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ABSTRACT

Despite phenomenal progress in recent years, state-of-

the-art music separation systems produce source estimates

with significant perceptual shortcomings, such as adding

extraneous noise or removing harmonics. We propose a

post-processing model (the Make it Sound Good (MSG)

post-processor) to enhance the output of music source sep-

aration systems. We apply our post-processing model

to state-of-the-art waveform-based and spectrogram-based

music source separators, including a separator unseen by

MSG during training. Our analysis of the errors produced

by source separators shows that waveform models tend to

introduce more high-frequency noise, while spectrogram

models tend to lose transients and high frequency content.

We introduce objective measures to quantify both kinds of

errors and show MSG improves the source reconstruction

of both kinds of errors. Crowdsourced subjective evalua-

tions demonstrate that human listeners prefer source esti-

mates of bass and drums that have been post-processed by

MSG.

1. INTRODUCTION

Audio source separation is the problem of isolating a sound

producing source (e.g., a singer) or group of sources (e.g.,

a backing band) in an audio scene (e.g., a music recording).

Source separation is a core problem in computer audition

that can facilitate music remixing and other Music Infor-

mation Retrieval (MIR) tasks such as music instrument la-

beling [1, 2] and transcription [3, 4].

Current state-of-the-art source separation systems often

produce source estimates that contain perceptible artifacts,

such as high-frequency noise, source leaking (e.g., drum

hits heard in the bass source estimate), unnatural transients,

or missing overtones. For many downstream tasks in MIR
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or music creation, it is preferable for source separators to

minimize these errors. Given that we have observed these

artifacts to be endemic to the separators themselves, we

propose an additional post-processing step to clean up the

initial outputs of these separators.

In this work, we introduce Make it Sound Good (MSG),

a post-processing neural network for enhancing the quality

of music source separation. MSG combines elements of

off-the-shelf architectures from generative modeling tasks

in speech vocoding and denoising to enhance the output of

pre-trained source separation models in both the waveform

and spectrogram domains.

The main contributions of this work are:

• A source separation post-processor (MSG) that per-

forms imputation and denoising to enhance the out-

put of both waveform and spectrogram models for

music audio source separation.

• A subjective listener study that confirms MSG im-

proves the perceptual quality of bass and drum

source estimates on a set of five separation models,

including one on which it was not trained.

• An in-depth exploration of the kinds of errors pro-

duced by different classes of source separators and

how MSG affects these errors.

Audio examples and code can be found at

https://interactiveaudiolab.github.

io/project/msg.html .

2. RELATED WORK

Deep learning is the dominant approach for music source

separation. For example, all entries to the 2021 Sony Mu-

sic Demixing Challenge [5] were deep learning based sep-

arators. Most separators fall into one of two classes. Wave-

form models [6–9] take audio waveform input and produce

an audio waveform for each separated source. Spectro-

gram models [10–18] take a mixture spectrogram as input

and output a mask to apply to the spectrogram for each

source being separated. Despite the recent successes of

these deep learning methods, state of the art systems con-

tinue to exhibit perceptible artifacts in their outputs. We

show in Section 5 that waveform models tend to intro-

duce more high-frequency noise, while spectrogram mod-

els tend to lose transients and high frequency content.
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Figure 1: Spectrograms of ground-truth (left), source estimates (top), and MSG output (bottom) for the bass source. MSG

is able to simultaneously infer missing frequencies and remove noise from the output of common source separation systems.

Recent works in adversarial audio synthesis [19–25]

and end-to-end speech enhancement [26–32] show that

the adversarial loss of Generative Adversarial Networks

(GANs) [33] is effective in generating high-fidelity audio.

Although such systems have been effective in audio syn-

thesis and denoising, no previous work has explored using

these systems for enhancing source separation output. Re-

cent work has also shown that adversarial loss is effective

for training source separation systems [34, 35], however

this work does not look at using adversarial loss to enhance

existing separation output.

While many recent works for speech enhancement have

been proposed, music enhancement (e.g., denoising and

artifact removal) is less common. There are only a few

recent works in music denoising [36–38] and bandwidth

expansion [39, 40]. Some work has also looked at poten-

tial causes of [41] and remedies for [42] audio artifacts in

untrained source separation networks. Our work is most

similar to Kandpal et. al [43], who proposed a generative

model that can enhance the audio quality of a low-quality

music recording taken on a consumer device. We are un-

aware of a prior system for enhancing the output of trained

music separation systems.

3. “MAKE IT SOUND GOOD” POST-PROCESSOR

Here we describe our “Make it Sound Good” (MSG)

post-processor, which perceptually improves a source es-

timate by removing artifacts that the separator introduced

and imputing elements the separator omitted. We use

the adversarial loss of Generative Adversarial Networks

(GANs) [33] due to its success denoising many types of

audio.

The generator of MSG is a waveform-to-waveform U-

Net with 1D convolutions. This is very similar to the De-

mucs v2 [7] architecture with the exception that Demucs

has two BLSTM layers at the bottleneck, which we omit.

We train the generator using three loss functions. The

first is the LSGAN [44] generator loss,

LG =
1

K

K
∑

k=1

E

[

(Dk(G(ŝ))− 1)
2

]

, (1)

where ŝ is the raw source estimate from the separator, Dk

is the k-th discriminator, K is the total number of discrim-

inators, and G is the generator.

Next is deep feature matching loss [45], which is the L1

distance between the intermediate activations of the dis-

criminators on corresponding real and generated data. The

last loss function we use is a multi-scale Mel-spectrogram

reconstruction loss [46, 47], which is the average Mel re-

construction loss over three different Short-time Fourier

transforms (STFTs), each of which uses different param-

eters for the number of STFT bins, window lengths, and

hop sizes.

We use two types of discriminators: the multi-period

discriminators from HiFi-GAN [24] and the multi-

resolution spectrogram discriminators from UnivNet [25].

The multi-period discriminators operate on the waveform,

and reshapes the waveform to a 2D tensor with a prime-

valued stride before processing the reshaped waveform

with 2D convolutional layers. The multi-resolution spec-

trogram discriminators process a spectrogram with differ-

ent STFT window sizes (see Section 4.3). We use five

multi-period discriminators with strides [2, 3, 5, 7, 11], re-

spectively. We also use three multi-resolution discrim-

inators with FFT windows [512, 1024, 2048], for a total

of eight discriminators. Each discriminator uses the LS-

GAN [44] loss,

LD = E

[

(D(s)− 1)
2
+ (D(G(s̃)))2

]

, (2)

where s̃ is the cleaned up source estimate from the MSG

generator and s is the ground-truth source audio. Further

details on the discriminator architectures are provided in

the original papers [24, 25].

We use an adversarial loss typical of Generative Adver-

sarial Networks, but do not condition on a random input

vector. This produces a deterministic model that is not
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technically generative. However, prior work has shown

that the unique mode-selecting behaviors of these adversar-

ial loss models are highly effective for densely-conditioned

generative modeling tasks such as vocoding [20,24,25] and

speech denoising and enhancement [26–32]. Our goal is

not an exact reconstruction of ground truth, but an output

that is perceptually improved. This means a distribution of

viable outputs exists and the task can be framed as one of

generative modeling.

4. EXPERIMENTAL VALIDATION

We conducted experiments to understand whether MSG

perceptually enhances the raw output of a set of music

source separation models. The remainder of this section

is devoted to outlining the details of our experiments.

4.1 Models

We trained MSG post-processors using the output of four

existing source separation models as the input to MSG. We

train on two waveform-based separators: Demucs v2 [7]

and Wavenet [8]; and two spectrogram-based separators:

Spleeter [17] and OpenUnmix [16]. To investigate whether

MSG can learn to correct the artifacts of different sepa-

rators, we created one enhancement model that is trained

and evaluated on all four separators instead of creating

separator-specific models. We evaluated the MSG post-

processor using the output of each of the four separators on

a held out test set (see Section 4.2). Furthermore, to under-

stand whether MSG can also reduce the artifacts produced

by an unseen separator, we evaluate our post-processor on

the output of a fifth separator that it was never trained on:

Hybrid Demucs (v3) [48], which operates in both wave-

form and spectral domains. For all separation models we

used the trained, frozen weights released by the authors,

with no alterations. We refer readers to the papers on each

separator for architectural and training details.

4.2 Data

All experiments were run with the MUSDB18 dataset [49].

MUSDB18 contains 150 songs: 100 in the training set and

50 in the test set. Each song in MUSDB18 has a full

mixture and isolated source audio stems for vocals, bass,

drums and a fourth catch-all category called “other”. We

omitted this catch-all category because we find that at-

tempting to enhance many instruments at once with the

same model greatly increases the difficulty of the task. We

performed source separation on every song in MUSDB18

using all five of our source separators, producing source

estimates of bass, drums and vocals.

The input audio was peak normalized before passing it

through the network. Since Wavenet operates at 16 kHz

we use this sample rate. We downsampled all systems to

16 kHz so that there was a uniform sample rate across all

separation models. Here, we focus solely on enhancement

and leave the task of bandwidth extension for future work.

Thus, the output of MSG on all systems was at a sample

rate of 16 kHz.

4.3 Training

We trained one MSG model on the MUSDB18 training

set for each source class (bass, drums, or vocals). Each

model was trained using source estimates from four sepa-

rators (Demucs v2, Wavenet, Spleeter, and OpenUnmix) as

input and the ground-truth sources as training targets. We

segmented the audio into 1-second clips and rejected silent

clips where the ground-truth source has an RMS below -

60dB FS, resulting in over 100,000 training examples per

model. On each training iteration, we randomly swapped

the input data with ground-truth with a 10% probability.

This encourages the model to leave high-quality audio un-

altered.

We computed the three resolutions of STFTs passed

to our multi-resolution spectrogram discriminators (Sec-

tion 3) using window sizes of 512, 1024, and 2048 sam-

ples and hop sizes of 128, 256, and 512 samples, respec-

tively. We used one Adam optimizer [50] for the generator

and another for the discriminator. We used a learning rate

of 2e-4 and beta values of (.5, .9). To find suitable loss

weights for all 3 types of losses on the generator (LSGAN

loss, deep matching loss, and multi-scale spectral loss; see

Section 3), we solved a least squares equation to weigh all

loss terms equally for the first 1k training iterations. After

that, we froze those weights applied to the losses for the

remainder of training.

4.4 Subjective evaluation

The goal of our research is to improve the perceptual qual-

ity of source separation output. Therefore, we evaluate

our MSG post-processor using a crowdsourced subjective

evaluation (Section 4.4) rather than reporting an objective

metric like Signal-to-Distortion Ratio (SDR) [51,52], since

widely-used objective metrics for source separation are im-

perfect proxies for human perception [34, 52–57].

For evaluation data, we used one seven-second segment

from each of the 50 songs from the MUSDB18 test set. We

performed source separation on each seven-second seg-

ment using each of the five source separation systems (Sec-

tion 4.1) to create source estimates of bass, drums, and vo-

cals. Each output was then processed with MSG, resulting

in 50 matched pairs for each combination of separator and

source class: the raw output, and the output processed by

MSG.

There are 15 unique combinations of the five separators

and three sources (bass, drums, and vocals). For each com-

bination, we performed a two-way forced-choice listening

test between the raw output and the output processed by

MSG. We initially recruited 20 participants for each test

and omitted responses from participants that failed a pre-

screening listening test. This resulted in a minimum num-

ber of 15 participants in any test. Each participant evalu-

ated 25 randomly-selected pairs from the 50 examples for

that combination of source and separator.

A two-tailed binomial test was performed where the

null hypothesis was that there was no difference between

MSG-enhanced and raw separator output. If the results of

a particular test showed no difference (i.e., p < 0.05) we
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Figure 2: Subjective pairwise test results for bass, drums,

and vocals. Each row contains the percent of listeners se-

lecting that option as higher quality in a two-way forced

choice listening test. A bold-faced value indicates a statis-

tically significant difference.

recruited an additional 10 participants to see if a difference

could be determined.

For each pairwise comparison, participants were given

the following instructions, where <source> is one of

“bass”, “drums” or “vocals”:

Listen to both recordings of a <source>. Af-

ter listening to both, select the recording that

sounds like a higher-quality <source>. The

higher-quality recording is the one that is

more natural sounding, or has fewer audio

artifacts (e.g., noise, clicks, or other instru-

ments).

We used Reproducible Subjective Evaluation (ReSE-

val) [58] to set up our listener studies. We recruited par-

ticipants via Amazon Mechanical Turk (MTurk). Our par-

ticipants were US residents at least 18 years old that com-

pleted 20 or more tasks on MTurk with an approval rating

Figure 3: Spectrograms of the ground truth (left) and

source estimates from Demucs v2 and OpenUnmix (top)

and corresponding MSG output (bottom) for the bass

source. The 98% spectral rolloff frequency is overlaid in

white.

of at least 97%. Participants who passed the listening test

and completed our evaluation were paid $3.00.

For each of the 15 tests, we collected between 308 and

696 pairwise evaluations from between 15 and 30 partici-

pants who passed the prescreening listening test. The num-

ber of evaluations is not a multiple of 25 because a few

participants did not finish all 25 examples in their set of

pairwise evaluations.

4.4.1 Subjective evaluation results

Each listening test evaluates one combination of source

class and source separator. Figure 2 shows the results for

each of the 15 tests. Listeners preferred the MSG output

to the raw source separator output in 11 out of 15 combi-

nations of separator and source. This difference was sta-

tistically significant (using a binomial test) in 10 of the 11

combinations. Listeners preferred the quality of separators

with MSG on bass source estimates and had a moderate

preference for MSG on drums. For vocals, listeners had a

slight preference for the source estimate without MSG.

MSG performed best on the Wavenet separator, where

it significantly improved the perceptual audio quality of all

sources. MSG was also able to improve on the quality of

source estimates of a separator not seen during training,

Demucs v3, for bass sources—as well as an improvement

on Demucs v3 drum sources that was not statistically sig-

nificant. Note that Demucs v3 is a hybrid approach that

operates in both the waveform and spectrogram domains.

Our performance on vocals indicates that MSG is not able

to enhance the quality of the source estimate of vocals. We

are unaware of prior work that attempts to enhance source

separation output, let alone a separated vocal source. Vo-

cal separation has been optimized by many years of ex-

isting research, potentially leaving less room for a post-

processing system to improve compared to, e.g., drum and

bass sources.

5. FURTHER ANALYSIS

Our listener study indicates whether a separation is rela-

tively “good” or “bad”, but it does not clarify why one sep-
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Figure 4: Mean spectral rolloff error for bass, drums, and vocals for separators with and without MSG post-processing.

arated source is better or worse than another. Similarly, the

widely-used Signal-to-Distortion Ratio (SDR) [51,52], as

well as the related SIR and SAR, are not designed to cap-

ture the specific types of errors we focus on in this work.

See, for example, the top row of Figure 3, which shows

source estimates produced by Demucs v2 and OpenUn-

mix for the same bass source from the same mixture. De-

mucs adds additional high-frequency noise not present in

the ground truth, while OpenUnmix removes many of the

upper harmonics. Visually, the difference between these

two systems is plain, however their SDR values (using

mus_eval [59]) are equal to two decimal places: 5.98

dB!

In this section, we examine the output of the four

state-of-the-art separation systems used in the training of

MSG models: (Demucs v2 [7], Wavenet [8], Spleeter

[17], and OpenUnmix [16]), as well as the MSG-processed

outputs for those four systems. As before, we use the

MUSDB18 [49] test set, and we omit the “other” source.

Anecdotally, we have noted that waveform separators

tend to add extra high-frequency noise and spectrogram

separators tend to remove high-frequency partials, espe-

cially in bass estimates (see Figure 1). Spectrogram sepa-

rators also tend to smooth out transients. While these are

not the only issues that current separation systems exhibit,

the rest of this section will be dedicated to analysis of these

two issues.

5.1 Added and Missing Frequency Content

Following our anecdotal observation that waveform sep-

arators tend to add extra high-frequency noise and spec-

trogram separators tend to remove high-frequency partials,

we seek to formalize these notions.

One statistic that can be a good proxy for whether

a source estimate has excess high-frequency content or

is missing desirable high-frequency content is spectral

rolloff. For a given time frame in a spectrogram, the spec-

tral rolloff at X% is the frequency below which X% of the

energy of the signal lies. For example, the white line on

each spectrogram in Figure 3 shows the spectral rolloff at

98%.

For every song in the MUSDB18 [49] test set, we com-

pute the spectral rolloff at 98% every 32 ms (a hop size

of 512 samples at 16 kHz) for every ground truth iso-

lated source, every estimate produced by one of the four

training separators and every MSG-enhanced source es-

Figure 5: Histogram of the difference in spectral rolloff

values between a given separator’s bass estimate and

ground truth bass source over the MUSDB18 test set. The

vertical dotted line shows the desired difference of 0. MSG

reduces the difference between the rolloff values of source

estimate and ground-truth.

timate. To calculate our statistics, we omit any frames

that have an RMS less than −40 dBFS, in the ground-

truth source, so as not to examine rolloff in relatively silent

regions. We report the error between a source estimate’s

rolloff and a ground-truth source’s rolloff in cents, which

is 1200× (log
2
x− log

2
y), where x and y are rolloff fre-

quencies in Hz. We chose to use cents over Hz because it

better correlates to how humans perceive audio.

In Figure 4, we show the mean error, in cents, between

the ground truth rolloff and the source estimate’s rolloff.

We see that the source estimates of vocals and drums have

spectral rolloff errors on the order 100-200 cents, whereas

source estimates of bass have errors of roughly 1000 cents.

MSG reduces this error for all separators on bass sources,

for three of the four separators on drums, and two of the

four separators on vocals.

Because the bass estimates have such large errors, we

examine them further in Figure 5, where we show a his-

togram of the per-frame differences between the spectral

rolloff of source estimates and ground truth. The top two

rows of the histogram show results for the two waveform

separators (i.e., Demucs v2 and Wavenet), which each

show an error distribution that is strongly skewed towards
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positive error. This corroborates our observation of high-

frequency noise introduced by waveform separators, as

shown in the bass spectrogram in Figure 3. The bottom

two rows show the error distribution for two spectrogram

separators, Spleeter and OpenUnmix. Both exhibit an error

distribution for spectral rolloff that is strongly skewed to-

ward negative values. This quantifies the effect illustrated

in Figures 3 and 1, where the spectrogram separators re-

move the higher partials of the bass source.

We further observe that, when MSG is applied to the

output of all four separators, the resulting error distribu-

tion is less biased and, as was already shown in Figure 4,

reduces the mean error magnitude. Figure 1 illustrates the

effect of MSG on a single bass example, showing improved

spectral rolloff reconstruction for both waveform and spec-

trogram models.

5.2 Improving Transient Reconstruction

While listening to the source estimates from spectrogram

separators, we noticed that the transients of source esti-

mates for drums and bass did not sound as clear as in the

ground truth source estimates. To quantify these observa-

tions, we measure the location and strength of onsets in the

estimated sources relative to the ground-truth. We use li-

brosa’s [60] onset_strength() function [61], which

computes the spectral flux onset strength envelope at every

frame in a spectrogram. We approximate an onset by iden-

tifying every frame with a strength above a certain thresh-

old. We select an onset strength threshold via manual tun-

ing. We set the threshold value to a constant value of 0.75

for both bass and drums on the MUSDB18 dataset. We

manually tuned this threshold to find a value that best cor-

responds with our perception of relevant peaks in the sig-

nal. We chose to threshold onset_strength() instead

of using librosa’s onset_detect() because we found

that matching up onsets between two signals using the lat-

ter method was hard to correctly tune.

We run this onset strength thresholding on both the

ground-truth source and a source estimate and then cal-

culate the F1 between the binary threshold arrays of the

raw source estimate and the MSG post-processed estimate

as a proxy for how well a separator preserves transients.

A true positive (TP) is when a detected onset exists at the

same spectrogram frame in the ground-truth and source es-

timate, a false positive (FP) is when an onset is detected at

a frame in the source estimate but not the ground truth,

and a false negative is when an onset is detected (FN)

at a frame in the ground truth but not in the source es-

timate. We report the F1 score of onset reconstruction,

TP/(TP + 1

2
(FP + FN)).

We report the F1 scores for onset detection on bass,

drums, and vocals in Table 1. The results for vocals are not

in favor of MSG for 3 of the 4 separators. We include the

vocals results for completeness. Evaluating the transients

for vocals might be slightly unusual, but the observed re-

sults align with the listener studies. In contrast with vocals,

bass and drums both see improved F1 scores across multi-

ple separators: MSG improves the F1 score in 7 out of the 8

Model Type
Onset Strength F1

Raw + MSG

Demucs v2 Wave 0.52 0.54

Wavenet Wave 0.36 0.44

Spleeter Spec 0.36 0.52
Bass

OpenUnmix Spec 0.39 0.49

Demucs v2 Wave 0.84 0.82
Wavenet Wave 0.73 0.74

Spleeter Spec 0.78 0.82
Drums

OpenUnmix Spec 0.78 0.79

Demucs v2 Wave 0.58 0.57
Wavenet Wave 0.51 0.49
Spleeter Spec 0.71 0.66

Vocals

OpenUnmix Spec 0.41 0.57

Table 1: F1 scores for thresholded onset strength for

bass, drums, and vocals for four separators with and with-

out MSG post-processing. “Raw” means that F1 is com-

puted between the separator’s raw output and ground truth.

“+MSG” means that MSG post-processing is applied to the

raw source estimates. According to this measure, MSG is

able to better preserve onsets in 7 out of 8 cases between

the bass and drums sources, which most clearly demon-

strate artifacts with transients.

combinations of source and separator, with the sole excep-

tion of drums separated by Demucs v2. This indicates that

the ability to represent transients is generally improved by

applying MSG-based post processing on bass and drums.

6. CONCLUSION

State-of-the-art music source separators create audible per-

ceptual degredations, such as missing frequencies and tran-

sients. In this work, we propose Make it Sound Good

(MSG), a post-processing neural network that leverages

generative modeling to enhance the perceptual quality of

music source separators. In listening studies, users pre-

fer bass and drum source estimates produced with MSG

post-processing—even on a state-of-the-art separator not

seen during training. We analyze the errors of waveform-

based and spectrogram-based separators with and without

MSG. Without MSG, we show that waveform-based sepa-

rators induce high-frequency noise and spectrogram-based

separators fail to reconstruct high-frequencies in the bass

source, and have trouble reconstructing transients. We

measure these artifacts via spectral rolloff and onset de-

tection and show that, for both bass and drums, MSG

generally improves reconstruction of spectral rolloff and

onsets of the source estimate relative to the ground-truth

sources. Fruitful directions for future work include using

more modern techniques for sound enhancement (e.g., dif-

fusion models [43]), making post-processors for the vocals

and “other” sources, and deeper analyses of the issues with

separation systems.
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