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Abstract

This paper addresses the signal acquisition problem in the presence of interferences using antenna arrays in the
general framework of Global Navigation Satellite Systems receivers. We describe and compare two different
approaches: the first one is based on the generalized likelihood ratio test (GLRT) detector directly applied on the array
snapshots, and the second one uses a digital beamformer as a spatial filter to mitigate the interferences and acquire
the signal using the beamformer output. We show that the array-based GLRT acquisition is equivalent to a
conventional acquisition based on the output of a time reference beamformer. The test statistics of the techniques
are analyzed in terms of the probability of detection and false alarm. Monte Carlo simulations using the Galileo E1
signal structure support the theoretical results, even when the array is moderately uncalibrated.

1 Introduction
The fact that current and planned accurate positioning
and timing services rely on Global Navigation Satellite
Systems (GNSS) has raised the concern about possible
denial of service situations, as reported in [1] among oth-
ers. This is specially important when GNSS are used in
safety-critical or mission-critical operations, such as their
integration into civil aviation or in the synchronization of
power distribution networks [2].
Examining the threats against the GNSS service qual-

ity and availability, radio frequency interferences (RFI) are
considered to be potentially dangerous threats to GNSS
applications, in particular where a risk on human life
may occur. The proliferation of portable jamming devices
[3], the evolution of spoofing or meaconing techniques,
and the collateral interference effects caused by a pos-
sible deployment of a 4G Long Term Evolution network
in the 1,552.7-MHz band [4] drive to the inclusion of
countermeasures against RFI.
GNSS receivers can make use of time and frequency

diversity to mitigate interferences, although the per-
formance of these techniques is compromised in low
signal-to-noise ratio (SNR) scenarios or in the presence
of wideband RFI. Complementarily, antenna array-based
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receivers can benefit from spatial domain processing and
thus mitigate the interferences exploiting spatial diversity.
In GNSS receivers, antenna arrays are usually applied to
signal tracking, where the algorithms may have access to
an initial coarse estimation of the signal synchronization
parameters and the array attitude (and thus an estimation
of the direction of arrival of the desired signals). Hence,
tracking depends on signal acquisition, which constitutes
a performance bottleneck in the presence of RFI.
In this paper we address the signal acquisition prob-

lem for antenna array-based receivers using two different
approaches. The first one was recently presented by the
authors in [5]. It is based on the generalized likelihood
ratio test (GLRT) detector operating directly with the
array snapshots. The second approach uses a digital beam-
former as a spatial filter to mitigate the interferences
and then detect the signal using the beamformer output.
We considered three different designs: the time reference
beamformer (TRB), which relies on a priori knowledge of
a reference waveform; the minimum variance distortion-
less response (MVDR), which relies on a priori knowledge
of the spatial signature of the signal using direction-of-
arrival (DOA) estimation; and the blind null-steering,
which is also known as power minimization beamformer
in the GNSS literature.
We prove that the proposed multi-antenna GLRT

acquisition algorithm is equivalent to a TRB beam-
former followed by a single-antenna acquisition. Since
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both approaches theoretically attain the same perfor-
mance, the choice between the statistical detector and the
beamformer-based acquisition is driven by implementa-
tion aspects, such as the computational complexity or the
integration of the required signal processing structures
into the downstream signal tracking architecture.
We analyze the detection performance when such

approaches are applied, obtaining closed-form expres-
sions in terms of detection and false alarm probabilities.
The single-dwell acquisition performance under strong
RFI was compared taking into account realistic scenarios
where the array is moderately uncalibrated. Monte Carlo
(MC) simulations for the Galileo E1 signal acquisition
support the theoretical results.
The paper is organized as follows: Section 2 presents

the antenna array signal model and the statistical hypothe-
ses. Section 3 briefly describes the GLRT algorithm, as
well as the acquisition test statistic and its theoretical per-
formance. In Section 4 we present the acquisition after
the beamforming approach and we obtain its performance
expressions. Section 5 compares the algorithms by MC
simulations, Section 6 is devoted to analyze the compu-
tational complexity associated to the selected algorithms,
and finally, Section 7 concludes the paper.

2 Signal model
We consider the discrete baseband signal received from
a single GNSS satellite with an unstructured N-element
antenna array:

X(t) = hd(t, fd, τ) + N(t), (1)

where X(t) = [ x(t − (K − 1)Ts) . . . x(t)]∈ C
N×K is the

space-time data matrix, with x(t) = [ x1(t) . . . xN (t)]T
defined as the array baseband snapshot, each row corre-
sponding to one antenna, andK is the number of captured
snapshots. The acquisition time is defined as Tacq = KTs,
where Fs = 1/Ts is the sampling frequency. Vector h =
[ h1 . . . hN ]T ∈ C

N×1 is a non-structured vector which
includes the signal power and both the channel model
and the array response. It assumes the role of the spa-
tial signature, which is considered constant during Tacq.
This channel vector not only is parametrized by the sig-
nal DOA and the antenna locations, but also includes
other unmodeled phenomena like the front-end ampli-
tude/phase responses and the electromagnetic mutual
coupling between array elements and front-end chan-
nels. d(t, fd, τ) = [ s(t − (K − 1)Ts − τ)ej2π fd(t−(K−1)Ts) . . .

s(t−τ)ej2π fdt]∈ C
1×K is a GNSS baseband direct sequence

spread spectrum (DSSS) signal with normalized power
and known structure s(t), received with a propagation
delay τ and a Doppler frequency fd, considered constant
during Tacq. The general DSSS signal structure can be

written as s(t) =
∞∑

k=−∞
ckgk(t − kTc), where ck is the

spreading code sequence, gk is the receiving pulse, and Tc
is the code chip period of a pseudorandom noise (PRN)
sequence with period Tcode. This signal model can be par-
ticularized to describe a Galileo E1 signal [6], among other
GNSS signals. Finally,N(t) = [n(t − (K − 1)Ts) . . .n(t)]∈
C
N×K is a complex, circularly symmetric Gaussian vector

process with a zero mean, temporally white, and spa-
tially colored which is modeled with an arbitrary (also
unknown) spatial covariance matrix Q ∈ C

N×N defined
as E{n(tn)nH(tm)} = σ 2I + � = Qδtn,tm , where E{·}
stands for the expectation operator. The noise is assumed
with double-sided spectral density σ 2 = N0

2 W/Hz, I is
the identity matrix, � models the covariance matrix of
interferences, and δtn,tm stands for the Kronecker delta.
For notation convenience, in the rest of the document,

we group the unknown signal parameters in a vector
θ = [hT , fd, τ ]T . We focus on a single satellite’s signal,
thus neglecting the contribution of the rest of the satel-
lites. This assumption is realistic, considering that GNSS
use pseudorandom noise codes with a high processing
gain and relatively small cross-correlation among satellite
codes. Therefore, the influence of other satellites can be
considered as Gaussian noise and included in the thermal
noise term since those signals are well below the noise
floor [7].
The acquisition process determines the presence or the

absence of a specific satellite signal and provides a coarse
estimate of the signal synchronization parameters in order
to initialize the tracking process. We define two possi-
ble hypotheses, referred to as H0 or the null hypothesis,
when the searched satellite signal is absent, and H1 or
the alternative hypothesis, when the signal is present. The
hypotheses are defined as follows:

H1 : X(t) = hd(t, fd, τ) + N(t) and (2)

H0 : X(t) = N(t). (3)

The mutual exclusivity of the hypotheses forces ‖h‖ > 0
inH1. In the sequel, two different approaches to solve the
problem are presented and compared.

3 Signal acquisition using the GLRT detector
The GLRT takes into account the probability density func-
tion (PDF) of X(t) to obtain a test function which is able
to detect GNSS signals by maximizing the probability of
detection (Pd) subject to a given false alarm probability
(Pfa) [8]. Figure 1 shows a high-level block diagram of the
proposed acquisition architecture.
The algorithm, briefly presented here, was derived and

analyzed by the authors in [5]. The likelihood ratio test
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Figure 1 GLRT array-based acquisition.

statistic for testing H0 : θ ∈ �0 versusH1 : θ ∈ �c
0 (see,

e.g., [9, p. 375]) can be expressed as

TGL(X) =
sup
�0L(θ ;X)
sup
� L(θ ;X)

≤ γ ′, (4)

where L(θ ;X) stands for the likelihood func-
tion of θ given X, the space associated with
�0 = 0×[ fd,min, fd,max]×[ 0,Tcode], �c

0 is the comple-
mentary mutually exclusive space (i.e., the satellite signal
is present ‖h‖ > 0) and � = �0 ∪ �c

0 represents the
entire parameter space. We assumed a Doppler shift
fd(t) in the range [ fd,min, fd,max] and a spreading code of
duration Tcode. The test rejectsH0 if TGL(X) ≤ γ ′, where
γ ′ is the detection threshold. Maximization over both
the parameter space � and a subset of the parameter
space �0 is related to the maximum likelihood estimator
(MLE) of θ (known as unrestricted θ̂ and restricted θ̂0
estimators) [9]. Then, it is possible to write

TGL(X) = L(θ̂0;X)

L(θ̂ ;X)
≤ γ ′. (5)

Then, inserting the MLE expressions in (5), the test
statistic results in (see [5] for a detailed derivation)

TGL(X) = max
fd ,τ

{
r̂Hxd(fd, τ)R̂−1

dd R̂
−1
xx r̂xd(fd, τ)

}
≥ γ , (6)

where R̂xx = 1
KXX

H is an estimation of the spatial auto-
correlation matrix of the array snapshots, r̂xd = 1

KXd
H is

an estimation of the cross-correlation vector between the
received array snapshots and a local satellite signal replica,
and R̂dd = 1

K dd
H is an estimation of the satellite signal

autocorrelation.We consider that d has normalized power
(R̂dd 	 1). The maximization operation is inherited from
the MLE expressions (see [5]). Equation (6) can be solved
by an exhaustive grid search in the entire (fd, τ) parameter
space, and thus, grid search strategies used in the conven-
tional single-antenna acquisition [10] can be applieda. The
final test statistic rejectsH0 if TGL(X) ≥ γ .
The theoretical performance of the detector can be

obtained assuming that r̂xd ∼ CN (R̂ddh, Rxx
K ) if d is

uncorrelated withN and considering R̂xx 	 Rxx. Then, (6)
can be modeled as a quadratic form zH�−1z of a complex

Gaussian random variable, which is distributed as a non-
central chi-square χ2

2N (δ)with 2N degrees of freedom and
δ = μH�−1μ, when z ∈ C

N×1 and z ∼ CN (μ,�). Notice
that the presence of �−1 acts as a whitening transforma-
tion, and thus, the resulting distribution is independent
of the structure of �, see, e.g., [11, p. 26]. The χ2 non-
centrality parameter can be expressed as

δTGL(R̂xx,h) = R̂ddhH R̂−1
xx h 	 hHR−1

xx h. (7)

The distributions of the test functions for both hypotheses
are

TGL(X) ∼
{

χ2
2N (δTGL;H1), inH1

χ2
2N (δTGL;H0), inH0.

(8)

Notice that δTGL;H0 = 0 because the satellite signal is not
present (h = 0). Closed-form performance expressions
can be written as Pfa(γ ) = 1 − PH0(T(X;H0) ≤ γ ) and
Pd(γ ) = 1−PH1(T(X;H1) ≤ γ ), where PH0(·) and PH1(·)
are the central and non-central χ2

2N cumulative density
functions (CDFs), respectively:

Pfa(γ ) = exp
{

−γ

2σ 2
TGL

}N−1∑
k=0

1
k!

(
γ

2σ 2
TGL

)k

, (9)

Pd(γ ) = QN

⎛
⎜⎝

√
δTGL(R̂xx,h)

σTGL
,

√
γ

σTGL

⎞
⎟⎠ , (10)

where σ 2
TGL

= 1
2K [5] and QN is the generalized Marcum

Q-function [11] of order N.

4 Signal acquisition after a beamformer processor
Another approach consists of using a beamforming stage
prior to the acquisition algorithm. The beamformer out-
put can be written as

y = wHX, (11)

where w ∈ C
N×1 is the beamweight vector. By develop-

ing the GLRT detector for a generic beamformer output
in (11), the acquisition test statistic results in

TDBF(y) = max
fd ,τ

{
R̂H
ydR̂yd

R̂yy

}
> γ , (12)
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where R̂yd = wH r̂xd(fd,τ) and R̂yy = wH R̂xxw. The maxi-
mization of (12) can be solved by an exhaustive grid search
in the entire (fd, τ) parameter space. The reader is referred
to [12, p. 79] for a detailed description of the algorithm.
Figure 2 shows a simplified block diagram of the approach.

4.1 Time reference beamformer
Now we particularize the beamweight vector with the
TRB, which relies on a priori knowledge of a reference
waveform to minimize the mean square error between the
beamformer output and a reference signal [13, p. 90]. This
design criterion can be written as

ŵTRB = min
w

{‖d − wHX‖2}, (13)

where ‖ · ‖ stands for the l2-norm of a vector. The closed-
form solution for the optimum weightsis

ŵTRB = R̂−1
xx r̂xd. (14)

By inserting (14) in (12), and using R̂yy and R̂yd defini-
tions, TDBF(y) can be rewritten after some mathematical
manipulation as

TTRB(y) = (ŵH
TRBr̂xd)

HŵH
TRBr̂xd

ŵH
TRBR̂xxŵTRB

= r̂HxdR̂
−1
xx r̂xd. (15)

As a result, the test function obtained using the conven-
tional acquisition after the TRB beamformer algorithm
is exactly the same as the test function obtained by the
GLRT detector. Consequently, both algorithms become
equivalent and share its optimality in terms of maximiz-
ing the SNR [13]. In the acquisition search grid, each of
the bins has a particular set of beamweights associated to
the local reference signal. The beamforming structure in
the acquisition provides some benefits since it can be
reused by a tracking algorithm afterward. Since the test
statistic is the same as in the array-based GLRT, the
performance of the approach can be modeled using the
theoretical detection and false alarm probabilities shown
in (10) and (9), respectively. The theoretical PDF was
validated by MC simulations for a Galileo E1 signal acqui-
sition in the absence of interferences, as shown in Figure 3.

4.2 MVDR beamformer with known signal DOA
On the other hand, the MVDR beamformer [13] relies on
an estimation of the signal DOA. The design equation can
be written as

ŵMVDR = min
w

{wHRxxw}
s.t. wHh0 = 1,

(16)

where the steering vector h0 points to the desired signal
DOA. This problem has the optimal beamweight vector:

ŵMVDR = R̂−1
xx h0

hH0 R̂
−1
xx h0

. (17)

TDBF(y) can be rewritten by inserting (17) in R̂yy and
R̂yd. After a straightforward manipulation of (12), the test
statistic is obtained as

TMVDR(y) = r̂Hxd(R̂
−1
xx h0)(R̂−1

xx h0)H r̂xd
hH0 R̂

−1
xx h0

	 1
σ 2

|r̂HxdP⊥
Hi
h0|2

‖hH0 P⊥
Hi

‖2 .

(18)

TMVDR(y) can be interpreted in terms of the geomet-
ric projection over the interference subspace Hi =
[hi,1, . . . ,hi,M]∈ C

N×M , where hi,n is the steering vec-
tor of the nth interference. If the interferences dominate
the array covariance matrix, expressed as R̂−1

xx 	 σ−2P⊥
Hi
,

where P⊥
Hi

is the projectionmatrix to the subspace orthog-
onal to the interference subspace, then the latter expres-
sion in (18) arises. This algorithm was implemented by
the German Aerospace Center (DLR) in a Galileo Safety
of Life receiver prototype [14]. The DOA estimation was
solved by extending the acquisition search grid to include
azimuth and elevation parameters.
The theoretical performance for the acquisition after

the MVDR beamformer can be modeled assuming that
R̂yd is distributed as a complex Gaussian variable R̂yd ∼
CN (μR̂yd , σ

2
R̂yd

), with

μR̂yd = E{R̂yd} = wH
MVDR E{r̂xd} = wH

MVDRRddh (19)

Figure 2 Acquisition after beamforming.
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Figure 3 TTRB(X) test statistic histograms and theoretical PDFs for 4,000 realizations andCN0 = 34 dB-Hz without interferences.

and

σ 2
R̂yd

= E{(R̂yd − wH
MVDRR̂ddh)(R̂yd − wH

MVDRR̂ddh)H} =

= wH
MVDR

Rnn
K

wMVDR 	 wH
MVDR

Rxx
K

wMVDR, (20)

where Rnn = E{ 1
KNNH}, and we considered that the

beamweight vector is deterministic by assuming that
R̂xx 	 Rxx. The approximation in (20) is valid only for low
signal power values, which is the case in GNSS [12]. In
this case, TMVDR(y) can be analyzed as a quadratic form
of R̂yd, and thus, it is distributed as a chi-square random
variable χ2

2 (δTMVDR) for each hypothesis:

TMVDR(y) ∼
{

χ2
2 (δTMVDR;H1), inH1,

χ2
2 (δTMVDR;H0 = 0), inH0,

(21)

where the non-centrality parameter can be written as

δTMVDR;H1 =
|μR̂yd |2
R̂yy

= wH
MVDRRddhhHR∗

ddwMVDR

wH
MVDRRxxwMVDR

,

(22)

where | · | is the absolute value. The underlying Gaussian
variance is σ 2

TMVDR
= 1

2K . Then, the closed-form solutions
for both false alarm and detection probabilities are

Pd(γ ) = Q1

(√
δTMVDR;H1

σTMVDR
,

√
γ

σTMVDR

)
(23)

and

Pfa(γ ) = exp
{

−γ

2σ 2
TMVDR

}
, (24)

where Q1 is the generalized Marcum Q-function of order
1.
It is possible to particularize δTMVDR;H1 inserting (17) in

(22). After a straightforward mathematical manipulation,
the following expression is obtained:

δTMVDR;H1 = (hH0 R−1
xx h)2

hH0 R
−1
xx h0

, (25)

where we assume that R̂xx 	 Rxx, which is realistic in
GNSS since the sample covariance matrix can be com-
puted using a large number of snapshotsb. Notice that
if the signal DOA is perfectly known (h0 = h), then
δTMVDR = hHR−1

xx hH ; thus, δTMVDR = δTGL . However, in
this particular case, TMVDR outperforms TGL since the χ2

degrees of freedom is fixed to 2. The theoretical PDF for
the MVDR test statistic was validated by MC simulations,
as shown in Figure 4.

4.3 Blind null-steering beamformer
As highlighted in Section 1, in the acquisition stage, it is
difficult to provide the signal DOA information (which
depends on the array location and attitude) required by
the MVDR beamformer. However, it is possible to filter
out the interferences using a blind null-steering beam-
former (see, e.g., [15]). This approach presupposes that
the GNSS signals are well below the noise floor, and thus,
their contribution to the array covariance matrix is neg-
ligible. The algorithm minimizes the beamformer output
power by nulling the directions where interfering signals
are present. This beamformer is a particular case of the
MVDR beamformer, where the steering vector is defined
as h0 = href = [ 1 0 . . . 0]T ∈ C

N×1.
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Figure 4 TMVDR(X) test statistic histograms and theoretical PDFs for 4,000 realizations andCN0 = 34 dB-Hz without interferences.

The behavior of the detector in the absence of inter-
ferences can be obtained by setting P⊥

Hi
= I in (18) and

assuming |Rdd|2 	 1 as follows:

TNULL(y) = σ−2

hHrefhref
‖r̂Hxdhref‖2 = | 1K x1dH |2

σ 2 , (26)

where xi is the received signal vector for the ith antenna
element. In this particular case, the beamformer only acti-
vates the reference antenna and the resulting acquisition
does not benefit from the available array gain.
Using the same procedure as in Section 4.2, the perfor-

mance of the null-steering version of MVDR can be found
inserting h0 = href = [ 1 0 . . . 0]T in (25), obtaining

δTNULL;H1 = |rxx,1h|2
σ 2
1

, (27)

where rxx,1 = [Rx1x1 , . . . ,Rx1xN ] is the first row of the
autocorrelation matrix and σ 2

1 = Rx1x1 is the signal
power received with the reference antenna. Figure 5 shows
the MC simulation validation for the null-steering test
statistic theoretical PDF.

5 Simulations
The acquisition of a Galileo E1 signal was simulated for
different carrier-to-noise density ratio (CN0) values in a
scenario where a wideband, Gaussian noise-like in-band
interference filtered to Nyquist frequency ( fs2 ) impinges
into an array of N = 8 elements, with uniformly dis-
tributed random DOA and interference-to-noise density
ratio IN0 = 85 dB-Hz. The simulated array was circu-
lar with uniformly separated elements at λ

2 and without

a central element. λ was set to the GNSS L1/E1 carrier
wavelength.
The baseband sampling frequency and the acquisition

baseband bandwidth were set to 6 and 2 MHz, respec-
tively. For each CN0 value, the simulation averages 10,000
independent realizations. The acquisition time was set to
one PRN primary code period (Tacq = 4 ms, K = 24,000
snapshots), and the Pfa was set to 0.001 for all the algo-
rithms in order to set the particular threshold values. In
addition, we considered different pointing errors in the
DOA estimation for the MVDR beamformer in order to
simulate a moderately uncalibrated array. The error in
DOA estimation wasmodeled as a Gaussian additive error
term with different mean values (μe = 10°, μe = 15°,
and μe = 20°) in both azimuth and elevation angles, and
σ 2
e = 5° of variance in all the cases.
Figure 6 shows the acquisition performance in terms of

Pd. From the results, it can be inferred that TGL(X) enjoys
a higher performance than the powerminimization beam-
former algorithm TNULL(y) due to the array gain, which
is aligned with the theoretical performance expressions.
If DOA information is available, TMVDR(y) outperforms
TGL(X). Results show as well that the performance of
TMVDR(y) is severely affected by pointing errors.
The theoretical performance curves were plotted for

all the analyzed algorithms using the analytical CDF
expressions presented in Sections 3 and 4. We choose an
ideal situation with no interference present in the sce-
nario (Rxx = σ 2I), which are the algorithm performance
upper bounds. Comparing the theoretical performance in
this ideal scenario with the simulations, a performance
reduction caused by the effect of the interference can be
appreciated.
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Figure 5 TNULL(X) test statistic histograms and theoretical PDFs for 4,000 realizations andCN0 = 34 dB-Hz without interferences.

6 Computational complexity of the algorithms
The proposed algorithms could be implemented in
embedded digital processors that are mostly sharing
resources with the rest of the GNSS receiver operations,
specially in software-defined implementations. For that
reason, it is important to analyze the computational com-
plexity associated to each approach, as a complement of
the performance analysis.
We consider the so-called asymptotic time complexity

in the analysis. The time complexity of an algorithm can
be viewed in terms of the number of basic operations it
performs. For instance, we considered that a multiplica-
tion of two matrices of size n1 by n2 and n2 by n3 has an
asymptotic operation cost of O(n1n2n3). The meaning of

this notation is that a function f (n) is O(g(n)) if and only
if there exists a real, positive constant C and a positive
integer n0 such that f (n) ≤ Cg(n),∀n ≥ n0.
Table 1 shows the complexity associated to the basic

operations involved in the proposed acquisition algo-
rithms, such as the estimation of cross-correlation vec-
tors, sample covariance matrix, and matrix inversion. The
complexity analyses of the different test statistics are
shown in Table 2. It can be seen that for a small num-
ber of antennas, compared to the number of snapshots
(K � N), the most demanding operation is the com-
putation of both the spatial autocorrelation matrix R̂xx
and the cross-correlation vector r̂xd. In addition, we have
taken into account the time delay and Doppler grid search

Figure 6 Acquisition performance in terms of Pd. Pd vs. CN0 for Galileo E1B signal acquisition in the presence of a wideband interference with
IN0 = 85 dB-Hz for different algorithms and DOA pointing errors.
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Table 1 Computational complexity of basic operations

Computation Operation Size Cost

R̂xx = 1
K XX

H Matrix-matrix product N × K × K × N O(N2K)

r̂xd = 1
K Xd

H Matrix-vector product N × K × K × 1 O(NK)

R̂−1
xx Matrix inversion N × N O(N3)

operation. The total number of grid cells is represented as
L, which depends on the grid search strategies (see, e.g.,
[16]). For instance, considering that the time delay grid
granularity should be set to half-chip and the Doppler grid
can be set to 250 Hz, with a search margin equal to −5
to +5 kHz, it gives L ≥ 40K .
Considering only the most significant terms, the com-

plexity of the GLRT, TRB, and MVDR can be written as
OGLRT((NK +N2)L+N2K +N3),OTRB(2(NK +N2)L+
N2K+N3), andOMVDR(KL+N2K+N3), respectively. The
implementation of the TRB acquisition algorithm requires
extra correlations due to the beamformer structure and,
thus, higher computational cost than the GLRT. The anal-
ysis shows that the TRB algorithm doubles the computa-
tional complexity of the GLRT algorithm; however, both
algorithms perform equally.
On the other hand, the MVDR-based test function only

requires the computation of R̂xx and the correlation of

Table 2 Computational complexity of acquisition
algorithms

Algorithm Test statistic Operation Cost

GLRT r̂xd Matrix × Vector O(NKL)

R̂xx Matrix × Matrix O(N2K)

R̂−1
xx Matrix inversion O(N3)

T(X) = r̂HxdR̂
−1
dd R̂

−1
xx r̂xd Matrix-vector O(N2L + NL)

TRB r̂xd Matrix × Vector O(NKL)

R̂xx Matrix × Matrix O(N2K)

R̂−1
xx Matrix inversion O(N3)

ŵ = R̂−1
xx r̂xd Matrix × Vector O(N2L)

y = ŵHX Vector × Matrix O(NKL)

Ryd = 1
K yd

H Vector × Vector O(KL)

Ryy = wHR̂xxw Vector × Matrix O(N2L + NL)

T(y) = R̂Hyd R̂yd

R̂yy
Scalar O(2L)

MVDR R̂xx Matrix × Matrix O(N2K)

R̂−1
xx Matrix inversion O(N3)

ŵ = R̂−1
xx h0

hH0 R̂
−1
xx h0

Matrix × Vector O(2N2 + 3N)

y = ŵHX Vector × Matrix O(NK)

Ryd = 1
K yd

H Vector × Vector O(KL)

Ryy = wHR̂xxw Vector × Matrix O(N2 + N)

T(y) = R̂Hyd R̂yd

R̂yy
Scalar O(2L)

the beamformer output stream with a local satellite sig-
nal replica, thus reducing the complexity at expenses of
requiring an estimation of the signal DOA. The blind null-
steering beamformer can be considered a particular case
of the GLRT, and the complexity associated to the algo-
rithm can be reduced taking into account the particular
structure of the steering vector h0 = href = [ 1 0 . . . 0]T .

7 Conclusions
We addressed the GNSS signal acquisition problem using
antenna arrays for interference mitigation with two dif-
ferent approaches. The first approach operates directly
on the array signal samples, performing a statistical
detection of the satellite signal using a GLRT-based
test function. The second one relies on a spatial fil-
ter that rejects the interferences before applying a con-
ventional single-antenna acquisition algorithm. Different
beamweight designs, including TRB, MVDR, and blind
null-steering solutions, were analyzed in terms of detec-
tion and false alarm probabilities, and we found that the
single-antenna-based acquisition after the TRB algorithm
is mathematically equivalent to the antenna array-based
GLRT detection. Thus, we show that different array pro-
cessing approaches, and thus different implementation
options, yield the same performance. The computational
complexity in terms of the number of operations was also
analyzed, and the results show that the TRB algorithm
implementation has higher computational costs than the
GLRT algorithm. However, the TRB beamforming struc-
ture in acquisition provides some benefits since it can be
reused by a tracking algorithm afterward.
In the simulations, the acquisition after the MVDR

beamformer obtained the best performance in the pres-
ence of strong interferences when the satellite signal
DOA is estimated with less than 15° of error, for an
eight-element circular array. In the presence of pointing
errors (i.e., μe ≥ 15°), the MVDR–based acquisition per-
formance is dramatically degraded. On the other hand,
the acquisition after the blind null-steering beamforming
does not reach the performance offered by the MVDR,
as predicted by the theoretical analysis. In contrast, the
GLRT algorithm does not impose any DOA estimation
requirements and offers protection against uncorrelated
directional interferences, even if the array is moderately
uncalibrated.

Endnotes
a For the sake of simplicity of the notation, we omit the

maximization operation of the acquisition test function
over the signal synchronization parameters (fd, τ) and its
dependency in the rest of the paper.

b At least one PRN code period is available (K ≥ 2,046
for GPS L1 C/A and K ≥ 4,092 for Galileo E1, using two
samples per chip).



Arribas et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:143 Page 9 of 9
http://asp.eurasipjournals.com/content/2013/1/143

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work has been partially supported by the European Commission in the
framework of the FP7 Network of Excellence in Wireless COMmunications
NEWCOM# (contract no. 318306) and by the Spanish Ministry of Economy and
Competitiveness project SOSRAD (Ref. TEC2012-39143).

Received: 21 December 2012 Accepted: 19 August 2013
Published: 3 September 2013

References
1. The Royal Academy of Engineering, Global Navigation Space Systems:

reliance and vulnerabilities. Tech. rep. (The Royal Academy of
Engineering, London, 2011)

2. DP Shepard, TE Humphreys, AA Fansler, Evaluation of the vulnerability of
phasor measurement units to GPS spoofing attacks. Int. J. Crit.
Infrastructure Prot. 5(3–4), 146–153 (2012)

3. RH Mitch, RC Dougherty, ML Psiaki, SP Powell, BW O’Hanlon, JA Bhatti,
TE Humphreys, Signal characteristics of civil GPS jammers, in Proceedings
of the ION GNSS, Portland, 20–23 Sept 2011

4. Technical Working Group, LightSquared Technical Working Group final
report. Tech. rep. (Federal Communications Commission, Washington,
D.C., 2011)

5. J Arribas, C Fernández-Prades, P Closas, Antenna array based GNSS signal
acquisition for interference mitigation. IEEE Trans. Aerosp. Electron. Syst.
49(1), 223–243 (2013)

6. European Space Agency/European GNSS Supervisory Authority, Galileo
Open Service, Signal In Space Interface Control Document (OS SIS ICD).
Tech. rep. [Galileo Joint Undertaking] (European Space Agency/European
GNSS Supervisory Authority, Prague, 2010)

7. E Kaplan, C Hegarty, Understanding GPS. Principles and Applications, 2nd
edn (Norwood, Artech House, 2005)

8. SM Kay, Fundamentals of Statistical Signal Processing: Detection Theory
(Prentice-Hall, Upper Saddle River, 1998)

9. G Casella, RL Berger, Statistical Inference, 2nd edn (Duxbury Press, Pacific
Grove, 2001)

10. JBY Tsui, Fundamentals of Global Positioning System Receivers. A Software
Approach (Wiley, New York, 2000)

11. RJ Muirhead, Aspects of Multivariate Statistical Theory (Wiley, New York,
1982)

12. J Arribas, GNSS array-based acquisition: theory and implementation. PhD
thesis, Universitat Politècnica de Catalunya (UPC), 2012

13. RA Monzingo, TW Miller, Introduction to Adaptive Arrays (Wiley, New York,
1980)

14. M Cuntz, LA Greda, M Heckler, A Konovaltsev, M Meurer, Architecture of a
real-time safety of life receiver, in Proceedings of the ION GNSS 2009,
Savannah, 22–25 Sept 2009

15. MD Zoltowski, AS Gecan, Advanced adaptive null steering concepts for
GPS, in IEEE Military Communications Conference, 1995. MILCOM 1995, vol. 3
(IEEE, Piscataway, 1995), pp. 1214–1218

16. D Borio, A statistical theory for GNSS signal acquisition. PhD thesis,
Politecnico Di Torino, 2008

doi:10.1186/1687-6180-2013-143
Cite this article as: Arribas et al.:Multi-antenna techniques for interference
mitigation in GNSS signal acquisition. EURASIP Journal on Advances in Signal
Processing 2013 2013:143.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	1 Introduction
	2 Signal model
	3 Signal acquisition using the GLRT detector
	4 Signal acquisition after a beamformer processor
	4.1 Time reference beamformer
	4.2 MVDR beamformer with known signal DOA
	4.3 Blind null-steering beamformer

	5 Simulations
	6 Computational complexity of the algorithms
	7 Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	References

