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ABSTRACT

We propose a multimodal singing language classification
model that uses both audio content and textual metadata.
LRID-Net, the proposed model, takes an audio signal and
a language probability vector estimated from the metadata
and outputs the probabilities of the target languages. Op-
tionally, LRID-Net is facilitated with modality dropouts to
handle a missing modality. In the experiment, we trained
several LRID-Nets with varying modality dropout config-
uration and tested them with various combinations of input
modalities. The experiment results demonstrate that using
multimodal input improves performance. The results also
suggest that adopting modality dropout does not degrade
the performance of the model when there are full modality
inputs while enabling the model to handle missing modal-
ity cases to some extent.

1. INTRODUCTION

Singing language identification of music (SLID) is a clas-
sification task of labeling tracks by the languages used in
lyrics. Language information is essential for music dis-
covery and recommendation systems as lyrics play a cru-
cial role in the music listening experience [1]. In reality,
despite its importance, language information is not always
available or accurate, even for established, large-scale mu-
sic streaming services. Such a situation has motivated re-
searchers to develop language identification models using
the most fundamental music data – the audio content itself.

There have been various audio-based approaches in
SLID. Most of them utilize traditional machine learning
classifiers and audio features, similar to early methods for
spoken language identification [2, 3]. The models in [4]
and [5] consist of vocal/non-vocal segmentation, feature
vector quantization, and a simple codebook-based lan-
guage model. More recently, i-vector [6], a popular feature
vector for speech-related tasks, was used in [7, 8], com-
bined with a support vector machine classifier. A vocal
source separation technique that is based on a spatial prop-
erty of stereo music signals was added in a model [9], al-
though it did not improve its performance in the experi-
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ment. More recently, the model in [10] uses a modern vo-
cal separation technique [11] and a one-dimensional deep
convolutional neural network. In these approaches, a vocal
source separation module is applied to input signals to ex-
tract relevant features with a cleaner signal, i.e., with a less
amount of accompaniments.

There also have been models that are based on non-
audio modalities. The model in [12] is designed to classify
music videos into language categories by taking visual fea-
tures such as histograms of oriented gradients along with
basic audio features such as MFCCs. In the experiment,
adding video features improved the accuracy of the model
from 44.7% to 47.8% in a 25-language classification task.
Another model in [13] uses language estimation of track
title and album name and showed a comparable perfor-
mance to their in-house audio-based classifier. Notably,
an internal music representation called track vector, which
is estimated using music listening history data, showed the
highest feature relevance – 0.97 – in their experiment. It
re-emphasizes that there is a strong connection between
music listening preference and singing language of music.

It is noteworthy that unfortunately, none of the men-
tioned works is reproducible [4, 5, 7–10, 12, 13] and there
has not been any benchmark in SLID. All the previous
works rely on private datasets and only little details such
as target languages and the number of tracks are known.
This is because of a lack of datasets – there has not been
a publicly available music language classification dataset
until very recently [14]. Some music tagging datasets
may be considered as alternatives if they include language
tags; for example, the million song dataset has language
labels [15]. But their tag popularity is merely at 116th
(‘german’), 135th (‘english’), or below, which are often
excluded in a prevalent problem formulation such as top-
50 classification [16] to suppress noise during training and
evaluation [17].

In this paper, we introduce LRID-Net – Listen, Read,
and Identify-Network, a model that takes audio and tex-
tual metadata (track title, album name, and artist name) to
identify singing language. LRID-Net is based on a combi-
nation of a deep convolutional neural network, MLPs, and
modality dropouts as explained in Section 4. We provide
brief information about Music4All [14], the dataset that we
use, in Section 3. In Section 5, we present our experiment
results including the performance of LRID-Net, a compar-
ison of modalities, and verification of modality dropout.
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There are three main contributions of our work.
Contribution 1: LRID-Net is the first work in SLID that
takes advantage of audio and text inputs, presumably the
two most accessible forms of music data.
Contribution 2: We present the first reproducible work in
SLID by using a public dataset. This enables a rigorous
benchmark to be followed, which is necessary for progress
in modern machine learning research.
Contribution 3: LRID-Net has flexibility in its input data
form – it is designed to work with missing modalities by
adopting modality dropouts. This flexibility makes LRID-
Net a highly pragmatic solution in a real-world scenario.

2. PROBLEM FORMULATION

We define our problem as a singing language identifica-
tion using audio content and metadata. It is reasonable
to expect that in many practical use-cases, (some of) three
selected types of metadata – track title, album name, and
artist name – would be accessible. For example, music
tracks shared on online streaming services usually include
all of them. We exclude other types of data such as vi-
sual features and pre-computed track vectors despite their
benefits shown in [12] and [13], respectively, because their
availability is limited for a subset of commercial music
tracks even for those in industry who have an access to
a large-scale proprietary catalog.

To make our model even more practical, we consider a
missing data scenario. Some or all of the metadata can be
easily missing. For example, indie music tracks shared on-
line (e.g., SoundCloud or Jamendo) usually do not include
any album name, or they can exist but should be considered
missing since titles can be blank or consists of numbers
and/or special characters only, not providing any linguistic
information. The audio could be also missing or not help-
ful at all, for example, a segment that is input to the model
may not contain any vocal part.

From a machine learning point of view, our SLID prob-
lem is a single-label multi-class classification with a multi-
modal, potentially partially missing input. In fact, some
lyrics are multilingual. But we assume that those cases are
negligible, following the dataset we use (see Section 3 for
more details). 1

3. DATASET

We use Music4All dataset [14] which includes 30-second
audio clips (44,100 kHz and stereo), lyrics, and 16 other
metadata such as title, album name, artist name, and Spo-
tify identifier of 109,269 tracks. The dataset also includes
language labels covering 46 languages. They are estimated
from the lyrics using Langdetect, 2 a Python implementa-
tion of Language-Detection [18]. 3

1 English words such as “Yeah”, “Hey", and “Baby" are often used as
musical expressions or interjections in non-English songs and we do not
assume their existence makes a lyric multilingual.

2 https://pypi.org/project/langdetect/
3 We noticed there are errors in the ground truth. But Langdetect is

known to perform at 99% accuracy with documents, which is significant
higher than the performance of the proposed audio-based models.
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Figure 1: Block diagram of LRID-Net. Gray rectangular
boxes indicate non-trainable modules and dotted circles are
modality dropouts (Section 4.4), which are optionally ap-
plied in some of the experiments (Section 5.4).

The distribution of language labels in Music4ALL is
heavily skewed from 84,103 items (English) to 1 item
(Hindi, Slovak, Bulgarian, and Hebrew). We consider
11 labels – top-10 popular languages and an “others" cate-
gory that includes all the other languages. In detail, there
are 84,103 English tracks followed by Portuguese (7,020),
Spanish (3,225), Korean (1,145), Others (1,059), French
(994), Japanese (615), German (577), Polish (446), Italian
(437), and Slovakian (231). There are also 9,417 instru-
mental tracks, but we exclude them because otherwise, the
model would need to learn to perform language identifi-
cation as well as instrumental track classification, which
would distract our analysis.

There does not exist an official training-validation split
of tracks of M4A dataset. We use an 80:20 stratified split
with allocating every artist in only one of the split sets. 4

This prevents artist-dependent information from being a
confounding factor and leaking the information between
training and validation sessions.

4. LRID-NET

4.1 Input Audio Preprocessing

The 44.1 kHz sampled 30-second stereo audio sig-
nals are downmixed and resampled to 22,050 Hz and
converted into 128-bin log-magnitude mel-spectrograms
(128 × 2580) with 1024-point FFT and 256 hop size us-
ing Kapre [19]. We call this spectrogram xaudio.

4.2 Input Text Preprocessing

The metadata strings are joined in an order of artist name,
album name, and track title and then input to Langde-
tect to estimate a language probability vector. Originally,
langdetect.detect_langs() outputs a probabil-
ity distribution of 55 supported languages. However, there
are some cases where the function fails to estimate proba-
bility, e.g., if the text is blank or a numeric value only. We
add another dimension to indicate those exceptions. This
56-dimensional vector is called xlang.

4.3 Overall model structure

LRID-Net consists of two input branches that are concate-
nated at a late stage of the network.

4 https://github.com/keunwoochoi/music4all_
contrib
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The audio branch, f , is a ResNet-50 with 64 base
channels and outputs a 2048-channel feature map that is
a size of (4 × 81) [20]. We choose ResNet-50 for its sim-
plicity yet strong performance as shown in [21] for music
tagging. Then, a global average pooling is applied to out-
put a one-dimensional vector length of 2048. This proce-
dure is represented as saudio = f(xaudio).

The text branch, g, is a 3-layer MLP where each layer
consists of a 128-unit fully-connected layer, a batch nor-
malization layer, and a ReLU activation [22], i.e., stext =
g(xlang).

In the output branch, h, the two outputs of the in-
put branches are concatenated, i.e., scat = [saudio; stext]
and input to an MLP. This MLP consists of a 256-unit
fully-connected hidden layer, a batch normalization layer,
a ReLU activation, and an 11-unit fully-connected layer
with a Softmax activation to output the language probabil-
ity, i.e., ŷ = h(scat).

4.4 Modality Dropout

We use modality dropout which was originally introduced
in [23] as ModDrop and is illustrated in the block dia-
gram in Figure 1. Similar to the original dropout [23],
during training time, a modality dropout module replaces
its input with zeros with a probability of r, the dropout
rate. There are two main differences between the original
dropout and modality dropout. 1) The original dropout is
applied to a part (e.g., a single node or a channel) of an in-
put but a modality dropout module drops the whole input
of a modality, i.e., an audio signal or a language probabil-
ity vector. By doing so, it effectively simulates a missing
modality input and lets the model learn to perform the task
without the dropped input. 2) There is no 1/(1−r) scaling
in a modality dropout when the input is not dropped. Dur-
ing test time, a system with LRID-Net inputs a zero vector
to the model if a modality is missing.

5. EXPERIMENT AND DISCUSSION

We performed a series of experiments to demonstrate the
performance and properties of LRID-Net. We use Mu-
sic4All dataset [14] and process audio and text data using
Kapre [19] and Langdetect [18] as detailed in Section 3
and Section 4, respectively. During training, we use Adam
optimizer [24] and early stopping with a patience of 20
epochs. We do not adopt any balancing during batching
and loss computation.

On the metric, we use F1-score, precision, and recall.
As described in Section 3, there is a high imbalance of the
number of data points of each language in the dataset. In
this case, from a user perspective, a macro average can be
used to represent the class-balanced performance to avoid
the bias towards popular languages, too. However, because
they are biased in the same way in the training and valida-
tion sets, weighted (or micro) averaging can be considered
to be more suitable than macro averaging on representing
how successfully the model was trained to minimize the
empirical loss. Acknowledging this issue, we use both of

Text input Precision Recall F1-Score
Artist Name .323 .221 .149
Album Name .399 .378 .284
Track Title .450 .444 .317
Joining All .510 .569 .429

Table 1: The macro averaged performance of Langdetect
prediction with various text inputs. ‘Joining All’ represents
the performance of langdetect baseline.

Text input Precision Recall F1-Score
Artist Name .600 .368 .456
Album Name .750 .576 .652
Track Title .766 .573 .656
Joining All .922 .819 .857

Table 2: The weighted averaged performance of Langde-
tect prediction with various text inputs. ‘Joining All’ rep-
resents the performance of Langdetect baseline.

the averaging methods and focus on the performance with
a suitable one depending on the context.

We present the performance of each language sorted by
its occurrence count, as known as Support, to help under-
standing of any related trend.

5.1 Langdetect baseline

We present the result of a simple solution that is to directly
use the top prediction of text-based language identifica-
tion using Langdetect. This baseline approach is called
Langdetect baseline. We also present a detailed analysis
of the performance and behavior of Langdetect baseline
model to deepen our understanding of the problem and the
following experiment results.

Table 1 and 2 summarize the performance of Langde-
tect baseline based on various text inputs, showing that us-
ing all the metadata (‘Joining All’) performs the best by
achieving an F1-score of 0.429 (macro average) or 0.857
(weighted average). Details of the performance with ‘Join-
ing All’ are presented in Table 3 and its confusion matrix
is illustrated in Figure 2. Note that Langdetect baseline
model is not trained with our dataset, hence support (num-
ber of true items) does not affect the performance.

The F1-scores seem under-performing since Langde-
tect is reported to show 99% accuracy. We conjecture
two reasons for this result. First, music metadata is sig-
nificantly shorter than typical documents and news article,
with which Langdetect was originally trained and tested,
respectively. Second, there is a prevailing usage of En-
glish for artist name, album name, and track title even if
the lyrics are not written in English, especially for those
songs that are internationally consumed.

In detail, the precision and recall shows interesting pat-
terns that are partly related to the second reason; There are
languages where precision is significantly higher than re-
call (Group 1: Korean, Japanese) while precision is signif-
icantly lower than recall for some other languages (Group
2: French, German, Italian, Slovakian). We note that
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Language Precision Recall F1-Score Support
English .969 .859 .911 84,103
Portuguese .897 .695 .783 7,020
Spanish .676 .620 .647 3,225
Korean .444 .003 .007 1,145
Others .092 .700 .162 1,059
French .367 .585 .452 994
Japanese .895 .153 .261 615
German .093 .773 .166 577
Polish .695 .572 .627 446
Italian .229 .748 .350 437
Slovakian .252 .554 .347 231

Table 3: The performance of Langdetect prediction when
all the metadata are concatenated (‘Joining all’). Support
column indicates the number of items in the training set, of
which distribution is preserved in the validation set.

en pt es ko
others fr ja de pl it sv

Predicted label

en
pt
es
ko

others
fr
ja

de
pl
it

sv

Tr
ue

 la
be

l

4.9 2.4 2.6 0.48 3.7 2.9 1 3.6 2 2.7 2.5
2.6 3.7 2.7 0 2.9 1.7 0 2.1 0.3 2.5 1
2.5 2.4 3.3 0 2.6 1.6 0 1.9 0.48 2.1 0.48
2.9 1.1 0 0.7 2.3 1.1 0 2 0.85 1 0.85
2.3 1.2 1 0 2.9 1.1 0 1.8 0.780.78 1.2
2.2 1.1 1.2 0 2.1 2.8 0 1.8 0.3 1.5 0.6
2.5 0.780.85 0.6 2.2 0.7 2 1.7 0 1.1 0.48
1.7 0.480.85 0 1.7 0.7 0.3 2.7 0 0.95 0.7
1.8 0.3 0.7 0 2 0.3 0 1.3 2.4 1 0.3
1.7 1 1.1 0 1.6 0.7 0 0.7 0 2.5 0.3
1.2 0 0.3 0 1.8 0.48 0 1.3 0 0.6 2.1

0

1

2

3

4

Figure 2: The confusion matrix of Langdetect base-
line model (‘Joining all’). Item counts are converted by
log10(x+ 1).

the languages in Group 1 are only two non-European lan-
guages and suggest two explanations for their patterns.
First, on high precision scores, since Korean and Japanese
use completely different letter systems compared to other
languages, it is very easy for Langdetect to recognize them
if the metadata is written in Korean or Japanese. Second,
the low recall may come from the common usage of En-
glish as mentioned earlier. In such cases, metadata-based
Langdetect would never be able to correctly predict that
the lyrics are written in Korean or Japanese. This is re-
vealed in a deeper dataset analysis. Among the 1,145 Ko-
rean songs in the training set, there are 244 unique artists,
out of which 241 artist names are English. Conversely,
the model almost never misclassifies non-Korean or non-
Japanese songs to Korean or Japanese, respectively. Un-
like Group 1, we did not find any convincing explanation
for the patterns of Group 2.

5.2 Single modality baselines

As additional baseline models, we show experiment re-
sults of single modality models. They are AO (audio-only)
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Figure 3: Top - The performance of an text-only model
(TO model). Its precision, recall, and F1-score are
.526 / .415 / .422 (macro averaging) and .896 / .914 / .900
(weighted averaging). Bottom - The performance of an
audio-only model (AO model). The precision, recall, and
F1-score are respectively .387 / .248 / .275 (macro averag-
ing) and .852 / .884 / .857 (weighted averaging).
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Figure 4: The performance of Main model with both
modality inputs. The precision, recall, and F1-score are
respectively .688 / .435 / .504 (macro averaging) and
.911 / .922 / .911 (weighted averaging).

model and TO (text-only) model.
First of all, we compare the TO model against Langde-

tect baseline. TO model achieves a comparable macro
averaged F1-score (0.422, a degradation of 0.007) and a
higher weighted averaged F1-score (0.900, an improve-
ment of 0.043) as in Figure 3. Again, this result seems
heavily affected by the class imbalance of the training set.

Second, as illustrated in Figure 3, a lack of a modal-
ity leads to negative effects, often critically to some lan-
guages. AO model completely fails at identifying Others,
Polish, Italian, and Slovakian while TO model fails at Ko-
rean, Japanese, German, and Slovakian.

Third, as summarized in Figure 3, in every metric and
averaging strategy, TO model outperformed AO model,
showing the importance of using metadata. However, this
does not mean audio is less useful than textual data. Ac-
knowledging the limit of the information in the metadata
discussed with Langdetect baseline in Section 5.1, the re-
sult may indicate the opposite that currently, the informa-
tion from text input is almost saturated and more improve-
ment should be based on a better audio understanding.

5.3 LRID-Net: Main Model

In this section, we introduce the experiment result of our
multimodal SLID model, LRID-Net. This LRID-Net net
was trained without any modality dropouts and we call this
model ‘Main model’.
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Figure 5: The confusion matrix of Main model. Item
counts are converted by log10(x+ 1).

Main model shows an improvement over all the afore-
mentioned baseline models. Compared to Langdetect
baseline, it achieves a higher F1-score (+0.048) with a
higher precision (+0.134) and a lower recall (-0.118) on
weighted average. It also achieves a higher F1-score
(+0.075) and a higher precision (+0.158), but a lower recall
(-0.134) on macro average. Main model also outperforms
AO model and TO model, the single modality models, in
every metric and averaging strategy, emphasizing the ben-
efit of using multimodal information.

Among languages, Main model shows low recall rates
for Korean, French, Japanese, German, and Italian as
shown in Figure 4. This pattern is similar to that in
the results of Langdetect baseline as discussed in Sec-
tion 5.1. We conjecture that a similar type of confu-
sion may have happened in Main model, especially if
the 56-dimensional text-based language probability input
computed with Langdetect plays an important role (which
seems true given that TO model outperforms AO model in
Section 5.2). The class imbalance of the training set seems
to penalize recall rates of those languages because a classi-
fication of unconfident items is likely to be biased towards
the mode of the distribution of training items, i.e., English.
This is shown in Figure 5.

The overall improvement of F1-score did not benefit all
the languages equally. The performance of Main model
is rather polarized than Langdetect baseline model. The
F1-scores of 3/4 popular languages (English, Spanish, and
Korean) and Others category are improved in Main model
compared to Langdetect baseline. In the meantime, out of
the six less popular languages, only two languages (Italian
and Slovakian) show an improvement. This might mean
a correlation between the performance and the number of
training data. However, there is a clear exception. Main
model achieves an F1-score of 0.347 for Slovakian, which
both AO model and TO model completely failed.

For some languages, Main model achieved a lower per-
formance than a single modality model, leaving room for
further improvement. For example, Main model is outper-
formed by AO model for Korean and TO model for French
and Italian.

0.0
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.688 .657 .706 .696
.435 .468 .441 .496.504 .513 .487 .551

Main&Modality Dropout Models / Both inputs (Macro-avg)

Main ADr-Main TDr-Main ATDr-Main
0.0
0.5
1.0

.911 .914 .915 .920.922 .919 .922 .923.911 .913 .914 .918

(Weighted-avg)

precision recall f1-score

Figure 6: The comparison of metrics of Main model
and models with various modality dropout strategies when
there is no missing modalities in the data. ADr-Main, TDr-
Main, and ATDr-Main indicate models with the same ar-
chitecture but with modality dropouts applied on audio in-
put, text input, and both of the inputs, respectively.

5.4 Modality Dropout

In this section, we discuss the benefits and effects of apply-
ing modality dropout to Main model. We test three modal-
ity dropout strategies: applying modality dropout to audio
input only (ADr-Main model), text input only (TDr-Main
model), and both of the inputs (ATDr-Main model). The
dropout rate is fixed to 0.2 for every model. 5 In ATDr-
Main model, the two dropouts work independently. This
means that during training, stochastically, 4% of training
items would have zero values for both of the inputs where
backpropagation is still applied to update the model. This
leads to strengthen the model to predict the distribution of
the training data and may not be ideal, but we did not ob-
serve any critical issue in practice.

Since there is no language-specific pattern, we present
the averaged metrics only in this section.

5.4.1 Case 1: Complete Modality – Do modality
dropouts have any negative affects?

It is unusual to use modality dropout in music informa-
tion retrieval. We first investigate to ensure that adopting it
does not harm the normal use-cases, i.e., when there is no
missing modality.

As presented in Figure 6, all the models with modal-
ity dropouts - ADr-Main model, TDr-Main model, and
ATDr-Main model achieve comparable or even outper-
forming performances over Main model although they
might not be statistically significant. The effects of Modal-
ity dropout are better reflected on weighted-average scores
than macro-average ones. That is because weighted-
averaged scores are more linearly related to the empirical
loss that our models are trained to minimize. As shown,
modality dropouts only improved those scores. To summa-
rize, adopting modality dropouts does not harm the normal
use-cases.

5.4.2 Case 2: Missing Audio Input

Figure 7 presents the performances of Main model, ADr-
Main model, and ATDr-Main model when audio inputs are
missing, i.e., there is only text input.

5 0.2 was chosen assuming a small portion (for example, 20%) of
tracks would have missing modality in the real use-cases.
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Figure 7: The comparison of metrics of Main model and
models with various modality dropout strategies (see 6 for
details) when there is missing audio modality. Note that as
in Figure 3 (top), TO model, a dedicated text-only model
achieved precision / recall / F1-score of .526 / .415 / .422
(macro averaging) and .896 / .914 / .900 (weighted averag-
ing), respectively.

0.0
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Main&Modality Dropout Models / Audio-input Only (Macro-avg)

Main TDr-Main ATDr-Main
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1.0

.799 .822 .829.721 .847 .865.743 .827 .844
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Figure 8: The comparison of metrics of Main model and
models with various modality dropout strategies (see 6 for
details) when there is missing text modality. Note that as
in Figure 3 (bottom), AO model, a dedicated audio-only
model achieved precision / recall / F1-score of 387 / .248
/ .275 (macro averaging) and .852 / .884 / .857 (weighted
averaging), respectively.

First, surprisingly, Main model - one that is trained
without any modality dropout - performs comparably
with ADr-Main model and ATDr-Main model, which are
trained explicitly to be able to deal with missing audio in-
put. This is an unexpected behavior since there is no rea-
son the model should learn to ignore a zero audio input
(silence) and make a correct prediction solely based on the
text information – but, seems like it does. We find it diffi-
cult to explain it and leave it as a future work.

Second, it is worth comparing these results with that of
TO model (Figure 3, top), a model that is designed and
trained to work with text input only. In all the metrics and
averaging strategies, TO model outperforms all the three
models. For F1-score, even with the best model (ADr-
Main), there is a difference of 0.051 (macro averaging)
or 0.007 (weighted averaging). This indicates that despite
versatility, a model with an audio modality dropout may
not completely replace a dedicated text-only model, espe-
cially if missing audio inputs are highly likely.

5.4.3 Case 3: Missing Text Input

Figure 8 presents the performance of Main model, TDr-
Main model, and ATDr-Main model when text input is
missing, i.e., there is only audio input.

First, there are noticeable improvements by apply-

ing modality dropouts - TDr-Main model and ATDr-
Main model outperformed Main model for the most of the
metrics. ATDr-Main model achieved +0.086 and +0.101
higher F1-scores than Main model does. This result sup-
ports a potential real-world use-case of serving a single
SLID model where metadata may or may not be available.

Second, when compared to AO model (Figure 3, top),
all the three models in Figure 8 are outperformed. This
means, similar to the conclusion of Section 5.4.2, a model
with a text modality dropout may not serve as a perfect
alternative and whether to apply text modality dropout
(as opposed to train two different models, AO model and
Main model) would be a practical choice: the decision
would be based on the ratio of missing-text inputs and the
costs of training and maintaining one vs. two models.

6. CONCLUSION

In this paper, we presented LRID-Net, a deep learning
model for singing language identification (SLID) that takes
advantage of multimodal data. LRID-Net takes an audio
input as well as a text input that combines track title, album
name, and artist name. We also propose modality dropout
in MIR task, which is designed to let a single model be
used with varying input availability. In the experiment,
we showed that i) multimodal input improves the perfor-
mance, ii) a language probability vector of metadata is an
effective representation for SLID, iii) modality dropouts do
not harm the performance when both of the input modali-
ties exist, and iv) modality dropouts make a model robust
with missing input to some extent.

Our research has several limitations. There are some be-
haviors that we could not provide a satisfying explanation
about. Although being useful to some extent, the modal-
ity dropout did not completely fulfill the need of building
multiple models to cope with missing modalities. Due to
the already complicated experiment configuration, we did
not opt for balancing the languages, which would be a nec-
essary step to build a more practical language classifier.

There are many research questions to be answered in
SLID. A data-driven SLID model might learn some non-
linguistic features that are correlated to language labels,
and identifying those mechanisms would lead to building
more robust SLID models. One approach to demystifying
their behavior is to use source separation techniques and
observe how much a model is replying on vocal parts vs
accompaniments. Source separation techniques also could
lead to a better performing model because separated sig-
nals would provide a disentangled input representation that
may be useful for the task. Finally, another highly re-
lated and interesting task is lyric transcription, which can
be combined with SLID, where a mutual benefit is antici-
pated.
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