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1. Introduction
The central challenge in any resource allocation problem
is to allocate a fixed number of resources such that their
utilization is optimized. Successfully dealing with this chal-
lenge is essential for ensuring reliable and efficient perfor-
mance in a host of applications ranging from management
of transportation networks to the routing of information
through the internet. Traditionally, researchers have focused
on developing centralized algorithms to determine efficient
allocations. However, in many modern applications, these
centralized algorithms are neither applicable or desirable.

One concrete example highlighting the need for dis-
tributed resource allocation is the “sensor coverage
problem,” where the goal is to allocate a fixed number of
sensors across a given mission space so as to maximize the
probability of detecting a particular event (see, e.g., Li and
Cassandras 2005, Martinez et al. 2007). A centralized algo-
rithm for sensor allocation requires that a central authority
maintain complete knowledge of the environment and com-
municate directly with each sensor during the entire mis-
sion. Both requirements might be unrealistic in large and/or
hostile environments. Similar issues arise in many com-
puter network resource allocation problems, with examples
ranging from wireless access point assignment (Kauffmann
et al. 2007) to wireless power management (Campos-Náñez
et al. 2008, Li and Cassandras 2005). There are also
many examples outside of computer systems that suffer
from similar issues. For example, in transportation sys-
tems a global planner does not have the authority to assign
drivers to roads; rather, a global planner must entice drivers

appropriately to settle on a desirable allocation, e.g., using
tolls to minimize aggregate congestion (Sandholm 2002).

The need for distributed resource allocation has led to
a surge of research aimed at understanding the possibility
of decentralizing (localizing) decisions in resource alloca-
tion problems. This is an extremely diverse literature where
protocols are designed using a wide variety of tools, e.g.,
distributed optimization (Mishra et al. 2006, Villegas et al.
2008), distributed control (Li et al. 2005, Parag et al. 2010),
physics-inspired control (Kauffmann et al. 2007, Mhatre
et al. 2007), and game-theoretic control (Alpcan et al.
2009, Zou and Chakrabarty 2004, Srivastava et al. 2005,
Campos-Náñez et al. 2008).

In this paper we focus on game-theoretic control, which
is a promising new approach for distributed resource allo-
cation. A game-theoretic approach to distributed resource
allocation requires two distinct design steps. First, a sys-
tem designer must model the interaction framework of the
decision-making entities as a strategic form game. This
involves specifying the decision makers, their respective
choices, and a local utility function for each agent. Sec-
ond, a system designer must specify a local behavioral or
learning rule for each agent that specifies how an individual
agent processes available information to formulate a deci-
sion. The overarching goal is to complete the two design
steps, referred to as utility design and learning design,
respectively, to ensure that the emergent global behav-
ior is desirable (Arslan et al. 2007, Marden et al. 2009,
Gopalakrishnan et al. 2011).

There are wide-ranging advantages to the game-
theoretic approach, including robustness to failures and
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environmental disturbances, minimal communication
requirements, improved scalability, and real-time adaptation
(Arslan et al. 2007). Accordingly, game-theoretic resource
allocation designs are increasingly popular in a variety of
wireless and sensor network applications, e.g., channel
access control in wireless networks (Altman et al. 2004,
Kauffmann et al. 2007), coverage problems in sensor
networks (Cassandras and Li 2005), and power control
in both (Altman and Altman 2003, Campos-Náñez et al.
2008, Falomari et al. 1999). A comprehensive survey
of applications can be found in Altman et al. (2006).
However, nearly all these designs are highly application-
specific, with both the utility and learning designs crafted
carefully for the specific setting.

Our Contributions

The goal of this paper is to establish a general framework
for studying utility design. To that end, we introduce a
class of games termed distributed welfare games, which
represents a game theoretic model for resource allocation
problems with separable objective/welfare functions. Here,
we focus on the design of local agent utility functions only
where local means that an agent’s utility function is able
to depend only on the resources selected, the welfare at
each resource, and the other agents that selected the same
resources. Consequently, the utility design question can be
viewed as a welfare sharing problem where an agent’s util-
ity is defined as some fraction of the welfare garnered at
each of the agent’s selected resources. Therefore, design-
ing local utility functions is equivalent to defining a dis-
tribution rule that depicts how the welfare garnered from
each resource is distributed to the players at that particular
resource.

The first set of results (§3) illustrates that cost sharing
methodologies can be used effectively for utility design.
In particular, we identify two cost-sharing methodolo-
gies, the marginal contribution and the Shapley value,
that provide valuable methodologies for utility design.
The marginal contribution distribution rule systematically
provides local utility functions that always guarantee the
existence of a (pure) Nash equilibrium irrespective of the
application domain. The Shapley value distribution rule
systematically provides local utility functions that are bud-
get balanced and always guarantee the existence of a Nash
equilibrium irrespective of the application domain. How-
ever, computing the Shapley value is often intractable.
These results highlight an inherent tension between budget-
balanced utility functions and tractability.

Our second set of results seeks to overcome the lim-
itations of the Shapley value by establishing tractable
budget-balanced distribution rules, (§4). We identify
three sufficient conditions on distribution rules, see
Conditions 4.1–4.3, that guarantee the existence of a Nash
equilibrium in any distributed welfare game where players
are restricted to selecting a single resource. These suffi-
cient conditions can be viewed from two perspectives. The

first perspective is as a check for whether a given set of
distribution rules guarantees the existence of an equilib-
rium. The second perspective, which is our motivation for
this work, is as a design guideline for distribution rules,
i.e., if a global planner can design a distribution rule to
satisfy these conditions, then an equilibrium is guaranteed
to exist. We illustrate these developments in §6.

Our third set of results pertains to the efficiency of the
resulting Nash equilibria. When restricting attention to sub-
modular welfare functions, which is a common attribute to
many resource allocation problems (Vetta 2002, Krause and
Guestrin 2007), we identify distribution rules that guaran-
tee that all resulting Nash equilibria obtain a welfare within
50% of the welfare associated with the optimal assign-
ment. This compares favorably with the best known results
of centralized approximations for resource allocation prob-
lems with submodular welfare functions, which guarantee
welfare within 1 − 1/e ≈ 006321 of the optimal (Feige and
Vondrak 2006, Ageev and Sviridenko 2004, Ahuja et al.
2004). Surprisingly, this comparison demonstrates that the
inefficiency resulting from localizing decisions in resource
allocation problems is relatively small when the welfare
functions are submodular. Furthermore, we demonstrate
that these 50% guarantees can be significantly sharped in
many settings. Lastly, in §6 we provide an illustration of
the theoretical contributions contained in this paper on two
important classes of resource allocation problems: coverage
problems and coloring problems.

2. Model Overview: Resource
Allocation Problems

We consider a class of resource allocation problems where
there exists a set of players N and a finite set of
resources R that are to be shared by the players. Each
player i ∈ N is assigned an action set Ai ⊆ 2R where
2R denotes the power sets of R; therefore, a player
may have the option of selecting multiple resources. Let
A=A1 × · · · ×An denote the set of joint action profiles.
A key feature of resource allocation problems is the exis-
tence of a global welfare function W2 A→� that the sys-
tem designer seeks to optimize. In this paper, we restrict
our attention to the class of separable welfare functions of
the form

W4a5=
∑

r∈R

Wr48a9r51

where Wr 2 2N →�+ is the welfare function for resource r
and 8a9r 2= 8i ∈ N2 r ∈ ai9 is the set of players using
resource r in the allocation a. Note that when restricting
attention to separable welfare functions, the welfare gener-
ated at a particular resource depends only on which players
are currently using that resource. While separable welfare
functions cannot model the global objective for all resource
allocation problems, they can model the global objective for
several important classes of resource allocation problems
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including routing over a network (Roughgarden 2005),
vehicle target assignment problem (Murphey 1999), con-
tent distribution (Goemans et al. 2004), graph coloring
(Panagopoulou and Spirakis 2008), and network coding
(Marden and Effros 2012), among many others. Throughout
this paper we frequently restrict our attention to submodu-
lar welfare functions. A welfare function Wr is submodular
if for any player sets S ⊆ T ⊆N ,

Wr4S ∪ 8i95−Wr4S5¾Wr4T ∪ 8i95−Wr4T 5

for any i ∈ N . Submodularity corresponds to a notion of
decreasing marginal returns and is a common feature of
many objective functions for engineering applications rang-
ing from content distribution (Goemans et al. 2004) to cov-
erage problems (Krause and Guestrin 2007).

We now introduce the class of distributed welfare games
as the game-theoretic model for the class of resource
allocation problems defined above. We consider a finite
strategic-form game where each player i ∈ N has a finite
action sets Ai and a utility function Ui2 A → �. In a dis-
tributed welfare game, each agent’s utility is defined as
some fraction of the welfare garnered at each resource the
agent is using. More formally, the utility of agent i for any
joint action profile a ∈A is defined as

Ui4a5=
∑

r∈ai

fr4i1 8a9r51 (1)

where fr 2 N ×2N →� is referred to as the distribution rule
at resource r . We define a distributed welfare game by the
tuple G = 8N 1R1 8Ai9i∈N 1 8Wr9r∈R1 8fr9r∈R9. For brevity,
we often omit the subscripts on the sets and denote a game
as purely G= 8N 1R1 8Ai91 8Wr91 8fr99.

A few comments are in order regarding the structure
imposed on the utility functions in (1). First, this structure
imposes a natural notion of locality as each agent’s utility
function depends only on the resources the agent selected
and the other agents that selected the same resources. Sec-
ond, defining a distribution rule for each resource 8fr9
results in a well-defined game irrespective of the structure
of the players action sets 8Ai9. This allows for a degree
of scalability in utility design because we can remove
the dependence between utility design, or equivalently dis-
tribution rule design, and the structure of the players’
action sets.

3. Utility Design for Distributed
Welfare Games

In this section, we explore several approaches for util-
ity design in distributed welfare games. We discuss these
design methodologies in the form of “distribution rules” as
opposed to “utility functions” for a more direct presenta-
tion. Many of these approaches are derived from method-
ologies in the cost-sharing literature, e.g., Shapley value, as
our context can be viewed as the inverse of a cost-sharing
problem (Young 1994, Shapley 1953, Hart and Mas-Colell
1989). However, while cost-sharing methodologies can be
effective as distribution rules, we also discuss several issues
that limit their applicability.

3.1. Performance Criteria

Before proceeding with the discussion of distribution
rules, we first formally define our performance crite-
ria. We assume throughout that the set of players N ,
resources R, and welfare functions 8Wr9 are all known;
however, the action sets 8Ai9 are unknown. We require that
the distribution rule fr for each resource r ∈R depend only
on the welfare function Wr . Therefore, distribution rules are
completely defined using only local information. We gauge
the quality of a design by the following metrics.

Existence and efficiency of pure Nash equilibrium.
A well-known equilibrium concept that emerges in strate-
gic form games is that of a pure Nash equilibrium, which
we will refer to simply as an equilibrium. An action profile
a∗ ∈A is called a equilibrium if for all players i ∈N ,

Ui4a
∗

i 1 a
∗

−i5= max
ai∈Ai

Ui4ai1 a
∗

−i51 (2)

where we adopt the convention that a−i denotes the pro-
file of player actions other than player i, i.e., a−i =

8a11 0 0 0 1 ai−11 ai+11 0 0 0 1 an9 0 With this notation, we some-
times write a profile a of actions as 4ai1 a−i5. Similarly,
we may write Ui4a5 as Ui4ai1 a−i5. A pure Nash equilib-
rium, as defined in (2), represents a scenario for which no
player has a unilateral incentive to deviate. Does the distri-
bution rule 8fr9 guarantee the existence and efficiency of
an equilibrium irrespective of the structure of the players
action sets 8Ai9?

Potential game. The class of potential games (Monderer
and Shapley 1996) imposes a restriction on the agents’ util-
ity functions. In a potential game, the change in a player’s
utility that results from a unilateral change in strategy
equals the change in a global potential function. Specif-
ically, there is a potential function �2 A → � such that
for every player i ∈ N , for every a−i ∈ A−i, and for every
a′
i1 a

′′
i ∈Ai,

Ui4a
′

i1 a−i5−Ui4a
′′

i 1 a−i5=�4a′

i1 a−i5−�4a′′

i 1 a−i50 (3)

When this condition is satisfied, the game is called a poten-
tial game with the potential function �. It is easy to see
that in potential games any action profile maximizing the
potential function is an equilibrium, hence every potential
game possesses at least one such equilibrium. Does the dis-
tribution rule 8fr9 guarantee that the resulting game is a
potential game irrespective of the structure of the players
action sets 8Ai9?

Budget balance. A distribution rule 8fr9 is budget bal-
anced if, for any resource r ∈ R and any player set
S ⊆N ,

∑

i∈S fr4i1 S5 = Wr4S5. Recent results demonstrate
that having budget-balanced utility functions (or in this case
distribution rules), or some fraction thereof, is important
for providing desirable efficiency guarantees (Vetta 2002,
Roughgarden 2009, Gairing 2009). Furthermore, having
budget-balanced distribution rules is also important for the
control (or influence) of social systems where there is a
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cost or revenue that needs to be completely absorbed by the
participating players, e.g., network formation (Chen et al.
2008) and content distribution (Goemans et al. 2004).

Informational dependencies. This metric seeks to mea-
sure the informational dependencies between a distribution
rule fr and the associated the welfare function Wr . For any
resource r ∈ R, player i ∈ N and player set S ⊆ N such
that i ∈ S, we expand the notation of a distribution rule
from fr4i1 S5 to fr4i1 S3∗5 to explicitly highlight the infor-
mation dependencies, denoted by 4∗5, needed to compute
the distribution to player i. We categorize informational
dependencies as follows:

• High: The distribution to player i given the player
set S is conditioned on information regarding the wel-
fare associated with all player set T ⊆ S, i.e., fr4i1 S3
8Wr4T 59T⊆S5.

• Medium: The distribution to player i given the player
set S is conditioned on information regarding the wel-
fare associated with the player sets S and S\8i9, i.e.,
fr4i1 S3 8Wr4S51Wr4S\8i995.

• Low: The distribution to player i given the player set S
is conditioned on information regarding the welfare associ-
ated with the set S, i.e., fr4i1 S3Wr4S55.

3.2. Distribution Rules

In this section we will introduce four distribution rules
motivated by methodologies from the cost-sharing literature
(Young 1994). These rules are summarized in Table 1.

3.2.1. Equally Shared. The equally shared distribu-
tion rule takes on the following form: for any resource
r ∈R, player set S ⊆N , and player i ∈N ,

f ES
r 4i1 S5=

Wr4S5

�S�
0 (4)

It is straightforward to verify that this rule is budget-
balanced and has a low information dependency. However,
in general such a design does not guarantee the existence
of an equilibrium (Arslan et al. 2007). However, if play-
ers are anonymous with regard to their impact on the
welfare functions, i.e., for any resource r ∈ R and any
player sets S1T ⊆ N such that �S� = �T � the welfare satis-
fies Wr4S5=Wr4T 5, then the equally shared utilities in (4)
guarantee the existence of an equilibrium. We refer to such
welfare functions as anonymous.

Proposition 1. If G is a distributed welfare game with
anonymous welfare functions and the equally share distri-
bution rule in (4), then an equilibrium is guaranteed to
exist.

Proof. Define �a�r 2= �8a9r � as the number of players
that chose resource r in the allocation a. It is straight-
forward to show that any distributed welfare game with
anonymous players is a congestion game (Rosenthal 1973,
Monderer and Shapley 1996), with the following speci-
fication: (a) resources R; (b) cost functions of the form

cr4k5= 4Wr4k55/k1 k > 0, where k is the number of players
utilizing resource r ; and (c) utility functions of the form
Ui4a5 =

∑

r∈ai
cr4�a�r5. Because any congestion game is a

potential game, this completes the proof. �

3.2.2. Marginal Contribution. The marginal contri-
bution distribution rule takes on the following form: for any
resource r ∈R, player set S ⊆N , and player i ∈N ,

f MC
r 4i1 S5=Wr4S5−Wr4S\8i950 (5)

Note that the marginal contribution distribution rule
requires a medium informational dependency as each agent
is required to compute the player’s marginal contribution
to the welfare. This design is sometimes referred to as the
wonderful life utility (WLU) (Wolpert and Tumor 1999).
It is well known that distributing the welfare as in (5)
results in a potential game with potential function W ;
hence any action profile that maximizes the global wel-
fare is an equilibrium. However, other equilibria might also
exist. Furthermore, the marginal contribution distribution
rule may distribute more (or less) welfare than is gathered;
hence, it is not budget-balanced.

3.2.3. Shapley Value. The Shapley value distribution
rule (Shapley 1953, Hart and Mas-Colell 1989, Haeringer
2006) takes on the following form: for any resource r ∈R,
player set S ⊆N , and player i ∈N

f SV
r 4i1 S5

=
∑

T⊆S\8i9

�T �!4�S� − �T � − 15!
�S�!

4Wr4T ∪ 8i95−Wr4T 550 (6)

Utilizing the Shapley value as in (6) requires a high
informational dependency; however, it rectifies the budget-
balanced problems associated with the marginal contribu-
tion distribution rule as shown in the following proposition.

Proposition 2. If G is a distributed welfare game with
the Shapley value distribution rule in (6) then the players’
utility functions are budget balanced and the game is a
potential game with potential function

�SV4a5 2=
∑

r∈R

∑

S⊆8a9r

1
�S�

(

∑

T⊆S

4−15�S�−�T �Wr4T 5

)

0 (7)

Proof. Budget-balanced utility functions follow directly
from Hart and Mas-Colell (1989) and Haeringer (2006).
We prove the second part of this proposition using the
potential function derived in Hart and Mas-Colell (1989).
First, we express the Shapley value distribution rule
in (6) as a weighted sum of unanimity games (Hart and
Mas-Colell 1989, Haeringer 2006), which takes on the form

f SV
r 4i1 S5=

∑

T⊆S2 i∈T

1
�T �

(

∑

R⊆T

4−15�T �−�R�Wr4R5

)

0 (8)
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Let �r4T 5 2=
∑

R⊆T 4−15�T �−�R�Wr4R5 and �SV
r 4a5 2=

∑

T⊆8a9r
4�r4T 55/�T � be the resource-specific potential func-

tion (Hart and Mas-Colell 1989). Furthermore, let a ∈A be
any allocation and a0

i = � be the null action for player i.
Using (6), the marginal utility of player i is

Ui4a5−Ui4a
0
i 1 a−i5

=
∑

r∈ai

f SV
r 4i1 8a9r51

=
∑

r∈ai

(

∑

T⊆8a9r 2 i∈T

�r4T 5

�T �

)

1

=
∑

r∈ai

(

∑

T⊆8a9r

�r4T 5

�T �
−

∑

T⊆8a9r \8i9

�r4T 5

�T �

)

1

=
∑

r∈ai

4�SV
r 4a5−�SV

r 4a0
i 1 a−i551

=�SV4a5−�SV4a0
i 1 a−i50

Therefore, for any player i, actions a′
i1 a

′′
i ∈Ai, and alloca-

tion a−i ∈A−i we have

Ui4a
′

i1 a−i5−Ui4a
′′

i 1 a−i5=�SV4a′

i1 a−i5−�SV4a′′

i 1 a−i51

which completes the proof. �
There are two limitations of the Shapley value util-

ity design that could prevent it from being applicable.
First, there is a high informational requirement as each
player must be able to compute his marginal contribution
to all action profiles in order to evaluate his utility. Sec-
ond, in general, computing a Shapley value is intractable
in games with a large number of players. This is high-
lighted explicitly in either (6) or (8), where computation of
the Shapley value requires a weighted summation over all
subsets of players, of which there might be exponentially
many. However, it should be noted that this computational
cost is lessened dramatically for special classes of welfare
functions, e.g., Conitzer and Sandholm (2004). For exam-
ple, if players are anonymous, then the Shapley value is
equivalent to the equal share distribution rule in (4).

3.2.4. The Weighted Shapley Value. A generalization
of the Shapley value is the weighted Shapley value (Shapley
1953, Hart and Mas-Colell 1989, Haeringer 2006). Define
wi ∈ �+ as the weight of player i. Let w 2= 8wi9i∈N be
the associated weight vector. The weighted Shapley value
distribution rule (Shapley 1953, Hart and Mas-Colell 1989,
Haeringer 2006) takes on the following form: for any
resource r ∈R, player set S ⊆N , and player i ∈N ,

f WSV
r 4i1S5 2=

∑

T⊆S2 i∈T

wi
∑

j∈T wj

(

∑

R⊆T

4−15�T �−�R�Wr4R5

)

0 (9)

Note that the Shapley value distribution rule in (6) is recap-
tured if wi = 1 for all players i ∈N . We state the following
proposition without proof to avoid redundancy.

Proposition 3. If G is a distributed welfare game with the
Shapley value distribution rule in (9), then the players’
utility functions are budget balanced and the game is a
(weighted) potential game.

The weighted Shapley value does not result in as clean
a closed-form expression for the potential function as the
Shapley value in (7). However, as with the Shapley value,
the potential function can be computed recursively and is
of the form �WSV4a5 2=

∑

r∈R�WSV
r 48a9r5, where (Hart and

Mas-Colell 1989)

�WSV
r 4�5= 01

�WSV
r 4S5=

1
∑

i∈S wi

[

Wr4S5+
∑

i∈S

wi�
WSV
r 4S\8i95

]

1

∀S ⊆N1 S 6= �0

3.3. Comparison of Distribution Rules

The following table summarizes the features of the four dis-
tribution rules introduced above. Note that there is an inher-
ent trade-off between the desirable features of a distribution
rule and the computational and informational requirement
needed to obtain such a rule.

4. Single Selection Distributed
Welfare Games

The results of the previous section suggest that deriving
budget-balanced distribution rules that always guarantee
the existence of an equilibrium requires a high informa-
tion requirement and is often intractable. In this section
we explore whether this apparent trade-off is a limita-
tion of cost-sharing methodologies or utility design in
general. To study this question we focus on a simplified
setting where players are allowed to select only a sin-
gle resource, Ai = R, as opposed to multiple resources,
Ai ⊆ 2R. Although this setting is simplified, there are still
a wide variety of resource allocation problems that typi-
cally are modeled as single selection resource allocation
problems, e.g., task allocation.

4.1. Sufficient Conditions for
Existence of an Equilibrium

In this section, we identify three sufficient conditions on
distribution rules that guarantee the existence of an equi-
librium in any single selection resource allocation game.
These sufficient conditions translate to pairwise compar-
isons of players’ distributed shares.

Condition 4.1. Let i1 j ∈N be any two players. If

fr4i1 S ∪ 8i1 j95 > fr4j1 S ∪ 8i1 j95

for some resource r ∈R and player set S ⊆N\8i1 j9, then

fr̄4i1 S̄ ∪ 8i1 j95¾ fr̄4j1 S̄ ∪ 8i1 j95
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Table 1. Summary of distribution rules for distributed welfare games.

Distribution Existence of Potential Budget Informational
rule equilibrium game balanced Tractable requirement

Equally shared Yes Yes Yes Yes Low
(anonymous)

Equally shared No No Yes Yes Low
WLU Yes Yes No Yes Medium
Shapley Yes Yes Yes No High
Weighted Shapley Yes Yes Yes No High

for any resource r̄ ∈R and player set S̄ ⊆N\8i1 j9. For this
situation we say that player i is stronger than player j . Fur-
thermore, note that strengths are transitive, i.e., if player i
is stronger than player j who is stronger than player k, then
player i is also stronger than player k.

Condition 4.2. If player i is stronger than player j , then
for any resource r ∈R and player set S ⊆N\8i1 j9 we have
fr4i1 S ∪ 8i95¾ fr4i1 S ∪ 8i1 j950

Condition 4.3. If player i is stronger than player j , then
for any resource r ∈R and player set S ⊆N\8i1 j9 we have

fr4j1 S ∪ 8j95

fr4i1 S ∪ 8i95
¾ max

r̄∈R

fr̄4j1 S ∪ 8i1 j95

fr̄4i1 S ∪ 8i1 j95
0

Theorem 1. If G is a distributed welfare game where the
action sets satisfy Ai = R for all agents i ∈ N and the
distribution rule satisfies Conditions 4.1–4.3, then an equi-
librium exists.

Proof. We begin by renumbering the players in order of
strengths, with player 1 being the strongest player. This is
possible because of Condition 4.1. We construct an equilib-
rium by letting each player select a resource one at a time
in order of strength. The general idea of the proof is that
once a player selects a resource, the player will never seek
to deviate regardless of the other players selections. First,
player 1 selects a resource r 415 according to

r 415 ∈ arg max
r∈R

fr411 81950 (10)

Denote the action profile a415 = 4r 4151�1 0 0 0 1�5. Note that
if there was only one player, a415 would represent an equi-
librium. If this is not the case, let player 2 select a resource
r 425 according to

r 425 ∈ arg max
r∈R

fr421 8a
4159r ∪ 82950

Denote the action profile a425 = 4r 4151 r 4251�1 0 0 0 1�5. If
r 415 6= r 425, then by (10) and Condition 4.2 we know
that fr 415411 8195¾ fr 425411 8195¾ fr 425411 8112950 Therefore,
player 1 can not improve his utility by altering his selec-
tion. If r 415 = r 425 = r , then by Condition 4.3, we know that
for any resource r̄ ∈R,

fr̄421 8295
fr̄411 8195

¾ fr421 811295
fr411 811295

0

Using the above inequality, we can conclude that for any
resource r̄ ∈R,

fr421 811295¾ fr̄421 8295 ⇒ fr411 811295¾ fr̄411 81950

Therefore, player 1 cannot improve his utility by alter-
ing his selection. Note that if there were only two play-
ers, a425 would represent an equilibrium. Otherwise, this
argument could be repeated n times to construct an
equilibrium. �

It remains an open question as to whether Condi-
tions 4.1–4.3 guarantee additional properties pertaining
to the structure of the game besides existence of an
equilibrium.

4.2. Comparison with Existing Results

The related work in Chen et al. (2008) studies cost sharing
methodologies in a class of network formation games for
a specific anonymous cost function. A network formation
game is similar to a distributed welfare game where the
difference lies in cost minimization versus welfare maxi-
mization; hence the results contained in that paper do not
immediately translate to the framework of distributed wel-
fare games. The authors focus on a specific anonymous
cost function and prove that a distribution rule is budget
balanced and guarantees the existence of an equilibrium for
any game if and only if the distribution rule can be repre-
sented by a weighted Shapley value. To prove this result,
the authors establish necessary and sufficient pairwise con-
ditions on player distributed shares that are slightly stronger
than the ones in Conditions 4.1–4.3. The authors make no
claim as to whether their results also hold for alternative
cost functions.

In §6.2, we demonstrate that our weaker pairwise condi-
tions on player cost shares lead to the construction of a set
of distribution rules that are budget balanced and guaran-
tees an equilibrium in all games where players actions are
singletons, i.e., Ai =R. Furthermore, the derived distribu-
tion rules do not correspond to a weighted Shapley value.
This gap can potentially be a result of the following dif-
ferences in the setup: (i) cost minimization versus welfare
maximization, (ii) structure on action set, i.e., Ai =R ver-
sus Ai ⊆ 2R, or (iii) structure of the welfare functions, i.e.,
anonymous versus nonanonymous.
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5. Efficiency of Equilibria in Distributed
Welfare Games

In this section, we focus on bounding the efficiency of
equilibria in distributed welfare games using use the well-
known measures of price of anarchy (PoA) and price of
stability (PoS) (Nisan et al. 2007). In terms of distributed
welfare games, the PoA gives a lower bound on the global
welfare achieved by any equilibrium, while the PoS gives a
lower bound on the global welfare associated with the best
equilibrium for any distributed welfare game. Specifically,
let G denote a set of distributed welfare games. For any
particular game G ∈ G, let E4G5 denote the set of equi-
libria, PoA4G5 denote the price of anarchy, and PoS4G5
denote the price of stability for the game G, where

PoA4G5 2= min
ane∈E4G5

W4ane5

W4aopt5
1 (11)

PoS4G5 2= max
ane∈E4G5

W4ane5

W4aopt5
1 (12)

where aopt ∈ arg maxa∗∈AW4a∗5. We define the PoA and
PoS for the set of distributed welfare games G as
PoA4G5 2= infG∈G PoA4G5 and PoS4G5 2= infG∈G PoS4G5.

In general, the price of anarchy can be arbitrarily close
to 0 in distributed welfare games. However, when the wel-
fare function is submodular it is possible to attain a much
better price of anarchy. We can interpret Theorem 3.4 in
Vetta (2002) in the context of distributed welfare games to
provide a fairly weak condition on the interaction between
the welfare function W and the utility functions, which
guarantees that the price of anarchy is at least 1/2.

Proposition 4 (Vetta 2002). If G is a distributed welfare
game, where for each resource r ∈R:

(i) the welfare function Wr is submodular,
(ii) for each set of players S ⊆ N and player i ∈ S, the

distribution rule satisfies

fr4i1 S5¾Wr4S5−Wr4S\8i951

(iii) for each set of players S ⊆ N , the distribution rule
satisfies

∑

i∈S fr4i1 S5¶Wr4S5,
then if an equilibrium exists, the price of anarchy is greater
than or equal to 1/2.

To provide a basis for comparison, computing the opti-
mal assignment for a general distributed welfare game with
submodular welfare functions is NP-complete (Murphey
1999). Furthermore, the best-known approximation algo-
rithms guarantee only to provide a solution that is within
1 − 1/e ≈ 006321 of the optimal (Feige and Vondrak 2006,
Ageev and Sviridenko 2004, Ahuja et al. 2004). Thus, the
1/2 price of anarchy in this scenario is comparable to the
best centralized solution. It is important to note that these
best-known centralized approximations are in polynomial
time, whereas finding a Nash equilibrium is generally not

polynomial time. However, recent results suggest that for
this class of problems there are dynamics that get close
to this 1/2 price of anarchy guarantee in polynomial time
(Roughgarden 2009).

While the generality of Proposition 4 is useful, the appli-
cability is limited because it does not guarantee the exis-
tence of an equilibrium. Hence, its applicability depends on
the results we have proven in §3.

Corollary 1. If G is a distributed welfare game where
for each resource r ∈R:

(i) the distribution rule fr corresponds to the marginal
contribution as in (5), or

(ii) the distribution rule fr corresponds to the
(weighted) Shapley value as in (6) or (9),
then an equilibrium exists and the price of anarchy is
greater than or equal to 1/20

The four distribution rules depicted in Corollary 1 all
guarantee the existence of an equilibrium. Note that the
wonderful life utility design satisfies Condition (ii) with
equality in addition to Condition (iii) because the wel-
fare function is submodular. Additionally, the Shapley
and weighted Shapley values satisfies Condition (iii) with
equality and can easily be seen to satisfy Condition (ii)
when the welfare function is submodular. The following
examples highlights a specific distributed welfare game
meeting the conditions set forth in Corollary 1, which
yields a price of anarchy of 1/2; hence, the only way to
attain a price of anarchy > 1/2 is to impose additional
structure on the game environment, which we will explore
in the ensuing section.

Example 1 (Tightness of Price of Anarchy). Consider
a distributed welfare game with player set N = 811 0 0 0 1 n9,
resources R= 8r11 0 0 0 1 rn9, actions set Ai =R for all play-
ers i ∈ N , and anonymous resource specific welfare func-
tions of the form Wri

4S5= ci for any player set S 6= �. Let
c1 = 1 and c2 = · · · = cn = 1/n. If the distribution rule is of
the form (4), than an equilibrium is all characterized by all
players choosing r1. The optimal allocation is all players
choosing different resources. The efficiency of this situa-
tion is n/42n − 15, which goes to 1/2 for large n. This
example demonstrates that the equal share utility design
and Shapley value utility design have a price of anarchy
(and price of stability) of 1/2. Alternative examples can be
constructed to show that the wonderful life utility and the
weighted Shapley value utility also have a tight price of
anarchy of 1/2.

To this point we have focused exclusively on bounding
the price of anarchy. Interestingly, when we focus on the
price of stability there is a distinction between rules that
are budget balanced and those that are not, as highlighted
in Table 2. When considering the class of distributed wel-
fare games with submodular welfare functions, the price
of anarchy and the price of stability is 1/2 for any bud-
get balanced distribution rule. If budget balance is not a
requirement, then it is possible to obtain a price of anarchy
of 1/2 and a price of stability is 1.
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Table 2. PoA and PoS comparison over all dis-
tributed welfare games with submodular wel-
fare functions.

Budget Price of Price of
Distribution rule balanced anarchy stability

Equally shared (anonymous) Yes 1/2 1/2
WLU No 1/2 1
Shapley value Yes 1/2 1/2

5.1. Single Selection Distributed Welfare Games

To provide a tighter characterization of the price of anar-
chy we shift attention to single-selection distributed welfare
games. In this case, we can strengthen the results of Propo-
sition 4 utilizing Conditions 4.1–4.3, which guarantee the
existence of an equilibrium.

Proposition 5. If G is a distributed welfare game where:
(i) for each resource r ∈ R the welfare function Wr is

submodular,
(ii) for all players i ∈ N the action sets satisfy Ai = R,

and
(iii) the distribution rules 8fr9 are budget balanced and

satisfy Conditions 4.1–4.3,
then an equilibrium exists and the price of anarchy is 1/2.

Proof. The proof relies on showing that Condi-
tions 4.1–4.3 combine to ensure that Condition (ii) of
Proposition 4 is satisfied, i.e., for any resource r ∈ R, set
of players S ⊆ N , and player i ∈ S, we have fr4i1 S5 ¾
Wr4S5−Wr4S\8i950 Let i1 j ∈N be any two players where
i is stronger than j . Let S ⊆ N\8i1 j9 be any player set.
Condition 4.3 gives us that for any resource r ∈R,

fr4j1 S ∪ 8j95¾ fr4i1 S ∪ 8i95

fr4i1 S ∪ 8i1 j95
fr4j1 S ∪ 8i1 j950

Because player i is stronger than player j , from Con-
dition 4.2 we know that fr4i1 S ∪ 8i95 ¾ fr4i1 S ∪ 8i1 j95,
which gives us

fr4j1 S ∪ 8j95¾ fr4j1 S ∪ 8i1 j950 (13)

Therefore, Condition 4.2 holds for any players i1 j ∈N and
set of players S ⊆N\8i1 j9.

Using the fact that the distribution rule is budget bal-
anced and satisfies (13), we have

fr4i1 S5+Wr4S\8i95−Wr4S5

= fr4i1 S5+
∑

j∈S\8i9

fr4j1 S\8i95−
∑

j∈S

fr4j1 S5

=
∑

j∈S\8i9

fr4j1 S\8i95− fr4j1 S5¾ 00

Therefore, we have fr4i1 S5 ¾ Wr4S5 − Wr4S\8i95, which
completes the proof. �

5.2. Anonymous Distributed Welfare Games

Our bounds on the price of anarchy to this point have been
independent of the number of players. In this section, we
investigate the relationship between the price of anarchy
and the number of players, albeit in the limited case where
players are anonymous with regard to their impact on the
global welfare. Furthermore, we analyze the price of anar-
chy when the number of players at the equilibrium and
optimal allocations differs. Specifically, let W4ane3 n + �5
be the total welfare garnered by an equilibrium consisting
of n + � players, � ∈ �+. Likewise, let W4aopt3 n5 be the
total welfare garnered by an optimal allocation consisting
of n players. While we allow variations in the number of
players, the resources R and their respective welfare func-
tions 8Wr9 remain fixed.

Theorem 2. If G is a distributed welfare game where
(i) for each resource r ∈ R the welfare function Wr is

anonymous and submodular,
(ii) the action set of any two players i1 j ∈N are identi-

cal, i.e., Ai =Aj ⊆ 2R,
(iii) for any set of players S ⊆ N and player i ∈ N , the

distribution rule fr satifies

fr4i1 S5¾Wr4S5−Wr4S\8i951

then if an equilibrium exists, the relative price of anarchy
satisfies

W4ane3 n+ �5

W4aopt3 n5
¾ n+ �

2n+ �− 1
0

Proof. We prove the result by bounding W4aopt3 n5 in
terms of W4ane3 n+ �5. Rather than proving this theorem
in terms of the distribution rules, we use the utility func-
tions, which are of the form Ui4ai1 a−i5=

∑

r∈ai
fr4i1 8a9r5.

Rewriting condition (iii) in terms of utility functions, let-
ting a0

i = � we have that

Ui4ai1 a−i5¾W4a5−W4a0
i 1 a−i50 (14)

First, notice that an upper bound on the W4aopt3 n5
is if one player in the optimal allocation can attain the
entire welfare garnered at the equilibrium, W4ane3 n+ �5,
and all other players attain mini∈N Ui4a

ne3 n + �5, where
Ui4a

ne3 n+ �5 represents the utility player i receives for the
allocation ane consisting of n+ � players. To see that this
upper bound holds, note first that (14) guarantees that each
player’s utility is an upper bound on the player’s contribu-
tion to the global welfare. Furthermore, by combining the
definition of an equilibrium with the fact that the welfare
function is submodular, we see that no additional player
can attain a utility higher than mini∈N Ui4a

ne3 n+ �5 once
W4ane3 n+ �5 is covered. Thus, we have

W4aopt3 n5¶W4ane3 n+ �5+ 4n− 15min
i∈N

Ui4a
ne3 n+ �50
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Now, noting that

min
i∈N

Ui4a
ne3 n+ �5¶ W4ane3 n+ �5

n+ �

gives

W4ane3 n+ �5+ 4n− 15min
i∈N

Ui4a
ne3 n+ �5

¶W4ane3 n+ �5

(

1 +
n− 1
n+ �

)

1

which easily gives the bound in the theorem

W4ane3 n+ �5

W4aopt3 n5
¾ 1

1 + 4n− 15/4n+ �5
=

n+ �

2n+ �− 1
0 �

Notice that Theorem 2 shows that the worst-case price
of anarchy is increasing as the number of players increases
and that as n → � the price of anarchy approaches 1/2,
which matches Proposition 4. Example 1 illustrates that
this bound is tight by slightly modifying the coefficients
to c2 = · · · = cn+� = 1/4n + �5. Furthermore, note that all
the utility design methods previously studied, i.e., equally
shared, wonderful life, and (weighted) Shapley value util-
ity, satisfy the three conditions of Theorem 2. Hence, if the
welfare function is submodular, then an equilibrium is guar-
anteed to exist and the bound on the relative price of anar-
chy holds. Lastly, note that the price of anarchy, � = 0, is
bounded by

W4ane3 n5

W4aopt3 n5
¾ n

2n− 1
0

6. Illustrative Examples
To illustrate the relevance of the results discussed to this
point, we now focus on two broad classes of resource allo-
cation problems: coverage problems and coloring problems.
Our first goal in this section is to highlight that utility
design for distributed resource allocation does not need
to be ad-hoc and application specific, it can often follow
immediately from the general framework presented here.
To illustrate this, we focus on the results in Panagopoulou
and Spirakis (2008), where the authors propose and ana-
lyze utility functions for the problem of graph coloring.
We illustrate that the proposed design is equivalent to
Shapley value utility design, which highlights that utilizing
the Shapley value utility design would have eliminated the
need for having to prove existence of an equilibrium or a
potential game structure.

Our second goal in this section is to highlight that
many of the methodologies discussed in this paper pro-
vide strong efficiency guarantees in broad settings. For
example, in coverage problems, all the methodologies dis-
cussed in this paper guarantee that all equilibria are at least
50% efficient since the welfare functions are submodular.
Furthermore, we demonstrate that the sufficient conditions
established in §4 lead to the construction of equally desir-
able utility functions that are less demanding than either
the marginal contribution or Shapley value utility functions.

Lastly, we demonstrate how the structure of the specific
welfare functions can be exploited to tighten the efficiency
guarantees.

6.1. Graph Coloring Problems

A graph coloring problem is defined as follows. There is a
finite set of colors (or resources) denoted by C and a graph
represented by the tuple 4N 1E5, where N is a finite num-
ber of nodes (or players) and E ⊆ 2N×N is a set of directed
edges on the graph G. Each node is allowed to choose any
color, i.e., Ai =C for all nodes i ∈N . A color assignment
is a tuple a= 4a11 0 0 0 1 an5 that associates a color with each
node. We call a color assignment valid if ci 6= cj for all
nodes i1 j such that 4ei1 ej5 ∈E. The goal of the graph col-
oring problem is to find a valid coloring assignment using
the least number of possible colorings.

Graph coloring problems play a prominent role in
several class of resource allocation problems ranging
from distributed caching (Chun et al. 2004) to spectrum
allocation in cognitive radio networks (Moscibroda and
Wattenhofer 2005, Schneider and Wattenhofer 2009), and
the game theoretic techniques have recently been sug-
gested at a useful approach for developing distributed pro-
tocols for such problems (Panagopoulou and Spirakis 2008,
Chatzigiannakis et al. 2010).

To formally describe the graph coloring problem in the
context of distributed welfare games, we associate with
each color c ∈C a welfare function Wc2 2N →� where for
any subset of nonconflicted players S ⊆ N , i.e., if i1 j ∈ S,
then 4ei1 ej5yE, we have

Wc4S5=

{

0 S = �

−1 S 6= �
0

If S contains conflicted players, i.e., there exists players
i1 j ∈ S such that 4ei1 ej5 ∈E, then we adopt the convention
that Wc4S5= −�. The goal of the graph coloring problem
is to find a coloring assignment a to maximize W4a5 =
∑

c∈CWc48a9c5.
In Panagopoulou and Spirakis (2008), the authors model

the graph coloring problem as a noncooperative game
where each node is assigned a utility function of the form

Ui4ai1 a−i5=
∑

c∈ai

�a�c1

where a is any valid coloring assignment. Because this util-
ity design was constructed specifically for the graph color-
ing problem, the authors needed to prove results pertaining
to existence and efficiency of equilibrium and the underly-
ing potential game structure. It turns out that the proposed
design is equivalent to assigning each player a utility in
accordance with the Shapley value

U SV
i 4ai1 a−i5=

∑

c∈ai

f SV
c 48a9c5=

∑

c∈ai

−
1

�a�c
1
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where a is any valid coloring assignment. By equivalent,
we mean that for any assignment a ∈Ai, player i ∈N , and
alternative choice a′

i ∈Ai we have

Ui4ai1 a−i5−Ui4a
′

i1 a−i5 > 0

⇔ U SV
i 4ai1 a−i5−U SV

i 4a′

i1 a−i5 > 00

This equivalence implies that many of the results pertain-
ing to equilibrium existence and the resulting potential
game structure would be obtained for free because utilizing
these methodologies eliminates the guess and check proto-
cols commonly used in utility design. Lastly, because the
Shapley value utility design provides guarantees irrespec-
tive of the structure of the players’ action sets 8Ai9, many
of the results hold immediately for a more general setting.

6.2. Coverage Problems

In a coverage problem there is a finite set of resources
denoted by T, and each location/resource t ∈ T has a rel-
ative value vt ¾ 0. There are a finite number of agents
denoted by N . The set of possible assignments for agent i
is Ai ⊆ 2T and A represents the set of joint assignments.
Lastly, each agent i ∈ N is parameterized with a success
probability denoted by pi4t1 ai5 ∈ 60117, which indicates the
probability that agent i will successfully “cover” resource t
given the assignment ai. We assume that the success prob-
abilities satisfy

t ∈ ai ⇔ pi4t1 ai5 > 00

The goal of a coverage problem is to find a joint assignment
that maximizes the global welfare function

W4a5=
∑

t∈T2 8a9t 6=�

vt

(

1 −
∏

i∈8a9t

61 −pi4t1 ai57

)

1 (15)

where 41 −
∏

i∈8a9t
61 − pi4t1 ai575 represents the expected

value that resource t is covered by the assignment a. Note
that computing the optimal assignment for this class of
problems is an NP-hard combinatorial optimization prob-
lem (Murphey 1999) and, resultantly, research has tradi-
tionally centered around developing heuristic methods to
quickly obtain near optimal assignment, where the degree
of suboptimality is dependent on the structure of the global
objective, e.g., Ahuja et al. (2004).

To view coverage problems in the context of distributed
welfare games, we simply note that they are resource allo-
cation problems with a separable welfare function, where
the welfare function for any location/resource t ∈ T and
any set of agents S ⊆N is

Wt4S5= vt

(

1 −
∏

i∈S

61 −pi4t1 ai57

)

0 (16)

Therefore, we can appeal to the utility design methodolo-
gies developed for distributed welfare game to construct

local utility for the agents such that the resulting game
has a host of desirable properties including existence and
efficiency of equilibrium. One possible design choice is
the marginal contribution distribution rule, which takes on
the form

Ui4ai1 a−i5=
∑

t∈ai

f MC
t 4i1 8a9t51

=
∑

t∈ai

vt

(

pi4t1 ai5
∏

j∈8a9t\8i9

41 −pj4t1 aj55

)

0 (17)

An alternative design choice is the weighted Shapley value
distribution rule, where for a given set of player weights
w ∈Rn

+
the utility takes on the form

Ui4ai1 a−i5=
∑

t∈ai

f WSV
t 4i1 8a9t5

=
∑

t∈ai

vt

(

∑

S⊆8a9t 2 i∈S

wi
∑

j∈S wj

(

∑

R⊆T

4−15�T �−�R�

·

(

1 −
∏

j∈R

41 −pj4t1 aj55

)))

1 (18)

where the Shapley value can be attained with wi = 1 for
all i ∈ N . Both (17) and (18) guarantee the existence of
an equilibrium. Furthermore, because the welfare function
is submodular, both rules yield a price of anarchy of 1/2.
Furthermore, the price of stability of the wonderful life
design is 1 and the price of stability of the weighted Shap-
ley design is 1/2.

6.2.1. Other Distribution Rules. We have just seen
that cost sharing methodologies yield useful distribution
rules for coverage problems. However, a question that
remains is whether we are bound to using the (weighted)
Shapley value if the goal is to design utility functions that
are budget balanced and guarantee the existence of an equi-
librium. The following theorem identifies one alternative
distribution rule, albeit for the case of singleton strategies.

Theorem 3. If G = 8N 1T1 8Ai91 8Wt91 8ft99 is a dis-
tributed welfare game, where:

(i) the welfare function for each location t ∈T takes on
the form in (16),

(ii) the action set of each agent is Ai =T,
(iii) the distribution rule for each location t ∈T for any

set of agents S ⊆N and player i ∈ S is

ft4i1 S5=
pi

∑

j∈S pj

Wt4S51 (19)

then the utility functions are budget balanced, an equilib-
rium exists, and the price of anarchy is at least 1/2.

Proof. We prove this result by verifying Condi-
tions 4.1–4.3. First, Condition 4.1 is satisfied trivially
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because for any location t ∈ T, set of agents S ⊆ N and
agents i1 j ∈ S we have

ft4i1 S5

ft4j1 S5
=

pi

pj

0

Verifying Condition 4.2 requires showing that for any loca-
tion t ∈T, set of agents S ⊆N and agents i ∈ S and j y S
where pi >pj , we have

pi

pS

Wt4S5¾
pi

pj +pS

Wt4S ∪ 8j951

where pS =
∑

k∈S pk. Using the fact that Wt4S ∪ 8j95 =

Wt4S5+ pj4vr −Wt4S55 and rearranging the above expres-
sion, we need to show that

pS4vt −Wt4S55¶Wt4S50

Working with the left-hand side of the above expression,
we have

pS4vt−Wt4S55=
∑

i∈S

pi4vt−Wt4S55¶
∑

i∈S

pi4vt−Wt4S\8i955

¶
∑

i∈S

pi

pS

Wt4S5=Wt4S51 (20)

where the first and step follow from submodularity of Wt .
Verifying Condition 4.3 requires showing that for any

location t ∈ T, set of agents S ⊆ N , and agents i1 j y S
where pi >pj , we have

4pi +pS5Wt4S ∪ 8j95¾ 4pj +pS5Wt4S ∪ 8i950

Using the fact that Wt4S∪ 8i95=Wt4S5+pi4vt −Wt4S55
for any player i y S this is equivalent to showing that
pS4vt − Wt4S55 ¶ Wt4S5, which is true from the previous
analysis in (20). �

A few notes are in order as to the meaning of the result-
ing utility design in Theorem 3. First, note that the util-
ity design set forth in Theorem 3 is budget balanced and
guarantees the existence of an equilibrium regardless of the
game setup, i.e., the number of agents, their respective cov-
erage probabilities, or the number of locations, provided
that the action sets satisfy Ai = T. Furthermore, this util-
ity has an information dependency similar to that of equal
share utility design in (4).

This utility design has several interesting properties. First
of all, one can view the distribution rule in (19) as a
“weighted” share distribution rule of the general form

fr4i1 S5=
si

∑

j∈S sj
Wr4S51

where si is the strength (or weight) of player i. While set-
ting si = pi is the obvious choice, it turns out that letting

the strength of each agent i ∈N be defined by the solutions
to the equation

pi = 41 − k5si + k
si

1 + si
1

where 1 ¾ k ¾ 0 also provides the same guarantees as in
Theorem 3 with a similar proof that we omit for brevity.
The importance of this is that there are family-of-strength
coefficients that guarantee equilibrium existence; hence,
this weighted share distribution rule is not a razor-edge
phenomenon. Understanding when weighted shared dis-
tribution rules are possible is fundamentally important to
understanding utility design. From a design perspective,
having a complete understanding of this space of admissi-
ble utility function is important as it allows the designer to
optimize over this class.

Lastly, this result in some sense contradicts the results in
Chen et al. (2008) that suggest that the weighted Shapley
value is the only distribution rule that guarantees the exis-
tence of an equilibrium and is budget balanced. It is
straightforward to show that the utility design in Theo-
rem 3 does not correspond to a weighted Shapley value for
any fixed weights wi ∈ R+. It is fundamentally important
to understand whether the root of the discrepancy arises
from (i) cost minimization versus welfare maximization,
(ii) structure of the action set, i.e., Ai =R versus Ai ⊆ 2R,
or (iii) structure of the welfare functions, i.e., anonymous
versus nonanonymous.

6.2.2. Efficiency Improvement. So far, we have ap-
proached coverage problems using only the general results
provided earlier in the paper. However, it is important to
note that the price of anarchy guarantees provided earlier
can frequently be strengthened by exploiting the structure
(or curvature) of the welfare function for the specific appli-
cation of interest. Here, we illustrate such a tightening in
the context of coverage problems. To simplify our anal-
ysis, we focus purely on the anonymous single selection
case where each agent has the same success probability p.
In this setting, we can directly appeal to Theorem 2 to show
that the relative price of anarchy is

W4ane3 n+ �5

W4aopt3 n5
¾ n+ �

2n+ �− 1
0

We can strengthen these bounds further to attain the fol-
lowing bound, which illustrates the impact of the coverage
probability on the price of anarchy.

Theorem 4. If G = 8N 1T1 8Ai91 8Wt91 8ft99 is a dis-
tributed welfare game where

(i) the welfare function for each location t ∈T is anony-
mous and takes on the form in (16),

(ii) the action set of each agent is Ai =T,
(iii) each agent i ∈N has the same detection probability

pi = p where p ∈ 60117,
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Figure 1. Price of anarchy in single selection, anony-
mous, coverage games.
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(iv) for any set of agents S ⊆ N and agent i ∈ S the
distribution rule for each location t ∈T satisfies

ft4i1 S5=
1
�S�

Wt4S51

then the utility functions are budget balanced, an equilib-
rium exists, and the price of anarchy satisfies

W4ane5

W4aopt5
¾
(

a∗

n
+

1−41−p5n−a∗

1−41−p5n

)−1

1 where

a∗
=











n−11 p=13

n−
log4n44log41/41−p555/41−41−p5n555

log41/41−p55
1 p<10

Figure 1 illustrates the price of anarchy. Note that this
bound is a decreasing function of the agents success prob-
ability, which is intuitive.

6.2.3. Proof of Theorem 4. Theorem 4 follows from
the following sequence of lemmas. Throughout, we let n
represent the number of agents and p represent the invariant
success probability.

Lemma 1. The price of anarchy is bounded by
(

max
x+y¶n1x¾01 y¾1

{

x

x+ y
+

1 − 41 −p5y

1 − 41 −p5x+y

})−1

1

where the maximum is taken over integer x1 y.

Proof. We describe the optimal assignment in terms of
the Nash assignment. From the Nash conditions and the
fact that each agent’s utility is greater than or equal to the
marginal contribution, we have that �ane�t > 0 ⇒ �aopt�t > 0.
We can bound the welfare of the optimal as

W4aopt5

¶
∑

t∈T2 �ane5�t>0

max
mt∈601 �ane�t−17

{

mt

Wt4�a
ne�t5

�ane�t
+Wt4�a

ne
�t −mt5

}

=
∑

t∈T2 �ane5�t>0

max
mt∈601 �ane�t−17

{

mt

�ane�t
+

41 − 41 −p5�a
ne�t−mt 5

41 − 41 −p5�ane�t 5

}

·Wt4�a
ne

�t51

which follows from the fact that each agent’s utility is
greater than or equal to the agent’s marginal contribution
to the welfare. Letting xt =mt and yt = �ane�−mt , we have

W4aopt5

¶
∑

t∈T2 �ane�t>0

max
xt+yt=�ane�t 1 xt¾01 yt¾1

{

xt
xt + yt

+
1 − 41 −p5yt

1 − 41 −p5xt

}

·Wt4�a
ne

�t5

¶
∑

t∈T2 �ane�t>0

max
x+y¶n1x¾01y¾1

{

x

x+y
+

1−41−p5y

1−41−p5x

}

Wt4�a
ne

�t5

= max
x+y¶n1x¾01y¾1

{

x

x+y
+

1−41−p5y

1−41−p5x

}

∑

t∈T2 �ane�t>0

Wt4�a
ne

�t5

= max
x+y¶n1x¾01 y¾1

{

x

x+ y
+

1 − 41 −p5y

1 − 41 −p5x

}

W4ane51

which completes the proof. �

To obtain a more explicit form of the price of anarchy,
we first relax the constraints followed by characterizing the
maximal x1 y.

Lemma 2.

max
x+y¶n1x¾01 y¾1

{

x

x+ y
+

1 − 41 −p5y

1 − 41 −p5x+y

}

¶ max
x+y=n1x¾01 y¾1

{

x

x+ y
+

1 − 41 −p5y

1 − 41 −p5x+y

}

1

where the LHS is taken over integer x1 y and the RHS is
taken over real-valued x1 y.

Proof. We start by relaxing the integer optimiza-
tion to include real-valued x1 y. Next, suppose that
xm + ym =m<n are the maximizers under the constraint
that x+y =m. We will show that xn = nxm/m, yn = nym/m
lead to a larger value than xm1 ym. Combining this with the
observation that xn + yn = n then completes the proof.

xn
xn + yn

+
1 − 41 −p5yn

1 − 41 −p5xn+yn

=
xm

xm + ym
+

1 − 41 −p54n/m5ym

1 − 41 −p54n/m54xm+ym5
0

Now, it is enough to show that the right-hand side is
increasing in 4n/m5 because n > m, which follows from
simple calculations. �

Now, we know that y = n− x, so we need only to cal-
culate x.
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Lemma 3.

x∗
=argmax

0¶x¶n−1

{

x

n
+

1−41−p5n−x

1−41−p5n

}

=











n−11 p=13

n−
log44nlog41/41−p555/41−41−p5n55

log41/41−p55
1 p<10

Proof. For the case of p = 1, the result is immediate.
In the case when p 6= 1, we evaluate the maximizer by sim-
ply differentiating. Differentiating with respect to x gives

1
n

−
41 −p5n−x log41/41 −p55

1 − 41 −p5n
0

Setting the derivative equal to zero then gives

41 −p5n−x
=

n log41/41 −p55

1 − 41 −p5n
0

Solving for x, we obtain

x = n−
log44n log41/41 −p555/41 − 41 −p5n55

log41/41 −p55
1

which completes the proof. �

7. Concluding Remarks
This paper represents a comprehensive effort at understand-
ing utility design for distributed resource allocation. To for-
mally study utility design we introduce a class of games
that we refer to as distributed welfare games. We demon-
strate that cost sharing methodologies are beneficial for util-
ity design; however, such methodologies do not typically
guarantee all desirable properties of interest. While this
paper addresses the applicability of cost sharing method-
ologies for utility design, significant future work entails
understanding the limits of utility design. In particular, is
it impossible to satisfy all performance metrics simulta-
neously? If so, how can this be accomplished? Formally
understanding the limits of utility design for noncoopera-
tive games is of fundamental importance to understand how
game theory should evolve to meet the challenges inher-
ent within the control of multi-agent systems. Some recent
progress on this topic can be found in Gopalakrishnan et al.
(2011) and Marden and Wierman (2013), but many open
questions remain.
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