最近、ゲーセンの閉店が案外と多いです。 なんでこの時期に?とも思い、いろいろな業者と話もするんですが、共通点は 艦これアーケードがない だったりします。 自分の知っているお店ばかり、たまたまそうなのかもしれないですけど、艦これアーケード設置店で閉店ってのはあまり聞かないので、以前書いたネタが現実になりつつあるかも? なんて思ったりします。 艦これアーケード、ゲームセンターの救世主に?ゲーセン側からの考察 自分でも、艦これアーケードがなかったら・・・ってゾッとしたりしますからね。 ホント入荷できて良かった・・・ 苦境に立つゲーセンからのSOS そんなゲーセンにまた一つ暗いニュースが流れてきました。 岩手のゲームセンター「テクノワールド」がツイッターでSOS! 節約のため電源入れられない筐体も…「何とかして残したい」(全文表示) – ニュース – Jタウンネット 岩手県 ふーむ、正直記事を見る
朱鷺の杜Wiki(ときのもり うぃき)† 朱鷺の杜Wikiは,機械学習に関連した,データマイニング,情報理論,計算論的学習理論,統計,統計物理についての情報交換の場です.これら機械学習関係の話題,リンク,関連事項,書籍・論文紹介などの情報を扱います. 更新されたページを確認するにはRSSリーダを使って右下のRSSリンクをチェックするか,最終更新のページを参照してください. ページの中でどこが更新されたかを見るには,上の「差分」をクリックして下さい. 数式の表示に MathJax を利用しています.数式の上でコンテキストメニューを使うと各種の設定が可能です.特に設定をしなくても数式は閲覧できますが,フォントをインストールすれば数式の表示がきれいで高速になります.詳しくは 数式の表示 のページを参照して下さい. ごく簡単なWikiの使い方がこのページの最後にあります.トップページやメニューなど
この教科書は、はてなサマーインターンの講義資料として作成されたものです: https://github.com/hatena/Hatena-Textbook 機械学習編1(基礎編)では、最も初歩的な分類器である単純パーセプトロンを題材に、機械学習の基本について勉強しました。機械学習編2(実用編)では、実問題に機械学習を適用する上でのコツや、各種の機械学習アルゴリズムの使い分け、高次元データへの対処法、といったトピックについて解説していきます。 実問題に機械学習を適用する タスクを定義する データを特徴ベクトルに変換する 評価方法を決める 正解データの正例と負例は均等に ベースラインとなる手法を実装する 実データに向き合うときの心構え 機械学習のワークフロー 1. 前処理 データセット作成 サンプリング 特徴抽出 欠損値・欠測値への対応 値のスケーリング 特徴選択 次元削減 2. 学習 モデ
この教科書は、はてなサマーインターンの講義資料として作成されたものです: https://github.com/hatena/Hatena-Textbook この章では機械学習について、Webサービスの開発で必要とされる知識を中心に、とくに自然言語処理にフォーカスしながら解説します。 Webサービス開発と機械学習 実現困難な機能の例 闇雲な実装 もう少しましな実装 機械学習によるパラメータ決定 分類問題のための機械学習手法 パーセプトロン 判別アルゴリズム 学習アルゴリズム 特徴量のとり方 形態素解析 量をともなう特徴 組み合わせ特徴量 モデル 機械学習の種類 教師あり学習 分類 (質的変数の予測) 回帰 (量的変数の予測) 教師あり学習でのデータセット 教師なし学習 クラスタリング 次元削減(次元圧縮) 頻出パターンマイニング 異常値検出 アルゴリズムの評価 訓練データとテストデータ 学
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く