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An exact solution approach for the liquefied natural gas infras-
tructure sizing and tanker routing problem

David Franz Kozaa∗, Stefan Ropkea, Anna Boleda Molasb

aDTU Management Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby,
Denmark
bL’Oréal Danmark A/S, Havneholmen 25, 1561 Copenhagen V, Denmark

Abstract In this work we present a combined infrastructure sizing and tanker routing problem in the
liquefied natural gas (LNG) business that is based on a business case study with a major liner shipping
company. The decision problem is of strategic nature and consists of selecting the LNG storage capacity
at each port of demand as well as defining the size and number of tankers and their shipping routes used
to transport the LNG from its source port to the ports of demand. The goal is to minimize long term
investment and operational costs.

The introduction of global limits on sulphur and nitro oxide emissions has increased the interest in
LNG as an alternative fuel for vessels, including container ships. As the global LNG infrastructure is still
underdeveloped, it requires both strategic investment as well as tactical routing decisions to make LNG
available at the points of demand. We propose mathematical models for determining the capacities of the
necessary LNG infrastructure as well as the size and routes of LNG tankers needed for transportation.

Two models are presented. The first, non-linear model represents an intuitive formulation of the
optimization problem, but is hard to solve. The second formulation is based on the set-partitioning
model and is very attractive from a computational point of view. First, a set of partial solutions is
generated through enumeration. In the second step a set-partitioning problem is solved to determine the
best combination of the previously generated partial solutions. Results for the case study are presented
and an extensive sensitivity analysis is conducted to account for the limited predictability of key parameter
values, to analyse the robustness of the obtained solutions and to derive basic decision rules.
Keywords: Liquefied Natural Gas (LNG) as fuel, liner shipping, infrastructure planning, tanker routing,
mixed integer programming

1 Introduction
In 2008 the International Maritime Organization (IMO), a specialized agency of the United
Nations, has introduced new regulations for the prevention of pollution from ships that aim at
reducing the emission of sulphur oxides, amongst others (International Maritime Organization,
2008). The regulations apply in so-called Emission Control Areas (ECA) since 2015 already and
will become binding globally in 2020 or, if compliance appears to be impossible in 2018, in 2025.
Currently the majority of ships (80-85%, Chryssakis et al., 2014), including container vessels,
are run on heavy fuel oil (HFO). As a consequence of the new limits on sulphur emissions, ships
will no longer be able to operate as of today, because emissions due to the use of HFO exceed
the limits.

In various industrial strategic papers and research studies (see e.g. Andersen et al., 2013;
Rozmarynowska and Oldakowski, 2012; Chryssakis et al., 2014) three viable solutions to meet
the new requirements have been identified. The first one are exhaust gas aftertreatment systems
as e.g. scrubbers. The installation of scrubbers, however, is costly and requires additional space
on the ship. Further, they can increase the fuel consumption of a vessel by 2-3% (Chryssakis
et al., 2014). The second and most straightforward solution is the use of cleaner marine diesel
oil (MDO) or marine gas oil (MGO), as these can usually be used without the need of any
modification to the vessels. MDO and MGO are, however, about 1.5-2.0 times more expensive
than HFO, with prices expected to increase even further once the sulphur emission limits apply
globally.

The third solution is the one that motivates our study and considers liquefied natural gas
(LNG) as an alternative fuel. LNG is natural gas that is converted to liquid form by cooling
it down to approximately −162◦C (−260◦F ). It is the cleanest form of fossil fuels and if used
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Figure 1: Example of a liner shipping service between Asia and Europe. The whole round trip takes 12
weeks and hence 12 vessels are operating on the service to ensure a weekly frequency.

to fuel ships, no further measures are needed to satisfy the new regulations concerning the
emission of pollutants. LNG is considered a realistic option for deep sea trades in the long term,
particularly for liner trades (Lloyd’s Register, 2012).

Liner shipping networks consist of cyclic shipping routes, called services, that are operated
periodically. Figure 1 shows an example liner shipping service that connects Asia and Europe.
The individual services are connected through ports, where cargo can be transshipped between
different services, and thus provide an extensive, wide-ranging transportation network. Typically
each port on a service will be visited once per week and the container liner company publishes
the weekly berthing time for each port. As a single round trip can take several weeks, each
service is operated by a corresponding number of container vessels. The structure and way of
operating container shipping networks is very similar to that of buses in public transport, with
the containers being the equivalent of passengers.

The current lack of LNG infrastructure for marine bunkering and the uncertainty about
future availability still is a major drawback of using LNG as a fuel for liner shipping companies.
This work is motivated by and based on a case study with a major liner shipping company that
considers filling that gap by building up and operating the needed infrastructure by themselves.
The study forms the basis of a future scenario in which the company uses LNG fuelled container
vessels on some of their services.

The liner shipping company is responsible for the transport of LNG to predetermined ports
where container vessels will refuel. The transport is done via sea using special purpose LNG
tankers. The tanker fleet needs to be ordered or chartered by the company. Furthermore,
the infrastructure at the majority of the ports of demand will be built and run by the liner
shipping company. The problem is of strategic nature with a time horizon of 2-15 years and
combines strategic infrastructure and tanker investment decisions with tactical tanker routing
and inventory management decisions. The lack of existing infrastructure allows to simultaneously
optimize strategic investment decisions and interdependent tactical decisions.

Strategic infrastructure planning and tactical planning of operations have traditionally been
looked at separately. For tactical and operational problems, the infrastructure and the fleet of
vehicles is usually fixed to a large extent. Furthermore, strategic decisions often do not solely
depend on quantifiable parameters but are subject to many qualitative arguments (legal issues,
local regulations, political decisions, etc). This work aims at providing decision rules of thumb
and identifying important relationships between operational/tactical and strategic decisions for
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the problem studied. The presented models also allow to evaluate manually developed solutions
and their sensitivity to changes in input parameters. Hence, an important requirement of our
industrial collaborator towards the solution method are fast running times that allow to evaluate
large numbers of different scenarios within reasonable time.

The class of maritime inventory routing problems (MIRPs) is the one closest to the problem
addressed in this work. In fact, if the strategic infrastructure and tanker investment decisions
were fixed, the remaining problem would classify as a MIRP. The first studies on the MIRP
are by Christiansen and Nygreen (1998) and Christiansen (1999) and deal with the production,
shipping and inventory management of ammonia. Since then, most of the contributions are mo-
tivated by some specific application. Furman et al. (2011) present a mixed-integer programming
formulation for vacuum gas oil routing and inventory management. Agra et al. (2013) and, more
recently, Agra et al. (2015) consider a MIRP in the fuel oil distribution business, with the latter
contribution assuming sailing and port times to be stochastic. An overview of maritime inven-
tory routing problems together with examples of applications can be found in Christiansen and
Fagerholt (2009). Several contributions to the MIRP literature with applications in the LNG
business have been made during the recent years. Grønhaug and Christiansen (2009), Grønhaug
et al. (2010) and Andersson et al. (2016) present different exact solution approaches for an LNG
inventory routing problem. Rakke et al. (2011), Stålhane et al. (2012), Halvorsen-Weare and
Fagerholt (2013), Halvorsen-Weare et al. (2013), Goel et al. (2012) and Rakke et al. (2015) and
Andersson et al. (2015) have developed exact and heuristic solution approaches for LNG annual
delivery program planning problems. The paper by Andersson et al. (2010) provides a general
description of the LNG supply chain and presents two related problems. What these research
studies have in common is that they address tactical or operational problems with planning
horizons of at most several months. Different to our work, the onshore infrastructure and the
available fleet of LNG tankers is generally assumed to be given and fixed. By contrast, the
strategic infrastructure and fleet investment decisions play a key role in the problem. We be-
lieve that including these decisions change the nature of the problem significantly compared to
existing MIRPs.

A study closer to our work is the one by Jokinen et al. (2015). They present a mixed integer
linear programming model that aims at minimzing the cost of a small-scale LNG supply chain
in southern Finland, including both annual terminal investment as well as transportation costs.
LNG needs to be distributed from a large regasification terminal to several inland consumers,
using both sea and land based transport through smaller satellite LNG terminals along the coast
and LNG trucks that connect the ports with the points of demand. Even though the focus and
scale of their study differ significantly from our work, their results underline the importance
of simultaneously considering strategic investment and tactical routing decisions in the still
underdeveloped LNG business.

The significant number of recently published industrial studies and surveys that address
the feasibility and prospects of LNG as a fuel in deep sea container shipping demonstrate the
practical relevance of the problem studied (e.g. DNV-GL, 2014; Andersen et al., 2013; Lloyd’s
Register, 2012, 2014).

The contribution of this paper is twofold: firstly, we introduce the infrastructure sizing
and tanker routing problem that combines strategic and tactical decisions. We present two
mathematical models for solving the problem, with the latter formulation allowing very short
solution times. Secondly, we report computational results from a real-life case study. The results
show that it pays off to optimize for strategic and tactical decisions simultaneously, because in the
long perspective transportation costs can be reduced significantly through optimal investment
decisions.

In Section 2 the problem is described in detail and corresponding assumptions are introduced.
In Section 3 we present an arc-based model for conceptual reasons and derive a path based
formulation that is used for the computational tests. The computational results are reported
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Figure 2: The LNG supply chain and the part considered in this work (following Andersson et al., 2010)
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Figure 3: Planned refuelling stops.

in Section 4, together with a detailed description of the underlying data and cost. Concluding
remarks are given in Section 5.

2 Problem description
The typical LNG supply chain in a maritime context can be described as follows (see e.g. Ander-
sson et al., 2010): natural gas is extracted, purified and then turned into liquefied natural gas at
a designated liquefaction plant. After liquefaction the LNG is stored in full-containment tanks
that keep the gas in its liquefied state. It is then transported by special-purpose LNG tankers to
its destination terminal, where it is unloaded into onshore storage tanks again. Nowadays most
of the LNG is regasified at its destination and then distributed to end customers via pipelines
or trucks. In our scenario, however, a large portion of the liquefied natural gas would finally be
used to fuel container vessels (see Figure 2). The container ships would either be refuelled at
ports with LNG bunkering facilities or by LNG bunker vessels.

All the LNG needed at the ports of demand in this study is considered to be extracted as
natural gas (NG) and transformed into LNG at liquefaction plants by a third party in Qatar, the
world’s largest producer of LNG. In Qatar the LNG is loaded onto LNG tankers that are either
owned or chartered by the liner shipping company. The destinations of the LNG are ports located
along the route Asia-Europe. The number of ports that shall provide LNG refuelling services
and their locations have been set by the company, based on their estimates of how large the LNG
tanks on the container vessels will be and how often the ships will have to refuel. Generally,
it is expected that LNG fuelled container vessels refuel more often because of the lower energy
content per unit of volume. Depending on the LNG tank type used, the compartment housing
of the tanks can be up to four times that of HFO tanks of equivalent energy content (Hannula
et al., 2006). The eight ports at which onshore LNG storage tanks are planned to be built are
shown in Figure 3. The rather large number of ports is explained by the fact that the ports
will provide refuelling facilities to several liner shipping services along the Asia-Europe trade
but also serve external small scale demand. The scenario of LNG produced onshore in Qatar
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and transported to Europe via LNG carriers has also been used in other studies (Chryssakis
et al., 2014). The shipping of LNG from the port of supply to multiple ports of demand and
the inventory management at the destination ports are part of the decision problem considered
in this work.

The annual amount of LNG bought in Qatar equals the annual demand at all ports as
estimated by the liner shipping company. The company’s demand estimates cover the demand
for LNG as fuel for its container vessels, but may also include some spot market demand at the
ports. The company is responsible for carrying the LNG from Qatar to the ports of demand.
In accordance with the cyclicity of container shipping services, a constant demand for LNG
over time is assumed at the ports of demand. On an operational level fluctuations in demand
may occur, for example, because of unplanned deviations from the route due to bad weather or
delayed port operations that require the vessels to speed up. Given the assumption of a stable
demand for LNG in the medium term, we will assume periodic shipping routes for the LNG
tankers as well.

The maritime inventory routing problem that is part of the overall problem considered here
can thus be classified as a single product MIRP with a single loading port, multiple unloading
ports and constant production and consumption rates. Due to the strategic nature of the
problem considered, we neglect the loss of LNG because of boil-off.

In addition to the tactical routing and inventory management decisions, the problem contains
two strategic decision problems: first, the choice of the fleet of LNG tankers and, second, the
determination of the onshore infrastructure capacity at the receiving ports.

We assume that LNG tankers of any capacity up to Q-Max size (265 000m3), the largest
LNG tankers currently in operation, are available. The LNG tankers can either be owned or
chartered by the company, in both cases we assume a charter rate based on the tanker capacity.
It is worth noting that there exist tanker types that suffer from sloshing (see e.g. Gavory and
De Seze, 2009). Sloshing is the motion of the liquid LNG inside the tanks and can create high
pressure loads on the tank surface up to damaging it. As it mainly occurs in partially loaded
membrane type tanks, they are generally filled to levels below 10% or above 70% of the tank
height in order to reduce sloshing impacts (Kuo et al., 2009; Delorme et al., 2005). Research
that aims at fully understanding and preventing the effects of sloshing in LNG tankers is still
ongoing. We will address the issue by defining scenarios that remain feasible under the limitation
of tankers being either fully loaded or empty.

The second strategic decision addresses the infrastructure and its capacity that has to be
built up at the ports considered in this study (see Figure 3). At some of these ports LNG
infrastructure already exists: the Maasvlakte LNG terminal at the port of Rotterdam, which
opened in 2011, is considered a starting point of a small scale LNG supply chain in Northwest
Europe (Drewry Maritime Research, 2012). Four storage tanks of 180 000m3 and two jetties
capable of handling Q-max tankers exist. A break bulk terminal that allows small scale supply
of LNG to bunker barges is planned to enter operations in the end of 2016. The Shanghai
LNG terminal at Yangshan port has three 160 000m3 LNG tanks and is capable of handling
tankers of up to 200 000m3 capacity. The Singapore LNG terminal has three 180 000m3 LNG
tanks (working capacity) and jetties for tankers of up to 265 000m3 capacity available. We
assume, however, that all the infrastructure capacity required by the liner shipping company
will have to be newly constructed at each of the ports for two reasons: first, the capacities at
the ports with existing infrastructure are expected not to be sufficient to additionally handle
the demands estimated by the company. The demand for LNG in Rotterdam estimated by the
company, for example, would already make up around 85% of the terminal’s capacity for small
scale distribution when put into operation at the end of 2016 (Gate terminal, 2014). The second
reason is that many existing LNG terminals simply do not provide an LNG bunkering option.
Adding an LNG bunkering option is not straightforward, because many additional regulations
regarding design safety and separation distances have to be satisfied. Furthermore, most of the
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existing LNG terminals are designed for low frequency, high volume transfers (DNV-GL, 2014).
We are primarily interested in the interplay of operational cost and investment cost under

different scenarios. Short-term solutions as e.g. floating LNG storages, i.e. anchored LNG tankers
used as close-to-shore storages, have also been discussed with the company but neglected in this
study as they are mainly considered as a bridging solution.

As a summary, the key decisions to take consist in choosing the right onshore infrastructure
capacities at the receiving ports and the right tanker fleet to deliver the LNG, both in terms
of capacities. Simultaneously, a routing problem is solved such that the routes both satisfy
the annual demand and are compatible with the chosen infrastructure options. The goal is to
minimize the combined annual investment cost and operational cost in the long and medium
term.

3 Modelling and solution method
We first present a non-linear arc-based formulation of a simplification of the underlying problem
(sec. 3.1). We do not solve the arc-based model, but use it to conceptually introduce the problem
to the reader. A very similar model has been tested by Boleda Molas (2015) but turned out
to be hard to be solved in reasonable time. In Section 3.2 we derive a path-based model that
allows for a higher level of details incorporated and also has a much simpler structure. The path
based formulation relies on the prior generation of partial solutions, which will be described in
Section 3.3.

3.1 Arc-based model formulation

Let P denote the set of ports of demand and P0 = P ∪ {0} be the set of all ports, including the
port of supply, indexed by 0. Let G(P0,A) denote the corresponding complete graph with the
node set P0 and the set of directed arcs A, representing sailing legs between all pairs of ports.
The set of available LNG tanker types is given by M and indexed by m. Each tanker type is
uniquely defined by its capacity qm.

The annual demand for LNG at each port of demand i ∈ P is denoted by parameter di. We
assume a constant sailing speed for each tanker type and hence can derive a time parameter tijm
for each sailing leg (i, j) and tanker type m. The time includes the sailing time between ports
i and j but also pilot-out and pilot-in times at the origin and destination port and the time for
loading LNG (if i = 0) or unloading LNG (if i 6= 0) at the origin port i.

Different cost factors are considered in the model. The annual tanker type dependant charter
cost is denoted by cch

m for each tanker used, independent of its utilization. The fuel cost cfuel
ijm is

defined per sailing leg and tanker type and also includes cost for in-port fuel consumption at the
origin port. For each port visit, a port and tanker type dependant port call cost cport

im is added.
Similarly, for each use of a sailing leg that includes a canal, a tanker type dependant canal fee
ccanal
ijm is added. In general the cost for onshore infrastructure at a location i is non-linear, with the
additional cost per extra unit of capacity decreasing for larger capacities, reflecting economies of
scale. The used infrastructure cost function

∑
i∈P c̄

inf
ref

(
yi
ȳref

)δ
depends on the capacity yi and is

based on a given reference project with cost c̄ inf
ref and capacity ȳref and an estimated parameter

δ. The capacity itself needs to be sufficient to receive the quantity of LNG unloaded at each
tanker visit plus some relative buffer capacity B. Note that the annual cost for the onshore
infrastructure includes both capital as well as operational expenditures. A detailed description
is provided in Section 4.2. In order to keep the arc-based model simple, we neglect the inventory
cost for LNG on tankers and in the storage tanks at the ports of demand, but will include them
in the path-based formulation.

Since we assume that the demand of each port is fulfilled by exactly one tanker route, the
output of the model will be at most |P| routes. We let R = {1, . . . , |P|} be the index set of the
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routes resulting from the model. We can now define the binary decision variables xijrm that
denote whether tanker type m is used on sailing leg (i, j) ∈ A in route r or not. The frequency
of each route, i.e. how often the route is operated per year, is represented by the continuous
decision variable fr. The continuous variable yi denotes the infrastructure capacity at port i,
on which the infrastructure cost at a port depends on. The number of tankers of type m needed
on route r is given by the integer decision variable nrm.

The problem can then be formulated as follows:

min
∑
r∈R

∑
m∈M

cch
mnrm +

∑
i∈P0

∑
j∈P0

∑
r∈R

∑
m∈M

cfuel
ijmxijrm

+
∑
i∈P

∑
j∈P0

∑
r∈R

∑
m∈M

xijrmfr

(
cport
im + ccanal

ijm

)
+
∑
i∈P

c̄ inf
ref

(
yi
ȳref

)δ
(1)

s.t.
∑
j∈P

∑
r∈R

∑
m∈M

xijrm = 1 ∀i ∈ P (2)

∑
j∈P0

xjirm −
∑
j∈P0

xijrm = 0 ∀i ∈ P, r ∈ R,m ∈M (3)

∑
i∈S

∑
j 6∈S

∑
r∈R

∑
m∈M

xijrm ≥ 1 ∀S ⊆ P, |S| ≥ 2 (4)

∑
j∈P

∑
m∈M

x0jrm ≤ 1 ∀r ∈ R (5)

∑
i∈P

∑
j∈P0

∑
m∈M

xijrmdi
qm

= fr ∀r ∈ R (6)

∑
i∈P0

∑
j∈P0

frxijrmtijm
365 ≤ nrm ∀r ∈ R,m ∈M (7)

∑
j∈P0

∑
r∈R

∑
m∈M

di
xijrmfr

(1 +B) ≤ yi ∀i ∈ P (8)

fr ∈ R≥0 ∀r ∈ R,m ∈M (9)
nrm ∈ Z+ ∀r ∈ R,m ∈M (10)
xijrm ∈ {0, 1} ∀i ∈ P0, j ∈ P0, r ∈ R,m ∈M (11)

yi ∈ R≥0 ∀i ∈ P (12)

The objective function (1) minimizes total annual cost for both chartering and operating the
LNG tankers and for building and running the LNG infrastructure at the ports of demand.
Constraints (2) require each port of demand to be visited by exactly one rotation. The set of
constraints (3)-(5) defines the tanker routes. Constraints (3) and (4) are flow conservation and
subtour elimination constraints, respectively. Constraints (5) state that each route can leave the
supply port at most once. Routes, for which the left-hand side of its corresponding constraint
is zero, represent empty routes that are not used. The frequency fr of each route is determined
by constraints (6). The left-hand side equals the total demand served on route r divided by
the tanker capacity used on that route. The integer number of LNG tankers required on each
route is determined by constraints (7). The left-hand side represents the absolute number of
days of operational time required to serve demand on route r with a single tanker, divided
by the available number of days per year. Constraints (8) determine the necessary onshore
infrastructure capacity at each port i. It is required to be at least as large as the amount of
LNG received at each tanker visit plus a relative buffer capacity B. Finally, constraints (9)-(12)
define the domain of the decision variables.

In the above formulation the amount of LNG unloaded at a port depends on the route. It
equals the tanker capacity times the port’s share of demand compared to the demand of the
other ports on the same route. Hence, the model allows for partially loaded LNG tankers. As
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discussed above we furthermore assume a steady demand for LNG over time and thus periodic
LNG deliveries. The maximum amount of LNG on stock at a location thus never exceeds the
amount of LNG unloaded at each delivery. Fig. 4 illustrates the stock level at a single port that
is the only port on a route on which two LNG tankers operate.

LNG stock level at receiving port 

Time of operation of LNG tanker 1 

Time of operation of LNG tanker 2 

Jan Feb Mar Apr May Jun Jul 

Figure 4: Illustration of the LNG stock level at a port that is supplied by a tanker service consisting of
two tankers operating in parallel. The bars for each tanker illustrate their time of operation,
with the red marks representing the time of delivery at the port.

The arc-based formulation is non-linear in its objective function and also in some of its
constraints. It can be linearized at the cost of a larger set and number of decision variables
and constraints. The problem quickly grows to intractable size due to the number of decision
variables and constraints that exponentially depend on the number of ports of demand. In
the next section we thus present a path-based formulation that allows to easily incorporate
non-linearities.

3.2 Path-based model formulation

In the arc-based formulation we can observe the following: once the routes and the corresponding
tanker types are defined, i.e. once the xijrm variables are fixed, the values of the remaining
decision variables follow directly from equations (6)-(8). Fixing the xijrm variables corresponds
to defining a set of routes and the tanker type used on each of them. In other words, once a route
and the tanker type used on that route are decided, the route frequency, the number of tankers
and the infrastructure capacity at the ports along the route can be deduced. Let S denote the
set of all route-tanker type combinations s. We will call a route-tanker type combination s with
the associated route frequency fs, number of LNG tankers ns, LNG tanker capacity qs and the
port infrastructure capacities (y1, ..., y|P|)s a partial solution. With fs, ns, qs and (y1, ..., y|P|)s
being parameters of a partial solution, we can hence calculate the corresponding cost of each
partial solution.

Example: Let us consider a partial solution for the route Qatar-Singapore-Shanghai-Qatar
and a Q-max tanker type of 265 000m3 capacity as an example. The demand in Shanghai equals
12 times the demand in Singapore and therefore on each service 1/13 of the tanker’s capacity
(≈ 20 400m3) is unloaded in Singapore and 12/13 (≈ 244 600m3) are unloaded in Shanghai on
each tanker round trip. The required onshore storage capacity at each location is calculated
as the absolute amount of LNG unloaded at each delivery plus some buffer capacity, i.e. the
required infrastructure capacity is much smaller in Singapore than in Shanghai. If the total
annual demand for LNG at both ports is 11 000 000m3, approximately 41.5 tanker loads are
required throughout the whole year. As a single service – starting in Qatar, delivering the LNG
to Singapore and Shanghai and returning to Qatar – takes around 35 days, 4 tankers are required
to do 41.5 round trips during a single year (365 days).

If all partial solutions were given, we could solve the problem by optimally combining these
partial solutions such that each port is covered by exactly one partial solution. This translates
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into a pure set-partitioning model with a set S of partial solutions defined by a route-tanker
type pair s = (r,m) with r ∈ R̃ and m ∈ M, and a set P of ports of demand. Note that we
use R̃ to denote the set of all possible routes, which should not be confused with the set R used
in the arc-based formulation. Let ĉs be the cost of partial solution s ∈ S and let ais denote
whether port i ∈ P is covered by partial solution s (ais = 1) or not (ais = 0). The resulting
set-partitioning model is

min
∑
s∈S

ĉsxs (13)

s.t.
∑
s∈S

aisxs = 1 ∀i ∈ P (14)

xs ∈ {0, 1} ∀s ∈ S (15)

The partial solutions can either be enumerated in advance or, if the number of possible
partial solutions is too large, the LP-relaxation of model (13)-(15) can be solved by generating
partial solutions on the fly by using a delayed column generation algorithm. Note that almost
any type of cost function can be used to define the cost ĉs of a partial solution. The path-based
formulation thus allows to include non-linearities in the cost while still solving a linear master
problem. In Section 4.2 we provide a detailed description of the cost components used to define
the cost of a partial solution ĉs for the problem instance studied.

3.3 Enumeration and pre-selection of partial solutions

The number of partial solutions is of size |R̃|×|M|. Since the size of set R̃ depends exponentially
on the number of ports, |P|, so does the set of partial solutions S. Based on the following
observations, however, we can reduce the set S of partial solutions significantly: for each subset
of ports, different routes exist and different tanker types can be used on each of these routes.
Each pair of a route and a tanker type represents a partial solution. For a given set of ports,
there will be at least one route-tanker type pair that dominates the others in terms of cost. For
each unique subset of ports we hence only need to include one partial solution, namely the one
that dominates all other partial solutions that cover the same subset of ports. By simple cost
comparison we can thus eliminate a large part of the partial solutions in advance. The set of
partial solutions that finally needs to be included in the set-partitioning model (13)-(15) is of
size |2|P|−1| and equal to the number of subsets of ports.

4 Computational Results
In this section we first provide a description of the case study and its underlying data, and a
detailed description of the cost functions used in the path-based model (sec. 4.1 and 4.2). The
results rely on a set of assumptions made by the company. In Section 4.3 we present selected
scenarios that reflect different assumptions and allow to assess their impact. In Section 4.4
results for the different scenarios are presented and discussed. As some of the input parameters
are subject to large fluctuations over time, we present further results based on a sensitivity
analysis in Section 4.5.

4.1 Case study

Eight locations along the route Asia-Europe (see Fig. 3) had been preselected by the company
as potential future points of supply of LNG for their container vessel fleet as well as for spot
market demand. We were further provided with LNG demand estimates for each of these
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Location Demand [m3] Demand as factor
of Malta demand

Rotterdam 4893.6K 46×
Algeciras 851.1K 8×
Malta 106.4K 1×
Port Said 212.8K 2×
Salalah 638.3K 6×
Jebel Ali 638.3K 6×
Singapore 851.1K 8×
Shanghai 10 212.8K 96×

Total 18 404.3K 173×

Table 1: Locations and corresponding LNG demand estimates

ports. The data is summarized in Table 1. The ports of Rotterdam and Shanghai represent the
largest points of demand. Both ports are strategic hubs for container shipping – Rotterdam in
Europe and Shanghai in Asia – and therefore the most frequented ones for container vessels.
However, only a part of the demand at these two ports is dedicated to fueling container ships.
A significant part is meant for satisfying demand on the growing spot market. We note that the
figures represent expected future demand, not the the current demand for LNG.

4.2 Cost functions

The annual cost ĉs of a partial solution in the path-based formulation is composed of different cost
factors (of which some have already been introduced in Section 3.1). Note that all individual cost
factors that are introduced below correspond to partial solutions of the path-based formulation
and may hence differ from their definition in the arc-based formulation. To distinguish the cost
factors that relate to partial solutions in the path-based formulation from the ones in the arc-
based formulation, we use the notation ĉ. All cost components are presented as annual costs in
thousand US dollars (k$) if not stated otherwise.

The charter cost of a partial solution s, denoted by ĉch
s , represents an annual charter cost for

the number of LNG tankers of capacity qs needed to serve annual demand on the corresponding
route. As an estimate for the daily charter rate of a tanker with capacity qs in thousand US
dollars we use the function 9.0616 · q0.4492

s that is based on empirical data for tankers and their
corresponding charter rates. The charter rate function is shown in Figure 5a. The annual charter
cost of a partial solution s ∈ S depends on the tanker capacity qs in thousand cubic meters and
the number ns of tankers needed on the route,

ĉch
s = 365 · (9.0616 · q0.4492

s ) · ns (16)

The fuel cost has been estimated in a similar fashion, based on empirical data for LNG
tankers that run on heavy fuel oil. Note that although the new regulations regarding sulphur
emissions will also apply to LNG tankers, our fuel cost estimates are based on HFO fuelled LNG
tankers as an approximation due to the lack of available data. We will, however, take possible
differences in fuel cost under the new regulation into account by defining different cost scenarios.
We distinguish between the consumption of HFO, which is used to fuel the tankers while sailing,
and MGO, which is used during port stays while loading or unloading LNG. The respective fuel
cost functions for partial solution s ∈ S are defined as

ĉHFO
s = (10.4293 · q0.5028

s ) · tsails · pHFO (17)
ĉMGO
s = (2.9500 · q0.5652

s ) · tport
s · pMGO (18)
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Figure 5: Daily charter and fuel cost functions based on the tanker capacity

The fuel cost ĉHFO
s equals the tanker type dependant fuel consumption per day multiplied with

the accumulated annual sailing time of this partial solution, tsails , and is further multiplied with
the fuel price per ton, pHFO. The parameter tsails is obtained through multiplication of the
duration of a single route times the frequency of the route, fs. The daily fuel consumption while
sailing is based on an assumed speed of 18 knots. Figure 5b shows the daily fuel cost depending
on the tanker capacity. The cost function ĉMGO

s for burning MGO during port stays represents
the tanker dependant in-port fuel consumption per hour multiplied with the total in-port time,
tport
s , and multiplied with the fuel price per ton, pMGO. Bunker prices of $300 and $450 for
HFO and MGO, respectively, are assumed in the base case of the study. The total fuel cost of
a partial solution s hence is ĉfuel

s = ĉHFO
s + ĉMGO

s . In practice the fuel cost function may further
depend on the ship type, the ship’s load and many other factors (see e.g. Psaraftis and Kontovas,
2014, for a discussion of fuel cost estimation). The path-based modelling framework allows to
incorporate basically any type of fuel cost function, if the necessary information is available.

The annual infrastructure cost consists of capital expenditures (CAPEX) and operational
expenditures (OPEX). We will consider the same, capacity-dependant investment cost at all
ports. Even thoug investment options and cost may differ between different ports, the same
cost function is used for all ports due to the lack of reliable data for each individual port. In
order to estimate the capital expenditures for LNG terminals of different capacities, we use a
capacity factor based estimator (see e.g. Westney, 1997). It uses historical records to estimate
the cost of similar projects. The formula as shown below further assumes a non-linear increase
in cost with increasing capacity, reflecting economies of scale (Fig. 6). The parameters ȳ1, ȳ2 and
CAPEX(ȳ1),CAPEX(ȳ2) represent capacities and respective capital expenditures of reference
projects:

CAPEX(ȳ2)
CAPEX(ȳ1) =

(
ȳ2
ȳ1

)δ
(19)

The parameter δ, also called capacity factor, is estimated based on two anchor points provided
by the company. They correspond to two existing LNG terminals of capacities 28 500m3 and
114 000m3, and CAPEX of $94M and $164M, respectively. The resulting capacity factor used
in our study is δ = 0.4015. The CAPEX of any LNG terminal with capacity y can thus be
calculated using the formula:

CAPEX(y) = CAPEX(ȳ1) ·
(
y

ȳ1

)0.4015
(20)

Equivalent to the arc-based model formulation, we require the capacity of an LNG terminal at
port i to be as large as the amount of LNG that is received with each tanker visit plus a buffer.
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For a given partial solution, the amount delivered at a port corresponds to its share of demand
on the route multiplied with the capacity of the tanker used. Hence, the storage capacity yis of
a port i of a partial solution s can be determined as

yis = aisdi∑
i∈P aisdi

qs(1 +B) (21)

The annual OPEX of an LNG terminal are estimated to lie at around 5% of the CAPEX. Let tlife
be the expected lifetime of the terminal. The total annual infrastructure cost of a partial solution
is then calculated as the sum of the capital expenditures per year and the annual operational
expenditures, i.e.

ĉinf
s =

∑
i∈P

(CAPEX(yis)/tlife + 0.05 · CAPEX(yis)) (22)

In the study we assume a lifetime of 30 years for the LNG terminals.
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Figure 6: Terminal capital expenditures depending on the storage capacity. The two reference points
used to calculate the capacity factor exponent δ are highlighted.

The port call cost is the cost charged by a port each time an LNG carrier berths and it
is assumed to be equal at all ports considered. The cost factor ĉport

s (qs) represents the annual
port call cost of a partial solution and depends on the carrier capacity qs, the number of ports
that are covered by the corresponding partial solution, |Ps| =

∑
p∈P aps, and the frequency of

the service, fs. The cost per visit depends on the tanker’s capacity, which is divided into three
capacity classes and corresponding port call fees. The port call cost of a solution in thousand
US dollars is defined as

ĉport
s =


60 · |Ps| · fs if qs < 50
150 · |Ps| · fs if 50 ≤ qs < 120
300 · |Ps| · fs if 120 ≤ qs

(23)

Canal transit costs occur whenever a ship uses a canal. In our study the Suez canal
is the only relevant canal. We use a function that linearly depends on the capacity of the
tanker in order to approximate a single transit through the canal. For the smallest tanker
considered (5000m3) we assume a cost of $100k per transit and for the largest carrier considered
(265 000m3) a cost of $500k per transit. Canal transit costs for tankers with a capacity in
between are obtained through linear interpolation. The annual canal transit costs of a partial
solution are thus calculated as

ĉcanal
s = 2 · fs ·

(
100 + qs − 5

265− 5 · (500− 100)
)

(24)
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In addition to the cost factors included in the arc-based problem formulation, in the path-
based formulation we further consider inventory cost for LNG on board the tankers during
transport and at the destination ports before consumption. With a partial solution given, we
can calculate the average amount of LNG on tankers and in onshore storage tanks throughout
a year. Let l̄s denote the average inventory of LNG in thousand cubic meters of partial solution
s throughout a year. Assuming a value of $220/m3 of LNG (≈ $9.16/mmBTU of LNG) and an
inventory cost rate of 6% per year in our study, the annual inventory cost of a partial solution
in thousand US dollars is defined by

ĉinv
s = l̄s · 220.00 · 1.06 (25)

Any of these cost functions can be adapted to different settings. Although we neglect the
loss of LNG due to boil-off in our study, it can also be accounted for in path-based formulations
(see e.g. Grønhaug et al., 2010). Finally, the total cost of a partial solution is given by the sum
of all cost factors,

ĉs = ĉch
s + ĉfuel

s + ĉinf
s + ĉport

s + ĉcanal
s + ĉinv

s (26)

We can calculate the total cost of any partial solution using equations (16)-(26) and, as
described above in Section 3.3, eliminate many partial solutions by simple cost comparison, as
for each subset of ports one partial solution will dominate all the other partial solutions for that
same subset of ports.
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Figure 7: Costs of different partial solutions for the route Qatar–Jebel Ali–Salalah–Qatar. For the given
route, the tanker capacity of 42 000m3 dominates all other tanker capacities in terms of total
cost.

Figure 7 illustrates costs of different partial solutions for the route Qatar–Jebel Ali–Salalah–
Qatar, with each of these partial solutions corresponding to a different tanker capacity in the
range 5000-265 000m3. The partial solution with the lowest cost is denoted by the dashed
line. All costs represent annual costs for satisfying the demand at the two locations. The
charter cost is increasing with the tanker capacity and the steps result from different numbers
of tankers needed to satisfy demand. For tanker capacities of 21 000-41 000m3, for example,
two tankers are necessary to satisfy demand at the two locations. Two tankers of 21 000m3

would have a much higher utilization than two tankers of 41 000m3, though. With a tanker
capacity of 42 000m3 and higher, only a single tanker is necessary to satisfy annual demand.
The fuel cost is decreasing with increasing tanker capacities, as larger tankers are more fuel
efficient given the same total amount of LNG being transported (see Figure 5b). The port call
costs are different for the three capacity classes of tankers (see the port call cost function (23)),
and within each class decreasing with increasing tanker capacities, as larger capacities imply a
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lower number of deliveries of LNG. Note that for the location subset {Jebel Ali, Salalah} one
alternative route exists (Qatar–Salalah–Jebel Ali–Qatar) whose corresponding partial solutions
are not represented in this graph. Only the lowest-cost route-tanker type combination of the
location subset {Jebel Ali, Salalah} would finally be included in the set-partitioning problem.

4.3 Scenarios

The cost functions presented above are just one way of defining different types of cost and we
will refer to the above described scenario as scenario A. The simple structure of the path-based
problem formulation allows for any type of cost functions that depend on the route and tanker
type of a partial solution. We thus present two other scenarios that differ from scenario A.
The two scenarios are not exhaustive, of course, but represent examples of changing underlying
decisions and corresponding assumptions and how they can be evaluated using the model.

Scenario B In scenario A, the onshore storage capacities are chosen such that they exactly
meet the requirements imposed by the chosen service. That is, the capacities equal just the
amount of LNG that is unloaded at each tanker visit, plus some buffer capacity. The assumption
tends to underestimate infrastructure cost and selects onshore capacities that are fully utilized
under the given demand scenario and thus might not be robust to changes in the input. In
scenario B we require the onshore capacity to be at least as large as the capacity of the tanker
type that serves the port, independent of the amount unloaded. That is, equation (21) of
scenario A is replaced by

yis = aisqs(1 +B) (27)

The infrastructure cost of the solution again is defined by equation (22), but with different
infrastructure capacities as input. Under this assumption the onshore infrastructure cost will
rather be overestimated. However, an advantage of any solution obtained under scenario B is
that any solution of partial tanker loads can be transformed into a solution in which tankers
are required to be either full or empty (not partially loaded). A solution hence provides an
upper bound on the cost for the case in which partial tanker loads are not feasible. If a solution,
for example, covers two ports with the tanker unloading half its load at each port, it can be
transformed into a solution where the tanker covers only one port per trip, but serves the
ports alternately, serving the same port on every second trip. Scenario B is interesting from an
industrial point of view because the majority of LNG tankers currently under construction are
of the membrane type. These are known to suffer from sloshing and consequently rather strict
filling levels apply to these tankers (Delorme et al., 2005).

Scenario C In a third scenario, scenario C, we assume that tanker charter costs only apply
for the actual time of utilization, not for the whole year. Hence, no cost is assumed for tankers
while not being used and the original charter cost function (16) is replaced by the modified
charter cost function

ĉch
s = 365 · us · (9.0616 · q0.4492

s ) · ns (28)

with us denoting the tanker utilization of the corresponding partial solution s. In this scenario
the obtained charter cost can be interpreted as a lower bound on the expected charter cost.

4.4 Results

We implemented an algorithm for efficiently enumerating all partial solutions, which constitute
the input to the set partitioning model. The set-partitioning models were solved using CPLEX
Optimization Studio. The tests were executed on a machine with an Intel Core i7-4600U CPU

14



    
     

   

 
 
 

Shanghai 

Jebel Ali 

Salalah 

Port Said 

Malta Algeciras 

Rotterdam 

Qatar 

Singapore 

(a) Scenario A

    
     

   

 
 
 

Shanghai 

Jebel Ali 

Salalah 

Port Said 

Malta Algeciras 

Rotterdam 

Qatar 

Singapore 

(b) Scenario B

Figure 8: Optimal clustering of ports. All ports within a cluster are served on round trips and by the
same tanker type.

with 2.1GHz. The generation of the partial solutions takes around 30 seconds on average and
the solution time of the set-partitioning model is less than a second.

The results for scenario A are summarized in Table 2. In the cost optimal solution all ports
are clustered pairwise, as illustrated in Figure 8a. The charter costs dominate with almost
making up half of the total costs, followed by fuel costs (21%) and infrastructure costs (14%).
The share of the different cost factors, however, differs substantially between the various partial
solutions. The partial solutions covering the ports of Shanghai and Rotterdam, which represent
more than 80% of the total demand for LNG, also constitute more than 85% of the total cost. Due
to Shanghai’s and Rotterdam’s large distances from Qatar, charter and fuel cost per transported
unit of LNG are very high compared to the other cost components (50% and 22%, resp.). In
the partial solution that covers demand in Malta and Port Said, the share of charter and fuel
cost (36% and 14%, resp.) is significantly lower, while infrastructure cost and also canal transit
cost have a much larger weight (30% and 13%, resp.). We further observe that for each cluster
of ports the optimal tanker capacity corresponds to the capacity that minimizes the necessary
number of LNG tankers but maximizes their utilization. The optimal infrastructure capacity
per port is given in Table 5.

There are several trade-offs inherent in any solution. Clustering ports and assigning them
to a single tanker round trip allows to use larger, more cost-efficient tankers while keeping their
utilization high. In scenario A it further allows to reduce the cost for infrastructure, as only a
fraction of the tanker load will be unloaded at each port visit. On the other hand, with more
ports combined on a route the total sailing distance and the total number of port visits and
canal transits (where required) are larger compared to serving each port individually, given the
same tanker capacity.

Table 3 summarizes the results obtained for scenario B, where the infrastructure capacity is
required to be as large as the capacity of the tanker that serves the corresponding port, inde-
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Algeciras - Rotterdam 255k 2 22.5 100% 79.7 35.6 27.0 13.5 21.8 5.0 182.7
Port Said - Malta 18k 1 17.7 99% 12.1 4.6 9.9 2.1 4.3 0.2 33.3
Jebel Ali - Salalah 42k 1 30.4 98% 17.7 6.7 14.1 3.6 0.0 0.4 42.7
Singapore - Shanghai 226k 4 49.0 100% 151.0 67.0 24.3 29.4 0.0 7.2 278.9

Total 260.6 113.9 75.4 48.7 26.1 12.8 537.5
Total (%) 48% 21% 14% 9% 5% 2% 100%

Table 2: Optimal solution to scenario A: Each row represents an optimal partial solution and its char-
acteristics and costs. The first column indicates the route that is sailed in the corresponding
partial solution, always starting and ending in Qatar. The following two columns denote the
number and capacity of tankers used. The frequency denotes how often the round trip is sailed
every year and equivalent to the number of port calls at each port along the respective route.
The utilization indicates the relative time per year the tankers are in operation. The remaining
columns denote the different annual cost per partial solution.

pendent of the amount of LNG being unloaded. Scenario B is more restrictive than scenario A
and the total annual cost of its optimal solution is 4.4% higher than the cost of the correspond-
ing optimal solution in scenario A. As could be expected, the total infrastructure capacity is
significantly higher than in scenario A (see Table 5). The effect of the assumption introduced
under scenario B, however, is dampened by the use of smaller tankers and a larger number of
individually served ports compared to the optimal solution of scenario A. The ports of Shanghai,
Singapore, Salalah and Jebel Ali are served on individual round trips whereas they are served
pairwise in scenario A (see Figure 8b). Scenario B’s additional requirement represents a reduced
incentive to combine multiple ports on a round trip and a greater incentive to use LNG tankers
of smaller capacity. Again, in almost all cases the capacities of the tankers are chosen such
that the number of tankers is minimized and their utilization maximized. Overall, the optimal
solution under scenario B is $23.6M more expensive than the optimal solution under scenario
A. In other words, if the problem of sloshing can be resolved and partial tanker loadings are
feasible in the future, it may allow to reduce the total annual cost by more than 4%.
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Algeciras - Rotterdam 255k 2 22.5 100% 79.7 35.6 38.5 13.5 21.8 5.0 194.2
Port Said - Malta 18k 1 17.7 99% 12.1 4.6 13.3 2.1 4.3 0.2 36.6
Salalah 20k 1 31.9 98% 12.7 4.7 6.9 1.9 0.0 0.3 26.5
Jebel Ali 8k 1 79.8 53% 8.4 1.2 4.8 4.8 0.0 0.1 19.2
Singapore 43k 1 19.8 99% 17.9 7.2 9.4 1.2 0.0 0.6 36.3
Shanghai 206k 4 49.6 100% 144.9 64.2 17.7 14.9 0.0 6.7 248.2

Total 275.7 117.5 90.6 38.4 26.1 12.7 561.1
Total (%) 49% 21% 16% 7% 5% 2% 100%

Table 3: Optimal solution to scenario B: Each row represents an optimal partial solution and its charac-
teristics and costs.

In scenario C charter costs are only incurred for the time tankers are in operation and not for
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the whole year, i.e. idle times are free of charge. A summary of the optimal solution for scenario
C is given in Table 4. Port Said, Malta and Algeciras are served in a single LNG tanker round
trip, while all other ports are served by individual round trips. The optimal solution appears to
be in line with intuition: The average tanker size is significantly larger compared to scenario A,
because the larger the tanker is, the lower are the charter and fuel costs per unit of LNG, and,
most notably, utilization rates are much lower, as idle times are not penalized anymore. Due to
the increased tanker capacities, the onshore infrastructure capacities are even larger than under
scenario B (see Table 5). The more impacting charter costs are reduced at the price of a less
heavy increase in annual infrastructure cost. Note that in scenario C the required infrastructure
capacity at a port is, like in scenario A, a function of the amount unloaded, which represents an
incentive to combine ports on round trips.
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Rotterdam 265k 2 18.5 81% 65.4 29.5 19.6 5.5 18.5 4.6 143.1
Port Said - Malta - Algeciras 242k 1 4.8 35% 13.6 6.0 33.3 4.4 4.5 2.2 63.9
Salalah 49k 1 13.0 41% 7.7 3.1 9.9 0.8 0.0 0.5 21.9
Jebel Ali 24k 1 26.6 18% 2.5 0.7 7.5 1.6 0.0 0.2 12.4
Singapore 119k 1 7.2 36% 10.3 4.4 14.2 1.1 0.0 1.1 31.1
Shanghai 265k 4 38.5 78% 126.7 57.0 19.6 11.6 0.0 7.1 221.9

Total 226.2 100.6 104.0 24.9 23.0 15.6 494.3
Total (%) 46% 20% 21% 5% 5% 3% 100%

Table 4: Optimal solution to scenario C: Each row represents an optimal partial solution and its charac-
teristics and costs.

Depending on which scenario is considered, the optimal strategic decisions can be very
different, as e.g. the optimal onshore storage tank capacities indicate (Table 5). The relative
difference in cost between the corresponding optimal solutions, however, is still rather moderate
(Fig. 9), especially against the background of considerable uncertainty in the input parameters.
The latter will be addressed in the following section through a sensitivity analysis.

Port Scenario A Scenario B Scenario C
Rotterdam 228.1 267.8 278.3
Algeciras 39.7 267.8 184.8
Malta 6.3 18.9 23.1
Port Said 12.6 18.9 46.2
Salalah 22.1 21 51.5
Jebel Ali 22.1 8.4 25.2
Singapore 18.2 45.2 125.0
Shanghai 218.1 216.3 278.3

Total 567.0 864.2 1012.2
Total vs. Scenario A +52.4% +78.5%

Table 5: Optimal onshore infrastructure capacities in thousand m3 for all ports and under different sce-
narios.
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4.5 Sensitivity Analysis

Many of the input parameters are subject to heavy fluctuations over time and therefore extremely
hard to predict. By early 2016, the heavy fuel oil price has, against the forecasts, plummeted to a
value below $300 per tonne since August 2014, after having been above $600 for more than three
years. Similarly, charter rates may fluctuate heavily over time. The average daily charter rate for
12 months time charters for a 160 000m3 LNG tanker, for example, has varied between $30 000
and $150 000 since 2010 (RS Platou Economic Research AS, 2015). For other input parameters
as e.g. the infrastructure cost (as a function of capacity) even current estimates are generally
provided as interval estimates due to many factors of uncertainty. In this section we show how
the presented modelling approach can be used to test the robustness of the above solutions
against fluctuations of the fuel price, charter rates and expected infrastructure costs compared
to the base case. The sensitivity analysis was conducted for scenarios A and B exclusively due to
their practical relevance. The focus of the sensitivity analysis lies on the strategic infrastructure
sizing and tanker investment decisions, as the reversion or adjustment of strategic decisions is
usually not possible without considerable extra costs.

We tested seven different charter rate levels including the base case. As the charter rate is a
function of the tanker capacity, the changes in charter costs are provided as relative deviations
from the base cost function in percent. Values in the range −50% to +100% of the base charter
cost function have been evaluated, i.e. the lowest representing half and the highest representing
twice the base case charter rate. To evaluate the solution robustness against fluctuations in the
fuel price we tested five different equally distant values in the range of $150-$750 per tonne of
HFO, with $300 corresponding to the base case. As in the base case, the price of MGO was
generally set to 1.5 times the price of HFO. We furthermore evaluated the impact of infrastruc-
ture cost changes in the range of −50% to +100% of the annual infrastructure cost function
(CAPEX+OPEX) as defined in the base case. Note that each parameter variation was tested
individually against the base case of the corresponding scenario.

The results of the sensitivity analysis are summarized in Figures 10 and 11. Figure 10
shows selected properties of each case’s optimal solution and how it changes with varying input
parameters. In the given study we are mainly interested in how robust irreversible decisions like
the number and size of tankers and the size of the onshore infrastructure are. Generally, the
impact of all tested parameter fluctuations on the average optimal onshore storage capacities is
very limited under both scenarios, with the average (optimal) infrastructure capacity varying
between 71 000m3 and 78 000m3. The largest observed relative change in capacity for a single
port was 17%. The optimal number of tankers and their capacity appears to be more sensitive
to the parameter fluctuations, at least under scenario B. Under some parameter fluctuations the
average number of tankers can vary by up to 33% and the average tanker capacity by up to 29%
compared to the optimal solution of the base case.

Although the optimal solutions may look substantially different under some parameter re-
alizations, the total cost savings compared to the optimal solution of the base case turn out to
be relatively low. Figure 11 illustrates the relative changes in all cost components of an optimal
solution compared to the base case. Figure 11e, for example, illustrates a case where the opti-
mal solution of the base case remains optimal under all tested infrastructure cost variations in
scenario A. This is not the case under scenario B, but Figure 11f shows that the adjustments of
the optimal solution reduce the impact on some cost factors and increase the impact on others.
Figure 12 shows the savings in total cost that could be achieved if reoptimization was possible
after different parameter realizations. Interestingly it turns out that none of the reoptimized
solutions reduces the total cost by more than 0.8% compared to the solution that is optimal for
the base case. On the contrary, the solution to the base case remains optimal or very close to
optimal under most of the tested parameter variations.

These results can be interpreted in two ways: the optimal solution to the base case appears
to be quite robust to changes in the main cost functions, i.e. the optimal solution to the base
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case remains a very good solution under the evaluated parameter changes. On the other hand,
however, it means that in practice there is very little leeway for the company to absorb cost
increases in the investigated case study, even if major strategic decisions were reversible or
adjustable in the future. These insights are very valuable, especially when it comes to risk
assessment of large projects like the one considered.

5 Conclusion
The paper has introduced a novel, non-linear model for solving a strategic infrastructure sizing
problem. The model decides the dimensions of a number of LNG depots that are meant to serve
a fleet of LNG fuelled container ships as well as demands for LNG in the spot market. The model
includes a routing component in order to account for transportation from the LNG source to
the depots that are spread over Europe and Asia. The model was developed as part of a study
(conducted by one of the major global container lines) that examined the feasibility of operating
container ships by LNG. The non-linear model proves difficult to solve (Boleda Molas, 2015) and
consequently an equivalent set partitioning formulation and necessary preprocessing techniques
are proposed. The proposed model allows to solve realistic problem instances that have been
presented in the paper within a very short time. The presented modelling framework is highly
flexible and allows to incorporate almost any type of cost functions and underlying assump-
tions. Quick solution times allow decision makers to investigate different scenarios and better
understand cause-and-effect relationships. The case study shows that the costs of transporting
the LNG from its source to its destinations vastly exceed the cost of building and operating
the necessary onshore infrastructure when considering a 30 year life time of the infrastructure.
These results emphasize the necessity and advantages of optimizing infrastructure investment
decisions and interdependent operational decisions simultaneously. Due to the volatility of the
input parameters as well as due to the long planning horizon of the study, any optimal solution
is associated with a large degree of uncertainty. Consequently a sensitivity analysis has been
conducted. The results show that the obtained solutions are quite robust in terms of solution
quality, but that any changes in individual cost factors will be almost fully reflected in the total
cost. It is worth noting that the study was initiated in a time when oil prices where much higher
compared to what they are at the time of writing. At this moment of time, however, it is not
clear yet how the stricter sulphur regulations will affect marine gas oil and marine diesel oil
prices once they are globally binding.

Several interesting extensions of the problem studied can be considered in future work. The
large degree of stochasticity in the input data suggests the use of Stochastic Programming to
deal with the uncertainty. A stochastic model could optimize over a larger set of scenarios and
select solutions that are robust to fluctuations. Since the deterministic model is rather easy
to solve it seems realistic, from a computational point of view, to make the move towards a
stochastic model. Another possible extension is to broaden the decision problem and include
the selection of ports that shall accommodate LNG terminals. This change would require to
explicitly include the container ship routes in the model, since fewer refuelling options may imply
that the container ships need larger LNG fuel tanks. There is a tradeoff between the LNG tank
size on board of container ships and the vessels’ container loading capacity. Thus, such a change
would make the problem much more complex.
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(a) Solution properties for scenarios A and B under varying charter rates. The x-axis shows the %
deviation from the scenario’s base charter rate function.
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(b) Solution properties for scenarios A and B under varying fuel prices. The x-axis shows the different
tested fuel prices.
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Figure 10: Properties of the optimal solution for different scenarios and parameters
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Figure 11: Impact of varying input parameter values on cost factors of optimal solutions under scenario
A and B. Each subfigure shows the relative change in different annual cost factors (total costs,
charter costs, fuel costs, infrastructure costs, port call costs, canal transit costs, inventory
costs) given the change of a selected input parameter (e.g. charter rate). All values represent
relative changes compared to the costs in the optimal solution of the corresponding scenario’s
base case.
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(f) Scenario B, varying infrastructure cost

Figure 12: Potential cost savings obtained through reoptimization after paramter changes compared to
the optimal solution of the base case.
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