defined as follows. Insidéhe ratio

1. Trapping constant

the fluid that saturates the frame, an excitable solute is cre- (0oCo) airh

ated with a spatially constant densgy The solute diffuses = Oplar (B10)
with a diffusion constanD, and is instantly relaxed on con- (PoCp)soiid 1~ )

tact with the frame. The equations governing the diffusion-of the heat capacity coefficients is smalk€1l. For usual
controlled process are porous foams this ratio is on the order of 1/20. However,
2004 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997 Lafarge et al.: Porous structures 2004
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greater values can be found in the case of light glass wool§C1), a pole ofk’(w) means that there exists a nontrivial
The effect of finite heat capacity of the solid on the low- solution to the above microscopic equations, having the
frequency limit of B(w) can be predicted by means of simple property thatp=0. This occurs if the membrane is a
calorimetric considerations. In a quasi-static limit for com- pressure-release surface. The pressure terfC8) is not
pressions and dilatations, the excess temperature has suffiresent, and we are left with the Fourier equation of heat
cient time to equalize in the air and solid part. Thus in thediffusion

limit =0 we may write a7

a7 a(p) poCp —=kV27. (C6)

P
[(peCplair + (PoCosaid 1~ $)] === —=. "
(B11) The oscillations expf- iwt) of the system hence defined, are
unforced oscillations: sincgg=0, no mechanical power
A comparison between Eqb) and(B11) shows that in this  arises from a displacement of the membrane, and the follow-

quasi-static limitk’ (w) behaves like’ ¢r/—iw(1+r). The  ing boundary condition guarantees that no thermal power is
general relatiorf{A16) betweenk’ () and S(w) still applies  entering the system

to this case because the boundary conditior® were not

explicitly used. Making use of this connection finally yields § 79;m; dS=0. (C?)
- )/-H’ IV
I|m0 Blw)=17 (B12)  Here, 9V, is the closed boundary of the fluid volumé,

made of the pore wallgV and contact surfaces with the
Equation(B12) shows that the effect of finite heat capacity confining membranen; are the components of the unit nor-
of the solid can be ignored wher<1 (this is the mentioned mal to #V;, and 7 is the field complex conjugate af This
criterion in Sec. V. The boundary conditions = 0 then  condition (C7) is automatically satisfied because the inte-
lead to reasonable results and a static thermal permeabiligrand is identically zero on the pore walls and membrane,
may be assumed to exist. due to, respectively, boundary conditiof@5) and mem-
brane adiabaticity. From heat equati@®6) we have

APPENDIX C: SINGULARITIES OF THERMAL ) _ —
RESPONSE FUNCTIONS —pronfVTT dV:KJ'VTV TdV. (C8

As shown by Johnsoet all° (Appendix A), the two
response functionk(w) and a(w)=rv¢/—iwk(w) are ana- e - o
lytic functions of w everywhere in the complex plane except VZr=0/(1;7)— 07T, (C9

for values ofw on the negative imaginary axis. Thus any 5nq boundary condition&7), Eq. (C8) becomes
pole, branch point, or zero of these functions lies on the ’

Finally, because of the following identity

imaginary axis. We wish to point out that the same general — iy JuV % dv (10
properties apply to the thermal functiok$(w) and o’ (w) INEGEC Y
=v' ¢/ —iwk' (w). , . o .
The definitions ok (w) anda’(w) are Qiirefore, any pole df’ (w) lies on the negative imaginary
k'(w) ¢ A pole of a'(w) means that there exists a nontrivial
P(7)= K ot (P, (€ solution to the microscopic equatiof83)—(C5), having the

property that 7)=0, where() is the mean excess tempera-
ture in the fluid. Here the membrane is sealed off so that a
nonvanishing pressure may arise. As before, no mechanical
power is entering the system since the membrane is motion-
less, and the boundary conditi¢@7) is fulfilled. From Eq.

J Jd
poCpat’ (@) = (7)== (p), (€2

where 7 and p verify the local equations

aT ap (C3) we have
2 &
poCp p kVor+ L (reV), (C3
—iwpeCy | 77 dV= f_vz dv—i J_ dv.
Vp:O (I’EV), (C4) wpPQo prTT K VT T w VTp
=0 (redV). (CH The second integral in the right-hand side is identically zero

since p is a constant andr)=0. Hence, the same result
(C10 is obtained, proving that any pole af () lies on the
negative imaginary axis. To complete the proof and obtain
that any zero or branch point &f () or a’(w) must occur

%n the negative imaginary axis, one proceeds exactly as in-
giscated by Johnsoat al,'° Appendix A.

[Equation(C4) is written because of EqA5a).]

In order to study the singularities of the functidklg w)
and o’ (w), we imagine a volume of the porous sample en-
closed by a thin membrane, which is allowed to be movin
through the solid without disturbing it, while being impervi-
ous to the fluid. It is assumed that the membrane behaves
an adiabatic wal(Woods?). The singularities of response
factors are related to unforced oscillations of the system, and| | = peranek, “Acoustic impedance of porous materials,” J. Acoust.
we shall prove that the latter are purely damped. Due to EqQ. Soc. Am.13, 248—-260(1942.
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