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The frequency-response masking (FRM) technique was introduced as a means of generating linear-phase FIR filters with narrow
transition band and low arithmetic complexity. This paper proposes an approach for synthesizingmodulatedmaximally decimated
FIR filter banks (FBs) utilizing the FRM technique. A new tailored class of FRM filters is introduced and used for synthesizing
nonlinear-phase analysis and synthesis filters. Each of the analysis and synthesis FBs is realized with the aid of only three subfilters,
one cosine-modulation block, and one sine-modulation block. The overall FB is a near-perfect reconstruction (NPR) FB which
in this case means that the distortion function has a linear-phase response but small magnitude errors. Small aliasing errors are
also introduced by the FB. However, by allowing these small errors (that can be made arbitrarily small), the arithmetic complexity
can be reduced. Compared to conventional cosine-modulated FBs, the proposed ones lower significantly the overall arithmetic
complexity at the expense of a slightly increased overall FB delay in applications requiring narrow transition bands. Compared
to other proposals that also combine cosine-modulated FBs with the FRM technique, the arithmetic complexity can typically be
reduced by 40% in specifications with narrow transition bands. Finally, a general design procedure is given for the proposed FBs
and examples are included to illustrate their benefits.
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1. INTRODUCTION

Maximally decimated FBs (see Figure 1) find applications
in numerous areas [1–3]. Over the past two decades, a vast
number of papers on the theory and design of such FBs have
been published. Traditionally, the attention has to a large ex-
tent been paid to the problem of designing perfect recon-
struction (PR) FBs. In a PR FB, the output sequence of the
overall system is simply a shifted version of the input se-
quence. However, FBs are most often used in applications
where small errors (emanating from quantizations, etc.) are
inevitable and allowed. Imposing PR on the FB is then an
unnecessarily severe restriction which may lead to a higher
arithmetic complexity than is actually required to meet the
specification at hand (arithmetic complexity is defined in
this article as the number of arithmetic operations per sam-
ple needed in an implementation of an FB). To reduce the
complexity one should therefore use near perfect reconstruc-
tion (NPR) FBs. For example, it is demonstrated in [4–6] that
the complexity can be reduced significantly by using NPR in-
stead of PR FBs. For this reason, this paper proposes a new

class of FBs with nearly perfect reconstruction. The distor-
tion function has a linear-phase response but a small mag-
nitude distortion. Further, small aliasing errors are present.
The magnitude distortion and aliasing errors can however
be made arbitrarily small by properly designing a prototype
filter, and a general design procedure for this purpose is pre-
sented. Compared to conventional cosine modulated FBs as
well as similar approaches, the proposed ones lower the over-
all arithmetic complexity significantly, in applications requir-
ing narrow transition bands. An example of such an appli-
cation is frequency-band decomposition for parallel sigma-
delta systems [7] (what is gained using parallelism, is lost
with a wide transition band). In the former comparison, also
the number of distinct coefficients is reduced significantly, at
the expense of a slightly increased overall delay. Apart from
the NPR property, the main features of the FBs presented
here are the following.

Modulation

Regular cosine modulated FBs are widely used and known to
be highly efficient, since each of the analysis and synthesis



2 EURASIP Journal on Advances in Signal Processing

x(n) y(n)

Ha0(z)

Ha1(z)

HaM�1(z)

x0(m)

x1(m)

xM�1(m)

M

M

M

M

M

M

M

Hs0(z)

Hs1(z)

HsM�1(z)

...
...

...
... ...

...

Analysis filter bank Synthesis filter bank

Figure 1:M-channel maximally decimated FB.

parts can be implemented with the aid of only one (pro-
totype) filter and a discrete cosine transform [2]. The effi-
ciency of this technique is exploited in the article after ap-
propriate modifications. Specifically, both cosine and sine
modulations are utilized together with a modified class of
FRM filters (see below), which generates efficient overall
FBs.

Frequency-responsemasking (FRM)

When the transition bands of the filters are narrow, the over-
all complexity may be high. This is due to the fact that the
order of an FIR filter is inversely proportional to the transi-
tion bandwidth [8]. To alleviate this problem, one can use the
FRM technique which was introduced as a means of generat-
ing linear-phase FIR filters with both narrow transition band
and low arithmetic complexity [9–12]. However, to make the
technique suitable for the proposed modulated FBs, we in-
troduce a modified class of FRM filters. This modified class
has been considered in [13, 14], but not in the context of
M-channel FBs. The main difference is that these FRM fil-
ters have a nonlinear-phase response whereas the traditional
ones have a linear-phase response. The proposed FRM fil-
ters are used as prototype filters in the proposed cosine and
sine modulation-based FBs. Each of the analysis and synthe-
sis FBs is realized with the aid of three subfilters, one cosine
modulation block, and one sine modulation block. The rea-
son for using the modified FRM filters in the proposed mod-
ulation scheme is that the corresponding FB structure re-
quires a lower arithmetic complexity. Using instead the con-
ventional FRM filters, one would need three cosine modula-
tion blocks.

Few optimization parameters

Another advantage of the proposed FB class is that the num-
ber of parameters to optimize is few, which is an important
issue in extensive designs. Efficient structures are given for
implementing the proposed FBs, and procedures for opti-
mizing them in the minimax sense are described.

Relation to previous work

Cosine modulated FIR FBs based on the original FRM fil-
ters have been considered in [15–19]. The resulting struc-
ture requires only one modulation block in each of the anal-
ysis and synthesis parts but, on the other hand, additional
upsamplers (and downsamplers) are needed, which makes
some subfilters work at an unnecessarily high sampling rate.
The focus is also different, since the goal in [15–19] is to
minimize the number of optimization parameters and not
the arithmetic complexity. It should also be noted that, ex-
cept for two examples in [18, 19], the examples in [15–
19] have filter specifications where only one branch in the
FRM structure is needed. For such specifications, the arith-
metic complexity is not lower than for that of a regular
direct-form FIR prototype filter. Thus, in terms of multipli-
cations per input/output sample there is nothing to gain us-
ing narrow-band (one-branch) FRM prototype filters, and
therefore they are not discussed in this paper. Finally, it is
noted that this paper is an extension of the work presented
at two conferences [20, 21], where the basic principles were
introduced without giving all details presented in this pa-
per.

The outline of the paper is as follows: in Section 2, a brief
treatment of the conventional FRM technique is given. Af-
ter that, the proposed FB is described in detail in Section 3.
This section also includes some important properties and a
realization of the FB class. Section 4 gives a general design
procedure, followed by a design example and comparisons
in Section 5. The paper is concluded in Section 6.

2. FRM TECHNIQUE

As an introduction to FRM, the conventional FRM technique
for generating lowpass linear-phase filters is reviewed in this
section. The modifications used in the proposed FB class are
described in the subsequent section.

In the frequency-response masking technique, the trans-
fer function of the overall filter is expressed as [9–12]

H(z) = G
(
zL
)
F0(z) +Gc

(
zL
)
F1(z), (1)
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Figure 2: Structure used in the FRM approach.

where G(z) and Gc(z) are referred to as the model filter and
complementary model filter, respectively. The filters F0(z)
and F1(z) are referred to as the masking filters which ex-
tract one or several passbands of the periodic model filter
G(zL) and periodic complementary1 model filter Gc(zL). The
structure is illustrated in Figure 2 and typical magnitude re-
sponses of the subfilters as well as the resulting filter can be
seen in Figure 3 in the next section.

The FRM technique was originally introduced in [10] as
a means to reduce the arithmetic complexity of linear-phase
FIR filters with narrow transition bands. In this approach,
G(z) and Gc(z) have to be even-order linear-phase filters of
equal delays and form a complementary filter pair, whereas
both F0(z) and F1(z) are either even- or odd-order linear-
phase filters of equal delays. These filters could be used di-
rectly to generate the analysis and synthesis filters in the pro-
posed modulated FB scheme to be considered in the follow-
ing section, but the result is that each of the analysis and
synthesis FB then requires three modulation blocks. There-
fore, we introduce in the next section modified FRM FIR fil-
ters that make it possible to use only two modulation blocks.
These modified FRM FIR filters have been considered in
[13, 14] but not in the context ofM-channel FBs.

3. PROPOSED FILTER BANKS

This section gives transfer functions, properties, and realiza-
tions of the proposed FBs. The choices of prototype filters
and analysis and synthesis transfer functions assure the over-
all filter bank to fulfill the NPR criteria.

3.1. Prototype filter transfer functions

For the proposed modulated FBs, the transfer functions of
the analysis and synthesis filters are generated from the pro-
totype filter transfer functions Pa(z) and Ps(z), respectively.
These transfer functions are given by

Pa(z) = G
(
zL
)
F0(z) +Gc

(
zL
)
F1(z), (2)

Ps(z) = G
(
zL
)
F0(z)−Gc

(
zL
)
F1(z). (3)

Typical magnitude responses for the model filter, the mask-
ing filter, and overall filter Pa(z) are as shown in Figure 3.
The transition band of Pa(z) (and Ps(z)) can be selected to

1 In the case of linear-phase FIR filters, this means that the sum of the zero-
phase frequency responses of the filter pair is equal to unity.
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Figure 3: Illustration ofmagnitude functions in the FRM approach,
where (c) and (d) show the two alternatives Case 1 and Case 2, re-
spectively.

be one of the transition bands provided by either G(zL) or
Gc(zL). We refer to these two different cases as Case 1 and
Case 2, respectively. Further, we let ωcT , ωsT , δc, and δs de-
note the passband edge, stopband edge, passband ripple, and
stopband ripple, respectively, for the overall filter Pa(z) (and
Ps(z)). For the model and masking filters G(z), Gc(z), F0(z),
and F1(z), additional superscripts (G), (Gc), (F0), and (F1),
respectively, are included in the corresponding ripples and
edges. The periodicity L, and the subfiltersG(z),Gc(z), F0(z),
and F1(z) are selected to satisfy the following criteria.

(i) The model filters G(z) and Gc(z) are linear-phase
FIR filters of odd order NG, with symmetrical and anti-
symmetrical impulse responses, respectively. They are related
as

Gc(z) = G(−z) (4)
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and designed to be approximately power complementary
(i.e., |G(e jωT)|2 + |Gc(e jωT)|2 ≈ 1). This is mainly what
distinguishes the proposed FRM filters from the conven-
tional ones,2 and it means for example that the transition
band of G(z) must be centered at π/2.

(ii) L is an integer related to the number of channels M
as

L =
⎧
⎪⎨

⎪⎩

(4m + 1)M, Case 1,

(4m− 1)M, Case 2.
(5)

The reason for this restriction is that the transition band of
the FRM filter (see the illustration of the two different cases
in Figures 3(c) and 3(d)) must coincide with the transition
band of the prototype filter at π/2M. Thus,

2kπ ± π/2
L

= π

2M
. (6)

(iii) The masking filters F0(z) and F1(z) are of order NF

and linear-phase lowpass filters with symmetrical impulse re-
sponses. The filter order can be either even or odd. Further,
in order to ensure approximate power complementarity of
the analysis filters, additional restrictions in the transition
bands of Pa(z) and Ps(z) must be added. This leads to slightly
tightened restrictions on the passband and stopband edges of
the masking filters compared to [10], which is illustrated in
Figure 3.

3.2. Analysis and synthesis filter transfer functions

For Case 1, the analysis filters Hak(z) and synthesis filters
Hsk(z) are obtained by modulating the prototype filters Pa(z)
and Ps(z) according to

Hak(z) = βkPa
(
zW (k+0.5)

2M

)
+ β∗k Pa

(
zW−(k+0.5)

2M

)
, (7)

Hsk(z) = c j(−1)k[βkPs
(
zW (k+0.5)

2M

)− β∗k Ps
(
zW−(k+0.5)

2M

)]
,
(8)

respectively, for k = 0, 1, . . . ,M − 1, with

c =
⎧
⎪⎨

⎪⎩

−1, NG + 1 = 4m,

1, NG + 1 = 4m + 2
(9)

for some integerm, and

WM = e− j2π/M , βk = w(k+0.5)NF/2
2M . (10)

For Case 2, (9) is negated. Note that this type of modula-
tion is slightly different from the one that is usually em-
ployed in cosine-modulated FBs [2]. For example, θk in [2]

2 For the conventional FRM filters, NG must be even and Gc(z) = z−NG/2 −
G(z). In this case, it is not possible to make G(z) and Gc(z) approximately
power complementary.

is not needed here, since power complementarity can be
achieved directly by choosing the model filters according
to Section 3.1. The main difference is though that unlike
the conventional ones, the proposed prototype filters have
a nonlinear-phase response. Nevertheless, by the choices in
(7)–(10), the FB is ensured to have all the important proper-
ties that are stated later in Section 3.3.

3.3. Filter bank properties

This section gives five important properties of the proposed
FBs useful in the design procedure. Proofs of the first four
properties are given in the appendix. The fifth property is
shown in Section 4.

(1) The magnitude responses of Pa(z) and Ps(z) are
equal, that is,

∣∣Pa
(
e jωT

)∣∣ = ∣∣Ps
(
e jωT

)∣∣. (11)

(2) The cascaded filter Pa(z)Ps(z) has a linear-phase re-
sponse.

(3) The magnitude responses of Hak(z) and Hsk(z) are
equal, that is,

∣
∣Hak

(
e jωT

)∣∣ = ∣∣Hsk
(
e jωT

)∣∣. (12)

(4) The distortion transfer function V0(z) (see Section 4)
has a linear-phase response with a delay of LNG+NF samples.

(5) The FBs can readily be designed in such a way that
(a) the analysis and synthesis filters are arbitrarily good
frequency-selective filters, and (b) the magnitude distortion
and aliasing errors are arbitrarily small.

3.4. Filter bank structures

In this section it is shown how to realize the proposed analy-
sis FB class with two modulation blocks instead of three. The
synthesis FB can be realized in a corresponding way [2]. We
begin by expressing G(z) and Gc(z) in polyphase forms ac-
cording to

G(z) = G0
(
z2
)
+ z−1G1

(
z2
)
,

Gc(z) = G(−z) = G0
(
z2
)− z−1G1

(
z2
) (13)

so that Pa(z) in (2) can be written on the form

Pa(z) = G0
(
z2L
)
A(z) + z−LG1

(
z2L
)
B(z). (14)

In (14), the filters A(z) and B(z) are the sum and the differ-
ence of the two masking filters according to

A(z) = F0(z) + F1(z), B(z) = F0(z)− F1(z). (15)
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The analysis filters Hak(z) can then be written as

Hak(z) = G0
(− z2L

)
Ak(z) + s(−1)k jz−LG1

(− z2L
)
Bk(z),

(16)

where

Ak(z) = βkA
(
zW (k+0.5)

2M

)
+ β∗k A

(
zW−(k+0.5)

2M

)
,

Bk(z) = βkB
(
zW (k+0.5)

2M

)− β∗k B
(
zW−(k+0.5)

2M

)
,

(17)

s =
⎧
⎪⎨

⎪⎩

−1, Case 1,

1, Case 2.
(18)

As seen in (16), G0(−z2L) and G1(−z2L) are conveniently in-
dependent of k and are thus the same in each channel.

Let a(n), b(n), ak(n), and bk(n) denote the impulse re-
sponses of A(z), B(z), Ak(z), and Bk(z), respectively. We then
get from (17) and (10) that ak(n) and bk(n) are related to
a(n) and b(n) through

ak(n) = 2a(n) cos
(
(2k + 1)π

2M

(
n− NF

2

))
,

bk(n) = 2 jb(n) sin
(
(2k + 1)π

2M

(
n− NF

2

))
.

(19)

Since bk(n) is purely imaginary,Hak(z) is obviously the trans-
fer function of a filter with a real impulse response. It can be
written as

Hak(z) = G0
(− z2L

)
Ak(z)− s(−1)kz−LG1

(− z2L
)
BkR(z),

(20)

where

BkR(z) = − jBk(z). (21)

Through a similar derivation as above, the synthesis fil-
ters Hsk(z) can be rewritten as

Hsk(z) = (−1)kG0
(− z2L

)
BkR(z) + sz−LG1

(− z2L
)
Ak(z).

(22)

The realization of the analysis FB is shown in Figure 4, where

Q(A)
i (−z2) and Q(B)

i (−z2), i = 0, 1, . . . , 2M − 1, are the pol-
yphase components of A(z) and B(z), respectively. The co-
sine modulation block T1 is a simplified version of the corre-
sponding one in [2] (with θk = 0). It consists of two trivial
matrices and anM×M DCT-IVmatrix. The other one, T2, is
a corresponding sine modulation block. Further, because of
symmetry in the coefficients of G(z), the two filters G0(−z2)
and G1(−z2) can share multipliers. This is illustrated for the
0th channel and filter orderNG = 3, in Figure 5. Although we
have three subfilters to implement,G(z), F0(z), and F1(z), we
have been able to reduce the number of modulation blocks
needed from three to only two.

4. FILTER BANK DESIGN

For M-channel maximally decimated FBs (see Figure 1) the
z-transform of the output signal is given by

Y(z) =
M−1∑

m=0
Vm(z)X

(
zWm

M

)
, (23)

where

Vm(z) =
M−1∑

k=0
Hak

(
zWm

M

)
Hsk(z). (24)

Here, V0(z) is the distortion transfer function whereas the
remaining Vm(z) are the aliasing transfer functions. For a PR
(near-PR) FB, it is required that the distortion function is
(approximates) a delay, and that the aliasing components are
(approximate) zero. We now derive expressions for the speci-
fication of the model filter G(z) and the masking filters F0(z)
and F1(z), in order for the analysis filters Hak(z), the distor-
tion function V0(z), and the aliasing terms Vm(z), to fulfill a
given specification.

Let the specifications of Hak(z) be

1− δc ≤
∣
∣Hak

(
e jωT

)∣∣ ≤ 1 + δc, ωT ∈ Ωc,k,

∣
∣Hak

(
e jωT

)∣∣ ≤ δs, ωT ∈ Ωs,k,
(25)

where Ωc,k and Ωs,k, respectively, are the passband and stop-
band regions of Hk(z). Expressed with the aid of Δ, where
Δ is half the transition bandwidth, they are as illustrated in
Figure 6. Furthermore, the magnitude of the distortion and
aliasing functions are to meet

1− δ0 ≤
∣
∣V0

(
e jωT

)∣∣ ≤ 1 + δ0, ωT ∈ [0,π], (26)
∣
∣Vm

(
e jωT

)∣∣ ≤ δ1, ωT ∈ [0,π], m = 0, 1, . . . ,M − 1,
(27)

respectively. To fulfill the above specifications, the following
optimization problem is solved:

minimize δ

subject to
∣
∣
∣
∣Hak

(
e jωT

)∣∣− 1
∣
∣ ≤ δ

(
δc
δ1

)
, ωT ∈ Ωc,k,

∣
∣Hak

(
e jωT

)∣∣ ≤ δ
(
δs
δ1

)
, ωT ∈ Ωs,k,

∣
∣
∣
∣V0

(
e jωT

)∣∣− 1
∣
∣ ≤ δ

(
δ0
δ1

)
, ωT ∈ [0,π],

∣
∣Vm

(
e jωT

)∣∣ ≤ δ, ωT ∈ [0,π].
(28)

The adjustable parameters in (28) are the filter coefficients
of the subfilters G(z), F0(z), and F1(z), and δ. For the spec-
ifications (25)–(27) to be fulfilled, we must find a solution
with δ ≤ δ1. The problem is a nonlinear optimization prob-
lem and therefore requires a good initial solution. For this
purpose, we first optimize G(z), F0(z), and F1(z) separately
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Figure 4: Realization of the proposed analysis FB.
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Figure 5: Sharing of multipliers between G0(−z2) and G1(−z2) in the 0th channel when NG = 3.

and then these filters can serve as a good initial solution for
further optimization according to (28).

In the following three sections, we give formulas for de-
signing G(z), F0(z), and F1(z), so that they together fulfill a
general specification of an NPR FB. These formulas are based
on worst-case assumptions, and therefore in general, we get
some unnecessary design margin. Because of this, it might be

possible to successively decrease the filter orders of the sub-
filters and still satisfy the given specifications (25)–(27) after
simultaneous optimization.

For some specifications, for example, when M is large,
it might not be possible to do simultaneous optimization.
Then, separate optimization can be used exclusively and give
a good (although not optimal) solution. The masking filters
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Figure 6: Passband and stopband regions for H(e jωT).

F0(z) and F1(z) can be designed using McClellan-Parks algo-

rithm [22] or linear programming to fulfill δ(F0)c , δ(F0)s , and

δ(F1)c , δ(F1)s , respectively. The model filter G(z) should be de-

signed to fulfill δ(G)c and δ(G)s but also to be approximately
power complementary with a maximally allowed error of
δPC . To this end, nonlinear optimization must be used, and,
for example, the algorithm in [22] can be used as a initial
solution. Throughout the paper, the nonlinear optimization
is performed in the minimax sense, but optimization in, for
example, the least square sense is also possible after minor
modifications.3

4.1. Analysis filters

In order to fulfill the specification of frequency selectivity of
the analysis filters, the magnitude of Hak(z) is studied, as a
function of the three subfilters G(z), F0(z), and F1(z). For
convenience, we use the notation X (±k)(z) which stands for

X
(
e±((2k+1)/2M)πz

)
. (29)

This notation allows the transfer functions of the analysis fil-
ters to be written on the form

Hak(z) = G(−k)(zL
)
E0k(z) +G(−k)

c

(
zL
)
E1k(z), (30)

where E0k(z) and E1k(z) are two different combinations of
the masking filters according to

E0k(z) = βkF
(−k)
0 (z) + β∗k F

(+k)
1 (z),

E1k(z) = β∗k F
(+k)
0 (z) + βkF

(−k)
1 (z).

(31)

The reason for this paraphrase is that the filters in (31) be-
long to Subclass I in [14] where useful formulas for ripple
estimations are found. Using these formulas, as well as the
fact that both E0k(z) and E1k(z) are the sum of the two filters
F0(z) and F1(z), just shifted differently; the following restric-
tions on the different filters can be deduced:

δ(F0)c + δ(F1)s ≤ min
(
δ(E0)c , δ(E1)c

)
,

δ(F1)c + δ(F0)s ≤ min
(
δ(E0)c , δ(E1)c

)
,

δ(F0)s + δ(F1)s ≤ min
(
δ(E0)s , δ(E1)s

)
.

(32)

3 The focus in this paper is on the design procedure, not the specific design
criterion.

These formulas hold under the condition that second- and
higher-order terms are neglected. As seen, F0(z) and F1(z)
are restricted equally and we can use the simplified nota-

tions δ(F)c = δ(F0)c = δ(F1)c and δ(F)s = δ(F0)s = δ(F1)s . Further-
more, G(z) has the same ripples as its complementary filter,

[Gc(z) = G(−z)]; thus δ(G)c = δ(Gc)
c and δ(G)s = δ(Gc)

s . This im-
plies that Case 1 and Case 2 with respect to the design do not
differ, and the final simplified requirements on the subfilters
regarding ripples are

δ(F)c + δ(F)s + δPC ≤ δc,

δ(F)c + δ(F)s + δ(G)c ≤ δc,

2
(
δ(F)s

)2
+
(
δ(G)s

)2 ≤ δ2s ,

2δ(F)s ≤ δs.

(33)

4.2. Distortion function

The distortion transfer function V0(z) is given by

V0(z) =
M−1∑

k=0
Hak(z)Hsk(z). (34)

In the appendix, it is shown that the frequency response of
the distortion function can be expressed using the zero-phase
frequency response V0R(ωT) as

V0
(
e jωT

) = e− j(NGL+NF )ωTV0R(ωT), (35)

where

V0R(ωT)=
M−1∑

k=0

([
G(−k)
R (LωT)

]2[
F(−k)
0R (ωT)+F(+k)

1R (ωT)
]2

+
[
G(−k)
cR (LωT)

]2[
F(+k)
0R (ωT)+F(−k)

1R (ωT)
]2)

.

(36)

To have near PR, V0(e jωT) should approximate a pure de-
lay. Here, linear phase is fulfilled exactly (with a delay of
LNG + NF samples) and therefore it is enough to make sure
that V0R(ωT) approximates one. Equation (36) leads to the
following worst case ripple, ignoring second-order effects:

2
[
δ(F)c + δ(F)s +max

(
δPC , δ(G)c

)] ≤ δ0. (37)

4.3. Aliasing functions

Because of the decimation after the analysis filters in Figure 1,
M − 1 unwanted aliasing functions are introduced in the
system. Their transfer functions are given in (24) for m =
1, . . . ,M − 1 and should approximate zero in a near-PR FB.
Normally in modulated FBs, adjacent terms in the aliasing
functions are summed up to zero. This is called adjacent-
channel aliasing cancellation [2]. By inserting the expressions
for Hak(z) and Hsk(z) as given by (7) and (8) into (23) and
(24), we obtain expressions for all Vm(z), m = 1, . . . ,M − 1,
and after a close investigation of these sums, the following
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conclusions can be drawn. There are two masking filters, but
only the contribution from one of them (the largest overlap)
is perfectly cancelled by adjacent-channel cancellation. Be-
cause of this, all the M terms in each aliasing function will
make a small contribution to the aliasing error. The maximal
ripple is determined by the stopband ripple of the masking

filters, δ(F)s , and the squared stopband ripple of the model fil-
ter (δ(G)s )2. More precisely we get 5δ(F)s + 2(δ(G)s )2. Nonadja-

cent terms will have a maximum ripple of 2δ(F)s and we have
M − 2 of these terms. Therefore the worst case magnitude
error for one aliasing function δ1 will be

2(M − 2)δ(F)s + 5δ(F)s + 2
(
δ(G)s

)2 ≤ δ1. (38)

For large M, this worst-case estimation of the aliasing func-
tions will unfortunately be far from the real case. Therefore
(38) is only useful for small and moderate values of M. A
number of different filter banks have been synthesized, and
these results indicate that δ1 typically have about the same
size as δ0. This can be used as a guideline when designing
filter banks for larger values ofM.

4.4. Estimation of optimal L

The total number ofmultiplications per input/output sample
(mults/sample) for the analysis (or synthesis) filter bank is
expressed as

R = 2
NF + 1
M

+
NG + 1

2
, (39)

where NG is the filter order of G(z) and NF is the filter or-
der of F0(z) and F1(z). Both NG and NF depend on the pe-
riodicity factor L in the FRM technique, and this implies
that the arithmetic complexity is heavily dependent on the
choice of L. Therefore, a formula is derived for estimating
its optimal value. The filters F0(z) and F1(z) work at a sam-
pling rate reduced by a factorM and thereby their number of
mults/sample is also decreased by the same factor. Further,
G(z) is symmetric and it is possible for its polyphase compo-
nents G0(z) and G1(z) to share multipliers.

To estimate the filter order of an FIR filter, one can use
the formula

N = K

ωsT − ωcT
, (40)

where ωsT and ωcT are the stopband and passband edges of
the filter. For NF , a good approximation of K is [8]

KF = 2π
−20 log

(√
δ(F)s δ(F)c

)
− 13

14.6
(41)

but for NG, the additional condition of power complemen-
tarity [14] will increase the corresponding KG. The masking
filters F0(z) and F1(z) have the same transition bandwidth,
π/L−2Δ, while the corresponding value forG(z) is 2LΔ. With
(40) and (41) the total number of mults/sample can be esti-
mated as

R = 2
M

(
KF

π/L− 2Δ
+ 1
)
+
1
2

(
KG

2LΔ
+ 1
)
. (42)

By finding the derivative of this expression with respect to L,
the optimal L can be found for each specification as4

Lopt = 1

(2Δ)/π +
√(

8ΔKF
)
/
(
MπKG

) . (43)

In addition, L is restricted by the number of channels M, as
L = (4m± 1)M in (5).

5. DESIGN EXAMPLES

To demonstrate the proposed design method, several modu-
lated FBs are designed.5 In the first two examples, the spec-
ifications of and in (25)–(27) are the following: δc = δs =
δ0 = δ1 = 0.01. Further, the number of channels M varies
and determines the width of the transition band 2Δ, with
Δ = 0.025π/M. The third example is a comparison to [18,
Example 2]. The interesting aspect to study when compar-
ing multirate FBs is not the filter orders, but the number of
multiplications per input/output sample (number of multi-
plications at the lower rate), here denoted as mults/sample.
This is because different filters can work at different sample
rates. For the proposed FBs, the number of mults/sample can
be calculated as in (39), whereas with a regular FIR proto-
type filter of order N , it is simply 2((N + 1)/M). One should
also keep in mind that the modulation blocks also contribute
to the total arithmetic complexity of the FBs and that only
one is needed with a regular FIR prototype filter or with
the approach in [18]. This contribution is however indepen-
dent of the filter orders and has a relatively low complex-
ity compared to the filter part. It is therefore not discussed
here.

Example 1. A FB with M = 5 was designed and the esti-
mated optimal L was found to be either 5 or 15, depending
on the choice of KG in Section 4.4. Both cases were consid-
ered, and 15 was found to give the FB with lowest complex-
ity for the given specification. Translating the specification to

restrictions on the three subfilters gives δ(F)c = 0.001, δ(F)s =
0.00085, δ(G)c = 0.0031, δPC = 0.0031, and δ(G)s = 0.0099.
These specifications are met with filter orders NG = 47 and
NF = 114. Further, with successive decrement of NF , the
specification was found to be fulfilled for NF ≥ 102. Mag-
nitude responses of the analysis filters, distortion function,
and aliasing functions with NF = 102 are plotted in Figures
7, 8, and 9. Using nonlinear optimization, the filter orders
could be lowered to NG = 39 and NF = 58 and still meet
the specification. This shows that for this particular speci-
fication, there was a large design margin. The correspond-
ing magnitude responses are depicted in Figures 10, 11, and
12. Using (39), the implementation cost without the nonlin-
ear optimization procedure for the overall FB (including the

4 The variable KG is assumed to be independent of L.
5 For the joint optimization, the Matlab function fminimax.m has been
used.
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Figure 7: Magnitude responses of the analysis filters without the
nonlinear optimization procedure with NG = 47 and NF = 102,
Example 1.

analysis and synthesis parts) is 130.4 mults/sample plus the
cost to implement the cosine and sine modulation blocks.
After the nonlinear optimization procedure, the number is
only 87.2.

As a comparison, the estimated complexity of a regular
FIR6 cosine modulated NPR FB would need a filter order of
about 580. Therefore, at least about 232 mults/sample are
needed in the filter part using a regular FIR prototype fil-
ter. Thus, even without the nonlinear optimization proce-
dure, the proposed method gives a solution with substan-
tially lower arithmetic complexity.

As usual when employing the FRM technique, we achieve
more savings when the transition band becomes more nar-
row. The price to pay for the decreased arithmetic complex-
ity and the decreased number of optimization parameters is,
as always when using an FRM approach with linear-phase
subfilters, a longer overall delay. In this example, the delay
is about 39% longer for the proposed FB without joint op-
timization compared to the regular FB. With joint optimiza-
tion, the figure is decreased to 11%.

Example 2. With increasing M, also L increases and it be-
comes difficult to optimize the different filters together in the
minimax sense. However, optimizing them separately, also
gives good results. Filter banks with M = 8, 16, 32, and 256
were designed, and the optimal L was found to be 24, 48,
96, and 768, respectively. The number of multiplications re-
quired per sample in the filter parts is visualized in Table 1.
For comparison reasons, the estimated complexity with a
regular FIR prototype filter (estimated as above) is also given.
Further, the total delay of the filter parts of the different FBs
is given, as well as the number of distinct filter coefficients
to optimize. When the number of channels is doubled, the
transition bands of the masking filters and the regular FIR
filter are halved. This corresponds to an approximately dou-
bled filter order. But since the sampling rate for the filters
is also halved, the number of multiplications per sample re-
mains about the same. This is the reason for the limited
variations for differentM in Table 1. For further illustration,

6 The estimation is taken from the 2-channel case, and then when gener-
alizing, the filter order is assumed to be proportional to the transition
bandwidth.
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Figure 8: Magnitude response of the distortion function without
the nonlinear optimization procedure with NG = 47 and NF = 102,
Example 1.
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Figure 9: Magnitude responses of the aliasing functions without
the nonlinear optimization procedure with NG = 47 and NF = 102,
Example 1.
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Figure 10: Magnitude responses of the analysis filters withNG = 39
and NF = 58, Example 1.

some details for M = 32 are given. When (33) and (37) are
used to distribute the ripples ((38) is not considered because
of the size ofM), the required filter orders were NG = 47 and
NF = 716. With a successive decrement of NF , the specifica-
tion was found to be fulfilled forNF ≥ 658.7 The ripples after
the separate design are δc < 0.0040, δs < 0.0034, δ0 < 0.0096,
and δ1 < 0.0071, and the magnitude response of the analysis
filters is shown in Figure 13.

Example 3. A comparison with [18, Example 2] has been
made and the results are summarized in Table 2. The data
in the first column is synthesized with L = 24. The second
column corresponds to a separate design of the subfilters us-

7 The decrease ofNF may seem large, but it only corresponds to a reduction
of 5% of the overall complexity.
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Figure 11: Magnitude response of the distortion function without
the nonlinear optimization procedure with NG = 39 and NF = 58,
Example 1.
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Figure 12: Magnitude responses of the aliasing functions without
the nonlinear optimization procedure with NG = 39 and NF = 58,
Example 1.

Table 1: Number of multiplications per sample, total delay, and
number of optimization parameters using the proposed prototype
filters or a regular FIR prototype filter, for different numbers of
channels.

FB class M Mults/sample Coefficients Delay

Proposed 8 130.5 190 1292

Regular FIR 8 232.25 465 928

Proposed 16 129.75 352 2582

Regular FIR 16 232.125 929 1856

Proposed 32 130.375 683 5170

Regular FIR 32 232.0625 1857 3712

Proposed 256 132.39 5426 41 496

Regular FIR 256 232.008 14 849 29 696

ing the distribution formulas given in (33), (37), and (38),
with L = 24. In the last column, results with L = 40 are pre-
sented.When the distribution formulas for L = 40 were used,
NF0 and NF1 were found to be 361, but after the separate op-
timization, it was possible to lower these orders to 329.8 No
joint optimization has been performed on the FBs in column
two or three; thus these results can be improved further.

In terms of distinct coefficients, L = 24 is the best choice,
but if the number of mults/sample is more interesting, the

8 For L = 24, it was not possible to decrease the filter orders.
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Figure 13: Magnitude responses of the analysis filters with separate
optimization forM = 32, Example 2.

Table 2: Comparison with [18, Example 2].

[18, Example 2] L = 24 L = 40

NG 186 169 101

NF0(NF1) 143 210 329

δs 0.0014 0.0014 0.0014

δ0 0.009 0.000 47 0.006

δ1 0.0018 0.000 51 0.000 81

Coefficients 475(238) 297 383

Mults./sample 446 275.5 267

Delay 4 607 4 266 4 369

solution with L = 40 is preferable. Due to the extra up-
samplers in [18], some subfilters work at a higher sampling
rate compared to our proposal. This seems to be the main
explanation to the significant difference (40% decrease) in
arithmetic complexity. The number of distinct coefficients
to be optimized given in [18, Example 2] is 475, but since
their three subfilters all have linear phase, the correct num-
ber seems more likely to be 238. However, using the number
given in the example, the proposed FBs have about 20% less
optimization parameters.

6. CONCLUSION

This paper introduced an approach for synthesizing mod-
ulated maximally decimated FIR FBs using the FRM tech-
nique. For this purpose, a new class of FRM filters was in-
troduced. Each of the analysis and synthesis FBs is realized
with the aid of three filters, one cosinemodulation block, and
one sine modulation block. The overall FBs achieve nearly
PR with a linear-phase distortion function. Further, a design
procedure is given, allowing synthesis of a general FB speci-
fication. Compared to similar approaches, the proposed FBs
have about 40% lower arithmetic complexity. Compared to
regular cosine modulated FIR FBs, both the overall arith-
metic complexity and the number of distinct filter coeffi-
cients are significantly reduced, at the expense of an increased
overall FB delay in applications requiring narrow transition
bands. These statements were demonstrated bymeans of sev-
eral design examples.



Linnéa Rosenbaum et al. 11

APPENDIX

This appendix shows some of the properties of the proposed
FBs concerning the prototype filters, the analysis filters, and
the synthesis filters.

We first regard the magnitude response of the proto-
type filters and the phase response of Pa(e jωT)Ps(e jωT) (prop-
erties (1) and (2) in Section 3.3). The frequency responses
of G(e jωT), Gc(e jωT), F0(e jωT), and F1(e jωT) can be written
as

G
(
e jωT

) = e− jNGωT/2GR(ωT),

Gc
(
e jωT

) = e− jNGωT/2GcR(ωT),

F0
(
e jωT

) = e− jNFωT/2F0R(ωT),

F1
(
e jωT

) = e− jNFωT/2F1R(ωT),

(A.1)

where GR(ωT), GcR(ωT), F0R(ωT), and F1R(ωT) denote
zero-phase frequency responses. We rewrite the magnitude
responses of the prototype filters in (2) and (3) as

Pa
(
e jωT

)

=G
(
e jLωT

)
F0
(
e jωT

)
+Gc

(
e jLωT

)
F1
(
e jωT

)

=e− j(NGL+NF )ωT/2
[
GR(LωT)F0R(ωT)+ jGcR(LωT)F1R(ωT)

]
,

Ps
(
e jωT

)

=G
(
e jLωT

)
F0
(
e jωT

)−Gc
(
e jLωT

)
F1
(
e jωT

)

=e− j(NGL+NF )ωT/2
[
GR(LωT)F0R(ωT)− jGcR(LωT)F1R(ωT)

]
.

(A.2)

From (A.2) it follows that the squared magnitude response
of the two prototype filters are

∣
∣Pa

(
e jωT

)∣∣2 = G2
R(LωT)F

2
0R(ωT) +G2

cR(LωT)F
2
1R(ωT)

= ∣∣Ps
(
e jωT

)∣∣2

(A.3)

thus identical. Further, the product of the two magnitude re-
sponses has linear phase, as can be seen in (A.4) below. Here-
after, (ωT) and (LωT) are left out for the sake of simplicity,

Pa
(
e jωT

)
Ps
(
e jωT

) = e− j(NGL+NF )ωT
(
GRF0R + jGcRF1R

)

· (GRF0R − jGcRF1R
)

= e− j(NGL+NF )ωT
(
G2
RF

2
0R +G2

cRF
2
1R

)
.
(A.4)

Secondly, we show that the magnitude responses of the
analysis filters and the synthesis filters are equal, and that
the product of Hak(e jωT) and Hsk(e jωT) has a linear-phase
response with delay LNG + NF(properties (3) and (4) in
Section 3.3). We use the notation in (29) and rewrite the

transfer functions of the analysis filters, (7), and the synthesis
filters, (8), as

Hak(z) = βkP
(−k)
a (z) + β∗k P

(+k)
s (z)

= βk
[
G(−k)(zL

)
F(−k)
0 (z) +G(−k)

c

(
zL
)
F(−k)
1 (z)

]

+ β∗k
[
G(+k)(zL

)
F(+k)
0 (z) +G(+k)

c

(
zL
)
F(+k)
1 (z)

]
,

Hsk(z)

= c j
(− 1k

)[
βkP

(−k)
s (z)− β∗k P

(+k)
s (z)

]

= c j
(− 1k

)[
βk(G(−k)(zL

)
F(−k)
0 (z)−G(−k)

c

(
zL
)
F(−k)
1 (z)

)

+β∗k
(
G(+k)(zL

)
F(+k)
0 (z)−G(+k)

c

(
zL
)
F(+k)
1 (z)

)]
.

(A.5)

We use the fact that

(
e± j((2k+1)/2M)πz)2L = −z2L,

(
e j((2k+1)/2M)πz)L = ± j(−1)kzL,
(
e− j((2k+1)/2M)πz)L = ∓ j(−1)kzL,

(A.6)

where the plus or minus sign depends on k and on m in
(5). Rewriting the model filters using their polyphase com-
ponents we get

G(−k)(zL
) = G0

(− z2L
)∓ j(−1)kz−LG1

(
z2L
)
,

G(+k)(zL
) = G0

(− z2L
)± j(−1)kz−LG1

(
z2L
)
,

G(−k)
c

(
zL
) = G0

(− z2L
)± j(−1)kz−LG1

(
z2L
)
,

G(+k)
c

(
zL
) = G0

(− z2L
)∓ j(−1)kz−LG1

(
z2L
)
.

(A.7)

This gives us the following relation between G(z) and Gc(z):

G(−k)(zL
) = G(+k)

c

(
zL
)
, G(+k)(zL

) = G(−k)
c

(
zL
)
.
(A.8)

Now we rewrite the transfer function of the analysis and syn-
thesis filters as

Hak(z) = G(−k)(zL
)[
βkF

(−k)
0 (z) + β∗k F

(+k)
1 (z)

]

+G(−k)
c

(
zL
)[
β∗k F

(+k)
0 (z) + βkF

(−k)
1 (z)

]
,

Hsk(z) = c j(−1)k(G(−k)(zL
)[
βkF

(−k)
0 (z) + β∗k F

(+k)
1 (z)

]

−G(−k)
c

(
zL
)[
β∗k F

(+k)
0 (z) + βkF

(−k)
1 (z)

])
.

(A.9)
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We use (A.9) and omit (ωT) and (LωT) to write their fre-
quency responses as

Hak
(
e jωT

) = e− j/2(NGL+NF )ωT∓ j(k+0.5)πNG

·[G(−k)
R

(
F(−k)
0R +F(+k)

1R

)
+ jG(−k)

cR

(
F(+k)
0R +F(−k)

1R

)]
,

Hsk
(
e jωT

) = c j(−1)ke− j/2(NGL+NF )ωT∓ j(k+0.5)πNG

·[G(−k)
R

(
F(−k)
0R +F(+k)

1R

)− jG(−k)
cR

(
F(+k)
0R +F(−k)

1R

)]
.

(A.10)

From this, it follows that the magnitude of the frequency re-
sponses are equal, as can be seen in (A.11) below,

∣
∣Hak

(
e jωT

)∣∣=∣∣G(−k)
R

(
F(−k)
0R +F(+k)

1R

)
+ jG(−k)

cR

(
F(+k)
0R +F(−k)

1R

)∣∣,

∣
∣Hsk

(
e jωT

)∣∣=∣∣G(−k)
R

(
F(−k)
0R +F(+k)

1R

)− jG(−k)
cR

(
F(+k)
0R +F(−k)

1R

)∣∣.
(A.11)

Finally, since e∓ j(k+0.5)πNG = −c j(−1)k, the product of the
filters Hak(e jωT) and Hsk(e jωT) is

Hak
(
e jωT

)
Hsk
(
e jωT

)

= e− j(NG+NF )ωT · [(G(−k)
R

)2(
F(−k)
0R + F(+k)

1R

)2

+
(
G(−k)
cR

)2(
F(+k)
0R + F(−k)

1R

)2]

(A.12)

and thus

V0
(
e jωT

) =
M−1∑

k=0
Hak

(
e jωqT

)
Hsk
(
e jωT

)

=
M−1∑

k=0

(
e− j(NG+NF )ωT

[(
G(−k)
R

)2(
F(−k)
0R + F(+k)

1R

)2

+
(
G(−k)
cR

)2(
F(+k)
0R + F(−k)

1R

)2])

(A.13)

which obviously has a linear-phase response of −(NGL +
NF)ωT .
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