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A relativistic cut-off of high frequency quanta, similar to that suggested by Bopp, is shown
to produce a finite invariant self-energy for a free electron. The electromagnetic line shift for a
bound electron comes out as given by Bethe and Weisskopf’s wave packet prescription. The
scattering of an electron in a potential, without radiation, is discussed. The cross section
remains finite. The problem of polarization of the vacuum is not solved. Otherwise, the results
will in general agree essentially with those calculated by the prescription of Schwinger. An
alternative cut-off procedure analogous to one proposed by Wataghin, which eliminates high
frequency intermediate states, is shown to do the same things but to offer to solve vacuum

polarization problems as well.

T HE main problems of quantum electro-
dynamics have been essentially solved by
the observations of Bethe! and of Weisskopf? that
the divergent terms in the line shift problem can
be thought to be contained in a renormalization
of the mass of a free electron. That this principle
applies as well to other problems was demon-
strated by Lewis?® in analyzing the radiationless
scattering of an electron in a potential. Am-
biguities which remained in the subtraction
procedures are removed by Schwinger.>4 He
formulated, in a general way, which terms are to
be identified in a future correct theory with rest
mass, and hence should be omitted from a cal-
culation which does not renormalize the mass.
These results are remarkable because they solve
the problem without the addition of any new
fundamental lengths or dimensions.

The solution given by Schwinger does, how-
ever, assume that in some future theory the
divergent self-energy terms will be finite. There-
fore, it is of interest to point out that there is a
model, a modification of ordinary electrody-
namics, for which all quantities automatically do
come out finite. With this model the ideas of
Bethe, Oppenheimer, and Lewis and Schwinger
can be directly confirmed.

The model results from the quantization of a
classical theory described in a previous paper.5

( ;4};) A. Bethe, Phys. Rev. 72, 339 (1947); 73, 1271A
1 .

( ;4]8 Schwinger and V. Weisskopf, Phys. Rev. 73, 1272A
1

3H. W. Lewis, Phys. Rev. 73, 173 (1948).
4 J. Schwinger, Phys. Rev. 73, 415A (1948).
5 R. P. Feynman, Phys. Rev. 74, 939 (1948).

In this paper we describe only the results for
processes in which only virtual quanta are
emitted and absorbed. The problems of per-
manent emission and the position of positron
theory must be more completely studied. It is
hoped that a complete physical theory may be
published in the near future. Lacking such a
complete picture, the present paper may be looked
upon merely as presenting an arbitrary rule to
cut off at high frequencies in a relativistically
invariant manner, the otherwise divergent in-
tegrals appearing in quantum field theories. For
electrodynamics the rule is to consider the
(positive) frequency w and wave number k of the
field oscillators as independent and to integrate
them over the density function g(w?—k?)dwdk
where

gor=#)= [ [olwi—H)

—0(w?—k2=N)JG(N)dN. (1)

Here &(x) is Dirac’s delta function and G(\) is
some smooth function such that J3*G(\)dA=1
and for which the mean values of X which are
important are of order of the frequency 137
mc?/k, or higher. Ordinary quantum electro-
dynamics replaces the function g(w?—%?%) by
8(w?—k?). According to (1), the density g is not
everywhere positive.® Therefore, the model is
essentially that due to Bopp.®

The model therefore contains an arbitrary
function and the numerical results depend on the

¢ F. Bopp, Ann. d. Physik 42, 573 (1942).
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form of G(\). However, the only term that
depends seriously (logarithmically) on the cut-off
frequency is the self-energy, which can be used
to renormalize the electron mass. After this is
done, the remaining terms are nearly independent
of the function G(A).

We shall illustrate these points by studying
the particular examples of self-energy and radi-
ationless scattering. We shall then discuss an
alternative cut-off procedure in which the density
of electron states is cut off rather than that of
the quanta. This promises to solve problems of
vacuum polarization which are not touched by
the former procedure.

SELF-ENERGY

The transverse self-energy of a free electron, of
mechanical mass u, in state of momentum P,
energy Eo= (u?+P¢?)} is given to the first order
in e? by the second-order perturbation theory,
using the one-electron theory of Dirac, by

? dk (243 ;|0
ey [ Ol
dr® kEl+ E;~E\tk
(0] aslf)(fle:|0)

—_—. (2
+§ —E;—Eo+k @

Here the intermediate state f arises from the
initial state through emission of a quantum of
momentum k and of energy k= |k| (the velocity
of light is taken as unity, as is Planck’s constant).
Thus in the intermediate state the electron has
momentum P;,=P,—k and an energy of mag-
nitude E;= + (u2+ P,*)? but which may be either
plus or minus in sign. The sums indicate the sum
over all such intermediate states (actually just
two) for each sign of the energy. The terms for
positive and negative energy have been separated
and the sums are written Y., and }__ for these
two cases. The (f|a;|0) are the matrix elements
of Dirac’s a-matrices, the sum on 7 being over
the two directions of polarization of the quanta.
We shall henceforth write the integral dk/k over
k space by its equivalent 2/ dwdkd(w?—k?), the
integral being over all positive w, and all wave
numbers k. We shall also write w for & in the
energy denominators as we shall later wish to
distinguish the energy of a quantum and the
magnitude of the momentum change that its
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recoil represents. We may further simplify the
expression by the use of the well-known pro-
jection operators:

A= (E;+xH)/2E;=(Esta-P;£pu)/2E;.

According to the theory of holes, the last
term, the transition to negative energy states, is
to be left out; such transitions are prevented
because the negative levels are already occupied.
On the other hand, in the vacuum, electrons in
state of energy — E; could make virtual transi-
tions to positive energy state E, This is now
prevented by the presence of an electron in the
state E,, so that, relative to the vacuum, the
transverse self-energy is

ez
AE=——3%" fdwdk&(éu2—k2)
272

ailsta; 0] aiAfa;| 0
{<0| Arad0)_Oladrad0)

Ef—Eotw E;+Eo+tw

The treatment of the longitudinal self-energy
is usually different, for the longitudinal oscil-
lators are first eliminated from the Hamiltonian,
their effect being the term e?/7y where g is the
meaningless distance of the electron from itself.
These terms must be expressed as integrals over
oscillators and combined with (3) before the
change suggested by (1) is to be performed. An
additional point of confusion is that the longi-
tudinal elimination assumes the intermediate
states to form a complete set as they do in (2),
but the situation in (3) is not so clear. For-
tunately, all these points may be most easily
circumvented by simply not eliminating the
longitudinal oscillators .from the field Hamil-
tonian at all. One need simply to specify that the
sum on ¢ in (3) now be interpreted to mean the
sum over each of three perpendicular space
directions minus a term for the time direction. We
may write 2 ;a,Aa;=e-Ae—A, which is a
relativistic combination since ay=1. One does
not need to be concerned about the gauge con-
dition in a problem in which all quanta are
virtual, for the quanta are created by a charge
which is conserved. This solution automatically
insures the gauge condition just as the Lienard
Wiechert classical solution of the Maxwell
equations will automatically satisfy the gauge
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condition if the charge which produces the
potential is conserved.

With this convention for Y ;, Eq. (3) repre-
sents the total self-energy. It is easily calculated.
The numerator of first term may be written as
1/2E; times Z,’(OIO(;(H]'{—E])OL;IO) where H; is
(Y'Pf+ﬁ[£. Now since Z.’ Qo= +2, Zi a,ﬂa.-r-
—48, and Y_; a;aa;= —2a, this becomes

—2(0| — E;+2Bu+e-P;|0).

The diagonal elements of 8 and « for the state
0 are p/E, and P,y/E,, respectively.

The change in energy AE, can, since the
momentum is given, be represented as a change
Ap in rest mass of the electron. In virtue of the
general relation E?=pu?+ P2, the relation between
these quantities is pAp=FE\AE, Thus we find,
treating the sum of negative energies in a similar
manner,

e? 2”2—E0E1+P0'P/
Ei(E;—Eo+w)
2+ EoEs+Poy- Py }

E/(E/+Eo+w)

A#o =

f dwdka(wz—kZ)l

27%u

The integral diverges logarithmically and Ay,
defined here is meaningless. If the 8(w?—k?) is
replaced by g(w?—k?) defined in (1), the result is
finite and invariant (i.e., does not depend on the
momentum Pg of the electron).

How this comes about may be seen by cal-
culating the integral in (4) for

g(w?—B?) = 8w — &) — 8(w? — K2 —\?)

and reserving an integration on \ until later. The
integral (4) will converge with this g(w?—%2), but
it is convenient to divide it for purposes of cal-
culation into the difference of two diverging ones.

This is legitimate providing the divergent
integrals are first both computed over the same
finite region of k space, the difference taken, and
then the region allowed to pass to infinity.
Therefore, we shall define Apy by (4), in which
we choose the region arbitrarily to be first over
all (positive) w and then over a sphere in k space
of very large radius K. Likewise Ay, is defined as
expression (4) with 6(w?—k?—A\?) replacing
8(w?—k?), and the integration taken over the
same region,
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The true self-mass is therefore
Ap= f [Lim(Apo—Am)JGMN)EN.  (5)
0 K-«

We may now calculate these integrals, starting
Wlth A}L). Since Po' Pf= Po‘ (Po—'k) =E02'—y.2
—Py-k and Ef =E?+k2—2Py-P;, the Po‘P/
term in the numerator of the first term may be
eliminated, the numerator becoming

%(Efz‘*'Eoz—kz) —EoEj+ut=u2+1(w?—k?)
+3(Ef— Ey—w)(E;— Eotw).

Thus the first term in Au)\ becomes

w5 (0’ — k%)
f ——————(w?—k?—N)dwdk
Ei(E;j—Ey+w)

+1 f 8(cs? — k2 —\2)dwdk(E;— Eo—w)/Ey.  (6)

Adding the corresponding second term which
differs from the first only in the sign of E,, and
performing the integral on w (which requires
simply division by 2w), we find

1
(Ert+w)?—Eq?

Edodk 1 pdk 1 pdk
] e
E o 2 2J E,

where w=(k2+A?)? and the integration is to be
taken over a sphere of radius K in k space. The
first and, obviously, the second integrals turn
out to be invariant; the third is not, but its
contribution will cancel out on taking Auo—Apux
as it does not depend on \.7 The result of the
integrations8 is, dropping terms of order 1/K and

(2*/e?) b= (w*+ %v)f

w

7 Pais has suggested that one subtract from Apo the
—Ap, that one gets not from electrodynamics but from
the scalar f field (for which 8---8 replaces Z; a;- - - az).
Proceeding in this way the integrals /'dk/E; do not appear
with the same coefficient. Therefore, although this pro-
cedure leads to a finite rest mass it is not invariant in the
sense here, that the limits of k space integration can be
taken to be independent of the momentum of the electron.
A. Pais, Kon. Ned. Akad. v. Wet. Verh. D1, 19, 1 (1947).

8 The first integral may be performed in the following
manner: First integrate over the directions in k space at
constant magnitude k. Only E; depends on the direction of
k and one may therefore replace the solid angle integral
by one on E;. The limits of E; are E,=(u2+(Po+k)?%)}
and E_= (u2+ (Po—k)?)} but both terms may be considered
together as one if the integral on k be extended from —K
tq K instead of 0 to K. To integrate this on &, substitute
the variable x=E,+w—E, and (the algebra is long)
integrate by parts to reduce it to elementary integrals,
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smaller:
(w/e*)ubpn = (u2+FA) [N+ p2 X (s, 1)
+3[K*—N(In(2K/N) —3)]
—3[K2—3P—p*(In(2K/p) —3)],

where
Na=No—[2/(N—p?) ] In(\/u), (7a)

with No=In(2K/u) —%, and the quantity X (g, )
is finite as K— . [t is given by setting po=p in
the complicated expression

2u0* X (i, o) = (N2 —p® — po?) 2 — 4p2pe?)}
l )\2+u2__“02+(()‘2_“2_“02)2_4#2#02)5
n

2\u

2

AZuo*

) Nt . (7b)
2 A

+(>\2—ﬂ2+#o2—
—u

Thus Xo(u, #) =1/2u? and for \ large compared
to u, X(u, u) =1/4N2%. Hence

A2 AN o

AZ_

3u
(m/e*) (Apo—Am) =—-
2 uw?oou 2

— (24N uX(u, 1), (8)

which is independent of K (in the limit K— o),
If the important values of A\ are much greater
than u, we find approximately (to terms of order
(w/N)?)

Ap=p(e*/m)[$ In(\o/w)+ 2], ©

where

Inho= f INNG(A\)dA.
0

Judging from the classical case we would have
expected to take Ao of order 137y, for then all
mass would be electromagnetic. But Au here is
too small for this to represent a real possibility.
The experimental electron mass m is of course
ptAp.

The value of A would have to be of phe-
nomenal size (~e!37u) before Au can represent a
sizeable fraction of the experimental mass. How-
ever, to go to the limit of the conventional elec-
trodynamics, Ao should be taken as infinite.
Then the self-energy diverges logarithmically in
the manner found by Weisskopf.?

9 V. Weisskopf, Phys. Rev. 56, 72 (1939),
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The emission and subsequent absorption of a
quantum acts similarly to the effect of a change
in mass not only on the diagonal matrix element
which we have just calculated, but on non-
diagonal elements as well. Consider that the
state appearing on the left of all the matrices in
(3) were arbitrary, say x. Then the numerator of
the first term can be expressed, as we have seen,
by (—1/E;)(x| — E;+2Bu~+e«- P;|0). The second
term can be expressed similarly. The two terms
can be combined so that the whole expression in
brackets in (3) can be written

) (x| —E,;Eo+ (Er+w) (28u+ - Py—a-k) | 0)
E/((Es4w)?—Eo?) '

(10)
This expression may be multiplied by
(w?—k2—\?)

and integrated with respect to w and over a
sphere of radius K in k space. We make use of the
following integrals which can be directly verified :

1 Ef-i-w
f . (w2 —k2—N)dwdk/T
(Estw)*—Eo*  Ey

= N+ o’ X (1, po),
1
f———-——B(wz—k2—)\2)dwdk/1r
(Estw)?—Eq?
=%N)\+%(#2+#02*>\2)Xx(#, 1o,
f k E+
(Ertw)*—Es*  Ey
=3Po[ 3+ N+ N2+ po> — 1) X (24, po) .
The integrals have been calculated under the
assumption that E¢?=po?+ Py In our application
we should take wo=p. The quantities N, and
X (i, po) are given by (7a), (7b). (The extra
parameter po is helpful in obtaining other
integrals, useful in the radiationless scattering
problem, by differentiations with respect to the
various parameters under the integral sign.)

The result of integration (10) with the density
8(w? —k?) — (w2 —k2—2\?) is therefore

(e2/m) (x| —Eo(3(No—N)+35— (u>— 5\ X>)
+ (28u+ @ -Po) (No— Ny 3 — p2X))
—3a-Po(No— Na—2A2X)) | 0).

(11)

w
S(w?—k2—\)dwdk/7
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Now the energy of state 0 is E, so that
«-Poy=H,—Bu is equivalent to Ey—pBu, since it
operates on state 0 (no implication about state x
is involved). Making this replacement, all the
terms in E, are seen to cancel and the result is
simply

(x]8]0) - (Apo—Am), (12)

where Auo—Apy is given in (8). On integrating
over G(\)d\ then we find (x|BAux|0). But this is
just the perturbation element which would result
from a change of mass by Ap in the Dirac
equation.

We may use this result to show that the level
shift for an electron in a bound state given in the
present theory will be essentially that given by
Weisskopf and Bethe according to their so-called
wave-packet method. The change in energy of
our electron in a bound state may be calculated
in a straightforward manner according to the
present formulation. One would simply start
with Eq. (2) but with the wave functions and
energies for states 0 and f being appropriate for
the potential by which the electron is bound.
Then one would integrate over g(w?—k?) rather
than §(w?—%2) and obtain a definite finite result.
The result would show a fairly large change in E,
depending logarithmically on A.

A good part of this change could be accounted
for as simply due to the change in E, that would
occur if the mass of the electron were altered
from u to m=p+Au. We can define the true
term shift, then, as the complete change in E,,
less Au(dEo/du), the change due to using u
instead of m in computing the energy with
radiation absent. But dE,/du is by perturbation
theory the expected value (Yo*|8|¥0) of 8 for the
state ¥, in question. From the result (12), how-
ever, this is also equivalent to computing the
self-energy of a wave packet ¥, assuming the
electron as free. But Bethe! and Weisskopf?
compute their term shift by just this prescription:
the total effect less the self-energy of the free
packet. The only difference here is that we would
compute the term shift integral on g(w?—£k?)
rather than §(w?—k?). But since the integral con-
verges either way, the difference between the
two results is very small, being of order of
(u2/No?) times smaller than the result.

RICHARD P. FEYNMAN

RADIATIONLESS SCATTERING

We can study the radiationless scattering
problem in a similar manner. This problem is the
correction to the scattering by a first-order
potential due to the possibility of emission and
absorption of a virtual quantum. For example,
this emission and absorption can occur at any
time previous to the scattering. (It would, in this
case, be nearly equivalent to a change in mass
in the wave function of the electron arriving at
the scatterer.) There will be a large change in
cross section, which would be expected as the
result of a change in mass of the electron plus a
smaller change caused essentially by emissions
previous to and absorptions subsequent to the
scattering. As in the case of the self-energy in a
field and, in fact, in all such problems, we will
really be interested in those effects of radiation
over and above that resulting from the change in
mass. It is, therefore, simpler to compute the
difference between the desired quantity calcu-
lated with no radiation and electrons of mass m,
and the same quantity computed with the pos-
sibility of a virtual quantum emission and ab-
sorption with an electron of mass u. This dif-
ference, which we shall call the radiative cor-
rection, can be looked upon as the result of per-
turbation due to the addition to the Hamiltonian
of both the radiative interaction terms and a
term —pBAp. The latter term can, as we have
shown, be represented by the integral over oscil-

lators of
a,'Af"oz,' a,'Af—ag

) o
* \E;—Eyt« E/+Eitow

when acting on a free electron state of positive
energy Ey and momentum P,. When acting on a
state of negative energy —E,, the term can be
shown in a similar manner to be the expression
(13) with the sign of E, changed in the de-
nominator.

Terms like these are just the ones that
Schwinger* thought should be omitted from the
Hamiltonian if one wishes to get meaningful
results, so that the present model agrees with
Schwinger’s prescription.

When this proces is applied to the scattering
problem to obtain the radiative correction to
the matrix elements, we are left with several
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residual terms. First, the emissions and absorp-
tions previous to scattering are not exactly
equivalent to a change in mass. If the emission
occurs too close (in time) to the scattering, the
absorption must occur in a restricted time, rather
than at leisure as for a free electron forming SAu.
The correction to the matrix element (in the
theory of holes) for this is proportional to

(2 ] VA1+(X,'Af+O£,'{ 1)
(Ertw—Ey)?

i

(2 ! VA1+aiA/"a,~| 1)
> . (14)
i (ErtwtE)?

(N

We assume the potential V' (vector or scalar)
depending on position like e4'R and time like
e~9t induces transitions from a state 1 of mo-
mentum P;, energy E;, to the state 2 of momen-
tum P,=P;+q, energy E;=FE;+Q=(u2+P;?)%.
The operator V is just 1 for scalar potential, a,
for vector potential in x direction, etc. The term
(14) represents only that contribution due to a
quantum of momentum k, frequency w. We
expect later to integrate over w and k, times
g(w?—k2%). We put P,=P,—k, E;,=(u+PA)%L
This term can also be regarded as due to the
second-order normalization correction in the
ordinary perturbation theory on the incoming
wave function. There is a corresponding cor-
rection for the final wave function resulting from
virtual quanta emitted and absorbed after the
scattering: (P,=P;—k, E,= (u*+ P,2)?}).

(2 | a;Aﬁa;Ag*‘V[ 1)
(Eg+w—E,)?

(2 | a;A,,_aiAf‘ Vl 1)
> . (15)
i (EjtowtEy)?

(S

All the effects of BAu are now included. The
remaining terms are those for which the potential
scattering occurs between the emission and ab-
sorption. They may be worked out as by
Dancoff*® (except that we include the longitudinal

10 S, M. Dancoff, Phys. Rev. 55, 959 (1939).
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waves by summing ¢ from 1 to 4). They are
(2] @b T VA Fai]1)
i (Efto—E)(Egtw—Es)
(2| by~ VA a;| 1)
i (ErtwtE)(EjtwtEs)

(16)

and
(2 I a,-A,,+ VAf'"a,'l 1)
i (Ey+w—E)(E/+w+E)

2w
x[1+—————————]
E+E,—E,+E;
(2 l a,;A,,“ VA;"'ail 1)
i (Ertw—E)(E;twtE,)

2w
———————] (17)
E+E,+E.—E,

X[1+

Although each separate term diverges, the sum
of (14), (15), (16), (17) will lead to an integral
convergent for large k even if integrated in the
conventional manner on §(w?—k?%). This is the
result of Lewis. Integration on g(w®—4?) will
make each term converge for large k, but will
then only make correction to the sum of order
(u/N\)? smaller. These we shall neglect.

The integrals do, however, diverge logarithmi-
cally at the lower limit of small momentum
transfer. This infra-red catastrophe has been
completely cleared up by Bloch and Nordsieck.!
They show that for very long wave-length quanta
the amplitude for emission and reabsorption of
more than one quantum is not negligible. In-
clusion of these higher order terms, which is
necessary only in the non-relativistic region,
solves the problem. To keep the results given
here in a simple form, we can imagine the inte-
grals to be performed down to some minimum
momentum Emin, small compared to u. What is
effectively the same thing but which is easier
(because relativistic invariance is maintained)
for practical purposes, is to imagine that the
quanta have a very small rest mass Amin. Thus
we integrate the density

5((02 - k2 - Xm inz)dwdk
1 F, Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).
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and assume Anin<&u. The two methods are
equivalent if one replaces In\pin by In(2knin) —1.
The integrals may be expanded in powers of
q and Q, say up to the second.’? The constant
term vanishes on integration. The integrals
appearing may all be expressed in terms of
various parametric derivatives of the integrals
already given in (11). The result may be ex-
pressed in terms of a general potential in a very
simple way. A term linear in q, such as propor-
tional to ¢. say, is equivalent to taking the
matrix element (2|g, exp(¢q-R)|1) directly be-
tween the two states 2, 1. But this is also equiva-
lent to the matrix element of —2(9/dx) exp(iq- R).
Thus if the potential varied in any other manner
in space, one sees by superposition that the
matrix element is the same as that of —49V/dx.
Thus the terms up to second order can be repre-
sented by matrix elements of first and second
space and time derivatives of the potential. That
is, the radiative correction to the scattering in
any potential is equivalent to the first order in €?
and in the potential, to the scattering produced
by a perturbation AH to the Dirac Hamiltonian.
The perturbation up to terms of first and second
derivatives of the vector potential A and the
scalar potential ¢ is calculated in this manner

to be

e? he

AH = -

(B(o-B) —ifa-E)

2rhel  2uc
2h% I 3
+ (D2¢—a-D2A)(1n ——)}. (18)
3ulc? Amin 8

The first term, where B=V XA and E=—Vo
—(1/c)dA/0t, has the same effect as an alteration
in the electron magnetic moment® by a fraction
e?/2whc. This effect was first discovered by
Schwinger.4

LINE SHIFT

The perturbation to H given here is useful not
only for scattering problems but also for the
line-shift problem. The actual motion of an
electron in a binding potential can be visualized

12 The integrals have also been worked out, by other
methods, for arbitrarily large q and Q. These will appear in
a future publication.

23? W. Pauli, Handbuch der Physik (1933), Vol. 24/1, p.
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as simply a continued sequence of scatterings in
this potential. For each scattering we can cal-
culate the effect of virtual quanta in the way
outlined above. However, it is possible, if the
potential is strong, that fwo scatterings occur
between the emission and reabsorption of the
quantum, in which case the above formula for AH
is incorrect. In hydrogen the potential over most
of the atom is sufficiently weak that this does not
occur with effective probability. The very long
wave-length quanta do have a tendency to exist
in the virtual state for long periods, but they
have been eliminated by the cut-off Ani, at low
frequencies.

In hydrogen, then, the line shift due to quanta
above minimum wave number ki, is the ex-
pected value, for the state in question, of

het 2h%
Veo+
3u2c?

uc 5
2hkmin 8
where p=e/r, r being the distance to the proton,
and we have used the relation

InAmin =In(2kmin) — 1.

(Vo)

The first term insures that the fine structure
separation correction will be that expected from
the change in the electron’s magnetic moment.
The second may be combined with Bethe’s non-
relativistic calculation for quanta below kmin.!

APPLICATION TO OTHER PROCESSES

The important problem of verifying that the
self-energy will not diverge in higher-order ap-
proximations has not been carried to completion.
It appears unlikely that trouble will arise here.
If that is true the model probably gives sensible
answers to all problems of quantum electro-
dynamics other than those involving Uehling
polarization effects, discussed below. It has been
found to give finite self-mass if we have, instead
of a vector field, a scalar field or a pseudoscalar
field, coupled to the electron in the simplest way
possible without gradient operators. If the field

1 Using Eq. (18), Professor Bethe finds 1050 megacycles
for the separation between 2ps;. and 252 in hydrogen.
(Solvay Report.)
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quanta have mass M, g(w?—#k?) is replaced by
g(w?—k2— M?), and the values of \ of importance
are chosen to be large compared to M.

The results for electrodynamics, then, after
mass renormalization, depend only slightly on
the form of G(\) and the size of . Since Ay may
be taken to be extremely large without spoiling
the smallness of Ay, there would appear to be
good reason to drop the dependence on X\
altogether. Thus the G(\) appears only as a
complicated scaffold which is removed after the
calculation is done.

On the other hand, electrodynamics probably
does break down somewhere and it is interesting
to keep the terms in X\ for various phenomena to
see if one might be selected which is particularly
sensitive to . This phenomena would then be a
promising one to study experimentally. The
Mgller interaction between two electrons is
modified by the present theory. There is, of
course, the radiative correction, but in addition
to that there is simply a change due to the change
in the density function for the quanta which can
be exchanged. The Mdller interaction ordinarily
is proportional to 1/¢? where ¢ is the magnitude
of the momentum transferred from one electron
to the other in the center of gravity system. The
modification is only that this factor is changed to
Jo(1/¢—1/(g®+N))G(N)dx. This represents a
decrease in cross section for hard collisions. If A
is of order 137 uc?, we would need electrons in
the center of gravity system of roughly 30 Mev
to find a strong effect. This corresponds, however,
to bombardment of stationary electrons by elec-
trons of 33 Bev.1

It is interesting to note that the Mgller inter-
action can be viewed as simply a correction to
self-energy due to the exclusion principle. The
self-energy of two electrons, 1 and 2, is not the
sum of the self-energy of each, for one of the
virtual states that 2 could ordinarily enter by
emission of a quantum is now occupied by 1. The
difference between the self-energy of two elec-
trons and the sum of the self-energy of each

15 A more promising way to obtain processes with high
momentum transfer would be wide-angle scattering of
electrons from nuclei. But here deviations from expecta-
tions might be associated with uncertainties in the nuclear
charge distributions rather than electrodynamics. Very
wide angle pair production is a phenomena which does
occur for high energy incident y-rays with large momentum
transfer in a region not too close to the nucleus.
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separately comes out to be just their interaction
energy.
VACUUM POLARIZATION. ALTERNATIVE
CUT-OFF PROCEDURES

In the above calculation, terms of the type
discussed by Uehling!® have been omitted. These
terms represent processes involving a pair pro-
duction followed by annihilation of the same
pair. For example, a pair produced by the poten-
tial may annihilate again emitting a quantum.
This quantum is then absorbed by the electron
in state 1 transferring it to state 2. These terms
are infinite and are not made convergent by the
present scheme. There is some point, neverthe-
less, to solving problems at first without taking
them into account. This is because their net
effect is only to alter the effective potential in
which the electron finds itself, for it may be
scattered either directly or by the quantum
produced by the Uehling terms. That is, if this
problem of polarization of the vacuum is solved
it will mean, if there is any effect, simply that
the potential 4, ¢ appearing in the Dirac equa-
tion and (to high order) in such terms as (18)
should be replaced by new ‘“‘polarized” poten-
tials 47, ¢.

These polarization terms can be characterized
in a relativistically invariant manner. All the
terms which have been calculated above contain
matrix elements of operators between states in a
sequence such as 1 to f, f to g, g to 2. The omitted
polarization terms contain transitions like f to g,
g to f, 1 to 2. For higher order processes the
polarization terms are those which do not contain
a continued sequence of transitions from the
initial to the final state.

The polarization terms are not affected in any
helpful way by the changes in the density of
quanta. It is likely that this problem will have
its answer in a changed physical viewpoint.
However, there is a simple alternative procedure
to produce finite self-energies which also makes
convergent the integrals appearing in Serber’s?
treatment of the polarization problem. (Since,
however, this treatment of Serber already pre-
supposes a partial subtraction procedure of
Heisenberg and Dirac, the situation is not so
clear here as in the self-energy problem.)

16 E, A. Uehling, Phys. Rev. 48, 55 (1935).
17 R. Serber, Phys. Rev. 48, 49 (1935).
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From the point of view of coordinate space,
the reason that the electronic self-energy diverges
appears to be this. A virtual light quantum
emitted at one point spreads out as §(12—7?) from
the origin. The wave packet of the electron
spreading out after the emission of the quantum
has, as a consequence of Dirac’s equation, a
similar discontinuous value along the light cone.
It is the continued coincidence of these singu-
larities which makes the matrix element for the
subsequent absorption of the quantum infinite.
The method outlined above of changing 8§(w?— %?)
to g(w?*—k?) has the effect of changing &(2—7?)
to f(2—r*) where f(s?) is everywhere finite and
goes to zero rapidly for |s?| >1/A The quanta
have been moved away from the electrons so that
overlap on the light cone is reduced.

An obvious alternative procedure is to move
the electron wave function away from the quanta.
This is easily done in a very similar manner. We
assume the density of electron states of energy E,
momentum P to be g(E?— P?—u?) rather than
§(E*—P?—p?).'® The quanta are conventional,
w=Ek, density dk/k. The self-energy integrals (2)
can, of course, be expressed as an integral over
the intermediate state momentum Py rather than
k. Replacing dP;/E; by g(E2—Pp2—u)dEdP;,
we find

e2
ABY = —— f ¢(Ey*— Py~ u?)dE,dP;
™

Ef [ (0 I a;Af"a;I 0) (0 I a;A,-‘a,-] 0) }
7| E/+k—E,  E+k+E

k
8 This is seen to be essentially the method proposed
by Wataghin. G. Wataghin, Zeits. f. Physik 88, 92 (1934).
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where k=|P;—Py|, Ey=(u2+P¢?): The pro-
jection operators are unchanged since it is only
the density of states which we wish to alter. They
are still Ap*=(E;+ea-P;+Bu)/2E;. The result
of this calculation is to verify that AE,’ is finite,
(depending logarithmically on \o). The other
problems can be analyzed in the same way.

In the problem of polarization of the vacuum,
the wave functions of both electron and positron
ordinarily spread with a singularity on the light
core. The matrix element for their subsequent
annihilation is therefore infinite. With the modi-
fication here described these wave functions are
made less singular and their overlap integral is
finite. The polarization integrals in Serber’s
article’” may now be integrated to yield finite
results.

Other than terms which might be removed by
a small renormalization of charge (depending
logarithmically on \,), the net effect in (17)
would be to change the — () in the last term of
(17) to —(%)—(%). However, the real existence
of such polarization corrections is, in the author’s
view, uncertain. These matters will be discussed
in much more detail in future publications. Also
reserved for future publication is a more com-
plete physical theory from which the results
reported here may be directly deduced. It yields
much more powerful techniques for setting up
problems and performing the required integra-
tions.

The author would like to express his gratitude
to Mr. P. V. C. Hough for assistance in the
calculations and to Professor H. A. Bethe and
Dr. F. Dyson and many others for useful dis-
cussions.



