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Ursprung und Eigenschaften elliptischer Galaxien im hierarchischen Universum

In dieser Arbeit wurde die Entstehung elliptischer Galaxien durch die Verschmelzung von Galaxien
von drei verschiedenen Standpunkten aus untersucht. Zum einen wurde gezeigt, dass die beobachtete
Haufigkeit von Galaxienverschmelzung im Einklang mit theoretischen Vorhersagen des Standard-Cold-
Dark-Matter-Modells ist. Zum anderen wurden die in numerischen Simulation verwendeten Anfangs-
bedingungen fiir die Verschmelzung zweier Galaxien iiberpriift. Es zeigt sich, dass die Anfangsbe-
dingungen welche aus kosmologischen Simulationen extrahiert werden im Einklang mit den iiblicher-
weise verwendeten stehen, aber nur einen kleinen Teil des mdglichen Parameterraumes abdecken.
Lediglich der Perihelabstand wird in Verschmelzungssimulationen systematisch kleiner gew#hlt als es
kosmologische Simulationen vorhersagen. Die Morphologie der Verschmelzungspartner, modelliert mit
semi-analytischen Methoden, korelliert mit der Leuchtkraft der entstehenden elliptischen Galaxie. El-
liptische Galaxien mit Mp < —21 sind hauptséchlich durch die Verschmelzung zweier Galaxien mit
dominanter sphéroidaler Komponente entstanden, wohingegen elliptische Galaxien mit Mp ~ —20
ihren Ursprung in der Verschmelzung einer sphéroidal-dominierten und einer scheiben-dominierten
Galaxie haben. Lediglich leuchtschwache Ellipsen mit Mp 2 —18 werden hauptsichlich durch die
Verschmelzung zweier scheiben-dominierter Galaxien erzeugt. Dieses Resultat ist im Widerspruch
zum Standardmodell nach dem alle Ellipsen durch die Verschmelzung von Spiralen entstehen. Weit-
erhin benutzen wir Resultate detaillierter numerischer Simulationen in einem semi-anlytischen Modell
fiir die Entstehung von Galaxien und testen, ob modellierte Vorhersagen in Ubereinstimmung mit
beobachteten sind. Unter der Annahme, dass die Isophotenform elliptischer Galaxien lediglich von
dem Massenverhéltnis der verschmelzenden Galaxien abhéngt, wie es dissipationslose numerische Sim-
ulation verschmelzender Galaxien andeuten, kann die beobachtete Korrelation zwischen Leuchtkraft
und Isophotenform elliptischer Galaxien nicht reproduziert werden. Lediglich die Annahme, dass
die Verschmelzung zweier sphiroidaldominierter Galaxien zu einer elliptischen Galaxie mit ”boxy”
Isophoten fiihrt ermdglicht es den beobachteten Trend zu reproduzieren. Beriicksichtigung des Ein-
flusses zweier verschmelzender schwarzer Locher auf die stellare Dichteverteilung im Zentrum einer
Galaxie, wie es numerische Simulationen vorhersagen, fiihrt dazu, dass die beobachtete Korrelation
zwischen Massendefizit und schwarzer Lochmasse reproduziert werden kann.

Origin and Properties of Elliptical Galaxies in a Hierarchical Universe

The formation of elliptical galaxies by merging galaxies has been investigated adopting three different
paths. First, we confirm that the frequency of major merger events predicted by hierarchical models is
in fair agreement with observations. Second, the generally assumed initial conditions used in numerical
simulations of merging galaxies were tested. Orbital parameters of the merging galaxies are derived
self-consistently from large scale N-body simulations, showing that the commonly used parameters
are in agreement, but resemble just a small fraction of the possible parameter space. Most of the
mergers are taking place on parabolic orbits with pericenter distances larger than generally assumed
in simulations. Using semi-analytical modeling techniques, the morphology of progenitors is found
to be dependent on the luminosity of the present-day elliptical. One can distinguish three different
regions: ellipticals with Mp < —21 are mainly formed by a merger of two bulge-dominated galaxies,
while ellipticals with Mp ~ —20 are mainly the result of a disk-dominated galaxy merging with
a bulge-dominated galaxy. Only low luminous ellipticals with Mp 2 —18 are the product of disk
galaxies merging, as usually assumed in merger simulations. The third path is to implement results of
detailed numerical simulations into a semi-analytic models of galaxy formation model and to compare
global predictions for ellipticals with observations. The dependence of the isophotal shape of an
elliptical on the mass ratio of the last major merger, as suggested by dissipationless simulations, fails
in reproducing the observed correlation between isophotal shape and mass of an elliptical. Only the
assumption that all major mergers between elliptical galaxies lead to boxy ellipticals allows to recover
the observed trend. Including the effects of binary black hole merging in the centers of the remnants,
it is possible to recover the observed core mass deficit-black hole mass relation.
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Chapter 1

Introduction
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Myself when young did eagerly frequent
Doctor and Saint, and heard great argument
About it and about: but evermore

Came out by the same door as in T went

translation by E. Fitzgerald

Cosmology and the study of galaxy evolution entered a new era in this decade. The com-
pletion of the 2 degree Field survey (2dF) (e.g. Folkes et al., 1999) and the beginning of the
Sloan Digital Sky Survey (SDSS)(e.g. Norberg et al., 2002) just mark two surveys which char-
acterize this new era. Homogenous samples with more than ten thousands of galaxies allow
us to address issues in galaxy evolution and cosmology. Complementary to these studies are
detailed observations of central properties of galaxies with the Hubble Space Telescope (HST)
or the Spectroscopic Areal Unit for Research on Optical Nebulae (SAURON) (e.g. de Zeeuw
et al., 2002). These observations reveal distinct kinematical and photometric properties which
are relics of the formation of these galaxies (Davies et al., 2001). A self-consistent theory de-
scribing the formation of elliptical galaxies must provide both, a natural way of reproducing
the evolution seen in large surveys and the structure observed in the centers. There is grow-
ing evidence that these core properties correlate with super massive black holes (SMBHs) at
the centers of the galaxies (e.g. Gebhardt et al., 2000; Ferrarese & Merritt, 2000), which is
one motivation to understand the formation of SMBHs within the context of galaxy formation.

Early attempts to categorize galaxies into an evolutionary sequence, the Hubble-sequence,
were done by Hubble (1936). Later on it became clear that the so-called Hubble-sequence
is not an evolutionary sequence. More detailed observation of galaxies even led to a revised
version of the Hubble-sequence as e.g. proposed by Kormendy & Bender (1996) (fig. 1.1).
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Figure 1.1: The revised Hubble-sequence as proposed by Kormendy & Bender (1996)

For a long time elliptical galaxies, or early-type galaxies as they are called in the Hubble-
sequence, were believed to be old, dynamically relaxed stellar systems which formed in a
monolithic collapse at high redshift. Toomre & Toomre (1972) presented an alternative sce-
nario for the origin of elliptical galaxies. They proposed that the merger of two dynamically
cold disk galaxies leads to the formation of a dynamically hot elliptical galaxy. Interactions
between galaxies is a characteristic feature predicted by the hierarchical paradigm of struc-
ture formation which makes the ”merger hypothesis” very attractive in these kind of models.
Interacting galaxies in the nearby universe like e.g. the ” Antennae” galaxies (NGC 4038/39)
(fig. 1.2) serve as a useful test of the "merger hypothesis”, as they can be compared to nu-
merical studies of interacting galaxies (e.g. Toomre & Toomre, 1972; Barnes, 1988).

The Antennae galaxies, as a case study, show several sites of intense star formation in the
nuclear region and the tidal arms. The most intense star formation takes place in an off-
nucleus region where the two disks overlap (Mirabel et al., 1998). This starburst region is
heavily obscured by dust and can therefore not be observed at optical wavelengths but at
infrared wavelengths (5 — 500um). Additionally, X-rays are emitted from hot gas bubbles
which were heated by supernovae in starburst regions. The infrared luminosity of the An-
tennae L; ~ 10" L, is five times its optical luminosity. These kind of objects are classified
as luminous infrared galaxies (LIRGs). At luminosities Ly, > 10'', LIRGs are the domi-
nant population of galaxies in the local universe (Sanders & Mirabel, 1996). At even higher
luminosities, L; > 10'?L,, the galaxies show signs of being very gas and dust-rich interact-
ing systems. At these luminosities the systems are labeled ultra-luminous infrared galaxies
(ULIRGSs). About 7% of ULIRGs show no signs of interaction and are fully relaxed, while
~ 22% already completed their merger ,and ~ 50% are in the process of merging since both
nuclei can be identified (Rigopoulou et al., 1999). The question whether ULIRGs are ellipti-
cals in formation is still subject to discussion, because the average stellar population of these
galaxies will be younger than 5 — 10 Gyrs, which is the average age of present-day ellipticals.
However, ULIRGs are the best analogues to disturbed galaxies at high redshifts regarding
their morphology and star formation rate (Hibbard & Vacca, 1997). Furthermore the central
velocity dispersion of ULIRGs is comparable to those of elliptical galaxies (Genzel et al., 2001).

In this thesis we follow three different paths to investigate the merger scenario for the for-



mation of elliptical galaxies. First of all we investigate whether merging is occurring at the
same frequency in models and the real universe. As a second step we check if the merging
conditions assumed in numerical simulations are in agreement with the hierarchical merging
paradigm. The third step will be to use the results of numerical simulation and try to repro-
duce observations in the context of a semi-analytic galaxy formation scheme.

We structured the thesis as follows: chapter 2 gives a short general introduction on properties
of elliptical galaxies, followed by an introduction to the semi-analytic modeling techniques
applied (chapter 3). We investigate the merger fraction of galaxies in chapter 4 and derive
self-consistent initial conditions for the orbital parameters of mergers in chapter 5 and the
morphology of progenitors in chapter 6. In the chapters 7 and 8 we apply results from
simulations and try to model observed isophotal and core properties of elliptical galaxies.
Finally chapters 9 & 10 present the discussion of the results obtained in this thesis and an
outlook.
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Figure 1.2: The Antennae seen in different bands. Upper panel: Antennae in the optical. The
upper right shows the extended tidal tails, typical for interacting galaxies. The central region
as seen by the HST exhibits bright spots of newly born stars and the two distinct nuclei.
The infrared emission measured by the Infrared Space Observatory (ISO) is indicated by the
contour lines. The strongest emission comes from an obscured interaction region connecting
the two nuclei (Mirabel et al., 1998). Lower panel: The X-ray view of the Antennae galaxies
measured by Chandra (Fabiano et al., 2000, Astronomy Picture of the Day (APOD), August
18). Single point sources (black hole candidates and neutron stars) are surrounded by X-ray
emitting gas heated by supernova explosions.



Chapter 2

Elliptical galaxies

In this chapter we review briefly some of the general observational properties of elliptical
galaxies. More detailed properties, like the isophotal shape and the core properties are dis-
cussed in chapters 7 & 8.

Observations of elliptical galaxies reveal that they seem to follow a universal surface brightness
distribution (de Vaucouleurs, 1948)

I(r) = ILgp10 33300/mesp! 1) (2.1)

= Ippexp(=T.67[(r/resp)/* —1]) (2.2)

with the scale length r. ;¢ being the effective radius and the factor of 3.33 in 2.2 is chosen such
that half of the light of the galaxy is emitted inside r.;r, assuming spherical symmetry for
the galaxy image. I.¢s is the surface brightness at r = r.¢ (Binney & Merrifield, 1998). For
a long time the only parameter used to classify elliptical galaxies was their ellipticity. The
type of ellipticals are denoted by En with n depending on the ratio of major to minor axis,
a/b, by

nleX(l—%). (2.3)
Types range from nearly round EO to elongated E6 ellipticals. No elliptical galaxy more
elongated than E7 is found.

Dressler (1980) found a remarkable relation between the density of an environment and the
fraction of ellipticals and SO galaxies in it. With increasing density the fraction of ellipticals
and SOs increases (see also Whitmore & Gilmore, 1991). It was argued by some authors that
the fundamental relationship is not a density-morphology relation, but a distance from the
cluster center-morphology relation (Melnick & Sargent, 1977; Whitmore et al., 1993). Latter
relationship got support from a study by Sanroma & Salvador-Sole (1990), who showed that
the radial variations in cluster properties are preserved if one smooths out the substructure
of a cluster.

Elliptical galaxies are found to follow the Fundamental Plane (FP), a two-dimensional mani-
fold in the three dimensional parameter space of the global effective radius .y, mean effec-
tive surface brightness (3).rs, and central velocity dispersion oy (Djorgovski & Davis, 1987;
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Dressler et al., 1987; Kelson et al., 1997) . The fundamental plane can be represented by
following coordinate system (Bender et al., 1992):

ki = (logog +logress)/ V2, (2.4)
ko = (log ag +2log Xerp — log reff)/\/§ (2.5)
k3 = (log Ug —log ¥,y — log reff)/\/g. (2.6)

If one defines the luminosity L and the mass M of an observed galaxy by L = ¢13,; frzf s and

M = 02037"6 7f with ¢; and ¢z being structure constants, the effective radius can be written
as refp = (c1/c2)(M/L)" 025 !, which leads to

eff’
k1 o< log(M) (2.7)
Ky o log(M/L)S};; (2.8)
kg o log(M/L). (2.9)

As a consequence it is possible to represent the FP edge-on, plotting k3 vs k1 which is M/L
vs M. The fundamental plane in the visible and in the infrared is shown in fig. 2.1. The
fundamental plane is found to be independent of environment (Jorgensen et al., 1996) and
has a slightly different slope in the infrared compared to the optical (Figure 2.1; Mobasher
et al., 1999). The biparametric nature of elliptical galaxies is most probably a consequence
of the virial theorem and the fact that ellipticals have an almost homologous structure with
a small and continuous variation of the mass-to-light ratios at a given luminosity (Bender
et al., 1992; Pahre et al., 1998)
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Figure 2.1: Left: The fundamental Plane at visible wavelengths for Virgo and Coma ellipticals
(Bender et al., 1992). Right: Tilt of the optical (M /L)y oc M%23 and near-infrared (M/L) o
M 18 FP for Coma ellipticals (Mobasher et al., 1999).



Chapter 3

Semi-analytical modeling of galaxy
formation

Our understanding of galaxy formation and evolution is based on our knowledge of physical
processes and their interplay during the formation and evolution of galaxies. Once combined
in a self-consistent manner, it is possible to test models by detailed comparisons with ob-
servations. One very successful approach has been semi-analytical modeling, pioneered by
White & Rees (1978),Cole (1991), Lacey & Silk (1991) and White & Frenk (1991, WF91);
and developed further by Kauffmann et al. (e.g. 1999, K99), Somerville & Primack (1999,
SP99), Cole et al. (2000) and Springel et al. (2001).

In what follows, the main ingredients of the semi-analytic model we apply and their inter-
play are described (see fig. 3.1): the cosmological background model, the evolution of the
dark matter component, cooling of gas, star formation, feedback by supernovae, photometric
properties of the stars, and galaxy mergers.

cosmolo,
§3.1 &

dark matter
merging trees
§32

gas cooling

Y Y

stellar population

SN feedback star formation dynamical friction|

—

§3.6 §3.4 §3.5 §3.7
y Yy Yy Yy v Y
[ Galaxy Properties ]

Figure 3.1: Flow chart including the model ingredients needed to make galaxies.
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3.1 Cosmological background model

A thorough comparison between observed and modeled galaxies requires an implementation
of a galaxy formation scheme into a cosmological model. Many observational quantities, like
e.g. the redshift-lookback time connection, or the distance modulus depend on the specific
choice of cosmological model. Another quantity highly cosmology-dependent is the evolution
of structure. Therefore it is important to first consider a cosmological model and try to adjust
the free parameters of this model, the so-called cosmological parameters, to match observa-
tions.

After the epoch of inflation in the very early stages of the universe the dominant force on
large scales was and still is gravitation. The most successful theory of gravitation to date is
the theory of general relativity (GR; Einstein, 1916). As a consequence, any model describing
the evolution of the universe as a whole should be embedded in GR. The starting point of a
derivation of a cosmological model is the Einstein field equation, with two additional condi-
tions regarding the distribution and behavior of matter occupying the universe (e.g. Misner
et al., 1973). The first is the cosmological principle, stating the universe is homogeneous
and isotropic leading to the Robertson-Walker line element. This symmetry condition on the
matter distribution reflects the belief that our local neighborhood is a rather typical region
of the universe. Observations indeed suggest the universe to be homogeneous on large scales
(e.g. SDSS; 2DF) and justify this assumption regarding the large scale behavior of the uni-
verse. The second condition is Weyl’s postulate, which states that the world lines of particles
in space-time only cross at a singular point, like the Big Bang or the Big Crunch. This as-
sumption allows one to treat the particles like a perfect fluid. When talking about particles
in this context, one has to think of a fluid composed of particles such as galaxies or even
bigger structures. To first order the peculiar velocities of galaxies are smaller than the overall
expansion of the universe justifying the assumption. Another simplification, needed to derive
the cosmological model, is to neglect pressure contributed from matter. In this case, the
model is called a dust model of the universe. Taking into account an additional component
of relativistic particles, i.e. radiation and massless neutrinos, the Friedmann equation for the
evolution of the universe can be derived:

8 A K
H>(t) = 5nG <a?%)+54i(’;> 3t am (3.1)

where the scale factor a(t) makes the connection between comoving scale r and physical scale
x by r(t) = a(t)x and is an increasing function of time with a(¢g) = 1. Here, and in what
follows, the present-day values of quantities have indices 0. The scale factor a is related to
the redshift z by a = 1/(1+ z). The differential equation eq. 3.1 shows the dependence of the
Hubble parameter H(t) = a(t)/a(t), which is the rate of expansion the universe is experiencing
at a given scale factor, on the energy densities of matter p,,(t) = poa3(t), relativistic particles
pr(t) = proa~(t), dark energy pp = (87G)~'A and the spatial geometry of the universe
expressed in terms of the constant K. Sometimes it is more useful to express energy densities
p in terms of the critical density peri(t) = (87G)/(3H?(t)), which is the density of a spatially
flat (K = 0) universe with no contribution from dark energy (A = 0). If one defines the
density parameter as

p
Q , 3.2
Perit ( )
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eq. 3.1 becomes very compact:
1=Q, +Qr+ Qp + Q. (3.3)

From eq. 3.3 it is clear that all needed to pin down the cosmological model are the density
parameters {2 of the different components.

Independent measurements of these density parameters are a major challenge of observational
cosmology.

- QK:

One of the most powerful tools of modern observational cosmology is the cosmic mi-
crowave background (CMB). This relic radiation was emitted at the epoch of atomic
recombination, when the universe became optically thin. From the observed power
spectrum of temperature anisotropies in the CMB, it is possible to draw several conclu-
sions regarding the cosmological parameters. Especially important is the angular scale
at which the first acoustic peak appears. Potential wells caused by density fluctuations
in dark matter drag the hot gas consisting of baryons and photons until they rebound
due to the pressure of the gas. A series of such acoustic oscillations takes place before
the epoch of recombination when they stop. The largest density fluctuation at recom-
bination is found on the scale which had time to proceed to maximum collapse, but not
to rebound. This scale is called the sound horizon, the largest scale sound waves could
travel from the beginning of the universe till the epoch of recombination. The physical
scale of the sound horizon at recombination only weakly depends on the cosmological
model, and therefore observed deviations from the theoretical predicted size must be
due to the curvature of space. Balloon-based experiments measured the position of the
first acoustic peak, finding that it is around a multipole moment of [ ~ 200 (Lee et al.,
2001; Netterfield et al., 2002), corresponding to angular size at the sky of © ~ 7/l = 0.9
radians. This is about the position expected for a spatially flat universe with Qz = 0.

For Qr = 0 eq. 3.3 states that 2, + Qg + Q4 is constant for all times, meaning one only
needs to evaluate the present-day values of the density parameters to determine the state of
the universe at any arbitrary time.

- HO:

The critical density perit,0 is sensitive to the local Hubble parameter Hy, measured using
objects with known variable or periodic light curves, like Cepheids or supernovae type
Ta. These studies find Hy = 65410 km sec” ' Mpc ! (Freedman et al., 1999; Tammann,
1999) or more recently Hy = 72 + 10 km sec™! Mpc~! (Freedman et al., 2001). It is
customary to define the parameter h = Hy/(100 km sec™' Mpc~!) and to present values
of density parameters Q with an explicit dependence on h~2.

- QR,O:

The energy density of photons in the universe is dominated by photons in the CMB. The
precise measurement of the CMB temperature coupled with the fact that the energy of
the photons follows a Planck-distribution allows one to determine the energy density
of photons today €2, = 2.58 x 1075r2. In addition to photons massless neutrinos
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contribute to the energy density of relativistic particles. Unfortunately successful mea-
surements on neutrinos are still rare and not yet conclusive. Therfore one must rely
on predictions made by particle physics. In the case of 3 massless neutrino species the
energy density of relativistic particles becomes Qg = 4.17 X 10~°h 2.

- Qm’gt

Several methods have been applied in the past to measure the matter density in the
universe. One is the baryon fraction method, which assumes that the fraction of baryonic
to total mass in clusters is the universal average. Detailed nucleosynthesis calculations
based on the cosmic abundance of helium and deuterium find €2y = 0.045 4 0.0025
(Walker et al., 1991; Burles & Tytler, 1998; Schramm & Turner, 1998). In combination
with the fraction of baryonic to total mass found in clusters € 9/Qp, 0 =~ 0.15 (White
et al., 1993; White & Fabian, 1995) the matter density becomes Q,, o = Qo = 0.3 £0.1.
This result illustrates nicely that the dominant component in the universe is dark and
non-baryonic.

- QA’OZ

In principle the missing component 25 can now be calculated using the estimates for
the other Qs and eq. 3.3. Nevertheless it is better to rely on a independent method, e.g.,
the measure of cosmic de/acceleration using distant type Ia supernovae. Indeed these
observation confirm the presence of an acceleration of the universe with 2, = 0.754+0.1
(Riess et al., 1998; Perlmutter et al., 1999).

However, the nature of the dark energy component is still not understood completely. In eq.
3.1 dark energy has been assumed to be a cosmological constant, a vacuum energy, which has
negative pressure, is constant, and is spatially homogenous. A more general approach to dark
energy are quintessence models (e.g. Wetterich, 1995; Caldwell et al., 1998). These models
try to explain in a self-consistent way, why the dark energy component in the universe is
today of the order of the matter density. In the case of a cosmological constant this requires
"fine tuning”. In contrast the dark energy in quintessence models is described by a scalar
field ¢, whose origin lies in high energy physics and is still speculative. The energy density
and pressure of the quintessence component are given by the scalar field ¢ as

pa=3F+V(@) and po= ¢~ V(#). (3.4)

In the literature different choices for the potential V' (¢), ranging from exponential to power
law behaviors, have been studied (Ferreira & Joyce, 1998, and reference therein) . A particular
straight forward choice are models in which a constant equation of state (Caldwell et al., 1998)
is defined via:

yye]
w==—=. 3.5
PQ ( )

The dark energy scales now as:

pa = paoa” ¢t (3.6)
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Figure 3.2: The evolution of the density parameters 2 with scale factor a for three different
dark energy models which are in agreement with observations.

For the case of a cosmological constant the equation of state parameter w = —1. Observational
constraints are in agreement with models using —1 < w < —1/3 (Wang & Steinhardt, 1998).
Nevertheless a major problem facing observations trying to determine the equation of state
is the degeneracy between the equation of state and the dependence on other cosmological
parameters. Therefore, a final verification of w is still missing. In the more general models
were w is time dependent (e.g. Doran et al., 2001) a given density can be related to more
than one pressure which makes the equation of state of the dark energy component somewhat
ambiguous. To get the appropriate Friedmann equation for a quintessence model only Q4 in
eq. 3.3 must be replaced by Qg. In fig. 3.2 we show three cosmological models for different
behavior of dark energy, which are all in concordance with observations. The classical ACDM
model with w = —1, a QCDM model with w = —2/3 and a QCDM model with time dependent
w(t) as proposed by Wetterich (2002). The nice feature of this model is that it needs ”fine
tuning” only on a percent level, and that it shows a late time evolution similar to a model
with cosmological constant. As can be seen the differences between these models are marginal
and are therefore not suited to distinguish between them.

A compilation of cosmic parameters we adopt throughout this work are shown in table 3.1.
Very recently, in fact during the writing of this thesis, the first results from the Wilkinson
Microwave Anisotropy Probe (WMAP) satellite mission were published (Spergel et al., 2003).
The cosmic parameters estimated from the WMAP data are also shown in table 3.1. The
differences in most of the cosmological parameters do not have any significant impact on the
results presented in this work. The influence of the baryon fraction on the results will be
discussed in §2.3.
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used parameter | WMAP
h 0.65 0.71
Qiot 1 1.02
Qo 0.3 0.27
D0/ 0.1 0.16
Qa 0.7 0.75
w -1 < —0.78

Table 3.1: Cosmic parameters used in the model calculations compared to recent WMAP
estimates (Spergel et al., 2003).

3.2 Evolution of dark matter perturbations

As seen in the last section, dark matter is the dominant form of matter in the universe.
A particular feature of dark matter is that it only interacts through gravitation with the
baryons and photons in the universe. The implication for structure formation is that dark
matter fluctuations can grow, in contrast to baryonic fluctuations, already long before the
epoch of recombination. Thus later on, the baryons are dragged into the potential wells
created by the dark matter. Therefore, it is very essential for galaxy formation to follow
the gravitational clustering of dark matter. There are several approaches to do so,e.g., using
tree-codes (e.g. Barnes & Hut, 1986), particle-mesh codes (e.g. Knebe et al., 2001) or special-
purpose hardware devices as GRAPE boards (Makino, 2002). In this work we follow an
alternative approach first introduced by Press & Schechter (1974, PS74). The advantage of
this method is that the computational cost is much less than that needed for other numerical
methods . The agreement between the so-called Press-Schechter (PS) like approaches to the
N-body simulations has been tested extensively and found to be in good agreement (e.g.
Somerville & Kolatt, 1999). Of course there is a price to pay: in the PS approach, there is no
dynamical information regarding the dark matter particles. In the following the ingredients
of the PS approach and the extended Press-Schechter (EPS) approach will be presented.

3.2.1 Power spectrum of density fluctuations

Structure evolves from small density fluctuations which were produced on quantum scales
and boosted to large scales during the period of inflation. The density field can be described
in terms of the density contrast:

_rx)—p
§5(x) = s (3.7)

where p is the average density of the background. Smoothing the periodic density field with
a spherical symmetric filter function Wy, and applying a Fourier transformation leads to:

1

W) = (s

/ 6 (k) Wy (k) exp(ikx)d>E. (3.8)

Fourier transformed variables are denoted with hat. The theory of inflation predicts Gaussian
perturbations which are characterized by modes 0(k) with no correlation, meaning random
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phases 6y:
5(k) = 13(1)| exp(:6y)- (3.9)

Additionally, Gaussian fields have the property of being isotropic with:

[N

(k) = 6(k). (3.10)

The mean-square fluctuation, the variance, per unit volume of the smoothed field can be
readily calculated from eq. 3.8 and above conditions on Gaussian fields:

o2(V) = (52 (x)) = T;/wa(k)P(k)dek, (3.11)
with:
P(k) = |6(k)|, (3.12)

as the power spectrum. Eq. 3.11 illustrates a very nice feature of Gaussian random fields. All
needed to characterize them is the power spectrum P(k). Fig. 3.3 illustrate the meaning of a
Gaussian field. The particles shown are a 2-dimensional projection of the real 3-dimensional
particle realization of a Gaussian random field in a cube using the publicly available code
GRAPHICS by Bertschinger (2001). Imagine throwing spheres of volume V' randomly into the
cube and averaging the density inside the sphere. This will result in a density distribution:

1 52
p(0)dd = —=—=——- eXP(—W

V2mo (V)
which is Gaussian. Again the dependence on the power spectrum through the variance is
obvious. Averaging the density in the sphere corresponds to a top hat window function in
real space:

)ds, (3.13)

Wy = O(R —r)(4nR3/3) L, (3.14)
where O is the Heaviside step function, and in k-space:

. 3[sin(kR) — kR cos(kr)]

Wy = 3.15
14 (kR)?’ ( )

Inflation produces a scale free spectrum of fluctuations of Harrison-Zeldovic form:
Pin¢(k) < k" with n=1. (3.16)

The power spectrum does not stay scale free, but will change its form due to different growth
of fluctuations on different scales. Usually a transfer function 7T'(k) is defined which relates
the initial power spectrum to the final spectrum by:

P(k) = Piny (k)T (k). (3.17)

The shape of the processed power spectrum can be qualitatively understood considering
the growth of fluctuation on different scales. During the epoch of radiation dominance,
fluctuations on scales larger than the particle horizon (the distance light would have traveled
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Figure 3.3: Realization of a Gaussian random field in a periodic box using GRAPHICS
(Bertschinger, 2001). The figure illustrates throwing a sphere of volume V randomly into
the field.

since the Big Bang), grow according to linear theory with ~ a? and stay nearly constant
when they are inside the horizon. Therefore the amplitude of modes entering the horizon
later is bigger. From the epoch of radiation domination onwards, super-horizon modes grow
similarly to sub-horizon modes in the linear regime, and the power spectrum becomes more or
less flat. The exact calculations of the transfer function involve Boltzmann equations for all
the different particle species available and the Einstein equation. This set of equations can be
solved numerically as, e.g., done in the public code CMBFAST by Seljak & Zaldarriaga (1996).
In fig. 3.4 we present the variance o2 calculated using eq. 3.11 and the appropriate cold dark
matter power spectrum. The shape of the power spectrum can be derived numerically, but
the normalization has to be tuned to observations like the temperature anisotropies measured
on very large scales by the Cosmic Background Explorer (COBE) satellite, or og, which is
the variance in a sphere of radius r = 8h~' Mpc. We normalize to g = 0.9. Table 3.2 lists
the model parameters used and the latest values from WMAP (Spergel et al., 2003).

used parameter | WMAP
n 1 0.99
oL 0.9 0.84

Table 3.2: Power spectrum parameters used and measured by WMAP (Spergel et al., 2003)
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Figure 3.4: The variance calculated using eq. 3.11 and the power spectrum of cold dark
matter fluctuations.

3.2.2 Linear theory

The most self consistent way to follow the evolution of the density fluctuations presented in
the last section is to use numerical N-body methods. However, it is possible to access this
problem also from an analytic perspective based on the linear theory of perturbation growth.
A perturbation in the beginning of its evolution has a growing density contrast d because it
is expanding more slowly than the surrounding background. As long as § < 1 the evolution
can be described by:

5+ 225 = 4nGppmd. (3.18)
a

This is the linear perturbation equation for the evolution of small perturbations. The dark
energy density does not play a role in clustering on scales of less than 100 Mpc and only effects
the evolution of the scale factor ¢ with time, why it is not contributing in eq. 3.18 (Wang &
Steinhardt, 1998). In general, eq. 3.18 predicts both a growing and a decreasing amplitude.
Following Heath (1977) and Carroll et al. (1992) an explicit solution for the growing mode is:

5Qnda (@ (da\
=Ala) = —2— — da'. 3.19
o) =A@ =55 (%) o (3.19)

This expression is normalized to give A(a) = a for the case of an EdS universe. To get the real
density contrast of a perturbation one needs to apply the growth factor g(a) in the following
way:

5(az) = 292 50 (3.20)
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Figure 3.5: Evolution of density perturbations which will be 6 = 1 at z = 0 in models
Qn =0.3,Qp = 0.7, h = 0.65 and dark energy equation of state parameter w = —1 and —2/3.

In figure 3.5, the evolution of perturbations with §(1) = 1 in two dark energy models are
shown. Perturbations in the model with w = —2/3 grow more slowly than in the model
with w = —1, and must therefore have been larger at the same redshift. One method to
investigate cosmological parameters is by the count of clusters (e.g. De Propris et al., 2002).
In models where structure grows slower one expects to find more clusters at high redshifts
than in models with strong growth.

3.2.3 Spherical collapse model

In the simplest case of a spherically symmetric uniformly overdense region, analytic expres-
sions can be derived for a collapse to a bound dark matter halo. Birkhoff’s theorem states
that the evolution of the spherical overdense region can be treated as if it were an isolated
universe of its own described by eq. 3.1. The scale factor in eq. 3.1 corresponds to the
radius of the sphere, and it is possible to calculate the point of maximum radius ry, before
the sphere starts collapsing to a singularity. From symmetry arguments, the time to collapse
corresponds to twice the time taken for the perturbation to reach the turn-around point. To
make the connection with the background model in which the overdensity is embedded, one
needs to synchronize the radius of the sphere to the scale factor of the background model (e.g.
SP99). A perturbation does not really collapse to a singularity, but instead gets virialized
because shell crossing occurs and stops the collapse when the virial radius 7, is reached.
The virial radius can be calculated using the virial theorem with an additional term for the
potential energy due to dark energy. At the turn-around point the kinetic energy vanishes
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and the potential energy is maximal:

Eiot = Uqta + UDE ta (3.21)

with the gravitational potential

3GM?
Ugta=—= 3.22
Gita 5 Tta ( )
and the dark energy potential
1

UpE,ta = 1—0pDE(am)87rGMr§a. (3.23)

In the case of a cosmological constant, pp(a;,)8mG = A. Because dark energy does not cluster
on scales less than 100 Mpc the dark energy density remains the same inside and outside the
perturbation. The virial theorem for potentials of the form U o r" Landau & Lifshitz (1969)
is:

n

T=-U (3.24)
2
hence the virial theorem states:
1
T = _iUG,vir + UDE,vir- (3'25)
Since energy is conserved one gets:
Etot =T+ UG,vir + UDE,vir = UG,ta + UDE,tm (3'26)

which can be used to find the relation between virial radius and turn-around radius. Once the
virial radius and the mass inside of it are known, the virial density py;- can be calculated and
various fitting formulas have been presented for the virial density in different cosmological
models (e.g. Bryan & Norman, 1998; Wang & Steinhardt, 1998). The virial density of collapsed
objects depends in general on the redshift at which the collapse occurs. For illustration, the
ratio of virial to background density of two dark energy models is shown in fig. 3.6. At high
redshifts the virial densities in different models approach the value expected in a critical EdS
(Qp =0, 2,, = 1) universe. An important quantity needed for the PS approach later is the
critical density contrast J., which is the fictious density contrast a perturbation would have
if one would interpolate with linear theory until virialization. Detailed calculations find this
quantity to be . = 1.68 with a weak dependency on cosmological model and redshift (Eke
et al., 1996).

3.2.4 Press-Schechter formalism

The original idea of this approach, presented by PS74, is to smooth an initial density field
with a spherically symmetric filter and than evolve the density contrast linearly forward in
time. Whenever a perturbation reaches a critical limit for collapse, defined by J., assume a
bound object of mass given by M ~ p(4/37r3)~1. This allows to estimate at any redshift a
mass function of collapsed objects. One drawback of this method is that an artificial factor
of two must be multiplied to the mass function to make sure that all mass in the universe is
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Figure 3.6: Ratio of virial to background density in models with 2, = 0.3, Qp = 0.7, h = 0.65
and dark energy equation of state parameter w = —1 and —2/3.

in collapsed objects. Despite the crude assumption and the simplification of neglecting any
non-linear gravitational clustering the comparison of PS-mass functions to mass functions of
N-body simulations show good agreement (Somerville & Kolatt, 1999).

Bond et al. (1991, BCEK91) and Lacey & Cole (1993, L.C93) approached the question of the
PS-mass function from a more general perspective using the excursion set approach. The
basic idea is to smooth the density field around a particle with spherical window functions of
variable radius. The smoothed density contrast at the particle’s position becomes a function
of smoothing scale and is called a trajectory. For the following discussion it is easier to express
trajectories as functions of the variance S = 02, which is related to the smoothing scale by eq.
3.11. The only condition that o must fulfill is to be a decreasing function of M, respectively
the smoothing scale V', which is the case for the CDM power spectrum. BCEK91 showed
that in the case of a top-hat filter in k-space the trajectory will be a Brownian random-
walk. By increasing S each increment to the trajectory §(S) comes from a Fourier mode in a
thin spherical shell in k-space which is due to eq. 3.9 not correlated with any of the previous
modes added. Fig. 3.7 shows an example of such a trajectory. Instead of calculating statistical
properties of trajectories by averaging over spatial locations of particles it is possible to apply
the ergodic theorem to average over different realizations of the density field at one location.
A trajectory can be connected to a mass scale of a collapsed object by identifying the variance
S at which the trajectory makes its first upcrossing trough d., the density contrast defining
collapse. This ensures that the collapsed object is not included in a larger collapsed region
(cloud-in-cloud problem; see Bardeen et al., 1986; Peacock & Heavens, 1990; Jedamzik, 1995).
To get the fraction of total mass associated with collapsed halos of mass M, M + dM one
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Figure 3.7: A trajectory 6(S) which makes its first upcrossing through . at mass M.

needs to calculate the fraction of trajectories making their first upcrossing through d. at scale
S(M), S(M) 4+ dS(M) (e.g. LCI3)

d “"2] ds. (3.27)

1
V2 §3/2 b [_ﬁ
The variance S must be calculated using eq. 3.11 with the power spectrum linear extrapolated
to today. The variable w (not to be confused with the equation of state parameter) is related
to the critical density d. by

f(S,w)dS =

w(z) = 6(;@; (3.28)

9(2)

w(z1) gives the value a perturbation, that collapsed at redshift z; would have according to
linear theory at z = 0. The comoving number density of halos of mass M, M +dM at redshift
z is given by

dn 00 ds

—(M,z)dM = =—f(S — | dM

(01, 2) 2 (5.0)| 1

(3.29)

B <2>1/2 po w(z) ‘dlna

7)) MZo(M)|dmM|™

P [_ 2:252\;)] .

This expression is the same found by PS74 with the heuristic arguments presented above. A
detailed comparison to N-body simulations has been preformed and found that the results can
deviate up to a factor of 2 (e.g. Somerville & Kolatt, 1999; Somerville et al., 2000) and that
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the halo mass function seems to evolve more strongly in the PS approach. Specially, at small
masses, the PS-mass function overpredicts the abundance of halos. To cure these problems
modifications of eq. 3.29 have been suggested (Sheth & Tormen, 1999; Jenkins et al., 2001)
to make the agreement with simulations better.

3.2.5 Extended Press-Schechter formalism

The excursion set formalism presented above does not only provide the mass function of
dark matter halos but also provides informations regarding the progenitors of a halo (e.g.
LC93). One can ask, what the probability will be to have a trajectory making its first
upcrossing through w(z;) = w; at S(M;) = S; and than continue to make a upcrossing
through w(z) = we at S(My) = Sy with 21 < 2y and My > M> (see fig. 3.8). This is the
probability of having a particle being part of a halo of mass M; collapsing at z; and being
previously part of a halo of mass My which collapsed at z,. Replacing S with (Sy — S7) and
w with (wy — wy) in eq. 3.27 leads to the expression for the fraction of trajectories or mass
satisfying aboves condition (LC93)

f(S2,ws|S1,w1)dS2 =

1 (wg—wi) ox [_ (w2 —wi)?
V2 (Sy — S1)3/2 2(Sy — S1)?

The conditional mass function, the probability that a halo of mass My had a progenitor in
the mass range Mo, My + dM> is gained by multiplication with M; /Mo

] dsSs. (3.30)

dP My
— (M- M dMy, = —
dMg( 2, 22| M1, z1)dM> M2f(52,w2|51,w1)

dSs

T | e (3.31)

Using Bayes theorem the conditional probability that a halo of mass Ms will end up in a halo
in the mass range M, M| + dM; reads

f(S2,wa|S1,w1)dS2 f(S1,w1)dS)

f(S1,w1]S2, wa)dSt = f(S2,w2)dSs

(3.32)

3.2.6 Merger trees

Knowing the conditional probability of having a progenitor in a given mass range at a given
redshift allows to use Monte-Carlo techniques to generate the merging history of a dark matter
halo (e.g. Kauffmann & White, 1993; Somerville & Kolatt, 1999). The idea is to draw random
progenitors following the distribution given by eq. 3.30. Writing down eq. 3.30 again in a
modified way

2
P(AS, Aw)dAS = —_ 5% [ Aw

NN exp —m] dAS. (3.33)
shows that with the variable transformation z = Aw/ VAS eq. 3.33 becomes a Gaussian
distribution in z with zero mean and unit variance. Once the redshift of the progenitor is
chosen, one can get the mass of it by drawing a random x from a Gaussian distribution and
translating it into a step in variance AS. The progenitor at time z(wy + Aw) will have mass
M(Sp + 6S), where indices 0 denote a halo whose progenitor one wants to know. A straight
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Figure 3.8: Trajectory which makes its first upcrossing through w; at mass M; and makes it
first upcrossing through we at mass Ms. This is equivalent to stating the particle is inside a
halo of mass My at zo and later at z; part of a halo of mass Mj.

forward algorithm can now be constructed (Somerville & Kolatt, 1999) as shown in the flow
chart fig. 3.9.

The construction of a halo’s merger history starts by choosing a time step Aw = wy — wy
and progenitors as described above. For numerical reasons it is important to impose a lower
mass limit M,,;, for progenitors. Progenitors below this mass limit will be labeled accretion
event and not followed further in the merger tree, in contrast to those above the mass limit.
Once a progenitor with mass M; has been chosen the next progenitor drawn must have mass
Ms < My — M. Progenitors drawn with mass My > My — M are rejected because of mass
conservation. One needs to continue until My — M ... — M; falls below M,,;,. The next
step is to choose another redshift step by Aw = wy — wy in the history of the halos and now
to go through all the progenitors My, ... M; and draw progenitors for them the same way as
described above. This procedure needs to be repeated until all progenitors drop below the
mass limit M,,;, or one reaches a predefined redshift at which the history is not followed any
more. This Monte-Carlo approach has some unavoidable short comings, as e.g. the artificially
imposed mass conservation which results in the rejection of progenitors and therefore in a
modification of the distribution sampled. Another problem is that the probability of drawing
two progenitors of mass My and My is not independent of the sequence in which they were
chosen in the algorithm. Despite all of its short comings, this approach continues in the
tradition of PS-approaches and shows good agreement with merger histories found in N-body
simulations (Somerville et al., 2000).
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Figure 3.9: Flow chart illustrating the algorithm to generate merger trees.

3.3 Cooling of gas

Luminous matter in the universe consists of baryons, which unlike dark also interacts in ways
other than gravitation. This is the reason why it is more difficult to model the behavior of
baryons during galaxy formation. As shown in the previous sections, dark matter perturba-
tions can grow long before baryonic perturbations start growing significantly. This means that
at the time when baryonic fluctuations start growing, dark matter potential wells are already
around and drag the baryons into the potential wells. We focus on adiabatic fluctuations,
meaning that the baryonic fluctuations follow the dark matter fluctuations.

Once the hot baryonic gas falls into the dark matter potential wells it will be shock heated,
settling down in a pressure supported state and will stay there in the absence of a mechanism
to lose energy. The thermal energy of the gas will then be comparable to the potential energy.
Knowing this, the temperature of the gas can be estimated using some approximations. First,
following White & Frenk (1991) we assume the gas follows the dark matter distribution. Dark
matter halos are modeled by singular isothermal spheres truncated at the virial radius ry;,

0_2

p(lr) = 27TGT2 r S Ir’l)’i’!‘a (334)
with o as the velocity dispersion and G' Newton’s constant. The circular velocity

_ GMvir

Tvir

V2

(3.35)
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is related to the velocity dispersion by V.2 = 202. Then the starting point is the equation of
hydrostatic equilibrium of an isothermal gas (Binney & Tremaine, 1987)

dP KT dp(r)

el GMgas(< 1)
dr — pmp dr

r2

= —p(r) (3.36)
with M (< r) being the mass interior of r, k the Boltzmann constant, p the average mass per
particle in the gas in units of proton mass mp (mean molecular weight), P the pressure and
T the temperature of the gas which we set to be the virial temperature Ty;,. Multiplying eq.
3.36 by (r’ump/p(r)kpT) and differentiating with respect to r one obtains

d ([ 5dlnp(r) Gump , o
Ry P R AT 4 : :
= <r o T wrp(r) (3.37)

Assuming an appropriate distribution function for the dark matter, integrating over all ve-
locities and entering the result for the density into Poisson’s equation the result is

d ( odlnp(r)y G
o <r o = 02471'7“ p(r). (3.38)

We assume the gas to be distributed at all times like the dark matter (o445 = opar), leading
to the condition of eq. 3.37 and eq. 3.38 being identical which is satisfied for
2 kTvir

o? = =" 3.39
mp (3-39)

The following expression for the virial temperature is now obtained

Lpmp . o Ve \?

The gas falling into the dark matter potential wells will be of primordial composition because
it had not experienced any star formation and metal enrichment by supernovae. We assume
a helium fraction by mass of ¥ = 0.25 giving a mean molecular weight of u ~ 0.59. In fig.
3.10 the dependence of the virial temperature on mass of the dark halo and redshift is shown.

At temperature of > 10° K, hydrogen and helium will be fully ionized and the gas is assumed to
be in collisional ionization equilibrium and optically thin. At this point radiative cooling will
be the main cooling effect; this process runs away until the gas settles down in a rotationally-
supported disk. The time scale for this to happen is the cooling time #.,,, defined as the
time it takes the gas to get rid of its internal energy by radiative cooling. In the common
notation it is defined as the ratio of internal energy density F to cooling rate per unit volume
neniA(Z, Tyir)

NET 3 Pgas(T)ET

E
' neniMN(Z,T) ~ 2 u(Z, TYmpneniAN(Z,T)

3
tcool(r) = @ = 5

(3.41)

The temperature and metallicity dependence of the mean molecular weight can be under-
stood in terms of electrons becoming unbound. With increasing temperature more electrons
will become unbound until the plasma is fully ionized which happens at log(T) ~ 5.15 for
primordial gas and at log(T) ~ 5.6 for gas of solar metallicity (Sutherland & Dopita, 1993),
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Figure 3.10: The redshift dependence of the virial temperature for different halo masses in a
Qpr = 0.7, Q9 = 0.3, h = 0.65 cosmology. The numbers at each of the curves correspond to
the dark matter halo mass in units of M.

which explains the metallicity and temperature dependence. In the following, the explicit
dependence of p on Z and T will be omitted. The number density of particles N is related
to the number densities of electrons n, and ions n; in the gas by

N =n,+ an (3'42)
i

For a hydrogen rich plasma, like primordial gas, n. - n; in eq. 3.41 can be replaced by ne - ne.
Eq. 3.41 then takes the following form

6umpkT
tcool(T) = pme

= o (AZT) (3:43)

Since the hot baryonic gas of mass M}, is assumed to follow the dark matter distribution at
all times, the gas density profile is isothermal and given by

Mhot

= . .44
AT Ryyip 12 (3-44)

Pgas(T)
The cooling function A(Z,T') includes all the relevant radiative processes and is a function
of metallicity Z and temperature T'. In fig. 3.11 we show two cooling functions numerically
calculated by Sutherland & Dopita (1993). The main processes responsible for cooling at
T < 10° K are free-bound transitions from electrons which get captured by nuclei and emit
photons which carry away their binding energy and bound-bound transitions of electrons
changing the orbitals. The first peak at around 10* K is due to an increased recombination
of hydrogen and the second peak at around 10° K is due to recombination of helium. Above
10% K thermal bremsstrahlung from electrons is the dominant source of cooling with energy
loss oc N2T1/2,
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Figure 3.11: Cooling function A for solar and primordial metallicity (from Sutherland &
Dopita, 1993)

Eq. 3.43 shows that in the high density case cooling becomes more efficient, leading to a
smaller cooling times. This has some important effects on gas cooling in halos which form
at different epochs. Fig. 3.6 shows that the virial density of halos increases with redshift.

Therefore going to higher redshifts, the circular velocity scales for constant mass My, o rv_“ln

(eq. 3.35). The densities in eq. 3.41 scale o 73, and the cooling time t50 o 72;,.. Halos
at higher redshift cool more efficiently than halos of the same mass that form at later times,
which has influence on the star formation rate. The cooling function is increasing strongly
with metallicity and the metallicity of gas in big halos is found to be larger than in small

halos indicating stronger cooling in high mass halos.

We follow Springel et al. (2001) and define a cooling radius 7.,, by the condition that the
cooling time is equal to the dynamical time of the halo ?4,, = Ryir/V.. In this case the halo
is thought to have been cooling ’quasi-statically’. We define the hot gas fraction, assuming it
was the universal My, = M, /Q0 before cooling started, by

Mhot - Mcold

= 4
fhot Mvir (3 5)

with M4 being the mass which cooled from the hot gas phase into the disk. Solving eq.
3.41 for r.p0 assuming N = 2n, and using eq. 3.45 leads to

fhot A(Za T) 12

_ 3.46
"ol =1 9706.8Gk  pmp V" (3.46)
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For halos where the cooling radius is larger than the virial radius, the gas radiates its energy
away so quickly that it will never reach hydrostatic equilibrium and the cooling of the gas into
a disk will be basically limited by the dynamical time of the halo (its free-fall time). If the
cooling radius lies inside the virial radius the hot gas at a radius 7.y, will cool. The amount
of gas that cools per time step can be estimated by calculating the mass of gas present in a
spherical shell at 7.4

dM, dr
T;ooz = 47TPgaS(Tcool)Tgool dc;;oz- (3.47)
Using eq. 3.46 and taking fro as fixed one gets
dM 01 _ Jrot Muyir Tcool (3 48)

dt Rvir 2tcool ‘

By keeping fj,; and the density profile py,, fixed we allow the gas to be able to cool down
linearly and not to fall into an asymptotic behavior which would be the case by solving eq.
3.47 with f0(t). This approach is chosen when talking about an isolated, non evolving halo
and is applied between two time steps in a merger tree. Eq. 3.47 tells how much longer than
the dynamical time it will take the gas to cool down, thinking of the dynamical time as the
shortest time available for cooling. How the cooling rate will be calculated in an evolving
halo will be explained in detail in section 3.8.2. In the case that the cooling radius turns out
to be larger than r,; the cooling rate is approximated by

ndool _ fhotMvir

3.49
dt 22fcool ( )
which corresponds to 7.0y = Ryir in eq. 3.48. In practice the actual cooling rate will be
chosen by
AdM o0 — min fhotMvir Tcool ,fhotMvir _ (3_50)
dt Rvir 2tcool 22fcool

The approximations made above seem to be very simplified at first look, but detailed compar-
isons to N-body+SPH simulation show that the agreement is actually good (Yoshida et al.,
2002).

As mentioned in section 3.1, the value we chose for the baryon fraction is a bit lower than that
found by WMAP. A larger value of the universal baryon fraction mainly affects the cooling
rate in becoming more efficient and hence having more cold gas available to form stars. By
adjusting the free parameters of the model we are able to normalize our model to the reference
observations (see section 3.8.4) and therefore claim this difference to be not severe.

3.4 Star formation

Cold gas settling down into a galactic disk will, at some point, start forming stars. One
of the major problems of modern astrophysics is to produce a self-consistent model for star
formation. Once molecular clouds start collapsing under self-gravity in simulations, star form
very fast. In fact too fast, which requires mechanisms for preventing the collapse like e.g.
turbulence. Unfortunately there is no satisfying model yet available. Therefore, we will model
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star formation with a phenomenological approach. The star formation rate must depend on
the amount of cold gas available to form stars. The time scale for cold gas being transformed
into stars is chosen to be the dynamical time of the galaxy which is approximated by

tayn.gal = 0.1t gyn. (3.51)

The factor 0.1 is motivated from the contraction gas experiences when it collapses in an
isothermal halo to a centrifugally supported state while conserving angular momentum. The
contraction factor is ~ 2\, which is the spin factor of the gas under the assumption that it is
the same as the one of the dark halos K99. N-body simulations indicate an average value of
A =0.05 (e.g. Lemson & Kauffmann, 1999).

The star formation law reads

dt tdyn,gal

introducing a free model parameter « which allows for adjusting the star formation rate to
observations. This specific choice of the star formation law predicts constant star formation
in halos of all sizes and is only redshift dependent. This behavior mimics a star formation
rate increasing with redshift (see fig. 3.12), which is indicated by observations (e.g. Hippelein
et al., 2003; Glazebrook et al., 2003) .

Clusters show cooling flows of several hundreds of solar masses (e.g. Fabian et al., 1991; Allen
& Fabian, 1997), but star formation rates much less than these values. We follow K99 and
truncate star formation in halos with V, > 350 km/s. This procedure also ensures that the
modeled central cluster galaxies will be not too bright.
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Figure 3.12: The star formation rate efficiency vs redshift in the ACDM model.
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3.5 Stellar populations

Comparisons between modeled and observed galaxies make it necessary to construct photo-
metric properties of model galaxies. The model predicts the amount of stars formed at every
redshift, all needed now is to convert the mass into photometric properties. This is done by
using the Bruzual & Charlot 2000 stellar population synthesis models (BC00). These models
assume an initial mass function (IMF) for the distribution of stars formed per mass. Fig. 3.13
shows three different IMFs. All IMFs have in common that the number of low mass stars is
much larger than that of high mass stars reflecting the difficulty of forming high mass stars.
The question if a universal IMF exists is still a matter of debate (see for a review Kroupa,
2002). In this work the Scalo-IMF will be used (Scalo, 1986).
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Figure 3.13: Different common IMFs. The normalization is chosen arbitrary.

The stars of different mass are assumed to have been formed in a short burst and are then
evolved on theoretical stellar evolution tracks to compute the spectra and colors (Bruzual A.
& Charlot, 1993). These calculations predict the spectral energy distribution (SED) s, () of a
single age population of stars with chosen IMF. The SED of a galaxy S, () can be computed
by

S,(t) = /0 t su(t — ') M, (t")dt'. (3.53)

To get colors and luminosities the SED must be convolved with the filter response curves F),
of interest

o0
M, = —2.5log / Fy2Sydv — ADporm, (3.54)
0

neglecting instrument sensitivity curves or dust extinction. Usually magnitudes are normal-
ized to Vega, meaning that the Vega flux sets the zero point of the magnitude scale. We will
use the standard Johnson set of filters. Filter response curves for the most important filters
and magnitudes in these bands and colors are shown in fig. 3.14
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Figure 3.14: Magnitudes and filter response functions for the U, B and V —band. Also shown
are colors and the AOV SED in units proportional to the physical flux. Data are taken from
the Bruzual and Charlot 2000 models using the Scalo-IMF (Scalo, 1986) and solar metallicity.

3.6 Supernova feedback

Fig. 3.12 shows that independent of halo mass the efficiency of stars being formed from
the cold gas phase increases with redshift. This is a considerable drawback of these models,
because in the hierarchical framework, small structures form first, which will transform most
of their gas into stars already at high redshifts. Many of these objects do not merge and
will survive until the present-day and cause a very steep increase in the luminosity function
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of galaxies at the low luminosity end, which is much stronger than that observed. As a
mechanism to cure this problem it has been proposed to include the energy feedback due
to supernovae (White & Rees, 1978; Dekel & Silk, 1986). The basic idea is to calculate the
energy input from supernovae into the gas phase and estimate the amount of cold gas being
able to be reheated to the virial temperature of the halo. This process will naturally be more
efficient in smaller halos, because of their smaller potential wells and therefore smaller virial
temperatures. The feedback energy from supernovae depends on the IMF and on the amount
of stars formed by

Epy = nsnEsnAM,, (3.55)

where ngy is the number of expected supernovae per formed stellar mass and Egy is the
energy released by each supernova. We adopt Esy = 10%'erg and ngy = 5.0 x 1073 M51
based on the Scalo IMF (Scalo, 1986). Using the standard virial theorem (effects of dark
energy neglected) E;, = 3FEy;, the specific energy of the gas becomes

3
Esp,gas = ZV? (356)

with 0 = V./2. The ratio of energy ejected by supernovae eq. 3.55 to specific energy of the
gas eq. 3.56 gives the maximum amount of gas getting reheated and reads

4 nenEsny

AM,epeat = g ETCQ

AM,. (3.57)
The free parameter € describes the efficiency with which energy is used to heat up the gas,
and must be adjusted to fit observations. Fig. 3.15 shows the feedback efficiency for different
halo masses vs redshift. Additionally to small halos having higher efficiency low redshift halos
have also higher feedback efficiency than high redshift ones.
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Figure 3.15: The efficiency of supernova feedback in halos of different mass in the ACDM
model. Halo masses are indicated in units of M, at the curves.
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3.7 Galaxy mergers

During the evolution of halos in the universe it happens that two halos merge. When such an
event takes place, the galaxies in the halo are subject to forces which cause them to merge
also. During their move through a background of dark matter they are subject to tidal forces
and dynamical friction causing them to lose angular momentum and finally merge. The ac-
tual dynamics of a merger is very complex and to understand it entirely one needs to rely
on N-body simulations (see Barnes & Hernquist, 1992; Burkert & Naab, 2003, for a review).
However it is possible to derive some conclusions from a simplified picture.

We follow K99 and assume that when two halos merge, the galaxy inside the more massive
halo will be at the center of the new halo and that the galaxy from the smaller halo orbits
within Ry; of the primary halo. Chandrasekhar (1943) calculated the frictional force on a
point mass moving with velocity v through a homogenous infinite sea of particles. Following
Binney & Tremaine (1987) this force in the case of an isothermal density profile (v = 0v/2) is

47 In AG? M2 2
Ffy, = ——= G3 satP(T) [erf(l)——el]v
v NZ3
(3.58)
2
— 042810 APt V.
T v

The Coulomb logarithm In A (not to be confused with dark energy component in cosmology)
is approximated by (Springel et al., 2001)

M.
InA=In(1+ U”) . 3.59
< Msat ( )

Different choices of Coulomb logarithm are used in the literature as e.g. InA = In(1 +
(Myir [Mgat)?) (SP99) or InA = In(My;r /M) (K99). Fig 3.16 shows the influence that
different choices have on the merger timescale. Our choice is motivated by N-body simulations
which show that equal mass mergers occur much faster than unequal mass mergers. The
satellite velocity v is assumed to be Vi and Mg, is taken to be the baryonic mass of the
satellite plus the mass of its dark halo when it was the last time a central galaxy. The meaning
of central galaxy will be described in detail later in section 3.8.2. Simulations by Navarro
et al. (1995) show that this assumption improves the concordance between simulations and
the analytic dynamical friction formula. The differential equation for the change of the radial
distance from the center r is (Binney & Tremaine, 1987)

GM
rr = —0.428f(€)T50th In A. (3.60)
C

The circularity € (not to be confused with the feed back efficiency) is defined by the ratio of
the orbital angular momentum to the angular momentum of a circular orbit with the same
energy

€

J
— 3.61
- (361)
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Figure 3.16: The ratio of merging time to dynamical time of the primary halo as a function
of My, /Mg for different choices of Coulomb logarithm. The constant const is depending on
the specific choice of orbit.

being 0 for a radial orbit and 1 for a circular orbit. The function f(e) was found to be well
fitted in the range 1072 < e < 1 by (LC93)

f(e) — 60'78.

(3.62)
Following Kauffmann et al. (1999) we chose € from a random distribution. In fig. 3.17 the

change of a Keplerian orbit due to dynamical friction by numerically integrating eq. 3.60 is

shown. The time it takes the satellite, initially on radius R,; of the primary halo, to merge
is given by integrating eq. 3.60 in the limits r = 0, R,;; and becomes

T L.17f(e)VeR2,,
I T G Mgy In X

(3.63)
Eq. 3.63 allows now to calculate the time it will take a satellite to merge with its central

galaxy. Whenever two halos merge, the orbit of the satellite will be identified by choosing

a random circularity in the range 1072 < ¢ < 1 (K99). Once the orbit and the masses are
known the merging timescale can be estimated.

Detailed N-body simulations investigating mergers of galaxies find that during major mergers
of galaxies with My /My < 3.5 and M; > M; the disk of the merger partners get destroyed
and the remnant galaxy will be a spheroidal galaxy, usually identified as an elliptical galaxy
(Barnes & Hernquist, 1992; Burkert & Naab, 2003, and reference therein). Therefore we
assume that whenever a major merger takes place, the remnant will be an elliptical without

any disk component. Fig. 3.18 shows an example of an N-body simulation of two disk galaxies
which approach each other on parabolic orbits and finally merge.
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Figure 3.17: The black line shows a classic Keplerian orbit with e ~ 0.7. The red line shows
the new orbit when applying the dynamical friction estimate.

Figure 3.18: Simulation of merging disk galaxies. Time sequence is from left to right and
from up to down. The total time from the first snap shot to the last is 1.2 Gyr. The galaxies
approach each other initially on parabolic orbits. Kindly made available by Thorsten Naab.
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3.8 Model implementation

3.8.1 Isolated halo

We start by implementing the model descriptions from the last sections into a dark matter
halo which is not evolving, i.e. not accreting new material or merging. This kind of imple-
mentation corresponds to the behavior between two time steps in a merger tree described
later, and gives insight into the behavior of the different baryonic components. As explained
in section 3.3, the gas is assumed to settle into the halo with with a temperature equal to
the halos virial temperature T,; and has a mass of fp,My;r. Using eq. 3.50 the cooling
rate is determined, and kept fized throughout the life time of the isolated halo. The cooling
transfers gas from the hot phase to the cold phase. Once the cold gas phase starts existing,
star formation may take place in the disk. The bulge component of a galaxy can only grow
or be generated by major mergers as described in section 3.7. The star formation rate is
calculated using eq. 3.52 and will take place as long cold gas exists. Connected to the star
formation is the supernova feedback, which reheats some fraction of the cold gas into the hot
gas phase. The evolution of the different components is described by following set of coupled
differential equations:

For the cold gas component

Meoia = Meoor — (M + Mycheat), (3.64)
the hot gas component
Mhot = Myeheat — Meoor (3.65)
and the mass in stars
M, = o Meotd. (3.66)
tdyn,gal

which can be solved analytically. At all time mass conservation is assumed

fme'r = Mcold(t) + Mhot(t) + M, (t) (367)
Introducing constants
C{ = min Jhot Myir Tcool : Jhot Myiy Cy = a
Rm’r 2tdyn 2tdyn tdyn,gal
4 nsnEsn
Oy = - ISNESN Cyi=Cy+C
3= 3¢ V2 2 4 2+ 03

the differential equations 3.64, 3.65 and 3.66 become

Mcold = _C4Mcold(t) + c11 (368)

Mot = C3Meoq(t) — C1 (3.69)
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Figure 3.19: Behavior of the solution of the differential equations 3.64, 3.65 and 3.68 in the
ACDM universe.

M* = CoMeoiq- (370)

The straight forward solution to eq. 3.68 is

C
Mcold(t) = Acold eXP[—tC4] + Ei (371)

With eq. 3.71 the solutions to eq. 3.69 and 3.70 become

C C.C
Mhot(t) = _FiACOZd exp[—tC4] + |: 543 — 01:| t+ Apot (3.72)
and
C C,C:
M,(t) = _521’4“’” exp[—tCy] + 54% + A, (3.73)

The normalization constant are determined by the initial conditions

Meotd(tini) = Meodini — Acold
Miot(tini) = Mhot,ini = Aot
M, (tini) = My ini = A,

The presented solutions are only valid in the range of My, > 0. Due to the constant cooling
rate C the solution becomes unphysical at this point. In fig. 3.19 we show the solutions for
the different components My, Meoqg and M, in a regime where My, > 0. The units are
arbitrary since we are only interested in the general evolution of the different components.

We have introduced two free parameters a and 7 for the star formation and supernova feedback
efficiency, respectively. Fig. 3.20 illustrates the influence of the parameters on the model
galaxy in the M., q — My and M, — Mp,,; plane. We plot the mass fractions in in the same
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arbitrary units. Increasing the feedback efficiency e causes more transformation from the cold
gas phase into the hot gas phase and therefore leads to larger mass fraction in hot gas and a
smaller mass fraction of cold gas. The effect of € on the stellar mass fraction is smaller than
on the cold gas fraction; this allows us to use € to adjust the cold gas content of galaxies.
Variation of the star formation efficiency « shows that an increase in efficiency leads to a
larger stellar mass fraction. The hot gas fraction increases also, since more stars means more
supernova, feedback.

hot gas mass fraction

cold gas mass fraction stellar mass fraction
—_— —_—

Figure 3.20: Influence of the free model parameters o and € on the mass fractions of the
different components in arbitrary units, but with same scaling in the graphs. The solution of
equations 3.71, 3.72 and 3.73 at the same reference time are shown.

3.8.2 Halos in merger trees

We now turn to a halo which is evolving in the context of a CDM universe. We start by
generating merger trees of dark matter halos as described in section 3.2.5. We adopt a
minimum mass in the merger tree of M,,;, = 10'°M,. Halos of this size are assumed to
be not able to form galaxies because their gas is photoionized and cannot cool (Weinberg
et al., 1997). Additionally, typical timesteps of Az = 0.02 are used. Once the merger tree is
generated we start from its root, i.e. when the first progenitor with mass above M,,;, appears.
We calculate the baryonic components as described above in the isolated halo model. At the
next time step we check how much mass has been accreted: this is mass coming from dark
matter components with M < M,,;,. This mass is added assuming isothermal growth of
the halo and the gas component is assumed to be shock heated to virial temperature when
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entering the halo, and is added to the hot gas component. After the mass has been added
we calculate a new cooling rate with the new Vo and f,M,;, using eq. 3.50 and keep it
fixed during the timestep Az and proceed as in the case of the isolated halo. At some point
the halo may merge with another halo with M > M,,;,. In that case, the galaxy sitting
in the more massive halo will be called the central galaxy and assumed to be sitting in the
center of the newly formed halo. The galaxy of the smaller halo will be called satellite galaxy
and all of its hot gas component is stripped off and heated to the new virial temperature of
the new halo. Hot gas is no longer allowed to cool onto the disk of the satellite. Only the
central galaxy will continue to accrete cold gas. The supernova feedback from the satellite
stars heats up its cold gas which becomes part of the hot gas phase of the central galaxy.
The dynamical properties like V., of the satellite will be identified with those when it was a
central galaxy for the last time. The satellite is assumed to be orbiting in the newly formed
halo according to the descriptions of section 3.7. The merging time of the satellite with the
central galaxy will be calculated using the dynamical friction description from eq. 3.63. We
keep track of this time and and when it is over we merge the satellite with the central galaxy.
Following the discussion in section 3.7 we assume an elliptical galaxy forms when the mass
ratio between central and satellite galaxy is < 3.5. All cold gas of satellite and central galaxy
will be instantaneously transformed into stars, with no supernova feedback. The stars will
all be added to the bulge component of the merger remnant. In the case of a minor merger
with mass ratio > 3.5 the stars of the satellite are added to the bulge component of the
central galaxy and the cold gas of the satellite is added to the disk component. When two
halos inhabited by more than one galaxy merge, the central galaxy of the more massive halo
becomes the new central galaxy and all galaxies from the smaller halo will become satellites,
with the evolution of the satellites followed as described above. Satellites of the former central
galaxy are given new orbits and timescales for the mergers with the new central galaxy. If
this time scale is much larger than the remaining time to merge for an old central-satellite
system we allow the old system to merge and call it a satellite-satellite merger with the same
effects as for the other mergers. The procedure described above is repeated until the redshift
at which the galaxy population should be modeled. The following differential equations must
be solved during one time step Az

Mcold,cen = Mcool,cen - (M*,cen + Mreheat,cen) (374)

and

Mhot,cen = Z Mreheat,i - Mcool,cen- (375)
i

for the central galaxy, where the summation is over all galaxies present in the halo and
Mcold,sat = _(M*,sat + Mreheat,sat) (376)

for each satellite galaxy. To have a flexible code which can also handle differential equations
which are not easy to solve analytically we have implemented alternatively a numerical inte-
gration of the differential equations. This is typically done by resolving every step Az into 50
equally spaced time steps At with fixed cooling rate during Az. In cases where an analytic
solution is available we used it.
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3.8.3 Morphological classification of modeled galaxies

Once the flux coming from the bulge and disk component of galaxy is known one can assign
morphologies to the galaxies. This is done by using the correlation between B-band bulge-to-
disk ratio and Hubble-type T found by Simien & de Vaucouleurs (1986) Defining a magnitude
difference by

AM = Mbulge - Mtotal (377)
they find a relation of the form
(AM) = 0.324(T + 5) — 0.054(T + 5)2 +0.0047(T + 5)3. (3.78)

Following Simien & de Vaucouleurs (1986) and K99 we classify three different types of galaxy
be following cuts in T'—space:

ellipticals = T<-25 - (AM) <0.55
lenticulars = —-25<T7<0.92 — 0.55 < (AM)<1.0
spirals = T > 0.92 - 1.0 < (AM)

Galaxies having no bulge component become a Hubble-type T" = 9. In fig. 3.21 the corre-
sponding mass bulge-to-disk mass ratios for solar metallicity stellar populations of present-day
galaxies shown. The applied morphology cuts produce a fair representation of the observed
ones. However, there are problems concerning the fraction of SO galaxies in clusters. To
reproduce their fraction (e.g. Fasano et al., 2000) it is necessary to change the morphology
cuts, i.e. increase the upper limit on 7' (Springel et al., 2001). We do not apply this change
because of several reasons. The formation and evolution of SO galaxies is still a riddle not
solved. It is not clear whether they form mainly because of stripping during the infall in a
high density environment, or if they result from successive minor merger interactions. Since
this work focuses on elliptical galaxies, the effect of a different SO cut does not effect results
presented here.

3.8.4 Model normalization

In normalizing the free model parameters « and € we follow K99 and SP0O0 which apply the
"Tully-Fisher’ normalization in contrast to the ’luminosity function’ by (Cole et al., 2000).
The following requirements need to be fulfilled

- Tully-Fisher relation:

The main normalization criteria is to reproduce the spiral /—band Tully-Fisher relation ob-
served by Giovanelli et al. (1997). They find a relation of the form

M; —5logh = —21.00 — 7.68(log W — 2.5) (3.79)

where we adopt W = 2V, as the HI line-width, which has to be taken with care because Mo
et al. (1998) showed that the actual relation between the line width and the halos circular
velocity is depending on the halos density profile. They found that disk galaxies embedded in
a NFW dark matter density profile (Navarro et al., 1997) have circular velocities ~ 15% larger
than V. Additionally it is required that a central galaxy, being a spiral, of a Vo = 220 kms ™!
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Figure 3.21: Correspondence between morphological classification and bulge mass to total
mass ratio used in the model. REsults shown for the ACDM model with solar metallicity
stellar population model.

halo has an /—band magnitude in the range M; — 5logh ~ —21.6 to —22.1. Varying € the
tilt of the Tully-Fisher relation can be changed, because of the dependence of the supernova
feedback on halo circular velocity (eq. 3.57). In figures 3.22 & 3.23 the modeled Tully-Fisher
relation for two different baryon fractions is show. The agreement with observations is good.

- Gas and star fraction:

The dependence of the Tully-Fisher relation on « is rather weak which makes it necessary
put up another requirement on central galaxy of Vo = 220 kms™' halo. We require them to
have ~ 10! Mg, of stars and ~ 10? Mg, of cold gas.

As mentioned earlier some of the results in this thesis were derived using a baryon fraction of
0/ = 0.1, while the latest WMAP results indicate €,/ = 0.15. As is shown in figures
3.22 & 3.23 the models agree well once the free parameters a and e are tuned properly, we
therefore conclude that our results presented here are only weakly dependent on the baryon
density. Table 3.3 shows the necessary choice of the free parameters.

)/ =0.1 | ©,/Q = 0.15
a 0.05 0.1
¢ 0.05 0.2

Table 3.3: Different choice of the free model parameters o and e in models with different
baryon density.
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Figure 3.22: Top: Tully-Fisher relation for spiral galaxies. Red line is the observed relation by
Giovanelli et al. (1997). Bottom: Cluster luminosity function. The points with error bars are
the composite luminosity function of Trentham (1998). Results for the model with Q5 = 0.7,
Q= 0.3, h =0.65 and Q,/Qy = 0.1.
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Figure 3.23: Top: Tully-Fisher relation for spiral galaxies. Red line is the observed relation
by Giovanelli et al. (1997). Right: Cluster luminosity function. The points with error bars
are the composite luminosity function observed by Trentham (1998). Results for the model
with Qp = 0.7, Q9 = 0.3, h = 0.65 and Q,/Qp = 0.15.
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Chapter 4

Merger rates of galaxies

Estimating the frequency of mergers in the universe is a challenging task. Besides the prob-
lems of defining a merger in contrast to an accretion event and finding such events, there
is also the problem of the dependence on the environment, and the estimate of the merger
timescales. For example, van Dokkum et al. (1999) find that the merger rate evolves as
Ry o< (14 2)™ with m = 6 & 2 in rich cluster, whereas the merger rate of field galaxies is
found to evolve less strongly. In a recent study Le Fevre et al. (2000) find m = 3.4 + 0.6
using visually classified mergers and m = 2.7 £+ 0.6 using close galaxy pairs in a population
of field galaxies. Previous studies found m = 3.4 + 1 (Carlberg, Pritchet, & Infante 1994),
m =4 + 1.5 (Yee & Ellingson, 1995), m = 2.8 + 0.9 (Patton et al., 1997), m = 2.01 £ 0.52
(Roche & Eales, 1999) and m = 2.1 £ 0.5 (Conselice, 2001). This spread in the values of
the merger index m is partly due to different methods used in deducing the merger rates
(see e.g. Patton et al., 1997; Abraham, 1999). Correcting for selection effects in close pair
studies, Patton et al. (2000) estimate that approximately 1.1% of all nearby galaxies with
—21 < Mp < —18 are undergoing mergers.

On the theoretical side, Gottlober, Klypin, & Kravtsov (2001) used N-body simulations and
merger trees based on the Press-Schechter formalism, to derive the merger rate. They found
m = 3 for dark matter halos. In earlier studies of merger rates in N-body simulations Kolatt
et al. (1999) found m = 3 and Governato et al. (1999) found m = 3.1 £ 0.2 in a critical
universe and m = 2.5 + 0.4 in an open universe.

In a previous semi-analytical approach Lacey & Cole (1993) calculated the accretion rate of
baryonic cores. They assumed that each halo has only one baryonic core, neglecting the effect
of multiple cores in a halo.

In this chapter we investigate in detail the galaxy merger fraction and rate. In the following
section the redshift dependence of the merger fraction and its dependence on the cosmological
models, on the environment represented by the final dark halo mass, on the merger timescale,
on the minimum mass of observed objects that would be identified as merger components, and
on the definition of major mergers are investigated. Besides allowing a better understanding
of how the merger rates of different observed samples are related, these estimates will test
cosmological models.
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4.1 The model

We study spatially flat CDM cosmologies with 2, = 0.3, Qy = 0.7 and Hy = 65 km
s~ 'Mpc~!. We also study a quintessence model with Q0o = 0.7 and an equation-of-state
w =p/pg = —2/3 (e.g. Caldwell et al., 1998). Merger trees of dark matter halos were gen-
erated using the method described in section 3.2.5. The power spectrum is obtained from
the fitting formula of Bardeen et al. (1986) and normalized by os. We use the expressions
derived by Wang & Steinhardt (1998) for the value of og and the linear growth factor. The
history of a dark matter halo is followed back in time until the masses of all its progenitors
fall below a minimum mass of M,,;, = 101°M,. A progenitor with mass below M,,;, is
assumed to inhabit a small galaxy which has 1/10 the mass of the surrounding dark matter
halo. Whenever two halos merge the galaxies inside of them merge on a dynamical friction
timescale as described in section 3.7.

4.2 Merger fractions and rates

From the observational point of view one can either estimate the fraction of visually confirmed
mergers (Le Févre et al., 2000) or the fraction of galaxies in close pairs (e.g Patton et al.,
2000, and references therein) To deduce the merger fraction it is necessary to correct the
observed close pair fraction for background/foreground contaminations and to estimate how
many of these physical close pairs are likely to merge (e.g. Yee & Ellingson, 1995; Le Fevre
et al., 2000). Usually one refers to the merger rate. The connection between the merger rate
Ryng(z) and the merger fraction is

Fong () = Emo?), (1)

tmerg

where F),4(z) denotes the fraction of galaxies at redshift z in close pairs which will merge on a
timescale shorter than ¢,,¢g. Since ¢y,erq depends on the separation of pairs, specifying ¢erg
also determines the close pairs. In general, observers measure the separation between galaxies
in pairs and use the dynamical friction estimate to deduce a merger timescale. We calculate
the merger fraction by counting the number of galaxies at each redshift which are experiencing
a merger on a timescale less then ¢,,.,, and normalizing them to the total number of galaxies
at this redshift. The merger fraction of galaxies at redshifts z < 1 is usually approximated
by a power law of the form:

Fong = Fing(0)(1 + 2)™, (4.2)

where F,,,(0) is the normalization to the local merger fraction (e.g. Le Fevre et al., 2000).

For our analysis we consider only binary major mergers, which we define as mergers with
mass ratio between R, and 1. Fig 4.1 shows the result of a representative simulation
for a halo of mass My = 5 x 10'2M, at z = 0, adopting M, = 100 M, Rygjor = 4,
and a merger timescale of 1 Gyr for the ACDM model. We find in all investigated cases
that the merger rate and the merger fraction as a function of redshift can be approximated
by a power law at redshifts z < 1, in agreement with the observations. At higher redshifts
the merger rate flattens, which was also found by Conselice (2001) and Gottlober et al. (2001).
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Figure 4.1: Power law fit to the merger fraction for My = 5 x 10'2M, Rijor = 4, Myin =
10'M, and tmerg = 1 Gyr in the ACDM model. The solid line represents the data and the
long dashed line the power law fit for z < 1.

In general, a range of final halo masses will contribute to the merger events seen in observa-
tional surveys. To take this into account and to estimate environmental effects we choose six
different halo masses My at redshift z = 0 (My = 10'',5x 10'',10'2,2.5 x 10'2,5 x 10'2,10'3;
in units of Mg). Fig. 4.2 shows the dependence of Fy,,4(0) and m on My and tyerg. For in-
creasing My, Fp,,(0) decreases and m increases systematically. This trend is consistent with
the findings of van Dokkum et al. (1999). Varying t,,erq corresponds to different definitions
of close pairs. The three curves in fig. 4.2 are exponential laws of the form

Fing(0) = c1 exp(cam), (4.3)

fitted to the merger fractions for different t,,.r,. The parameters used to fit the data points
are ¢; = 0.058 and co = —1.23, ¢; = 0.107 and ¢y = —1.34, and ¢; = 0.137 and ¢ = —1.42
for t,erg equal to 0.5 Gyr, 1 Gyr and 1.5 Gyr, respectively. In the same environment, that is
the same final halo mass My, Fy,4(0) increases with increasing merger timescale as binaries
with larger separations are included. The merger index m shows only weak variation.

For computational reasons mergers are only resolved above a minimum mass M,,;,. Mergers
below this mass are neglected. This corresponds to observations with a magnitude limited
sample of galaxies. The graphs in fig. 4.3a show the dependence of the merger index m on
qr = My/Myin. The filled circles are the results of merger trees with constant M, =
10'9M;, and varying My. We compare these results with simulations for constant M, =
10" M, and varying M, represented by open circles. The value of m depends only on the
ratio gy by

m = 0.691n(qas) — 1.77. (4.4)
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Figure 4.2: Showing the merger fraction Fp,, at z = 0 versus the power-law slope m for
major merger events with mass ratios less than R,,qjor = 4. The data points correspond to
different values of the merger timescale t,,ery and final halo mass My. In the upper part of
the figure the final halo masses in units of M, are indicated. Halos of the same mass M,
have roughly the same value of m. The curves show exponential laws, fitted to the data for
tmerg = 0.5 Gyr, 1 Gyr and 1.5 Gyr respectively. The shaded region represents the Press-
Schechter weighted average merger fraction of galaxies in dark halos for the same range of
tmerg as mentioned above. The star indicates F,4(0) and m as estimated by Le Fevre et al.
(2000). The triangle is the result from the combined CFGRS and CNOC2 data (R. Carlberg,
private communication).

Another important question is the influence of the definition of major mergers on the merger
rate. The graphs in fig. 4.3b show the dependence of F,;(0) on different values of Ry 0r-
An event is called major merger if the mass ratio of the merging galaxies is below Ry,4jor and
larger than 1. As R, or increases, F,,(0) increases. We also find that the merger index m
stays roughly constant for low Ry,4jor and decreases at larger Rp,qjor. A decrease in m with
larger Ry,qj0r has also been reported by Gottlober et al. (2001). It is a result of the adopted
minimum mass for merger events. The detectable amount of major mergers with large mass
ratios decreases faster with redshift than for equal mass mergers, since the small masses drop
faster below the minimum mass. In observed samples of close pairs Roche & Eales (1999) and
Patton et al. (2000) found that F,4(0) increased when they allow for larger R,qjor, Which
agrees with our predictions.

How do the theoretical models compare to the observations? The star in fig. 4.2 is the mea-
sured merger fraction for field galaxies by Le Fevre et al. (2000), who used R,qjor = 4 and
the local merger fraction of Patton et al. (1997). They identified close pairs as those which
merge on a timescale less then t,,.,y = 1 Gyr. To compare this merger fraction with our
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Figure 4.3: Panel (a) shows the dependence of the merger index m on the mass ratio gar
for Rpajor = 4. The points are fitted by m = ¢4 In(M,) + ¢5 with ¢4 = 0.69 £+ 0.09 and
c¢s = —1.77 £ 0.47. Panel (b) of this figure shows the local merger fraction for cases with
My = 10%me, My, = 10P%mg, and varying Rmajor (Rmajor = 3,4,6). Larger values of
Rpnajor show larger values of F,4(0). The graphs in (a) and (b) refer to the ACDM model
and tperg = 1 Gyr.

estimates one needs to take into account that the dark halos of field galaxies can vary over
a range of masses and that the merger timescale is subject to large uncertainties. We ther-
fore weighted the different merger fractions of our sample of field galaxies with halo masses
My between 5 x 10! M and 5 x 102 M, according to the Press-Schechter predictions. The
merger index m and the local merger fraction F,,(0) for different M, were calculated using
the fitting formulae as shown by the graphs in fig. 4.2 and fig. 4.3a. We varied the the range
of halo masses contributing to the sample by changing the lower bound of halo masses from
5x 10" Mg, to 2.5 x 10'> M, and changed tmerg Within the range of 0.5 - 1.5 Gyr. The results
of this reasonable parameter range lie inside the shaded region in fig. 4.2. Results for larger
tmerg correspond to the upper part of the region and those for larger halo masses lie in the
right part of the region. A comparison of our results with the observations shows, that the
predicted merger index m and the normalization F,,(0) are a factor 2 smaller than observed.

As a possible solution to this problem we have studied a quintessence model with w = —2/3.
The QCDM model shows a shallower increase in the comoving number density of mergers
with redshift than the ACDM model. There is however not a significant difference in the
merger fractions (see fig. 4.4). This results from the fact that the difference in the comoving
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number density is compensated by the length of the redshift range contributing to the merger
fractions. The QCDM universe with an age of ~ 1.36 x 10'? years is younger than the adopted
ACDM universe with an age of ~ 1.45 x 10! years, which is the reason why the same tmerg
refers to a larger redshift range in the QCDM universe. This result also emphasizes, that it
will not be possible to break the degeneracy of these models by measuring merger rates.

M =>
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Figure 4.4: Same as fig 4.2 but now showing additionally as squares results for a quintessence
model with w = —2/3.

Comparing Le Févre et al. (2000) results with those obtained from the combined Caltech Faint
Galaxy Redshift Survey (CFGRS) and Canadian Network for Observational Cosmology field
galaxy survey (CNOC2) (R. Carlberg, private communication), which includes also minor
majors, reveals that including minor mergers leads to a smaller merger index m which is
consistent with the predictions of our simulations. It is therefore not surprising that these
two observed merger indices differ.

4.3 Discussion and conclusions

Using semi-analytical modeling we recover a power law for the evolution of the merger rates
and fractions at z < 1, as has been reported in earlier work. Varying the final mass My,
the local merger fraction Fj,,(0) shows an exponential dependence on the merger index m
of the form F,,; = ciexp(com). The actual values of the parameters ¢; depend mainly on
the merging timescale and on the definition of major mergers. Our predictions that m will
increase and F,4(0) will decreases in more massive environments is in qualitative agreement
with observations. The merger index m depends on the environment through the mass ratio
qn- The logarithmic function m = ¢4 In(qar) + 5 fits the data well. We find a similar behavior
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as Patton et al. (2000), which have shown that if they extend their galaxy sample to fainter
magnitudes the local merger fraction rises. In addition, we also find that the merger index
decreases with higher mass ratios. This is also being found by comparing the results of the
combined CFGRS and CNOC2 sample with those of Le Févre et al. (2000). The adopted
QCDM model does not show any significant difference to the ACDM model. Therefore it is
not possible to distinguish between these two models by measuring the merger rate of galaxies.

Our model predicts values for F,,(0) and m which are too small by a factor of 2 compared
with the predictions by Le Fevre et al. (2000) who used the local merger fraction estimate
of Patton et al. (1997) which was derived with a different definition of major mergers than
theirs. As we have shown, the definition of a major merger is crucial for the expected merger
fraction. Our results indicate that the local merger fraction F,,(0) for the galaxy sample
of Le Fevre et al. (2000) who used R,qjor = 4 must be less than the value measured by
Patton et al. (1997) who used a larger Rpqjor- A smaller value of F,,(0) would lead to an
even larger discrepancy in m compared to our results. Another issue might be observational
errors, like projection effects or uncertainties in the merger timescale estimates. Our results
strongly emphasize that the comparison of merger fractions deduced from different samples
and with alternative techniques is questionable if the adopted mass range and the definitions
of close pairs and major mergers are not the same.
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Chapter 5

Orbital parameters of merging halos

To investigate the evolution of a merging pair of galaxies in a numerical simulation it is not
only important to calculate the physical processes properly but it is also very important to
start from the appropriate initial conditions. These initial conditions consist of a galaxy em-
bedded in a dark matter halo having the right properties and the orbital parameters for the
encounter of the two progenitor systems. In this section we will discuss the orbital parame-
ters of merging dark matter halos. The geometry of a merger event between two dark matter
halos and their galaxies will be basically dominated by the dark matter halo. In general the
lack of knowledge of the appropriate initial conditions forces simulators to cover parameter
space by setting up mergers with different orbital configurations. This approach however, has
several drawbacks as e.g. it is not clear how relevant a given parameter combination is. In
this chapter we will analyze a large scale cosmological N-body simulation carried out by the
VIRGO-Consortium and derive self-consistent orbital parameters of merging dark matter halos.

The simulation was carried out in a box of size 141.3 Mpc h~" with 5123 particles each having
a mass of 1.4 x 101°Mzh~! and cosmological parameters 2, = 0.7, Qy = 0.3, 0g = 0.9 and
h = 0.7. The positions and velocities of the particles have been saved at 44 different redshifts.
For illustration we show the redshifts and corresponding times in fig. 5.1. Additionally at
each redshift a list of halo properties is available.

When two halos approach each other their orbit is going to change due to the transfer of
orbital angular momentum to the halo’s internal angular momentum which in the following
is called spin and should not be confused with the spin parameter defined e.g. in Peebles
(1993). The question of orbital initial conditions therefore becomes a question of the ’right
timing’. We try to identify the orbital parameters at a time when the interaction between the
halos is weak and one can assume a Keplerian two body situation, using the positions of the
most bound particles of each individual halo. At each redshift we go through the list of halos
identified by using the friends-of-friends (FOF) algorithm and identify the positions of the
most bound particles. If at one redshift a halo has disappeared through merging with another
halo, we look up the position of its most bound particle at the previous redshift and check
whether the distance to the most bound particle of the other halo, with which it is going to
merge, is larger than the sum of both virial radii. If so, we derive the orbital informations
using the data from this redshift, otherwise we go back another redshift step, check again and
take the data from that redshift if the condition is fulfilled. To make sure that the merger

ol
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Figure 5.1: Output times of the simulation in Gyr and redshift.

is not just a flyby of a halo which will not be bound we check at a redshift later than the
redshift at which the actual merger happens if the separation of the most bound particles has
decreased.

5.1 The reduced two-body problem

Following the pioneering work of Toomre & Toomre (1972) (TT72), we will define the orbital
parameters to set up the self-consistent initial conditions. We simplify the problem by reduc-
ing the two halo-system to a two-body system with each body sitting at the position of the
most bound particle of the corresponding halo. The most bound particle sits in the potential
minimum of its halo and is supposed to be the most ’stable’ particle, allowing to follow the
evolution of the progenitor halos during the early stages of the merger when a clear definition
of the center of mass of the progenitor halos is not possible anymore. In fact, the position of
the most bound particle is not much different from the center of mass of each halo when the
halos are well separated. The two body problem consisting of the most bound particles of the
progenitor halos can now be reduced to a single body problem with the following standard
approach:

Fy, = Mpi,, Fy=DMi, =—-Fy, (5.1)

where F}, is the force exerted on the more massive partner, called halo, and F; the force
exerted on the less massive partner, called satellite. The positions of the halo and the satellites
arery and rg, respectively. Here and in the following we will index variables corresponding
to the halo with h and and to the satellite with s. Introducing the relative separation vector
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between both particles as r = ry — rj, the gravitational force acting on the particles reads

Mth r

Mii, =G 5.2
= G (52)
MM
M¥, = —G=22 X, (5.3)
re or
Defining the reduced mass by
My, M
=— 5.4
=", + M, (5:4)
the equivalent one-body problem is
My M
pi = -Gl (5.5)
reor

This equation describes the behavior of a fictitious particle of mass y in a gravitational
potential generated by mass My M;. Since the interparticle force is acting along the vector
r connecting the particles, the angular momentum L of the reduced particle is conserved
L = pr X ¥ = 0 and the reduced particle will be moving in a plane perpendicular to the
angular momentum vector. This allows the use of polar coordinates

z(t) = r(t) cos(t) (5.6)

y(t) = r(t) sine(t) (5.7)

to simplify the problem even more. In these coordinates the components of the angular
momentum vector become

Ly = L,=0 (5.8)

L, = pr’) = L = const. (5.9)
The equation for the total energy of the system in the rest frame of the center of mass is

M, M,
T

E = %M(fﬁ +r3?) + U(r) = %,u(f*? +r2?) — G

and can be manipulated to give the following differential equation

Ldr  [20(E-U(r)) 1
ﬁ@_\/——— (5.11)

= const (5.10)

1.2 r2
which has the solution

asm (1 — 62)

= 12
r(¥) 1+ ecos(yp — 1) (5.12)
with the semi-major axis of the orbit
L2
Asm = (5.13)

(]- - 62):U‘G]\4h]\4s
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and the eccentricity

14 2EL> (5.14)
e = B a v ——— .
/ﬁ(G]MhZWs)2

One distinguishes four different classes of orbits:

E>0 — e>1 hyperbolic orbit
E=0 — e=1 parabolic orbit

E<0 — ex<l1 elliptic orbit

o N’(ijhj\fs)2

E =
2L2

e=1 circular orbit.

To specify an orbit one needs to determine e.g. the total energy F and the angular momentum
L or alternatively the eccentricity e and the distance of closest approach , the pericenter
distance rper;, which is given by

L2
(1 + e)NGMth .

Tper = asm(l - 6) = (5.15)

5.2 Orbital parameters r,.,; & e

We start by analyzing the dependencies and correlations of the pericenter distance r,.,; and
the eccentricity e of merging halos extracted from the simulation data. Since the main moti-
vation is to derive self-consistent initial conditions for major mergers which eventually lead to
the formation of elliptical galaxies we first investigate the dependence on the minimum mass
of the progenitors and the definition of major mergers.

In figure 5.2 the eccentricity e of merging halos depending on the minimum mass of the pro-
genitor halos is shown. The orbits are mostly found to be parabolic or very close to parabolic.
We find ~ 70% of the orbits in the range e = 1 4+ 0.1. This result is independent of the min-
imum mass cut applied. N-body simulations of merging galaxies assume galaxies embedded
in halos approaching each other on parabolic orbits (e.g. Barnes, 1988), which our results
indicate to be a valid assumption. One might ask how a nonbound orbit (£ > 0) leads to a
merger. During the encounter of the halos orbital angular momentum gets transferred to spin
of the halos. Equation 5.14 states that in this case the orbit must become more eccentric and
hence more bound. Simulations of merging galaxies have shown that mergers with a mass
ratio up to 4 can produce elliptical galaxies (Barnes & Hernquist, 1992; Burkert & Naab,
2003, and reference therein). We therefore, define major mergers as mergers with a mass
ratio My /My < 4. In fig. 5.3 we show the dependence of our results on the definition of
major mergers. We find no dependence with mass ratio, which indicates a self-similarity of
the formation process of structures not only on the mass scales of interest but also on certain
kinds of merger events, namely major merger events.
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Figure 5.2: Left panel: Fraction of merging halos with mass larger than Npe-2 x 10! M, on
initial orbits with eccentricity e. N4 is the number of dark matter particles. Right panel:
Corresponding cumulative fraction of eccentricities.
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Figure 5.3: Left panel: Fraction of merging halos with mass larger than 4 x 10'>M and
different mass rations M}, /M;, on initial orbits with eccentricity e. Npgr is the number of
dark matter particles. Right panel: Corresponding cumulative fraction of eccentricities.
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different mass ratios M}, /M, on orbits with different pericenter distances in units of the more
massive progenitor’s virial radius Ry 5. Right panel: Corresponding cumulative fraction of
pericenter distances.
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The distribution of the pericenter distance in units of the virial radius of the more massive
progenitor halo and its dependence on minimum mass is shown in fig. 5.4. The distribution
shows only a very weak dependence on the minimum mass. Small pericenters are more
frequent than larger ones. This is actually what one would expect, because halos which are
on orbits leading to a very close encounter are more likely to merge than those which pass
each other from very far. More than 70 % of the mergers had pericenter distances which were
smaller than 0.4r,;.. We also present the results for if we vary the definition of major mergers
(see fig. 5.5). Again the results show only a very weak dependency. Merger simulations
usually set up initial conditions using smaller values for pericenter distances leading to fast
merger. This can have some impact on the remnant galaxy. According to eq. 5.15 7pep; L?,
which means that the orbital angular momentum in merger simulation is less than that for
merging halos in self-consistent cosmological simulations. The angular momentum transfered
during the merger process will therefore be less and the structure of the remnant will be
different. In fig. 5.6 we check if the pericenter distance is correlated to the virial radius rp,
and find no significant correlation. The larger scatter is just due to the spread in halo masses
and increases o Tperi/Tyir h-
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Figure 5.6: Pericenter distance in units of Mpc against pericenter distance in units of 7. p.
The values at each line indicate the completeness limit, meaning the fraction of mergers
with 7peri/Tyirn < 0.1,...0.3. Results are shown for progenitor halos of mass larger than
4 x 102 M, and mergers with mass ration My /M, < 4.

Since we have found no dependence on the minimum mass and on the major merger definition
we continue our investigations using as a standard assumption M,;, = 4 x 1012 M which
corresponds to the typical halo size of massive galaxies and M}, /M, < 4 as our definition for
major mergers. Not every random orbit is going to lead to a merger and it is important to see
if a preferred orbit configuration exists leading to mergers. In fig. 5.7 the correlation of rpey;
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and e for mergers identified in the simulation is illustrated. Mergers with 7,er; < 0.17y;. p, are
almost all on parabolic orbits with e ~ 1. Orbits with rpe.; > 0.17ry; 5 have a scatter which
increases with pericenter distance. The same behaviour is found looking at the corelation
between eccentricities and pericenter distances in units of Mpc.
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Figure 5.7: Correlation between the eccentricity and pericenter distance of merging ha-
los found in the simulation. Results are shown for progenitor halos of mass larger than
4 x 102 M, and mergers with mass ration My /M, < 4.

The expectation from eq. 5.15 is that the specific angular momentum Ly, = L/ is propor-

tional to 7}1;231 with a scatter because of different eccentricities of the orbits. In fig. 5.8 we
show the correlations found between these two quantities. The line in the left and right panel

of fig. 5.8 is a power law fit to the data with

0.51 2

i M

Lyp=1.17 ( Tperd ) b (5.16)
Tvir,h yr

for the pericenter distance in units of 7., and

0.55 Mpc

Ly, = 2.54 ;
sp ('rpem) vr

(5.17)

for the pericenter in units of Mpc. The fits show that the data is following the trend of
Ly, x r;éfi. The larger scatter in the correlation with 7,e.; in units of ry; is due to the

spread of halo masses.
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Figure 5.8: Corelation between the specific angular momentum L, of the orbit and its
pericenter distance in units of r,; (left panel) and Mpc (right panel). Lines represent power
law fits to the data. Results are shown for progenitor halos of mass larger than 4 x 10'2M,
and mergers with mass ration M, /My < 4.

Depending on the energy of the orbit sometimes specific parameters are used to characterize
them. Hyperbolic encounters get characterized by the so-called impact parameter b. In fig. 5.9
the definition of b is illustrated. The impact parameter is defined by the vector perpendicular
to the initial velocity V(t = —oo). The initial velocity is calculated using

tini = —00, 1(—00) =00, t_og =0 (5.18)

in eq. 5.10, leading to
Ve =4/ — (5.19)

Because of the conservation of the orbital angular momentum the impact parameter becomes

L L
b= = (5.20)

1WVoso i/ 2E/

The probability distribution of impact parameters (fig. 5.10) can be fitted by

dpP 1 b\t b\
b = G—QZ—Z’ <a—1> exp (——) db (5.21)




62 CHAPTER 5. ORBITAL PARAMETERS OF MERGING HALOS

Figure 5.9: The definition of the impact parameter b.

and
ayg = 2.94, al = 0.39, as = 0.29. (5.22)

In the upper graph of fig. 5.11 we show the correlation between the impact parameter and
the pericenter distance. The line is a power-law fit to the data with

Tperi = 0.170087 (5.23)

The lower graph of fig. 5.11 displays the corelation between eccentricity and impact param-
eter of the encounter. Again it becomes evident that the majority of the orbits is close to be
parabolic and that only a small fraction is significant different from parabolic. Encounters
having e > 1 merge very slowly if at all. That is why only those with small impact parameters,
meaning close flyby, lead to significant fast mergers seen in the simulations. Those mergers
with large impact parameter are mostly on nearly parabolic orbits which made the merger
fast enough to actually happen.

Another parameter commonly used to describe bound orbits E < 0 is the circularity e which
was introduced in section 3.7 as the ratio of the orbital angular momentum to the angular
momentum of a circular orbit with the same energy. The circularity of an bound orbit can
be derived applying the virial theorem U = —27T giving

Gmpm
R nes .24
Tcire oF (5 )
—2F
‘/circ = (525)
L
(5.26)

and the angular momentum as

Leire = reirettVeire- (5.27)
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Hence the circularity becomes

Leire TeiretVeire

From eq. 5.25 one sees that the circularity can only be defined sensefully for orbits with
E < 0. Manipulating equations 5.14 and 5.28 gives following relation for the circularity and
eccentricity of an orbit:

e=+vV1—e2 (5.29)

The upper graph of fig. 5.12 presents the distribution of circularities found. They are dis-
tributed according to following function:

dpP 1 ao—1 ao
d—de S <i> exp (—i> de (5.30)
€ as a1 \ ay a1

and
apy = 298, a; =0.36, ay=0.11 (5.31)

This result differs from that by Tormen (1997) who found the circularities to be distributed
with a peak around e = 0.5. However the different result might not be surprising since they
consider only minor mergers My /Mj > 4 in a cluster environment, where the gravitational
field might lead to a changing of the circularity distribution, which needs further investiga-
tions using high resolution simulations. An important consequence for semi-analytic modeling
presented in chapter 3 is that the circularity e for major mergers must not be drawn from
a uniform distribution but from the distribution found here. The consequence will be faster
mergers on average.

The upper graph of fig 5.13 shows that the circularity is nicely correlated with the pericenter
distance, which is not very surprising since it is not very likely to have an almost circular
orbit already at the beginning of an encounter where both most bound particles are very close
to each other. We find that the data can be fitted well be following power-law

Tperi = 0.28¢!6° (5.32)

The lower graph of the same figure shows the relation between e and e, which is as expected
following eq. 5.29.
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Figure 5.10: Upper graph: Probability density of hyperbolic orbits with different impact
parameter b. Lower graph: To the upper graph corresponding cumulative fraction. Results
are shown for progenitor halos of mass larger than 4 x 10'2M,, and mergers with mass ration
My, /Mg < 4.

Ig — T
0.1

sy E

o C

2 001

T

©
(e
(]
—_
T
.

L | R

© i o ... : e o *
LS L ¢ . .. : b ::: : o~ - *
] L] % o * .' .J'd ’:"-.5 "'-;‘.,:.ﬂ ‘..* .‘., ool
0.5 I | |
0.01 0.1 1
b [Mpc]

Figure 5.11: Upper graph: Correlation between pericenter distance and impact parameter
of hyperbolic orbits leading to mergers. Lower graph: Correlation between the eccentricity
and impact parameter corresponding to the orbits in the upper graph. Results are shown for
progenitor halos of mass larger than 4 x 10'2 M, and mergers with mass ration M}, /M, < 4.
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Figure 5.12: Upper graph: Probability density of bound orbits with different circularity.
Lower graph: To the upper graph corresponding cumulative fraction. Results are shown for
progenitor halos of mass larger than 4 x 10'2 M, and mergers with mass ration Mj, /M, < 4.
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Figure 5.13: Upper graph: Correlation between pericenter distance and circularity of bound
orbits leading to mergers. Lower graph: Correlation between the eccentricity and circularity
corresponding to the orbits in the upper graph. Results are shown for progenitor halos of
mass larger than 4 x 102M, and mergers with mass ration Mj /M, < 4.
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5.3 Parameters w & 1

If halos spin, the orbital parameters of the last section are not enough to fully describe the
geometry of the encounter. Additional constraints on the position of the spin vectors S are
required. In fig. 5.14 the definition of the two necessary angles is shown. The angle 4 is
defined in the rest frame of the halo as the angle between the spin plane of the halo and the
orbital plane and in the rest frame of the satellite as the angle between the spin plane of the
satellite and the orbital plane. These two angles i;, and ¢4 are independent and by definition
li] < 180°, where ¢ = 0° is a prograde and i = 180° a retrograde encounter. Additionally,
the pericentric argument w, is defined as the angle between the line of nodes and separation
vector at pericenter, and has values ranging from w = —90° to w = 90°. It is not defined for
1 =0° or 2 = 180°.

Orbit

Figure 5.14: Definition of of the angles ¢ and w following T'T72.

To begin with, the correlation between the angles ¢ and w with the minimum mass of pro-
genitor halos and the definition of major mergers is examined. Figures 5.15 - 5.18 show the
results. The angles ij, and 45 are distributed following a sinus, independent of the minimum
mass for major merger definitions of Mj,/Ms < 4. The fit gets naturally poorer at high mini-
mum masses because of the smaller number of halos merging in that mass range. The solid
lines in figure 5.15 and 5.16 are fits of the form o |sin(z)|. If the angle between two vectors is
sinus-distributed, the two vectors have no correlation. This can be understood from looking
at the probability of drawing a random vector pointing from the center of a sphere to its
surface. If every point on the surface is equally likely to be pointed at, the probability of
finding an angle i for example between the x-axis and a random vector will be proportional
to sin(i). We therefore conclude that the spin plane and the orbital angular momentum plane
have no correlation. By inspecting figures 5.17 and 5.18 one finds the same results for the
angle w.
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Figure 5.15: Left column: Angle between halo spin plan and orbital plane for different choices

of minimum progenitor mass and a major merger definition of M, /M, < 4. Right column:

Same as left column but now for the angle between the spin plane of the satellite and orbital
plane.
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Figure 5.16: Left column: Angle between halo spin plan and orbital plane for different choices
of major merger definition and fixed minimum progenitor mass of 4 x 10'2M,. Right column:
Same as left column but now for the angle between the spin plane of the satellite and orbital
plane.



5.3. PARAMETERS w & I

0.2

0.15

0.1

fraction

0.05

0.15

0.1

fraction

0.05

0.15

0.1

fraction

0.05

M =50

p

[T T

-50

0

oy

50

-50

0
®

S

50

69

Figure 5.17: Left column: Angle between pericenter vector and node line in the rest frame of
the halo for different choices of minimum progenitor mass and a major merger definition of
My, /Mg < 4. Right column: Same as left column but now for pericenter vector and the node
line in the satellite rest frame.
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Figure 5.18: Left column: Angle between pericenter vector and node line in the rest frame
of the halo for different choices of major merger definition and a fixed minimum progenitor
mass of 4 x 10'2M, Right column: Same as left column but now for pericenter vector and
the node line in the satellite rest frame.
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Defining the angle x between the spin planes, one would expect from the results presented
above that the spin vectors are not correlated with each other, and that s should be sinus
distributed. The distribution of x is shown in fig 5.19 and is indeed sinus like.

0.15

0.09

fraction

0.06

0.03- i

0 50 100 150

Figure 5.19: The distribution of angles x between the two spin planes. Results are shown for
progenitor halos of mass larger than 4 x 10'2 M, and mergers with mass ration M} /M, < 4.

It is important to investigate the additionally correlations between the orbital parameters
Rperi and e with the angles introduced above. Fig. 5.20 illustrates the correlation between
the angle 75 and the orbital parameters. The orbital parameters seem to be not correlated
with 4;. The same results are found for ;. The pericentric argument w shows in contrast
to 7 an interesting correlation with the orbital parameters (fig. 5.21). It appears that for
|ws| > 45° the encounters are in the majority all nearly parabolic and that for |ws| < 45°
the encounter orbits start having larger deviations from parabolic. This suggest that halos
approaching on non-parabolic orbits are more likely to merge if the vector at pericenter lies
close to the spin plane of the partner. A very clear correlation between the pericenter distance
rperi and the pericentric argument w is found. For increasing pericenter distance w decreases,
indicating that distant passages only lead to mergers if the pericenter vector is close to the
partner’s spin plane. Again this result is valid for both ws and wy,.

Semi-analytic models describing the acquisition of spin by halos (Maller et al., 2002; Vitvitska
et al., 2002) assume that during mergers the orbital angular momentum gets transformed into
spin of the remnant halo. These models and models in which angular momentum is acquired
by tidal torques (e.g. Porciani et al., 2002) reproduce the spin distribution of halos found in
N-body simulations. However the merger picture for the build up of halo spins uses some
assumptions which still need
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Figure 5.20: Upper graph: Correlation between i; of the satellite and the eccentricities of
orbits leading to mergers. Lower graph: Correlation between the 7,.,; and i, corresponding
to the orbits in the upper graph. Results are shown for progenitor halos of mass larger than
4 x 102 M, and mergers with mass ratio My /M, < 4.
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Figure 5.21: Upper graph: Correlation between w, and e for orbits leading to mergers. Lower
graph: Correlation between 7,.,; and ws, corresponding to the orbits in the upper graph.
Results are shown for progenitor halos of mass larger than 4 x 10'2M; and mergers with
mass ratio My /M, < 4.



5.3. PARAMETERS w & I 73

confirmation by N-body simulations. As a first step the amount of angular momentum in the
orbit must be investigated. Fig. 5.22 shows the distribution of the fraction of orbital angular
momentum to spin of the halos S;, and spin of the satellite Ss. The distributions are fitted
by following function and parameters:

%d(ws}z) = a%Z—(l’ (Léfh>a01exp (—Léfh>a0 d(L/Sh) (5.33)

with
ag = 2.09, a1 =0.10, as="71.62 (5.34)

and
d(zlfss)d(L/Ss) = a%Z—[l’ (Lc/lfs>a01exp (—Lc/fs>a0 d(L/Ss) (5.35)

with
ap = 217, a; =0.05 az = 66.40. (5.36)

Maller et al. (2002) define a parameter f for mergers

L

f= Voir Ryir b

(5.37)

with V,; and Ry of the more massive progenitor. The value of this parameter is set to be
f ~ 0.42 for their model, in which spin is acquired from orbital angular momentum, produce
a spin distribution as found in N-body simulations. In Fig. 5.23 the distribution of f is
displayed. Again the distribution can be fitted by

dP Lag [ f\*! £\
—df = —ZL — d .
- o <a1> e (L) ar (5.38)
with
ag = 3.02, a; =0.87, ay=0215. (5.39)

The distribution peaks at ~ 0.6 and has its mean at ~ 0.75 which disagrees with the value
required in the merger picture.
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Figure 5.22: The upper two graphs show the distribution and corresponding cumulative
fraction of mergers with different L/Sj. The solid line in the upper of the two graphs is the
fit using eq. 5.33. Lower two graphs show the same as the upper graphs but now for the
fraction L/Ss. Results are shown for progenitor halos of mass larger than 4 x 1012M, and
mergers with mass ration M, /M, < 4.
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Figure 5.23: Upper graph: Distribution of parameter f found in the simulations. Lower
graph: Corresponding cumulative fraction found in the simulation. Results are shown for
progenitor halos of mass larger than 4 x 102 M and mergers with mass ration Mj,/M; < 4.
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Chapter 6

Dry and mixed mergers

The formation of elliptical galaxies by merging disk galaxies has been studied in numerous
simulations since it was proposed by Toomre & Toomre (1972) (see Barnes & Hernquist (1992)
and Burkert & Naab (2003) for reviews). This merging hypothesis has proven very successful
in explaining many of the properties of ellipticals. Even though there are still questions which
need further investigation, like the origin of peculiar core properties of ellipticals, it is now
widely believed that ellipticals formed by mergers of disk galaxies. In the framework of hi-
erarchical structure formation, merging is the natural way in which structure grows. Indeed,
the observed merger fraction of galaxies is in agreement with the predictions of hierarchical
models of galaxy formation (see chapter 4). Semi-analytical models of galaxy formation, as
the one we introduced in chapter 3, successfully reproduce many observed properties of galax-
ies, These models generally assume that star formation takes place in a galactic disk which
formed by gas infall into dark matter halos. Once these disk galaxies merge, depending on
the mass ratio of the galaxies, elliptical galaxies form. N-body simulations suggest a mass
ratio of My /My < 3.5, with My > My to generate ellipticals (Naab & Burkert, 2001). We
refer to these events as major mergers and to events with M; /M, > 3.5 as minor mergers.
Ellipticals can later on build up new disks by accretion of gas and become bulges of spiral
galaxies (e.g. Steinmetz & Navarro, 2002) or merge with other galaxies. Up to now the fre-
quency of elliptical-elliptical mergers (dry mergers, e-e) or spiral-elliptical mergers (mixed
mergers, sp-e¢) has not been studied in detail despite observational evidence indicating their
importance. van Dokkum et al. (1999), for example, find mergers of red, bulge dominated
galaxies in a rich cluster at intermediate redshifts.

In this chapter we investigate the liklihood of dry and mixed mergers. Our semi-analytical
model was constructed as described in detail in chapter 3. The mass M, traces different
environments. We adopt My = 10'?M,, which represents a field environment and M, =
10'5 M, which is a galactic cluster environment. present-day ellipticals are identified by their
B-band bulge-to-disc ratio as in chapter 3 , which corresponds to roughly more than 60% of
the stellar mass in the bulge (see fig. 3.21). We divide the progenitor morphologies into bulge
dominated labeled e and disk dominant labeled sp galaxies. In what follows our standard
model assumes that the stars of accreted satellites in minor mergers contribute to the bulge
component of the more massive progenitor and bulge dominated galaxies have more than 60%
of their stellar mass in the bulge. We adopt a ACDM cosmology with €, = 0.3, Qx = 0.7
and Hy = 65 km s~! Mpc—L.
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6.1 Morphology of progenitors

We start by analyzing the morphology of progenitors involved in major mergers adopting our
standard model. Due to continuous interactions, the fraction of bulge dominated galaxies
increases with decreasing redshift. As a result, the probability for them to be involved in a
major merging event increases too, which is shown in the left panel of fig. 6.1 for a field (M, =
102 M) and cluster environment (My = 10'°Mg). Due to more frequent interactions the
increase of the e-e and sp-sp fraction is faster in more dense environments and at redshifts z <
1 the sp-e and e-e fraction show clear environmental dependencies. The fraction of e-e mergers
increases faster (slower) while the fraction of sp-e mergers increases slower (faster) with time
in high density (low) regions. The most massive galaxies are mainly bulge dominated (e.g.
Binney & Merrifield, 1998; Kochanek et al., 2001), suggesting that the fraction of e-e and
sp-e is mass dependent. The right panel of fig. 6.1 illustrates the fraction of present-day
ellipticals at each magnitude which experienced last major mergers of type e-e, sp-sp or sp-e.
The fraction of e-e and sp-e mergers indeed increases towards brighter luminosities with a
tendency to increase faster in more dense environments, due to the higher fraction of bulge
dominated galaxies. One can distinguish between three luminosity regions: for Mp < —21
dry, at around Mp ~ —20, mixed and for Mg > —18 sp-sp mergers dominate.
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\ \
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Figure 6.1: Left panel, fraction of major mergers in the standard model between galaxies
of different morphology at each redshift. Right panel, the fraction of present-day ellipticals
which experienced a last major merger of type sp-sp, e-e or sp-e as function of their B-band
magnitude. Results shown for the standard model.
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Figure 6.2: The left column shows the dependence of merger fractions of different types on
the definition of bulge dominated galaxies. The right column displays the same dependence
for the last major merger type of present-day ellipticals at each B-band magnitude. Results
are shown for a cluster environment of My = 10> M and a model where all satellite stars
from minor mergers contribute to the bulge of the more massive merger partner.

It is important to understand how our results depend on the model assumptions. We focus
on cluster environments with My = 10" M, where the fraction of ellipticals is largest, and
investigate the dependence on our definition of a bulge dominated galaxy. We varied the
definition of a bulge dominated galaxy from more than 60% mass in the bulge component to
more than 80% mass in the bulge. The results are shown The tighter definition of a bulge
dominated galaxy reduces (increases) the fraction of e-e (sp-sp) mergers at all redshifts, which
results in a lower (higher) fraction of last major mergers being between bulge (disk) domi-
nated galaxies. The right panel of fig. 6.2 reveals in which mass range the galaxies are most
sensitive to the definition of a bulge dominated galaxy. At the high mass end with Mp < —21
(e-e region) most of the e-progenitors have a very large fraction of their mass in their bulge
component, while in the in fig. 6.2. sp-e and sp-sp region the e-progenitors do not have such
dominant bulge components, which explains why the sp-e fraction increases for Mg < —21 if
a tighter definition of bulge dominated galaxies is assumed.

In our standard model we assumed the stars of a satellite in a minor merger to contribute
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Figure 6.3: The same as fig. 6.2, assuming that galaxies with more than 60% of their mass
in the bulge are called ellipticals and adopting different fates for the stars of the satellites in
minor mergers. We show models where stars contribute to the bulge (solid line), to the disk
(dashed line) or half of the stars to the disk and half to the bulge (dotted line).

to the bulge component of the more massive progenitor. However the fate of the satellite’s
stars is not that clear, as e.g. Walker et al. (1996) find that in mergers with M7 /M, = 10 the
stars of the satellite get added in roughly equal parts to the disk and the bulge. We tested
three different models assuming the stars of satellites in minor mergers to contribute to the
bulge (bulge model) (e.g. Kauffmann et al., 1999), the disk (disk model) (e.g. Somerville &
Primack, 1999) or half of the stars to the bulge and the other half to the disk (disk-bulge
model) of the more massive progenitor. We find that the fraction of sp-e merger does not
change significant while the fraction of sp-sp (e-e) mergers increases (decreases) from bulge
to disk model (fig. 6.3).

This demonstrates that minor mergers play an important role between two major merging
events of a galaxy. The stars and the gas contributed from the satellites will affect the mor-
phology of elliptical galaxies and make them look more like lenticular galaxies.

It is interesting to investigate the fraction of present-day ellipticals brighter than a given
magnitude which experienced last major mergers of e-e, sp-e or sp-sp type. This quantity is
shown for a cluster environment in fig. 6.4. Again bulge dominated galaxies are defined as
those with more than 60% of their mass in the bulge. Independent of the fate of the satellite
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Figure 6.4: The fraction of present-day ellipticals with B-band magnitude larger Mp and
different type of last major mergers in cluster environments. Ellipticals are defined as galaxies
with more than 60% of their mass in the bulge.

stars more than 50% of the ellipticals brighter than Mp ~ —18 have experienced a last major
merger which was not a merger between disk dominated galaxies.

6.2 Discussion and conclusions

We have analyzed the morphologies of progenitors of present-day ellipticals based on their
stellar mass content in bulge and disk, finding that in contrast to the common assumption
of disk dominated progenitors, a large fraction of ellipticals were formed by the merging of a
bulge dominated system with a disk galaxy or another bulge dominated system. Kauffmann
& Haehnelt (2000) find that the fraction of gas involved in the last major merger of present-
day ellipticals decreases with stellar mass. We find the same behavior and show in addition
that the fraction of dry and mixed mergers increases with luminosity, suggesting that massive
ellipticals mainly formed by nearly dissipationless mergers of ellipticals (dry mergers). Our
results combined with those of Milosavljevié¢ & Merritt (2001) provide an explanation for core
properties of ellipticals as observed e.g. by Gebhardt et al. (1996). Progenitors of massive
ellipticals should be bulge dominated with massive black holes and very little gas. Their
merging leads naturally to flat cores in the remnant. In contrast, progenitors of low mass
ellipticals are gas rich with small bulges and low mass black holes, resulting in dissipative
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mergers and cuspy remnants. With these assumptions it is possible to reproduce the relation
between mass deficit and black hole mass observed by Milosavljevié et al. (2002) (Khochfar
& Burkert in preparation). It is also interesting to note that Genzel et al. (2001) and Tacconi
et al. (2002) find that ULIRGS have effective radii and velocity dispersions similar to those
of intermediate mass disky ellipticals with —18.5 > Mp > —20.5 (sp-e region). QSOs on
the other hand have effective radii and velocity dispersions which are similar to giant boxy
ellipticals (e-e region). This suggests that ULIRGS should be formed in sp-e mergers whereas
QSOs formed almost dissipationless through e-e mergers.

We find that many bulge dominated progenitors experienced minor mergers in between two
major merger events. The morphology of these objects is somewhat ambiguous and may
depend on several parameters like the impact parameter of the infalling satellites. However,
it is clear that these galaxies will rather look like lenticular galaxies than classical spirals. If
lenticulars make up a large fraction of progenitors of present-day ellipticals with Mp < —21,
numerical simulations of the formation of giant elliptical galaxies should start with progeni-
tors which were disturbed by minor mergers and should not use relaxed spiral galaxies (e.g.
Burkert & Naab, 2003).

Independent of the fate of satellite stars in minor mergers, more than 50% of present-day
ellipticals brighter than Mp ~ —18 in clusters had a last major merger which was not a merger
between two classical spiral galaxies. Despite all the successes of simulations of merging
spirals in explaining elliptical galaxies our results indicate that only low mass ellipticals are
represented by such simulations. More simulations of sp-e (e.g. Naab & Burkert, 2000) and
e-e mergers are required to address the question of the formation of ellipticals via merging
adequately.



Chapter 7

Isophotal shape of ellipticals

Numerous observational studies have measured the isophotal shape of elliptical galaxies and
found that they deviate from pure elliptic shape (Lauer, 1985; Carter, 1987; Jedrzejewski,
1987; Jedrzejewski et al., 1987; Bender et al., 1987; Bender, 1988; Nieto et al., 1991; Poulain
et al., 1992; Nieto et al., 1994; Kormendy & Djorgovski, 1989, for a review). This deviation is
characterized by the Fourier expansion of 6r(¢;) = riso(¢i) — Ten(¢i) with ris0(¢;) being the
radial distance from the center of the isophote under the polar angle ¢ to the actual observed
isophote, and r¢;;(¢;) the radial distance from the center of the isophote under the same polar
angle ¢ to the best fitting elliptical isophote. The expansion reads:

or(@) = ajcos(jg) + ) bjsin(j¢). (7.1)
j=0 =0

The Fourier coefficients with j < 2 describe the position of the fitted ellipse relative to the
observed isophote. The coefficients ap and as are the deviations from the long and short
axis, and the coefficients a; and b; determine the zero-point-offset of the axes. Coefficient
b> measures the angle between the semi-major axis of the fitted ellipse with respect to the
long axis of the observed isophote. Generally these coefficients are small and the coefficients
with j > 3, which describe deviations from perfectly elliptical shape, are dominated by the
fourth-order cosine coefficient a4. The effect of non-zero a4-coefficient is illustrated in fig.
7.1. For positive values the isophote looks disk-like shaped (disky), and for negative values
box-like shaped (bozy). For convenience one introduces the dimensionless parameter

ad = — (7.2)
with a as the semi-major axis of the best fitting ellipse.

Bender et al. (1988) and Bender et al. (1989) were the first to look systematically for cor-
relations between isophotal shape and other properties of elliptical galaxies. In general the
value of a4 changes with radius and one must define its value in the same way for all elliptical
galaxies to get senseful results. Bender et al. (1988) decided to choose the value of a4, by
averaging between the seeing radius r, and 1.5 r.sf, with r.;s being the half-light radius,
and multiplying this value by 100. This quantity, in the following labeled a4.;f, gives the
characteristic shape of the isophotes around r.¢s. Around 1/3 of the ellipticals investigated
show boxy isophotes, another 1/3 show disky isophotes and the rest are irregular and allow
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Boxy with [a,/a]x100 = —0.1

Disky with [a,/a]x100 = 0.1

Figure 7.1: Comparison of boxy (a4 x 100 = —0.1) and disky (a4 x 100 = 0.1) isophotes with
the corresponding best fitting ellipse (dashed line). The long and short axis are denoted by
a and b respectively.

no identification of a characteristic isophotal shape (Bender et al., 1989). The fraction of
different isophotal shape is derived for a limited sample and might change significantly going
to a more complete sample.

As a first step (Bender et al., 1989) investigated the correlations between the isophotal shape
characterized by a4,y and other shape and kinematical parameters. These parameters giving
different informations on galaxies are:

- Ellipticity €

The ellipticity of a galaxy is defined by

e=1-—

b
Z 7.3
; (73)
with a as the semi-major axis and b as the semi-minor axis. Since the ellipticity changes
along the major axis Bender et al. (1988) use the effective ellipticity €.¢ defined as the
maximum value of the ellipticity along the major axis, or in the case of a continuous
increase, the value at 7.yy.

g0

Rotational support (M)

A measure for the rotational support of a galaxy is the ratio of rotational velocity
along the major axis vy,q; at rory and the central velocity dispersion o defined by the
average velocity dispersion inside 0.5r.7¢. If the velocity dispersion is much larger than
the rotational velocity the shape of the galaxy is dominated by the random motion of
the stars rather than by rotation, meaning it is pressure supported. The theoretical
prediction for an oblate rotator with isotropic stellar velocity distribution has been
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calculated by Binney (1978), and can be approximated by

(”m“j> ~ (7.4)
g0 theo l—e

%
- Umaj
- Anisotropy parameter (J—OJ)

Kormendy (1982) and Davies & Tllingworth (1983) suggest to parametrize the amount of
anisotropic velocity dispersion by the ratio of observed (vy,4;/00)0ps to the theoretically
predicted value giving

(vmaj ) " _ (Vmaj/00)obs (7.5)

o] (Umaj /UO)theo -

Values around 1 indicate an isotropic rotating galaxy while values of (vpaj/00)* < 1
indicate an anisotropic rotator (Bender, 1988) .

- Minor-azis rotation

Following Binney (1985) the amount of rotation along the minor-axis can be parametrized
by

Vo
= (7.6)
Umaj + Unmnin
Large values indicate non-negligible rotation along the minor-axis. Large values of p in
combination with isophotal twist are strong indications for triaxiality in the rotation.

In fig. 7.2 we present a compilation of the observed correlations by Bender et al. (1989). The
upper left panel shows the correlation between .7 and a4.yr. Ellipticals with €.¢r > 0.4 are
mostly disky, while those around 0.4 can either be disky or boxy. The deviation from pure
elliptical shape goes along with ellipticity. Galaxies which are 'rounder’ show less deviation
from pure elliptical shape.

The graph in the upper right panel displays that disky ellipticals follow nicely the theoretical
predicted relation for an oblate isotropic rotator, indicating that they are rotationally sup-
ported systems. The diskyness is attributed to and additional stellar disk contributing up to
30% of the total light (e.g. Rix & White, 1990). On the other hand boxy ellipticals seem to
be not rotationally supported but pressure supported and have small values of (vyq;/00).

Boxy ellipticals show a wide spread in (vmq;/00)", but all of these galaxies have small values
of (Umqj/00) and are therefore flattened by velocity anisotropy. In contrast disky ellipticals
are mainly isotrope with (vyq;/00)" ~ 1.

The significant minor-axis rotation found in boxy ellipticals indicates them being triaxial
(Wagner et al., 1988; Franx et al., 1989), while disky ellipticals have mainly negligible minor-
axis rotation and are therefore assumed to be not triaxial.



86 CHAPTER 7. ISOPHOTAL SHAPE OF ELLIPTICALS

1.0 2.0 ,
- /
0.8 . 2
' 15¢ )
3 /
O 6 L < < of <> //
N . > . < - °° //o
wﬁ o © 8o 3 \E' 1.0 P > 7
04F Jme® = %> _os 3 -
"a °°°°3 < o S o o .
et o .7 e
-.-: - %:09 <> 05"t o uoy .-oo
I " b .
02 ...F:- o§°: - /:o %o.o.o on <
o, o 7%°a '°§ .-°' o
0.0 ..F%‘ 0.0 Qo‘ it \';'m "% 1 . T
-2 0 2 4 0.0 0.2 0.4 0.6 0.8
adege Eeff
0.5 ‘ 0.5 ‘
.o o> 4
00/ s F L e e o 00 e
. > 3
* Trade =T i T %“
3 [ - "y 2 <> >E [ j ?
g -0.5 LT el T -0.5 %% -
© .I. g I
z 2 z . mef
© 1.0t . 3 -top ¢ ¢ I
o 4
—1.57¢ - —=1.57 1
—-2.0 2.0 ! ‘ !
-2 0 2 4 -2 0 2 4
atog atoy

Figure 7.2: Kinematical and photometric properties of observed giant galaxies (figure repro-
duced from Naab (2000)). Filled squares represent boxy ellipticals (a4.rf < 0) and open
diamonds disky ellipticals (ad.sr > 0).Top left panel: Ellipticity of the galaxies vs. adqf;.
Top right panel: Correlation between the ratio of rotational velocity and central velocity dis-
persion and ellipticity. The arrows indicate upper limits. Bottom left: Anisotropy parameter
vs. isophotal shape. Bottom right panel: Minor-axis rotation vs. a4.fr, with vy,q; and vy,
being the maximum velocity along the major and minor axes, respectively.

boxy E | disky E
rotationally supported © 52
anisotropic rotation @ S
triaxiality D (=

Table 7.1: Summary of boxy and disky elliptical properties.
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The correlations presented above lead to the conclusion that elliptical galaxies can be divided
into two distinct classes, the boxy ones and the disky ones. The question arising immediately
is, if these two classes of ellipticals might have had different formation scenarios. Kormendy
& Bender (1996) and Faber et al. (1997) argued that disky ellipticals are the product of
gaseous mergers where the gas settles down into a distinct inner disc and gets transformed
into stars, leading to disky isophotes. On the other hand boxy ellipticals are the product
of dissipationless stellar mergers. Numerical simulation investigating this scenario in detail
found that the rapidity of gas consumption affects the isophotal shape (Bekki & Shioya, 1997;
Bekki, 1998).

Barnes (1998) proposed a different scenario in which rapidly rotating disky ellipticals are
formed by dissipationless unequal mass mergers and boxy ellipticals by dissipationless equal
mass mergers. Naab et al. (1999) tested this hypothesis in detail using numerical simulations
and deriving the shape and kinematical parameters of the remnant ellipticals the same way as
Bender et al. (1988) did. Figure 7.3 presents results for a merger configuration which leads to
typical results seen in merger simulations. The dots are 200 random projections of 1:1 merger
(filled circles) and 3:1 mergers (open circles). The simulated ellipticals show a very good cor-
relation between their a4,y value and the mass ratio of the merger. Remnants of 3:1 mergers
have mostly a4.r; > 0 and those of 1:1 mergers mostly a4.r; < 0 supporting this scenario for
the formation of disky and boxy ellipticals. However, it is important to test also the other
correlations found. Simulated disky and boxy ellipticals show the same behavior in €. 7 as the
observed ones. The (vy,q;/00) values of te 3:1 and 1:1 remnants are also in agreement with
them being disky and boxy elliptical, respectively, even though simulated remnants with high
(Vmaj/00) are not found. This should be not too surprising and may be connected to a missing
disk in the remnant, since no dissipative processes were included. The anisotropy parameter
(Umaj/o0)* of the remnants shows also good agreement with the assumed scenario in general.
The chosen merger geometry does not produce 1:1 merger remnants with with large values of
(Vmaj/o0)* ~ 1. Recently (Naab & Burkert, 2003 in preparation) investigated a large survey
of orbit geometries, finding in some cases 1:1 remnants with values around (vpmq;/00)* ~ 1.
The minor axis rotations p are in agreement with the hypothesis. In conclusion one can say
that this scenario is successful in explaining the origin and properties of most of the boxy and
disky ellipticals observed.

The properties investigated above are not the only ones characterizing disky and boxy ellip-
ticals. A second class of independent properties based on luminosity and mass exists which
allows to distinguish between disky and boxy ellipticals. Again it was Bender et al. (1989)
who investigated the X-ray luminosity and radio power of elliptical galaxies (Figure 7.4).
They found that disky ellipticals are only weak radio sources at a frequency of 1.4 GHz
with P4 < 102'W Hz~", while boxy ellipticals are up to 10 000 times more powerful at 1.4
GHz. Moreover, disky ellipticals in this sample have all X-ray luminosities below 3 x 1033 W,
whereas boxy ellipticals have mostly X-ray luminosities above this value. The isophotal shape
of ellipticals is also found to correlate with the mass or luminosity of the elliptical galaxy.
Massive ellipticals are mostly boxy while less massive are mostly disky (Figure 7.5).

One can use the above presented properties of disky and boxy ellipticals to test their formation
scenario. Since the modeling of the X-ray luminosity and the radio emission is not easy to
achieve without incorporating many vague assumptions we try to test the formation scenario
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by looking at the correlation between mass and isophotal shape. The results presented by
Naab et al. (1999) were all scale free meaning that they are independent of the remnant mass as
long as all the properties were scaled in the same way. This makes it easy to incorporate their
results in semi-analytic models of galaxy formation to test whether it is possible to reproduce
the observed correlation between mass and isophotal shape in a cosmological context.

1.0 77 2.0
0.8r

0.6

ell

Figure 7.3: Kinematical and photometric properties of modeled ellipticals (figure reproduced
from Naab et al. (1999)). Result are shown for a typical merger configuration. Filled circles
represent boxy ellipticals (a4 in our notation a4.ss) and open circles disky ellipticals .Top left
panel: Ellipticity of the galaxies vs. a4.;s. Top right panel: Correlation between the ratio
of rotational velocity and central velocity dispersion and ellipticity. Bottom left: Anisotropy
parameter vs. isophotal shape. Bottom right panel: Minor-axis rotation vs. a4eys, with vy,
and vy, being the maximum velocity along the major and minor axes, respectively.
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Figure 7.4: Left panel: Correlation between radio luminosity at 1,4 GHz and isophotal shape
a4/a x 100, which corresponds to a4.fs used in this work. Right panel: X-ray luminosity
Lx in the 0.5-4.5 keV band. All error bars are calculated assuming a distance error of 15%.
(Figures are reproduced from Bender et al. (1989))
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Figure 7.5: Correlation between isophotal shape and the parameter k1 o log(M) and the
absolute B-band magnitude Mp. For better visualization boxy galaxies are shown by black

boxes and disky ellipticals by red circles. (From data published in Bender et al. (1992))
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7.1 The model

We create merging trees of dark matter halos based on the extended Press-Schechter formal-
ism as described in ch. 3 and use the semi-analytic machinery introduced in the same chapter.
The adopt cosmological parameters are Qg = 0.3, Qy = 0.7, Hy = 65 km s~ Mpc™' and
0/ = 0.15.

We assume ellipticals to form in major mergers, i.e. mergers with a mass ratio My /M, < 3.5
with M; > M, (Naab, private communication). The isophotal shape of the elliptical is
constrained by the mass ratio of the last major merger. Mergers with mass ratio less than 2
result in boxy ellipticals and those with mass ratios between 2 and 3.5 in disky ellipticals.

7.2 Results

As motivated in the beginning of this chapter we assign isophotal shapes of ellipticals by the
mass ratio of their last major merger. To match the observed correlation between isophotal
shape and mass or luminosity of the elliptical, more massive ellipticals must be formed pref-
erentially in 1:1 mergers and low mass ellipticals in 3:1 mergers. In the hierarchical structure
formation scenario such a behavior is not expected. The power spectrum of density fluctua-
tions on the scales of interest is scale free, meaning that structure builds up almost self-similar.

In figures 7.6 - 7.9 we illustrate different important properties in the build up of present-day el-
lipticals in different environments. We chose four different environments with My = 10'? M,
My = 108 My, My = 10" M and My = 10" M, representing a galaxy, small group, group
and cluster environment, respectively. The upper left graph in each of the figures shows the
correlation between the stellar mass of a present day elliptical and the redshift of its last
major merger. As expected in a scenario of hierarchical build up the most massive galaxies
had their last major merger at low redshifts, which can be seen nicely in the high density
environments. Comparing the environments reveals that the build up takes place faster in
high density environments, producing larger galaxies at higher redshifts.

The average last major merger takes place at earlier times in high density environments com-
pared to low density environments (see middle left and lower left graphs), since the evolution
is "boosted” and mergers are becoming rare at low redshifts due to the high velocity disper-
sion of the galaxies in the cluster.

The middle right graphs demonstrate that their is no correlation whatsoever between the
mass ratio in the last major merger and the redshift at which it takes place. The dashed lines
mark the My /My = 2 and My /My = 3 merger case. Numbers at the line are the completeness
in terms of galaxies having had a last major merger with a mass ratio of less than 2 or 3.

The fraction of last major mergers at any given redshift for the three cases M;/M; < 2
(1:1), 2 < My /My < 3 (2:1) and 3 < M;/M, < 3.5 (3:1) is shown in the lower left graphs.
The distribution of last major merger redshifts is similar for the 1:1 and 2:1 case in all
environments. Only the 3:1 case is smaller since it covers a smaller range in mass ratios.
Again the shift toward earlier times in high density environments can be seen.
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corresponds to a field environment. Upper left graph: correlation between stellar mass of
the elliptical in units of M at z = 0 and its last major merger event. Upper right graph:
correlation between the mass ratio My /My with My > My in the last major merger event and
the stellar mass of the elliptical in units of Mg at z = 0. Middle left graph: distribution of
last major merger redshifts of present-day ellipticals. Middle right graph: correlation between
redshift of the last major merger and the mass ratio My /M of it. Lower left panel: cumulative
lower right graph: fraction of ellipticals
having had their last major merger at zj,5; in a major merger event with M; /M, < 2 (labeled
1:1), 2 < My /M5 < 3 (labeled 2:1) and 3 < M;/M> < 3.5 (labeled 3:1).

fraction corresponding to the middle left graph.
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Figure 7.7: Results are shown for a dark matter halo of My = 10 My, at z = 0 corresponding
to a small group environment. Upper left graph: correlation between stellar mass of the
elliptical in units of My at z = 0 and its last major merger event. Upper right graph:
correlation between the mass ratio My /My with My > My in the last major merger event and
the stellar mass of the elliptical in units of Mg at z = 0. Middle left graph: distribution of
last major merger redshifts of present-day ellipticals. Middle right graph: correlation between
redshift of the last major merger and the mass ratio My /M of it. Lower left panel: cumulative
fraction corresponding to the middle left graph. lower right graph: fraction of ellipticals
having had their last major merger at zj,5; in a major merger event with M; /M, < 2 (labeled
1:1), 2 < My /My < 3 (labeled 2:1) and 3 < M;/M> < 3.5 (labeled 3:1).
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Figure 7.8: Results are shown for a dark matter halo of My = 10'* M, at z = 0, corresponding
to a group environment. Upper left graph: correlation between stellar mass of the elliptical
in units of My at z = 0 and its last major merger event. Upper right graph: correlation
between the mass ratio My /M, with M; > M, in the last major merger event and the stellar
mass of the elliptical in units of M, at z = 0. Middle left graph: distribution of last major
merger redshifts of present-day ellipticals. Middle right graph: correlation between redshift of
the last major merger and the mass ratio My /M, of it. Lower left panel: cumulative fraction
corresponding to the middle left graph. lower right graph: fraction of ellipticals having had
their last major merger at z;,5; in a major merger event with M;/My < 2 (labeled 1:1),
2 < My/Ms < 3 (labeled 2:1) and 3 < My /M, < 3.5 (labeled 3:1).
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Figure 7.9: Results are shown for a dark matter halo of My = 10'° My, at z = 0 corresponding
to a cluster environment.Upper left graph: correlation between stellar mass of the elliptical
in units of My at z = 0 and its last major merger event. Upper right graph: correlation
between the mass ratio My /M, with M; > M, in the last major merger event and the stellar
mass of the elliptical in units of M, at z = 0. Middle left graph: distribution of last major
merger redshifts of present-day ellipticals. Middle right graph: correlation between redshift of
the last major merger and the mass ratio My /M, of it. Lower left panel: cumulative fraction
corresponding to the middle left graph. lower right graph: fraction of ellipticals having had
their last major merger at zj,5; in a major merger event with M;/My < 2 (labeled 1:1),
2 < M;/Ms < 3 (labeled 2:1) and 3 < M; /M, < 3.5 (labeled 3:1).
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When analyzing the correlation between the stellar mass and the mass ratio of the last major
merger (upper right graphs), the self-similarity becomes apparent. Ellipticals ,independent
of their mass and environment, did not have preferred last major mergers.

The results presented above indicate that it will not be possible to recover the mass-isophote
correlation of elliptical galaxies. These results are independent of assumed cosmology or
power spectrum. We analyze the fraction of boxy to disky ellipticals in a cluster environment
My = 10" M, since the above results indicate no dependency and because the fraction of
ellipticals is highest in clusters. Figure 7.10 shows the results. As expected in the top graph
the fraction of boxy to disky ellipticals varies only weakly and does not show an increase with
luminosity as seen in the observational data. To cure this problem we test the assumption
that the result of a major merger between early type galaxies will always result in a boxy el-
liptical. This assumption is motivated by indications seen in numerical simulations of merging
ellipticals (Naab, private communication). In chapter 6 we presented results which showed
that massive ellipticals mainly form by mergers of early-type galaxies. This and the above
assumption work in the right direction of having more boxy galaxies at the high luminosity
end. Unfortunately the fraction of boxy ellipticals increases also weakly on the low luminos-
ity end. The slope of the modeled relation is steeper than the observed on and has an offset
(middle graph). Observations by Rix & White (1990) found that disky ellipticals can have
up to 30% of their mass being contributed from a weak stellar disk. Ellipticals with such a
disk will be classified as disky and not as boxy ellipticals. We therefore apply an additional
condition on the isophotal shape. If the stellar disk is larger than 30% the isophote will look
disky, no matter what the mass ratio of the last major merger has been. This constraint
reduces the offset and makes the slope become more shallow to be in fair agreement with the
observations (lower graph). In the same graph we show the results if applying that 20% of
the total mass in the disk is the transition point from boxy to disky. This choice leads to an
even shallower slope and smaller ratio Ny, /Ndisky'

Even though it was possible to recover a relation similar to the one observed, many questions
are still open. The observed sample of ellipticals is not large and therefore might have a
substantial bias towards disky or boxy ellipticals. Projection effects leading to a wrong clas-
sification of isophotes are not controllable. Furthermore the assumption of elliptical mergers
leading to boxy ellipticals has not been tested and needs confirmation from simulations.
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Figure 7.10: The upper graph shows the fraction of boxy to disky ellipticals using the as-
sumption of Naab et al. (1999). The middle graph shows the fraction applying the hypothesis
that elliptical major mergers lead to boxy remnants. The lower graph presents the results
with the additional constraint that ellipticals with disk mass ratios of more than 20% (solid
line plus circles) or with more than 30% (dotted line plus triangles) have disky isophotes.
Filled circles represent the observations by Bender et al. (1992).



Chapter 8

Central properties of spheroids

Detailed observations of the centers of early-type galaxies using the Hubble Space Telescope
(HST) suggested that they can be divided into two distinct groups called core and power-law
galaxies according to the logarithmic slope of the inner density profiles (Ferrarese et al., 1994;
Lauer et al., 1995; Gebhardt et al., 1996; Faber et al., 1997). Core galaxies have a break in
their surface brightness profile at the break radius R, which is defined by the minimum of
d?log ¥(R)/d(log R)?, with ¥ ~ R™T" as the surface brightness profile. Inside of this radius the
logarithmic slope slowly decreases mimicking a constant density core. Power-law galaxies on
the other side have almost a single power-law profile throughout their inner regions. Luminous
galaxies with My < —21 are all core galaxies while galaxies with My > —16 always exhibit
power-laws. Galaxies of intermediate luminosity can be either core or power-law galaxies
(Gebhardt et al., 1996). Figure 8.1 shows the power-law index of the inner spatial density
profile p ~ r=7 vs. the absolute V-band magnitude My for early-type galaxies from the
Gebhardt et al. (1996) sample (figure reproduce from Merritt, 2000). Galaxies with v < 1
(T' < 0.3) are core galaxies and those with 1 < v < 2.5 (T' > 0.3) are power-law galaxies.
Recent observations of by Carollo & Stiavelli (1998); Ravindranath et al. (2001); Rest et al.
(2001) confirmed systematic differences between high luminous galaxies and low luminous
galaxies but weakened the case for a dichotomy. The question of a dichotomy is still a matter
of debate. The growing evidence for super massive black holes (SMBHs) in the centers of
spheroids (Gebhardt et al., 2000; Ferrarese & Merritt, 2000) suggest a connection of the
central properties and SMBHs.

The question of what is the reason of a possible dichotomy or the difference between bright
and faint ellipticals regarding their central density properties has been addressed in several
studies. The hierarchical paradigm of structure formation predicts first small objects to form.
In our case this would mean the low luminous ellipticals resemble the first generation of
ellipticals. These galaxies show all steep power-laws. The creation of such profiles results
naturally from violent relaxation of merging disk galaxies with bulges. Growing single BHs in
preexisting cores also produce steep cusps. Numerical simulations show that objects building
up hierarchical show steep central density cusps p ~ r~5 (Navarro et al., 1996; Moore et al.,
1998).

If one accepts that the progenitors of faint ellipticals had steep cusps. The question arises
what happens to the cusps during the merger. In mergers of two galaxies with steep cusps
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Figure 8.1: Inner power law slope vs. absolute V-band magnitude My . (figure reproduce
from Merritt, 2000).

and no BHs the density profile of the remnant will preserve the shape and be a steep cusp
(Barnes, 1999; Milosavljevi¢ & Merritt, 2001). Even if the progenitors had cores, through
successive mergers the profile will become a steep cusp (Makino & Ebisuzaki, 1996). As a
possible scenario to solve this problem it was suggested and studied in detail, that during
the merger of two SMBHs the binding energy of the black holes could be released to the
surrounding stars in the center, expelling them from the central region and making the cusp
shallow (Begelman et al., 1980; Ebisuzaki et al., 1991; Milosavljevi¢ & Merritt, 2001).

In this chapter we want to investigate this scenario for the core creation in the context of
the standard cosmology using semi-analytic modeling techniques. We will focus on a cluster
environment My = 10" M, since we have the highest fraction of elliptical galaxies in these
environments.

8.1 Binary black holes

We start by summarizing the physical processes governing the evolution of binary BHs and
their influence on the surrounding stars (Milosavljevi¢ & Merritt, 2001, and reference therein).

One can distinguish three different stages in the evolution of a BH binary (Begelman et al.,
1980):

1. Merging of two host galazies
When two host galaxies merge the BH and their surrounding stars sink to the center of
the common potential well forming a BH binary.



8.1.

BINARY BLACK HOLES 99

2. Hardening of the binary

When stars pass the binary at a distance of ~ a, with a being the semi-major axis of the
binary, they experience a gravitational slingshot and are ejected with velocities (Hills
& Fullerton, 1980)

(8.1)

a

G Moo\ /2
Vej = Vipin = < 12) .

Viin is the relative velocity of the two BHs if their orbit would have been circular, and
My = My + My (My > M>) is the combined mass of both BHs. The amount of ejected
mass due to the decaying binary is (Quinlan, 1996)

M,; ~ JM31n (ﬂ> : (8.2)
Qgr

with a, = GMy/40? the semi-major axis when the binary becomes "hard” and agr the
semi-major axis when the energy loss due to gravitational radiation equals the loss due
to stars being ejected. The parameter J is the dimensionless mass-ejection rate. For
equal mass binaries it is J = 0.5 (Milosavljevi¢ & Merritt, 2001). Milosavljevié et al.
(2002) argue that this expression must be modified to take into account that only stars
with v > Vj;,, can escape the binary and be ejected. They find following expression

M, ~ My In <a—h> . (8.3)

Qg

Using the semi-analytic model of Merritt (2000) for the decay of a binary in a power-law
cusp leads to (Milosavljevié et al., 2002)

G AimaPt, a~7s (M) (8.4)
ap ’ T\ My c '

with the one-dimensional velocity dispersion of the stars being o and ¢ as the speed of
light. The mass ejected becomes now

M
M,; =~ 4.6M; [1 +0.0431n (—1>] : (8.5)
My

The ratio M,;/M; varies only negligibly with M3/M;. One therefore can assume
M,; = 5M;. (8.6)

By inspecting the equations presented above one sees that for Ms — 0 the ejected mass
becomes infinit. Therefore, the relation derived for the mass deficit should only be
applied in a mass range where the mass ratio M;/Ms is not too large. Limits on the
range of Mj /M, are presented later.

. Emission of gravitational waves

When the binary has decade sufficiently far the dominant source of energy loss will
become gravitational radiation, which will finally lead to the coalescence of the binary.
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The above presented results a based on semi-analytic models and need verification by detailed
simulations. However such simulations have to deal with a wide range of time and length
scales. Milosavljevi¢ & Merritt (2001) have preformed the first self-consistent simulations of
an equal mass merger between galaxies with initial density profile p ~ =2 hosting SMBHs.
Results of their simulation are shown in figure 8.2. The upper panel shows the density and
the lower panel X. The dashed line shows the initial density profile multiplied by an arbitrary
factor. The different lines in each graph mark the time evolution of the profile. The results
illustrate very nicely that the merger of two galaxies inhabited by SMBHs can lead to the
transformation of steep cusps to cores.

log p

M, / m=164 M, / m=328 M, / m =655

1 | | | | 1 1 1 1
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Figure 8.2: Evolution of the stellar density profile of the remnant during the merger of two
black holes (reproduced from Milosavljevi¢ & Merritt, 2001). The upper panels show the
evolution of the spatial density profile and lower panels the evolution of the projected density
profile ¥. Different lines correspond to different snapshots recorded from top to bottom.
Three cases with different BH masses are shown.

8.2 Populating galaxies with black holes

The results of last section indicate that binary BH mergers are able to produce core galaxies.
To test this prediction in a cosmological context where galaxies inhabiting BHs merge, one
needs to populate galaxies with appropriate BHs. The formation and evolution of BHs is still
not understood completely and needs further investigations. There are several approaches
trying to explain the formation and feeding of SMBHs (e.g. Haehnelt et al., 1998; Kauffmann
& Haehnelt, 2000; Burkert & Silk, 2001). In this work we will use the semi-analytic model
described in chapter 3 with €,/Qy = 0.15, h = 0.65, Qo = 0.3 and Q5 = 0.7; plus the
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approach of Kauffmann & Haehnelt (2000) for the formation and evolution of SMBHs in a
cluster environment with My = 10" M. Their model assumes the formation of SMBHs being
connected to the formation of spheroids in major mergers (M /My < 3.5, My > Ms). During
major mergers of galaxies preexisting SMBHs will merge and a fraction of the available cold
gas of the galaxies will be used to feed the remnant BH or in the case of progenitors without
BHs to create a BH. This is somewhat motivated by the correlation found between the bulge-
luminosity and BH mass (e.g. Magorrian et al., 1998; Gebhardt et al., 2000; Ferrarese &
Merritt, 2000) and simulations including gas physics, which show that during major mergers
gas can be driven far enough into the center to probably fuel BHs (Negroponte & White,
1983; Barnes & Hernquist, 1991; Mihos & Hernquist, 1994) Only BHs with M, ;/M.o <
100, M, 1 > M, 2 are going to merge on time-scales less than a Hubble time (van den Bosch
et al., 1999; Haehnelt & Kauffmann, 2002). We therefore only allow binary BH mergers with a
mass ratio less than 100. The fraction of gas consumed by the BH is modeled to be dependent
on the potential well of the halo in a similar manner as the super nova feedback in chapter 3.
Kauffmann & Haehnelt (2000) adopt following scaling which gives good agreement with the
slope of the M, — Ly, 4. relation of Magorrian et al. (1998)

_ JfonMeora
14 (280km s~'/V,)2’

acc (8-7)
The free model parameter fy;, is determined by the best fit to the observations. The scal-
ing used in eq. 8.7 allows more gas being consumed by BHs in halos with deep potential wells.

The observed relation between BH mass and velocity dispersion M, — ¢ has been found to
have a smaller scatter than the M, — Ly 4. relation (Ferrarese & Merritt, 2000; Gebhardt
et al., 2000). We therefore use the former to fix the free model parameter fy;,. To do so
we must first check whether we reproduce the observed Faber-Jackson relation (Forbes &
Ponman, 1999). Since we do not have any dynamical information on the velocity dispersion
of our galaxies besides the velocity dispersion of the dark matter halo surrounding them we
allow the use of a fudge factor to connect o with the circular velocity of the dark matter
halo when the galaxy was the last time a central galaxy (see chapter 3). In the case of an
isothermal sphere this relation would be V,/o = v/2. Figure 8.3 shows our best fitting model
results which need a slightly larger factor V./o = V3.

Once the velocity dispersion o of the modeled spheroids is determined we can compare the
modeled M, — o relation with the observed one and determine the best fitting parameter fy,
and see whether it is possible to populate the modeled spheroids with the right BH masses.
In fig. 8.4 we illustrate our best model fits to the data. The lines are the fit to the data by
Gebhardt et al. (2000) and Merritt (2000). They find relations with slightly different slopes.
Our modeled relation seems to be in very good agreement with the relation found by Ferrarese
& Merritt (2000) for fp, = 0.002.

In fig. 8.5 we investigate the dependence of predicted M, — o relation on the different as-
sumption inherent to this model of BH formation and evolution, namely fp,, the maximum
mass ratio Rfeeq = My /My of galaxy mergers in which we allow feeding of the BH and on the
mass ratio Rpinary = Me,1/Ma 2 of BH binaries we allow to merge .
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Figure 8.3: Faber-Jackson relation of modeled spheroids. The solid line is the best fit to
observations taken from Forbes & Ponman (1999). We adopted a scaling of the form V./o =
V/3 between velocity dispersion of the spheroid and circular velocity of the halo when the
galaxy was the last time a central galaxy.

In the upper graph we show the influence of changing f;, and using Ry.q = 3.5 and
Ryinary = 100. The relation is only changing the offset but not the slope varying fy;,. Larger
values of fy, correspond to larger BH masses.

In the middle graph of fig. 8.5 we illustrate the dependence on the maximum mass ratio of
galaxies in mergers which allow feeding of the BH. Only in mergers with mass ratio below
Rjeeq cold gas is accreted onto the BH. We keep the other parameters fixed at fy, = 0.002
and Rypipery = 100. The inclusion of minor mergers in this scheme leads to a steepening of
the relation, which can be explained by the larger number of minor mergers a large galaxy
experienced.

The dependence on the mass ratio of binaries which we allow to merge can be found in the
lower graph of fig. 8.5. Only BH binaries with mass ratio < Rpinery are allowed to merge.
We keep the other parameters fixed at fy, = 0.002 and Rf..q = 3.5. Again the relation seems
to steepen, but this time additional an offset occurs. The steepening has the same reason

mentioned above. The offset illustrates the importance of merging BHs on the growth of
SMBHs.
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Figure 8.4: Relation between black hole mass and velocity dispersion ¢ for modeled black
holes. The lines are the observed relations by Ferrarese & Merritt (2000); Gebhardt et al.
(2000).
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Figure 8.5: Dependence of the black hole mass velocity dispersion relation on the assumed
fraction of the cold gas being accreted onto the BH fy;, the maximum mass ratio of galaxies
in which gas is accreted by the central black hole Rj..q and the maximum mass ratio for
which BH are assumed to merge in less than a Hubble time Rp;;qry. The upper panel shows
the results for constant Rfc.q = 100 and Rpipary = 100, but varying fp,. The middle graph
varies Ryeeq While Ryipery = 100 and fpy = 0.002. Lower graph: Dependence of the relation
on Rpyinary for constant Ry..q = 100 and fp, = 0.002.
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8.3 Mass-deficit black hole mass relation

In the last section we successfully populated spheroids with SMBHs. Now we can follow
the evolution of galaxies and their SMBHs in the context of a cosmology and calculate the
amount of mass ejected during each merger of SMBHs using eq. 8.6. The stars ejected will
be removed from the center interior to the galaxies break radius r, defined as the position
where the slope v crosses v = 2 in the positive sense dry/dr > 0 with v = —dlog p(r)/dlog(r)
(Milosavljevié et al., 2002). We model the effect the loss of these stars will have on the central
density profile by defining a mass deficit My, Milosavljevi¢ et al. (2002) as the mass missing
to make the actual density profile a singular isothermal profile(see fig. 8.6).

L d
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Figure 8.6: The mass deficit Mg.s is defined as the shaded region (figure reproduced from
Milosavljevié et al., 2002).

We assume the mass deficit to be a cummulative quantity getting larger with every binary
merger (Merritt, 2000; Milosavljevi¢ & Merritt, 2001). This assumption has some important
consequence on the mass deficit of galaxies. Galaxies with very massive BHs will on average
have experienced more binary BH mergers than galaxies with low mass BHs and therefore
their mass deficit is expected to be larger. In fig. 8.7 we compare the number of binary
mergers below a certain mass ratio, which SMBHs of different mass experienced in their past.
On average the most massive BHs have had ~ 20 binary mergers with mass ratios less than
100, which is in agreement with Haehnelt & Kauffmann (2002). Another consequence of
this scheme is that the mass deficit will depend crucially on the merger history of the final
black hole. In fig. 8.8 we illustrate the evolution of two different SMBHs having the same
final mass but different merger histories leading to different mass deficits. The scatter in the
relation between SMBHs and the mass deficit can be quite large and it needs to be tested
and compared to observations.
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Figure 8.7: Dependence of the number of binary black hole mergers vs. final black hole mass
on the maximum mass ratio of black hole binaries counted.
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Figure 8.8: Tllustration of the dependence of the mass deficit on different merger histories of
the SMBHs. The left and the right BH have the same final mass 4M today but did build it
up differently, and therefore caused a different mass deficit to the host galaxy.
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Observationally Milosavljevié¢ et al. (2002) investigated the relation between the BH mass and
the mass deficit. Their results for different reference density profiles are shown in fig. 8.9.
The graph (a) shows the mass deficit between a singular isothermal profile p o< 72 and the
actual profile inside the break radius. The middle (b) and bottom graph (c) show the same
relations for the mass deficit between the actual profile and a p o ™ and p o > profile,
respectively. The dashed line in (a) is a fit to the data with

Mger = MX" x 1070 (8.8)

using the M, —o relation of Ferrarese & Merritt (2000). Using the relation found by Gebhardt
et al. (2000) leads to slightly steeper relation with

Myep = M} x 10702, (8.9)

In figure 8.10 we present the results of our model using fy, = 0.002, Rfeeq = 3.5 and
Ryinary = 100. The upper graph shows results for SMBHs in the range observed by Milosavl-
jevié¢ et al. (2002). We find good agreement with the correlation using the Gebhardt et al.
(2000) M, — o relation. The agreement with the Mg.; — M, relation obtained using the
M, — o relation by Ferrarese & Merritt (2000) is a bit poorer but agrees well in the region
where most of the observational data is available. At high BH masses the modeled deficits
lie above the relation and at masses M, < 108Mj, they lie below the relation. Extending the
relation to BH masses down to M, ~ 10%M;, reveals that the modeled relation is deviating
from the extrapolated relation towards smaller mass deficits. This is connected to the average
number of binary mergers in the history of the SMBHs. In the lower graph we display all
galaxies with SMBHs. For better visualization those galaxies with no mass deficit have been
given a constant offset of My, = 10M,. There is a deserted region between galaxies with no
mass deficit and M. s ~ 10° M. The reason for this is that binary SMBHs are not frequent
at low masses prohibiting the creation of a mass deficit, and if a binary merger happens the
mass deficit will be at least as large as ~ 10*My. This is a feature of the model for the
creation of SMBHs. In our model only SMBHs with more than ~ 10*M,, get formed because
the cold gas fraction needed to create a SMBH is too low in small mass halos which has its
reason in the very efficient SN-feedback in small halos. It is interesting to note that we even
find some galaxies with SMBH masses up to 102 M, which have no mass deficit, hence never
experienced a binary black hole merger.

Not every binary is expected to merge in less than a Hubble time and to create efficiently
a mass deficit. Quinlan (1996) claim the mass deficit to be more or less independent of
the mass ratio. We test the dependence of the My.; — M, relation on the ejection criteria
Rejec = Ma1/Myo(Me1 > M, o) of the binaries needed to be efficient and fast enough to
create a mass deficit (fig. 8.11). Reducing R.je. results in a decrease of the slope and offset
of the My.r — M, relation. The reason for the mass deficit of low mass objects being less
effected is again the smaller number of mergers.
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Figure 8.9: The mass deficit black hole mass relation observed by Milosavljevié et al. (2002)
assuming different shapes of reference profile for which the difference to the actual profile is
calculated for. The different profiles are (a) p o< =2, (b) p oc =™ and (c) p oc 7~ 5. The
solid line is the one-to-one relation, while the dashed line is the best fitting regression to the
data (reproduced from Milosavljevi¢ et al., 2002).
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The question whether there is a dichotomy or whether there is a smooth transition from
power-law to core galaxies is discussed in fig. 8.12. The fraction of core galaxies, defined as
galaxies with mass deficit, to all galaxies with SMBHs vs the BH mass for different ejection
criteria is presented. We find a transition which is smooth and takes place at different BH
masses depending on the ejection criteria applied. Low ejection criteria shift the transition
towards smaller BH masses which is expected, because some of the mergers in the history of
SMBHs were of minor merger type. It is interesting to note that for high ejection criteria we
do not find any galaxies having experienced no binary BH merger. The question arises what
could be a possible explanation for the missing power-law galaxies in our model. There are
several effects not included in our model which could have significant influence on the ratio
of core to power-law galaxies. We have not modeled the refilling of the core by central star
formation or the infall of high density satellites. We also used the simplified assumption of a
cumulative mass deficit which needs confirmation from simulations. However, the agreement
of our results with the observations for high mass BHs is promising and indicates that the
role of dissipative effects on the formation of spheroids with large BH masses is negligible,
which is in agreement with the results presented in chapter 6.

Observations suggest a correlation between central properties and isophotal shapes of ellip-
tical galaxies (Faber et al., 1997). All Boxy ellipticals seem to be core galaxies, while disky
ellipticals are mainly power-law galaxies (fig. 8.13). In chapter 7 we were able to reproduce
the right trend for the fraction of boxy to disky ellipticals at different magnitudes. Now we
want to check whether it is possible to reproduce the right trend in core properties. We
use the successful model for the assignment of isophotal shapes introduced in chapter 7 and
Jon = 0.002, Rfeeq = 3.5 and Reject = Rpinary = 100. As is illustrated in fig. 8.14 disky and
boxy ellipticals seem to follow the same relation between mass deficit and luminosity and BH
mass and luminosity. Only at the bright end boxy ellipticals dominate and have on average
larger mass deficits and BH masses. The actual fraction of boxy and disky ellipticals with a
given mass deficit is presented in fig. 8.15. Ellipticals with mass deficits above My, ~ 10° M,
are mainly boxy ellipticals. We find that in intermediate mass range 106 Mg, < My, < 10° M,
disky and boxy ellipticals are roughly equally frequent. Overall the mass deficit of boxy ellipti-
cals is predicted to be larger on average than the mass deficit of disky ellipticals. However the
observations indicated disky ellipticals to be power-law galaxies, which by definition should
have no mass deficit. The fraction of boxy and disky ellipticals having substantial mass deficit
and M, > 107 M, is 95% and 91% , respectively. This difference is not large enough to explain
the observational trend. Effects connected to the refilling of the core could be the missing
ingredients to reproduce the observed trend. Since the mass deficit of boxy ellipticals is larger
on average we expect these ellipticals to still have an substantial amount of mass deficit after
core refilling in contrast to disky ellipticals.

Another interesting prediction is shown in fig. 8.16. We plotted the fraction of boxy and disky
ellipticals with different BH masses. It turns out that our model predicts boxy ellipticals to
dominate the high mass end (M, > 108) of the BH mass function while disky ellipticals
dominate the low mass end (M, < 10%), which is somehow expected, since the most massive
ellipticals are boxy.
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Figure 8.10: Upper graph: Mass defict black hole relation of modeled galaxies in the range
where it has been observed (Milosavljevi¢ et al., 2002). The red line is the fit to the observed
relation of Milosavljevié¢ et al. (2002), using the isothermal density profile as the reference
density profile, and using M, — o relation of Merritt (2000) and the green line the relation
obtained using the Gebhardt et al. (2000) M, — o relation. Middle graph: Mass deficit black
hole mass relation including all galaxies which had substantial amount of mass deficit. Lower
graph: Mass deficit black hole mass relation including also galaxies which had no substantial
amount of mass deficit For better visualization these galaxies have been given a constant mass
deficit offset of 10M,.
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Figure 8.11: Dependence of the mass deficit black hole relation of modeled galaxies on the
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Chapter 9

Discussion and conclusions

In this thesis we have investigated important aspects of the merger scenario for the formation
of elliptical galaxies in the frame of a hierarchical universe. We investigated the initial condi-
tions of merging galaxies and implemented results of detailed N-body simulations of merging
galaxies into a semi-analytic approach of galaxy formation. The modeled results have been
compared to detailed observations, testing the merger picture. In the following, we summarize
the most important results.

Using semi-analytic modeling techniques we investigated the merger fraction of galaxies and
its dependence on specific physical parameters inherent to observational surveys (chapter 4).
The results of this investigation allow us to understand better differences between different
surveys measuring the merger fraction and to make comparisons between models and obser-
vations on a higher level. We find, in agreement with observations, a power-law behavior for
the merger fraction of the form Fy,;(2) = Fppg(0)(1 + 2)™ at z S 1. The power-law index m
depends on the environment and shows a strong increase going to high density environments
like e.g. clusters. At the same time, the current fraction of mergers Fj,,(0) decreases in high
density environments. This trend is in agreement with what is found for the merger fraction
of dark matter halos in N-body simulations and the observed merger fraction of galaxies in
high density environments. Generally, observations on merger fractions rely on the measured
close pair fraction. Investigating the influence of the definition of close pairs, i.e. their sep-
aration, on the merger fraction reveals that the merger index m remains almost unchanged,
while the present-day fraction of mergers increases with increasing close pair separation. As a
consequence, surveys measuring the merger fraction via the close pair fraction can take close
pairs with large separations into account to have larger statistics, as long as they correct for
non-merging pairs and are only interested in the merger index m. Another selection made
by surveys is to distinguish between major and minor mergers. Usually only former mergers
are taken into account when calculating the merger fraction. When including minor mergers
the modeled merger index m decreases and the present-day merger fraction increases, a trend
also found in observations. This result has to be taken carefully into account when comparing
the results of different surveys and is one reason for the different values of the merger index
reported by e.g. Le Fevre et al. (2000) and Patton et al. (2000). Bearing in mind the results
reported above we compare our modeled merger fraction in a range of senseful survey param-
eters with the observed merger fraction of Le Feévre et al. (2000) and Carlberg (2000, private
communication). Up to a factor of two difference in m and F,,, is found, even though the
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results are in better agreement with those of Carlberg (2000). The merger fraction has been
proposed to serve as a tool for distinguishing between ACDM and QCDM. We find that the
merger fraction at redshifts z < 1 shows only small differences and is therefore not suitable
to distinguish between these models at low redshifts.

The arbitrariness of initial conditions in simulations of merging galaxies has often been used
as an argument to doubt simulation outputs. In the chapters 5 & 6 we derived self-consistent
orbital initial conditions and morphologies of merging galaxies, respectively. The analysis of
merging dark matter halos in a large scale cosmological N-body simulation showed, that halos
almost exclusively merge on parabolic or near parabolic orbits, an assumption usually applied
in simulations of merging galaxies. Additionally the pericentric arguments w and the angle
between the orbital plane of both halos and the spin plane of either the more massive or less
massive halo ¢ are found to be random. The direction of the spin vectors of merging halos are
not correlated with each other or with the direction of the orbital angular momentum vector.
These results were derived for major mergers My /My < 4 (M; > M) and are independent
of the final halo mass or the minimum mass of the progenitor halos.

More than 50% of the merging orbits have pericenter distances 2 0.27y;yp, in contrast to
the smaller values generally assumed in merger simulations. Connected to this result is the
larger specific angular momentum we find in contrast to the generally assumed one. Those
orbits with rpepi /7yirp S 0.1 are parabolic or have very small deviations from parabolic orbits.
Non-parabolic orbits are mainly found to have rpepi/ryirn 2 0.1, suggesting that the choice of
an encounter on a parabolic orbit with small pericenter distances rpepi/ryirn S 0.01, as done
in merger simulations, is justified but not a very frequent case.

The impact parameter b follows a distribution which peaks at around 0.3 Mpc and is found
in ~ 50% of the cases to be = 0.4 Mpc. Again, the impact parameter chosen in simulations
are generally smaller than the value found, indicating that the simulations only cover a small
class of merger configurations. The circularity of orbits follows a distribution which peaks
around € =~ 0.25. This distribution is different to the equal distribution usually assumed
in semi-analytic models of galaxy formation and has a strong impact on the merging time
scales of galaxies in these models. If one applies this distribution for circularities of major
mergers the merging time scales will be shorter on average, leading to faster, and hence more
merging. Additionally we find that the impact parameters and circularities show a power-law
correlation with the pericenter distance.

The pericentric arguments of the main halo and of the satellite correlate with the pericenter
distance and the eccentricity of the orbit. For |w| < 45° the eccentricities show a large scatter
around e = 1, while for |w| 2 45° they show only a small scatter around e ~ 1. In addition
the pericenter distance is on average an decreasing function of |w|. These results suggest that
non-parabolic mergers on average take place on orbits whose pericenter distance is larger and
pericentric argument is smaller than that of average parabolic orbits.

Morphological classification of the progenitors in the last major merger event of present-day
ellipticals shows that the most luminous ellipticals Mp < —21 are formed primary in mergers
of two bulge dominated systems (dry merger), which experienced a major merger themselves
in the past. A large fraction of these bulge-dominated systems experienced several minor
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mergers before they finally merged. Present-day ellipticals with Mp ~ —20 are mainly the
product of a merger between a bulge-dominated and a disk-dominated galaxy (mixed merger),
while those with M, = —18 are mainly the product of two disk-dominated systems merging
(classic merger). These results are fairly robust to different definitions of bulge-dominated
and disk-dominated galaxies and on the treatment of satellite stars in the model. As one
would expect, dry mergers have less gas involved during their merger and can be seen as
dissipationless mergers while mixed and classic merger are dissipative mergers.

Observational ellipticals come in two variants. Massive ellipticals are mainly boxy and less
massive ellipticals disky. Dissipationless simulations of merging disk galaxies predict the
isophotal shape of the remnants to depend on the mass ratio of the merging galaxies. We
used semi-analytic modeling to test whether this simple picture for the formation of ellipticals
with different isophotal shapes can reproduce the observations. As a generic feature of the
hierarchical paradigm, we find that mergers with mass ratios leading to disky ellipticals are at
all mass scales and in all environments more frequent than those leading to boxy ellipticals,
which results in a clear failure of this simple picture. Only modifying this picture by assuming
the mergers of bulge dominated systems to lead to boxy ellipticals independent of the mass
ratio and that any present-day elliptical with more than 20% stellar mass will be classified as
a disky elliptical produces a modeled trend close to the observed one.

The division of ellipticals into power-law and core galaxies depending on their central den-
sity profile reveals that the most luminous galaxies My < —21 are core galaxies while those
with My 2 —16 are power-law galaxies. Galaxies with intermediate luminosities are either
power-law or core galaxies. Testing the hypothesis that this behavior is due to SMBH bina-
ries merging, with stars being ejected from the center of the remnant galaxy of order 5M, ;
(Mo > M,32), we find that the observed relation between BH mass and mass deficit can
be recovered reasonably well. The modeled relation starts deviating in regions of BH mass
M, < 10" Mg, from the extrapolated relation using the fit to the observations. Model galaxies
with SMBHs up to 108 My, are found having no mass deficit. These are all candidates for
power-law galaxies. The mass deficit-BH mass relation depends on the maximum mass ratio
of binaries which one allows to still be able to eject stars. Decreasing this ratio leads to a
flattening of the relation, and we find the best fit for a mass ratio Rejec = Me1/Ma2 < 100.
The model predicts a smooth transition depending on the BH masses between galaxies hav-
ing substantial amount of mass deficit and those with very small mass deficit, as e.g. in the
case of Reje. = 100 at M, = 10%-5 the majority of galaxies inhabiting SMBHs begin to have
large mass deficits. Trying to recover the corelation between central density properties and
isophotal shapes of ellipticals reveals that the most massive boxy ellipticals show the largest
mass deficits and are therefore core galaxies, as observed. The reason for the largest SMBHs
to have larger mass deficits is the increasing number of binary BH mergers in the history of
the black hole. However, a large fraction of modeled disky ellipticals are found which have
large mass deficits and are not power-law galaxies as expected from observations. Dissipative
effects connected with the refilling of cores must play an important role in these galaxies. The
fraction of galaxies with given mass deficit is dominated by boxy objects on almost all mass
scales, indicating that these galaxies can still have sufficient mass deficit to be defined as a
core galaxies even after dissipative effects refill the core in contrast to disky ellipticals.

In conclusion we can say, that the frequency of mergers observed in the universe is in fair
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agreement with the predictions of the hierarchical paradigm in a universe consisting of dark
matter and being dominated by dark energy today. The orbital parameters commonly used
in simulations of merging galaxies are in agreement with what is found in large scale cosmo-
logical simulations, but they only represent a very small fraction of the parameter space of
possible orbit geometries. The morphology of the progenitors depends on the luminosity of
present-day ellipticals. Only low luminous ellipticals form by mergers of disk galaxies. Giant
ellipticals generally originate from dissipationless mergers of bulge dominated systems. The
origin of disky and boxy ellipticals in dissipationless mergers of disk galaxies fails in reproduc-
ing the observed dependency of the isophotal shape on the luminosity. Only modifying this
picture in the way described above recovers the observed trend. The impact of binary BH
mergers on the central density of galaxies appears to be a promising approach in explaining
core and cusp galaxies. However, it is necessary to implement more detailed physics to recover
observations of central properties of low luminous spheroids.

The results presented here are in favor of the merger origin of elliptical galaxies and point to-
wards shortcomings in previous attempts of modeling their origin self-consistent in numerical
simulations.



Chapter 10

Outlook

The fraction of early type galaxies increases towards high density environments. The so-called
density-morphology relation (Dressler, 1980) is usually attributed to an increased merger
abundance. Major merging taking place in compact groups is of crucial importance for the
understanding of early type galaxy formation in high density environments, since these are
the places where most of the merging takes place before the groups themselves form a clus-
ter in which the galaxies stop merging because of their high velocities. Previous attempts
of simulating the behavior of merging galaxies in groups (Barnes, 1989; Weil & Hernquist,
1994, 1996; Athanassoula, 2000) did not use self consistent initial conditions for the orbital
configurations of the galaxies. Comparison of stellar kinematical parameters like V, o, h3 and
h4 of elliptical galaxies simulated in these groups with observations made by SAURON will
give deep insight in the formation of elliptical galaxies.

As already mentioned in chapter 8, the core properties of ellipticals will not only depend on
the BH binary mergers but also on dissipative effects. The modeling of these effects will be
a major task in understanding better how core properties evolve.

ULIRGs are found to be interacting gas rich galaxies (e.g. Sanders & Mirabel, 1996) which
have high star formation rates and show in most of the cases active galactic nuclei (Genzel
et al., 1998). A second class of objects usually connected to mergers are quasi-stellar objects
(quasars). In this scenario quasars are activated by fueling the SMBHs with fresh gas which
is being driven into the center during the merger event. ULIRGs reside in not very massive
hosts while QSOs reside in more massive host and have black hole masses ten times more mas-
sive than those of ULIRGS (Tacconi et al., 2002). Tacconi et al. (2002) argue that ULIRGS
are not going to evolve into optical bright QSOs. ULIRGS show a distribution in velocity
dispersions comparable to the one of disky ellipticals and they populate the same region in
the fundamental plane (Genzel et al., 2001). A natural way of explaining these two classes of
objects could be that ULIRGS are the result of gas rich classical mergers, which explains the
lower mass of the host and the black hole in a model where the formation and growth of the
black hole is coupled to major mergers and the formation of bulges (Kauffmann & Haehnelt,
2000). QSOs on the other hand are mixed mergers. The larger black hole mass is just due
to the fact that the elliptical progenitor already has a black hole. These assumptions can be
readily tested calculating the luminosity functions of QSOs and ULIRGS and their evolution
with redshift and comparing them to observations.
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Besides studying dynamical aspects also photometric aspects of elliptical galaxies give insight
in their formation and evolution. Trying to recover the color-magnitude relation and the
chemical composition of elliptical galaxies is still not achieved to full satisfaction. Multi-band
surveys like the COMBO-17 survey (“Classifying Objects by Medium-Band Observations in
17 Filters”) (Wolf et al., 2003) can be used to test the photometric evolution of modeled
ellipticals and galaxies in general which will not only serve as a test for the formation scheme
of ellipticals but also as a strong constraint on the hierarchical paradigm.
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