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Stereoscopic image sequence processing has been the focus of considerable attention in recent literature for videoconference ap-
plications. A novel Bayesian scheme is proposed in this paper, for the segmentation of a noisy stereoscopic image sequence. More
specifically, occlusions and visible foreground and background regions are detected between the left and the right frame while
the uncovered-background areas are identified between two successive frames of the sequence. Combined hypotheses are used for
the formulation of the Bayes decision rule which employs a single intensity-difference measurement at each pixel. Experimental
results illustrating the performance of the proposed technique are presented and evaluated in videoconference applications.
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1. INTRODUCTION

Stereo vision provides a direct way of inferring the depth in-
formation and therefore 3D perception by using two images
(a stereo pair) destined for the left and right eye, respectively.
Stereoscopic video sequences are represented by a number
of consecutive stereo pairs each of which corresponds to a
constant time instant. In a stereoscopic image sequence, each
different view in a stereo pair is recorded with a difference in
the observation angle, creating an enhanced 3D feeling to the
observer and increased tele-presence, for example, in telecon-
ferencing [1]. Such video can provide more vivid and accu-
rate information about the scene structure than monoview
video. For these reasons, stereoscopic video processing has
been the focus of considerable attention in recent literature
[2, 3, 4].

As stereo vision is used in more and more applications,
efficiency in stereo sequence coding, transmission and stor-
age becomes increasingly important. The major goal is to

exploit the correlation between the two frames (left and
right) of a stereo sequence, along with the correlation which
is present between the stereo pairs at consecutive time in-
stances, in order to achieve reduction of the number of bits
required to represent the stereo sequence [1, 4, 5]. Increased
data compression will make the stereo imaging applications
faster and more economical.

Accurate detection of occlusion and visible foreground
and background areas in stereo is a valuable task for efficient
coding of stereo imaging. Occlusion regions mark disparity
discontinuity jumps which can be used to improve stereo im-
age encoding and transmission, segmentation, motion anal-
ysis, and object identification processes. For example, it is
highly useful for various stereoscopic coding methods [6],
for sprite generation [7] and for background and depth ex-
traction in stereoscopic videoconference sequences [8, 9].

Motion-compensated interframe coding of a sequence is
one of the most effective techniques for reducing the quan-
tity of transmitted information. This codingmethod predicts
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a future frame from a previous frame by estimating
the motion present in the scene and performing motion
compensation on the previous frame [10]. The existence of
the newly introduced pixels in an image frame degrades the
quality of the motion compensation reconstructed image
frames. This is due to the fact that the prediction method
reduces prediction errors in static as well as moving regions
but it fails where the scene background is uncovered by mov-
ing pixels since new picture information appears, for which
no corresponding information can be found in the previous
frame [11]. Therefore, an effective coding scheme should em-
ploy uncovered background pixel prediction, in addition to
motion compensation for interframe coding.

The previous two paragraphs clearly imply that the de-
tection of occlusion and visible foreground and background
regions, along with the detection of uncovered-background
areas is significant and valuable, since stereo image sequence
processing requires information of the displacements created
both by the motion of objects and also, by the disparity be-
tween two views of the 3D scene projects on two images.

These areas are defined as follows. Using only stereo-
scopic image information the scene may be segmented into
the following areas [12, 13].

(i) The occlusion areas in one image of a stereo sequence,
are spatially coherent groups of pixels in the background or
the foreground that can be seen only in this frame and thus
are occluded in the other counter frame of the same time in-
stant.

(ii) The visible foreground areas in one image of a stereo
sequence, consist of those pixels of the foreground, which are
visible in both images of the same time instant.

(iii) The visible background areas in one image of a stereo
sequence, are formed by those pixels of the background,
which are visible in both images of the same time instant.

Correspondingly, in each stereo channel using only mo-
tion information the scene may be segmented into the fol-
lowing areas [14]:

(i) The uncovered background areas in one image of a
stereo sequence, are formed by those pixels in the back-
ground, which are newly introduced in this image compared
to the previous frame.

(ii) The already existing areas in one image of a stereo
sequence, are groups of pixels that are displaced or are the
same as in the previous frame.

We indicate as foreground the regions of the primary ob-
ject having small values of depth, while background is the re-
gions with large values of depth. Also note, at this point, that
each pixel of one image of the stereo sequence can be classi-
fied in one of the first three regions as well as in one of the
two last regions. Therefore, there exist six different classes—
situations to which a pixel may belong.

The segmentation into visible and occlusion regions is
treated as a secondary process in early stereoscopic research,
postponed until matching is completed and smoothing is
underway [15]. Techniques are also proposed that indi-
rectly address the occlusion problem by minimizing spuri-
ous mismatches resulting from occlusion regions and dis-
continuities [16]. In [17], Belhumeur and Mumford point

out that occlusion areas must be identified and incorpo-
rated into matching process and, using Bayesian reason-
ing, they derive an energy functional using pixel intensity
as the matching feature. Geiger et al. [18] also directly ad-
dress occlusion regions by defining an a priori probabil-
ity for the disparity field based upon a smoothness func-
tion and an occlusion constraint. Cox et al. [19] propose
a dynamic programming solution to stereo matching based
on matching edge-delimited intervals between correspond-
ing scan lines. A similar strategy is used in [20, 21], where a
dynamic programming algorithm is developed for the detec-
tion of significant disparity changes and large occlusion areas
in a stereoscopic image pair. In this approach no smooth-
ness or interscan-line compatibility constraints are used.
Two additional constraints, namely the extended continu-
ity constraint and the disparity gradient limit, are considered
in [22].

As far as the detection of uncovered background areas
is concerned, most methods utilize an algorithm based on
change detection [23], evaluating the difference signal be-
tween the present and the previous frame. However, these
methods are very sensitive to noise. In addition, most of the
uncovered background techniques described in the literature
use change detection for initial image segmentation and then
use information provided by motion estimation to further
detect the uncovered background pixels [24].

In the present paper, a novel approach is introduced
for segmenting a videoconference stereo image sequence,
employing a Bayes decision criterion followed by a simple
checking procedure for the elimination of possible outliers.
The only assumptions made for the stereoscopic video are
related to the disparity and motion vector fields: the dispar-
ity and motion vectors are assumed to be relatively small and
to obey a truncated Gaussian and a Gaussian distribution, re-
spectively. The main advantage of the proposed algorithm is
that it segments the frame using both the disparity and mo-
tion information, resulting in detecting simultaneously the
occlusions and visible foreground and background regions
as well as the uncovered-background areas.

This paper is organized as follows. Section 2 describes
the mathematical analysis underlying the concept of Bayes
testing. In Section 3, the calculation of the pdfs needed for
the Bayes decision test is presented. Experimental results
given in Section 4 evaluate visually and quantitatively the
performance of the proposed method. Finally, conclusions
are drawn in Section 5.

2. BAYES DECISION TEST

At two subsequent time instances, the following four frames
are presented:

Irt1 : right frame at time instant t1,

Ilt2 : left frame at time instant t2,

Irt2 : right frame at time instant t2.

(1)

The right frame at time instant t2 (Irt2 ) will be assumed to
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Figure 1: Disparity vector d and motion vector m defined for the
frames Irt1 , Ilt2 , Irt2 .

be the current frame which will be segmented. Considering
a point A at the current frame Irt2 , the corresponding points
at the frames Irt1 and Ilt2 are the points A

′ and A′′, respec-
tively. Then, the disparity vector d and the motion vector m
are defined as shown in Figure 1.

The noisy intensity vlt2 of each pixel of the left image of a
stereo pair at time instant t2 is given as follows.

Left image

vlt2 (k) = slt2 (k) +wlt2 (k), (2)

where the vector k represents the spatial location [x, y]T of
each pixel, vlt2 (k) is the noisy intensity value of the pixel lo-
cated in k = [x, y]T in the left image at time instant t2, slt2 (k)
is the respective noise-free intensity value in the left image at
the same time instant, and wlt2 (k) is the zero-mean, additive,
white Gaussian noise corrupting the left image.

Assuming the left Ilt2 to be the reference image, each
pixel of the right image at time instant t2 can be assigned

to three different classes: the visible foreground (A
f
rt2 ), the

visible background (Ab
rt2 ), and the occlusion (Ao

rt2 ) classes of
pixels, all defined in Section 1.

One of the most important parameters in the study of
stereo vision is the disparity field. Assuming parallel axes
camera configuration [25], two cameras with parallel optical
axes, that is, image planes of the cameras are coplanar and
collinear, and with identical optical characteristics, are em-
ployed to acquire the stereo pair sequence. In this case, the
disparity d reduces to the signed magnitude of the horizon-
tal component dx of the disparity vector, since the vertical
component is always zero. Therefore, if the direction from
the right image to the left image is considered as the posi-
tive direction, the disparities in stereo are always nonpositive
if we regard the left image as reference and always nonnega-
tive if we regard the right image as reference, due to camera
geometry.

Then, the noisy intensity vrt2 (k) of the right image at the
same time instant t2 in terms of the noise-free intensity of the
left image slt2 (k) may be expressed as follows [13].

Right image
• if k ∈ Ao

rt2 then

vrt2 (k) = ort2 (k) +wrt2 (k), (3)

• if k ∈ A
f
rt2 then

vrt2 (k) = slt2
(
k− d

( f )
x,l,t2

(k)
)
+wrt2 (k), (4)

• if k ∈ Ab
rt2 then

vrt2 (k) = slt2
(
k− d(b)x,l,t2

(k)
)
+wrt2 (k), (5)

where d
( f )
x,l,t2

(k) is the disparity of the foreground pixels at
time instant t2, which is negative, since it is calculated in

reference to the left image, d(b)x,l,t2
(k) is the disparity of the

background pixels at time instant t2, which is nonpositive,
ort2 (k) is the noise-free intensity of each occlusion pixel of
the right image at t2 and wrt2 (k) is the zero-mean, addi-
tive, white Gaussian noise corrupting the right image of
the stereo pair. The terms wlt2 (k) and wrt2 (k) are assumed
uncorrelated, since they express noises corrupting differ-
ent images (the left and the right images of the stereo
pair).

Assuming that the disparities d
( f )
x,l,t2

(k) and d(b)x,l,t2
(k) are

small enough, a first order approximation of slt2 (k−d( f )x,l,t2
(k))

and slt2 (k − d(b)x,l,t2
(k)) may be used [14]. Then, (4) and (5)

become

• if k ∈ A
f
rt2 then

vrt2 (k) = slt2 (k)− gx,l,t2 (k)d
( f )
x,l,t2

(k) +wrt2 (k), (6)

• if k ∈ Ab
rt2 then

vrt2 (k) = slt2 (k)− gx,l,t2 (k)d
(b)
x,l,t2

(k) +wrt2 (k), (7)

where gx,l,t2 (k) is the horizontal component of the gradient
vector of pixel k in the left image at time instant t2.

We also define the differences

z(r−l),t2 (k) = vrt2 (k)− vlt2 (k), (8)

w(r−l),t2 (k) = wrt2 (k)−wlt2 (k). (9)

The above may be used to write the following equations:

• k located in occlusion area, Ao
rt2 area

z(r−l),t2 (k) = q(r−l),t2 (k) +w(r−l)(k), (10)

• k located in visible foreground area, A
f
rt2 area

z(r−l),t2 (k) = −gx,l,t2 (k)d( f )x,l,t2
(k) +w(r−l),t2 (k), (11)
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• k located in visible background area, Ab
rt2 area

z(r−l)(k) = −gx,l,t2 (k)d(b)x,l,t2
(k) +w(r−l),t2 (k), (12)

where q(r−l),t2 (k) = ort2 (k)− slt2 (k).
Now consider two consecutive right frames at time in-

stances t1 and t2. The noisy intensity of the first (previous)
right frame at time t1 is given by the following equation
which is equivalent to (1).

Time instant t1

vrt1 (k) = srt1 (k) +wrt1 (k), (13)

where srt1 (k) is the noise-free intensity value in the right im-
age at the same time instant and wrt1 (k) is the zero-mean,
additive, white Gaussian noise corrupting the right image at
time t1.

The noise free pixel intensity of the right frame at time
instant t2, in terms of the pixel intensity of the right frame
at time instant t1 can be that of either an uncovered back-
ground value (Au

rt2 ), or an already existing value (displaced
or stationary pixel) (Ae

rt2 ). Then, the expression for the noisy
intensity of the present frame (t2) is as follows.

Time instant t2
• if k ∈ Au

rt2 then

vrt2 (k) = brt2 (k) +wrt2 (k), (14)

• if k ∈ Ae
rt2 then

vrt2 (k) = srt1
(
k−mr,t1 (k)

)
+wrt2 (k), (15)

wheremr,t1 (k) is the nonuniform displacement vector due to
motion, since it is calculated in reference to the right frame at
time instant t1 and brt2 (k) is the noise-free intensity of each
uncovered background pixel of the right image at t2.

Assuming that mr,t1 (k) is small enough, a first-order ap-
proximation of srt1 (k−dr,t2 (k)) may be used, simplifying (15)
to

• if k ∈ Ae
rt2 then

vrt2 (k) = srt1 (k)− gTr,t1 (k)mr,t1 (k) +wrt2 (k), (16)

where gr,t1 (k) is the intensity gradient vector of the previous
frame at k.

In terms of the difference y(t2−t1),r(k) = vrt2 (k) − vrt1 (k)
and (9) the following expressions are obtained:

• k located in uncovered background area, Au
rt2 area

y(t2−t1),r(k) = p(t2−t1),r(k) +w(t2−t1),r(k), (17)

• k located in already existing area, Ae
rt2 area

y(t2−t1),r(k) = −gTr,t1 (k)mr,t1 (k) +w(t2−t1),r(k), (18)

where p(t2−t1),r(k) = brt2 (k)− srt1 (k).

Then, the six hypotheses Hi, i = 0, . . . , 5, are defined as
follows:

H0 if k ∈ Ao
rt2 and k ∈ Au

rt2 ,

H1 if k ∈ Ao
rt2 and k ∈ Ae

rt2 ,

H2 if k ∈ A
f
rt2 and k ∈ Au

rt2 ,

H3 if k ∈ A
f
rt2 and k ∈ Ae

rt2 ,

H4 if k ∈ Ab
rt2 and k ∈ Au

rt2 ,

H5 if k ∈ Ab
rt2 and k ∈ Ae

rt2 .

(19)

The Bayes decision test dictates that for each pixel k, the
hypothesis Hi is selected if

ri(k) < rj(k), ∀ j �= i, (20)

where ri(k) is the average cost of accepting the hypoth-
esis Hi. This cost depends on the a priori probabilities
p(Hi) of hypotheses Hi, on the costs Lmn of deciding that
Hm is correct while the actually correct hypothesis is Hn,
and finally on the conditional probability density functions
(pdfs) of z(r−l),t2 (k) and y(t2−t1),r(k). The average cost ri(k) is
(see [26])

ri(k) =
M−1∑
j=0

Li j p
(
Hj
)
f
(
z(r−l),t2 (k), y(t2−t1),r(k) | Hj

)
, (21)

whereM = 6 in the case of (19).
Assuming that the a priori probabilities p(Hi) and the

costs Lmn are known, the conditional probability density
functions f (z(r−l),t2 (k), y(t2−t1),r(k) | Hj), must be calculated.
The assumption of uncorrelated motion and disparity vec-
tors for the right frame at time instant t2 (see Figure 1), im-
plies that

f
(
z(r−l),t2 (k), y(t2−t1),r(k) | Hj

)
= f

(
z(r−l),t2 (k) | Hj

)
f
(
y(t2−t1),r(k) | Hj

)
.

(22)

Therefore, the probability density functions f (z(r−l),t2 (k) |
Hi) and f (y(t2−t1),r(k) | Hi), i = 0, . . . , 5, must be computed
in order to apply the Bayes decision test of (20).

3. CALCULATIONOF THE PDFS

3.1. Calculation of f (z(r−l),t2 (k) | Hi), i = 0, 1

Using the Bayes rule under the assumption that k ∈ Ao
rt2 , we

obtain

f
(
z(r−l,t2)(k) | Hi

) =
∫
Ωq(r−l),t2

f
[
z(r−l),t2 (k) | Hi, q(r−l),t2 (k)

]

× f
[
q(r−l),t2 (k)

]
d
[
q(r−l),t2 (k)

]
,
(23)
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Figure 2: Regions used for the computation of f [q(r−l),t2 (k)].

where Ωq(r−l),t2 is the support range of q(r−l),t2 (k). Then, as-
suming independence for z(r−l),t2 (k) and q(r−l),t2 (k), trivially
[26]

f
[
z(r−l),t2 (k) | Hi, q(r−l),t2 (k)

]
= fw

[
z(r−l),t2 (k)− q(r−l),t2 (k)

]

= 1
σw
√
2π

exp

(
−
[
z(r−l),t2 (k)− q(r−l),t2 (k)

]2
2σ2w

)
.

(24)

However, in order to evaluate the integral of (23), knowl-
edge of the density f [q(r−l),t2 (k)] is necessary. By definition,
q(r−l),t2 (k) is the difference between the intensity of the occlu-
sion areas ort2 (k) of the right image and the intensity slt2 (k)
that the same pixels would have in the left image. Therefore,
the region slt2 (k) is a strip of the boundary pixels from in-
side the right part of the contour of the primary object of
the left image [13]. We may also reasonably assume that the
statistics of the adjacent region outside the right part of the
contour of the primary object will be sufficiently similar to
the statistics of the intensity of the occlusion areas ort2 (k)
(see Figure 2).

The intensity histogram ( f [slt2 (k)]) of the right bound-
ary pixels inside the primary object and the intensity his-
togram ( f [ort2 (k)]) of the pixels outside the right boundaries
of the primary object, may then be calculated, after defining
the contour of the primary object in the left image, using the
method of active contour models (or snakes) [27, 28]. There-
fore, since q(r−l),t2 (k) = ort2 (k) − slt2 (k) and assuming inde-
pendence for ort2 (k) and slt2 (k), the pdf of their difference
will be (see [26])

f
[
q(r−l),t2 (k)

] = f
[
ort2 (k)

]∗ f
[
slt2 (k)

]�
, (25)

where the star � denotes the flipped histogram (since
q(r−l),t2 (k) = ort2 (k)− slt2 (k)) and the asterisk∗ denotes con-
volution. Then, each pdf f (z(r−l),t2 (k) | Hi), i = 0, 1, is easily
derived from (23), (24), and (25).

3.2. Calculation of f (z(r−l),t2 (k) | Hi), i = 2, 3

Applying the Bayes rule to f (z(r−l),t2 (k) | Hi), i = 2, 3, under

assumption that k ∈ A
f
rt2 we obtain [13]

f
(
z(r−l),t2 (k) | Hi

)
=
∫
−gx,l,t2 (k)Ωd

( f )
x,l,t2

f
[
z(r−l),t2 (k) | Hi,−gx,l,t2 (k)d( f )x,l,t2

(k)
]

× f
[
− gx,l,t2 (k)d

( f )
x,l,t2

(k)
]
d
[
− gx,l,t2 (k)d

( f )
x,l,t2

(k)
]
,

(26)

where Ω
d
( f )
x,l,t2

is the support range of d
( f )
x,l,t2

(k).

Since the difference w(r−l),t2 (k) = wrt2 (k) − wlt2 (k) is
a zero-mean, additive, white Gaussian noise, the pdf of
w(r−l),t2 (k) will be given by the following expression [14]:

fw
(
w(r−l),t2 (k)

) = 1
σw
√
2π

exp

(
−
[
w(r−l),t2 (k)

]2
2σ2w

)
, (27)

where σ2w is the noise variance of w(r−l),t2 (k), given by σ2w =
σ2wrt2

+ σ2wlt2
since wlt2 (k) and wrt2 (k) were assumed uncorre-

lated.
Also recall that since k ∈ A

f
rt2 , then the difference vector

is

z(r−l),t2 (k) = −gx,l,t2 (k)d( f )x,l,t2
(k) +w(r−l),t2 (k). (28)

Hence, if d
( f )
x,l,t2

(k), z(r−l),t2 (k) are assumed to be independent
random variables, then trivially [26]

f
[
z(r−l),t2 (k) | Hi,−gx,l,t2 (k)d( f )x,l,t2

(k)
]

= fw
[
z(r−l),t2 (k) + gx,l,t2 (k)d

( f )
x,l,t2

(k)
]

= 1
σw
√
2π

exp


−

[
z(r−l),t2 (k) + gx,l,t2 (k)d

( f )
x,l,t2

(k)
]2

2σ2w


 .

(29)
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Due to the parallel camera geometry, since k ∈ A
f
rt2 , the

disparity d
( f )
x,l,t2

(k) is negative

d
( f )
x,l,t2

(k) < 0. (30)

Then, the probability density function of d
( f )
x,l,t2

(k) can be as-
sumed to be a truncated Gaussian

f
(
d
( f )
x,l,t2

(k)
)

=




0 if d
( f )
x,l,t2

(k) ≥ 0,

2
σ
d
( f )
x,l,t2

√
2π

exp


−

[
d
( f )
x,l,t2

(k)
]2

2σ2
d
( f )
x,l,t2


 if d

( f )
x,l,t2

(k) < 0.

(31)

From the same assumption of uncorrelated gx,l,t2 (k)d
( f )
x,l,t2

(k)
and z(r−l),t2 (k), using (28), it follows that

σ2
d
( f )
x,l,t2

=
∣∣∣σ2z(r−l),t2 − σ2w

∣∣∣
g2x,l,t2 (k)

. (32)

In this case, the pdf f [−gx,l,t2 (k)d( f )x,l,t2
(k)] will also be a

truncated Gaussian with variance σ2 = |σ2z(r−l),t2 − σ2w|. Fol-
lowing [29], we will approximate σ2z(r−l),t2 by z

2
(r−l),t2 (k). Then,

each pdf f (z(r−l),t2 (k) | Hi), where i = 2, 3, is easily deter-
mined by (26).

3.3. Calculation of f (z(r−l),t2 (k) | Hi), i = 4, 5

In this case k ∈ Ab
rt2 , precisely the same equations as in

Section 3.2 for the case of foreground pixels may also be
used, with obvious modifications, for the evaluation of
f (z(r−l),t2 (k) | Hi), i = 3, 4

f
(
z(r−l),t2 (k) | Hi

)
=
∫
−gx,l,t2 (k)Ωd

(b)
x,l,t2

f
[
z(r−l),t2 (k) | Hi,−gx,l,t2 (k)d(b)x,l (k)

]

× f
[
− gx,l,t2 (k)d

(b)
x,l,t2

(k)
]
d
[
− gx,l,t2 (k)d

(b)
x,l,t2

(k)
]
.

(33)

However, very often in practice, either the background is
sufficiently uniform so that gx,l,t2 (k) ≈ 0 or far away from
the camera (high depth) forcing the background disparity to

very small values. In either such case gx,l,t2 (k)d
(b)
x,l,t2

(k) ≈ 0,
hence the pdf is no longer conditioned on the value of a ran-
dom number and reduces to the following expression:

f
(
z(r−l),t2 (k) | Hi

) = 1
σw
√
2π

exp

(
−
[
z(r−l),t2 (k)

]2
2σ2w

)
, (34)

alternatively, this is also trivially seen to be the form of (33)

reduces to, when gx,l,t2 (k)d
(b)
x,l,t2

(k) ≈ 0.

3.4. Calculation of f (y(t2−t1),r(k) | Hi), i = 0, 2, 4

In this case k ∈ Au
rt2 , an analysis similar to Section 3.1 is used.

On applying the Bayes rule, we obtain [14]

f
(
z(t2−t1),r(k) | Hi

)=
∫
Ωq(t2−t1),r

f
[
y(t2−t1),r(k) | Hi, p(t2−t1),r(k)

]
× f

[
p(t2−t1),r(k)

]
d
[
p(t2−t1),r(k)

]
,

(35)

where Ωp(t2−t1),r is the support range of p(t2−t1),r(k). Then, if
y(t2−t1),r(k) and p(t2−t1),r(k) are assumed to be independent
random variables, trivially

f
[
y(t2−t1),r(k) | Hi, p(t2−t1),r(k)

]
= fw

[
y(t2−t1),r(k)− p(t2−t1),r(k)

]

= 1
σw
√
2π

exp

(
−
[
y(t2−t1),r(k)− p(t2−t1),r(k)

]2
2σ2w

)
.

(36)

From (35) and (36), it is clear that to evaluate the inte-
gral of (35) the pdf of p(t2−t1),r(k) must be computed. Re-
call that p(t2−t1),r(k) = brt2 (k) − srt1 (k), where brt2 (k) is the
intensity of the uncovered background and srt1 (k) refers to
the intensity of the scene pixels which have moved from the
frame It1 to the frame It2 uncovering the background. Thus,
srt1 (k) is the intensity of the portions of the moving object
which uncover background as the object moves. We assume
that the statistics of the uncovered background brt2 (k) is suf-
ficiently described by the statistics of the neighboring scene
background and the statistics of moving-object pixels srt1 (k)
are well approximated by the statistics of the primary object
[14]. Using snakes for boundary detection as in Section 3.1
we obtain that

f
[
p(t2−t1),r(k)

] = f
[
brt2 (k)

]∗ f
[
srt1 (k)

]�
. (37)

Then, using (36) and (37) each f (y(t2−t1),r(k) | Hi) where
i = 0, 2, 4, is easily obtained from (35).

3.5. Calculation of f (y(t2−t1),r(k) | Hi), i = 1, 3, 5

Applying the Bayes rule to f (y(t2−t1),r(k) | Hi), i = 1, 3, 5,
under the assumption k ∈ Ae

rt2 we obtain [14]

f
(
y(t2−t1),r(k) | Hi

) =
∫
Ωmr,t1

f
[
y(t2−t1),r(k) | Hi,mr,t1 (k)

]
× f

[
mr,t1 (k)

]
d
[
mr,t1 (k)

]
,

(38)

where f [mr,t1 (k)] and Ωmr,t1
are the pdf and the domain of

mr,t1 (k). The motion vector for any k is assumed to be Gaus-
sian distributed [14] with zero-mean and covariance matrix
Kmr,t1 (k), where

Kmr,t1 (k) =
[
σ2mx

(k) σmxy (k)
σmxy (k) σ2my

(k)

]
, (39)

in which σ2mx
(k) and σ2my

(k) are the variances of mx(k) and
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Figure 3: Flow graph of the proposed scheme.

my(k), respectively, and σmxy (k) is the cross variance between
mx(k) and my(k). Assuming that the motion variance is the
same in both x and y directions and that the mx(k) and
my(k) are uncorrelated with each other and with the noise,
we find

σ2mx
(k) = σ2my

(k) =
∣∣σ2y(k)− σ2w(k)

∣∣∥∥gr,t1 (k)∥∥ , (40)

where σ2y(k) is approximated by y2(t2−t1),r(k) [29].
Therefore, [14]

f
(
z(t2−t1),r(k) | Hi

)

=
exp−

((
y2(t2−t1),r(k)/2σ

2
w

)
− (1/2)nTCn

)
(2π)3/2σw

∣∣Kmr,t1

∣∣1/2 I(y),
(41)

where

I(y) =
∫
Ωmr,t1

exp
{
− 1

2
(m− n)TC(m− n)

}
d(m),

n = −C−1 gr,t1 (k)
σ2w

y(t2−t1),r(k),

C = gr,t1 (k)gr,t1 (k)
T

σ2w
+K−1mr,t1

.

(42)

4. EXPERIMENTAL RESULTS

This section presents the results of the simulation experi-
ments using the proposed scheme. The algorithm was ap-
plied to both synthetic and natural stereo pair sequences
to evaluate the performance of the proposed approach for
segmenting stereo pair sequences into occlusion and visible
background and foreground areas, along with the detection
of the uncovered background areas.

The a priori probability vector P will be defined by

P =
[
p
(
H0
)

p
(
H1
)

p
(
H2
)

p
(
H3
)

p
(
H4
)

p
(
H5
)]

,
(43)

where p(Hi), i = 0, . . . , 5, is the a priori probability that hy-
pothesis Hi is valid.

The cost matrix L used in our experiments is the cost
matrix L′ which corresponds to the maximum a posteriori
probability—MAP test

L′i j =

0 if i = j,

1 if i �= j.
(44)

The use of L′ assigns no cost to a correct decision and the
same cost to all incorrect decisions.

Figure 3 describes the scheme which was used for the ex-
periments. We use a noisy stereoscopic video as input and
after the specification of the frames Irt1 , Ilt2 , and Irt2 , we calcu-
late the pdfs needed for the Bayes decision test which follows.
Then, after a simple post-processing step for outlier removal,
we obtain the classification for the pixels into one of the six
situations Hi, where i = 0, . . . , 5.

To resolve possible ambiguities in region classification a
simple isolation technique is used, as a post processing step,
in order to correct the classification of some pixels. This pro-
cedure produces a final re-classification into one of the six
situations Hi, i = 0, . . . , 5. Specifically, a 4× 4 neighborhood
window is defined around the current pixel in the map pro-
duced by the Bayes decision test. If most of the pixels, belong-
ing to this window, have been classified to other regions than
that of the current pixel, then, the current pixel is re-classified
to the most frequent situation Hi found in the window.

We first used the simple synthetic stereo pair sequence El-
lipse which presents a uniform foreground and background,
in order to evaluate the efficiency of the proposed algorithm.
We employed the images Irt1 , Ilt2 , Irt2 as shown in Figure 4,
which correspond, respectively, to the right frame at time in-
stant t1, the left frame at time instant t2, and the right frame
at time instant t2. Zero-mean, white Gaussian noises were
added to both left and right channel with σl = 7 and σr = 8,
respectively. We used theMAP cost matrix L′ and the a priori
probability vector

P =
[
0.1 0.15 0 0.25 0.15 0.35

]
. (45)

This is a typical selection for the vector P for stereo video
used for videoconference applications, which works well for
such stereo videos as it will be shown next. Also, note that the
probability p(H2) which corresponds to the probability of a
pixel to belong to uncovered background and visible fore-
ground areas is zero, since such a pixel classification cannot
be true for these images.

Applying the proposed Bayes decision test followed by
the checking procedure for the elimination of outliers,
the segmented image of Figure 5 is obtained, where each
greyscale colour corresponds to a different region as de-
scribed from the hypotheses Hi.

A similar synthetic stereo pair sequence is the House
which is presented in Figure 6. This stereo sequence presents
a foreground object with gradient colour, instead of solid
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(a)

(b)

(c)

Figure 4: The generated test image sequence Ellipse, (a) frame Irt1 ,
(b) frame Ilt2 , (c) frame Irt2 .

H5

H3

H4

H0

H1

Figure 5: The segmentation map of Ellipse, produced from the pro-
posed algorithm, indicating the regions which correspond to the sit-
uations Hi.

(a)

(b)

(c)

Figure 6: The generated test image sequence House, (a) frame Irt1 ,
(b) frame Ilt2 , (c) frame Irt2 .

H3

H4

H5

H0

H1

Figure 7: The segmentation map ofHouse, produced from the pro-
posed algorithm, indicating the regions which correspond to the sit-
uations Hi.
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(a)

(b)

(c)

Figure 8: The stereoscopic real test image sequence Ludo, (a) frame
Irt1 , (b) frame Ilt2 , (c) frame Irt2 .

H3

H5 H1

H0

H4

Figure 9: The segmentation map of Ludo, produced from the pro-
posed algorithm, indicating the regions which correspond to the sit-
uations Hi.

colour as in Ellipse. Assuming the same vector P and cost
matrix L as before, we obtain Figure 7 which illustrates the
produced region map, indicating the pixel classification into
one of the situations Hi, i = 0, . . . , 5.

To further evaluate the effectiveness of the proposed tech-
nique, results were obtained using the stereoscopic real image
sequence Ludo.1 Figure 8 shows the three images correspond-
ing to the frames Irt1 , Ilt2 , Irt2 . After adding white Gaussian

1This sequence was developed by Thomson Broadcast Systems for use in
the PANORAMA (ACTS 092) EU project.

(a)

(b)

(c)

Figure 10: The stereoscopic real test image sequence Sergio, (a)
frame Irt1 , (b) frame Ilt2 , (c) frame Irt2 .

H4

H3

H1

H5

Figure 11: The segmentation map of Sergio, produced from the
proposed algorithm, indicating the regions which correspond to the
situations Hi.
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noise to the images, the proposed Bayes decision test was ap-
plied, segmenting the frame Irt2 . We assumed that the a priori
probability vector P is the same as in (45) and the MAP cost
matrix L′ was also selected. Figure 9 illustrates the segmen-
tation resulting from the application of the proposed algo-
rithm.

Finally, the proposed algorithm was evaluated using the
stereoscopic real image sequence Sergio. Figure 10 shows the
three frames Irt1 , Ilt2 , Irt2 . The produced segmentation is pre-
sented in Figure 11. We must note at this point, that in this
case, the produced region map does not have pixels belong-
ing both to the uncovered background areas and the occlu-
sion regions. This is due to the motion between the frames
at the times t1 and t2 which does not uncover pixels that are
occluded in the left frame at time t2.

5. CONCLUSIONS

In this paper, we introduce a novel Bayesian scheme for the
segmentation of a videoconference noisy stereoscopic im-
age sequence. A Bayes decision test is employed for detect-
ing occlusions, visible foreground, and background regions
and uncovered-background areas. Combined hypotheses are
used for the formulation of the Bayes decision rule. It was
assumed that the disparity and motion are small and obey
a truncated Gaussian and a Gaussian distribution, respec-
tively. The main advantage of the proposed method is that
it segments the frame using both the disparity and motion
information, resulting in detecting simultaneously the oc-
clusions and visible foreground and background regions as
well as the uncovered-background areas. Experimental re-
sults using both synthetic and natural stereo pairs sequences
demonstrate the efficient performance of the proposed
technique.
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