BERT や GPT の登場により、テキストを扱うモデルは大きく発展しましたが、否定というごくありふれた操作を扱うのが依然難しいです。 本稿では、その理由と、部分的な解決策を紹介します。 目次 目次 否定文を理解できないAIたち 否定文を理解できずに困ること なぜ否定文をうまく扱えないのか なぜたまに成功するのか 対処法 ファインチューニング プロンプトの工夫 否定文を意識した訓練 文書数を増やす クエリとキーを拡張する おわりに 否定文を理解できないAIたち BERT (tohoku-nlp/bert-base-japanese-v3) で A =「私はお寿司が好きです。」 B =「私の好きな食べ物はお寿司です。」 のテキスト埋め込みのコサイン類似度を求めてみましょう。A と B は同じようなことを言っており、予想されるようにコサイン類似度は 0.9695 と高いです。 では、 A =「
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く