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Dynamic compressibility of air in porous structures
at audible frequencies
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DK 2800 Lyngby, Denmark

~Received 24 February 1996; revised 9 June 1997; accepted 16 June 1997!

Measurements of dynamic compressibility of air-filled porous sound-absorbing materials are
compared with predictions involving two parameters, the static thermal permeabilityk08 and the
thermal characteristic dimensionL8. Emphasis on the notion of dynamic and static thermal
permeability—the latter being a geometrical parameter equal to the inverse trapping constant of the
solid frame—is apparently new. The static thermal permeability plays, in the description of the
thermal exchanges between frame and saturating fluid, a role similar to the viscous permeability in
the description of the viscous forces. Using both parameters, a simple model is constructed for the
dynamic thermal permeabilityk8(v), which is completely analogous to the Johnsonet al. @J. Fluid
Mech. 176, 379 ~1987!# model of dynamic viscous permeabilityk(v). The resultant modeling of
dynamic compressibility provides predictions which are closer to the experimental results than the
previously used simpler model where the compressibility is the same as in identical circular
cross-sectional shaped pores, or distributions of slits, related to a givenL8. © 1997 Acoustical
Society of America.@S0001-4966~97!00310-X#

PACS numbers: 43.20.Gp, 43.20.Jr, 43.55.Ev@JEG#
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INTRODUCTION

In air-filled sound-absorbing media, the frequency d
pendence of the compressibility, which varies from the i
thermal to the adiabatic value when frequency increa
plays an important role when a precise prediction of sou
absorption versus frequency is needed. Beranek1 has sug-
gested~1942! that at low frequencies the cycle of condens
tion and rarefaction of the enclosed air is isothermal due
the thermal exchanges between air and frame. The frequ
dependence of compressibility was calculated by Zwik
and Kosten2 for pores in the form of circular cross-section
shaped cylinders and slits. Other shapes of pores were s
ied later.3 It may be noticed that for cylindrical pores th
compressibility depends on the shape of the cross sec
For a given hydraulic radiusr̄ ~r̄ is two times the ratio of the
area to the perimeter of the cross section!, this dependence
can be neglected in a first approximation. In porous me
with other geometries of the frame, the frequency dep
dence of compressibility was the same~Zwikker and
Kosten,2 Attenborough,4 Allard et al.5! as in circular cross-
sectional shaped pores. The radius is related to the flow
sistivity with an adjustable factor which takes into accou
the specificity of the geometry for the different poro
frames. The adequation of such models is limited by the
that cylindrical pores generally do not exist in porous med
A qualitative description of the effect of pore constrictio
was given by Zwikker and Kosten.2 A precise description of
compressibility in a pore made up of an alternating seque
of circular cross-sectional shaped cylinders was perform
by Champoux and Stinson.6 An aim to relate the frequenc
1995 J. Acoust. Soc. Am. 102 (4), October 1997 0001-4966/97/102
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dependence of compressibility to nonacoustical meas
ments was performed later by Attenborough.7 In this paper
the porous material was modeled as a log-normal size di
bution of tortuous slits widths. Pore size distribution can
determined nonacoustically for some materials. A param
which characterizes the high-frequency behavior of co
pressibility, i.e., the thermal characteristic dimension, w
identified by Champoux and Allard.8 This parameterL8 is
twice the ratio between the pore volumeVp and surfaceSp

and is sometimes referred to as the Kozeny radius:L8
52Vp /Sp . It generalizes the notion of hydraulic radius fo
the case of arbitrary geometries of the frame and reduces
for the case of cylindrical pores. This definition was inspir
by the definition of the characteristic viscous dimensi
~Johnsonet al.9,10! L, which characterizes the viscous inte
action between air and frame at high frequencies. At su
ciently high frequencies the thermal exchanges between
and frame mainly occur in a small layer close to the fram
where temperature depends on the local distance to the fr
~as if the frame-air interface was plane!. A normalized dy-
namic compressibilityb~v! will be used in the present work
defined by

b~v!

Ka
^p&5

1

r0
^r&, ~1!

where Ka is the adiabatic bulk modulus of air,r0 the air
density at rest, and̂p& and ^r& the macroscopic acousti
pressure and density, respectively.~In the present paper, th
symbol^& denotes an intrinsic air-phase average.! When fre-
quency increases,b~v! tends to
1995(4)/1995/12/$10.00 © 1997 Acoustical Society of America
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TABLE I. Viscous and thermal parameters for both porous media.

Flow
resistivity
s Nm24 s

Viscous
permeability

k0 m2
Characteristic thermal

dimensionL8 m M 8

Thermal
permeability

k08 m2

Foam 6000 0.331028 6.131024 0.3 1.331028

Glass wool 2300 0.831028 2.131023 0.03 1.731028
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b~v!512~g21!~11 i !
d8

L8
. ~2!

In this equation,d85(2n8/v)1/2 is the thermal skin depth
~with n85n/Pr, n being the kinematic viscosity and Pr th
Prandtl number!, andg is the specific heat ratio. The imag
nary part inb~v! produces absorption, whereas the real p
is related to the speed of sound. The characteristic dim
sionsL8 andL can be evaluated from the attenuation or t
wave speed of ultrasonic pulses successively measured
different gases saturating the porous frame.11 The parameter
L8 can also be obtained with the BET method12 of measur-
ing specific surfaces~pore surfaceSp for a unit mass of
frame!. The frame, at liquid nitrogen temperature, adsorb
multimolecular layer of the surrounding gas~krypton can be
chosen to increase the sensitivity for the case of glass w
and reticulated foams, becauseSp is much smaller than for
the case of powders and materials generally measured!. A
measurement of the adsorbed volume of krypton provide
evaluation ofSp , and the specific volumeVp is deduced
from the two densities of the frame and the solid, or fro
direct measurement of the porosity and frame density. Pr
ous measurements ofL8 obtained from both methods~BET
and ultrasonic measurements! are in a good agreement.11

Acoustic measurements are performed on layers set
rigid impervious baking. The frame of the porous media
always supposed to be motionless. The flow resistivity of
studied media is small~see Table I!. For these materials, a
low frequencies, where the transition between the isother
and adiabatic compressibility occurs, it may be shown in
context of the Biot model13 that the frame tends to becom
motionless due to the weakness of the viscous forces
simple model for the frequency dependence of compress
ity consists in replacing the porous structure by an equiva
one with circular cross-sectional shaped pores having a
dius equal toL8. The asymptotic behavior of the predicte
compressibility at high frequencies is correct. When f
quency decreases, the frequency dependence of comp
ibility is difficult to predict, due to the increasing range
the thermal interaction between frame and air. The sa
problem arises for the viscous interaction at low frequenc
One approach consists in using a low-frequency parame
the viscous static permeability related to the flow resistiv
s by

k05h/s, ~3!

whereh is the viscosity of air. The flow resistivity and th
permeability are easily measurable, and when freque
tends to zero provide the essential information concern
the viscous interaction. With the parametersL, k0 , and for-
mation factora` /f, Johnsonet al.10 have suggested a gen
oc. Am., Vol. 102, No. 4, October 1997
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eral expression for the dynamic viscous permeabilityk(v)
defined by

f^v&52
k~v!

h
“^p&, ~4!

wheref is the porosity~1-volumen concentration of fram
material!, and^v& is the macroscopic velocity field. Isotrop
of the porous solid is assumed for simplicity. For anisotro
structures,k(v) is a symmetric tensor of rank two. Numer
cal simulations and experiments have shown that the mo
ing by Johnsonet al. is very robust.

In the present work, a thermal analogue of the dynam
viscous permeability is defined by setting at any frequen

f^t&5
k8~v!

k

]

]t
^p&, ~5!

where^t& is the macroscopic excess temperature in air, ank
is the coefficient of thermal conduction. The quantityk8(v)
has the same dimensions ask(v) ~length squared!. When the
frame has a sufficient thermal capacity for the compressi
ity b~v! to reach the isothermal valueg at low frequencies,
the excess temperaturet can be considered to vanish at th
pore walls~this replaces the no-slip conditionv50 for vis-
cous flow! and a static ‘‘thermal permeability’’k08 exists.
This parameter provides the missing low-frequency therm
information and is shown to be equal to the inverse trapp
constant of the porous frame~the trapping constant is define
for instance in Ref. 14 and in Appendix B!. We suggest that
the functionk8(v) can be modeled in a manner similar to th
permeability functionk(v) with the parametersL8, k08 , and
porosityf. A general connection betweenk8(v) andb~v! is
also established, leading to a simple expression for the c
pressibility functionb~v!. Developments and justification
are reported in the different Appendices A, B, and C.

Precise and fast evaluations of compressibility are n
available with a new method developed by Tarnow,15 based
on measurement of the frequency and the quality facto
the quarter-wavelength resonance in a closed tube whe
layer of porous material is set. Predictions with the n
model are compared to measurements performed with
method developed by Tarnow.

It is to be noted that the homogenization of the visc
thermal linearized acoustic equations in a gas-filled por
structure has been previously considered by Sanch
Palencia and Levy.16 These authors stated the microscop
boundary value problem which enables calculating the m
roscopic coefficient̂ t&/^p& @2 ivk8(v)/fk in our nota-
tions# from the microstructures. However, no attempt w
1996Lafarge et al.: Porous structures
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Downloade
made to extract from this definition a simple modeling of t
frequency dependence of compressibility. A previous
tempt to generalize Johnsonet al. model of dynamic perme
ability k(v) to the compressibility functionb~v! was made
by Champoux and Allard.8 However, the thermal permeabi
ity function was not considered and the role played by
inverse trapping constantk08 was not apparent. The conce
of thermal permeability and the resulting modeling ofb~v!
were suggested by one of the authors in a the
dissertation.17

I. DYNAMIC PERMEABILITY FUNCTIONS

A. Dynamic viscous permeability

In a porous medium, a static flow which corresponds
an averaged fluid velocitŷv& is related to the gradient of th
averaged pressure“^p& by the Darcy law:

f^v&52
k0

h
“^p&. ~6!

In the frequency domain, and for disturbances character
by a long wavelength~l@ l , wherel is typical of the pore or
grain size! this static law can be replaced by

f^v&52
k~v!

h
“^p&, ~7!

wherek(v) is the dynamic permeability. It has been show
by Johnsonet al.10 ~see also Avellaneda and Torquato,14 Ap-
pendix D! thatk(v) could be replaced at high frequencies
the following asymptotic expression, analogous to~2!:

k~v!5
nf

2 iva`
F12~11 i !

d

LG , ~8!

where a` is the tortuosity,L is the viscous characteristi
dimension, andd5(2n/v)1/2 is the viscous skin depth. As
suming that the three parameters,F5a` /f ~formation fac-
tor!, k0 , andL, provide a sufficient information on the ge
ometry, an approximation fork(v) between the high- and
the low-frequency range has been worked out by John
et al.10 The permeabilityk(v) is the frequency response o
an invariant, causal, linear system, and the poles, the ze
and the branch points ofk(v) are located on the imaginar
negative axis in the complexv plane. Analytical functions
having these properties are expected to provide fairly g
approximations fork(v) in the intermediate real frequenc
range, if they tend to the limits given by Eqs.~6! and~8! for
small and largev. The following expression, which satisfie
all the required properties, was suggested as the simp
possible ansatz:

k~v!5k0 /@„12~M /2!i ṽ…

1/22 i ṽ#, ~9!

whereM is the following dimensionless shape factor:

M5
8a`k0

fL2 , ~10!

and the dimensionless frequencyṽ is defined as

ṽ5
v

n

k0a`

f
. ~11!
1997 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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B. Dynamic thermal permeability

In a porous material having a rigid frame filled by air,
macroscopic description of the thermal exchanges betw
frame and air is needed to predict the compressibility of
equivalent fluid. This description will be obtained with th
help of the concept of dynamical thermal permeability.

Two linearized equations which link pressure, dens
and temperature variations of air considered as an ideal
the equation of thermal conduction and the equation of st
may be written~see for example Ref. 3!

k¹2t5
T0

P0
S r0Cv

]p

]t
2P0Cp

]r

]t D , ~12!

]p

]t
5

P0

r0T0
S r0

]t

]t
1T0

]r

]t D . ~13!

In these equations,T0 andP0 are the static temperature an
pressure, andCv andCp are the specific heats~per unit mass!
at constant volume and pressure, respectively. The aco
densityr is related to the velocityv by

]r

]t
52r0“–v. ~14!

Eliminating ]r/]t between Eqs.~12! and ~13!, and making
use of the relation

r0T0

P0
~Cp2Cv!51, ~15!

which is valid for ideal gas, gives, in the volumeV of air,

r0Cp

]t

]t
5k¹2t1

]p

]t
~rPV!. ~16!

The thermal capacity and conductivity of the frame, for us
porous media, is generally very large compared to air. I
first approximation the frame can be considered as a ther
stat, and the acoustical temperaturet at the contact surface
]V with the frame can be set equal to zero:

t50 ~rP]V!. ~17!

Equation~16! and the boundary condition~17! describe the
thermal diffusion in the fluid. They constitute the therm
counterpart of the linearized equationsr0(]v/]t)5h¹2v
2“p (rPV) andv50 (rP]V) for inertial/viscous effects.
@The term (h1z/3)“(“–v), wherez is the second viscosity
is not written in the above Navier–Stokes equation beca
incompressibility of air may be assumed at the pore sc
see Appendix A, Eq.~A5c!.# This suggests the definition of
‘‘thermal permeability’’k8(v) by means of Eq.~5!, in anal-
ogy with Eq. ~4!. The use of the denomination ‘‘therma
permeability’’ is not completely appropriate, because a p
meability ~viscous or magnetic! is related to vectors, and th
thermal permeability links two scalar quantities. Neverth
less, the designation is used to emphasize the formal sim
ity with the viscous permeability. In Appendix A, the firs
principles definition of the frequency-dependent viscous a
thermal permeabilities and the recipe for their calculation
derived through the generalization of the homogenizat
1997Lafarge et al.: Porous structures
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procedure employed by Zhou and Sheng18 in the purely vis-
cous case.

Whenv→0 and the frame is considered as a thermos
the excess temperature in air^t& is proportional to the pres
sure derivative]^p&/]t and a thermal Darcy’s law is ob
tained

f^t&5
k08

k

]

]t
^p&. ~18!

The real constantk085 limv→0 k8(v) plays the role of a
static thermal permeability. Under some conditions exa
ined in Appendices A and B, it is related to the trappi
constant14 G of the frame by

k0851/G. ~19!

~The definition ofG is recalled in Appendix B.!
The trapping constant can be predicted from numer

simulations for simple geometries~Schwartzet al.19!. Ex-
perimentally, nuclear magnetic resonance~NMR!, which is
used to characterize the geometry of porous frames~Straley
et al.20!, could provide experimental evaluations ofG. The
excitation corresponds to the induced parallelism of nuc
spins in water. Two physical phenomena, a large
excitation in the saturating fluid, and a noninstantaneous
laxation on contact with the frame, have prevented until n
an evaluation ofG by NMR for plastic foams and glas
wools.

Whenv is large, the harmonic compressions/dilatatio
become adiabatic andr0Cp^t&/^p&→1. More precisely, tak-
ing into account the presence of a thin thermal bound
layer at the pore walls yields8

^t&5
^p&

r0Cp
F12~11 i !

d8

L8G , ~20!

where it has been assumed that the pressure is a
constant—a condition justified in Appendix A—and that t
temperature profile in the boundary layer is the same in
limit of high frequencies as that near a flat surface. T
excludes more complicated and ‘‘fractal’’ pore surfaces. T
asymptotic expression fork8(v) that can be deduced from
~5! and ~20! is

k8~v!5
n8f

2 iv F12~11 i !
d8

L8G . ~21!

The exact frequency dependence ofk8(v) in the whole
range of frequencies needs an exact description of the ge
etry of the frame. However, as shown in Appendix C, t
function k8(v) verifies the same general analytical prop
ties ask(v). An approximate expression depending on
small number of parameters can be obtained by following
method developed by Johnsonet al. described in Sec. I A.
The following three parameters expression may be sugge
for k8(v):17

k8~v!5k08/@„12~M 8/2!i ṽ8…1/22 i ṽ8#, ~22!

which involves the following~dimensionless! shape factor
M 8:

M 858k08/fL82, ~23!
1998 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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ṽ85
v

n8

k08

f
. ~24!

This modeling depends on three independent geometrica
rameters, for instancek08 , M 8, andF851/f. These param-
eters play the same role as parametersk0 , M , andF in the
previous description of the viscous permeability.

II. DYNAMIC COMPRESSIBILITY

To describe sound propagation at the macroscopic le
in rigid air-saturated material, the knowledge of two r
sponse factors will be required. One is the dynamic tortu
ity

r0a~v!
]^v&
]t

52“^p&, ~25!

obviously related to the dynamic viscous permeabil
@a(v)52nf/ ivk(v)#. A second convenient response fa
tor is the normalized dynamic compressibilityb~v!, defined
by Eq. ~1!, which can be rewritten:

b~v!

Ka

]^p&
]t

52“–Šv‹. ~26!

@This is obtained by using Eq.~14! and the identitŷ “–v&
5 “–^v&, which is valid for materials having an uniform
porosity; see for example Prideet al.21 and Marle.22# With
this definition b(v)→1 when v→`. Looking for plane
wave solutions varying as exp@i(qx2vt)#, Eqs.~25! and~26!
yield the propagation constant and characteristic impeda
of the medium

q5vS a~v!b~v!
r0

Ka
D 1/2

, ~27!

Z5S a~v!

b~v!
r0KaD 1/2

. ~28!

Thusa andb provide all pertinent information on the propa
gation in the medium.

The scaled compressibilityb~v! is directly related to the
thermal permeabilityk8(v) by means of the relation

b~v!5g1~g21!
iv

n8

k8~v!

f
. ~29!

A proof is given in Appendix A. Using Eq.~22!, the follow-
ing simple model for frequency dependence of dynam
scaled compressibility has thus been obtained:

b~v!5g2~g21!F11
1

2 i ṽ8 S 12
M 8

2
i ṽ8D 1/2G21

,

~30!

where the shape factorM 8 and reduced frequencyṽ8 are
expressed by Eqs.~23! and ~24! in terms of the parameter
k08 , L8, andf.

It may be noticed that a similar expression forb~v! was
proposed by Champoux and Allard@Eq. ~19! of Ref. 8#. It is,
however, written in such a way that a mixing occurs betwe
the inertial/viscous and thermal parameters, and it coinci
1998Lafarge et al.: Porous structures
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with the present one only if the adjustable parameters8 is
set equal toha` /k08 . The present derivation gives a physic
meaning tos8 in Ref. 8 and shows that Eq.~19!, which was
extrapolated from an expression valid for cylindrical por
is a reasonable general hypothesis for the frequency de
dence of compressibility.

III. VISCOUS AND THERMAL PERMEABILITY IN
CYLINDRICAL PORES AND IN SYSTEMS OF SLITS
WITH A LOG-NORMAL DISTRIBUTION FOR
THE SEMI-THICKNESS

A. Cylindrical pores

In a cylindrical pore having a cross section with dime
sions much smaller than the wavelength, velocityv is per-
pendicular to the cross section, and the pressure is unif
over a cross section. Thus the viscous and thermal prob
happen to have exactly the same mathematical form. T
identity was noted before3,23 and it leads to the following
obvious relations, valid for cylindrical pores:

k8~v!5k~Pr v!, ~31!

k05k08 , ~32!

M5M 8, ~33!

L5L8, ~34!

a`51. ~35!

A test for the model consists in predicting the compressi
ity with Eq. ~30!, and comparing with exact calculations, f
circular, triangular, or rectangular cross-sectional shaped
lindrical pores. The characteristic dimensions are equa
two times the ratio of the area to the perimeter of the cr
section. The viscous permeability can be calculated for
different shapes.24 Results of the exact calculations, and c
culations performed with Eq.~30!, are close to each other.
may be noticed that for cylindrical pores the thermal sta
permeability can be evaluated by measuring the flow re
tivity s

s5h/k0 , ~36!

k085k05h/s. ~37!

B. Systems of slits with a log-normal distribution for
the semi-thickness

The study, restricted to the viscous interaction, of a s
tem of parallel slits with a log-normal distribution for th
semi-thicknessb, was initially performed by Yamamoto an
Turgut.25 This study was adapted by Attenborough7 in order
to predict the dynamic tortuosity and compressibility in p
rous media. A brief description of the model, with furth
developments to predict the dependence of the characte
dimensionL8 and the transition frequency for the compres
ibility on the parameters of the model, are given in wh
follows. These developments also present a nontrivial ill
tration of the model described in the previous sections
1999 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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distributione(b) is used, defined from the variablew, 2`
,w,`, related tob by b5exp@2w ln 2#, and the distribu-
tion f for w, given by

f ~w!5
1

vA2p
exp@2~w2wa!2/2v2#. ~38!

The precise meaning ofe(b) can be deduced from Eq.~10!
of Ref. 25, which gives the viscous permeabilityk0 when
a`51

k05
f

3 E
0

`

b2e~b!db. ~39!

Let s(b)db be the total area of slits of semi-thickness b
tweenb andb1db per unit area of porous material. A direc
consequence of the definition ofs(b) is

E
0

`

s~b!db5f. ~40!

The permeability can be written

k05
1

3 E
0

`

b2s~b!db, ~41!

ands(b) is related toe(b) by

s~b!5fe~b!. ~42!

For a unit volume of porous material, the volume of air
equal tof, and the area related to the surface of the pore
contact with air inside the volume, is twice the numberN of
the pores, which is given by

N5E
0

` s~b!

2b
db. ~43!

The characteristic dimensions are given by

L5L85F E
0

` e~b!

b
dbG21

. ~44!

They can also be obtained from Eqs.~20! and~37! of Ref. 7,
which can be used to evaluateL in Eq. ~8! of the present
paper. Equations~35! and~41! of Ref. 7 can also be used, bu
the right-hand sides of both equations must be multiplied
a` . The different methods give the same result

L5L852ba exp@2~v ln 2!2/2#. ~45!

When the system of parallel slits is canted at an angleq, the
two characteristic lengths are given by the above exp
sions, andk0 andk08 are given by

k085a`k05f~ba
2/3! exp@2~v ln 2!2#, ~46!

whereba is related towa by ba5exp@2wa ln 2#. The char-
acteristic dimensions and the thermal permeability depend
ba and v, and not on tortuositya`51/cos2 q. Whenv50,
these expressions give the same results as for a simple s
semi-thicknessba . The dynamic normalized compressibilit
b~v! can be evaluated from the dynamic tortuosity. A sim
pler and equivalent evaluation can be obtained more dire
by using
1999Lafarge et al.: Porous structures
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b~v!5E
0

`

bb~v!e~b!db, ~47!

wherebb(v) is the compressibility in a slit having a sem
width b, given by

bb~v!511~g21!tanhFbS 2 iv

n8 D 1/2G Y bS 2 iv

n8 D 1/2

.

~48!

The asymptotic expression ofb~v! when v→`, compared
to Eq. ~2!, provides the same expression forL8 as Eq.~45!.
Whenv→0, Eq. ~29! can be rewritten

b~v!5g1~g21!
iv

n8

k08

f
, ~49!

and the asymptotic expression ofb~v! given by Eqs.~47!
and~48! provides the same expression fork8(0) as Eq.~46!.
The compressibility is represented in Fig. 1 forL8
5 0.2 mm, andv50 and 0.5. In the first case the compres
ibility is the same as in a slit of semi-thicknessb50.1 mm.
In the second case,ba and k08 are given by Eqs.~45! and
~46!. The high-frequency representation ofb~v! @Eq. ~2!# is
already a good approximation at 2500 Hz, for both cases
very low frequencies, the imaginary part ofb~v! depends
linearly on v, as indicated by Eq.~49!. At last, whenv
increases from 0 to 0.5, the maximum for the imaginary p
at the transition frequency, is shifted toward the low frequ
cies. This shift is not obvious in Fig. 1, due to the broadn

FIG. 1. Predicted normalized compressibilityb~v! for a slit and a system of
slits, related toL850.2 mm; slit ———; system of slits~with v 5 0.5!
----.
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of the peaks compared to the small value of the shift, wh
is close to 50 Hz.

IV. TWO EXAMPLES

The compressibility of air in a reticulated plastic foa
and a glass wool with thin fibres of diameter close to 6mm
has been evaluated with a new method which is simpler t
the classical one where the acoustic impedance is meas
for a layer successively backed by an impervious rigid pla
and set in front of a quarter-wavelength cavity. This ne
method is described in Ref. 15. The measured compress
ties are represented in Fig. 2 for the foam and Fig. 3 for
glass wool. The uncertainty of the measurements is ab
0.04 for the imaginary and the real part of the compressi
ity at 100 Hz. The measured values are more spread a
than predicted by this uncertainty, probably due to the f
that the different samples of both materials studied canno
characterized by identical acoustic parameters. The prev
measurements by Champoux and Stinson6,26 present a

FIG. 2. Measured and predicted normalized compressibilityb~v! for the
foam. Measurementsss; predictionM 850.3 ———; predictionM 851
~circular cross-sectional shaped tube! — — —; prediction with Attenbor-
ough’s model -------.
2000Lafarge et al.: Porous structures
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slightly smaller order of magnitude of the error. Their eva
ations were obtained with a Kundt tube. Measurem
method developed by one of the authors can be perfor
quickly, and frequencies lower than 50 Hz can be reac
easily. The characteristic dimensionsL8 have been measure
with the BET method described in the Introduction.

The measured dimensionsL8 are indicated in Table I.
For both materials, the compressibility is compared with
one in a circular cross-sectional shaped pore of radiuR
equal toL8, which is obtained by settingM 851 in Eq.~30!.
The agreement between prediction and measurement is
for the foam and very bad for the glass wool for the cyl
drical model. An unambiguous result is that the cylindric
model withR5L8 does not predict the location of the tra
sition frequency where the imaginary part of the compre
ibility is maximum. The distance between the predicted a
measured location is very large for glass wool, and noti
able for plastic foam. For both materials, the model based
the system of slits does not provide predictions in be

FIG. 3. Measured and predicted compressibilityb~v! for glass wool. Mea-
surementsss; predictionM 850.03 ———; predictionM 851 ~circular
cross-sectional shaped tube! — — —; prediction with Attenborough’s
model ------.
2001 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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agreement with measurements ifL8 is fixed at the measured
value. For both materials, predictions obtained from
model developed by Attenborough7 have been compare
with the measured compressibility. The measured tortuo
for both materials is smaller than 1.05 and the differen
between the evaluations obtained from Eqs.~35! and~41! of
Ref. 7, and Eq.~47! of the present work, are negligible
Equation ~45! has been used to relatev and ba with the
measured value ofL8, and the high-frequency behavior o
compressibility is the same as for the cylindrical model. F
the first material, the best fit between prediction and m
surement is obtained forv50. The predicted compressibility
is represented forv50, ba5L8/2. An increase ofv, ba, and
v, being related by Eq.~45!, does not noticeably modify the
location of the maximum of the imaginary part, but simult
neously, the maximum decreases and becomes notice
smaller than the measured value. For the second materia
predicted compressibility is also represented forv50,
ba5L8/2. The dependence of compressibility onv, ba, and
v, being related by Eq.~45!, is very weak, and the agreeme
between prediction and measurement is not improved w
v increases. The weak dependence of the compressibilit
v for frequencies higher than the transition frequency, a
the behavior of the imaginary part around the transition f
quency, can also be observed in Fig. 1.

As indicated in Sec. I, it has not be possible to evalu
k08 nonacoustically from the measurement of the trapp
constant by methods involving NMR. Without a comparis
between acoustic and precise nonacoustical measureme
k08 , it is only possible to verify that the order of magnitude
the acoustical evaluations ofk08 , under the hypothesis tha
Eq. ~30! is valid, are not unphysical. Using the measur
values forL8, the coefficientM 8 has been adjusted to obta
the correct transition frequency where the imaginary par
b is maximum. The values of the thermal permeabilityk08
indicated in Table I have been evaluated by using Eq.~23!
and the information of measuredL8 and fitted M 8. The
Darcy permeabilitiesk0 were obtained by independent me
surements of the flow resistivitys. The measured porositie
are indicated in Table I. The method of measuring porosit
close to the one described in the book by Zwikker a
Kosten.2

With the adjusted value ofM 8, the agreement betwee
prediction and experience is very good for foam. It is not
good for glass wool because the fibers do not have a s
cient thermal capacity for the compressibility to reach t
isothermal value at low frequencies, and the imaginary p
of b does not reach the predicted value for the maximum
an aim of simplicity, the model has not been modified to ta
this effect into account.~The effect of the small thermal ca
pacity of the frame has been studied by Tarnow.27 See Ap-
pendix B for a simple criterion which ensures that this effe
is small.! The important fact for the glass wool is that th
transition frequency predicted by the one parameter mo
~with this parameter being equal to the characteristic len
L8! is very far from the actual frequency. This is related
the very small value ofM 8, which must be equal to one i
the circular cross-sectional shaped model is valid. The v
ume of fiber per unit volume of glass wool is very sma
2001Lafarge et al.: Porous structures
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about 1/1000. A previous study28 on periodic lattices of
spheres indicates that the modeling of the viscous perme
ity by Eq. ~9! is robust, butM becomes very small at low
concentrations. The same trend is observed experimen
for M 8. In fact, exact calculations of the various paramet
are not difficult to perform for regular arrays of cylinders
a dilute limit and the mentioned behaviorM ,M 8→0 with
f→1 can be checked explicitly.29 For identical circular
pores and slits,M 851 and 0.66, respectively. For the log
normal distribution,M 8 increases withv and is always larger
than 0.66. These representations cannot be used whenM 8
!1 to predict compressibility.

By inspection of the Johnsonet al. function ~9! it may
be observed that in a limitM→0, a simple, one relaxation
time, ‘‘Debye’’ scaling30 occurs,k/k0→1/(1 2 i ṽ), as long
as the frequency fulfillsM ṽ!1—which is the case for mos
of the relaxational pattern. Disregarding effects related to
finite thermal capacity of the solid, the same trend will occ
for the thermal quantities, and we may expect that for sm
M 8 a ‘‘Debye’’ scaling will apply tok8 ~as long asM 8ṽ8
!1!. In terms of the compressibilityb this means that we
should, in this limit, obtain b'g2(g21)@2 i ṽ8/(1
2 i ṽ8)#. It can be easily verified that this simple form ofb
could have been used in Fig. 3 in place of the given t
parameters prediction~M 850.03,L852.131023 m!.

The above simple form forb can be used to recover in
more direct manner the given valuek0851.731028 m2 of the
thermal permeability for glass wool. The characteristic f
quencyf c where Im~b! is maximum corresponds in this cas
to ṽ851, i.e., the thermal permeability can be estimated
means of the relationk085n8f/(2p f c). With f c'200 Hz, as
indicated by the measurements in Fig. 3, we obtaink08
51.6831028 m2 in agreement with the previous result. F
glass wool the simplified Debye expression forb related to
very small concentrations can be used to evaluatek08 .

For foam, the acoustically measured thermal permea
ity is larger than the viscous permeability by a factor close
4. This factor is equal to 2 for glass wool. Like glass wo
reticulated foam can be considered a fibrous material. It m
be noticed that a fibrous material having parallel fibers, i
flow parallel to the fibers, can be considered as one p
limited by the surface of the fibers. In that case, the ther
and the viscous permeability are equal. If the flow is perp
dicular to the fibers, the thermal permeability is the same
in the previous case, but the viscous permeability is appr
mately decreased by a factor of 2.23 In fact, an exact calcu-
lation for regular arrays of cylinders in a dilute limit predic
this factor of 2.29 The fibers in the porous foam are n
parallel and their sections are more like triangles than circ
We do not know whether taking into account these details
the structure yields the desired factor of 4 for foam.

V. CONCLUSION

The present study presents a simple extension to the
effects of an approach worked out by Johnsonet al. for vis-
cous effects. This modeling uses two parameters for pred
ing the dynamic compressibility of air in reticulated foam
and glass wools. The thermal characteristic dimension
2002 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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the thermal permeability have been used, which characte
the thermal exchanges between air and frame in the h
and low-frequency range, respectively. Due to the compl
ity of the frame of these materials, it has not been possibl
compare the acoustically evaluated static permeability w
predicted values. Comparison with measurements of rela
quantities like the trapping constant would be an interest
complement to the present study.
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APPENDIX A: MICROSTRUCTURAL APPROACH

Under the excitation of an external harmonic sour
with frequencyv, the air motion inside the porous material
completely characterized, at the microscopic level, by val
of the velocityv~r ,v!, excess pressurep(r ,v), and excess
temperaturet~r ,v!. In the framework of linearized acoustic
air being considered as an ideal gas, these variables obe
following coupled equations in the porous domainV:

2 ivr0v52“p1h¹2v1~h/31z!“~“–v!, ~A1a!

2 iv
1

P0
„p2~P0 /T0!t…52“–v, ~A1b!

2 ivr0Cpt52 ivp1k¹2t. ~A1c!

The boundary conditions at the contact surface with
frame are

v50, ~rP]V! ~A1d!

and

t50, ~rP]V!. ~A1e!

The general solution of Eqs.~A1a!–~A1d! for any nontrivial
frame geometry would be difficult, if not impossible. Fo
instance, significant coupling effects between viscous
thermal effects can occur if the porous material conta
cavities which are weakly coupled with the main pores. Ne
ertheless, for the materials studied, i.e., air-filled glass wo
and reticulated foams, the frame is made of fibers wh
occupy a small part of the volume, and the interplay betwe
viscous and thermal effects can be neglected in a first
proximation. One may identify a dimensionless small para
etere in the problem that would enable significant simpli
cations for the viscous permeability and thermal permeab
calculation. Like in the work by Zhou and Sheng18 this small
parameter is defined as the ratio between two length sca
e5 l /L, in which the small scalel is given by the typical
pore size, and the large scaleL is given by the product of the
air sound speedc5AKa /r0 and an intrinsic viscous relax
ation timeqv5 l 2/n. The characteristic frequency 2p/qv is
a rough estimate of a viscous rollover frequency whe
when v increases, a transition occurs between a visc
dominated regime and an inertia dominated regime. T
Prandtl number Pr is of order 1~;0.71 for air! and the
thermal rollover frequency where a transition occurs betw
2002Lafarge et al.: Porous structures
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isothermal and adiabatic regimes, is expected to be on
same order as the viscous rollover frequency. For air satu
ing usual acoustic materials withl'1024 m, e is on the
order of 1024.

By expressing time in units ofqv and lengths in units of
l , Eqs.~A1a!–~A1d! may be written in dimensionless form

2 ivv52
1

e
“p1¹2v1S 1

3
1

z

h D“~“–v!, ~A2a!

2 ivS p2
g21

g
Pr t D5

21

ge
“–v, ~A2b!

2 iv Pr t52 ivp1¹2t, ~A2c!

v50 ~rP]V!, ~A2d!

t50 ~rP]V!. ~A2e!

Here,p is in units ofLh2/r0l 3 following the assumption tha
the macroscopic pressure gradient should be on the s
order ashv/ l 2 in accordance with Darcy’s law~6!. Simi-
larly, t is in units of Lh3/r0

2k l 3 following the assumption
that the pressure derivative]p/]t should be on the sam
order askt/ l 2 in accordance with the thermal analogue
Darcy’s law ~18!. As in the Zhou and Sheng treatment18

these assumptions are justified by our consistent deriva
of the two ‘‘Darcy’s laws’’ from Eqs.~A2a! to ~A2e!. The
following thermodynamic identities were used in writin
Eqs.~A2b! and ~A2c!:

P0

T0r0Cp
5

g21

g
, ~A3a!

k5
hCp

Pr
. ~A3b!

A brief discussion of the validity of boundary conditio
~A2e! is given in Appendix B.

The existence of a small parametere associated with
rapid fluctuations in the structure of the air-filled porous d
main can now be taken into account using the well-kno
method of homogenization. We assume that the differ
fields depend on two scales: a slow scalex5r /L and a fast
scaley5x/e5r / l . We shall derive the global~macroscopic!
equations governing sound propagation using a two-scale
pansion

v~x,y!5v0~x,y!1ev1~x,y!1••• , ~A4a!

p~x,y!5p0~x,y!1ep1~x,y!1••• , ~A4b!

t~x,y!5t0~x,y!1et1~x,y!1••• , ~A4c!

“5e“x1“y . ~A4d!

Substituting~A4a!–~A4d! into ~A2a!–~A2e! and collecting
powers ofe yields the leading order equations

“yp050, ~A5a!

2 ivv052“xp02“yp11¹y
2v0 , ~A5b!

“y–v050, ~A5c!
2003 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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ivS p02
g21

g
Pr t0D5

1

g
~“x–v01“y–v1!, ~A5d!

2 iv Pr t052 ivp01¹y
2t0 . ~A5e!

These equations are supplemented by absorbing condi
on the air–solid interface

v050, v150,... ~rP]V!, ~A5f!

t050,... ~rP]V!. ~A5g!

Equation~A5a! shows thatp0 , independent of coordinatey,
may be regarded as the externally applied pressure. E
tions ~A5e!, ~A5a!, and~A5g! then indicate that, to the low
est order, the temperature field originates from a spati
uniform, harmonic, heating in the air domain, with perfe
absorbing conditions on the solid boundaries. Equat
~A5c! indicates that to the lowest order, the velocity fie
may be regarded as incompressible on they scale.

The fieldsp1 , v0 , andt0 are solutions to two indepen
dent set of linear equations, Eqs.~5c!, ~A5d!, and ~A5f! on
one hand, and Eqs.~A5d! and ~A5g! on the other hand.
Hence, they may be formally expressed as linear opera
acting on the source terms2¹xp0 and2 ivp0 , i.e.,

p15P~x,y!•~2¹xp0!, ~A6a!

v05VI~x,y!•~2“xp0!, ~A6b!

t05Q~x,y!~2 ivp0!. ~A6c!

The linear operatorsQ, P, and VI are, respectively, scalar
vector, and second rank tensor operators. By substitu
Eqs.~A6a!–~A6c! into the two independent set noted abov
we get the generic equations satisfied by the operatorsP, VI,
andQ

“yP2 ivVI2¹y
2VI5II, ~A7a!

“y–VI50, ~A7b!

VI50I ~rP]V! ~A7c!

and

2 iv Pr Q2¹y
2Q5I , ~A8a!

Q50 ~rP]V!. ~A8b!

In these equationsII andI are the unit second rank tensor an
unit scalar operators@(II) i j 5Id i j whered i j is the Kronecker
symbol#. Given the solutionsVI andQ, the dynamic viscous
and thermal permeabilitiesk(v) andk8(v) may be directly
calculated by averagingv0 andt0 over they variable

^v0&y5^VI~x,y!&y•~2“xp0!, ~A9!

^t0&y5^Q~x,y!&y~2 ivp0!. ~A10!

Comparing Eqs.~A9! and~A10! with the two dynamic Dar-
cy’s laws ~4! and ~5!, we get

kJ~v!5f^VI~x,y!&y ~A11!

as the definition of the permeability tensor, and
2003Lafarge et al.: Porous structures
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k8~v!5f^Q&y ~A12!

as the definition of the~scalar! thermal permeability. The
dimensionless permeabilities given by~A11! and~A12! must
be multiplied byl 2 to recover the dimensionalized quantiti
in Eqs.~4! and ~5!.

The remaining microscopic equation~A5d! may serve to
establish the general connexion~29! between thermal perme
ability and compressibility. Averaging~A5d! gives

ivS p02
g21

g
Pr̂ t0&yD5

1

g
~“x–^v0&y1^“y–v1&y!.

~A13!

The second term on the right-hand side of~A13! is now
shown to be zero. LetVR be a large sphere of radiusR
centered at the origin. Then

^“y–v1&y5
1

VR
E

VR

“y–v1~x,y!dy5
1

VR
E

]VR

v1•n dy.

The surface]VR consists of two parts: (SR) i is the part of the
pore surface withinVR , and (SR)e is the part of the surface
of the large sphere within the pore domain. Using the bou
ary conditionv150 on (SR) i we have

^“y–v1&y5
1

VR
E

~SR!e

v1•n dy,

and lettingR→` we finally arrive at

^“y–v1&y50. ~A14!

By using Eq.~A14! and Eqs.~A10! and~A12!, the averaged
equation~A13! can then be rewritten

2“x–^v0&y /2 ivp05g1~g21!Pr
k8~v!

f
iv. ~A15!

This ratio represents the dimensionless, frequency-depen
compressibility functionb~v!. @Reintroducing dimensional
ized variables on the left-hand side of Eq.~A15! a factor
Lṽ p̃/ ṽ appears where tilded quantities are reference qua
ties. Using the identifications p̃5Lh2/r0l 3, L
5AKa /r0( l 2/n), and ṽ5ṽ l , it may be checked that thi
factor coincide with the adiabatic bulk modulusKa .# Rein-
troducing dimensionalized variables on the right-hand side
Eq. ~A15!, the productk8(v)v must be written@k8(v)/ l 2#
3(v l 2/n) and the final result is

b~v!5g1~g21!
iv

n8

k8~v!

f
, ~A16!

with n8 5 n/Pr.

APPENDIX B: RELATION WITH DIFFUSION-
CONTROLLED REACTIONS

1. Trapping constant

The trapping constant can be defined as follows. Ins
the fluid that saturates the frame, an excitable solute is
ated with a spatially constant densitys. The solute diffuses
with a diffusion constantD, and is instantly relaxed on con
tact with the frame. The equations governing the diffusio
controlled process are
2004 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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2D¹2u5s ~rPV! ~B1!

u50 ~rP]V!, ~B2!

where u is the concentration of solute per unit volume
saturating fluid. At equilibrium,]u/]t50, and the trapping
constant is given by

G5s/~^u&fD !. ~B3!

The trapping constant is related to themean survival timeu
of solute particles by

u51/GfD. ~B4!

Application of Eq.~B3! gives

u5^u&/s. ~B5!

2. Frequency-dependent mean survival time and
relation with thermal permeability

A similar survival problem can be defined in harmon
regime when the excitable solute is created with a spati
constant densityse2 ivt. The frequency-dependent mean su
vival time is defined by~Torquato and Avellaneda31!

u~v!5^u~v!&/s, ~B6!

whereu(v) solves the diffusion-controlled problem

2 ivu2D¹2u5s ~rPV!, ~B7!

u50 ~rP]V!, ~B8!

wheres is a spatial constant. Note thatu(0) is just the stan-
dard static survival time~B4!.

A comparison between Eqs.~B7! and~B8! and the ther-
mal diffusion equations Eqs.~16! and ~17! shows identical
problems ~with substitutions s52 ivp/r0Cp , u5t, D
5n85k/r0Cp! provided the pressurep can be considered a
a spatial constant at the pore scale. It was noted in Appen
A that this constancy follows from the simple two-sca
analysis@see Eq.~A5a!# and that it is a reasonable hypothes
for the materials studied. Hence, the following identity
obtained:

k8~v!5n8fu~v!, ~B9!

whereu~v! corresponds toD5n8. Settingv50 in Eq.~B9!
and using~B4! yields relation~19! between static therma
permeabilityk08 and trapping constantG.

3. Condition on the heat capacity of the porous solid

So far we have assumed the validity of the bound
conditionst50 on the air–solid interface. A static therm
permeability exists and an isothermal low-frequency limit f
the compressibility limv→0 b(v)5g is obtained by using
Eq. ~A16!. This assumption is justified only in a limit wher
the ratio

r 5
~r0Cp!airf

~r0Cp!solid~12f!
~B10!

of the heat capacity coefficients is small:r !1. For usual
porous foams this ratio is on the order of 1/20. Howev
2004Lafarge et al.: Porous structures
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greater values can be found in the case of light glass wo
The effect of finite heat capacity of the solid on the lo
frequency limit ofb~v! can be predicted by means of simp
calorimetric considerations. In a quasi-static limit for com
pressions and dilatations, the excess temperature has
cient time to equalize in the air and solid part. Thus in t
limit v50 we may write

@~r0Cp!airf1~r0Cp!solid~12f!#
]^t&
]t

5f
]^p&
]t

.

~B11!

A comparison between Eqs.~5! and~B11! shows that in this
quasi-static limitk8(v) behaves liken8fr /2 iv(11r ). The
general relation~A16! betweenk8(v) andb~v! still applies
to this case because the boundary conditionst50 were not
explicitly used. Making use of this connection finally yield

lim
v→0

b~v!5
g1r

11r
. ~B12!

Equation~B12! shows that the effect of finite heat capac
of the solid can be ignored whenr !1 ~this is the mentioned
criterion in Sec. IV!. The boundary conditionst 5 0 then
lead to reasonable results and a static thermal permeab
may be assumed to exist.

APPENDIX C: SINGULARITIES OF THERMAL
RESPONSE FUNCTIONS

As shown by Johnsonet al.10 ~Appendix A!, the two
response functionsk(v) anda(v)[nf/2 ivk(v) are ana-
lytic functions ofv everywhere in the complex plane exce
for values ofv on the negative imaginary axis. Thus an
pole, branch point, or zero of these functions lies on
imaginary axis. We wish to point out that the same gene
properties apply to the thermal functionsk8(v) and a8(v)
[n8f/2 ivk8(v).

The definitions ofk8(v) anda8(v) are

f^t&5
k8~v!

k

]

]t
^p&, ~C1!

r0Cpa8~v!
]

]t
^t&5

]

]t
^p&, ~C2!

wheret andp verify the local equations

r0Cp

]t

]t
5k¹2t1

]p

]t
, ~rPV!, ~C3!

“p50 ~rPV!, ~C4!

t50 ~rP]V!. ~C5!

@Equation~C4! is written because of Eq.~A5a!.#
In order to study the singularities of the functionsk8(v)

anda8(v), we imagine a volume of the porous sample e
closed by a thin membrane, which is allowed to be mov
through the solid without disturbing it, while being imperv
ous to the fluid. It is assumed that the membrane behave
an adiabatic wall~Woods32!. The singularities of respons
factors are related to unforced oscillations of the system,
we shall prove that the latter are purely damped. Due to
2005 J. Acoust. Soc. Am., Vol. 102, No. 4, October 1997
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~C1!, a pole ofk8(v) means that there exists a nontrivi
solution to the above microscopic equations, having
property that p50. This occurs if the membrane is
pressure-release surface. The pressure term in~C3! is not
present, and we are left with the Fourier equation of h
diffusion

r0Cp

]t

]t
5k¹2t. ~C6!

The oscillations exp(2 ivt) of the system hence defined, a
unforced oscillations: sincep50, no mechanical powe
arises from a displacement of the membrane, and the foll
ing boundary condition guarantees that no thermal powe
entering the system

R
]Vf

t̄] itni dS50. ~C7!

Here, ]Vf is the closed boundary of the fluid volumeV,
made of the pore walls]V and contact surfaces with th
confining membrane;ni are the components of the unit no
mal to ]Vf , and t̄ is the field complex conjugate oft. This
condition ~C7! is automatically satisfied because the in
grand is identically zero on the pore walls and membra
due to, respectively, boundary conditions~C5! and mem-
brane adiabaticity. From heat equation~C6! we have

2 ivr0CpE
V
t̄t dV5kE

V
t̄¹2t dV. ~C8!

Finally, because of the following identity

t̄¹2t5] i~ t̄] it!2] i t̄] it, ~C9!

and boundary conditions~C7!, Eq. ~C8! becomes

v52 in8
*Vu¹tu2 dV

*Vutu2 dV
. ~C10!

Therefore, any pole ofk8(v) lies on the negative imaginar
axis.

A pole of a8(v) means that there exists a nontrivi
solution to the microscopic equations~C3!–~C5!, having the
property that̂ t&50, where^t& is the mean excess temper
ture in the fluid. Here the membrane is sealed off so tha
nonvanishing pressure may arise. As before, no mechan
power is entering the system since the membrane is mot
less, and the boundary condition~C7! is fulfilled. From Eq.
~C3! we have

2 ivr0CpE
V
t̄t dV5kE

V
t̄¹2t dV2 ivE

V
t̄p dV.

The second integral in the right-hand side is identically z
since p is a constant and̂t&50. Hence, the same resu
~C10! is obtained, proving that any pole ofa8(v) lies on the
negative imaginary axis. To complete the proof and obt
that any zero or branch point ofk8(v) or a8(v) must occur
on the negative imaginary axis, one proceeds exactly as
dicated by Johnsonet al.,10 Appendix A.
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