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Abstract

In this thesis, efficient overlapping multilevel Schwarz preconditioners are used to

iteratively solve Hdiv-conforming finite element discretizations of models in poroelasticity,

and an innovative two-scale multilevel Schwarz method is developed for the solution of

pore-scale porous media models.

The convergence of two-level Schwarz methods is rigorously proven for Biot’s consoli-

dation model, as well as a Biot-Brinkman model by utilizing the conservation property

of the discretization. The numerical performance of the proposed multiplicative and hy-

brid two-level Schwarz methods is tested in different problem settings by covering broad

ranges of the parameter regimes, showing robust results in variations of the parameters

in the system that are uniform in the mesh size. For extreme parameters a scaling of

the system yields robustness of the iteration counts. Optimality of the relaxation factor

of the hybrid method is investigated and the performance of the multilevel methods is

shown to be nearly identical to the two-level case. The additional diffusion term in the

Biot-Brinkman model yields a stabilization for high permeabilities.

Additionally, a homogenizing two-scale multilevel Schwarz preconditioner is developed

for the iterative solution of high-resolution computations of flow in porous media at

the pore scale, i.e., a Stokes problem in a periodically perforated domain. Different

homogenized operators known from the literature are used as coarse-scale operators

within a multilevel Schwarz preconditioner applied to Hdiv-conforming discretizations of

an extended model problem. A comparison in the numerical performance tests shows that

an operator of Brinkman type with optimized effective tensor yields the best performance

results in an axisymmetric configuration and a moderately anisotropic geometry of the

obstacles, outperforming Darcy and Stokes as coarse-scale operators, as well as a standard

multigrid method, that serves as a benchmark test.
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Zusammenfassung

In dieser Arbeit werden effiziente überlappende Multilevel-Schwarz-Vorkonditionierer

verwendet, umHdiv-konforme Finite-Elemente-Diskretisierungen von Modellen der Poroe-

lastik iterativ zu lösen, und es wird eine innovative zweiskalige Multilevel-Schwarz-

Methode für die Lösung von hochauflösenden Modellen für poröse Medien auf Porenskala

entwickelt.

Die Konvergenz der Zweilevel-Schwarz-Methoden wird für das Konsolidierungsmodell

von Biot sowie für ein Biot-Brinkman-Modell unter Ausnutzung der Erhaltungseigenschaft

der Diskretisierung rigoros nachgewiesen. Die numerische Leistungsfähigkeit der vorgeschla-

genen multiplikativen und hybriden Zwei-Level-Schwarz-Methoden wird in verschiede-

nen Problemstellungen getestet, indem eine große Bandbreite der Parameterbereiche

abgedeckt wird. Dabei zeigen sich robuste Ergebnisse bei Variationen der Parameter des

Systems, die einheitlich in der Gitterweite sind. Für extrem gewählte Parameter ergibt

eine Skalierung des Systems eine Robustheit der Iterationszahlen. Die Optimalität des

Relaxationsfaktors der hybriden Methode wird untersucht, und es wird gezeigt, dass die

Leistung der Multilevel-Methoden nahezu identisch mit der des Zweilevel-Falls ist. Der

zusätzliche Diffusionsterm im Biot-Brinkman-Modell führt zu einer Stabilisierung für

hohe Permeabilitäten.

Zusätzlich wird ein homogenisierender zweiskaligerMultilevel-Schwarz-Vorkonditionierer

für die iterative Lösung von hochauflösenden Berechnungen der Strömung in porösen

Medien auf Porenskala entwickelt, d.h. für ein Stokes-Problem in einem periodisch

perforierten Gebiet. Verschiedene homogenisierte Operatoren, die aus der Literatur

bekannt sind, werden als Grobskalenoperatoren innerhalb eines mehrstufigen Schwarz-

Vorkonditionierers verwendet, der auf Hdiv-konforme Diskretisierungen eines erweiterten

Modellproblems angewendet wird. Ein Vergleich in den numerischen Leistungstests zeigt,

dass ein Operator vom Brinkman-Typ mit einem optimierten effektiven Tensor die besten

Ergebnisse in einer achsensymmetrischen Konfiguration sowie einer mäßig anisotropen

Geometrie der Hindernisse liefert und dabei Darcy und Stokes als grobskalige Operatoren

sowie ein Standard-Mehrgitterverfahren, das als Benchmark-Test dient, übertrifft.
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Chapter 1

Introduction

In this thesis, we will use efficient multilevel Schwarz preconditioners to solve conser-

vative finite element discretizations of equations in poroelasticity and develop innovative

Schwarz methods for pore-scale porous media models.

1.1 Motivation and Perspective

Porous media models have wide-ranging applications in various fields such as ground-

water hydrology, petroleum engineering, environmental science, and biomedicine. The

models describe fluid flow through porous materials using partial differential equations,

and are essential for understanding and predicting complex physical processes that occur

in natural and engineered systems. In recent years, there has been growing interest in de-

veloping accurate and efficient numerical methods, including preconditioning techniques,

for solving conservative finite element discretizations of porous media models in different

application domains.

For instance, in groundwater hydrology, these models are used to study groundwater

flow, contaminant transport, and remediation strategies for protecting water resources

and managing environmental pollution [SWZY23]. In petroleum engineering, porous

media models are used to simulate fluid flow and transport in oil and gas reservoirs

for optimal reservoir management and enhanced oil recovery strategies [DTDPP16]. In

environmental science, porous media models are used to simulate pollutant transport

in soils and aquifers, and to assess the impact of human activities on the environment

[Bru94].

In biomedicine, porous media models are increasingly used to model organic tissues

for better understanding of tissue behavior, disease progression, and treatment planning.

For example, porous media models have been developed to simulate osmotic swelling of

brain cells due to fluid absorption [Mal15], drug distribution in the vitreous body of the
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Chapter 1 Introduction

human eye [DFS17], and the growth of tumors [FC18].

Since analytical solutions are often limited to simple settings, numerical simulations

are typically required for most applications in porous media. Conservative finite ele-

ment discretizations have gained popularity due to their accuracy in capturing com-

plex multiphysics phenomena [KR10, KR18, HK18, HKLP19, GRH+19, HKK+22, LY22,

WCWZ22]. However, these discretizations result in large and ill-conditioned linear sys-

tems of equations, which are challenging to solve efficiently and robustly.

To address this challenge, preconditioning of linear systems is commonly employed to

improve the condition of the system matrix and enhance the convergence of iterative

solvers. Various preconditioning strategies have been proposed for porous media models,

but there is ongoing research and development to further improve their effectiveness,

particularly for conservative finite element discretizations.

In this thesis, we focus on developing preconditioning techniques for conservative

finite element discretizations of porous media models. The proposed research aims to

investigate and develop overlapping two-level and multilevel Schwarz methods for Hdiv-

conforming discretizations of Biot’s consolidation model and the Biot-Brinkman model,

as well as a two-scale multilevel Schwarz method as a preconditioner for highly resolved

computations of flow in porous media. The convergence of the proposed methods will be

rigorously proven, and their robustness will be investigated through extensive numerical

experiments.

To be precise, we examine overlapping two-level and multilevel Schwarz preconditioning

methods for the following three distinct sets of equations that describe different physical

properties of the porous medium under consideration, which are modeled at different

observation length and time scales. Through the analysis of these equations, our objective

is to develop more efficient numerical methods for simulating these processes, which will

facilitate a comprehensive understanding of the complex physical phenomena occurring

within the porous medium.

The first set of equations is Biot’s quasi-static model of consolidation [Bio41], which

describes the seepage flow of a viscous fluid through an elastic solid porous structure.

It is the prototypical example of linear poroelasticity and it couples on a macroscopic

length scale the deformation u of the elastic solid matrix via the pressure p with the
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1.1 Motivation and Perspective

seepage velocity v in a continuum-mechanical approach at constant temperature by

−div (2µε(u) + λ div(u)I) + α∇p = f in Ω × (0, T ),

v +K∇p = 0 in Ω × (0, T ),

−α div ∂tu− div v − cs∂tp = g in Ω × (0, T ),

whereΩ denotes the porous reservoir and (0, T ) the time interval. We will apply the theory

of overlapping two-level Schwarz methods as proposed by [TW10] to these equations and

test its performance also in a multilevel setup.

The second one is a quasi-static Biot-Brinkman model [HKK+22], which follows the

same continuum-mechanical approach on a macroscopic observational length scale as

Biot’s consolidation model by coupling the deformation u, the pressure p and the seepage

velocity v. But instead of Darcy’s law [Dar56], a diffusion term is added to the equations

of the fluid flow as suggested by Brinkman [Bri49]. The model is given by

−div (2µε(u) + λ divu) + α∇p = f in Ω × (0, T ),

−ν∆v +K−1v +∇p = 0 in Ω × (0, T ),

−α div ∂tu− div v − cs∂tp = g in Ω × (0, T ).

While Darcy’s law is widely accepted, there is still ongoing discussion about the validity

of the Brinkman equations. Especially in the context of poroelasticity, the Biot-Brinkman

model is rather new and has not been derived mathematically, yet. But it has potential

in modeling highly permeable porous media as it stabilizes the simulations in these cases,

which will be observed in the calculations later on.

The last one is the steady Stokes system on a perforated fluid domain Ωε modeling

the fully resolved fluid flow through a non-deformable porous medium at pore scale by

the equations

−µ∆vε +∇pε = f in Ωε,

div vε = 0 in Ωε.

The domain Ωε is arranged by periodically repeated standard periodicity cells Y ε
i of

size ε containing solid obstacles. We aim to determine the fluid velocity vε and the

pressure pε on a microscopic length scale. To solve the equations, we extend the work

of [Neu96, NJW01] and develop a two-scale multilevel Schwarz preconditioner based on
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Chapter 1 Introduction

homogenized coarse scale operators for this model problem.

1.2 Scientific Contribution and Outline

In this section, we provide an overview of the structure of this thesis and explain the

author’s scientific contributions.

Parts of the work were funded by the German Science Foundation (DFG) within the

Transregional Collaborative Research Center SFB/TRR 165 “Waves to Weather”, result-

ing in a publication about an energy-based visualization approach for time-dependent

2D flow fields. The results have been published in [HMH+19].

As part of the research presented in this work, the author has also contributed code

to the C++-based finite element software library deal.I I [ABF+22].

The structure of this thesis is as follows.

Chapter 2 forms the theoretical basis of this dissertation. Specifically, the algorithms

and theory of iterative solvers and Schwarz preconditioners for conservative finite element

discretizations are introduced, on which the analysis of the later chapters builds. As a

preliminary chapter, it introduces the notation and recapitulates existing results from

the literature only, while no new results by the author are presented.

In Chapter 3, the two-level Schwarz method is applied to the case of Hdiv-conforming

finite element discretizations of Biot’s consolidation model in a three-field formulation,

scaled such that only three physical parameters are present in the system. These famous

equations by Biot model a large variety of poroelastic materials, from saturated porous

rocks to organic tissue.

A major contribution of the author is the proof of a stable decomposition (Theo-

rem 3.11) in Section 3.4.3 for overlapping multiplicative and additive two-level Schwarz

methods applied to the Biot model. For the proof, the system is first transformed into an

equivalent, symmetric and positive definite, singularly perturbed two-field formulation,

for which the abstract convergence theory introduced in Chapter 2 applies. A special

decomposition of the underlying function spaces with respect to the kernel of the diver-

gence operator then yields the proof of the stable decomposition. Due to the robustness

in the perturbation parameter, the convergence proof finally follows by establishing local

stability and a strengthened Cauchy-Schwarz inequality. While the proof is formulated

in 2D only, we point out that most of the argumentation holds true in 3D as well. The

relevant parts, which require separate consideration, are elaborated in the course of the
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1.2 Scientific Contribution and Outline

section.

To confirm the validity of the theoretical analysis, numerical experiments are presented

for a test case with homogeneous boundary values and isotropic constant permeabilities

in Section 3.5.2, showing the robust performance of the methods in the model parameters

and its uniformity in the mesh size. The discretizations under consideration are mixed,

equal-order Raviart-Thomas finite elements with matching pressure space, such that the

discretization is Hdiv-conforming and therefore mass-conservative. Different polynomial

degrees are considered and discussed, where a main focus is on finite elements of second

order (k = 2) as well as on lowest order (k = 0).

The multiplicative two-level Schwarz method yields better performance results than

the hybrid method in all calculations. The methods are robust in the ratio λ
µ of the Lamé

constants, even in the nearly incompressible case λ ≫ µ, as well as in the scaled specific

storage coefficient. The dependence of the convergence proof on the inverse of the scaled

permeability tensor can only be slightly observed in the experiments and does not restrict

the applicability of the two-level Schwarz methods. Numerical instabilities originating in

extremely large chosen parameters are remedied by the use of a scaling of the system

matrix so that the parameters stay in reasonable ranges. In the lowest order case, an

additional equalization of the system matrix, in the form of another scaling with respect

to the mesh size, is necessary to obtain uniformity with a refinement of the mesh. The

resulting methods then appear to be robust.

In addition to the experiments with homogeneous boundary conditions, tests are also

performed for the case of mixed Dirichlet-Neumann boundary conditions in Section 3.5.3.

A short discussion about the choice of the set of patches shows that patches on the bound-

ary need to be included for this test configuration. But whereas for the multiplicative

method patches containing only one cell can be excluded from the set of patches, the

performance of the hybrid method benefits considerably when these are included.

The performance of the method depends in this test case on the permeability rather

than on its inverse. Using a scaling as for the homogeneous case yields robustness also

for very high permeabilities. In addition, the performance in the remaining parameters

is comparable to that of the first test case.

In Section 3.5.4 we discuss the optimal choice of the relaxation factor for the hybrid

two-level Schwarz method. As it turns out, it only needs to compensate for the effect of

adding the overlapping patches, such that a choice of approximately 0.25 yields the best
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Chapter 1 Introduction

results.

The efficiency of the two-level methods translates also to the multilevel Schwarz meth-

ods as presented in Section 3.5.5. Although the coarse space solve is relaxed, the per-

formance results are nearly the same as in the two-level case. The number of iterations

GMRES takes to converge when preconditioned with the hybrid multilevel Schwarz

method can be reduced by additional smoothing steps. An additional pre-smoothing in

case of the multiplicative method does not lead to a further reduction of the iteration

counts, demonstrating the already very good performance of the multiplicative algorithm.

In Chapter 4, mass conservative finite element discretizations of the Biot-Brinkman

equations are considered, where an additional diffusion term stabilizes Biot’s consolidation

model for highly permeable material settings. To prove convergence of the two-level

Schwarz methods, the ideas from Chapter 3 are extended to the current case, yielding

similar dependencies of the constants in the proof of the stable decomposition with

an additional dependence on the viscosity coefficient. In the numerical experiments of

Section 4.3.1, the additional diffusion term yields a stabilization of the iteration counts

when the reciprocal κ−1 of the permeability constant is varied, especially for the case

of high permeabilities in a channel-flow example, whereas the method also stays robust

for all other considered parameter ranges. Numerical instabilities due to extremely large

values of the Lamé parameter λ from elasticity, originating in the squaring of the diagonal

entries of the system matrix within GMRES, can be handled by a scaling of the system,

leading to an overall robust scheme in the practical application of the method.

In Chapter 5, a homogenizing two-scale multilevel Schwarz preconditioner is developed

and applied to a fully resolved pore-scale porous media flow model, i.e., a laminar Stokes

flow through a periodically perforated domain. The model problem is extended to the

entire domain by using a Brinkman law and then discretized by an Hdiv-conforming

mixed finite element method. To derive an efficient preconditioner, homogenized operators

known from the literature and discretized with the same type of finite element method

as the extended Stokes equations are used as coarse-scale operators within a multilevel

Schwarz method on levels where the structure of the perforated domain cannot be resolved

anymore by the mesh.

First performance tests with the analytical homogenized operators show the necessity

of optimizing the effective tensors of the homogenized Brinkman and Darcy operators

with respect to the iteration counts of GMRES. Scanning the parameter spaces yields a
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1.2 Scientific Contribution and Outline

dependence of the Brinkman operator on the penalty constant of the extension. It turns

out that a homogenized Brinkman law as coarse-scale operator with optimized effective

tensor yields the best convergence results of GMRES, outperforming the homogenized and

optimized Darcy operator as well as the standard multigrid method. Another optimization

of the Brinkman operator with respect to the geometry of the obstacles by combining

the knowledge of a homogenized Darcy operator, derived by the two-scale convergence

method, with the optimization process developed for the Brinkman operator yields the

best results for moderately anisotropic geometries.

Finally, Chapter 6 offers an outlook on the potential of preconditioning fully resolved

poroelastic media computations using Biot’s nonlinear equations of poroelasticity at

finite strain. Specifically, we propose a two-scale multilevel Schwarz preconditioner that

leverages Biot’s linear consolidation model or the Biot-Brinkman model as homogenized

coarse-scale operator. In addition, Section 6.2 briefly discusses the imposition of strong

or weak interface conditions inside the domain to extend a physical phase accurately to

an extended (virtual) region. We provide examples for Stokes flow, linear elasticity, and

a fluid structure interaction problem. A summary of the topics covered concludes this

thesis in Section 6.3.
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Chapter 2

Theoretical Foundations

This chapter serves as an introduction to iterative solvers for linear systems of equations,

and the two-level and multilevel Schwarz methods to be used as preconditioners for finite

element discretizations of partial differential equations. In addition to the algorithms,

the abstract theory for the two-level Schwarz methods for Hdiv-conforming finite element

discretization spaces is presented, which will build the foundation of the convergence

results later in this thesis. In this chapter, only existing results from the literature are

recapitulated and no new results by the author are presented.

Section 2.1 begins with notation and the basic theory of functional analysis. Divergence-

conforming finite element spaces and their matching pressure spaces are introduced

in Section 2.2. Iterative algorithms and their convergence theorems are introduced in

Section 2.3, focusing on Krylov subspace solvers. The two-level Schwarz method as a

domain decomposition approach for preconditioning systems of equations arising from

finite element discretizations of partial differential equations are presented in Section 2.4.

Here, the abstract framework is first introduced and then the theory for overlapping

decompositions of Hdiv-conforming discretizations is specified. The Chapter ends with

an extension to multilevel algorithms, i.e., the classical multigrid method with domain

decomposition smoothers.

2.1 Notation and Function Spaces

We start with some remarks on notation and introduce basic concepts of differential

calculus and functional analysis as far as they are necessary for the analysis in this work.

Especially, we introduce the notation of Lebesgue and Sobolev spaces. All results of this

section are standard and can be studied in every common introduction to functional

analysis, see for example [Alt06, Dob10, Eva10].
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Chapter 2 Theoretical Foundations

2.1.1 Basic Notation

The set of integers {0, 1, 2, ...} is denoted by N and the set of real numbers by R. The

absolute value for real numbers a is given by |a|. On the n-dimensional Euclidean vector

space Rn the dot product a · b =
∑︁n

i=1 aibi defines an inner product (a, b) = a · b, and
a norm is given by the 2-norm ∥a∥2 = (a,a)1/2. Obviously, the 2-norm is equal to the

absolute value in one dimension. Whenever we have vector valued quantities we will use

boldface letters, and otherwise normal letters. For vectors v = (v1, . . . , vn) ∈ Rn and

matrices A ∈ Rn×n we occasionally use the notation (vi)
n
i=1 and (Aij)

n
i,j=1 to specify

entries. The transpose of a matrix A ∈ Rm×n is denoted by AT ∈ Rn×m. In definitions

of operators and bilinear forms we will sometimes use the operator ∀ as abbreviation of

the phrase ”for all”. We will use c and C as generic positive and real constants that might

differ in estimates from line to line. If a constant c depends on some given quantity q we

mark this by cq. Further, the usual definition for the Landau symbols o and O is used to

describe asymptotic growth, i.e., for functions f, g : X ⊂ R→ R it holds f = o(g), if and

only if limx→a

⃓⃓⃓
f(x)
g(x)

⃓⃓⃓
= 0, and it holds f = O(g), if and only if lim supx→a

⃓⃓⃓
f(x)
g(x)

⃓⃓⃓
< ∞,

where a ∈ R ∪ {−∞,∞}.

2.1.2 Differential Calculus

Next, we introduce the notation of differential calculus. Therefore, we assume thatΩ ⊂ Rd,

d ∈ {2, 3}, is an open and bounded set with Lipschitz boundary ∂Ω and outer unit normal

vector n. Let f : Ω → R be a scalar function and g = (g1, . . . , gd) : Ω → Rd be a vector

valued function. The gradient is defined in terms of the nabla operator

∇f = (∂1f, . . . , ∂df), ∇g = (∂jgi)
d
i,j=1,

where the partial derivatives of f at a given point x ∈ Ω are given by

∂if(x) =
∂f(x)

∂xi
= lim

h→0

f(x+ hei)− f(x)

h
. (2.1)

Here, ei is the i-th canonical unit-vector of Rd. A function is called continuously differ-

entiable, if the limit in (2.1) exists for every i = 1, ..., d. Derivatives of higher order are

defined with the help of multi-indices α = (α1, ..., αm) ∈ Nm of order |α| = α1 + ...+αm

12



2.1 Notation and Function Spaces

by

∂αf = ∂α1
1 · · · ∂αd

d f.

Furthermore, ∇k denotes the tensor of all partial derivatives of order k ∈ N. We define

the divergence of a vector field by

div g = ∇ · g =

d∑︂
i=1

∂igi.

For matrix valued functions F : Ω → Rd×d the divergence is defined column wise as

divF = ∇ · F =

⎛⎝ d∑︂
j=1

Fi

⎞⎠d

i=1

.

By combination of divergence and gradient one gets the Laplacian

∆f = div∇f =
d∑︂

i=1

∂2
i f, ∆g = div∇g =

⎛⎝ d∑︂
j=1

∂2
j gi

⎞⎠d

i=1

,

that describes, for example, diffusion processes like fluid flow or heat. The curl operator,

describing the rotation of a vector field g : Ω ⊂ R3 → R3, is defined via the cross product

in three space dimensions, i.e.,

curl g = ∇× g = (∂2g3 − ∂3g2, ∂3g1 − ∂1g3, ∂1g2 − ∂2g1) . (2.2)

In two space dimensions Ω ⊂ R2 the curl operator is defined for scalar functions f : Ω →
R by

curl f = (∂2f,−∂1f), (2.3)

and for vector valued functions g : Ω → R2 by

curl g = ∂1g2 − ∂2g1. (2.4)

13



Chapter 2 Theoretical Foundations

2.1.3 Function Spaces

Having the definitions of the differential operators at hand, we come to the introduction

of the most important function spaces for continuous functions as well as Lebesgue-

measurable functions.

By Cm(Ω̄) we denote the function space of continuous functions on the closure Ω̄ =

Ω ∪ ∂Ω that are continuously differentiable up to the order |α| ≤ m, and by C∞
0 (Ω) the

space of infinitely differentiable functions with compact support in Ω. The latter plays a

central role in the definition and approximability of Lebesgue and Sobolev spaces. Cm(Ω̄)

becomes a Banach space by defining the norm

⃦⃦
f
⃦⃦
Cm(Ω̄)

=
∑︂

|α|≤m

sup
x∈Ω̄

⃓⃓
∂αf(x)

⃓⃓
.

Further,

(︁
f, g
)︁
Ω
=
(︁
f, g
)︁
L2(Ω)

=

∫︂
Ω
f(x) · g(x) dx

defines an inner product on the usual Hilbert space L2(Ω) consisting of all Lebesgue

measurable and square integrable functions f : Ω → R, for which the graph norm

⃦⃦
f
⃦⃦
Ω
=
⃦⃦
f
⃦⃦
L2(Ω)

=
√︂(︁

f, f
)︁
Ω

is bounded, i.e., ∥f∥Ω < ∞. The set of Lebesgue measurable functions consists of equiva-

lence classes, since its functions are defined only up to subsets Z ⊂ Ω with zero Lebesgue

measure |Z| =
∫︁
Z dx = 0. Additionally, we define the space L2

0(Ω) of mean-value free

functions in L2(Ω) by

L2
0(Ω) =

{︃
f ∈ L2(Ω) :

∫︂
Ω
f(x) dx = 0

}︃
.

Furthermore, letL∞(Ω) be the Lebesgue space of measurable functions for which ∥f∥L∞(Ω) <

∞, where

⃦⃦
f
⃦⃦
L∞(Ω)

= inf
|Z|=0

sup
x∈Ω\Z

⃓⃓
f(x)

⃓⃓
.
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2.1 Notation and Function Spaces

The space of Lebesgue-measurable and square-integrable functions f : (a, b) → Y map-

ping from an open interval (a, b) ⊂ R to a Banach space Y with norm ∥·∥Y is denoted

by L2(a, b;Y ) and its norm is defined by

⃦⃦
f
⃦⃦
L2(a,b;Y )

=

(︃∫︂ b

a

⃦⃦
f
⃦⃦2
Y
dx

)︃ 1
2

.

Beneath the gradient for continuously differentiable functions we introduce the weak

gradient ∂αf of order |α|, where α again is a multi-index, to allow for a definition of

differentiability of locally Lebesgue measurable functions f . Its definition is motivated

by the formula for partial integration and given by ∂αf = g, if there exists a function g

such that for all φ ∈ C∞
0 (Ω)∫︂
Ω
f(x)∂αφ(x) dx = (−1)α

∫︂
Ω
g(x)φ(x) dx.

With the definition of weak gradients we are able to introduce the Sobolev space

Hm(Ω) =
{︁
f ∈ L2(Ω) : ∂αf ∈ L2(Ω) for all |α| ≤ m

}︁
,

with norm

⃦⃦
f
⃦⃦
Hm(Ω)

=

⎛⎝ ∑︂
|α|≤m

⃦⃦
∂αf

⃦⃦2
Ω

⎞⎠ 1
2

,

and semi-norm

⃓⃓
f
⃓⃓
Hm(Ω)

=

⎛⎝ ∑︂
|α|=m

⃦⃦
∂αf

⃦⃦2
Ω

⎞⎠ 1
2

.

On Hm(Ω) an inner product is given by

(︁
f, g
)︁
Hm(Ω)

=
m∑︂
k=0

(︁
∇kf,∇kg

)︁
Ω
.

Every function in the space Hm(Ω) can be approximated by continuous functions, since

C∞(Ω) ∩Hm(Ω) is dense in Hm(Ω). Furthermore, the space Hm
0 (Ω) is defined as the
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closure of C∞
0 (Ω) with respect to the norm ∥·∥Hm(Ω). For functions in the Sobolev spaces

Hm(Ω) a trace operator tr : Hm(Ω) → L2(∂Ω) can be defined as the restriction

tru = u
⃓⃓
∂Ω

,

which is linear and bounded, and thus

⃦⃦
tru
⃦⃦
∂Ω

≤
⃦⃦
u
⃦⃦
Hm(Ω)

.

On H1
0 (Ω) norm and inner product are given by

⃦⃦
f
⃦⃦
H1

0 (Ω)
=
⃦⃦
∇f
⃦⃦
Ω

and

(︁
f, g
)︁
H1

0 (Ω)
=
(︁
∇f,∇g

)︁
Ω
,

respectively. With the help of the trace operator the space H1
0 (Ω) can be identified with

the space of H1-functions with zero boundary-values.

Product spaces X × ...×X consisting of the same space X, i.e. vector-valued spaces,

are denoted by Xn or [X]n, for example

[L2(Ω)]2 = L2(Ω)× L2(Ω), [H1
0 (Ω)]3 = H1

0 (Ω)×H1
0 (Ω)×H1

0 (Ω).

Since the norms and inner products of Lebesgue and Sobolev spaces are defined via the

dot product, we can simply inherit the norms from the one dimensional case. With this

notation, the vector-valued space Hdiv(Ω) is defined by

Hdiv(Ω) =
{︂
g ∈ [L2(Ω)]d : div g ∈ L2(Ω)

}︂
,

and the subspace Hdiv
0 (Ω) with vanishing normal component by

Hdiv
0 (Ω) =

{︂
g ∈ Hdiv(Ω) : g · n = 0 on ∂Ω

}︂
.

Norm ∥·∥Hdiv(Ω), semi-norm |·|Hdiv(Ω) and inner product (·, ·)Hdiv(Ω) for functions in
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2.1 Notation and Function Spaces

Hdiv(Ω) are given by

⃦⃦
g
⃦⃦
Hdiv(Ω)

=
(︂⃦⃦
g
⃦⃦2
Ω
+
⃦⃦
div g

⃦⃦2
Ω

)︂ 1
2
,⃓⃓

g
⃓⃓
Hdiv(Ω)

=
⃦⃦
div g

⃦⃦
Ω
,

and

(︁
f , g

)︁
Hdiv(Ω)

=
(︁
f , g

)︁
Ω
+
(︁
div f ,div g

)︁
Ω
.

In line with the definition of the curl operator for two- or three-dimensional vector valued

functions in (2.2) and (2.3), respectively, as well as for two-dimensional scalar functions

in (2.4), the space Hcurl(Ω) consists of all Lebesgue-measurable and square integrable

functions with Lebesgue-measurable and square integrable curl operator. For functions

in Hcurl(Ω), norm, semi-norm and inner product are defined by

⃦⃦
g
⃦⃦
Hcurl(Ω)

=
(︂⃦⃦
g
⃦⃦2
Ω
+
⃦⃦
curl g

⃦⃦2
Ω

)︂ 1
2
,⃓⃓

g
⃓⃓
Hcurl(Ω)

=
⃦⃦
curl g

⃦⃦
Ω
,

and

(︁
f , g

)︁
Hcurl(Ω)

=
(︁
f , g

)︁
Ω
+
(︁
curlf , curl g

)︁
Ω
,

where f and g this time stand for vector valued, as well as for scalar functions to generalize

the definition. Further, let t be the unit tangent vector on the boundary ∂Ω, for example,

in 2D it is given by t = (−n2, n1). Then, the tangential component gt = g · t of a vector

g is

gt =

⎧⎨⎩n× g, for d = 2,

g − (g · n)n = (n× g)× n, for d = 3.

The subspace of Hcurl(Ω) with vanishing tangential component on ∂Ω is denoted by

Hcurl
0 (Ω).

Remark 2.1. In 2D we have a strong relation between the spaces Hcurl(Ω) and Hdiv(Ω),

since a vector u = (u1, u2) belongs to Hcurl(Ω), if and only if the vector v = (−u2, u1)
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Chapter 2 Theoretical Foundations

belongs to Hdiv(Ω), see [TW10, Lemma A.20].

2.2 Hdiv-conforming Finite Element Methods

This section serves as introduction to finite element spaces, and especially to mixed finite

elements with Hdiv-conforming spaces Vh ⊂ Hdiv(Ω) and their matching pressure spaces

Qh ⊂ L2(Ω), such that

div Vh = Qh. (2.5)

The presentation will be restricted to Raviart-Thomas finite element spaces [RT77, Ned80,

Ned86] on rectangular and hexahedral cells, and we will mainly follow [FB91, Chapter

III] for this matter. The definitions of other Hdiv-conforming finite element spaces such

as the Raviart-Thomas elements on triangles and tetrahedra, as well as the Brezzi-

Douglas-Marini elements BDMk [BDM85], and the Brezzi-Douglas-Fortin-Marini ele-

ments BDFMk+1 [BDFM87] can also be found in [FB91, Chapter III]. Moreover, the

ABFk finite element space is introduced in [ABF02], and a compilation of all these

spaces with its matching pressure spaces for triangles/tetrahedra as well as for quadri-

laterals/hexahedra can be found in [KR10, Table 1].

The benefit of combinations of spaces as in (2.5) is the accurate integration of the

mass balance equation in discretizations of Stokes- or Darcy-like systems such as

L(u) +∇p = f , in Ω,

divu+ γp = g, in Ω,
(2.6)

where L(u) = −∆u or L(u) = u, γ ≥ 0. With a proper definition of the bilinear form

ah(·, ·) (see for example Chapter 4) the mixed finite element discretization of system (2.6)

regarding the space Vh ×Qh chosen as in (2.5) reads

ah
(︁
uh,φ

)︁
+
(︁
ph, divφ

)︁
Ω
=
(︁
f ,φ

)︁
Ω

∀φ ∈ Vh,(︁
q,divuh

)︁
Ω
+
(︁
γph, q

)︁
Ω
=
(︁
g, q
)︁
Ω

∀q ∈ Qh,
(2.7)

where

divuh + γph = gh (2.8)
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2.2 Hdiv-conforming Finite Element Methods

is fulfilled point-wise, provided gh is chosen adequately as element of Qh. Thus, (2.8)

becomes an algebraic constraint of the discretized first equation of (2.7). With this

approach parameter-robust and locking-free discretizations can be obtained for Darcy

(by construction), as well as for Stokes, nearly incompressible elasticity, and poroelasticity,

see for example [CKS06, HKXZ15, KR18, HKLP19].

Let the computational domain Ω ⊂ Rd, d ∈ {2, 3}, be an open, bounded and convex

set with Lipschitz-boundary ∂Ω and outer unit normal vector n. Let further Th be a

family of shape regular triangulations of Ω into closed quadrilateral or hexaedral mesh

cells T ∈ Th with diameter hT = diam(T ), where h = maxT∈Th hT denotes the mesh

size. Each cell T is obtained by an affine transformation ΨT : ˆ︁T → T from the reference

cell ˆ︁T = [0, 1]d. On ˆ︁T the space of all polynomials of degree not larger than k ∈ N is

denoted by ˆ︁Pk( ˆ︁T ). Further, the space of polynomials of degree not larger than ki in xi

for 1 ≤ i ≤ d is defined by

ˆ︁Pk1,...,kd(
ˆ︁T ) = {︂p : ˆ︁T → R : p(x1, ...,xd) =

∑︂
i1≤k1,...,id≤kd

ai1···idx
i1
1 · · ·xid

d

}︂
.

Let

ˆ︁Qk( ˆ︁T ) =
⎧⎨⎩ˆ︁Pk,k( ˆ︁T ), for d = 2,ˆ︁Pk,k,k( ˆ︁T ), for d = 3,

then the space of Hdiv-conforming Raviart-Thomas functions on the reference cell is

defined by

ˆ︃RT k( ˆ︁T ) = [ ˆ︁Qk( ˆ︁T )]d + x ˆ︁Qk( ˆ︁T ),
which is equivalent to

ˆ︃RT k( ˆ︁T ) =
⎧⎨⎩ˆ︁Pk+1,k( ˆ︁T )× ˆ︁Pk,k+1( ˆ︁T ) for d = 2,ˆ︁Pk+1,k,k( ˆ︁T )× ˆ︁Pk,k+1,k( ˆ︁T )× ˆ︁Pk,k,k+1( ˆ︁T ) for d = 3.

With the help of the mapping ΨT the polynomial spaces Pk(T ), Qk(T ), and RTk(T ) on

a cell T = ΨT ( ˆ︁T ) are now obtained by a change of variables using a Piola transformation

[FB91, eq. III.1.45]. See also [AFW06, p. 10] where this is described as pullback. This
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RT0

+4

RT1

+12

RT2

+24

RT3

Figure 2.1: Distribution of the degrees of freedom of Raviart-Thomas finite el-
ements with continuity of the normal flux (marked by a stroke at
the boundary) and additional interior degrees of freedom, see [FB91,
Fig. III.13].

procedure is necessary to preserve normal components and therefore the divergence. With

these definitions we define the Hdiv-conforming space RTk, as well as the space Qk of

discontinuous finite element functions by

RTk(Ω) =
{︂
v ∈ Hdiv(Ω) : v

⃓⃓
T
∈ RTk(T ) ∀T ∈ Th

}︂
,

Qk(Ω) =
{︁
v ∈ L2(Ω) : v

⃓⃓
T
∈ Qk(T ) ∀T ∈ Th

}︁
.

The spaces RTk = RTk(Ω) and Qk = Qk(Ω) are defined such that

divRTk = Qk.

The degrees of freedom of RTk are chosen in order to assure continuity of the normal

flux v · n at interfaces of elements, as sketched in Figure 2.1.

Let W (T ) =
{︁
φ ∈ Ls(T ) : divφ ∈ L2(Ω), s > 2

}︁
. For the interpolation operator

Ih : W (T ) → RTk(T ) and the L2-projection Πh on Qk(T ) it holds the important com-

muting property

div Ih = Πh div .

For later use we further define the space Pk of discontinuous functions of total degree

at most k on T , and the space Sk of continuous finite element functions by

Pk(Ω) =
{︁
v ∈ L2(Ω) : v

⃓⃓
T
∈ Pk(T ) ∀T ∈ Th

}︁
,

Sk(Ω) =
{︁
v ∈ C0(Ω) : v

⃓⃓
T
∈ Qk(T ) ∀T ∈ Th

}︁
.
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2.3 Iterative Solution Algorithms

2.3 Iterative Solution Algorithms

A main goal in scientific computing is to deliver reliable methods for the calculation of real

world application scenarios coming from different fields of science and engineering, making

simulations of real world problems possible and efficient. Very often, these methods

result in large linear systems of equations that need to be solved, where increasing

their accuracy typically goes along with a growing number of unknowns and equations.

Thus, from a certain point, direct solution algorithms as the Gauss elimination become

unpractical because of their high need of memory and time consumption to invert the

corresponding system matrix. A way out, reducing these effects and making it possible

to drop the memory usage of the computer hardware to a minimum, is to use state-of-

the-art Krylov subspace methods like the conjugate gradient (CG) [HS52], the minimum

residual (MinRes) [PS75], or the generalized minimal residual method (GMRES) [SS86].

These projection methods, which are going to be introduced in this section, are based

on minimization processes in so-called Krylov subspaces and iteratively approximate the

solution of a linear system

Ax = b (2.9)

while using matrix-vector products only. Especially in the case of finite element discretiza-

tions of partial differential equations, which result in large and sparse system matrices A,

this allows for massively parallel implementations of the solution algorithms, because the

whole system can easily be decomposed into small parts by using the strong link between

the geometry of the computational domain and the matrix and vector entries. Krylov

subspace methods could in principle be used as direct solvers, since they solve equations

of the form (2.9) in Rn in at most n iterations, assumed that they are applied in exact

arithmetic. Obviously, this is not the case for computations on modern workstations,

such that their actual potency is as iterative solver. Although there are counter examples,

where they produce iterates with the same accuracy until the last iteration, where the

residual finally and suddenly drops to zero (assuming exact arithmetic), Krylov subspace

methods perform often very well in practical computations. A good overview and many

details about iterative methods for sparse linear systems can be found for example in

[Saa03].

A simple iterative solution algorithm, not a Krylov subspace method, is the Richardson
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iteration. As a prototypical iterative solution algorithm it serves as theoretical tool in the

later analysis of Schwarz methods, but will not directly be used in practical calculations.

Given the linear system of equations (2.9) and a starting vector x0, the Richardson

iteration approximates x by transforming the system into a fixed point equation and

solving it by using the iteration

xk = (I −A)xk−1 + b, k = 1, . . . , n, (2.10)

where I is the identity matrix. Convergence of the Richardson iteration (2.10) is guaran-

teed, if the spectral radius of I −A is less than one, see [Saa03, Theorem 4.1].

Linear systems with a sparse symmetric positive definite matrix A can be solved with

the CG algorithm, which is a Krylov subspace method and one of the best known iterative

techniques for this situation, [Saa03, p. 187]. Let
{︁
xk
}︁
k≥0

be the sequence of iterates

generated by Algorithm 2.1. Then, convergence is guaranteed by

∥xk − x∥A ≤ 2

(︄√︁
κ(A)− 1√︁
κ(A) + 1

)︄k

∥x0 − x∥A , (2.11)

with the norm

∥x∥A = (Ax,x)1/2 ,

and the condition number

κ(A) =
|λmax(A)|
|λmin(A)|

,

where λmax(A) and λmin(A) denote the largest and smallest eigenvalue of A, respectively.

For a proof of (2.11) see [Saa03, p. 205].

In case of unsymmetric and possibly indefinite problems GMRES can be applied to

solve a linear system of equations iteratively. Convergence can be shown with respect

to the residual for diagonalizable matrices A ∈ RN×N in the form A = TDT−1, where

D = diag(λ1, ..., λN ) with eigenvalues arranged in increasing order. Therefore, assume

that all λi are contained in the ellipse E(c, d, a) in the complex plane with center c ∈ R,
focal distance d ∈ R, and large half-axis a ∈ R, such that 0 /∈ E(c, d, a). Then, the
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Algorithm 2.1 CG [Saa03, Algorithm 6.18]

Require: A, b, x0

1. Compute r0 = b−Ax0, p0 = r0
2. for j = 0, 1, . . . , until convergence do
3. αj = (rj , rj) / (Apj ,pj)
4. xj+1 = xj + αjpj
5. rj+1 = rj − αjApj
6. βj = (rj+1, rj+1) / (rj , rj)
7. pj+1 = rj+1 + βjpj
8. end for
9. return xk ▷ where k is the last iteration

Algorithm 2.2 GMRES [Saa03, Algorithm 6.9]

Require: A, b, x0

1. Compute r0 = b−Ax0, β = ∥r0∥2, and v1 = r0/β
2. for j = 1, . . . , k do
3. Compute wj = Avj
4. for i = 1, . . . , j do
5. hij = (wj ,vi)
6. wj = wj − hijvi
7. end for
8. hj+1,j = ∥wj∥2
9. if (hj+1,j = 0) set k = j and go to Line 12
10. vj+1 = wj/hj+1,j

11. end for
12. Define matrices Hk = (hij)1≤i≤k+1,1≤j≤k, and Vk = (v1, . . . ,vk)
13. Compute yk, minimizer of ∥e1/β −Hk∥2
14. return xk = x0 + Vkyk
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residual rk = b−Axk at the k-th step in Algorithm 2.2 satisfies

⃦⃦
rk
⃦⃦
2
≤ κ(T )

Ck(
a
d)

Ck(
c
d)

⃦⃦
r0
⃦⃦
2
, (2.12)

where Ck(z) = (z +
√
z2 − 1)k + (z +

√
z2 − 1)−k. For a proof see [Saa03, p. 206]. In

practice, when A is ill-conditioned and has real spectrum, i.e., a ≈ d, c + a = λmax,

c− a = λmin, one can use the approximate expression

Ck(
a
d)

Ck(
c
d)

≈

(︄
1− 2√︁

κ(A)

)︄k

instead of (2.12), compare [EG10, p. 409] and also [Saa03, p. 207]. For symmetric positive-

definite problems, and when exact arithmetic is considered, GMRES is mathematically

equivalent to the minimum residual method (MinRes) [PS75], for which we have the

convergence result

⃦⃦
rk
⃦⃦
A
≤ 2

(︄√︁
κ(A)− 1√︁
κ(A) + 1

)︄k ⃦⃦
r0
⃦⃦
A
, (2.13)

similar to (2.11) but with respect to the residual, see [GR11].

As one can see in (2.11), (2.13), and (2.12), the convergence of Krylov subspace methods

is highly dependent on the condition number κ(A). Since κ(A) is typically dependent

on the mesh size for finite element discretizations of partial differential equations and

grows with the size of A the use of a preconditioner is crucial for the solution process.

Preconditioning can be done, for example, by multiplying (2.9) with a positive definite

matrix P , called preconditioner, such that

PAx = Pb. (2.14)

Then, the preconditioned system (2.14) is solved instead of the original system (2.9) with

the new matrix PA and the new right hand side Pb. Another option is to insert the

identity I = PP−1, such that APP−1x = b and substitute y = P−1x, which results in

solving the preconditioned system in two steps

APy = b, x = Py.
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2.4 Two-level Schwarz Preconditioner

One can also use combinations of both options. Either way, we aim to have a better

condition number κ(PA) or κ(AP ) smaller than the original κ(A) and at best inde-

pendent of the size of A, i.e., independent of the targeted accuracy, while building the

preconditioned matrix PA or AP is actually cheap. Meaning, that the building process

is far cheaper than creating the inverse P = A−1. In this context, if the rate of con-

vergence of an iterative method is independent of the size of the system, we say that

the algorithm is optimal. The discussion of optimal preconditioned iterative methods

for models describing poroelastic and porous media is the central goal of the following

chapters in this thesis.

2.4 Two-level Schwarz Preconditioner

Schwarz methods go back to 1870, where Schwarz presented the first known domain

decomposition method in [Sch70]. Originally, Schwarz proposed his alternating method to

provide a theoretical tool for the proof of existence and uniqueness of solutions of Laplace’s

equation on complicated two-dimensional domains, cf. [GW14]. Nowadays, the method is

successfully applied as solver or preconditioner in various situations, providing a powerful

tool in the solution of partial differential equations. In the following section we introduce

the concept of two-level overlapping Schwarz methods, develop their convergence theory

in an abstract framework, and apply it to the case of Hdiv-conforming finite element

spaces as proposed by [TW10].

2.4.1 Algorithm

Let V be a real-valued finite-dimensional Hilbert space with norm ∥·∥ and let V ∗ denote

its dual space. V is meant to be a finite element space in the further analysis. Let

a(·, ·) : V × V → R be a symmetric, continuous and coercive bilinearform, i.e.,

a
(︁
u, v
)︁
= a
(︁
v, u
)︁
, a

(︁
u, v
)︁
≤ c ∥u∥ ∥v∥ , a

(︁
u, u

)︁
≥ c ∥u∥2 ,

for all u, v ∈ V . We consider the problem of finding u ∈ V , such that

a
(︁
u, v
)︁
= f(v) ∀v ∈ V, (2.15)
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for given functional f ∈ V ∗. Problem (2.15) has a unique solution by the Riesz represen-

tation theorem. Further, we assume that there is a decomposition of V into a sum

V = V0 +

J∑︂
j=1

Vj (2.16)

of local subspaces Vj ⊂ V and a global coarse space V0 ⊂ V . The local spaces Vj corre-

spond to a partition of the underlying computational domain Ω ⊂ Rd into subdomains

Ωj ⊂ Ω. Functions in Vj are extended by zero to the whole space V , such that

Vj = {vj ∈ V : vj = 0 in Ω \Ωj}.

On these spaces we define local bilinear forms aj (·, ·) : Vj → Vj and a coarse bilinear

form a0 (·, ·) : V0 → V0 as restrictions of a(·, ·) to the corresponding spaces, equipped

with homogeneous Dirichlet boundaries, by

aj
(︁
uj , vj

)︁
= a
(︁
uj , vj

)︁
∀uj , vj ∈ Vj ,

a0
(︁
u0, v0

)︁
= a
(︁
u0, v0

)︁
∀u0, v0 ∈ V0.

(2.17)

Further we define Ritz-projections Pj : V → Vj by

aj
(︁
Pju, vj

)︁
= a
(︁
u, vj

)︁
∀vj ∈ Vj .

An additive two-level Schwarz operator is given by

Pad = ω
J∑︂

j=0

Pj ,

where ω is a relaxation factor that deals with the overlap and also tunes the algorithm.

With the error propagation operator

Emu = (I − PJ) · · · (I − P1) (I − P0)

we define a multiplicative two-level Schwarz operator Pmu by

Pmu = I − Emu.
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2.4 Two-level Schwarz Preconditioner

A hybrid version that is additive on the local spaces and multiplicative with respect to

the coarse space is defined by

Phyb = I − Ehyb, Ehyb =

⎛⎝I − ω

J∑︂
j=1

Pj

⎞⎠ (I − P0)

⎛⎝I − ω

J∑︂
j=1

Pj

⎞⎠ .

2.4.2 Abstract Convergence Theory

To prove convergence of the two-level Schwarz operators defined in Section 2.4, we

follow [TW10] and assume to have a stable decomposition, as well as local stability and

strengthened Cauchy-Schwarz inequalities as formulated in Assumptions 2.2 to 2.4. All

proofs of this Section can be found in [TW10, chapter 2].

Assumption 2.2 (Stable decomposition). There exists a constant C0, such that every

u ∈ V admits a decomposition

u =
J∑︂

j=0

uj , {uj ∈ Vj , 0 ≤ j ≤ J}

that satisfies

J∑︂
j=0

aj
(︁
uj , uj

)︁
≤ C0a

(︁
u, u

)︁
.

Assumption 2.3 (Local stability). For each 0 ≤ j ≤ J there exists a constant C1 > 0,

such that

a
(︁
uj , uj

)︁
≤ C1aj

(︁
uj , uj

)︁
,

for uj ∈ range(Pj) ⊂ Vj.

Assumption 2.4 (Strengthened Cauchy-Schwarz inequalities). For 1 ≤ i, j ≤ J there

exist constants 0 ≤ εij ≤ 1 such that

⃓⃓
a
(︁
ui, uj

)︁⃓⃓
≤ εija

(︁
ui, ui

)︁ 1
2a
(︁
uj , uj

)︁ 1
2 ,

for ui ∈ Vi, uj ∈ Vj. The spectral radius of E = {εij} is denoted by ρ(E).
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Due to the stable decomposition formulated in Assumption 2.2, we are able to find

a lower bound of the minimal eigenvalue λmin(Pad), ensuring the invertibility of Pad. A

value of C0 close to one is desirable, and thus, orthogonal subspaces Vj would be best. The

aim of the strengthened Cauchy-Schwarz inequalities, Assumption 2.4, together with the

local stability, Assumption 2.3, is to obtain an upper bound for the maximal eigenvalue

λmax(Pad). The Cauchy-Schwarz inequalities are trivially valid with εij = 1, but we are

highly interested in better bounds, since this would lead to a spectral radius ρ(E) = J ,

growing linearly with the number of subdomains Vj . Again, the best bound is reached

for orthogonal subspaces. All three assumptions are also needed to limit the norm of

the error propagation operator Emu leading to a convergence proof of the multiplicative

operator Pmu.

Remark 2.5. Assumption 2.3 is trivial with C1 = 1, when exact solvers are chosen, as we

have done in the definition of the local and coarse bilinear forms in (2.17). Nevertheless,

we need to make this assumption here, since we will define methods with non-inherited

coarse bilinear forms in the following chapters.

Since Pad is symmetric, we can use the conjugate gradient algorithm to solve the

preconditioned system

Padu = gad.

The conjugate gradient algorithm converges, if the condition number of the positive-

definite and symmetric system matrix is bounded. Hence, in the following proposition,

we give a bound of the condition number

κ(Pad) =
λmax(Pad)

λmin(Pad)
,

where the maximal and minimal eigenvalues of Pad are given by

λmax(Pad) = sup
u∈V

a
(︁
Padu, u

)︁
a
(︁
u, u

)︁ , λmin(Pad) = inf
u∈V

a
(︁
Padu, u

)︁
a
(︁
u, u

)︁ .

Proposition 2.6. Let Assumptions 2.2, 2.3 and 2.4 be satisfied, then it holds for the
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2.4 Two-level Schwarz Preconditioner

smallest and largest eigenvalues of the additive Schwarz operator

λmin(Pad) ≥
1

C0
, λmax(Pad) ≤ C1(ρ(E) + 1),

thus, the condition number of the additive Schwarz operator is bounded by

κ(Pad) ≤ C0C1(ρ(E) + 1).

The multiplicative Schwarz operator Pmu is not symmetric, therefore we solve the

preconditioned system

Pmuu = gmu

with a simple Richardson iteration. To guarantee convergence, the norm of the error

propagation operator Emu

⃦⃦
Emu

⃦⃦
a
=

(︄
sup
u∈V

a
(︁
Emuu,Emuu

)︁
a
(︁
u, u

)︁ )︄ 1
2

is strictly bounded by one in Proposition 2.7.

Proposition 2.7. Let Assumption 2.2, 2.3 and 2.4 be satisfied and 0 < C1 < 2. Then the

error propagation operator Emu = I − Pmu of the multiplicative Schwarz method satisfies

⃦⃦
Emu

⃦⃦2
a
≤ 1− 2− C1(︂

2Ĉ
2
1ρ(E)2 + 1

)︂
C0

< 1,

where Ĉ1 = max(1, C1).

The hybrid operator Phyb is again symmetric, and thus we can use the conjugate

gradient algorithm to solve the preconditioned system

Phybu = ghyb.

Convergence of the hybrid method, which is the two-level version of a classical multigrid

algorithm with an additive domain decomposition smoother, has not been investigated

by [TW10]. Instead, they proved convergence for a quite similar hybrid operator I −
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(I − P0)
(︂
I −

∑︁J
j=1 Pj

)︂
(I − P0), that was introduced by Mandel in [Man94], which is

also additive with respect to the local contributions and multiplicative regarding the

coarse space. As Phyb is closely related to this hybrid operator due to Mandel, and lies

as a combination of the additive and multiplicative methods in between those operators,

we expect convergence also for the hybrid method Phyb, when Assumptions 2.2 to 2.4

have been verified. Additionally, the convergence analysis of Phyb as special case of a

multigrid V-cycle has been investigated, for example by [Bra93, Yse93, Saa03, DGTZ07].

Although we specialize our analysis to two-level methods we refer to the literature for

the multilevel case, see also Section 2.5.

2.4.3 Overlapping Methods

In Section 2.4.2 the decomposition (2.16) of the global space V into a sum of local

subspaces Vj was quite general and not made explicit. In this section we will specify the

theory for the case of overlapping partitions of the underlying computational domain

Ω into patches Ωj . In order to develop the convergence analysis for this case we need

to assume that there is a sufficient overlap of the patches, and that the covering of the

partition is finite.

Let the computational domain Ω ⊂ Rd be an open, bounded and convex set with

Lipschitz-boundary, and let Th be a family of shape regular triangulations of Ω into

closed mesh cells T with diameter hT = diam(T ), where h = maxT∈Th hT denotes the

mesh size. The subdomains Ωj ⊂ Ω, called patches, are assumed to be unions of cells

such that each patch is the interior of a union of neighboring cells. Further, let TH be a

quasi-uniform coarse triangulation of Ω0 with mesh size H ≥ h.

Assumption 2.8 (Sufficient overlap). There is a constant δ > 0 that measures the size

of overlaps between the subdomains Ωj, such that

c2h ≤ δ ≤ c3H

for constants c2 > 0 and c3 > 0.

Assumption 2.9 (Finite covering). The partition {Ωj}Jj=1 can be colored using at most

N c colors, in such a way that subregions with the same color are disjoint.

In case of overlapping methods we need a partition of unity for the construction of
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2.4 Two-level Schwarz Preconditioner

local functions uj on each patch Ωj . The properties that are needed are summarized in

the following Proposition 2.10 and a proof can be found in [TW10, Lemma 3.4].

Proposition 2.10. Let Assumptions 2.8 and 2.9 be given, then there is a piecewise

d-linear partition of unity {θj}Jj=1 relative to the overlapping partition {Ωj}Jj=1 such that

for all j = 1, . . . , J

supp(θj) ⊂ Ωj ,

and for all x ∈ Ω there holds

J∑︂
j=1

θj(x) = 1 (2.18)

with 0 ≤ θj(x) ≤ 1. Moreover,

⃦⃦
∇θj

⃦⃦
L∞(Ω)

≤ c

δ
,

where δ is the constant from Assumption 2.8.

With these preliminaries a stable decomposition can be proven for the case of overlap-

ping partitions. The theorem goes back to [DW87] and a proof can be found in [TW10,

Lemma 3.13].

Proposition 2.11. Given Assumptions 2.8 and 2.9 there exists a constant C > 0, such

that every u ∈ V admits a decomposition

u =

J∑︂
j=0

uj , {uj ∈ Vj , 0 ≤ j ≤ J} ,

relative to the overlapping partition {Ωj}Jj=1, that satisfies

J∑︂
j=0

aj
(︁
uj , uj

)︁
≤ C

(︃
1 +

H

δ

)︃
a
(︁
u, u

)︁
.

The convergence of the two-level overlapping Schwarz methods is now guaranteed by

Proposition 2.11 and the theorems of Section 2.4.2 with stability constantC0 = C
(︁
1 + H

δ

)︁
,
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Ωi

Ωj
Ω0

Figure 2.2: Overlapping patches (left) and corresponding hierarchical coarse
mesh (right).

as well as the bound of the spectral radius ρ(E) ≤ N c, which is a direct consequence of

Assumption 2.9. A typical choice of the coarse space in case of hierarchical meshes is to

choose it one level coarser than the computational mesh, as well as one layer of cells as

overlap between the patches, compare Figure 2.2. Then H = 2h and δ = h, resulting in

the constant C0 = 3C.

2.4.4 Two-level Methods for Hdiv-conforming Finite Elements

In the following chapters of this thesis we will mainly use discretization spaces containing

Hdiv-conforming finite element functions to gain mass conservative discretizations of

the given model problems in poroelasticity and porous media flow. The construction of

a decomposition (2.16) needs to take into account that the divergence is represented

properly, such that the Hdiv-conformity is conserved by the preconditioner. Thus, we need

to partition the computational domain Ω into overlapping subdomains Ωj , consisting of

at least 4 cells in 2D surrounding a vertex (or 8 cells in 3D), so called vertex patches, such

that the divergence of the given finite element functions can be represented in every node.

In 3D the size of the patches can be reduced to so called edge patches, which consist

of 4 cells surrounding an edge, see [AFW00, p. 207]. An illustration in a 2D example

of lowest order Raviart-Thomas functions is given in Figure 2.3. Here you can see, that

nodes in the interior of the domain always need four surrounding cells, which form a

patch to represent the curl, that describes the rotation of a vector field properly. In this

example we take the curl = (∂2,−∂1) in favor of the divergence div = (∂1, ∂2)· (note the

dot) due to their close relation to each other (compare Remark 2.1) and the ability of

the curl to give a far more placative visualization here. Additionally in the right picture

with three patches you can see the need of an overlap of one layer of cells between two

patches, such that the curl is represented here as well. Without overlap the partition
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Figure 2.3: Representation of the curl on one patch (left) and on overlapping
patches (right).

would not be able to treat the curl on vertices at their boundaries correctly, since the

overlap assures that all vertices have a surrounding layer of cells, such that all portions

of the curl (or divergence) operator are captured.

The first study on domain decomposition preconditioners for Hdiv-conforming finite

element functions was done by Arnold, Falk,Winther for two dimensional Raviart-Thomas

finite element functions in [AFW97], followed by [AFW98, AFW00], and Hiptmair [Hip96,

Hip97], as well as Hiptmair, Hoppe [HH99], handling both two and three dimensional cases;

cf. [TW10, p. 273]. These studies build on earlier works, where the domain decomposition

methods are directly used as solvers, see for example [EW92, VW92].

In order to prove convergence for the Hdiv-conforming case a proof of the stable

decomposition for bilinear form

(︁
u,v

)︁
Hdiv(Ω)

=
(︁
u,v

)︁
Ω
+
(︁
divu,div v

)︁
Ω
, u,v ∈ V ⊂ Hdiv(Ω), (2.19)

needs to treat the kernel V 0 of the divergence operator and its orthogonal complement V ⊥

with respect to bilinear form (2.19) seperately, where kernel and orthogonal complement

are defined by

V 0 =
{︁
u0 ∈ V : divu0 = 0

}︁
,

and

V ⊥ =
{︂
u⊥ ∈ V :

(︁
u⊥,v0

)︁
Hdiv(Ω)

= 0 ∀v0 ∈ V 0
}︂
,
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respectively. Therefore, a Helmholtz decomposition is used to write V as the sum

V = V 0 ⊕ V ⊥.

Whereas it is not important for functions in the orthogonal complement V ⊥ to stay

locally orthogonal, it is important for functions in the kernel V 0 to find a decomposition

that is divergence-free also in the local contributions, compare also [LWXZ07]. To this

end the fact is used that divergence-free functions u0 ∈ V 0 can be represented as curl of

H1-functions s, i.e.,

u0 = curl s,

for which we find a decomposition s =
∑︁J

j=0 sj stable in H1(Ω), namely,

J∑︂
j=0

⃓⃓
sj
⃓⃓2
H1(Ω)

≤ cH,δ

⃓⃓
s
⃓⃓2
H1(Ω)

for some constant cH,δ = C
(︁
1 + H

δ

)︁
> 0, see Proposition 2.11. By choosing u0

j = curl sj

we have constructed a decomposition u0 =
∑︁J

j=0 u
0
j that is stable and stays in the kernel

locally since

J∑︂
j=0

⃦⃦
u0
j

⃦⃦2
Ω
=

J∑︂
j=0

⃦⃦
curl sj

⃦⃦2
Ω
=

J∑︂
j=0

⃓⃓
sj
⃓⃓2
H1(Ω)

≤ cH,δ

⃓⃓
s
⃓⃓2
H1(Ω)

= cH,δ

⃦⃦
curl s

⃦⃦2
Ω
= cH,δ

⃦⃦
u0
⃦⃦2
Ω
.

This sketches a main idea of the proof of the following two Propositions 2.12 and 2.13.

The full proof can be found in [TW10, p. 285 f]. It goes back to [VW92] for the two-

dimensional case, and to [Hip97] in three dimensions.

Proposition 2.12. Every v ∈ V 0
h admits a decomposition of the form v =

∑︁J
j=0 vj,

vj ∈ V 0
j , which satisfies the bound

J∑︂
j=0

⃦⃦
vj
⃦⃦2
Ω
≤ c

(︃
1 +

H2

δ2

)︃ ⃦⃦
v
⃦⃦2
Ω
.
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Proposition 2.13. Let ν > 0 be a positive constant. Every v ∈ V ⊥
h admits a decompo-

sition of the form v =
∑︁J

j=0 vj, vj ∈ Vj, which satisfies the bound

J∑︂
j=0

(︂⃦⃦
vj
⃦⃦2
Ω
+ ν
⃦⃦
div vj

⃦⃦2
Ω

)︂
≤ c

(︃
1 +

H2

δ2

)︃(︂⃦⃦
v
⃦⃦2
Ω
+ ν
⃦⃦
div v

⃦⃦2
Ω

)︂
,

for a constant c > 0 independent of ν.

2.4.5 Remarks on the Implementation

Let A be the system matrix, f be the coefficient vector of the right hand side f , and u

be the coefficient vector of the solution u corresponding to problem (2.15) after choosing

a basis of the finite element space V . Then, we aim to solve linear systems of equations

Au = f . (2.20)

In practice, if we want to apply the Schwarz preconditioners from Section 2.4 to system

(2.20), we need to introduce prolongation and restriction matrices to deal with the zero-

extension of the local spaces Vj to the global space V and its effect on the matrices

of the preconditioner. The prolongation matrices are defined as interpolation operators

RT
j : Vj → V , whereas the restrictions Rj : V → Vj are just their transposed. Let Aj

be the local matrices corresponding to the local bilinear forms in (2.17). Let further

Ãj ∈ RNj×Nj be the local matrices defined only on patch Ωj , where Nj = dim(Vj)

denotes the number of degrees of freedom on patch Ωj specified by the dimension of the

local finite element space Vj . Then the local matrices Aj ∈ RNΩ×NΩ , NΩ = dim(V ), are

given by

Aj = R
T
j ÃjRj

and their inverses by

A−1
j = RT

j Ã
−1
j Rj , (2.21)

assumimg that the local matrices Ãj are positive definite. For the coarse space V0 we

define RT
0 ,R0 and A0 accordingly. Let Pad, Pmu, and Phyb be the matrix representations

of the corresponding operators Pad, Pmu, and Phyb, respectively. A closer look into the
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Algorithm 2.3 Multiplicative two-level Schwarz preconditioner

The action of A−1
mu on a vector g is given by:

1. x0 = R
T
0 Ã

−1
0 R0g ▷ coarse space correction

2. for j = 1, . . . , J do

3. xj = xj−1 +R
T
j Ã

−1
j Rj(g −Axj−1) ▷ local smoothing

4. end for
5. Assign: A−1

mug = xJ

projection operators Pj shows that they can be written as

Pj = A
−1
j A, 0 ≤ j ≤ J, (2.22)

and thus, Pad =
∑︁J

j=0A
−1
j A. Defining the preconditioner A−1

ad =
∑︁J

j=0A
−1
j leads to

the preconditioned system

A−1
adAu = A−1

ad f ,

or equivalently

Padu = gad,

where the right hand side is given by gad = A−1
ad f . Due to (2.22) the according Schwarz

operators in the multiplicative and hybrid cases can also be written as Pmu = A−1
muA

and Phyb = A−1
hybA, with appropriately defined preconditioners A−1

mu and A−1
hyb. By

defining the right hand sides ghyb = A−1
hybf and gmu = A−1

muf this leads to the equivalent

preconditioned systems

Pmuu = gmu, Phybu = ghyb.

The implementation of the additive operator Pad is straight forward, since it is only the

sum of the local and coarse projections. In the case of the multiplicative operator Pmu

and the hybrid operator Phyb, the action of the preconditioners applied to a vector is

presented in pseudo-code in Algorithm 2.3 and Algorithm 2.4, respectively; compare also

[TW10, Section 2.6]. The code is written in form of a subspace correction algorithm as it

is known from multigrid methods with a local smoothing part, where the contributions

of the patches are applied to the current residual, and a coarse space correction part, cf.
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Algorithm 2.4 Hybrid two-level Schwarz preconditioner

The action of A−1
hyb on a vector g is given by:

1. x0 = 0
2. for j = 1, . . . , J do

3. xj = xj−1 + ωRT
j Ã

−1
j Rjg ▷ local smoothing

4. end for
5. xJ+1 = xJ +RT

0 Ã
−1
0 R0(g −AxJ) ▷ coarse space correction

6. r = g −AxJ+1

7. for j = J + 2, . . . , 2J + 1 do

8. xj = xj−1 + ωRT
j Ã

−1
j Rjr, ▷ local smoothing

9. end for
10. Assign: A−1

hybg = x2J+1

[Xu92, Bra93].

Extension to Positive Semi-definite Systems

In case of positive definite problems the local and coarse matrices Ãj and Ã0 can simply

be inverted and then applied against the system matrix A, see (2.21) and (2.22). This

cannot be done when the matrices Ãj and Ã0 have a non-trivial kernel, i.e., when the

formulation of the local problems is not positive definite, but positive semi-definite. For

example, Stokes flow with no-slip boundary conditions implies a solution that is defined

only up to a constant. To reach a unique solution an additional constraint has to be

formulated, such as forcing the mean-value of the pressure to be zero. Typically, this

is realized by adjusting the solution after the problem has been solved for an arbitrary

constant, which leads to the problem of solving linear systems where the corresponding

matrix does not have full rank. In this case of linear systems with a non-trivial kernel we

cannot invert the local matrices Ãj as in (2.21), but we can build the pseudoinvers Ã
†
j

by using a singular value decomposition (SVD) that factorizes Ãj into Ãj = UjΣjV
T
j ,

where Uj ,Vj are orthogonal matrices and Σj is a diagonal matrix with as many non-

zero diagonal elements, called singular values, as the rank of Ãj . With the help of the

pseudoinvers Σ† of Σ, built by inverting every non-zero diagonal element of Σ, the

pseudoinvers of Ãj is now given by

Ã
†
j = VjΣ

†
jU

T
j .
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Remark 2.14. The implementation of the algorithms presented in this thesis is matrix-

based. That means, that the system matrix, as well as the matrices of the preconditioner,

are assembled globally before starting the solution process. That makes the code quite

storage consuming essentially for higher mesh levels, and limits the calculations to the

storage capacity of the machine. When changing the implementation to a matrix-free

one, the large global matrix is not assembled beforehand, but only small local matrices are

used to provide an implementation of the required matrix-vector-multiplications. Here,

looping over all mesh cells, one assembles a local cell-matrix to compute the matrix-vector-

multiplication on each cell, and adds all local contributions to the global iteration vector.

This has the benefit of reducing the storage usage of the code drastically and making

larger and even exa-scale computations possible. In this context I would like to refer

to the work of Witte, Arndt, Kanschat in [WAK21] and [Wit22] for recent research on

high-performance computing with multilevel Schwarz methods.

2.5 Multilevel Schwarz Preconditioner

In this section the two-level domain decomposition algorithms already developed in the

last section will be extended to a multilevel setup. Both two-level Schwarz operators from

Section 2.4, the hybrid as well as the multiplicative version, appear to be special cases

of a multigrid V-cycle algorithm, as will be presented in the latter.

When using a two-level Schwarz method the coarse problem is assumed to be solved

exactly, which makes a major part of the computational costs, since the dimension of

the coarse space grows with refinement of the mesh. Multilevel algorithms reduce this

cost of the coarse solver by transferring the residual over several levels to a coarse level,

where solving the entire coarse system is actually cheap. It is therefore promising to

use multilevel algorithms in favor of the two-level versions, because their design leads to

optimal complexity of the algorithms. The idea of multigrid methods goes back to the

1960’s to a paper of Fedorenko in [Fed64]. In the following decades, the method has been

developed with a tremendous amount of scientific research. The multigrid method has

successfully been applied to finite difference, as well as finite element discretizations of

partial differential equations in a very broad field of applications. Whereas the overall

multigrid scheme has few variations, as for example the variable V-cycle or the W-cycle,

the performance of the multigrid method relies heavily on the design of the smoother.

Choices range from different kinds of matrix decompositions, which has been the first
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2.5 Multilevel Schwarz Preconditioner

methods in use, to quite sophisticated smoothers that rely on the analytical structure of

the underlying problem, or even doesn’t care about it at all by acting algebraically on the

matrix, only. Nowadays, multigrid algorithms are typically used as preconditioner inside

iterative Krylov subspace solvers, as already outlined for the two-level Schwarz methods

in Section 2.4. Although we will not examine the convergence proof of the multilevel

methods in the later chapters, we refer to [Xu92, Bra93, Yse93, Saa03, DGTZ07, Bra13]

for an overview of the analysis.

2.5.1 Multigrid Algorithm

We assume having a hierarchy of nested meshes

Th0 ⊂ Th1 ⊂ · · · ThL
= Th

and corresponding finite element spaces

Vh0 ⊂ Vh1 ⊂ · · ·VhL
= Vh

to mesh sizes h0 < h1 < . . . < hL = h. On the finest level L we aim to solve the following

abstract problem: find uh ∈ Vh such that

ah
(︁
uh, vh

)︁
= f(vh) ∀vh ∈ Vh,

where ah(·, ·) : Vh × Vh → R is a coercive and continuous bilinearform, and f ∈ V ∗
h . For

the construction of the multilevel preconditioner we consider on each level ℓ the problem

of finding uℓ ∈ Vℓ = Vhℓ
such that

aℓ
(︁
uℓ, vℓ

)︁
= f(vℓ) ∀vℓ ∈ Vℓ, (2.23)

where the bilinearform is defined by aℓ (·, ·) = ahℓ
(·, ·). As algebraic analogue we rewrite

the level problems (2.23) as

Aℓuℓ = fℓ, for ℓ ∈ {1, . . . , L}.
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Algorithm 2.5 Multigrid V-cycle

LetM0 = A−1
0 . Let Sℓ be a suitable smoother, and let mpre and mpost be the number of

pre-smoothing and post-smoothing steps, respectively, on each level. Recursively define
the action of Mℓ on a vector bℓ as follows:

1. Pre-smoothing: let x0 = 0 and compute for i = 1, . . . ,mpre

xi = xi−1 + Sℓ (bℓ −Aℓxi−1)

2. Coarse grid correction:

xmpre+1 = xmpre +R
T
ℓ−1Mℓ−1Rℓ−1

(︁
bℓ −Aℓxmpre

)︁
3. Post-smoothing: for i = mpre + 2, . . . ,mpre +mpost + 1 compute

xi = xi−1 + Sℓ (bℓ −Aℓxi−1)

4. Assign: Mℓbℓ = xmpre+mpost+1

Furthermore, for transferring between the levels we define the restriction operators Rℓ :

Vℓ+1 → Vℓ as L
2-projection, i.e.,

(︁
Rℓuℓ+1, vℓ

)︁
Ω
=
(︁
uℓ+1, vℓ

)︁
Ω

∀vℓ ∈ Vℓ,

for given uℓ+1 ∈ Vℓ+1, and the prolongation operators RT
ℓ : Vℓ → Vℓ+1 such that

(︁
RT

ℓ uℓ, vℓ+1

)︁
Ω
=
(︁
uℓ,Rℓvℓ+1

)︁
Ω

∀uℓ ∈ Vℓ, vℓ+1 ∈ Vℓ+1.

For convenience we write the restriction and prolongation matrices with the same symbol

as the operators. The application of the multigrid V-cycleMℓ to a vector is then defined

in Algorithm 2.5, compare for example [Bra93, Saa03, KLM17].

2.5.2 Domain Decomposition Smoother

For the definition of the smoother we will use the domain decomposition approach of the

Schwarz operators of the foregoing section and apply it to each level. To this end, we

will quickly need to recapitulate the definitions of the spaces and operators and adapt

the notation to the multilevel setup. We decompose the finite element space Vℓ on each
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2.5 Multilevel Schwarz Preconditioner

level ℓ ∈ {1, . . . , L} into the sum

Vℓ =

J∑︂
j=1

Vℓ,j

of local subspaces Vℓ,j ⊂ Vℓ, which correspond to an overlapping partition into patches

Ωℓ,j on level ℓ. As before, functions in Vℓ,j are extended by zero to the whole space Vℓ.

With the local bilinearforms

aℓ,j
(︁
uℓ,j , vℓ,j

)︁
= aℓ

(︁
uℓ,j , vℓ,j

)︁
∀uℓ,j , vℓ,j ∈ Vℓ,j ,

equipped with homogeneous Dirichlet boundary values on ∂Ωℓ,j , we can define the Ritz-

projections Pℓ,j : Vℓ → Vℓ,j by

aℓ,j
(︁
Pℓ,juℓ, vℓ,j

)︁
= aℓ

(︁
uℓ, vℓ,j

)︁
∀vℓ,j ∈ Vℓ,j .

On level ℓ, an additive one-level Schwarz method is then defined by

Pad,ℓ = ω
J∑︂

j=1

Pℓ,j ,

and a multiplicative one-level Schwarz method by

Pmu,ℓ = I − Emu
ℓ , Emu

ℓ = (I − Pℓ,J) · · · (I − Pℓ,1) .

To define the additive smoother A−1
ad,ℓ, as well as the multiplicative smoother A−1

mu,ℓ, we

follow Section 2.4.5 and use

Pℓ,j = A
−1
ℓ,jAℓ, 1 ≤ j ≤ J,

to rewrite the matrix representations of the one-level methods Pad,ℓ and Pmu,ℓ as

Pad,ℓ = A
−1
ad,ℓAℓ, Pmu,ℓ = A

−1
mu,ℓAℓ.

For the implementation, we again define the prolongation operator RT
ℓ,j : Vℓ,j → Vℓ as

interpolation, and the restriction Rℓ,j : Vℓ → Vℓ,j as its transpose to write the local
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Mhyb

smooth

restrict

solve

prolongate
smooth

Mmu

restrict

solve

prolongate
smooth

Figure 2.4: Hybrid and multiplicative multilevel Schwarz preconditioner.

inverses as

A−1
ℓ,j = RT

ℓ,jÃℓ,jRℓ,j ,

compare (2.21), and also the discussion in Section 2.4.5.

2.5.3 Schwarz Preconditioner

Finally, we are able to define the symmetric hybrid multilevel Schwarz preconditioner

Mhyb by settingMhyb =ML in Algorithm 2.5 with A−1
ad,ℓ as smoother, and with mpre =

mpost smoothing steps.

Further, the multiplicative multilevel Schwarz preconditionerMmu is defined byMmu =

ML in Algorithm 2.5 with A−1
mu,ℓ as smoother, and with mpre = 0, as well as mpost = 1

as smoothing steps. Note, that the choice of mpre = 0 basically means skipping the

pre-smoothing, implying that Mmu,ℓ is not symmetric.

For an illustration of the action of both preconditioners see Figure 2.4.

Remark 2.15. By setting h0 = h/2 we easily see that the hybrid and the multiplicative

two-level Schwarz methods from Section 2.4 are special cases of the hybrid and multiplica-

tive multilevel Schwarz methods of this section, respectively.
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Chapter 3

Two-level Schwarz Preconditioner for Biot’s

Consolidation Model

In this chapter, the theory of the two-level Schwarz methods as introduced in Chap-

ter 2 is applied to Hdiv-conforming finite element discretizations of Biot’s quasi-static

consolidation model. The main theoretical result is the proof of the stable decomposition

in Section 3.4.3, which is the most important ingredient in the proof of convergence of

the methods as preconditioner in state-of-the-art Krylov subspace solvers. The idea here

is to use the mass-conservation property of the discretization to derive an equivalent,

nearly-singular, positive-definite system that allows us to prove stability of arbitrary de-

compositions of the finite element functions. The special structure of the system implies a

parameter dependence of the method on the inverse of the permeability tensor, which can-

not be avoided in the proof. Nevertheless, this dependence can only be slightly observed

in the numerical experiments and does not restrict the applicability of the solver, which is

demonstrated by various numerical simulations in Section 3.5 testing the performance of

the preconditioned iterative solvers in a two-level and a multilevel setup. The numerical

performance of the solver is excellent, showing uniform results in the simulations in the

mesh size, robust for all considered regimes of the parameters in the system, especially

for the ratio λ
µ of the Lamé constants of elasticity, even in the nearly incompressible case

λ ≫ µ, as well as for the ratio csµ
α2 of the specific storage coefficient cs and the Biot-Willis

constant α. To our knowledge, the successful application of this monolithic approach of

overlapping two- and multilevel Schwarz methods to Hdiv-conforming discretizations of

the equations in poroelasticity is novel in the literature.

In the field of linear poroelasticity, the physical behavior of saturated porous and

elastic materials is described. Examples of such materials can be found in various types

of rock such as sandstone, as well as in clay, wet sand or concrete, but also in organic

tissue such as liver, brain or articular cartilage. The equations governing poroelastic
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media have been invented and developed by the engineer Biot in a series of works [Bio35,

Bio41, Bio55, Bio72] starting in 1935, based on the pioneering work of Terzaghi [Ter25]

in 1925. The quasi-static model we will focus on was suggested by Biot in [Bio41] by

hypothesizing the form of the macroscopic constitutive relations of poroelastic materials

and generalized to anisotropic solids in [Bio55]. It is a combination of linear elasticity

describing the deformation of a solid body, and Darcy’s law, which describes fluid flow

through a porous medium. Instead of a heterogeneous description that incorporates the

finescale behavior of such materials as fluid-structure interaction problem, models of

Biot type follow a continuum mechanical approach and describe the effective behavior

of poroelastic materials on a macroscopic length scale.

The research on theory and applications of this topic has been and is still in ongoing

progress in the scientific community, as it is for the development of numerical solvers.

About three decades after the engineering approach of Biot a formal mathematical

derivation of the linear model has been proposed by Burridge, Keller in [BK81] using

homogenization theory. Mathematically rigorous derivations have been presented by

Sanchez-Palencia in [SP80] and by Nguetseng in [Ngu90].

Discretizations for Biot’s consolidation model have been developed since the late 1960’s,

see [Chr68, SW69, YYN71], where mainly continuous finite element spaces were employed,

besides a few attempts with finite difference and finite volume methods. The most popular

numerical methods have been standard finite element discretizations due to their ability

to address complicated domains, but they suffer from inaccuracies called locking for

certain parameter ranges involving spurious pressure oscillations, see [Yi17] and the

literature cited therein, which is in parts already known from discretizations in linear

elasticity when the material is nearly incompressible or thin, see [BS92, Arn81] as well

as [Bra13, Kapitel VI §4]. This pushed the development of discretizations towards finite

element methods that are robust with respect to the parameters in the system to avoid

locking. Such methods were found in mixed finite element formulations, where different

approaches were being pursued, such as discontinuous and continuous mixed Galerkin

methods [Phi05, PW07a, PW07b, PW08, Lee16, Lee18], also for a total-stress formulation

in [ORB16], a least-squares mixed finite element method [TPS08], different stabilization

techniques [AGLR08, RGHZ16], also for hybrid mixed finite elements [NRH19], space-

time variational mixed finite element formulations [BRK17], and nonconforming mixed

methods [Yi13, Yi14, HRGZ17], without any claim to completeness of this list.
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For their iterative solution different methods have been proposed, such as stress splitting

schemes [MW13, MWW14, CWT15, BRK17, BBN+17, HKLW20, AKW23], domain

decomposition methods [FWR13, Flo18], an Uzawa-type algorithm [HKLP20], block

preconditioners [FBG10, ABB12, CWT15, CWF16, LMW17, AGH+19], and multigrid

preconditioners [GR17, AHH+22].

Lately, the conservation of mass became an especially relevant feature that has been

addressed by Hdiv-conforming mixed finite elements [KR18, HK18, HKLP19], by finite

elements based on enrichment [GRH+19, LY22] and by mixed virtual finite elements

[WCWZ22].

We will focus on Hdiv-conforming mixed finite element discretizations proposed by

[KR18, HK18, HKLP19], as they provide locking-free and mass conserving schemes. Since

these discretizations result in large saddle-point systems, ill-conditioned with respect to

standard finite element bases, effective preconditioners are needed for their iterative

solution.

To this end, Hong and Kraus developed a block-diagonal preconditioner in [HK18,

HKLP19] that is based on parameter-dependent norms, which they apply to a mass

conservative Hdiv-conforming three-field mixed finite element discretization of Biot’s

quasi-static consolidation model, as well as a multiple-network poroelastic system. They

show robustness of their scheme and provide numerical tests.

In [BKMRB21], Boon et. al. apply a block preconditioner to a mixed finite element

discretization of a total-pressure four-field formulation of Biot’s consolidation model using

Taylor-Hood as well as Hdiv-conforming mixed finite element spaces. In their numerical

results they present robustness of the condition numbers for the case where an LU

factorization is used to invert the blocks, which is of little practical applicability for large

scale computations due to the growing size of the blocks. An approximate inversion of

the blocks yields suboptimal results.

Jayadharan, Khattatov and Yotov apply a domain decomposition approach with non-

overlapping subdomains to a five-field fully coupled Hdiv-conforming mixed formulation

in [JKY21]. They use a reduction of the subdomain problems to an interface problem

for a Lagrange multiplier, beneath two splitting approaches. Beneath the fact that their

discretization yields very large systems due to the five-field formulation, their numerical

experiments show deteriorating iteration counts of GMRES and CG for all three methods.

None of these approaches has successfully applied the Schwarz theory toHdiv-conforming
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finite element discretizations of Biot’s consolidation model, which is our motivation and

goal for this chapter.

The structure of this chapter is as follows.

The quasi-static model of linear consolidation by Biot is introduced as a three-field

formulation in Section 3.1 and discretized in Section 3.2 by a family of Hdiv-conforming

mixed finite element methods as proposed in [KR18, HK18, HKLP19]. Section 3.3 defines

multiplicative and hybrid overlapping two-level Schwarz methods for preconditioning the

resulting saddle point systems and thus providing efficient solvers. The convergence of the

methods is proven in Section 3.4. In Section 3.5, numerical tests are described and their

results are presented showing that the dependence of the convergence constants on the

permeability tensor can only be observed slightly and do not restrict the applicability of

the method. A scaling leads to robustness even with extremely large chosen parameters.

Moreover, the optimal choice of the relaxation factor of the hybrid two-level Schwarz is

investigated and the performance of the multilevel Schwarz methods are examined.

3.1 Biot’s Linear Consolidation Model

Biot’s consolidation model in three-field formulation couples the displacement field u of

the solid component, the seepage velocity v of the fluid, and the pressure p in a fully

saturated porous medium at constant temperature in a linear model. It is posed on a

computational domain Ω ⊂ Rd with d = 2 or d = 3 on a time interval (0, T ). In strong

form, Biot’s quasi-static model of consolidation reads

−div (2µε(u) + λ div(u)I) + α∇p = f in Ω × (0, T ),

v +K∇p = 0 in Ω × (0, T ),

−α div ∂tu− div v − cs∂tp = g in Ω × (0, T ),

(3.1)

with initial conditions u(0) = u0, and p(0) = p0, such that (3.1) is satisfied at time

t = 0. For existence, uniqueness, and regularity of solutions of (3.1) we refer to [Žen84]

as well as to [Sho00] and the literature cited therein. An introduction to the equations of

poroelasticity from a physical point of view as well as an overview over the constants can,

for example, be found in [DC93, Cou04]. In these works and the literature cited therein,

application scenarios, as well as a discussion of boundary settings and famous problems

as Mandel’s problem [Man53] can be found here as well. The equations are derived and
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explained in the following.

To start with, linearity of the model is assured by the hypothesis of small perturbations,

which consists of the hypothesis of small displacements

⃦⃦ 1
L
u
⃦⃦
≪ 1,

where L is the characteristic observation length scale, the hypothesis of infinitesimal

small transformations

⃦⃦
∇u
⃦⃦
≪ 1,

as well as the hypothesis of small variations of the Lagrangian porosity and the fluid mass

density, see [Cou04, Chapter 5]. The effective stress of the elastic medium is described

by Hooke’s law, a linearized model in elasticity. It obeys the constitutive equation

σeff(u) = 2µε(u) + λ div(u)I,

where I is the identity tensor and the linearized strain tensor is given by

ε(u) =
1

2

(︁
∇u+∇uT

)︁
.

The physical parameters λ ≥ 0 and µ > 0 denote the Lamé constants defined in terms

of Young’s modulus E and Poisson ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, and µ =

E

2(1 + ν)
.

For an introduction to the theory of elasticity and the relations of the constants we refer

to [Cia88].

The total stress σ(u) of the poroelastic medium is defined as the sum of the effective

stress σeff(u) and the stress αpI due to the pore pressure, where the Biot-Willis constant

α [BW57] takes values between zero and one and represents unaccounted volume changes,

for instant small air inclusions in soil [KR18]. For soft soils like sand or clay α is considered

to be one or very close to one, whereas for rocks as sandstone or granite it might take

smaller values around 0.2 to 0.9, cf. [DC93]. With a given force f the constitutive
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equations are given by

−div(σeff(u)− αpI) = f in Ω × (0, T ).

The Biot-Willis constant α couples the equations of elasticity via the pore pressure with

Darcy’s law

v = −K∇p in Ω × (0, T ),

where K is the symmetric positive-definite permeability tensor of the saturated porous

medium. It is assumed that K is bounded in the sense that there are positive constants

CK ≥ cK > 0, such that

cK
⃦⃦
v
⃦⃦2
Ω
≤
(︁
K−1v,v

)︁
Ω
≤ CK

⃦⃦
v
⃦⃦2
Ω

∀v ∈ [L2(Ω)]d. (3.2)

In the simplest case, we consider a permeability tensor of the form K = κI, constant

over Ω and constant over the time interval (0, T ) with the scalar constant κ satisfying

0 < cK ≤ κ−1 ≤ CK < ∞.

The set of equations is completed by introducing the mass balance equation

−α div ∂tu− div v − cs∂tp = g in Ω × (0, T ),

with a given sink or source term g, and the specific storage coefficient cs ≥ 0. The constant

cs combines the compressibility and the porosity of the medium and is a measure of the

amount of fluid that can be forced into the medium by pressure increments at constant

volume, cf. [Sho00].

Semi-discretization in time by the backward Euler method to time step size τ > 0

results in a sequence of semi-discrete and static problems of the form

−2µ div ε(u)− λ∇ divu+ α∇p = f in Ω,

v +K∇p = 0 in Ω,

−α

τ
divu− div v − cs

τ
p = ḡ in Ω,

(3.3)
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in each time step, where ḡ = g − α
τ divuold − cs

τ pold with uold and pold taken from the

previous time step and all other quantities referring to the new time step. We point out

that the specific time discretization is irrelevant, since all implicit methods will result

in the necessity of solving systems of similar kind. Furthermore, we note that u/τ has

the unit of speed and α is dimensionless. Hence, it is dimensionally meaningful to add

(α divu)/τ and div v and p/τ in the last equation.

Following [HKLP19] we transform (3.3) into a symmetric problem by proper scaling

and substitution of variables. Therefore, we transform (3.3) into

−div ε(u)− λ
2µ∇ divu+ α

2µ∇p = 1
2µf in Ω,

α
2µK

−1v + α
2µ∇p = 0 in Ω,

−divu− τ
α div v − cs

α p = τ
α ḡ in Ω.

By substitution of the variables and right hand side

ṽ =
τ

α
v, p̃ =

α

2µ
p, f̃ =

1

2µ
f , g̃ =

τ

α
g − divuold −

cs
α
pold,

as well as the physical parameters

λ̃ =
λ

2µ
, K̃

−1
=

α2

2µτ
K−1, cs̃ =

2µcs
α2

, (3.4)

we obtain the rescaled system

−div ε(u) + λ̃∇ (divu) +∇p̃ = f̃ in Ω,

K̃
−1
ṽ +∇p̃ = 0 in Ω,

−divu− div ṽ − cs̃p̃ = g̃ in Ω.

(3.5)

Since this is the normalized system we build our analysis on, we will omit the tilde symbol

from here on.

This system is closed by proper boundary conditions. As usual, essential boundary

conditions enter the definitions of the function spaces U ⊂ [H1(Ω)]d and V ⊂ Hdiv(Ω)

for displacement and seepage velocity, respectively. We will choose a particular combina-

tion of boundary conditions in the presentation and analysis of the two-level algorithm

in Sections 3.3 and 3.4, although one might also want to consider other combinations
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for which certain arguments and basic estimates have to be adapted and exchanged

accordingly. The general assumptions that are required to conduct an analysis similar to

the one presented in this work are as follows.

Assumption 3.1. The boundary conditions on the spaces U and V are such that:

1. The seepage velocity v is uniquely determined.

2. Korn’s inequality [Kor08] holds for u in the continuous setting as well as for uh

in the discrete setting. For sufficient conditions in the continuous case we refer

to [DV02] and the literature cited therein. For the discrete case, see [Bre04].

3. The pressure space Q is chosen such that the operator div : V → Q is surjective. The

boundary conditions on U are compatible such that also div : U → Q is surjective.

To give one example, which applies to the setting of the analysis presented in Section 3.4,

Korn’s inequality

1

ce

⃦⃦
∇u
⃦⃦2
Ω
≤
⃦⃦
ε(u)

⃦⃦2
Ω
≤
⃦⃦
∇u
⃦⃦2
Ω

holds for all u ∈ [H1
0 (Ω)]d. In line with this, we assume on the whole boundary a

homogeneous Dirichlet (no-slip) boundary condition on u and a Neumann boundary

condition on p, which translates to an essential condition on v. Accordingly, we choose

U = [H1
0 (Ω)]d, V = Hdiv

0 (Ω), Q = L2
0(Ω).

The weak formulation of (3.5) is then: find (u,v, p) ∈ U × V ×Q, such that

e
(︁
u,φ

)︁
+ λd

(︁
u,φ

)︁
− b
(︁
p,φ

)︁
=
(︁
f ,φ

)︁
Ω

∀φ ∈ U,

k
(︁
v,ψ

)︁
− b
(︁
p,ψ

)︁
= 0 ∀ψ ∈ V,

−b
(︁
q,u

)︁
− b
(︁
q,v
)︁
− cs

(︁
p, q
)︁
Ω
=
(︁
g, q
)︁
Ω

∀q ∈ Q,

(3.6)

with bilinear forms

e
(︁
u,φ

)︁
=
(︁
ε(u), ε(φ)

)︁
Ω
, d

(︁
u,φ

)︁
=
(︁
divu,divφ

)︁
Ω
,

b
(︁
p,ψ

)︁
=
(︁
p,divψ

)︁
Ω
, k

(︁
v,ψ

)︁
=
(︁
K−1v,ψ

)︁
Ω
.
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3.2 Mass Conservative Discretization

The model problem (3.6) is discretized by a family of strongly mass-conserving mixed

methods as proposed in [KR18, HK18, HKLP19], where the displacement and seepage

velocity fields are approximated in suitable Hdiv-conforming spaces Uh and Vh and the

pressure space Qh consists of piecewise polynomial functions discontinuous at element

interfaces such that the condition

divUh = Qh, div Vh = Qh, (3.7)

is satisfied. By choosing the spaces as in (3.7) the discrete mass equation

−divuh − div vh − csph = gh

is fulfilled pointwise, which serves as key ingredient for the convergence analysis in

Section 3.4 of the two-level Schwarz methods introduced in Section 3.3. The combined

finite element space for the mixed method is then defined by

Xh = Uh × Vh ×Qh.

Examples for such combinations of spaces are given by the triplets RTk × RTk × Qk,

BDMk × RTk−1 × Pk−1 or BDFMk × RTk−1 × Pk−1. Since the space Uh is not H1-

conforming, a discrete interior penalty discontinuous Galerkin bilinear form eh(·, ·) is

used to approximate e (·, ·) as detailed below.

Let Th be a family of shape regular triangulations of the computational domain Ω into

mesh cells T with diameter hT = diam(T ) where h = maxT∈Th hT denotes the mesh size.

Let ΓI,h be the set of all interior faces (edges in two dimensions) of Th, and ΓB,h be the set

of all faces on the boundary ∂Ω. For every face F ∈ ΓI,h there are two neighboring cells

T+, T− ∈ Th such that F = ∂T+∩∂T−. Let n be the unit outward normal vector pointing

from T+ to T−. On every face F ∈ ΓI,h and for any φ ∈ [L2(Ω)]d and τ ∈ [L2(Ω)]d×d,

we define jump [[ ]] and average {{ }} by

[[φ]] = φ+ −φ−, {{τn}} =
1

2
(τ+ + τ−)n,

51



Chapter 3 Two-level Schwarz Preconditioner for Biot’s Consolidation Model

where φ± = φ
⃓⃓
T±

and τ± = τ
⃓⃓
T±

. Further, on the broken Sobolev space

[H1(Ω, Th)]d =
{︂
φ ∈ [L2(Ω)]d : φ

⃓⃓
T
∈ [H1(T )]d

}︂
we introduce the discrete norm

⃦⃦
φ
⃦⃦
1,h

=

⎛⎝∑︂
T∈Th

⃦⃦
∇φ
⃦⃦2
T
+
∑︂

F∈ΓI,h

1

h

⃦⃦
[[φ]]
⃦⃦2
F
+

∑︂
B∈ΓB,h

1

h

⃦⃦
φ
⃦⃦2
B

⎞⎠ 1
2

. (3.8)

Following the work of [Arn82, Nit71] we choose an interior penalty discontinuous Galerkin

approximation of e (·, ·) in the nonconforming space Uh. Therefore, on Uh ×Uh we define

the symmetric discrete bilinear form

eh
(︁
uh,φ

)︁
=
∑︂
T∈Th

(︁
ε(uh), ε(φ)

)︁
T
+
∑︂

F∈ΓI,h

η

h

(︁
[[uh]], [[φ]]

)︁
F

−
∑︂

F∈ΓI,h

(︁
{{ε(uh)n}}, [[φ]]

)︁
F
−
∑︂

F∈ΓI,h

(︁
[[uh]], {{ε(φ)n}}

)︁
F

+
∑︂

B∈ΓB,h

η

h

(︁
uh,φ

)︁
B

−
∑︂

B∈ΓB,h

(︁
ε(uh)n,φ

)︁
B
−

∑︂
B∈ΓB,h

(︁
uh, ε(φ)n

)︁
B
.

Here, the penalty parameter η > 0 is chosen large enough to ensure coercivity of eh(·, ·),
i.e., there is a positive constant c such that

eh
(︁
φ,φ

)︁
≥ c
⃦⃦
φ
⃦⃦2
1,h

∀φ ∈ Uh. (3.9)

We assume that the boundary conditions are chosen such that this relation, which is a

discrete form of Korn’s inequality, holds as formulated in Assumption 3.1, cf. [Bre04] in

this context. In addition to (3.9) we have continuity of eh(·, ·) in the norm ∥·∥1,h, i.e.,

eh
(︁
uh,φ

)︁
≤ c
⃦⃦
uh

⃦⃦
1,h

⃦⃦
φ
⃦⃦
1,h

∀uh,φ ∈ Uh. (3.10)

Since Uh is Hdiv-conforming, the form b (u,φ) = (divu, divφ)Ω does not need a penalty

formulation. The mass-conserving mixed method based on the finite element space Xh
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can then be represented as

Ah

⎛⎜⎝
⎛⎜⎝uh

vh

ph

⎞⎟⎠ ,

⎛⎜⎝φψ
q

⎞⎟⎠
⎞⎟⎠ = Fh

⎛⎜⎝
⎛⎜⎝φψ

q

⎞⎟⎠
⎞⎟⎠ , (3.11)

where the discrete bilinear form Ah(·, ·) : Xh ×Xh → R is defined by

Ah

⎛⎜⎝
⎛⎜⎝uh

vh

ph

⎞⎟⎠ ,

⎛⎜⎝φψ
q

⎞⎟⎠
⎞⎟⎠ =eh

(︁
uh,φ

)︁
+ λd

(︁
uh,φ

)︁
+ k
(︁
vh,ψ

)︁
− b
(︁
ph,φ+ψ

)︁
− b
(︁
q,uh + vh

)︁
− cs

(︁
ph, q

)︁
Ω

and the right hand side is given by

Fh

⎛⎜⎝
⎛⎜⎝φψ

q

⎞⎟⎠
⎞⎟⎠ =

(︁
f ,φ

)︁
Ω
+
(︁
gh, q

)︁
Ω
,

with gh chosen as the L2-projection Πhg. System (3.11) is consistent and has a unique

solution, which has been proven in [KR18] and follows essentially by the special choice of

Hdiv-conforming discretization spaces, coercivity (3.9), continuity (3.10) and the discrete

inf-sup conditions, see for example [BBF13, HL02, SST03, Bre74],

inf
q∈Qh

sup
φ∈Uh

(︁
divφ, q

)︁
Ω⃦⃦

φ
⃦⃦
1,h

⃦⃦
q
⃦⃦
Ω

≥ γu > 0

and

inf
q∈Qh

sup
ψ∈Vh

(︁
divψ, q

)︁
Ω⃦⃦

ψ
⃦⃦
Hdiv(Ω)

⃦⃦
q
⃦⃦
Ω

≥ γv > 0.

From [KR18, Theorem 3] we know that the error for the spatial semi-discretization with

RTk ×RTk ×Qk-elements for all times t > 0 satisfies

µ
⃦⃦
uh(t)− u(t)

⃦⃦2
1,h

≤ ch2k
(︂
M + µ

⃦⃦
u(t)

⃦⃦2
Hk+1(Ω)

)︂
,
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and

cs
⃦⃦
ph(t)− p(t)

⃦⃦2
Ω
+
⃦⃦
K−1/2(vh − v)

⃦⃦2
L2(0,t;L2(Ω))

≤ ch2k
(︂
M + cs

⃦⃦
p(t)

⃦⃦2
Hk+1(Ω)

)︂
,

where M = α2 ∥∂t divu∥2L2(0,T ;Hk+1(Ω)) + ∥v∥2L2(0,T ;Hk+1(Ω)). Further, under the assump-

tion

⃓⃓
ũ(t)− u(t)

⃓⃓2
Hdiv(Ω)

≤ cµ,λh
2k+2

⃓⃓
divu(t)

⃓⃓
Hk+1(Ω)

for the error of the Ritz-projection ũ to the exact solution u in the Hdiv-seminorm the

authors obtain an additional bound for the divergence of the displacement

λ
⃓⃓
uh(t)− u(t)

⃓⃓2
Hdiv(Ω)

≤ cµ,λh
2k+2

(︂
M + λ

⃦⃦
divu(t)

⃦⃦2
Hk+1(Ω)

)︂
,

as well as the improved result

cs
⃦⃦
ph(t)− p(t)

⃦⃦2
Ω
+
⃦⃦
K−1/2(vh − v)

⃦⃦2
L2(0,t;L2(Ω))

≤ cµ,λh
2k+2

(︂
M + cs

⃦⃦
p(t)

⃦⃦2
Hk+1(Ω)

)︂
.

3.3 Two-level Algorithm

In this section we define a monolithic two-level algorithm for the mixed problem (3.11)

as outlined in Section 2.4. The method differs from partitioned solvers, which rely on

and exploit the block structure of the system.

For j = 1, . . . , J let the vertex patch Ωj be the subdomain consisting of all mesh cells

touching the vertex pj . This could be the union of 4 quadrilaterals or 6 triangles (in

2D), or 8 hexahedra (in 3D) for inner vertices of uniform mesh partitions. With the

subdomains Ωj we associate subspaces Xj ⊂ Xh. To this end, we define

Uj = Uh ∩Hdiv
0 (Ωj), Vj = Vh ∩Hdiv

0 (Ωj), Qj = Qh ∩ L2
0(Ωj),

continued by zero on Ω \Ωj , and set

Xj = Uj × Vj ×Qj .

54



3.3 Two-level Algorithm

Moreover, for H > h let TH be a triangulation of the coarse domain Ω0 = Ω such that

the associated subspace X0 = XH ⊂ Xh. Then, X0 plays the role of a global coarse space

and we can decompose Xh into an overlapping sum by

Xh = X0 +

J∑︂
j=1

Xj .

For j = 1, . . . , J we introduce local bilinear forms Aj(·, ·) : Xj ×Xj → R as restrictions

of Ah(·, ·) to Xj , as well as a coarse bilinear form A0(·, ·) : X0 ×X0 → R by

Aj

⎛⎜⎝
⎛⎜⎝uj

vj

pj

⎞⎟⎠ ,

⎛⎜⎝φj

ψj

qj

⎞⎟⎠
⎞⎟⎠ = Ah

⎛⎜⎝
⎛⎜⎝uj

vj

pj

⎞⎟⎠ ,

⎛⎜⎝φj

ψj

qj

⎞⎟⎠
⎞⎟⎠ ∀

⎛⎜⎝uj

vj

pj

⎞⎟⎠ ,

⎛⎜⎝φj

ψj

qj

⎞⎟⎠ ∈ Xj ,

A0

⎛⎜⎝
⎛⎜⎝u0

v0

p0

⎞⎟⎠ ,

⎛⎜⎝φ0

ψ0

q0

⎞⎟⎠
⎞⎟⎠ = ω−1

0 AH

⎛⎜⎝
⎛⎜⎝u0

v0

p0

⎞⎟⎠ ,

⎛⎜⎝φ0

ψ0

q0

⎞⎟⎠
⎞⎟⎠ ∀

⎛⎜⎝u0

v0

p0

⎞⎟⎠ ,

⎛⎜⎝φ0

ψ0

q0

⎞⎟⎠ ∈ X0,

where the coarse bilinear form is scaled by a relaxation factor 0 < ω0 < 1. In practice we

will set ω0 = 1, but we need to define it for the convergence analysis. Further, we define

projections Pj : Xh → Xj and P0 : Xh → X0 by

Aj

⎛⎜⎝Pj

⎛⎜⎝uh

vh

ph

⎞⎟⎠ ,

⎛⎜⎝φj

ψj

qj

⎞⎟⎠
⎞⎟⎠ = Ah

⎛⎜⎝
⎛⎜⎝uh

vh

ph

⎞⎟⎠ ,

⎛⎜⎝φj

ψj

qj

⎞⎟⎠
⎞⎟⎠ ∀

⎛⎜⎝φj

ψj

qj

⎞⎟⎠ ∈ Xj , (3.12)

for j = 0, 1, . . . , J . Note, that the bilinear form eH(·, ·) is not inherited from eh(·, ·)
although XH ⊂ Xh, because it differs in the face and boundary terms. Thus, P0 is not a

projection, since consequently A0(·, ·) differs from Ah(·, ·).

With the specification of the Pj and P0 in (3.12) we recall the definition of the multi-

plicative Schwarz operator Pmu : Xh → Xh, the additive Schwarz operator Pad : Xh → Xh,

and the hybrid Schwarz operator Phyb : Xh → Xh from Section 2.4 by

Pmu = I − Emu, Emu = (I − PJ) · · · (I − P1) (I − P0) , (3.13)

55



Chapter 3 Two-level Schwarz Preconditioner for Biot’s Consolidation Model

and

Pad =
J∑︂

j=0

Pj , (3.14)

as well as

Phyb = I − Ehyb, Ehyb =

⎛⎝I − ω
J∑︂

j=1

Pj

⎞⎠ (I − P0)

⎛⎝I − ω
J∑︂

j=1

Pj

⎞⎠ ,

where ω is a relaxation factor that depends on the overlap and can also be used for tuning

the method.

3.4 Convergence Analysis

There is no immediate convergence analysis for subspace correction methods for saddle

point problems. Therefore, we follow [Sch99] and transform (3.11) into an equivalent,

singularly perturbed problem for any fixed cs > 0. Then, we prove robust convergence

with respect to cs → 0, cf. [AFW97, LWXZ07, KM15] by applying the abstract two-level

Schwarz theory as introduced in Section 2.4.

In order to be able to apply the two-level Schwarz framework for symmetric, posi-

tive definite operators, we first transform system (3.11) into an equivalent, symmetric

and positive definite (Lemma 3.4), singularly perturbed problem in Section 3.4.1. Then,

we follow the abstract theory of two-level Schwarz methods for Hdiv-conforming finite

element discretizations as introduced in Section 2.4. First, we make the standard Assump-

tions 2.8 and 2.9 on the covering {Ωj}Jj=1 of the domain Ω, see [TW10, AFW97, FK01].

In addition, we need to verify Assumptions 2.2 to 2.4.

As a preparatory step for the proof of Assumption 2.2 we decompose the product

space Wh on which the singularly perturbed problem is formulated into an orthogonal

sum with respect to the kernel of a divergence operator in Section 3.4.2. In Section 3.4.3

we then provide a main result of this chapter by proving Theorem 3.11, i.e., the stable

decomposition of arbitrary finite element functions in Wh. In Section 3.4.4 we will then

proof the local stability in Lemma 3.12, and the strengthened Cauchy-Schwarz inequalities

in Lemma 3.13.

All this gives us a bound for the condition number of the preconditioned singularly
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perturbed system. Since this bound is robust in the perturbation parameter cs, even in

the case cs → 0, and we have equivalence of the singularly perturbed problem and the

discrete three-field formulation (3.11) this proves the following two Theorems 3.2 and 3.3.

Theorem 3.2. The multiplicative two-level Schwarz method (3.13) converges uniformly

in the mesh size h and is robust with respect to the rescaled material parameters λ and

cs.

Theorem 3.3. The additive two-level Schwarz method (3.14) converges independently

of the mesh size h and the rescaled material parameters λ and cs.

The rest of this section is devoted to the proof of the stated preliminaries.

3.4.1 An Equivalent, Singularly Perturbed Problem

As shown in [KR18, HKLP19], strong mass conservation can be recovered from sys-

tem (3.11) by using Hdiv-conforming discretizations for the displacement field and seep-

age velocity in combination with piecewise polynomial approximations of the pressure if

the discrete spaces match. To be more precise, the discrete mass balance equation

−divuh − div vh − csph = gh

is fulfilled point-wise if the condition (3.7) is met. This allows us to substitute

ph = −c−1
s (divuh + div vh + gh)

and obtain the equivalent, singularly perturbed system

eh
(︁
uh,φ

)︁
+ λd

(︁
uh,φ

)︁
+ c−1

s d
(︁
uh + vh,φ

)︁
=
(︁
f ,φ

)︁
Ω
− c−1

s

(︁
gh, divφ

)︁
Ω

k
(︁
vh,ψ

)︁
+ c−1

s d
(︁
uh + vh,ψ

)︁
= −c−1

s

(︁
gh,divψ

)︁
Ω

for all (φ,ψ) ∈ Wh = Uh × Vh. We rewrite this system as

Ah

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= Fh

(︄(︄
φ

ψ

)︄)︄
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with

Ah

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
=Ah

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
+D

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
, (3.15)

where the bilinear forms Ah (·, ·) and D (·, ·) are defined on Wh ×Wh by

Ah

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= eh

(︁
uh,φ

)︁
+ k
(︁
vh,ψ

)︁
,

D

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= λd

(︁
uh,φ

)︁
+ c−1

s d
(︁
uh + vh,φ+ψ

)︁
(3.16)

and the right hand side is given by

Fh

(︄(︄
φ

ψ

)︄)︄
=
(︁
f ,φ

)︁
Ω
− c−1

s

(︁
gh, div(φ+ψ)

)︁
Ω
.

Lemma 3.4. The form Ah (·, ·) defines a symmetric, positive definite bilinear form on

Wh.

Proof. It is clear by definition thatAh (wh,wh) ≥ 0 for allwh ∈ Wh, and also Ah (wh,wh) =

0, if wh = 0. Therefore, let Ah (wh,wh) = 0 for wh = (uh,vh) ∈ Wh. Then, the choice

of the boundary values as formulated in Assumption 3.1 for the displacement, as well as

the seepage velocity, together with

Ah

(︄(︄
uh

vh

)︄
,

(︄
uh

vh

)︄)︄
≥ c
⃦⃦
uh

⃦⃦2
1,h

+ cK
⃦⃦
vh
⃦⃦2
Ω
,

implies wh = 0. The symmetry of Ah (·, ·) follows by the symmetry of the bilinear forms

eh(·, ·), k (·, ·) and d (·, ·).

Similar to Section 3.3 we choose local subspaces Wj ⊂ Wh associated with the subdo-

mains Ωj , such that

Wj = Uj × Vj

as well as a global coarse space W0 = UH × VH , which provide a decomposition of Wh
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into an overlapping sum of subspaces, i.e.,

Wh = W0 +
J∑︂

j=1

Wj .

Note, that every wh ∈ Wh then admits a decomposition of the form

wh =

J∑︂
j=0

wj , wj ∈ Wj . (3.17)

For j = 1, . . . , J we introduce the local bilinear forms Aj (·, ·) : Wj × Wj → R as re-

strictions of Ah (·, ·) to Wj and a coarse bilinear form A0 (·, ·) : W0 × W0 → R as

A0 (·, ·) = AH (·, ·). Analogously to (3.12) we define the projections Pj : Wh → Wj

and the projection-like operator P0 : Wh → W0 by

Aj

(︄
Pj

(︄
uh

vh

)︄
,

(︄
φj

ψj

)︄)︄
= Ah

(︄(︄
uh

vh

)︄
,

(︄
φj

ψj

)︄)︄
∀

(︄
φj

ψj

)︄
∈ Wj .

3.4.2 Decomposition of the Spaces according to ker(D)

Our goal in Section 3.4.3 is to prove that for any wh ∈ Wh, any decomposition of the

form (3.17) is stable under the global and local bilinear forms Ah (·, ·) : Wh ×Wh → R

and Aj (·, ·) : Wj ×Wj → R, respectively. As a preparatory step we decompose the space

Wh into the orthogonal sum

Wh = ker(D)⊕ ker(D)⊥ (3.18)

of the kernel of the summed divergence operator

W 0
h = ker(D) =

{︄(︄
uh

vh

)︄
∈ Wh : D

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= 0 ∀

(︄
φ

ψ

)︄
∈ Wh

}︄

and its Ah (·, ·)-orthogonal complement

ker(D)⊥ =

{︄(︄
uh

vh

)︄
∈ Wh : Ah

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= 0 ∀

(︄
φ

ψ

)︄
∈ ker(D)

}︄
,
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cf. [AFW97, Hip97]. To this end we introduce the discrete Helmholtz-decompositions

Uh = U0
h ⊕ U⊥

h , Vh = V 0
h ⊕ V ⊥

h ,

of Uh and Vh into their divergence-free subspaces U0
h and V 0

h , and their eh(·, ·)-orthogonal
and k (·, ·)-orthogonal complements, respectively, cf. [AFW10, KM15],

U⊥
h =

{︁
uh ∈ Uh : eh

(︁
uh,φ

)︁
= 0 ∀φ ∈ U0

h

}︁
,

V ⊥
h =

{︁
vh ∈ Vh : k

(︁
vh,ψ

)︁
= 0 ∀ψ ∈ V 0

h

}︁
.

The following lemma characterizes W 0
h = ker(D) ⊂ Wh.

Lemma 3.5. For λ > 0 there holds

W 0
h = ker(D) = U0

h × V 0
h , W⊥

h = ker(D)⊥ = U⊥
h × V ⊥

h .

Proof. First, let (uh,vh) ∈ ker(D). Setting φ = uh and ψ = vh in

D

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= λd

(︁
uh,φ

)︁
+ c−1

s d
(︁
uh + vh,φ+ψ

)︁
shows that a necessary condition is divuh = 0, and as a consequence also div vh = 0.

Thus, ker(D) ⊂ U0
h × V 0

h . On the other hand, (u0
h,v

0
h) ∈ U0

h × V 0
h implies immediately

D

(︄(︄
u0
h

v0h

)︄
,

(︄
φ

ψ

)︄)︄
= 0

for arbitrary (φ,ψ) ∈ Wh, and we have U0
h×V 0

h ⊂ ker(D). The statement for W⊥
h follows

directly due to its definition as orthogonal complement to W 0
h in (3.18).

Note that for all w0
h = (u0

h,v
0
h) ∈ W 0

h and πh = (φh,ψh) ∈ Wh, there holds

Ah

(︁
w0

h,πh

)︁
=eh
(︁
u0
h,φh

)︁
+ k
(︁
v0h,ψh

)︁
. (3.19)

Remark 3.6. For λ = 0 the space ker(D) is larger, because D is then defined by
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d (uh + vh,φh +ψh) only and therefore

ker(D) = U0
h × V 0

h +
{︂
(u,v) ∈ U⊥

h × V ⊥
h : divu = −div v

}︂
.

3.4.3 Stable Decomposition

The main result of this section is Theorem 3.11. Before we can prove it, we begin by

recalling known facts from the literature and showing some auxiliary results.

In order to represent divergence free functions in the displacement space U0
h we intro-

duce the space

S(Ω, Th) =
{︁
sh ∈ H1

0 (Ω) : sh|T ∈ H2(T ) for all T ∈ Th
}︁
,

which is equipped with the discrete norm

⃦⃦
sh
⃦⃦
2,h

=

⎛⎝∑︂
T∈Th

⃦⃦
∇2sh

⃦⃦2
T
+
∑︂

F∈ΓI,h

1

h

⃦⃦
[[∂nsh]]

⃦⃦2
F
+

∑︂
B∈ΓB,h

1

h

⃦⃦
∂nsh

⃦⃦2
B

⎞⎠ 1
2

. (3.20)

Following [KS14], the bilinear form eh(·, ·) on the divergence free subspace is algebraically

equivalent to the bilinear form of a C0-interior penalty formulation of a corresponding

biharmonic problem by assigning velocities uh = curl sh, where uh belongs to the discrete

stream function space S(Ω, Th). Using arguments as in [KS14], it is easy to see that in

two space dimensions there holds the elementary identity

⃦⃦
curl sh

⃦⃦
1,h

=
⃦⃦
sh
⃦⃦
2,h

, ∀sh ∈ S(Ω, Th), (3.21)

where curl = (∂2,−∂1). Indeed, since in two dimensions, curl sh is just the rotated

gradient, equality of the bulk term is obvious. Comparing the jump terms in the defini-

tion (3.8) with (3.20), the latter contains only the jump of ∂nsh, while in the former we

consider the jump of the whole vector curl sh. Since sh ∈ H2(T ) for every cell, the trace

of curl sh is defined on every interface. Furthermore, its tangential derivatives from both

adjacent cells coincide almost everywhere, such that for an interior face F there holds

⃦⃦
[[curl sh]]

⃦⃦
F
=
⃦⃦
[[∇sh]]

⃦⃦
F
=
⃦⃦
[[∂nsh]]

⃦⃦
F
.
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On the boundary, the definition of S(Ω, Th) immediately implies that the tangential

derivative vanishes and thus ∥curl sh∥B = ∥∂nsh∥B. We point out that we did not verify

the identity (3.21) for the three dimensional case Ω ⊂ R3 and leave this special matter

for future work.

Next, we recall a result from [BW05, Lemma 4.2] showing that functions in S(Ω, Th)
have a stable decomposition with respect to the norm (3.20).

Proposition 3.7. Every s ∈ S(Ω, Th) admits a decomposition s =
∑︁J

j=0 sj with sj ∈
S(Ωj , Th), s0 ∈ S(Ω0, TH), such that

⃦⃦
s0
⃦⃦2
2,H

+

J∑︂
j=1

⃦⃦
sj
⃦⃦2
2,h

≤ c

(︃
1 +

H4

δ4

)︃ ⃦⃦
s
⃦⃦2
2,h

for some constant c > 0.

The above results suffice to prove the stability of the decomposition of the divergence

free subspace of Uh with respect to the elasticity energy norm.

Lemma 3.8. Every function u0 ∈ U0
h admits a decomposition of the form u0 =

∑︁J
j=0 u

0
j

with u0
j ∈ U0

j , which satisfies the bound

eH
(︁
u0
0,u

0
0

)︁
+

J∑︂
j=1

eh
(︁
u0
j ,u

0
j

)︁
≤ c

(︃
1 +

H4

δ4

)︃
eh
(︁
u0,u0

)︁
for some constant c > 0.

Proof. For every u0 ∈ U0
h there exists a unique stream function s ∈ S(Ω, Th), such that

u0 = curl s.

Now we decompose s =
∑︁J

j=0 sj and choose

u0
j = curl sj ,

such that u0
j ∈ U0

j and by linearity of the curl

u0 =

J∑︂
j=0

u0
j .
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Continuity of eh(·, ·), the stability of the decomposition in Proposition 3.7 and iden-

tity (3.21) yield

eH
(︁
u0
0,u

0
0

)︁
+

J∑︂
j=1

eh
(︁
u0
j ,u

0
j

)︁
≤ c

⎛⎝⃦⃦curl s0⃦⃦21,H +

J∑︂
j=1

⃦⃦
curl sj

⃦⃦2
1,h

⎞⎠
= c

⎛⎝⃦⃦s0⃦⃦22,H +
J∑︂

j=1

⃦⃦
sj
⃦⃦2
2,h

⎞⎠ ≤ c

(︃
1 +

H4

δ4

)︃ ⃦⃦
s
⃦⃦2
2,h

= c

(︃
1 +

H4

δ4

)︃ ⃦⃦
curl s

⃦⃦2
1,h

≤ c

(︃
1 +

H4

δ4

)︃
eh
(︁
u0,u0

)︁
,

where we have used Korn’s inequality (3.9) in the last estimate.

Next, we show that also U⊥
h has a stable decomposition with respect to the elasticity

bilinear form.

Lemma 3.9. Every function u⊥ ∈ U⊥
h admits a decomposition of the form u⊥ =∑︁J

j=0 u
1
j with u1

j ∈ Uj, which satisfies the bound

eH
(︁
u1
0,u

1
0

)︁
+

J∑︂
j=1

eh
(︁
u1
j ,u

1
j

)︁
≤ c

(︃
1 +

H2

δ2

)︃
eh
(︁
u⊥,u⊥)︁ (3.22)

for some constant c > 0.

Proof. We use the construction in [TW10, chapter 10] and adapt it to the bilinear form

eh(·, ·). To this end we introduce the semicontinuous space U+ containing functions which

can be characterized as the image of Uh under an orthogonal projection Θ⊥ : Hdiv
0 (Ω) →

Hdiv,⊥
0 (Ω), i.e., U+ = Θ⊥(Uh), which is defined by

Θ⊥u = u− curlw,

where w ∈ Hcurl,⊥
0 (Ω) satisfies

(︁
curlw, curl v

)︁
Ω
=
(︁
u, curl v

)︁
Ω
, ∀v ∈ H⊥

0 (curl;Ω).

Here Hdiv,⊥
0 (Ω) and Hcurl,⊥

0 (Ω) denote the orthogonal complements of the divergence-
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Chapter 3 Two-level Schwarz Preconditioner for Biot’s Consolidation Model

free and curl-free subspaces

Hdiv,0
0 (Ω) =

{︂
v ∈ Hdiv

0 (Ω) : div v = 0
}︂
,

Hcurl,0
0 (Ω) =

{︂
v ∈ Hcurl

0 (Ω) : curl v = 0
}︂
,

of Hdiv
0 (Ω) and Hcurl

0 (Ω) in the (·, ·)Hdiv(Ω) and (·, ·)Hcurl(Ω) inner products, respectively,

i.e.,

Hdiv
0 (Ω) = Hdiv,0

0 (Ω)⊕Hdiv,⊥
0 (Ω), (3.23)

Hcurl
0 (Ω) = Hcurl,0

0 (Ω)⊕Hcurl,⊥
0 (Ω). (3.24)

Note that the decompositions (3.23) and (3.24) are both L2-orthogonal as well. The

finite dimensional space U+ is not a finite element space, however the divergence of these

functions are finite element functions.

Further, we define the projection P h : Hdiv
0 (Ω) → U+ by

(︁
div
(︂
P hu− u

)︂
,divφ

)︁
Ω
= 0, ∀φ ∈ U+.

From [TW10, Lemma 10.12] for convex Ω, we have the approximation property

⃦⃦
u⊥ − P hu⊥⃦⃦

Ω
≤ c h

⃦⃦
divu⊥⃦⃦

Ω
∀u⊥ ∈ U⊥

h . (3.25)

Then, for P h there holds

⃦⃦
P hu⊥⃦⃦

Hdiv(Ω)
≤ cΩ

⃦⃦
u⊥⃦⃦

Hdiv(Ω)
, ∀u⊥ ∈ U⊥

h

with a constant cΩ depending on Ω. It follows immediately from [CKS05, Proposition

4.6] that for another constant c, depending on mesh grading and shape regularity, we

have

⃦⃦
P hu⊥⃦⃦

1,h
≤ c
⃦⃦
u⊥⃦⃦

1,h
. (3.26)

For the L2-projection ΠH : [L2(Ω)]d → U0 onto the coarse space U0 there holds

⃦⃦
u−ΠHu

⃦⃦
Ω
≤ cH

⃦⃦
u
⃦⃦
1,h

. (3.27)
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Additionally, we have H1-stability of ΠH , i.e.,

⃦⃦
ΠHu

⃦⃦
1,h

≤ c
⃦⃦
u
⃦⃦
1,h

. (3.28)

We are now ready to choose

u1
0 = ΠHP hu⊥,

u1
j = Ih

(︂
θj

(︂
u⊥ − u1

0

)︂)︂
,

where Ih is the canonical interpolation into Uh and {θj}Jj=1 the piecewise linear partition

of unity defined in (2.18). We point at the fact that u1
j ∈ Uj is not necessarily a function

in U⊥
j .

Let ũ = u⊥ −u1
0. Noting that on each cell T ∈ Th, the function θjũ is polynomial and

hence

⃦⃦
Ih (θjũ)

⃦⃦
1,h

≤ c
⃦⃦
θjũ
⃦⃦
1,h

. (3.29)

By continuity of the bilinear form eH(·, ·), the bounds (3.28) and (3.26), and coercivity

of eh(·, ·) we get

eH
(︁
u1
0,u

1
0

)︁
≤ c
⃦⃦
ΠHP hu⊥⃦⃦2

1,h

≤ c
⃦⃦
P hu⊥⃦⃦2

1,h
≤ c
⃦⃦
u⊥⃦⃦2

1,h
≤ c eh

(︁
u⊥,u⊥)︁ (3.30)

and

⃦⃦
ũ
⃦⃦2
1,h

≤ c
(︂⃦⃦
u⊥⃦⃦2

1,h
+
⃦⃦
ΠHP hu⊥⃦⃦2

1,h

)︂
≤ c eh

(︁
u⊥,u⊥)︁. (3.31)

By (3.25), (3.27), and using h ≤ H, we obtain⃦⃦
ũ
⃦⃦
Ω
≤
⃦⃦
u⊥ − P hu⊥⃦⃦

Ω
+
⃦⃦
P hu⊥ −ΠHP hu⊥⃦⃦

Ω

≤ c h
⃦⃦
divu⊥⃦⃦

Ω
+ cH

⃦⃦
u⊥⃦⃦

1,h

≤ cH
⃦⃦
u⊥⃦⃦

1,h
.

(3.32)

Using continuity of eh(·, ·), (3.29), the properties of θj , (3.32), (3.31), and coercivity of
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eh(·, ·), as well as the finite covering Assumption 2.9, we get

J∑︂
j=1

eh
(︁
u1
j ,u

1
j

)︁
≤ c

J∑︂
j=1

⃦⃦
Ih (θjũ)

⃦⃦2
1,h

≤ c

J∑︂
j=1

⃦⃦
θjũ
⃦⃦2
1,h

≤ c
J∑︂

j=1

(︄∑︂
T∈Th

(︂⃦⃦
∇θj

⃦⃦2
L∞(T )

⃦⃦
ũ
⃦⃦2
T
+
⃦⃦
θj∇ũ

⃦⃦2
T

)︂

+
∑︂

F∈ΓI,h

1

h

⃦⃦
θj [[ũ]]

⃦⃦2
F
+

∑︂
B∈ΓB,h

1

h

⃦⃦
θjũ
⃦⃦2
B

)︄

≤ c
1

δ2
⃦⃦
ũ
⃦⃦2
Ω
+ c
⃦⃦
ũ
⃦⃦2
1,h

≤ c

(︃
1 +

H2

δ2

)︃
eh
(︁
u⊥,u⊥)︁.

(3.33)

Finally, combining (3.30) and (3.33) results in the desired estimate (3.22).

Moreover, W 0
h has a stable decomposition with respect to Ah (·, ·).

Lemma 3.10. Every w0 = (u0,v0) ∈ W 0
h admits a decomposition of the form

w0 =
J∑︂

j=0

w0
j , w0

j ∈ W 0
j ,

which satisfies the bound

J∑︂
j=0

Aj

(︁
w0

j ,w
0
j

)︁
≤ c

(︃
1 +

H4

δ4

)︃
Ah

(︁
w0,w0

)︁
for some constant c > 0 independent of the model parameters and of J .

Proof. By Lemma 3.8, every u0 ∈ U0
h has a decomposition u0 =

∑︁J
J=0 u

0
j with u0

j ∈ U0
j ,

such that

eH
(︁
u0
0,u

0
0

)︁
+

J∑︂
j=1

eh
(︁
u0
j ,u

0
j

)︁
≤ c

(︃
1 +

H4

δ4

)︃
eh
(︁
u0,u0

)︁
,

with u0
j = curl sj , where sj is chosen as in the proof of Lemma 3.8.
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Further, by a classical result in domain decomposition theory that goes back to [DW94],

every r ∈ S(Ω, Th) has a decomposition r =
∑︁J

j=0 rj , such that

J∑︂
j=0

⃦⃦
rj
⃦⃦2
H1(Ω)

≤ c

(︃
1 +

H

δ

)︃ ⃦⃦
r
⃦⃦2
H1(Ω)

.

By choosing v0j = curl rj , we get for the second term in (3.19)

J∑︂
j=0

k
(︁
v0j ,v

0
j

)︁
≤ CK

J∑︂
j=0

⃦⃦
curl rj

⃦⃦2
Ω
= CK

J∑︂
j=0

⃦⃦
rj
⃦⃦2
H1(Ω)

≤ cCK

(︃
1 +

H

δ

)︃ ⃦⃦
r
⃦⃦2
H1(Ω)

= cCK

(︃
1 +

H

δ

)︃ ⃦⃦
curl r

⃦⃦2
Ω

≤ c
CK
cK

(︃
1 +

H

δ

)︃
k
(︁
v0,v0

)︁
(3.34)

where we have used (3.2). The assertion of the lemma follows then by choosing w0
j =(︂

u0
j ,v

0
j

)︂
Ω
= (curl sj , curl rj)Ω ∈ W 0

j for all j = 0, . . . , J .

We are ready to state and prove our main result.

Theorem 3.11 (Stable decomposition). Every w ∈ Wh admits a decomposition of the

form

w =
J∑︂

j=0

wj , wj ∈ Wj ,

which satisfies the bound

J∑︂
j=0

Aj (wj ,wj) ≤ cK,Ω

(︃
1 +

H4

δ4

)︃
Ah (w,w) ,

for some constant cK,Ω > 0 independent of the model parameters λ and cs in the dis-

crete bilinear form Ah (·, ·) defined in (3.15)–(3.16) and independent of the number of

subdomains J as well as of the discretization parameter h, but dependent on Ω and K.

Proof. For w = 0 the result is trivial. So let w ∈ Wh, w ̸= 0, be arbitrary. To start with,
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we decompose w in the form

w =

(︄
u

v

)︄
=

(︄
u0

v0

)︄
+

(︄
u⊥

v⊥

)︄
,

with (u0,v0) ∈ U0 × V 0 and (u⊥,v⊥) ∈ U⊥ × V ⊥. Since we need to control the term

d (u+ v,u+ v), we define φ = u⊥ + v⊥ and decompose it into φ = φ0 +φ⊥, φ0 ∈ V 0,

where φ0 and φ⊥ are orthogonal with respect to k (·, ·). Then, the decomposition of w

that we will use in our proof reads as

w =

(︄
u

v

)︄
=

(︄
u0

v0

)︄
+

(︄
u⊥

−u⊥

)︄
+

(︄
0

φ

)︄

=

(︄
u0

v0

)︄
+

(︄
0

φ0

)︄
+

(︄
u⊥

−u⊥

)︄
+

(︄
0

φ⊥

)︄
=: w0 +w1 +w2 +w3. (3.35)

We decompose each component of each summand in (3.35) according to

J∑︂
j=0

u0
j = u

0,

J∑︂
j=0

v0j = v0,

J∑︂
j=0

φ0
j = φ

0,

J∑︂
j=0

u1
j = u

⊥,
J∑︂

j=0

v1j = v⊥,
J∑︂

j=0

φ1
j = φ

⊥,

where u0
j ∈ U0

j , v
0
j ∈ V 0

j , φ
0
j ∈ V 0

j , u
1
j ∈ Uj , v

1
j ∈ Vj and φ1

j ∈ Vj are specified below.

The superscript 1 of u1
j , v

1
j and φ1

j indicates that these terms are not orthogonal. Now,

we define wj = w
0
j +w

1
j +w

2
j +w

3
j , where

w0
j =

(︄
u0
j

v0j

)︄
∈ W 0

j , w1
j =

(︄
0

φ0
j

)︄
∈ W 0

j ,

w2
j =

(︄
u1
j

−u1
j

)︄
∈ Wj , w3

j =

(︄
0

φ1
j

)︄
∈ Wj ,
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and herewith estimate

J∑︂
j=0

Aj (wj ,wj) ≤ c
J∑︂

j=0

(︁
Aj

(︁
w0

j ,w
0
j

)︁
+ Aj

(︁
w1

j ,w
1
j

)︁
+Aj

(︁
w2

j ,w
2
j

)︁
+ Aj

(︁
w3

j ,w
3
j

)︁)︁
. (3.36)

In the kernel W 0
h we have by Lemma 3.10 for w0 = (u0,v0) ∈ W 0

h

J∑︂
j=0

Aj

(︁
w0

j ,w
0
j

)︁
= eH

(︁
u0
j ,u

0
j

)︁
+

J∑︂
j=1

eh
(︁
u0
j ,u

0
j

)︁
+

J∑︂
j=0

k
(︁
v0j ,v

0
j

)︁
≤ cH,δ

(︁
eh
(︁
u0,u0

)︁
+ k
(︁
v0,v0

)︁)︁
= cH,δAh

(︁
w0,w0

)︁
. (3.37)

For the decomposition in the orthogonal complement W⊥
h , we will use the stability

estimates

k
(︁
φ0,φ0

)︁
≤ k

(︁
φ,φ

)︁
= k

(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
, (3.38)

k
(︁
φ⊥,φ⊥)︁ ≤ k

(︁
φ,φ

)︁
= k

(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
. (3.39)

Further, we note that

d
(︁
φ⊥,φ⊥)︁ = d

(︁
φ,φ

)︁
= d
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
. (3.40)

Then, the stability of the L2-decomposition (3.34) and the estimate (3.38) yield

J∑︂
j=0

Aj

(︁
w1

j ,w
1
j

)︁
=

J∑︂
j=0

k
(︁
φ0

j ,φ
0
j

)︁
≤ cH,δk

(︁
φ0,φ0

)︁
≤ cH,δ

(︂
k
(︁
u⊥,u⊥)︁+ k

(︁
v⊥,v⊥

)︁)︂
. (3.41)

Moreover, by Lemma 3.9 and [TW10, AFW97], we have

J∑︂
j=0

Aj

(︁
w2

j ,w
2
j

)︁
= eH

(︁
u1
0,u

1
0

)︁
+

J∑︂
j=1

eh
(︁
u1
j ,u

1
j

)︁
+

J∑︂
j=0

(︁
k
(︁
u1
j ,u

1
j

)︁
+ λd

(︁
u1
j ,u

1
j

)︁)︁
≤ cH,δ

(︂
eh
(︁
u⊥,u⊥)︁+ k

(︁
u⊥,u⊥)︁+ λd

(︁
u⊥,u⊥)︁)︂ .
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Again, by [TW10, AFW97], stability estimate (3.39), and equality (3.40), we have

J∑︂
j=0

Aj

(︁
w3

j ,w
3
j

)︁
=

J∑︂
j=0

(︁
k
(︁
φ1

j ,φ
1
j

)︁
+ c−1

s d
(︁
φ1

j ,φ
1
j

)︁)︁
≤ cH,δ

(︂
k
(︁
φ⊥,φ⊥)︁+ c−1

s d
(︁
φ⊥,φ⊥)︁)︂ (3.42)

≤ cH,δ

(︂
k
(︁
u⊥,u⊥)︁+ k

(︁
v⊥,v⊥

)︁
+ c−1

s d
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁)︂
.

Due to the special choice of the decomposition (3.35), the term k
(︁
u⊥,u⊥)︁ arises in (3.42),

which we further estimate using the Poincaré inequality

k
(︁
u⊥,u⊥)︁ ≤ cK,Ωeh

(︁
u⊥,u⊥)︁ (3.43)

with a constant cK,Ω depending on the domain Ω and the permeability coefficient K.

Thus, collecting the estimates (3.36), (3.37), and (3.41)–(3.43), we obtain with w⊥ =

(u⊥,v⊥) ∈ W⊥
h

J∑︂
j=0

Aj (wj ,wj)

≤cH,δ

(︂
eh
(︁
u0,u0

)︁
+ k
(︁
v0,v0

)︁
+ k
(︁
u⊥,u⊥)︁

+ eh
(︁
u⊥,u⊥)︁+ k

(︁
v⊥,v⊥

)︁
+ λd

(︁
u⊥,u⊥)︁+ c−1

s d
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁)︂
≤cH,δ,K,Ω

(︂
Ah

(︁
w0,w0

)︁
+ Ah

(︂
w⊥,w⊥

)︂)︂
=cH,δ,K,ΩAh (w,w)

where the constant cH,δ,K,Ω for a proper overlap δ depends only on K and Ω.

3.4.4 Local Stability and Strengthened Cauchy-Schwarz Inequalities

It remains to verify Assumptions 2.3 and 2.4.

Since we have chosen exact bilinear forms in the definition of the local components

Aj

(︄(︄
uj

vj

)︄
,

(︄
uj

vj

)︄)︄
= Ah

(︄(︄
uj

vj

)︄
,

(︄
uj

vj

)︄)︄
for j =, 1 . . . , J,
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it suffices to prove Assumption 2.3 only for the coarse bilinear form A0 (·, ·), compare

also Remark 2.5.

Lemma 3.12 (Local stability). For each w0 ∈ W0 it holds

Ah (w0,w0) ≤ ω0
H

h
A0 (w0,w0) ,

with ω0 < 1, such that ω0
H
h < 2.

Proof. On the coarse space, we have chosen a non-inherited form for the approximation

of the elasticity bilinear form, namely eH(·, ·) instead of eh(·, ·), which differs in the face

and boundary terms because of the different cell size H ≥ h. Due to the continuity of

the coarse displacement functions u0 = uH ∈ U0 on every coarse cell, the jump terms

∥[[uH ]]∥F vanish for all faces F that lie in the interior of a coarse cell. Therefore, we have

eh
(︁
u0,u0

)︁
≤ H

h
eH
(︁
u0,u0

)︁
. (3.44)

Since all other terms of the coarse space operator A0 (·, ·) are chosen to be exact, the

statement of Lemma 3.12 follows by estimate (3.44).

The relaxation factor ω0 is essentially defined for the convergence analysis, such that

the coarse bilinear form is scaled enough to assure ω0
H
h < 2 and thus Assumption 2.3 is

fulfilled. Such a relaxation parameter can always be introduced, but we are not free to

scale the local and coarse bilinear forms arbitrarily, since a small ω0 will result in small

corrections of the error, and in a large constant C0 of the stable decomposition resulting

in poor bounds for the largest eigenvalue, see [TW10, p. 41] and [SBG96, p. 155]. In

practice such a relaxation is not necessary and we will set ω0 = 1.

Lemma 3.13 (Strengthened Cauchy-Schwarz inequalities). For 1 ≤ i, j ≤ J there exist

constants 0 ≤ εij ≤ 1 such that

|Ah (wi,wj)| ≤ εijAh (wi,wi)
1
2 Ah (wj ,wj)

1
2 ,

for wi ∈ Wi, wj ∈ Wj.

Proof. The existence of the constants εij is a direct consequence of the Cauchy-Schwarz-

inequality. To get a small bound we take a look a bit more in detail. The local function
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wi has support only on the patch Ωi and is continued by zero on the rest of the domain

Ω \Ωi. Since two functions, wi and wj , have common support only in the intersection

Ωi ∩Ωj , we immediately get values εij < 1.

3.5 Numerical Tests

The performance and robustness of the proposed Schwarz preconditioners defined in

section 3.3 shall be examined in a series of numerical tests, covering a large variety

of the parameter regimes, as well as different kinds of boundary values. We restrict

the presentation to the case of isotropic permeabilities K = κI and demonstrate the

robustness of the two-level Schwarz preconditioners for the case of Hdiv-conforming

discretizations of Biot’s quasi-static consolidation model with RTk × RTk × Qk finite

elements. The implementation has been done in C++ and is based on the finite element

library deal.i i [ABF+22], as well as on existing code that was available in the group

at the IWR at the time of writing this thesis. Parts of the code use the linear algebra

software package LAPACK [ABB+99].

In Section 3.5.1 we introduce a first test scenario with homogeneous Dirichlet boundary

values, for which the performance of the multiplicative and hybrid two-level Schwarz

methods is tested in Section 3.5.2 by measuring the iteration counts of GMRES. Starting

with a short investigation on different polynomial degrees k = 0, . . . , 3, the robustness

of the methods with respect to the parameters λ, κ−1 and cs is tested. The two-level

Schwarz methods show robust iteration numbers, where the dependence on the inverse

permeability enters the results only slightly, without restricting the applicability of the

proposed methods. For extremely large values of λ and for values of κ−1 very close to zero,

numerical instabilities occur that can be remedied by scaling the system. In Section 3.5.3

another test case is introduced, covering mixed Dirichlet-Neumann boundary conditions.

For this scenario the inclusion of boundary patches improves the performance results

of the hybrid method. Furthermore, the dependence on the permeability appears to be

switched. Otherwise, the results are similar to the test case with homogeneous boundary

values. In Section 3.5.4, the optimal choice of the relaxation factor of the hybrid two-

level Schwarz method is investigated. In Section 3.5.5, the multilevel Schwarz method is

examined.
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3.5.1 Test Case with Homogeneous Dirichlet Boundary Values

The setting of this first numerical test has been taken from [HKLP19, section 6.1]. It is

constructed such that the solution is divergence-free in the displacement component and

is otherwise strongly dominated by the pressure. It serves somewhat as prototypical test

case for the later examples, since the local problems always have homogeneous boundary

values and a mean-value free pressure in all of the following problems. The setting is

defined as follows. Let the force f and the source g be given by

f =

(︄
900∂xφ− ∂3

yφ− ∂2
x∂yφ

900∂yφ+ ∂3
xφ+ ∂x∂

2
yφ

)︄
, g = 900κ∆φ− cs(900φ− 1),

where φ is defined on the square Ω = (0, 1)× (0, 1) by

φ = x2(x− 1)2y2(y − 1)2.

Homogeneous Dirichlet boundary conditions are prescribed for the solid displacement u

as well as for the normal direction of the seepage velocity v on the whole boundary ∂Ω,

i.e.,

u = 0 on ∂Ω, v · n = 0 on ∂Ω.

Here, n describes the unit outward normal vector. The solution of this partial differential

equation is defined up to an additive constant for the pressure p. Thus, we search for a

mean-value free solution in the pressure component satisfying∫︂
Ω
p dx = 0.

The exact solution to this system is in H1
0 (Ω)×Hdiv

0 (Ω)× L2
0(Ω) by construction and

given by

u =

(︄
∂yφ

−∂xφ

)︄
, v = −900κ∇p, p = 900φ− 1. (3.45)

A visualization of a sample calculation can be found in Figure 3.1.

For the tests the domain Ω is divided into 22ℓ squares, each of size h = 2−ℓ, where ℓ
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Figure 3.1: Visualization of an example calculation of the experiment with ho-
mogeneous boundary conditions. The arrows illustrate the flux of
the seepage velocity, the isolines show the pressure and the displace-
ment is visualized by the deformation of the grid. The magnitudes
are exaggerated in favor of the representation.

denotes the corresponding level on which the calculations are performed. To discretize

the partial differential equations we use the triplets RTk × RTk × Qk, k ≥ 0, of equal

order Raviart-Thomas and discontinuous cell-wise polynomial finite element functions,

such that we have matching spaces satisfying

divRTk = Qk.

The dimension of the finite element space RTk×RTk×Qk, as well as the additional data

of the mesh is summarized in Table 3.1. The resulting discrete linear system is solved

with a preconditioned GMRES method until the starting residual has been reduced by a

factor of 10−8. Note, that the Richardson iteration has only been used for the analysis,

while in the numerical application scenarios the potentially faster GMRES algorithm

is taken instead. As preconditioner we use the overlapping two-level Schwarz methods

described in Section 3.3. Therefore, we define vertex patches that are made out of four

cells surrounding every vertex in the interior of Ω. For an illustration of the vertex

patches see Figure 2.2. The relaxation parameter of the hybrid Schwarz preconditioner

Phyb is chosen to be ω = 0.25 to compensate the effect of adding the overlapping patches,
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Dofs
ℓ h Cells k = 0 k = 1 k = 2

0 1 1 9 28 57
1 1/2 4 28 96 204
2 1/4 16 96 352 768
3 1/8 64 352 1344 2976
4 1/16 256 1344 5248 11712
5 1/32 1024 5248 20736 46464
6 1/64 4096 20736 82432 185088
7 1/128 16384 82432 328704 738816

Table 3.1: Discretization data of the finite element space RTk ×RTk ×Qk.

which have an overlap of size δ = h. In case of the multiplicative method Pmu no such

relaxation for the patches is needed. The coarse space is always assembled one level below

the actual level, i.e., H = 2h leading to a constant factor H
δ = 2. As noted after the proof

of Lemma 3.12 no additional relaxation factor is required for the coarse space correction

in the following tests, i.e., ω0 = 1, although the factor H
δ is not strictly less than two. To

solve the local problems on each vertex patch, as well as the coarse problem, we use a

singular value decomposition (SVD) from LAPACK that takes the one-dimensional

kernel of the pressure component into account.

3.5.2 Performance of the Two-level Schwarz Preconditioners

To start the discussion of the performance of the multiplicative and hybrid two-level

Schwarz preconditioners Pmu and Phyb, we perform calculations for different polynomial

degrees k = 0, . . . , 3 of the above described test setting in Section 3.5.1 on different

mesh refinement levels and record the iteration counts that the preconditioned GMRES

method takes to reduce the norm of the starting residual r0 up to a factor of 10−8, such

that the norm of the current residual ∥rk∥2 is below the relative tolerance 10−8 ∥r0∥2.
For k = 0 and k = 1 we observe some sort of stiffness of the methods compared to

polynomial degrees k ≥ 2 as can be seen in a sample calculation with λ = 100, κ = 1,

and cs = 0 in Table 3.2.

For the hybrid method the numbers drop from around 22 for k = 1 to approximately

14 for k = 2, and are then constant for all degrees k ≥ 2. The multiplicative method

produces similar results, where we can observe iteration counts around 15 for polynomial
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Pmu Phyb

h k = 0 1 2 3 k = 0 1 2 3

1/4 7 8 5 3 7 15 15 14
1/8 12 13 6 3 15 20 15 14
1/16 14 15 6 2 24 22 14 14
1/32 15 15 6 2 27 22 13 13

Table 3.2: Comparison of multiplicative Schwarz preconditioner Pmu and hybrid
Schwarz preconditioner Phyb with respect to different polynomial de-
grees k = 0, ..., 3 for RTk × RTk × Qk. Calculated with λ = 100,
κ−1 = 1, cs = 0.

degrees k ≤ 1, which drop to 6 for k = 2. For k ≥ 2 the iteration counts of Pmu reduce

even further until they reach 1 for k ≥ 4, since the method then resolves the polynomial

structure of the given solution (3.45) exactly.

A polynomial degree of k = 2 seems to give a good balance of effort and performance,

thus, we will focus on this case in the following tests. For a comprehensive overview, we

will also cover the lowest-order variant k = 0 later on.

We continue by comparing the performance of Pmu and Phyb with respect to different

choices of patches in the case k = 2. Therefore, we consider the following possibilities:

1. non-overlapping cell patches, where each patch consists of a single cell,

2. overlapping vertex patches without boundary patches, where the corresponding

vertex is located at the boundary ∂Ω,

3. overlapping vertex patches with boundary patches, but without single cell patches,

where the corresponding vertex is located in a corner,

4. overlapping vertex patches with boundary patches and with single cell patches.

In Table 3.3 we see that the number of iterations deteriorates for non-overlapping cell

patches as expected from the analysis in Section 2.4.4. Selecting overlapping vertex

patches yields uniform iteration counts for the multiplicative and the hybrid operator,

while for the multiplicative method it makes no difference whether boundary patches are

included or not, since the required iteration count remains at about 4. For the hybrid

method, we observe a small beneficial effect of incorporating boundary patches, but no

further improvement when single cell patches are included. Since the number of iterations

only decreases from about 14 when boundary patches are excluded to 12 when boundary

76



3.5 Numerical Tests

Pmu Phyb

h cp vp vpb vpbs cp vp vpb vpbs

1/4 17 4 4 4 30 15 12 11
1/8 19 5 4 4 33 15 13 12
1/16 23 5 4 4 32 14 12 12
1/32 25 4 4 4 34 14 12 11

Table 3.3: Comparison of iteration counts of GMRES for different choices of
patches: cell patches (cp), vertex patches without boundary patches
(vp), vertex patches with boundary patches but without single cell
patches (vpb), vertex patches with boundary patches and with single
cell patches (vpbs). Multiplicative two-level Schwarz Pmu, hybrid two-
level Schwarz Phyb. Homogeneous boundaries, RT2 ×RT2 ×Q2, λ =
κ−1 = 1, cs = 0.

patches are included, we choose the less expensive version without boundary patches for

both the hybrid method and the multiplicative method for the following performance

tests.

Robustness for k = 2

We now discuss the performance of GMRES with respect to a variety of parameters in

the system for polynomial degree k = 2.

In order not to overwhelm the reader with numbers, we restrict the presentation to

the four cases, where λ, κ−1, λ = κ−1 and cs are varied while the other parameters

remain constant, since this covers the most important test cases for demonstrating the

robustness of the method for all parameter ranges. In particular, the case cs > 0 is not

as interesting mathematically, since the system is then no longer a saddle point system

and is therefore easier to solve. As explained in detail in [Phi05, Sec. 5.2] in the context

of locking, ”a null constrained specific storage coefficient value, cs ≈ 0, appears to be a

necessary condition for numerical problems to occur”. Thus, we neglect the cases where

λ or κ−1 is varied together with cs in the presentation, since the numbers are constant

in these cases anyway. Since the parameters λ, κ−1 and cs are rescaled quantities, see

(3.4), their robustness transports directly to all physical parameters in the system, i.e.,

the Lamé constants, the permeability, the Biot-Willis constant, and the specific storage

capacity, as well as the time step size.
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Pmu Phyb

h λ = 0 1 102 104 106 108 0 1 102 104 106 108

1/4 4 4 5 5 5 5 15 15 15 14 14 13
1/8 5 5 6 6 6 6 15 15 15 15 15 13
1/16 4 5 6 6 6 6 14 14 14 14 14 12
1/32 4 4 6 6 6 6 14 14 13 13 13 11

Table 3.4: Iteration counts of GMRES with respect to λ. Multiplicative two-
level Schwarz (left), hybrid two-level Schwarz (right). Homogeneous
boundaries, RT2 ×RT2 ×Q2, κ

−1 = 1, cs = 0.

Starting with the constant λ in Table 3.4, we observe robust iteration numbers for all

0 ≤ λ ≤ 108 for the multiplicative Schwarz preconditioner Pmu as well as for the hybrid

version Phyb, even in the nearly incompressible case, i.e., when λ becomes very large.

Both produce constant iteration counts for 0 ≤ λ ≤ 1 and λ > 1, with Pmu needing

only 4 iterations for small values of λ and 6 for large values, while Phyb needs 14 and 13,

respectively, to converge. Only for the case λ = 108 GMRES converges slightly earlier in

the hybrid case with about two fewer iterations. As from the convergence proof expected,

we cannot observe a dependence of the Schwarz methods with respect to λ. In this

table, as in all following calculations for this first test case, we see that the multiplicative

Schwarz preconditioner outperforms the hybrid method by about one-third to one-half

of the iterations.

In the practical calculations with extremely large parameters, numerical instabilities

of GMRES occur due to the large values generated in the course of the calculation,

especially for κ−1, but also for λ. Numerical instabilities also occur in the case of κ−1

very close to zero, since the matrix is then almost singular. For such parameter ranges,

building the (pseudo-)inverses of the local patch matrices and of the global coarse-matrix

becomes difficult or breaks down, even when using the robust but expensive SVD. This

happens because of the squaring of the diagonal entries of the system matrix amplifying

the already large (or small) values, compare Algorithm 2.2, and leading to an inaccurate

pseudo-inverse. For example, in the case κ−1 = 10−8, the iteration counts of GMRES

deteriorate with decreasing mesh size h for both the multiplicative two-level Schwarz

method and the hybrid method. This is even more evident for λ = κ−1 ≥ 106, where the

numbers exceed 100 iterations even for coarse meshes h ≤ 1
8 . Furthermore, for κ−1 = 10−6

and for λ = κ−1 = 10−8 calculating the SVD of the coarse matrix aborts.
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To avoid these difficulties and stabilize the computations, we scale the linear system

with a suitable scaling matrix so that the numbers remain within a reasonable range.

Therefore, consider that the system is given in the form Ax = f with the block vector

x = (u,v,p)T and the system matrix

A =

⎛⎜⎝E + λD 0 BT

0 κ−1M BT

B B csC

⎞⎟⎠ .

This system is preconditioned from the left and the right with a diagonal scaling matrix

S =

⎛⎜⎝sλI 0 0

0 sκI 0

0 0 I

⎞⎟⎠ ,

where sλ, sκ > 0 are suitable scalar values and the identity I and the null-matrix 0

have dimensions according to the finite element spaces Uh, Vh and Qh. The resulting

preconditioned system is then given by

SASy = Sf ,

x = Sy,
(3.46)

with the scaling factors chosen as sλ = 1/
√
λ and sκ =

√
κ such that the system matrix

A is scaled as

SAS =

⎛⎜⎜⎝
1
λE +D 0 1√

λ
BT

0 M
√
κBT

1√
λ
B

√
κB csC

⎞⎟⎟⎠ .

In the following tests, we will use the scaling (3.46) in the cases summarized above.

The implementation of this scaling was realized in two steps. The first equation of

(3.46) is scaled in the assembly process by multiplying the local matrices and vectors on

each cell with the scaling matrix S. After the linear system is iteratively solved, the global

result vector y is then rescaled by another multiplication with S, yielding the solution

vector x. In this way, the system matrix as well as the patch matrices and the coarse

matrix are equivalently transformed and retransformed according to (3.46). Furthermore,
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κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Pmu

1/4 1 1 3 3 4 5 6 6 6
1/8 2 2 3 4 5 5 6 6 6
1/16 2 2 3 4 5 5 5 6 6
1/32 2 2 3 4 4 4 5 6 7

Phyb

1/4 9 10 11 12 15 15 15 16 15
1/8 10 10 11 13 15 15 15 16 16
1/16 10 10 10 12 14 14 14 15 15
1/32 9 9 10 12 14 14 14 13 16

Table 3.5: Iteration counts of GMRES with respect to κ−1. Multiplicative two-
level Schwarz (top), hybrid two-level Schwarz (bottom). Homogeneous
boundaries, RT2 ×RT2 ×Q2, λ = 1, cs = 0.

λ = κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Pmu

1/4 1 3 2 3 4 5 6 6 6
1/8 2 3 2 4 5 6 6 6 6
1/16 2 3 2 4 5 6 6 6 6
1/32 2 3 2 3 4 6 6 6 6

Phyb

1/4 9 10 11 12 15 15 14 14 14
1/8 10 10 11 13 15 15 15 15 15
1/16 10 10 11 12 14 14 14 14 14
1/32 9 9 10 12 14 13 13 13 13

Table 3.6: Iteration counts of GMRES with respect to λ = κ−1. Multiplicative
two-level Schwarz (top), hybrid two-level Schwarz (bottom). Homo-
geneous boundaries, RT2 ×RT2 ×Q2, cs = 0.

Pmu Phyb

h cs = 0 10−10 10−4 1 0 10−10 10−4 1

1/4 4 4 4 4 15 15 15 15
1/8 5 5 5 5 15 15 15 15
1/16 5 5 5 5 14 14 14 14
1/32 4 4 4 4 14 14 14 14

Table 3.7: Iteration counts of GMRES with respect to cs. Multiplicative two-
level Schwarz (left), hybrid two-level Schwarz (right). Homogeneous
boundaries, RT2 ×RT2 ×Q2, λ = κ−1 = 1.
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the method also allows for a matrix-free implementation of the code.

We go on with investigating the performance of the multiplicative and hybrid two-level

Schwarz methods with respect to κ−1 in Table 3.5. The theoretical dependence of the

constant C0 in the stable decomposition on the inverse of the permeability does not

restrict us in the practical application of the method and can only slightly be observed

in this test scenario, see Table 3.5, where the numbers of the multiplicative Schwarz

preconditioner increase from 2 to 7 over the whole range of 10−8 ≤ κ−1 ≤ 108. Also in

the hybrid case, the numbers start at 9 and grow to 16, which is no restriction at all for

the applicability of the method. The observed numerical instabilities for κ ≤ 10−6 were

resolved by scaling the system according to (3.46), resulting in a very low iteration count

of only 2 for Pmu and about 9 for Phyb.

Similar results can be observed for λ = κ−1 in Table 3.6. The numbers are robust with

slight variations for large and for small values. Both methods the multiplicative and the

hybrid method are more sensitive for large values of κ−1 = λ as the numbers deteriorate

for values greater than 106, but again, scaling the system for these values leads to robust

iteration counts with comparable results as in Table 3.5. Moreover, the dependence on

κ−1 is only slightly apparent and does not restrict the applicability of the method.

Finally, Table 3.7 shows constant iteration numbers when the specific storage coefficient

cs is varied.

Robustness for k = 0

We continue with the same tests for polynomial degree k = 0. For the multiplicative two-

level Schwarz method in the lowest order case RT0 ×RT0 ×Q0 we use the scaling (3.46).

For the hybrid two-level Schwarz method, however, we use a scaling in h additionally to

the scaling already described. Therefore, we choose another diagonal scaling matrix

Sh =

⎛⎜⎝hI 0 0

0
√
hI 0

0 0 I

⎞⎟⎠
to precondition the system Ax = f as

ShSASShy = ShSf

x = ShSy.
(3.47)
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Pmu Phyb

h λ = 0 1 102 104 106 108 0 1 102 104 106 108

1/16 8 8 13 12 11 10 15 15 18 17 16 15
1/32 9 8 14 13 12 10 15 16 18 17 16 14
1/64 9 8 15 14 12 11 16 17 18 17 15 14
1/128 9 8 15 15 13 12 16 17 17 16 14 13

Table 3.8: Iteration counts of GMRES with respect to λ. Pmu with scaling (3.46),
Phyb with scaling (3.47). Homogeneous boundaries, RT0 ×RT0 ×Q0,
κ−1 = 1, cs = 0.

κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Pmu

1/16 4 3 5 7 8 9 13 14 14
1/32 4 3 5 7 8 8 11 15 15
1/64 4 3 5 7 8 8 9 15 15
1/128 4 4 6 7 8 8 9 15 16

Phyb

1/16 9 9 12 12 15 15 18 19 19
1/32 9 9 11 13 16 17 17 19 19
1/64 8 8 11 13 17 18 17 19 20
1/128 7 8 11 13 17 18 17 19 20

Table 3.9: Iteration counts of GMRES with respect to κ−1. Pmu with scaling
(3.46), Phyb with scaling (3.47). Homogeneous boundaries, RT0 ×
RT0 ×Q0, λ = 1, cs = 0.

λ = κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Pmu

1/16 4 3 5 7 8 14 14 14 14
1/32 4 3 5 7 8 15 15 15 15
1/64 4 3 5 7 8 15 15 15 15
1/128 4 4 6 8 8 15 16 16 41

Phyb

1/16 9 9 11 12 15 20 21 21 21
1/32 9 9 10 12 16 21 22 22 22
1/64 8 8 10 12 17 22 22 22 22
1/128 7 8 10 13 17 21 22 22 22

Table 3.10: Iteration counts of GMRES with respect to λ = κ−1. Pmu with
scaling (3.46), Phyb with scaling (3.47). Homogeneous boundaries,
RT0 ×RT0 ×Q0, cs = 0.
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Pmu Phyb

h cs = 0 10−10 10−4 1 0 10−10 10−4 1

1/16 8 8 8 8 15 15 15 15
1/32 8 8 8 8 16 16 16 16
1/64 8 8 8 8 17 17 17 17
1/128 8 8 8 8 17 17 17 17

Table 3.11: Iteration counts of GMRES with respect to cs. boundaries, RT0 ×
RT0 ×Q0, λ = κ−1 = 1.

This is necessary since the hybrid preconditioner Phyb is much more sensitive regarding

the mesh size in the lowest order case, which has already been observed in Table 3.2,

where the iteration numbers of GMRES deteriorate with a refinement of the mesh for

k = 0. In the following, we only show the iteration numbers calculated with scaling (3.47),

since the numbers otherwise deteriorate for k = 0.

Using scaling (3.47) for Phyb, the numbers now flatten out as the mesh size decreases,

dropping considerably from 27 without scaling (Table 3.2) to 18 with scaling (Table 3.8)

for λ = 102 and h = 1
32 . In Table 3.8, the situation is now comparable to the case k = 2

(cf. Table 3.4), except that the iteration numbers are about twice as large when λ is

varied for the multiplicative algorithm, and only about two iterations more are needed

in the hybrid case. For Pmu, the same division of the ranges is observed with 8 to 9

iterations for λ ≤ 1 and 15 to 12 iterations for λ ≥ 102, while the numbers for Phyb are

again somewhat more homogeneous, ranging from 17 to 13 iterations.

The dependence on the inverse of the permeability can be observed for both Schwarz

methods in Table 3.9, since the numbers rise from 4 to 16 for the multiplicative method

and from 8 to 20 for the hybrid method.

Very similar results occur also for the case λ = κ−1 in Table 3.10. Again, the dependence

on κ−1 enters the results only slightly and does not restrict the applicability of the

preconditioners at all. When calculating with the multiplicative method we observe with

41 iterations an outlier for λ = κ−1 = 108 and h = 1
128 .

In Table 3.11 the specific storage capacity is varied giving constant numbers for the

whole range considered.
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3.5.3 Performance for Mixed Dirichlet-Neumann Boundary Values

The second test scenario describes the flow through a porous and elastic channel. The

elastic solid is clamped from the left and the right and free to move on top and bottom.

The fluid has a prescribed inflow in normal direction on the left boundary, homogeneous

boundary conditions on top and bottom, and a free outflow on the right boundary. The

setting is illustrated in Figure 3.2 and the definition given in the following. We define

three different parts of the boundary of the domain Ω = (0, 1)× (0, 1) by

Γin = {x1 = 0} , Γout = {x1 = 1} , Γwall = {x2 = 0} ∪ {x2 = 1} ,

where x = (x1, x2) ∈ R2, on which we prescribe boundary conditions for the solid

displacement and the seepage velocity by

u = 0 on Γin ∪ Γout, σ(u) · n = 0, on Γwall,

v · (−n) = 0.5 on Γin, v · n = 0 on Γwall,

as well as for the pressure

p = 0 on Γout.

External forces as well as sink or source terms are eliminated by setting

f =

(︄
0

0

)︄
, g = 0.

For the mixed Dirichlet-Neumann boundary condition of the displacement u we need to

change the interior penalty bilinearform eh(u,φ) such that the set of boundary faces ΓB,h

contains all faces on Γin ∪ Γout, but not the faces on Γwall. Furthermore, all degrees of

freedom that belong to the normal component of u on Γin ∪Γout, and of v on Γin ∪Γwall

need to be constrained. To incorporate the inhomogeneous boundary condition of the

seepage velocity, we assemble the system with a homogeneous boundary condition on

Γin ∪ Γwall and use Newton’s method as an outer solver with a starting vector that has

the correct inhomogeneous boundary values. Then, the boundary values of the starting

vector are transported to all following vectors in the Newton iteration.

The resulting system is solved again with GMRES preconditioned by the multiplicative
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Γin Γout

Γwall

Γwall

Figure 3.2: Flow through a poroelastic tube. The arrows illustrate the flux of the
seepage velocity, the displacement is visualized by the deformation
of the grid, the pressure is shown via the background color. The
magnitudes are exaggerated in favor of the representation.

Pmu Phyb

h ex in ex in

1/4 9 8 17 15
1/8 8 8 20 15
1/16 8 8 20 15
1/32 8 8 19 15

Table 3.12: Comparison: Iteration counts of GMRES when single cell patches are
included (in) vs. excluded (ex). Multiplicative two-level Schwarz Pmu,
hybrid two-level Schwarz Phyb. Mixed boundaries, RT2 ×RT2 ×Q2,
λ = κ−1 = 1, cs = 0.

and hybrid two-level Schwarz operators defined in Section 3.3 and solved until the starting

residual is reduced by a factor of 10−8.

This time, we include also vertex patches where the corresponding vertex lies at the

boundary ∂Ω, so-called boundary patches. These patches are made out of two cells, if the

corresponding vertex lies on an edge. For vertices located in a corner the resulting patches

are called single cell patches, since they contain only one cell. As it turns out, we need to

include boundary patches in this test scenario with mixed Dirichlet-Neumann boundary

conditions, since otherwise the calculations fail. But, whereas boundary patches have to

be added to the set of patches, single cell patches can be left out for the multiplicative

Schwarz method. Their absence does not lead to a decrease of efficiency as the iteration

numbers are the same, as can be seen in Table 3.12 for the multiplicative operator
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Pmu Phyb

h λ = 0 1 102 104 106 108 0 1 102 104 106 108

1/4 10 9 8 4 1 1 15 15 14 10 4 3
1/8 9 8 6 4 1 1 15 15 14 11 5 5
1/16 9 8 6 4 1 1 15 15 14 11 5 5
1/32 8 8 6 4 1 1 13 15 14 11 5 5

Table 3.13: Iterations of GMRES with respect to λ. Pmu without single cell
patches, Phyb with single cell patches included. Mixed boundaries,
RT2 ×RT2 ×Q2, κ

−1 = 1, cs = 0.

Pmu. For the hybrid Schwarz method, however, we clearly have a beneficial effect on the

iteration counts of GMRES, if single cell patches are included, see the columns for Phyb

in Table 3.12, where the numbers drop from about 19 to 15, when single cell patches

are included. This particularly holds true in case of varying λ and cs, whereas in case of

larger values of κ−1 ≥ 102 the effect is notably smaller with only one iteration difference.

For the following tests we thus include boundary patches for both operators, but use

single cell patches only for the calculations with Phyb.

In Table 3.13 we see that the iterations of GMRES are robust in λ and only for λ ≥ 106

do we observed a numerical instability for Pmu and Phyb. For both cases, a scaling as in

(3.46) leads to robustness even in the nearly incompressible case, with five iterations for

the hybrid method and only one iteration for Pmu.

In Table 3.14 we observe robust iteration counts of GMRES with respect to κ−1

for both, the multiplicative and the hybrid operator. In this test scenario with mixed

Dirichlet-Neumann boundary conditions the scaling (3.46) is important. We encountered

a dependence of the iterations with respect to the permeability κ rather than on the

reciprocal κ−1 when no scaling is used, see Table 4.2 for the case ν = 0. To be precise,

the iteration counts grow when κ−1 tends to zero, i.e., when κ becomes large, which

is in contrast to the convergence proof of Section 3.4. In particular, the multiplicative

method without scaling shows deteriorating iteration counts for smaller becoming κ−1

and requires 50 iterations to converge for κ−1 = 10−8. Although not displayed in the

tables, the hybrid operator behaves similar as expected and is even more sensitive for small

values of κ−1 ≤ 10−4 than the multiplicative operator. Nevertheless, with the scaling

(3.46) the iteration numbers are limited and even decrease for κ−1 ≤ 10−4, leading to

robustness of the numbers, as we can see in Table 3.14.
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κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Pmu

1/4 8 8 8 8 9 6 6 4 4
1/8 5 5 6 8 8 5 6 4 4
1/16 5 5 6 8 8 5 5 4 4
1/32 5 5 6 8 8 5 5 4 4

Phyb

1/4 20 20 22 25 15 11 11 8 9
1/8 12 14 15 18 15 11 11 9 9
1/16 12 14 15 18 15 11 11 10 9
1/32 13 14 16 18 15 11 11 10 9

Table 3.14: Iterations of GMRES with respect to κ−1. Pmu without single cell
patches, Phyb with single cell patches included. Mixed boundaries,
RT2 ×RT2 ×Q2, λ = 1, cs = 0.

λ = κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Pmu

1/4 9 8 8 6 9 5 4 4 4
1/8 5 5 6 5 8 5 4 3 4
1/16 5 5 6 5 8 5 4 3 4
1/32 5 5 6 5 8 5 4 3 8

Phyb

1/4 20 21 23 11 15 10 8 8 8
1/8 12 14 15 11 15 11 8 7 7
1/16 12 14 15 11 15 11 8 7 8
1/32 12 14 16 11 15 11 9 8 13

Table 3.15: Iterations of GMRES with respect to λ = κ−1. Pmu without single
cell patches,Phyb with single cell patches included. Mixed boundaries,
RT2 ×RT2 ×Q2, cs = 0.

Pmu Phyb

h cs = 0 10−10 10−5 1 0 10−10 10−5 1

1/4 9 9 9 9 15 15 15 15
1/8 8 8 8 8 15 15 15 15
1/16 8 8 8 8 15 15 15 15
1/32 8 8 8 8 15 15 15 15

Table 3.16: Iterations of GMRES with respect to cs. Pmu without single cell
patches, Phyb with single cell patches included. Mixed boundaries,
RT2 ×RT2 ×Q2, λ = κ−1 = 1.
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In the case λ = κ−1 the effects of the numerical instability for large values observed

for λ and the dependence on the permeability for values of κ−1 close to zero accumulate,

leading to an increase of the number of iterations even for values closer to 1, when no

scaling is used. Again, scaling the system leads to robustness of the iteration counts, as

shown in Table 3.15, in which we focus on the scaled system only, since the effects of

numerical instabilities and dependence on κ have already been discussed.

Finally, Table 3.16 shows constant iteration numbers for Pmu, as well as for Phyb, when

the storage capacity cs is varied.

3.5.4 Optimal Relaxation Parameter

In the preceding test cases the numerical test runs were performed with a fixed relaxation

parameter ω = 0.25. In the following, the optimality of this parameter will be discussed.

To this end we measure the iteration counts of GMRES for varying values of ω in different

scenarios to track possible dependencies regarding the model parameters.

As test case we choose the problem setting as described in Section 3.5.1 with homo-

geneous boundary conditions and mean-value free pressure, as well as the channel flow

scenario of Section 3.5.3. The calculations in Figure 3.3 are performed for the finite

element space RT2×RT2×Q2. The test results for the different values of the parameters

λ, κ−1 and cs are calculated on mesh level 4, which corresponds to h = 1
16 with 256 cells

and 11712 degrees of freedom. As default scenario we choose the saddle point problem

determined by the choice λ = κ−1 = 1, cs = 0, for which the tests regarding the mesh size

h are performed. If one parameter is chosen differently as the default, this is explicitly

indicated, such that for example the line corresponding to κ−1 = 106 refers to the case

λ = 1, κ−1 = 106, cs = 0.

In case of homogeneous boundary values in Figure 3.3, we observe the lowest iteration

counts in the range 0.26 ≤ w ≤ 0.3 for different values of the parameters λ, κ−1 and cs,

and in the range 0.27 ≤ w ≤ 0.3 when the mesh size h is varied in the default case.

In the poroelastic channel flow scenario the lowest iteration counts lie between 0.24

and 0.27. We detect the lowest count for λ = 104 at ω = 0.29, for cs = 1 at 0.26, and for

varying mesh size in the default case at ω = 0.25, when h = 1
32 .

Throughout the calculations shown in Figure 3.3 we observe the lowest iteration counts

for ω between 0.27 and 0.28, independently of the model parameters, the mesh size or the

choice of boundary conditions. Nevertheless, optimal iteration counts can be detected at
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Homogeneous boundaries
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Figure 3.3: Optimality of relaxation parameter ω of hybrid Schwarz method
with respect to iteration counts of GMRES. ”default” refers to λ =
κ−1 = 1, cs = 0.

or close to the choice ω = 0.25.

3.5.5 Multilevel Schwarz

In this section we provide tests for the multilevel Schwarz methods as introduced in

Section 2.5 for the test case with homogeneous boundary conditions from Section 3.5.1.

We start with a brief investigation of different versions of the multiplicative and hybrid

multilevel methods in Table 3.17. Therefore, in addition to the multiplicative multilevel

Schwarz Mmu, we introduce a symmetric multiplicative Schwarz method M∗
mu that also

performs the pre-smoothing steps by setting mpre = 1 in Algorithm 2.5 and applies

the local contributions of the post-smoothing on each level in reversed order of the

pre-smoothing. Furthermore, we consider hybrid multilevel Schwarz methods Mm
hyb with

several smoothing steps m, where the number of pre-smoothing and post-smoothing steps

is equal. With this notation, it holds for the hybrid preconditioner Mhyb =M1
hyb.
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h Mmu M∗
mu Mhyb M2

hyb M3
hyb M4

hyb

1/8 5 4 16 11 8 7
1/16 5 5 17 11 8 7
1/32 5 5 18 11 8 7
1/64 5 5 19 11 8 6

Table 3.17: Comparison of different multiplicative and hybrid multilevel Schwarz
algorithms for test case with homogeneous boundaries. λ = κ−1 = 1,
cs = 0.

In Table 3.17 we observe that an additional pre-smoothing in case of the multiplicative

multilevel Schwarz method does not lead to a reduction of the iteration counts of GMRES,

thus, it is sufficient in practice to use Mmu in favor of M∗
mu.

For the hybrid operator we see a beneficial influence of the number of smoothing steps

on the performance of GMRES in Table 3.17. A second smoothing step stabilizes the

convergence of the hybrid method, but at least three to four smoothing steps are necessary

to reach a comparable number of iterations as the multiplicative preconditioner Mmu.

That means, that a total amount of more than six to eight times as much smoothing

operations are needed for the hybrid preconditioner.

We then examine the robustness of the multilevel Schwarz preconditioners with respect

to the parameters λ, κ−1 and cs. The presentation is restricted to the polynomial degree

k = 2 and we comment in each table when scaling is used.

As before, the multiplicative Schwarz method gives better results than the hybrid

method, the dependence on κ−1 is observed only very slightly in the computations, and

numerical instabilities can be remedied by the scaling described in Section 3.5.2. The

performance results for the multiplicative multilevel Schwarz method are essentially the

same as in the two-level setting. Throughout the calculations, GMRES preconditioned by

Mmu requires only about 1 to 2 iterations more to converge than an exact solution at level

L− 1, cf. Tables 3.18 to 3.21 with Tables 3.4 to 3.7. The hybrid operator, however, turns

out to be more sensitive than the multiplicative operator with about 5 to 11 iterations

more.

Both multilevel methods seem to be more stable to higher values of λ and κ−1, so that

numerical instabilities do not occur as quickly as with the two-level methods. This is

because the coarsest matrix at level ℓ0 = 0 is much smaller and therefore easier to invert

than at ℓ0 = L− 1. Thus, both multilevel Schwarz methods are effective preconditioners
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Mmu Mhyb

h λ = 0 1 102 104 106 108 0 1 102 104 106 108

1/16 5 5 7 7 7 4 17 17 19 19 20 20
1/32 5 5 8 8 8 5 18 18 21 21 21 22
1/64 5 5 8 8 8 5 18 19 23 23 24 24
1/128 5 5 8 8 8 6 19 19 24 25 25 33

Table 3.18: Iteration counts of GMRES with respect to λ for multiplicative
multilevel Schwarz (left) and hybrid multilevel Schwarz (right). Ho-
mogeneous boundaries, RT2 ×RT2 ×Q2.

κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Mmu

1/16 1 2 3 4 5 5 7 7 7
1/32 1 2 3 4 5 5 7 8 8
1/64 1 3 3 5 5 5 7 8 8
1/128 2 3 3 5 5 5 7 8 8

Mhyb

1/16 11 12 13 15 17 17 18 20 19
1/32 11 12 13 16 18 18 20 22 21
1/64 11 13 14 17 19 19 20 23 24
1/128 12 13 15 18 19 19 20 24 26

Table 3.19: Iteration counts of GMRES with respect to κ−1. Multiplicative mul-
tilevel Schwarz (top), hybrid multilevel Schwarz (bottom). Homoge-
neous boundaries, RT2 ×RT2 ×Q2.

λ = κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

Mmu

1/16 1 2 3 4 5 7 7 7 7
1/32 1 2 3 4 5 8 8 8 8
1/64 1 2 3 4 5 8 8 8 8
1/128 2 2 3 4 5 8 8 8 8

Mhyb

1/16 12 12 13 15 17 19 19 20 20
1/32 11 12 13 16 18 21 21 21 21
1/64 11 12 14 17 19 23 23 24 24
1/128 12 13 14 18 19 24 25 25 26

Table 3.20: Iteration counts of GMRES with respect to λ = κ−1. Multiplica-
tive multilevel Schwarz (top), hybrid multilevel Schwarz (bottom).
Homogeneous boundaries, RT2 ×RT2 ×Q2, cs = 0.
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Mmu Mhyb

h cs = 0 10−10 10−4 1 0 10−10 10−4 1

1/16 5 5 5 5 17 17 17 17
1/32 5 5 5 5 18 18 18 18
1/64 5 5 5 5 19 19 19 19
1/128 5 5 5 5 19 19 19 19

Table 3.21: Iteration counts of GMRES with respect to cs. Multiplicative multi-
level Schwarz (left), hybrid multilevel Schwarz (right). Homogeneous
boundaries, RT2 ×RT2 ×Q2.

for Biot’s consolidation model.

3.6 Conclusion

In this chapter we have successfully applied overlapping Schwarz methods to Hdiv-

conforming discretizations of Biot’s consolidation model. We proved convergence of the

two-level methods independent of the rescaled model parameters λ and cs, as well as the

discretization parameter h and the number of subdomains J for a proper choice of the

overlap δ and the mesh size H of the coarse space. The dependence on the inverse of the

rescaled permeability constant κ−1 has no deteriorating effect on the robustness of the

method when a test case with homogeneous boundary conditions is considered. On the

contrary, for large values of κ−1 the iteration numbers stay bounded and for small values

of κ−1 the numbers even decrease.

In a test scenario with mixed Dirichlet-Neumann boundary values the dependence

appears to be on κ rather than on its reciprocal. Numerical instabilities caused by

extremely large chosen parameters could be remedied by scaling the system.

The relaxation factor of the hybrid Schwarz method only needs to compensate that the

contributions of the local vertex patches are summed, which was confirmed in a numerical

optimality study.

In addition to the discussion of the two-level Schwarz methods, we have presented tests

that go beyond the analysis of this chapter by relaxing the coarse space solve to the case

of multiplicative and hybrid multilevel methods. As already seen in the two-level case,

the multilevel Schwarz methods perform very well and produce flat iteration counts of

GMRES robust in the parameter ranges.
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Chapter 4

Two-level Schwarz Preconditioner for

Highly Permeable Poroelasticity

The quasi-static Biot-Brinkman model

−div (2µε(u) + λ divu) + α∇p = f in Ω × (0, T ),

−ν∆v +K−1v +∇p = 0 in Ω × (0, T ),

−α div ∂tu− div v − cs∂tp = g in Ω × (0, T ).

(4.1)

describes the flow of a fluid through an elastic porous solid in an open bounded domain

Ω ⊂ Rd over a time interval (0, T ). As Biot’s consolidation model, it couples the dis-

placement field u of the solid component, the seepage velocity v of the fluid and the

pressure p in a fully saturated porous medium, where the elastic behavior of the material

is assumed to be linear and described by the stress-strain relation of Hooke’s law with

the Lamé constants λ, µ > 0 of elasticity. But instead of Darcy’s law a diffusion term is

added to the equations of fluid flow through a porous solid,

−ν∆v +K−1v +∇p = 0 in Ω × (0, T ),

as suggested by Brinkman in [Bri49]. Here, ν > 0 denotes a viscosity constant, that

might be different to the viscosity of the fluid, and K is a tensor that is linked to the

permeability of the medium, for which we assume that it is bounded in the sense of (3.2).

Moreover, α denotes the Biot-Willis constant from Biot’s consolidation model, but here

applied to the coupling of the equations of elasticity with Brinkman’s equations, and

cs ≥ 0 is the specific storage coefficient that allows for some additional compressibility

of the medium within the mass balance equation.

The aim of using Brinkman’s equations instead of Darcy’s law is to stabilize the

equations for higher permeabilities, when the fraction of the pore-volume compared to
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the total volume is at a critical size, i.e., when the pore-volume is large compared to the

volume of the solid matrix.

As one can see, the Biot-Brinkman model (4.1) is a generalization of Biot’s linear

consolidation model (3.1) and both are equivalent in the limit case ν → 0. However, due

to the additional diffusion term, the properties of the solution space for the fluid changes

in the limit ν = 0, and thus, the Biot-Brinkman equations are structurally different from

Biot’s consolidation model. To be precise, for ν > 0 we search for a solution v that is

more regular and at least in [H1(Ω)]d, instead of Hdiv(Ω) when ν = 0. Moreover, the

boundary condition of the seepage velocity is different to the case ν = 0. Where in Biot’s

model we had to prescribe the normal component on the boundary ∂Ω only, now the

whole boundary function is taken into account.

The model follows a continuum mechanical approach and is described as a bulk medium

from a macroscopic point of view. To our knowledge, a mathematically rigorous derivation

of the equations has not been examined, yet.

In [RTL19], the derivation of a model close to (4.1) has been presented, where Rohan,

Turjanicová and Lukeš rigorously derive a set of equations that describes a Biot-Darcy-

Brinkman model in the context of double-porous media. For the derivation, they employ

the two-scale homogenization theory, where the effective macroscopic equations are de-

rived from a microstructure model and a mesoscopic intermediate model.

Hong et. al. consider generalized Biot-Brinkman equations in [HKK+22] that are

equivalent to (4.1) for the case of one fluid. They employ a mass conservative discretiza-

tion with Hdiv-conforming mixed finite element spaces and propose a block-diagonal

preconditioner analogously to [HKLP19].

We follow the same methodology as in chapter Chapter 3 outlined in the following.

In Section 4.1 the Biot-Brinkman model is discretized byHdiv-conforming finite element

spaces using an interior penalty discontinuous Galerkin formulation for the elasticity

form, as well as for the additional diffusion term in the Brinkman equations. Section 4.2

treats the application of the overlapping two-level Schwarz preconditioner to the discrete

system and proves its convergence. Finally, in Section 4.3 the performance of the Schwarz

method is tested in a series of experiments, showing the stabilizing effect of the additional

diffusion term in cases of otherwise deteriorating iteration numbers of GMRES due to

the permeability dependence.
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4.1 Mass Conservative Discretization

As in Chapter 3 we first discretize (4.1) in time by the backward Euler method, then scale

the system and finally employ an Hdiv-conforming finite element method that results in

a mass conservative discretization.

Semi-discretization in time by the backward Euler method to time step size τ > 0, as

well as a scaling and substitution of variables leads to symmetric problems of the form

−div
(︂
ε(u) + λ̃ divu

)︂
+∇p̃ = f̃ in Ω,

−ν̃∆ṽ + K̃
−1
ṽ +∇p̃ = 0 in Ω,

−divu− div ṽ − cs̃p̃ = g̃ in Ω,

(4.2)

where the seepage velocity and the pressure are substituted by

ṽ =
τ

α
v, p̃ =

α

2µ
p,

and the right hand side is changed to

f̃ =
1

2µ
f , g̃ =

τ

α
g − divuold −

cs
α
pold,

with uold and pold taken from the previous time step and all other quantities referring

to the new time step. Furthermore, the parameters of the system are substituted by

ν̃ =
α2

2µτ
ν, K̃

−1
=

α2

2µτ
K−1, λ̃ =

λ

2µ
, cs̃ =

2µcs
α2

. (4.3)

The tilde symbol will be skipped in the following for convenience, since this is the

normalized system of equations, that we build our analysis on.

We assume homogeneous Dirichlet boundary conditions on the displacement and on

the seepage velocity and define

U = [H1
0 (Ω)]d, V = [H1

0 (Ω)]d, Q = L2
0(Ω).
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The weak formulation of (4.2) is then: find (u,v, p) ∈ U × V ×Q, such that

e
(︁
u,φ

)︁
+ λd

(︁
u,φ

)︁
− b
(︁
p,φ

)︁
=
(︁
f ,φ

)︁
Ω

∀φ ∈ U,

νa
(︁
v,ψ

)︁
+ k
(︁
v,ψ

)︁
− b
(︁
p,ψ

)︁
= 0 ∀ψ ∈ V,

−b
(︁
q,u

)︁
− b
(︁
q,v
)︁
− cs

(︁
p, q
)︁
Ω
=
(︁
g, q
)︁
Ω

∀q ∈ Q,

(4.4)

with bilinear forms

e
(︁
u,φ

)︁
=
(︁
ε(u), ε(φ)

)︁
Ω
, d

(︁
u,φ

)︁
=
(︁
divu, divφ

)︁
Ω
,

b
(︁
p,ψ

)︁
=
(︁
p,divψ

)︁
Ω
, k

(︁
v,ψ

)︁
=
(︁
K−1v,ψ

)︁
Ω
,

a
(︁
u,ψ

)︁
=
(︁
∇u,∇ψ

)︁
Ω
.

We go on with the discretization of (4.4) by a family of Hdiv-conforming mixed finite

element methods, such that

divUh = Qh, div Vh = Qh,

leading to the conservation of the discrete mass, such that the equation

−divuh − div vh − csph = gh

is fulfilled pointwise.

The discretization space is Xh = Uh × Vh × Qh and we adopt the notation and

discretization as in Section 3.2, especially the definition of bilinear form eh(·, ·) as discrete
interior penalty discontinuous Galerkin approximation of e (·, ·).

For the equation of Brinkman to model porous media flow we now have to consider the

additional diffusion term. Where in the Darcy case, we simply could use a L2-term, we

now have to introduce another interior penalty discretization as approximation of a(·, ·),
which complicates the discrete formulation but is necessary due to the Hdiv-conformity

of the discretization space and to approximate the second order bilinear form a(·, ·).
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Therefore, we define on Vh × Vh the discrete bilinear form

ah
(︁
uh,φ

)︁
=
∑︂
T∈Th

(︁
∇uh,∇φ

)︁
T
+
∑︂

F∈ΓI,h

ηa
h

(︁
[[uh]], [[φ]]

)︁
F

−
∑︂

F∈ΓI,h

(︁
{{∇uhn}}, [[φ]]

)︁
F
−
∑︂

F∈ΓI,h

(︁
[[uh]], {{∇φn}}

)︁
F

(4.5)

+
∑︂

B∈ΓB,h

ηa
h

(︁
uh,φ

)︁
B
−

∑︂
B∈ΓB,h

(︁
∇uhn,φ

)︁
B
−

∑︂
B∈ΓB,h

(︁
uh,∇φn

)︁
B
.

The penalty parameter ηa > 0 is chosen large enough to ensure coercivity of ah(·, ·)

ah
(︁
ψ,ψ

)︁
≥ c
⃦⃦
ψ
⃦⃦2
1,h

∀ψ ∈ Vh. (4.6)

In addition, continuity of ah(·, ·) holds in the norm ∥·∥1,h,

ah
(︁
vh,ψ

)︁
≤ c
⃦⃦
vh
⃦⃦
1,h

⃦⃦
ψ
⃦⃦
1,h

∀vh,ψ ∈ Vh. (4.7)

The mass conserving mixed method based on the finite element space Xh can then be

represented as

Aa
h

⎛⎜⎝
⎛⎜⎝uh

vh

ph

⎞⎟⎠ ,

⎛⎜⎝φψ
q

⎞⎟⎠
⎞⎟⎠ = Fh

⎛⎜⎝
⎛⎜⎝φψ

q

⎞⎟⎠
⎞⎟⎠ , (4.8)

where the discrete bilinear form Aa
h(·, ·) : Xh ×Xh → R is defined by

Aa
h

⎛⎜⎝
⎛⎜⎝uh

vh

ph

⎞⎟⎠ ,

⎛⎜⎝φψ
q

⎞⎟⎠
⎞⎟⎠ =eh

(︁
uh,φ

)︁
+ λd

(︁
uh,φ

)︁
+ νah

(︁
vh,ψ

)︁
+ k
(︁
vh,ψ

)︁
− b
(︁
ph,φ+ψ

)︁
− b
(︁
q,uh + vh

)︁
− cs

(︁
ph, q

)︁
Ω

and the right hand side is given by

Fh

⎛⎜⎝
⎛⎜⎝φψ

q

⎞⎟⎠
⎞⎟⎠ =

(︁
f ,φ

)︁
Ω
+
(︁
gh, q

)︁
Ω
,
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with gh chosen as the L2-projection Πhg. For the choice of H(div)-conforming discretiza-

tion spaces the following discrete inf-sup conditions hold, see, e.g. [BBF13, HL02, SST03,

Bre74])

inf
q∈Qh

sup
φ∈Uh

(︁
divφ, q

)︁
Ω⃦⃦

φ
⃦⃦
1,h

⃦⃦
q
⃦⃦
Ω

≥ γu > 0 (4.9)

and

inf
q∈Qh

sup
ψ∈Vh

(︁
divψ, q

)︁
Ω⃦⃦

ψ
⃦⃦
1,h

⃦⃦
q
⃦⃦
Ω

≥ γv > 0. (4.10)

For existence of solutions we follow [HKK+22] and refer to [HW11] for the existence

of general saddle point problems. Existence of solutions of system (4.8) follows then

by coercivity (3.9) and (4.6), continuity (3.10) and (4.7), as well as the discrete inf-sup

conditions (4.9) and (4.10).

4.2 Two-level Schwarz Convergence Analysis

The definition of the overlapping two-level Schwarz method for the Biot-Brinkman model

is analogous to Section 3.3 with the bilinear form Aa
h(·, ·) instead of Ah(·, ·). The con-

vergence proof follows the same ideas as for Biot’s consolidation model in Section 3.4,

i.e., transforming problem (4.8) into an equivalent singularly perturbed problem using

the mass conservation property of the Hdiv-conforming discretization, then decomposing

the spaces according to the kernel of the divergence operator, and finally proving for the

Assumptions 2.2 to 2.4, with the proof of the stable decomposition forming the main

part of the convergence proof. As a result we get the following two theorems.

Theorem 4.1. The multiplicative two-level Schwarz method converges with a contraction

number independent of the mesh size h and the material parameters λ and cs.

Theorem 4.2. The additive two-level Schwarz method converges independently of the

mesh size h and the material parameters λ and cs.

We will go very quickly through the proof in this chapter and work out the differences

to the proof of Biot’s consolidation model, only. For a detailed discussion of all statements

we refer the reader to Section 3.4. Nevertheless, we will examine the proof of the stable
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4.2 Two-level Schwarz Convergence Analysis

decomposition in full length to be able to track the changing dependencies of the constants

and parameters.

Substitution of the point-wise fulfilled discrete mass equation

−divuh − div vh − csph = gh

in (4.8) leads to the equivalent, singularly perturbed problem

eh
(︁
uh,φ

)︁
+ λd

(︁
uh,φ

)︁
+ c−1

s d
(︁
uh + vh,φ

)︁
=
(︁
f ,φ

)︁
Ω
− c−1

s

(︁
gh, divφ

)︁
Ω
,

νah
(︁
vh,ψ

)︁
+ k
(︁
vh,ψ

)︁
+ c−1

s d
(︁
uh + vh,ψ

)︁
= −c−1

s

(︁
gh, divψ

)︁
Ω
,

for all (φ,ψ) ∈ Wh = Uh × Vh. We rewrite this system as

A a
h

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= Fh

(︄(︄
φ

ψ

)︄)︄

with

A a
h

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
=Aa

h

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
+D

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
, (4.11)

where the bilinear forms Aa
h(·, ·) and D (·, ·) are defined on Wh ×Wh by

Aa
h

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= eh

(︁
uh,φ

)︁
+ νah

(︁
vh,ψ

)︁
+ k
(︁
vh,ψ

)︁
,

D

(︄(︄
uh

vh

)︄
,

(︄
φ

ψ

)︄)︄
= λd

(︁
uh,φ

)︁
+ c−1

s d
(︁
uh + vh,φ+ψ

)︁
, (4.12)

and the right hand side is given by

Fh

(︄(︄
φ

ψ

)︄)︄
=
(︁
f ,φ

)︁
Ω
− c−1

s

(︁
gh, div(φ+ψ)

)︁
Ω
.

Further, we introduce the decomposition

Wh = ker(D)⊕ ker(D)⊥,a
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into the space of divergence free functions ker(D) and the orthogonal complement

ker(D)⊥,a =

{︄(︄
u

v

)︄
∈ Wh : Aa

h

(︄(︄
u

v

)︄
,

(︄
φ

ψ

)︄)︄
= 0 ∀

(︄
φ

ψ

)︄
∈ ker(D)

}︄
.

The space ker(D)⊥,a differs slightly from Chapter 3 in that ah(·, ·) occurs in the defining

bilinear form Aa
h(·, ·). The representation of ker(D) in terms of a decomposition of the

underlying spaces Uh and Vh is done in the same way as before. Let

Uh = U0
h ⊕ U⊥

h , Vh = V 0
h ⊕ V ⊥,a

h ,

where U0
h and V 0

h denote the divergence free subspaces of Uh and Vh, respectively, and

U⊥
h =

{︁
u ∈ Uh : eh

(︁
u,φ

)︁
= 0 ∀φ ∈ U0

h

}︁
,

V ⊥,a
h =

{︁
v ∈ Vh : νah

(︁
v,ψ

)︁
+ k
(︁
v,ψ

)︁
= 0 ∀ψ ∈ V 0

h

}︁
.

Note that we use the weighted scalar product νah(·, ·) + k (·, ·) in the definition of V ⊥,a
h .

Thus, for λ > 0 there holds

W 0
h := ker(D) = U0

h × V 0
h , W⊥,a

h := ker(D)⊥,a = U⊥
h × V ⊥,a

h .

Next, we prove Assumptions 2.3 and 2.4.

Lemma 4.3 (Local stability). For each w0 ∈ W0 there exists a constant C1 > 0, such

that

A a
h (w0,w0) ≤ ω0

H

h
A a

0 (w0,w0) ,

with ω0 < 1, such that ω0
H
h < 2.

Proof. The proof follows directly by the proof of Lemma 3.12, as well as continuity (4.7)

and coercivity (4.6) of bilinearform ah(·, ·).

The strengthened Cauchy-Schwarz inequalities depend only on the geometric structure

of the local spaces, i.e., the overlap and the fact that we can apply the normal Cauchy-

Schwarz inequality. Thus, the proof has already been given in Lemma 3.13.
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4.2 Two-level Schwarz Convergence Analysis

Lemma 4.4 (Strengthened Cauchy-Schwarz inequalities). For 1 ≤ i, j ≤ J there exist

constants 0 ≤ εij ≤ 1 such that

|A a
h (wi,wj)| ≤ εijA

a
h (wi,wi)

1
2 A a

h (wj ,wj)
1
2 ,

for wi ∈ Wi, wj ∈ Wj.

For a proof of the stable decomposition in Theorem 4.7 we need decomposition prop-

erties of the bilinear form ah(·, ·) in addition to the preliminary considerations of Sec-

tion 3.4.3. A close look at Lemma 3.8 and Lemma 3.9 shows that we have already proved

the corresponding properties for the bilinear form ah(·, ·) and used Korn’s inequality to

obtain the result for eh(·, ·). Thus, we have the following two statements in the kernel

V 0
h and the orthogonal complement V ⊥

h .

Lemma 4.5. Every function v0 ∈ V 0
h admits a decomposition of the form v0 =

∑︁J
j=0 v

0
j

with v0j ∈ V 0
j , which satisfies the bound

aH
(︁
v00,v

0
0

)︁
+

J∑︂
j=1

ah
(︁
v0j ,v

0
j

)︁
≤ c

(︃
1 +

H4

δ4

)︃
ah
(︁
v0,v0

)︁
for some constant c > 0.

Lemma 4.6. Every function v⊥ ∈ V ⊥
h admits a decomposition of the form v⊥ =

∑︁J
j=0 v

1
j

with v1j ∈ Vj, which satisfies the bound

aH
(︁
v10,v

1
0

)︁
+

J∑︂
j=1

ah
(︁
v1j ,v

1
j

)︁
≤ c

(︃
1 +

H2

δ2

)︃
ah
(︁
v⊥,v⊥

)︁
for some constant c > 0.

With these two lemmas we are now in a position to state and prove the main result of

this section, namely Theorem 4.7. The proof follows the ideas of the proof of Theorem 3.11,

but extends it to the current case by taking care of the additional interior penalty

formulation of the diffusion term and working out all the specifications that have to be

made in this case.
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Theorem 4.7 (Stable decomposition). Every w ∈ Wh admits a decomposition of the

form

w =

J∑︂
j=0

wj , wj ∈ Wj ,

which satisfies the bound

J∑︂
j=0

A a
j (wj ,wj) ≤ cK,ν

(︃
1 +

H4

δ4

)︃
A a

h (w,w) ,

for some constant cK,ν > 0 independent of the model parameters λ and cs in the dis-

crete bilinear form A a
h (·, ·) defined in (4.11)–(4.12) and independent of the number of

subdomains J as well as of the discretization parameters h and τ .

Proof. We decompose w as

w =

(︄
u

v

)︄
=

(︄
u0

v0

)︄
+

(︄
u⊥

−u⊥

)︄
+

(︄
0

φ

)︄

=

(︄
u0

v0

)︄
+

(︄
0

φ0

)︄
+

(︄
u⊥

−u⊥

)︄
+

(︄
0

φ⊥

)︄
= w0 +w1 +w2 +w3,

(4.13)

with (u0,v0) ∈ U0 × V 0 and (u⊥,v⊥) ∈ U⊥ × V ⊥, φ = u⊥ + v⊥ and the decomposition

φ = φ0 +φ⊥, φ0 ∈ V 0, where φ0 and φ⊥ are orthogonal with respect to the weighted

bilinear form νah(·, ·)+k (·, ·). Further, we decompose each component of each summand

in (4.13) according to

J∑︂
j=0

u0
j = u

0,
J∑︂

j=0

v0j = v0,
J∑︂

j=0

φ0
j = φ

0,

J∑︂
j=0

u1
j = u

⊥,

J∑︂
j=0

v1j = v⊥,

J∑︂
j=0

φ1
j = φ

⊥,

where u0
j ∈ U0

j , v
0
j ∈ V 0

j , φ
0
j ∈ V 0

j , u
1
j ∈ Uj , v

1
j ∈ Vj and φ1

j ∈ Vj . The superscript 1

of u1
j , v

1
j and φ1

j indicates, that these terms are not orthogonal. Now, we define wj :=
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w0
j +w

1
j +w

2
j +w

3
j , where

w0
j =

(︄
u0
j

v0j

)︄
∈ W 0

j , w1
j =

(︄
0

φ0
j

)︄
∈ W 0

j ,

w2
j =

(︄
u1
j

−u1
j

)︄
∈ Wj , w3

j =

(︄
0

φ1
j

)︄
∈ Wj ,

and estimate

J∑︂
j=0

A a
j (wj ,wj) ≤ c

J∑︂
j=0

(︁
A a

j

(︁
w0

j ,w
0
j

)︁
+ A a

j

(︁
w1

j ,w
1
j

)︁
+A a

j

(︁
w2

j ,w
2
j

)︁
+ A a

j

(︁
w3

j ,w
3
j

)︁)︁
.

(4.14)

In the kernel W 0
h we have by Lemma 3.10 and Lemma 4.5 for w0 = (u0,v0)T ∈ W 0

h

J∑︂
j=0

A a
j

(︁
w0

j ,w
0
j

)︁
=eH

(︁
u0
0,u

0
0

)︁
+

J∑︂
j=1

eh
(︁
u0
j ,u

0
j

)︁
+ νaH

(︁
v00,v

0
0

)︁
+ ν

J∑︂
j=1

ah
(︁
v0j ,v

0
j

)︁
+

J∑︂
j=0

k
(︁
v0j ,v

0
j

)︁
≤ cH,δ

(︁
eh
(︁
u0,u0

)︁
+ νah

(︁
v0,v0

)︁
+ k
(︁
v0,v0

)︁)︁
= cH,δA

a
h

(︁
w0,w0

)︁
. (4.15)

For the decomposition in the orthogonal complement W⊥,a
h we will use the stability

estimates

νah
(︁
φ0,φ0

)︁
+ k
(︁
φ0,φ0

)︁
≤ νah

(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
+ k
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
,(4.16)

and

νah
(︁
φ⊥,φ⊥)︁+ k

(︁
φ⊥,φ⊥)︁ ≤ νah

(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
+ k
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁
.(4.17)

By Lemma 4.5, the stability of the L2-decomposition (3.34) and stability estimate (4.16)
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we get

J∑︂
j=0

A a
j

(︁
w1

j ,w
1
j

)︁
= νaH

(︁
φ0

0,φ
0
0

)︁
+ ν

J∑︂
j=1

ah
(︁
φ0

j ,φ
0
j

)︁
+

J∑︂
j=0

k
(︁
φ0

j ,φ
0
j

)︁
≤ cH,δ

(︁
νah
(︁
φ0,φ0

)︁
+ k
(︁
φ0,φ0

)︁)︁
≤ cH,δ

(︂
νah
(︁
u⊥,u⊥)︁+ νah

(︁
v⊥,v⊥

)︁
+ k
(︁
u⊥,u⊥)︁+ k

(︁
v⊥,v⊥

)︁)︂
. (4.18)

By Lemma 3.9, Lemma 4.5 and Lemma 2.13 it follows

J∑︂
j=0

A a
j

(︁
w2

j ,w
2
j

)︁
= eH

(︁
u1
0,u

1
0

)︁
+

J∑︂
j=1

eh
(︁
u1
j ,u

1
j

)︁
+ νaH

(︁
v10,v

1
0

)︁
+ ν

J∑︂
j=1

ah
(︁
v1j ,v

1
j

)︁
+

J∑︂
j=0

(︁
k
(︁
u1
j ,u

1
j

)︁
+ λd

(︁
u1
j ,u

1
j

)︁)︁
≤ cH,δ

(︂
eh
(︁
u⊥,u⊥)︁+ νah

(︁
u⊥,u⊥)︁+ k

(︁
u⊥,u⊥)︁+ λd

(︁
u⊥,u⊥)︁)︂ .

According to Lemma 4.6 and Lemma 2.13, as well as the stability estimate (4.17), the

following is obtained

J∑︂
j=0

A a
j

(︁
w3

j ,w
3
j

)︁
= νaH

(︁
φ1

0,φ
1
0

)︁
+ ν

J∑︂
j=1

ah
(︁
φ1

j ,φ
1
j

)︁
+

J∑︂
j=0

(︁
k
(︁
φ1

j ,φ
1
j

)︁
+ c−1

s d
(︁
φ1

j ,φ
1
j

)︁)︁
≤ cH,δ

(︂
νah
(︁
φ⊥,φ⊥)︁+ k

(︁
φ⊥,φ⊥)︁+ c−1

s d
(︁
φ⊥,φ⊥)︁)︂ (4.19)

≤ cH,δ

(︂
νah
(︁
u⊥,u⊥)︁+ νah

(︁
v⊥,v⊥

)︁
+ k
(︁
u⊥,u⊥)︁

+k
(︁
v⊥,v⊥

)︁
+ c−1

s d
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁)︂
.

Due to the special choice of the decomposition (4.13), the terms k
(︁
u⊥,u⊥)︁ and ah

(︁
u⊥,u⊥)︁

arise in (4.18)–(4.19), which we further estimate using Poincaré’s inequality

k
(︁
u⊥,u⊥)︁ ≤ cK,Ωeh

(︁
u⊥,u⊥)︁
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with a constant cK,Ω depending on the domain Ω and the inverse permeability coefficient

K−1, and by Korn’s inequality

νah
(︁
u⊥,u⊥)︁ ≤ cνeh

(︁
u⊥,u⊥)︁ (4.20)

with a constant depending on ν. Thus, collecting the estimates (4.14), (4.15), and (4.18)–

(4.20), we obtain with w⊥ = (u⊥,v⊥)T ∈ W⊥,a
h

J∑︂
j=0

Aj (wj ,wj)

≤cH,δ

(︂
eh
(︁
u0,u0

)︁
+ νah

(︁
v0,v0

)︁
+ k
(︁
v0,v0

)︁
+ νah

(︁
u⊥,u⊥)︁+ k

(︁
u⊥,u⊥)︁

+ eh
(︁
u⊥,u⊥)︁+ νah

(︁
v⊥,v⊥

)︁
+ k
(︁
v⊥,v⊥

)︁
+ λd

(︁
u⊥,u⊥)︁

+ c−1
s d
(︁
u⊥ + v⊥,u⊥ + v⊥

)︁)︂
≤cH,δ,ν,K,Ω

(︂
Ah

(︁
w0,w0

)︁
+ Ah

(︂
w⊥,w⊥

)︂)︂
=cH,δ,ν,K,ΩAh (w,w)

where the constant cH,δ,ν,K,Ω for a proper overlap δ depends only on ν, K and Ω.

4.3 Numerical Tests

In this section, we test the performance of the discretization and the two-level Schwarz

preconditioner.

We begin by examining the convergence of the discretization in Section 4.3.1. We

then investigate the performance of the multiplicative two-level Schwarz preconditioner

applied to a test case with mixed Dirichlet-Neumann boundary conditions in Section 4.3.2.

We observe the continuity of the Schwarz method for the transition ν → 0 with respect

to the iteration counts of GMRES, and test the robustness of the algorithm when the

parameters in the system are varied. We can observe a stabilizing effect of the diffusion

term on the performance of the method.
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4.3.1 Convergence of the Discretization

To test the convergence of the discretization we choose a test setting with the force f

and the source g given by

f =

(︄
νκ∂x∆φ− ∂xφ− 1

2∂y∆φ

νκ∂y∆φ− ∂yφ+ 1
2∂x∆φ

)︄
, g = −κ∆φ− cs

(︃
νκ∆φ−φ+

1

30

)︃
,

where φ is defined on the square Ω = (0, 1)× (0, 1) by

φ = x2(x− 1)2y2(y − 1)2.

On the boundary ∂Ω, homogeneous Dirichlet boundary conditions are prescribed for the

solid displacement u as well as for the seepage velocity v, i.e.,

u = 0 on ∂Ω, v = 0 on ∂Ω.

The solution of this test is defined only up to an additive constant. To make it unique

we search for a mean-value free solution in the pressure component satisfying∫︂
Ω
p dx = 0.

The solution to this system is then given by

u =

(︄
∂yφ

−∂xφ

)︄
, v = κ∇φ, p =

(︃
νκ∆φ−φ+

1

30

)︃
.

In Figure 4.1 we can observe the convergence orders of the finite element discretizations

with RT1×RT1×Q1 and RT2×RT2×Q2. The calculations have been performed with the

choice λ = κ = 1, cs = 10−4. The convergence analysis follows the same argumentation as

in [KR18], cf. also [HKK+22]. Thus, we expect the same convergence behavior as for the

Biot system summarized in Section 3.2, which can be confirmed by observing Figure 4.1.

In the left two plots we see linear convergence of the H1-norms of the displacement u,

the seepage velocity v and the pressure p for polynomial degree k = 1, as well as second

order convergence for their L2-norms (note, that the slope of the L2-norms is slightly less

inclined). Additionally, the L2-norm of the divergence of u and v are of second order,
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Figure 4.1: First and second order convergence of RT1×RT1×Q1 (left). Second
and third order convergence of RT2 ×RT2 ×Q2 (right).

too. In the right two plots we see the corresponding convergence results for k = 2, which

are one order higher than for k = 1, and therefore, the experimental results are in line

with the convergence analysis of Biot’s consolidation model.

4.3.2 Performance of the Multiplicative Two-level Schwarz Method

In this section we show test results for the Biot-Brinkman equations discretized with

RT2 × RT2 × Q2 finite elements and preconditioned with the multiplicative two-level

Schwarz method. The convergence results for the hybrid two-level Schwarz preconditioner

are qualitatively the same as for the multiplicative method, as we have already seen in

Section 3.5. Thus, we will concentrate on the multiplicative two-level Schwarz method,

only.

The performance tests are executed in the same scenario as in Section 3.5.3 from where

we adopt the notation and refer to Figure 3.2 for an illustration of the setting. Mixed

Dirichlet-Neumann boundary conditions are prescribed for the solid displacement and

the seepage velocity, such that the medium is clamped from the left and the right, and

free to move on top and bottom. The fluid flows into the poroelastic reservoir from the

left, has a free outflow on the right and a no-slip condition on top and bottom. But

instead of the normal components as for ν = 0, the seepage velocity for the case ν > 0 is

given by v = vD on Γin ∪ Γwall, where vD is defined by

vD =

(︄
0.5

0

)︄
on Γin, vD =

(︄
0

0

)︄
on Γwall.

As in Section 3.5.3, the pressure is set to zero on Γout, no external forces are prescribed and
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ν
h 0 10−12 10−8 10−4 1 104 108

1/4 9 9 9 8 7 4 4
1/8 8 8 8 6 7 4 4
1/16 8 8 8 6 7 4 5
1/32 8 8 8 6 7 7 5

Table 4.1: Continuous transition of the Biot-Brinkman system to Biot’s con-
solidation model for ν → 0 in terms of iteration counts of GMRES.
Multiplicative two-level Schwarz, RT2 × RT2 × Q2, λ = κ−1 = 1,
cs = 0.

no sinks or sources are located inside the medium. By this and due to the discontinuous

Galerkin approximation of the diffusion term in the Brinkman equations we adjust the

right hand side of (4.8) according to

Fh

⎛⎜⎝
⎛⎜⎝φψ

q

⎞⎟⎠
⎞⎟⎠ = ν

∑︂
B∈ΓB,h

(︂ηa
h

(︁
vD,ψ

)︁
B
−
(︁
vD,∇ψn

)︁
B

)︂

to incorporate the inhomogeneous boundary condition of the seepage velocity, where

ΓB,h is the set of all faces on Γin ∪ Γwall.

To measure the performance of the multiplicative Schwarz preconditioner we count

the number of iterations GMRES takes to converge, i.e., until the starting residual is

reduced by a factor of 10−8.

In Table 4.1 we see that the iterations of GMRES are robust in ν and the counts

are even getting smaller for very large values of ν ≫ 1. Since ν is a rescaled quantity,

see (4.3), the experiments need to cover a broad range of the parameter regime, even

though the value of the viscosity-like constant ν might be much smaller in applications.

Furthermore, the numbers in Table 4.1 show a continuous transition to the case ν = 0

when ν tends to zero.

The main observation of the performance tests is that an added diffusion term to the

Biot equations yields a stabilization of the iteration counts in κ−1 and that a scaling as in

Table 3.14 is not necessary for very small values of κ−1, which corresponds to the case of

high permeabilities. Therefore, we investigate the iteration numbers for different values

of ν > 0 when κ−1 is varied and compare them to the case ν = 0. The results are shown
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κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

ν = 0

1/4 21 15 10 8 9 6 6 4 4
1/8 21 14 11 8 8 5 6 4 4
1/16 33 15 12 8 8 5 5 4 4
1/32 50 17 13 8 8 5 5 4 4

ν = 10−8

1/4 22 21 18 10 9 6 6 4 4
1/8 19 19 18 11 8 5 6 4 4
1/16 18 19 18 14 8 5 5 4 4
1/32 17 17 17 16 8 5 5 4 3

ν = 10−4

1/4 9 9 9 12 8 6 6 4 4
1/8 7 7 7 7 6 5 6 4 4
1/16 8 8 8 8 6 5 5 4 4
1/32 6 6 6 6 6 5 5 4 3

ν = 10−2

1/4 6 6 6 6 6 6 6 4 4
1/8 6 6 6 6 6 5 6 4 4
1/16 6 6 6 6 6 5 5 4 4
1/32 6 6 6 6 6 6 5 4 3

Table 4.2: Performance with respect to κ−1 measured in iteration counts of GM-
RES, preconditioned by a multiplicative two-level Schwarz method.
RT2 ×RT2 ×Q2, λ = 1, cs = 0.

in Table 4.2. For ν = 0 we see robust iteration counts for κ−1 > 1, but the numbers

are growing the smaller κ−1 becomes, deteriorating with a refinement of the mesh for

κ−1 ≤ 10−4. By choosing ν > 0 and thus switching to the Biot-Brinkman model, the

iteration numbers of the system stabilize for all values of κ−1, even in the case of a small

ν = 10−8, where the counts are limited by a value of 17, instead of deteriorating with

decreasing κ−1. The stabilizing effect intensifies for larger ν, leading to robustness of the

multiplicative two-level Schwarz method when varying the permeability constant κ−1.

In addition, we again observe the continuous transition of the Biot-Brinkman system to

Biot’s consolidation model in terms of iteration counts of GMRES, when ν → 0.

It still remains to test the other parameters in the system.

For varying λ, we do not see a significant difference of the iteration numbers between

Biot’s consolidation model (ν = 0) and the Biot-Brinkman equations (ν > 0) in Table 4.3.

Both appear to be robust in ν with some sensitivity to numerical instabilities for very

large values of λ ≥ 106. As in Section 3.5.3, we observe numerical instabilities that can
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λ
h 0 1 102 104 106 108

ν = 0

1/4 10 9 8 4 1 1
1/8 9 8 6 4 1 1
1/16 9 8 6 4 1 1
1/32 8 8 6 4 1 1

ν = 10−2

1/4 6 6 5 4 2 1
1/8 6 6 6 4 2 1
1/16 6 6 6 4 2 1
1/32 6 6 6 5 2 2

Table 4.3: Performance with respect to λ measured in iteration counts of GM-
RES, preconditioned by a multiplicative two-level Schwarz method.
RT2 ×RT2 ×Q2. κ

−1 = 1, cs = 0, scaling for λ ≥ 106.

λ = κ−1

h 10−8 10−6 10−4 10−2 1 102 104 106 108

ν = 0

1/4 23 13 10 10 9 5 4 4 4
1/8 22 17 10 10 8 6 4 4 4
1/16 31 16 13 8 8 6 4 3 5
1/32 39 17 10 8 8 6 8 4 7

ν = 10−2

1/4 6 6 6 6 6 5 4 3 4
1/8 6 6 6 6 6 6 4 3 4
1/16 6 6 6 6 6 6 4 3 5
1/32 6 6 6 6 6 6 8 4 8

Table 4.4: Performance with respect to λ = κ−1 measured in iteration counts
of GMRES, preconditioned by a multiplicative two-level Schwarz
method. RT2 ×RT2 ×Q2, cs = 0, scaling for λ ≥ 106.

ν = 0 ν = 10−2

h cs = 0 10−10 10−5 1 0 10−10 10−5 1

1/4 9 9 9 9 6 6 6 6
1/8 8 8 8 8 6 6 6 6
1/16 8 8 8 8 6 6 6 6
1/32 8 8 8 8 6 6 6 6

Table 4.5: Performance with respect to cs measured in iteration counts of GM-
RES, preconditioned by a multiplicative two-level Schwarz method.
RT2 ×RT2 ×Q2. ν = λ = κ−1 = 1.

110



4.4 Conclusion

be handled by using a scaling as in (3.46) with scaling matrix

S =

⎛⎜⎝
1√
λ
I 0 0

0 I 0

0 0 I

⎞⎟⎠ ,

for λ ̸= 0. These numerical instabilities originate in the squaring of the diagonal entries

of the system matrix within GMRES, whereas the growing iteration counts for smaller

values of κ−1 in the case ν = 0 are due to the dependence of the method on κ−1. In

Table 4.4 we can see how both effects accumulate as the iteration counts are growing when

κ−1 tends to zero, and are deteriorating for λ ≥ 106. The scaling captures the instabilities

due to the squaring of the already large values of λ and the additional diffusion stabilizes

for small κ−1.

Finally, varying the storage capacity does not influence the iteration numbers of GM-

RES as can be seen in Table 4.5.

4.4 Conclusion

In this chapter we have extended the theory of the two-level Schwarz preconditioners

for Biot’s consolidation model to the case of a quasi-static Biot-Brinkman system and

proved convergence of the algorithm. In the numerical experiments we observed that

the additional diffusion term yields a stabilization of the iteration counts, when κ−1 is

varied, whereas the method stays robust for all considered parameter ranges. Numerical

instabilities due to extremely large values of λ, originating in the squaring of the diagonal

entries of the system matrix within GMRES, can be handled by a scaling of the system,

leading to an overall robust scheme in the practical application of the method.
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Chapter 5

Homogenizing Two-scale Multilevel

Schwarz Preconditioner for Pore-scale

Porous Media Computations

In this chapter we provide an efficient multilevel Schwarz preconditioner for the iterative

solution of pore-scale porous media flow models for the high-resolution simulation on

a microscopic scale. Therefore, a steady Stokes flow is assumed as model problem in a

periodically perforated domain. This kind of model has applications in the rather young

field of computational microfluidics that aims to perform high-resolution computations

of pore-scale dynamics in the exact microstructure geometry, see e.g. [SMR21] and the

literature cited therein. Since the scale of interest quickly leads to immensely large

systems of equations, sophisticated numerical methods are needed to efficiently solve

the resulting systems. The idea we follow is that of a two-scale multigrid preconditioner

that uses the knowledge of the effective homogenized behavior of the physical law on a

coarse scale as smoothing operator. This approach originates in the work of Engquist

and Luo in [Luo93, EL93] from 1993, and the work of Neuss, Jäger and Wittum in

the late 1990’s in [Neu96, NJW01]. Both developed multigrid solvers for second order

elliptic diffusion equations with highly oscillating coefficients, using a homogenization

approach to get an effective operator on the coarse scale. Whereas Engquist and Luo

formulated the underlying basic idea of the method and applied it to finite difference

discretizations, Neuss, Jäger and Wittum developed and refined the method for finite

element discretizations, and set it on a solid analytical foundation.

Similar to the work of Neuss, Jäger and Wittum, a multigrid method with an effective

coarse grid operator obtained by a numerical upscaling procedure has been developed

in [Ebe03, EW05] by Eberhard and Wittum. Their approach uses Fourier analysis to

obtain the effective permeability tensor, which is equivalent to homogenization in the
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resolved fine scale

homogenized coarse scale

Figure 5.1: Homogenizing two-scale multilevel Schwarz method. The
filled/empty circles denote the smoothing with a fine-
scale/homogenized operator, respectively. The straight lines
visualize the transfer between the levels, and the square refers to the
application of the inverse or pseudo-inverse on the coarsest level.

case of periodic permeability fields.

Miehe and Bayreuther proposed a homogenization based multigrid solver with a prob-

lem dependent grid transfer operator in [MB07] and applied it to heterogeneous nonlinear

inelastic model problems.

Sviercoski, Popov and Margenov reviewed the multiscale multigrid method in [SPM15]

and applied it to flow problems in porous media by comparing it with different averaging

techniques.

We are going to formulate the homogenizing two-scale multigrid method of [Neu96,

NJW01] in a multilevel Schwarz context and apply it to Hdiv-conforming finite element

discretizations of an extended Stokes problem on periodically perforated domains. To

the best of our knowledge, this is novel in the literature and has not been done before.

The basic idea is as follows:

1. Formulation of the microscopic problem on a perforated domain Ωε with periodi-

cally repeated obstacles of size ε.

2. Extension of the variables to the whole domain including the obstacles.

3. Homogenization of the microscopic equations to obtain effective operators on a

macroscopic scale.

4. Discretization of extended problem and homogenized equations with the same type

of finite element spaces.

114



5. Use the discretized effective coarse-scale operators inside a multilevel Schwarz

preconditioner on levels, where the fine-scale behavior of the microscopic equations

cannot be resolved anymore, see Figure 5.1.

As it turns out, the analytical homogenized operators cannot compete with the standard

multigrid method, but an optimization process yields preconditioners that are superior

with respect to convergence speed and efficiency for the intended case of small periods ε.

In the following we outline the structure of this chapter.

In Section 5.1 we introduce the model problem, which is a steady Stokes flow formu-

lated on a periodically perforated domain with a period that is much smaller than the

characteristic length of the reservoir. This system describes the resolved flow of an incom-

pressible fluid through a system of connected pores, obtained by periodically repeating

a standard periodicity cell over the whole domain. Since the perforation of the geometry

limits the possibility to construct hierarchies of nested coarse-grid meshes, which can be

used inside multigrid schemes, we extend the velocity and pressure of the system to the

whole domain including the holes by a penalized Brinkman extension in Section 5.2. In

Section 5.3 we discuss the choice of the extended model by investigating the convergence

of the velocity with respect to the penalty factor. In Section 5.4 the extended system

is discretized by an Hdiv-conforming mixed finite element method. The specifics of the

homogenizing two-scale algorithm based on an overlapping multilevel Schwarz method

are formulated in Section 5.5. Here, we use a homogenization of the fine-scale Stokes

law as coarse-scale operator for the smoothing of the residual on mesh levels, on which

the geometry of the micro-structure cannot be resolved anymore by standard multigrid

approaches. There are several ways in the literature to derive the effective behavior of

the model problem on a macroscopic coarse-scale, which are recapitulated in Section 5.6,

where we focus on the famous two-scale convergence method (Section 5.6.1) as well as

the energy method (Section 5.6.2). The limit of the homogenization process depends on

the size and the ratio of the pores and the obstacles within the perforated domain, and

as outcome we get four different homogenized operators. In Section 5.7 these operators

are discretized with the same type of finite elements as the model problem. The assem-

bly of the effective tensor derived by the two-scale convergence method by solving the

cell-problems is presented in Section 5.7.1.

In the numerical experiments in Section 5.8 we compare the performance of the dif-

ferent homogenized operators against a standard multigrid operator that integrates the
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fine-scale structure exactly and serves as a benchmark test. We begin with a discussion

of a geometrically simple test case in Section 5.8.1. A direct application of the homoge-

nizing two-scale multilevel Schwarz preconditioner with the effective operators obtained

by the analysis leads to very different convergence results of GMRES in Section 5.8.2

originated in the non-optimality of the effective coefficients. An investigation of the choice

of the permeability tensor by scanning the parameter spaces in Section 5.8.3 yields a

dependence on the penalty factor coming from the Brinkman extension. Recalculating

the performance tests with the optimal effective coefficients in the simple case of only

one coarse-scale level shows improved convergence results for the homogenized Darcy

operator and the homogenized Brinkman operator. In particular the optimized Brinkman

operator performs as good as the benchmark test. Turning to the intended case of the

full multilevel setup with the coarsest level set to zero in Section 5.8.4, the optimized

Brinkman operator shows the best performance results and beats the iteration counts

of the benchmark test by a factor of two for smaller periods of the periodic domain.

This advantage of the performance reduces to some extent for a test case with a more

anisotropic geometry in Section 5.8.5, when the same Brinkman operator is used. Never-

theless, the two-scale multilevel Schwarz preconditioner with the Brinkman operator still

performs better than the standard multigrid preconditioner. Combining the Brinkman

operator with the effective tensor derived by the two-scale convergence method, such

that the effective tensor is rotated and scaled according to the geometry of the unit cell

and optimized as in the axisymmetric case, finally leads to the best performance results

for small periods.

5.1 Stokes Flow in Periodically Perforated Domain

The geometry of the porous medium, on which we are going to formulate the resolved

porous media flow, is periodically arranged with obstacles inside a standard periodicity

cell Y = (0, 1)d, which is repeated over the whole domain Ω ⊂ Rd, d ∈ {2, 3}. For the
description of this geometry we start with the definition of the standard periodicity cell

Y = F ∪O

as union of an open and connected fluid region F , and a remaining obstacle partO = Y \F
with a piecewise smooth boundary Γ = ∂O. The open and bounded domain Y is also
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F

O

Γ

Unit cell Y

Fε
i

Oε
i

Γε
i

∂Ωε

Y ε
i

Periodic domain Ωε

Figure 5.2: Periodically perforated domain Ωε consisting of repeated microcells
Y ε
i of size ε, where each Y ε

i is the image of the scaled and shifted
unit cell Y .

called the unit cell. The periodically perforated fluid domain Ωε ⊂ Ω consists of the fluid

parts Fε
i of the periodically repeated microcells

Y ε
i = Fε

i ∪ Oε
i

of size ε, where each microcell Y ε
i = (0, ε)d, up to translation, is the image of the scaled

and shifted unit cell Y . Therefore, Ωε is defined by

Ωε = Ω \
N(ε)⋃︂
i=1

Oε
i ,

where

N(ε) = |Ω| ε−d(1 + o(1)). (5.1)

The outer boundary of Ωε is denoted by ∂Ωε. An illustration of an example configuration

is given in Figure 5.2. With these definitions, we now pose the problem of a resolved flow

in porous media, which is a steady Stokes flow in the periodically perforated domain Ωε,

by

−ν∆vε +∇pε = f in Ωε,

div vε = 0 in Ωε,
(5.2)
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where ν > 0 denotes the viscosity of the fluid, vε is the fluid velocity, pε is the pressure

in the system and f ∈ [L2(Ωε)]d is a given force. The impermeability of the obstacles is

modeled by a no-slip condition at the obstacle boundaries Γ ε
i

vε = 0 on Γ ε
i ,

and the system is closed by a Dirichlet boundary condition

vε = g on ∂Ωε,

given as the trace of a divergence-free function in [H1(Ωε)]d, which we denote again by

g for convenience.

Define V ε = [H1(Ωε)]d and Qε = L2(Ωε)/R. The weak formulation of (5.2) is then:

find (vε, pε) ∈ V ε ×Qε such that vε = vε0 + g with vε0 ∈ [H1
0 (Ω

ε)]d given by

ν
(︁
∇vε0,∇φε

)︁
Ωε −

(︁
pε, divφε

)︁
Ωε =

(︁
f ,φε

)︁
Ωε − ν

(︁
∇g,∇φε

)︁
Ωε

−
(︁
qε,div vε0

)︁
Ωε = 0

(5.3)

for all φε ∈ [H1
0 (Ω

ε)]d and qε ∈ L2(Ωε)/R. For existence and uniqueness of solutions see

for example [Tem84, I.2.4].

5.2 Extension with Brinkman Law

Our aim is to use a multigrid preconditioner for solving the equations after we have

discretized them with an Hdiv-conforming finite element method. But, the configuration

of the domain including obstacles limits the possibility of defining a hierarchy of meshes

with a coarsest level, where the grid is actually coarse. To bypass this problem we extend

the unknowns of the system to the whole domain, including the obstacles, on which a

hierarchy of nested meshes can be defined easily, see Figure 5.3.

Therefore, let

Ω =

N(ε)⋃︂
i=1

Y ε
i

be the filled domain, i.e., the union of the fluid domain Ωε with all obstacles Oε
i . We
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define an extension v̂ε of the velocity in [H1
0 (Ω)]d to the whole domain Ω by

v̂ε =

⎧⎨⎩vε in Ωε,

0 in Ω\Ωε.
(5.4)

The extension of the pressure needs more attention than the extension of the velocity.

Following [AM97, Section 3.1.3], we define the pressure constant in the obstacle regions

as

p̂ε =

⎧⎨⎩pε in Ωε,

p̄i ∈ R in each Oε
i .

(5.5)

To derive a homogenized limit, the extension has to be chosen as the mean value of the

surrounding fluid region, i.e., p̄i =
1

|Fε
i |
∫︁
Fε

i
pε dx. In this way, the pressure is bounded

uniformly in ε, i.e.,

⃦⃦
p̂ε
⃦⃦
Ω
≤ c, (5.6)

see [AM97, Lemma 1.3], and a homogenized limit of the system can be constructed for

ε → 0.

To realize the extensions (5.4) and (5.5), we use the Brinkman equations

ζ
(︁
ṽε,φ

)︁
Oε

i
+ ν
(︁
∇ṽε,∇φ

)︁
Oε

i
−
(︁
p̃ε,divφ

)︁
Oε

i
−
(︁
q,div ṽε

)︁
Oε

i
= 0

in each extended region Oε
i and control the fluid velocity ṽε = ṽεζ by the scaled mass

term ζ (ṽε,φ)Oε
i
with a penalty constant ζ ≥ 0 chosen large enough to push the solution

towards zero in the extended region. The combined set of equations is thus a coupled

Stokes-Brinkman system

−ν∆ṽε + 1Ω\Ωεζṽε +∇p̃ε = 1Ωεf in Ω,

div ṽε = 0 in Ω,
(5.7)

closed by the Dirichlet boundary condition

ṽε = 1∂Ωεg on ∂Ω,
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written with the indicator function defined by

1D(x) =

⎧⎨⎩1, for x ∈ D,

0, in x ∈ Ω \D.

The boundary function 1∂Ωεg is the trace of the [H1(Ω)]d-function 1Ωεg.

Let X = V ×Q = [H1(Ω)]d × L2(Ω)/R. The variational formulation of (5.7) is then:

find (ṽε, p̃ε) ∈ V ×Q such that ṽε = ṽε0 + 1Ωεg with ṽε0 ∈ [H1
0 (Ω)]d given by

νa
(︁
ṽε0,φ

)︁
+

N(ε)∑︂
i=1

ζ
(︁
ṽε0,φ

)︁
Oε

i
− b
(︁
p̃ε,φ

)︁
=
(︁
f ,φ

)︁
Ωε − ν

(︁
∇g,∇φ

)︁
Ωε ,

−b
(︁
q, ṽε0

)︁
= 0,

(5.8)

for all φ ∈ [H1
0 (Ω)]d, q ∈ Q with the bilinearforms

a
(︁
ṽε,φ

)︁
=
(︁
∇ṽε,∇φ

)︁
Ω
, b

(︁
p̃ε,φ

)︁
=
(︁
p̃ε, divφ

)︁
Ω
.

According to the weak formulation, we define the bilinear form Ãε
(·, ·) : X ×X → R by

Ãε

(︄(︄
ṽε

p̃ε

)︄
,

(︄
φ

q

)︄)︄
= νa

(︁
ṽε,φ

)︁
+

N(ε)∑︂
i=1

ζ
(︁
ṽε,φ

)︁
Oε

i
− b
(︁
p̃ε,φ

)︁
− b
(︁
q, ṽε

)︁
.

Remark 5.1. Imposing strong or weak interface conditions inside the domain to accu-

rately extend the solution to the obstacle regions will briefly be discussed in Section 6.2

in form of so-called virtual extensions.

5.3 Discussion of the Extended Model

In this section we discuss the choice of the extended Stokes-Brinkman model as approx-

imation for the Stokes problem on a perforated domain. This is done by deriving an

error estimate for the velocity of the extended system in terms of the penalty factor. To

simplify the notation and without loss of generality, we set g = 0 in this section.

First, we note that the penalty formulation (5.8) is not consistent with the weak
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formulation (5.3), since for the exact solution (v̂ε, p̂ε) ∈ V ε ×Qε there holds

Ãε

(︄(︄
v̂ε

p̂ε

)︄
,

(︄
φ

q

)︄)︄
= νa

(︁
v̂ε,φ

)︁
+

N(ε)∑︂
i=1

ζ
(︁
v̂ε,φ

)︁
Oε

i
− b
(︁
p̂ε,φ

)︁
− b
(︁
q, v̂ε

)︁
= ν

(︁
∇v̂ε,∇φ

)︁
Ωε −

(︁
p̂ε, divφ

)︁
Ωε −

(︁
p̂ε,divφ

)︁
Ω\Ωε −

(︁
q,div v̂ε

)︁
Ωε

=
(︁
f ,φ

)︁
Ωε −

N(ε)∑︂
i=1

(︁
p̄i, divφ

)︁
Oε

i
.

Consequently, the error equation is

Ãε

(︄(︄
ṽε

p̃ε

)︄
,

(︄
φ

q

)︄)︄
− Ãε

(︄(︄
v̂ε

p̂ε

)︄
,

(︄
φ

q

)︄)︄
=

N(ε)∑︂
i=1

(︁
p̄i,divφ

)︁
Oε

i
.

Thus, we can estimate

⃦⃦
∇(ṽε − v̂ε)

⃦⃦2
Ω
+

N(ε)∑︂
i=1

ζ
⃦⃦
ṽε − v̂ε

⃦⃦2
Oε

i
= Ãε

(︄(︄
ṽε − v̂ε

p̃ε − p̂ε

)︄
,

(︄
ṽε − v̂ε

−(p̃ε − p̂ε)

)︄)︄

≤
N(ε)∑︂
i=1

⃦⃦
p̄i
⃦⃦
Oε

i

⃦⃦
div(ṽε − v̂ε)

⃦⃦
Oε

i
≤ c

N(ε)∑︂
i=1

⃦⃦
p̄i
⃦⃦2
Oε

i
+

1

2

⃦⃦
∇(ṽε − v̂ε)

⃦⃦2
Ω
, (5.9)

where we have used the Cauchy-Schwarz inequality and the basic Young’s inequality.

Including the last term of (5.9) into the left hand side yields

1

2

⃦⃦
∇(ṽε − v̂ε)

⃦⃦2
Ω
+

N(ε)∑︂
i=1

ζ
⃦⃦
ṽε − v̂ε

⃦⃦2
Oε

i
≤ c

N(ε)∑︂
i=1

⃦⃦
p̄i
⃦⃦2
Oε

i
,

and finally by the pressure bound (5.6)

N(ε)∑︂
i=1

⃦⃦
ṽε
⃦⃦2
Oε

i
=

N(ε)∑︂
i=1

⃦⃦
ṽε − v̂ε

⃦⃦2
Oε

i
≤ c

1

ζ
. (5.10)

From this we can conclude that the fluid extension ṽε → v̂ε in the obstacle regions Oε
i

for ζ → ∞ and thus the Stokes-Brinkman model (5.8) is a viable approximation for the

Stokes model (5.3) on perforated domains.
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5.4 Hdiv-conforming Discretization

As discretization we choose an Hdiv-conforming mixed finite element method as proposed

in [CKS06].

We assume that the shape regular triangulation Th ofΩ is such that the boundary of the

obstacles Γ ε
i is aligned with Th. The alignment assures that the geometrical structure of

Ω is resolved by the computational mesh Th. Let the discrete velocity space Vh ⊂ Hdiv(Ω)

contain the boundary condition in normal direction g · n and let Qh ⊂ L2(Ω) be the

matching pressure space such that

div Vh = Qh.

The Hdiv-conforming discretization of the coupled Stokes-Brinkman system (5.8) based

on the mixed finite element space

Xh = Vh ×Qh (5.11)

can then be represented as

Ãε
h

(︄(︄
ṽεh
p̃εh

)︄
,

(︄
φ

q

)︄)︄
= Fh

(︄(︄
φ

q

)︄)︄
, (5.12)

where the discrete bilinear form Ãε
h(·, ·) : Xh ×Xh → R is defined by

Ãε
h

(︄(︄
ṽεh
p̃εh

)︄
,

(︄
φ

q

)︄)︄
= νah

(︁
ṽεh,φ

)︁
+

N(ε)∑︂
i=1

ζ
(︁
ṽεh,φ

)︁
Oε

i
− b
(︁
p̃εh,φ

)︁
− b
(︁
q, ṽεh

)︁
and the right hand side is given by

Fh

(︄(︄
φ

q

)︄)︄
=
(︁
f ,φ

)︁
Ωε + ν

∑︂
B∈ΓB,h

(︂ηa
h

(︁
g,φ

)︁
B
−
(︁
g,∇φn

)︁
B

)︂
. (5.13)

The discrete bilinearform ah(·, ·) : Vh×Vh → R, defined in (4.5), is the symmetric interior

penalty discontinuous Galerkin approximation of a(·, ·) : V × V → R. The additional

sum over all boundary terms in (5.13) is due to the discontinuous Galerkin formulation

for inhomogeneous boundary values. Note, that the right hand side is only integrated on
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ℓ0

· · ·

ℓr − 1 ℓr

· · ·

L

Figure 5.3: Hierarchy of meshes for extended domain Ω. L is the computational
level, ℓr is the level on which the fine-scale structure of the domain
is still resolved, and ℓ0 is the coarsest level of the multigrid method.

the fluid region Ωε, such that 1Ωεf and 1Ωεg is realized.

By coercivity (4.6) of ah(·, ·) it follows the coercivity estimate

νah
(︁
φ,φ

)︁
+

N(ε)∑︂
i=1

ζ
(︁
φ,φ

)︁
Oε

i
≥ cν

⃦⃦
φ
⃦⃦2
1,h

(5.14)

for all φ ∈ Vh. Furthermore, let φ,ψ ∈ Vh, then it holds by a Poincaré inequality and

(5.1)

N(ε)∑︂
i=1

ζ
(︁
φ,ψ

)︁
Oε

i
≤

N(ε)∑︂
i=1

ζ
⃦⃦
φ
⃦⃦
Oε

i

⃦⃦
ψ
⃦⃦
Oε

i
≤ cζ |Ω| ε2−d

⃦⃦
φ
⃦⃦
1,h

⃦⃦
ψ
⃦⃦
1,h

. (5.15)

Thus, existence and uniqueness follows by coercivity (5.14), continuity (4.7) of ah(·, ·)
together with (5.15), as well as the discrete inf-sup condition (4.10).

5.5 Homogenizing Two-scale Multilevel Schwarz Algorithm

The homogenizing two-scale multilevel Schwarz algorithm presented in this section in-

corporates a homogenized operator on the effective coarse-scale and is otherwise based

on Algorithm2.5 in form of a monolithic multigrid V-cycle with an overlapping Schwarz

smoother. To sketch the idea of this approach Figure 5.1 serves as a reference.

We assume that Th has emerged by a subdivision of a coarsest mesh Tℓ0 such that

there is a hierarchy of nested meshes Tℓ = Thℓ
with

Tℓ0 ⊂ · · · ⊂ Tℓr−1 ⊂ Tℓr ⊂ · · · ⊂ TL = Th,
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Algorithm 5.1 Two-scale multigrid V-cycle

Let L be the computational level corresponding to Th = ThL
, and let ℓr be the coarsest

level of the fine-scale, where the structure of the microscopic problem can still be resolved.
Let ℓ0 be the coarsest level of the multigrid scheme. Define

Aℓ =

{︄
Aε

ℓ , for ℓ ∈ {ℓr, . . . , L},
Āℓ, for ℓ ∈ {ℓ0, . . . , ℓr − 1}.

LetMTS
ℓ0

= A−1
ℓ0

. Let Sℓ be a suitable smoother, and letmpre(ℓ) andmpost(ℓ) be the num-
ber of pre-smoothing and post-smoothing steps, respectively, on each level. Recursively
define the action of MTS

ℓ on a vector bℓ as follows:

1. Pre-smoothing: let x0 = 0 and compute for i = 1, . . . ,mpre(ℓ)

xi = xi−1 + Sℓ (bℓ −Aℓxi−1)

2. Coarse grid correction:

xmpre(ℓ)+1 = xmpre(ℓ) +R
T
ℓ−1M

TS
ℓ−1Rℓ−1

(︁
bℓ −Aℓxmpre(ℓ)

)︁
3. Post-smoothing: for i = mpre(ℓ) + 2, . . . ,mpre(ℓ) +mpost(ℓ) + 1 compute

xi = xi−1 + Sℓ (bℓ −Aℓxi−1)

4. Assign: MTS
ℓ bℓ = xmpre(ℓ)+mpost(ℓ)+1

to mesh sizes

hℓ0 < · · · < hℓr−1 < hℓr < · · · < hL = h.

Here, L is the computational level on which the problem is going to be solved, and ℓ0 is

the coarsest level of the multigrid algorithm. We assume further that ℓr is the coarsest

level on which the geometry of the fine-scale structure is still resolved exactly by the

mesh Tℓr , i.e., we assume that the boundary Γ ε
i of the obstacles is aligned with Tℓr , and

not anymore with Tℓr−1. Therefore,

{ℓr, . . . , L}

is the set of all levels, where the fine-scale geometry is resolved exactly by the correspond-
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ing mesh, and

{ℓ0, . . . , ℓr − 1}

is the set of all coarse-scale levels. Compare Figure 5.3 for a visualization of the different

mesh-levels, where the geometry of the domain is or is not resolved by the mesh.

Let Aε
ℓ be the system matrix corresponding to (5.12) to the mesh size hℓ, and let Āℓ

be one of the homogenized operators that will be defined in (5.19) in Section 5.7. As

smoother we choose either the additive or the multiplicative Schwarz smoother introduced

in Section 2.5. Both Schwarz smoothers depend on the level-matrix Aℓ that is chosen as

Aℓ =

⎧⎨⎩Aε
ℓ , for ℓ ∈ {ℓr, . . . , L},

Āℓ, for ℓ ∈ {ℓ0, . . . , ℓr − 1},

depending on the level ℓ. The homogenizing two-scale multilevel Schwarz algorithm is

then formulated in Algorithm 5.1.

5.6 Homogenized Coarse-scale Operators

In this section we review the results of the homogenization theory in the literature to

provide coarse-scale operators for the perforated Stokes system (5.2) with the extensions

defined in (5.4) and (5.5). Therefore, we recapitulate briefly the results of the homogeniza-

tion theory in [AM97], where different homogenized limits of the steady Stokes system

on a periodically perforated domain are derived based on two different homogenization

methods.

The process of homogenization is illustrated in Figure 5.4 and describes different notions

of upscaling or averaging techniques to derive laws for the effective behavior of equations

with highly oscillating properties as coefficients or repeated geometric structures, when

the size of the period ε tends to zero. Since the homogenized operators will enter the

equations only in form of local patch problems or a coarse problem of an overlapping

Schwarz preconditioner, it is sufficient to consider a homogeneous boundary condition

g = 0.

We start with presenting the limit for ε → 0 obtained by the two-scale convergence

method, which leads to a Darcy law, provided that the pore size is much smaller than
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ε = 0.2 ε = 0.1 ε = 0.05 ε → 0

Figure 5.4: Homogenization limit of periodic domain Ωε as illustrated in [Hor97,
Figure 1.1].

the characteristic length of the reservoir. After that, we present the results obtained by

the energy method under the assumption that the obstacle size sε is much smaller than

the period ε. In this case, the homogenized limit is depending on the size of the obstacles

and leads at a critical size to a Brinkman law. For larger obstacles it results in a Darcy

law, and for smaller obstacles in the Stokes equations again.

5.6.1 Homogenization with the Two-scale Convergence Method

The two-scale convergence method was introduced around 1990 by Nguetseng in [Ngu89]

and by Allaire in [All92]. As a homogenization method it is restricted to periodic problems,

where the geometry of the domain or the coefficients of the microscopic problem have

a periodic structure that is repeated over the whole domain. A great advantage of the

method is its close relation to the heuristic method of two-scale asymptotic expansions

with which formal derivations of the homogenized problems are quite easy achievable.

For example, if a sequence vε admits an asymptotic expansion of the form

vε(x) = v0(x,
x

ε
) + εv1(x,

x

ε
) + ε2v2(x,

x

ε
) + . . . ,

for y-periodic and smooth functions vi(x,y), then it two-scale converges to v0(x,y). We

refer to [Hor97, A.3] for an introduction to the method. The detailed proof of the two-

scale convergence of system (5.12) can be found in [AM97]. The first formal derivations

of Darcy’s law using two-scale expansions are due to [Kel80, Lio81, SP80].

To derive a homogenized limit, one first needs to scale the fluid velocity vε by the factor

ε−2 such that the viscosity ν is of order ε2. This is possible due to the linearity of (5.2).

Further, we need to assume that the pore size is much smaller than the characteristic

length of the reservoir. The resulting homogenized limit for ε → 0 obtained by the

126



5.6 Homogenized Coarse-scale Operators

two-scale convergence method is then Darcy’s law

νL−1v̄ +∇p̄ = f in Ω,

div v̄ = 0 in Ω,

v̄ · n = 0 on ∂Ω,

with the constant, symmetric and positive definite permeability tensor L = (Lij)
d
i,j=1

defined by

Lij =

∫︂
F
∇ωi(y) · ∇ωj(y) dy =

∫︂
F
ωi(y) · ej dy, (5.16)

where ωj are the solutions of the cell problems: find y-periodic vector fields ωj , and

y-periodic pressure fields πj , such that

−∆ωj +∇πj = ej in F ,

divωj = 0 in F ,

ωj = 0 on ∂F .

(5.17)

As one can see in the definition of the cell problems, the permeability L depends only on

the geometry of the microstructure and not on the physical properties as the viscosity,

or the acting forces.

5.6.2 Homogenization with the Energy Method

Next, we present the second method for the homogenization of system (5.2), called the

energy method, that was introduced by Tartar and Murat in the late 1970’s in [Tar78,

MT78]. The key idea is to choose an oscillating test function in the variational formulation

of the problem and pass to the limit in the notion of weak or strong convergence. The

method is very general, since it is not restricted to periodicity of the domain or the

coefficients in the system. We refer to [Hor97, A.2] for an introduction to the energy

method and to [AM97] for the technical details about the homogenization of (5.2). The

homogenized limit depends on the obstacle size sε and the equations can either result in

a Brinkman law, a Darcy law, or again, a Stokes law.

For a proper presentation of the results we briefly introduce the concept of weak and

strong convergence in Hilbert spaces. A sequence {vn}n∈N is said to be weakly convergent
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to v in a Hilbert space V , if it converges with respect to the inner product (·, ·) of V , i.e.,

(vn − v, φ) → 0, for n → ∞,

for all φ ∈ V . The sequence {vn}n∈N converges strongly in V , if it converges with respect

to the norm ∥·∥ =
√︁
(·, ·),

∥vn − v∥ → 0, for n → ∞.

The obstacle size sε is defined as a parameter that rescales the standard obstacle O to the

size sε, i.e., Oε
i = sεO. For the homogenization process the solid obstacles are assumed to

be much smaller than the period ε, which is formulated in the form of a growth condition

lim
ε→0

sε
ε

= 0.

The three different limits are distinguished by the ratio σε defined by

σε = ε
⃓⃓⃓
log
(︂sε
ε

)︂⃓⃓⃓1/2
for d = 2, (5.18)

and

σε =

(︃
εd

sd−2
ε

)︃1/2

for d ≥ 3,

and are formulated in the following.

1. At a critical size where limε→0 σε = σ > 0, the extended solution (ṽε, p̃ε) of

(5.2) converges weakly in [H1
0 (Ω)]d × L2(Ω)/R to the unique solution (v̄, p̄) of the

Brinkman law

−ν∆v̄ +
ν

σ2
Mv̄ +∇p̄ = f in Ω,

div v̄ = 0 in Ω,

v̄ = 0 on ∂Ω.

2. For large obstacles, such that limε→0 σε = 0, the extended and rescaled solution

( ṽ
ε

σ2
ε
, p̃ε) of (5.2) converges strongly in [L2(Ω)]d × L2(Ω)/R to the unique solution
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(v̄, p̄) of Darcy’s law

νMv̄ +∇p̄ = f in Ω,

div v̄ = 0 in Ω,

v̄ · n = 0 on ∂Ω.

3. For very small obstacles, such that limε→0 σε = +∞, the extended solution (ṽε, p̃ε)

of (5.2) converges strongly in [H1
0 (Ω)]d × L2(Ω)/R to the unique solution (v̄, p̄) of

the homogenized Stokes equations

−ν∆v̄ +∇p̄ = f in Ω,

div v̄ = 0 in Ω,

v̄ = 0 on ∂Ω.

The definition of M is given by

Mij =

∫︂
Rd\O

∇ωi(y) · ∇ωj(y) dy,

where ωi, 1 ≤ i ≤ d, are the solutions of the following cell problems, which differ in

the choice of the boundary conditions with respect to the space dimension d. The cell

problems are defined by: find vector fields ωj and pressure fields πj , such that

−∆ωi +∇πi = 0 in Rd \ O,

divωi = 0 in Rd \ O,

ωi = 0 in O,

subject to the boundary conditions

ωi(x) →

⎧⎨⎩ei log (|x|) as |x| → ∞ for d = 2,

ei as |x| → ∞ for d ≥ 3.

However, we have from [AM97, Proposition 3.2] that whatever the shape or the size
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of the obstacle O, in two space dimensions the matrix M is always the same

M = 4πI.

Note, that L from the two-scale periodic setting in Section 5.6.1, and M are totally

different tensors, although they are not entirely unrelated, since M−1 is the rescaled

limit of L for sε → 0 in the unit cell Y , see [All91].

5.7 Discretization of the Homogenized Problems

The homogenized equations are discretized with the same type of Hdiv-conforming mixed

finite element spaces as the microscopic Stokes system. The discretization follows again

[CKS06].

Therefore, we choose the discretization spaces

Xℓ = Vℓ ×Qℓ

from (5.11) equipped with a homogeneous Dirichlet boundary condition. We write the

spaces to the mesh size hℓ > h to mark that we use the resulting operators inside the

multilevel methods on the coarser mesh levels ℓ < L.

This yields the following four discrete bilinearforms.

1. For Darcy’s law derived with the two-scale convergence method we define D̄L−1,ℓ(·, ·) :
Xℓ ×Xℓ → R by

D̄L−1,ℓ

(︄(︄
v̄ℓ

p̄ℓ

)︄
,

(︄
φ

q

)︄)︄
= ν

(︁
L−1v̄ℓ,φ

)︁
Ω
− b
(︁
p̄ℓ,φ

)︁
− b
(︁
q, v̄ℓ

)︁
.

2. For Brinkman’s law we define B̄M ,ℓ(·, ·) : Xℓ ×Xℓ → R by

B̄M ,ℓ

(︄(︄
v̄ℓ

p̄ℓ

)︄
,

(︄
φ

q

)︄)︄
= νaℓ

(︁
v̄ℓ,φ

)︁
+

ν

σ2

(︁
Mv̄ℓ,φ

)︁
Ω
− b
(︁
p̄ℓ,φ

)︁
− b
(︁
q, v̄ℓ

)︁
.

3. For Darcy’s law derived with the energy method we define D̄M ,ℓ(·, ·) : Xℓ×Xℓ → R
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by

D̄M ,ℓ

(︄(︄
v̄ℓ

p̄ℓ

)︄
,

(︄
φ

q

)︄)︄
= ν

(︁
Mv̄ℓ,φ

)︁
Ω
− b
(︁
p̄ℓ,φ

)︁
− b
(︁
q, v̄ℓ

)︁
.

4. For the Stokes equations we define S̄ℓ(·, ·) : Xℓ ×Xℓ → R by

S̄ℓ

(︄(︄
v̄ℓ

p̄ℓ

)︄
,

(︄
φ

q

)︄)︄
= νah

(︁
v̄ℓ,φ

)︁
− b
(︁
p̄ℓ,φ

)︁
− b
(︁
q, v̄ℓ

)︁
.

Corresponding to each of these four homogenized bilinearforms we denote their algebraic

analogues by

D̄L−1,ℓ, B̄M ,ℓ, D̄M ,ℓ, and S̄ℓ. (5.19)

Note that the two Darcy operators differ only in the choice of the permeability tensor.

5.7.1 Assembly of the Effective Tensor

As we have seen, the discrete homogenized operators B̄M ,ℓ, D̄M ,ℓ, and S̄ℓ obtained

by the energy method can directly be specified in the two-dimensional case, since their

representation depends on the constant tensorM = 4πI and otherwise only on the ratio

σ, that has to be specified. For the Darcy operator D̄L−1,ℓ obtained by the two-scale

convergence method, however, we first need to solve d cell-problems to assemble the

effective permeability tensor L.

Therefore, let T Y
h be a triangulation of the unit cell Y = (0, 1)d such that the boundary

of the obstacle is aligned with T Y
h . We extend the y-periodic velocity and pressure fields

of the cell-problems with the same Brinkman extension as formulated for the periodically

perforated case in Section 5.2.

As discretization space we choose also Hdiv-conforming finite element basis functions

and incorporate the periodicity of the boundary values into the discretization space which

is realized by identifying opposite sides of the boundary ∂Y . The velocity and pressure
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spaces are defined on Y with respect to T Y
h by

V #
h = {φ ∈ Vh(Y ) : φ is y-periodic},

Q#
h = {q ∈ Qh(Y ) : q is y-periodic},

and the discretization space is

X#
h = V #

h ×Q#
h .

The discrete cell-problems that need to be solved are then: for j = 1, . . . , d find (ωh,j , πh,j) ∈
X#

h , such that

ah
(︁
ω̃h,j ,φ

)︁
+ ζ
(︁
ω̃h,j ,φ

)︁
O − b

(︁
π̃h,φ

)︁
− b
(︁
q, ω̃h,j

)︁
=
(︁
ej ,φ

)︁
Y

for all (φ, q) ∈ X#
h , where ah(·, ·) and b(·, ·) are defined with respect to Y .

Following [Neu96] we solve the discrete cell-problems on a comparable mesh refinement

level as in the periodically repeated setting, i.e., on the coarsest level where the geometric

structure is resolved. Then the entries of the permeability tensor L are assembled as

Lij =

∫︂
F
ω̃h,i(y) · ej dy.

Due to the periodicity of the problem, the solutions are defined only up to a constant,

which has no influence on the permeability tensor, since the defining integral is equivalent

to a formulation over the derivatives ∇ω̃h,i, see (5.16).

5.8 Numerical Tests

In this section, we test the performance of the introduced two-scale multilevel Schwarz

preconditioner.

We will restrict the presentation to the case of two space dimensions and the choice of

RTk ×Qk mixed finite elements as Hdiv-conforming discretization space. Furthermore,

we will only consider the multiplicative Schwarz algorithm as smoother.

To justify the effectiveness of the homogenizing two-scale multilevel Schwarz method

we will compare the performance results to the standard multigrid method, where the

fine-scale operator Aε
ℓ is evaluated on the coarse scale, as defined in the following. We
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use a multigrid method with a quadrature rule designed such that the fine-scale structure

of the domain is still resolved exactly by the integrals on the coarse-scale levels. To

this end, we partition each cell T ∈ Thℓ
on each coarse-scale level ℓ0 ≤ ℓ ≤ ℓr − 1 into

at least 2d(ℓr−ℓ) subcells (rectangles or hexahedra) of size hℓr and evaluate the coupled

Stokes-Brinkman bilinearform Ãε
h(·, ·) on each of the subcells with a Gaussian quadrature

rule, such that the integration process is essentially the same as on the resolved level

ℓr. Moreover, for ease of implementation, we divide each cell T into 2d(ℓr+1) subcells

regardless of the level. This assures the accuracy of the integration on the coarsest level

ℓ0, since it resolves the fine-scale structure exactly and, consequently, on every other

coarse-scale level, too.

Although this procedure slows down the assembly process of the code and is much more

expensive than a normal multigrid algorithm would be, it preserves the information of the

fine-scale structure in the integration process and therefore guarantees the performance

of the standard multigrid scheme on the coarse-scale levels in terms of iteration counts of

GMRES. Thus, it serves as a benchmark test for the homogenizing two-scale multilevel

Schwarz methods.

The outline of the section is as follows.

In Section 5.8.1 we begin with the introduction of a geometrically simple, axisymmetric

model problem on the unit cell, which is repeated over the whole domain Ω. For this

geometry it is demonstrated that the solution is pushed towards zero inside the obstacle

regions when the penalty factor ζ increases.

Then, in Section 5.8.2 we draw our attention to test the performance of the constructed

two-scale multilevel Schwarz method with the different choices of operators on the effective

coarse-scale, and test it against the standard multigrid using the fine-scale operator

evaluated on the coarse scale that serves as a benchmark test. A first application of

the method with the analytical coarse-scale operators does not lead to a convincing or

even uniform result, and rises the question of how to choose the permeabilities optimally,

which is tested in a series of test runs for various choices of the pore size ε, the penalty

factor ζ, the mesh size h and the permeability tensor K = κI, that is a multiple of the

identity tensor in case of the axisymmetric model problem, also in the case of the Darcy

operator derived by using the two-scale convergence method.

For the Brinkman operator we find in Section 5.8.3 a dependence of κ on the penalty

factor ζ, whereas for the Darcy operator the performance tests do not lead to a clear view
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F

O
Γ

ε = 1 ε = 0.5 ε = 0.25 ε = 0.125

Figure 5.5: Periodic domains Ωε for different choices of ε.

on the dependencies. Nevertheless, we can choose an optimal κ in both cases, Brinkman

as well as Darcy. As it turns out, the choice of the Brinkman operator within the two-

scale multilevel Schwarz method leads to comparable performance results as the standard

multigrid, when only one coarse-scale level is considered.

But with fixing the coarsest level to zero the Brinkman operator beats the standard

multigrid method by yielding the best performance results, i.e., the lowest iteration counts

of GMRES, as observed in Section 5.8.4.

This result is confirmed in Section 5.8.5 in a test with a more anisotropic geometry,

where also another choice of K is considered, tailored to the shape and orientation of

the obstacle inside the unit cell. As it turns out this method yields the best performance

for small periods.

5.8.1 An Axisymmetric Model Problem

We start with the introduction of a geometrically simple model problem with an ob-

stacle region that is completely contained within the fluid region. For this setting the

assumptions on the geometry of the homogenization theory of Section 5.6 apply, and

the homogenized permeability tensor is always a multiple of the identity tensor, also

when calculated with the cell-problems in case of the two-scale convergence theory in

Section 5.6.1.

Let the reservoir Ω = (0, 1)2 be the open and bounded two-dimensional unit-square.

The obstacle part O of the unit cell (or standard periodicity cell) Y = (0, 1)2 is defined

as

O = [0.25, 0.75]2.
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x2 = 0.5

⃓⃓ ṽ
ε h
(x

1
,
0
.5
)⃓⃓

x1

Figure 5.6: Sketch of the geometry and the flow setting of the axisymmetric
model problem (left). Magnitude of the velocity for different values of
the penalty constant ζ plotted logarithmically along the line x2 = 0.5
(right). Samples calculated with RT0 ×Q0 on a mesh with h = 1

32 .

As in the construction of the geometry in Section 5.1 the periodically perforated domain

Ωε consists of the repeated fine-scale structure determined by the definition of Y and

period ε, see Figure 5.5. The calculations however are performed with the extended

coupled Stokes-Brinkman problem on the whole domain Ω, where the definition of Ωε

serves mainly the purpose of locating the obstacles inside Ω.

For the tests, the period is chosen as ε = 2−r with r ∈ {0, 1, 2, . . .} and the do-

main Ω is divided into 22ℓ square mesh cells of size h = 2−ℓ, with the level ℓ ∈
{ℓ0, . . . , ℓr − 1, ℓr, . . . , L}, where the coarsest and the resolved levels are given by ℓ0 = 0

and ℓr = r + 2, respectively, compare also Figure 5.3. We consider a no-slip Dirichlet

boundary condition on top and bottom, an inflow on the left, and an outflow on the right

prescribed by an essential Dirichlet boundary condition on the velocity ṽεh. as visualized

in the left part of Figure 5.6 for ε = 1. The force and the boundary condition are defined

as

f = 0, g =

(︄
x2(1− x2)

0

)︄
, (5.20)

and the fluid viscosity is set to ν = 1. The test case is related to a pressure driven

Poiseuille flow, assumed that there wouldn’t be an obstacle.
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By calculations with varying penalty factors

ζ ∈
{︁
1, 102, 104, 106

}︁
,

and by observation of the magnitude of the velocity along the line x2 = 0.5 we can

clearly see in Figure 5.6 that the discrete velocity is pushed towards zero in the obstacle

region 0.25 ≤ x1 ≤ 075 the more ζ increases. The calculations have been done using

a discretization with RT0 × Q0 finite elements to the mesh size h = 1
32 . Heuristically,

this confirms the estimate (5.10) and validates the coupled Stokes-Brinkman model as

an approximation to the periodically perforated fine-scale porous media flow equations

(5.3).

5.8.2 Comparison of the Analytical Coarse-scale Operators

We now test the performance of the homogenizing two-scale multilevel Schwarz pre-

conditioner by a comparison of the four different homogenized coarse-scale operators,

as analytically derived by the homogenization theory in Section 5.6, and the resolved

fine-scale operator. We will use a preconditioned GMRES to iteratively solve the linear

system of equations until the starting residual has been reduced by a factor of 10−8.

As already mentioned, we will restrict the investigation to the case of a multiplicative

Schwarz smoother Mmu,ℓ and, in a first step, reduce the method to the case of only one

coarse-scale level, such that we solve exactly on the finest coarse-scale level ℓr − 1.

We choose the axisymmetric geometry for the standard periodicity cell Y along with

the force and Dirichlet boundary condition as defined in Section 5.8.1, and test the

performance of the preconditioner by counting the iterations GMRES takes to converge

for different periods ε. As can be seen in Figure 5.5 the resolved level ℓr increases with

decreasing ε, as does the coarsest level ℓ0, since we set it as

ℓ0 = ℓr − 1,

such that only one coarse-scale level is used. This has the advantage of minimizing the

influence of the coarse-scale smoothing steps and allowing a more detailed view of the

method. Furthermore, we set the penalty constant ζ = 104. Although this choice seems

arbitrary at first glance, it results in a good balance between accuracy and effort of the

method, as we will see later in the discussion of this section.
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As described in Section 5.7.1 we assemble the permeability tensor L of the Darcy

operator D̄L−1,ℓ obtained by the two-scale convergence method by solving the two cell-

problems on the unit cell on a mesh as in the left graph of Figure 5.5 for ε = 1 before

running the calculations on the periodic domains with ε < 1. The inverse of the obtained

permeability tensor is a multiple of the identity as expected and given by

L−1 = 77.847I. (5.21)

The permeability tensor of the Darcy operator D̄M ,ℓ obtained by the energy method is

given by M = 4πI, thus, we choose it as

M = 12.566I. (5.22)

In case of the Brinkman operator B̄M ,ℓ the tensorM is divide by the square of the ratio

σ = limε→0 σε. Since we are not in the limit case ε → 0 but calculate with a fixed ε > 0

we decide in a first calculation to choose σ2
ε as defined in (5.18) instead of σ2 to get a

notion of how the method behaves for different permeabilities. This gives us for ε1 =
1
2

and ε2 =
1
8 , respectively,

1

σ2
ε1

M = 290.071I,
1

σ2
ε2

M = 1160.280I. (5.23)

For the Stokes operator S̄ℓ no tensor needs to be specified.

With the permeabilities as above, a first comparison of the two-scale multilevel Schwarz

method is summarized in Table 5.1 with the four different homogenized operators D̄L−1,ℓ,

D̄M ,ℓ, B̄M ,ℓ, S̄ℓ, as well as the standard multigrid using the fine-scale operator Aε
ℓ

evaluated on the coarse scale. The calculations have been done for polynomial degrees

k = 0 and k = 1, with the fine-scale structure specified by ε = 1
4 and ε = 1

8 with

corresponding resolved level ℓr = 4 and ℓr = 5, respectively, as well as coarse level

ℓ0 = ℓr − 1.

Since the resolved level grows for smaller values of ε, the coarsest level on which a

resolved calculation of the porous media flow makes sense grows as well. That is why the

presentation of the iteration counts always starts one level further below when decreasing

ε.

For k = 0 the iteration counts do not really flatten out for increasing computational

137



Chapter 5 Homogenizing Two-scale Multilevel Schwarz Preconditioner

D̄L−1,ℓ D̄M ,ℓ B̄M ,ℓ S̄ℓ Aε
ℓ

ε 2−2 2−3 2−2 2−3 2−2 2−3 2−2 2−3 2−2 2−3

ℓr 4 5 4 5 4 5 4 5 4 5
ℓ0 3 4 3 4 3 4 3 4 3 4

L =

k = 0

4 36 53 18 22 18
5 41 60 58 91 19 14 24 29 17 14
6 45 71 60 >100 22 16 27 29 20 16
7 47 76 63 >100 25 19 30 31 24 19
8 48 80 65 >100 27 23 32 33 28 23

k = 1

4 76 >100 20 26 15
5 90 >100 >100 >100 22 14 28 34 15 12
6 88 >100 >100 >100 22 15 28 36 15 12
7 85 >100 >100 >100 23 16 29 37 14 13
8 f >100 >100 >100 22 16 28 37 14 13

Table 5.1: Iteration counts of GMRES preconditioned by the two-scale multilevel
Schwarz method with analytically chosen effective tensors: Darcy
with L−1 (1), Darcy withM (2), Brinkman (3), Stokes (4), standard
multigrid (5). ℓ0 = ℓr − 1, RTk ×Qk, ζ = 104.

mesh level L for all operators, also for the resolved fine-scale operator, which is better

for k = 1.

We observe poor convergence results for both Darcy operators D̄L−1,ℓ and D̄M ,ℓ, which

are especially growing with decreasing ε, and even exceed 100 iteration steps, or fail at

all (marked with an f, because of failing SVD of the coarse matrix).

The Brinkman operator B̄M ,ℓ yields the best results of the homogenized operators

and is equally good as Aε
ℓ when k = 0, but not for k = 1.

The results of the Stokes operator are not as poor as those of the Darcy operators,

but not comparable to Aε
ℓ , and for k = 1, even growing with decreasing ε. So far, the

homogenization approach does not seem to give a remarkable improvement in any of the

cases. But what needs to be noticed, is that the very different choices of the permeability

tensors lead to quite different convergence results of the preconditioned GMRES method,

which rises the question of how to choose the effective tensor to get the best convergence

results, and finally beat the resolved fine-scale operator Aε
ℓ .
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5.8.3 Optimal Effective Tensors for Two-level Convergence

The different analytical approaches to homogenizing system (5.3) lead to very different

performance results in the practical application of the two-scale multilevel Schwarz

method. Moreover, the effective tensor varies widely, as observed in the last section. This

raises the question of how to choose the effective tensor in Darcy’s law or the Brinkman

equations optimally with respect to the performance of the preconditioned GMRES

method, i.e., such that GMRES requires the least number of iterations to converge.

Therefore, let K be the effective tensor of the homogenized equations for the model

problem with geometric structure as specified in Figure 5.5, either regarding Darcy or

Brinkman. Since the geometry of Y is axisymmetric, the effective tensor is a multiple of

the identity, i.e.,

K = κI,

for some scalar value κ > 0, compare (5.21), (5.22) and (5.23).

By scanning the parameter spaces we test the dependencies of κ with respect to the

penalty factor ζ and to the geometry of the reservoir measured by the pore size ε for the

axisymmetric test case.

As it turns out, we find a linear dependence of κ on ζ in case of the Brinkman operator.

The parameter study is accomplished for polynomial degree k = 0 and a two-scale two-

level method to reduce its cost. The results are then confirmed in another more specific

series of calculations for k = 1, as well as for different mesh refinement levels to exclude

dependencies on the polynomial degree k or the mesh size h. In Section 5.8.5 the choice

of K is also discussed for another geometric setting of Y .

We start with the parameter study for k = 0 using a two-scale two-level Schwarz

preconditioner and count the iterations GMRES takes to converge for different values

of κ as ζ is varied and ε decreases. We choose L = ℓr as the computational level and

ℓ0 = ℓr − 1 as the coarse-scale level.

The results for the Brinkman operator are shown in Table 5.2 and for the Darcy

operator in Table 5.3. Here, all values that are close to the minimum are printed in bold

and the proposed law is highlighted by a frame. We see that both methods become more

and more sensitive to variations in κ the more ε decreases. But the iteration counts are

not dependent on ε for an optimal choice of κ, what is expected, since the operators
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ζ κ 1 10 102 103 104 105 106

ε = 1
2

1 10 10 9 13 14 14 15

10 10 10 9 13 14 14 15

102 10 10 9 13 14 14 15

103 11 11 9 12 13 14 14

104 15 15 13 12 13 14 14

105 18 18 18 16 15 15 16

106 22 22 22 21 19 17 18

ε = 1
4

1 12 12 13 23 40 45 47

10 12 12 13 23 40 45 47

102 12 12 12 22 38 44 45

103 15 15 13 16 31 36 37

104 22 22 21 16 23 32 33

105 33 33 31 23 23 29 33

106 68 68 67 62 34 30 35

ε = 1
8

1 12 12 14 25 64 >100 >100

10 12 12 14 24 63 >100 >100

102 12 12 13 23 60 >100 >100

103 16 15 13 17 44 95 >100

104 29 28 26 15 23 55 76

105 43 43 40 27 22 35 61

106 95 95 91 65 33 34 50

ε = 1
16

1 12 12 14 25 61 >100 >100

10 12 12 14 25 61 >100 >100

102 12 12 13 24 58 >100 >100

103 16 15 13 18 41 >100 >100

104 31 30 28 15 20 60 >100

105 55 55 52 34 17 30 86

106 86 86 83 61 29 27 51

ε = 1
32

1 12 12 14 26 61 >100 >100

10 12 12 14 26 60 >100 >100

102 12 12 13 25 59 >100 >100

103 15 15 13 18 44 >100 >100

104 31 31 28 15 21 59 59

105 65 65 63 43 15 23 23

106 >100 >100 >100 77 31 21 21

Table 5.2: Parameter study for Brinkman operator. Iteration counts of two-scale
two-level preconditioner on computational level L = ℓr and coarse
grid level ℓ0 = ℓr − 1. RT0 ×Q0.
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ζ κ 1 10 102 103 104 105 106

ε = 1
2

1 16 16 11 13 14 14 15

10 16 16 11 12 14 14 15

102 15 15 11 13 14 14 14

103 15 15 13 12 13 14 14

104 16 16 15 12 13 14 14

105 20 20 19 17 15 15 16

106 22 22 22 21 19 17 17

ε = 1
4

1 51 40 23 23 40 45 47

10 51 40 23 22 40 45 46

102 50 39 22 21 38 44 45

103 51 42 25 15 31 36 37

104 56 54 33 16 23 32 33

105 61 60 50 24 23 29 33

106 79 78 78 64 34 30 36

ε = 1
8

1 99 79 44 32 63 >100 >100

10 98 79 44 32 62 >100 >100

102 97 77 43 31 59 >100 >100

103 92 73 44 23 44 95 >100

104 >100 94 55 21 23 55 76

105 >100 >100 80 32 21 35 61

106 >100 >100 >100 >100 35 34 49

ε = 1
16

1 >100 >100 85 57 66 >100 >100

10 >100 >100 85 57 65 >100 >100

102 >100 >100 84 55 63 >100 >100

103 >100 >100 79 42 45 >100 >100

104 >100 >100 76 33 23 60 >100

105 >100 >100 >100 51 19 30 86

106 >100 >100 >100 78 33 27 51

ε = 1
32

1 >100 >100 >100 >100 f f >100

10 >100 >100 >100 >100 f f >100

102 >100 >100 >100 >100 f f >100

103 >100 >100 >100 82 f f >100

104 >100 >100 >100 58 f f >100

105 >100 >100 >100 70 f f 80
106 >100 >100 >100 >100 f f 43

Table 5.3: Parameter study for Darcy operator. Iteration counts of two-scale
two-level preconditioner on computational level L = ℓr and coarse
grid level ℓ0 = ℓr − 1. RT0 ×Q0.
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Figure 5.7: Refined parameter study for Brinkman operator with κ = αζ (left),
and Darcy operator with κ = β · 103 (right). RTk ×Qk, ε =

1
16 .

represent the effective behavior of the oscillating equations.

When Brinkman is chosen as coarse-scale operator, the results in Table 5.2 suggest a

linear dependence of κ on ζ as by

κ(ζ) = αζ

with a constant α ≈ 0.1 to get optimal iteration counts. A refined series of calculations

for ε = 1
16 and ζ ∈

{︁
103, 104, 105

}︁
yields 0.22 ≤ α ≤ 0.28 in the case of RT0 ×Q0 finite

elements, see the left plot in Figure 5.7.

Another calculation with RT1 × Q1 in Figure 5.7 confirms this observation also for

polynomial degree k = 1. Here, we observe optimal iteration counts when α lies in the

intervals [0.24, 0.4] for ζ = 103, [0.2, 0.39] for ζ = 104 and [0.08, 0.23] for ζ = 105.

To obtain the best choice for all considered values of ζ, we set α = 0.235.

Darcy as coarse scale operator, on the other hand, appears to produce optimal iteration

counts, when κ is roughly between 103 and 104 for ζ ≤ 104, with a shift to the range

between 104 and 106, when ζ ≥ 105. A linear dependence of κ on ζ as for the Brinkman

operator cannot be assumed. The Darcy operator is much more sensitive to variations

in κ than Brinkman and relies on a correct choice of κ, especially for small ε-values.

We also encountered the case where LAPACK failed to produce the SVD of the coarse

matrix, which is marked by an f in Table 5.3. In particular, with a further refinement of the

periodic structure by choosing ε = 1
32 the computation of the SVD of the coarse matrix

failed in the range in focus, so that neither the hypothesis 103 ≤ κ ≤ 104 can be validated

for large ζ ≥ 105, nor a dependence of κ on ζ can be excluded. Nevertheless, we can
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Figure 5.8: Independence of optimal κ on mesh size h for Brinkman operator.
RT0 ×Q0, ε =

1
8 .

determine an optimal κ for fixed ζ in a refined series of calculations. ForRT0×Q0 elements

this yields optimal values of κ in the intervals [103, 3 · 103] for ζ = 103, [3 · 103, 9 · 103]
for ζ = 104, and [1.2 · 104, 2 · 104] for ζ = 105. Calculations with RT1 × Q1 elements

affirm this outcome for each ζ by observing the lowest iteration counts for values of κ in

[4 · 103, 7 · 103] for ζ = 103, [6 · 103, 7 · 103] for ζ = 104, and κ = 2 · 104 for ζ = 105, see

the right two plots in Figure 5.7.

The optimal choice of κ is not dependent on the mesh size h, as we can observe in

another series of calculations for different mesh sizes to each ζ ∈
{︁
103, 104, 105

}︁
visualized

in Figure 5.8. The lowest iteration counts are always measured at the same κ, regardless

of the choice of h. Only for ζ = 104 do we see slight deviations from the optimum with

a slight shift to smaller values of κ when h ≤ 1
256 . However, since the values vary by

only one iteration, this is within an acceptable tolerance in terms of performance of the

method. Another observation in Figure 5.8 is that the optimal κ for ζ = 105 differs from

the calculated optimum 0.235 for ζ ≤ 104 and has a value of approximately 0.05. In the

case k = 1 and ε = 1
16 we already have seen this slight deviation to a smaller α, but there

less sensitive to variations in κ, see the second left graph in Figure 5.7.

Recalculating Table 5.1 with the optimal permeabilities chosen as

M = 0.235ζI (5.24)

for the Brinkman operator, and

M = 6 · 103I
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D̄
∗
M ,ℓ B̄

∗
M ,ℓ Aε

ℓ

ε 2−2 2−3 2−4 2−2 2−3 2−4 2−2 2−3 2−4

ℓr 4 5 6 4 5 6 4 5 6
ℓ0 3 4 5 3 4 5 3 4 5

L =

k = 0

4 21 17 18
5 22 18 17 13 17 14
6 24 20 22 19 16 12 20 16 12
7 28 23 24 23 19 15 24 19 15
8 33 27 28 27 23 19 28 23 19

k = 1

4 21 17 15
5 22 18 17 14 15 12
6 22 18 23 18 14 11 15 12 10
7 21 17 21 17 14 11 14 13 11
8 20 17 20 16 14 12 14 13 12

Table 5.4: Iteration counts of GMRES preconditioned by the two-scale multilevel
Schwarz method with optimized effective tensor for Darcy (left) and
Brinkman (middle); standard multigrid (right). Coarsest level ℓ0 =
ℓr − 1. RTk ×Qk, ζ = 104.

for the Darcy operator, leads to the improved results as shown in Table 5.4. The Darcy

operator with optimal permeability performs much better than before and even shows

lower iteration numbers than the Stokes operator, compare Table 5.1. In particular now it

remains constant for k = 1 as ε decreases. Nevertheless, the Darcy and Stokes operators

do not capture the oscillations of the residual at the coarse scale as well as the Brinkman

or the resolved fine-scale operator, both of which show fewer iteration counts. Specifically,

the performance of the optimized Brinkman operator B̄M ,ℓ is competitive with the

benchmark test with Aε
ℓ , showing broadly the same convergence results.

5.8.4 Two-scale Multilevel Schwarz with Optimized Effective Tensor

The results from the last section are promising with respect to the Brinkman operator

compared to the resolved fine-scale operator, and we are going to test the behavior of

both when applied to the actually intended case when the coarsest level of the multilevel

algorithm is fixed to zero, instead of growing alongside the refinement of the periodic

structure. Since the Darcy operators D̄L−1,ℓ and D̄M ,ℓ, as well as the Stokes operator
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B̄
∗
M ,ℓ Aε

ℓ

ε 2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−5

ℓr 4 5 6 7 4 5 6 7

L =
4 17 15
5 17 14 15 18
6 18 14 11 15 18 22
7 17 14 12 10 15 19 22 19
8 16 14 12 11 14 19 23 20

Table 5.5: Comparison of homogenizing two-scale multilevel Schwarz method
with optimally chosen Brinkman operator (left) and standard multi-
grid (right), when coarse level ℓ0 = 0. RT1 ×Q1, ζ = 104.

S̄ℓ did not perform as well as the Brinkman operator B̄M ,ℓ, we focus on the latter only,

and restrict the presentation to the polynomial degree k = 1.

The results of the comparison of B̄M ,ℓ with optimally chosen permeability tensor as in

(5.24), andAε
ℓ for the case ℓ0 = 0 are given in Table 5.5. The Brinkman operator performs

exactly the same as when applied on one coarse-scale level only, but the performance

of the resolved fine-scale operator deteriorates. Whereas the iteration counts slightly

decrease for smaller periods ε when B̄M ,ℓ is chosen, the numbers for Aε
ℓ rather grow,

leading to approximately half of the iteration counts of the Brinkman operator compared

to the benchmark test with the resolved fine-scale operator for ε ≤ 2−4.

5.8.5 Anisotropic Permeability

Finally, we want to test the performance of the two-scale multilevel Schwarz preconditioner

with the Brinkman operator in a less simple setting. Therefore, we change the geometry

of the unit cell as specified in Figure 5.9, such that the resulting effective tensor will not

be isotropic anymore. For the performance tests, we again choose the force to be zero

and a Dirichlet boundary condition as in (5.20) with an inflow on the left, an outflow on

the right and a no-slip condition on top and bottom. Furthermore, we choose the penalty

factor as ζ = 104 and set the coarsest level to ℓ0 = 0.

In addition to the Brinkman operator B̄
∗
M ,ℓ, that is designed and optimized with

respect to the axisymmetric geometry, we introduce another Brinkman operator B̄
∗
L−1,ℓ,

where the effective tensor is derived via solving the unit cell problems so that it is rotated
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Y Ωε for ε = 1
8

Figure 5.9: Geometry of unit cell Y and periodically perforated domain Ωε for
anisotropic test case.

and scaled according to the orientation of the obstacles in the anisotropic example. To

accomplish this approach, we solve the cell problems (5.17) as in the derivation of Darcy’s

law (via the two-scale convergence method) on the unit cell at the coarsest resolved level

ℓr to obtain

L−1 =

(︄
831.763 −219.616

−219.616 279.386

)︄
,

and adjust L−1 with a scaling factor α, obtained by scanning the parameter space as in

Section 5.8.3. The best choice of α for the case ζ = 104 lies in the interval [13, 14], see

Figure 5.10. Thus, we set α = 14 and assemble the Brinkman equations on the coarse

scale with the resulting effective tensor

K = αL−1.

In Table 5.6 we test both two-scale multilevel Schwarz methods, regarding B̄
∗
M ,ℓ and

B̄
∗
L−1,ℓ, as well as the standard multigrid method with respect to the anisotropic geometry.

First, by a comparison of the results in Tables 5.6 and 5.5, we notice that the anisotropic

geometry has an effect on the performance of the two-scale multilevel Schwarz method

with the Brinkman operator B̄
∗
M ,ℓ, as for the standard multigrid method. When using

B̄
∗
M ,ℓ, the iteration counts in the anisotropic test case are slightly greater than for the

axisymmetric geometry. Still, for B̄
∗
M ,ℓ the numbers flatten out with decreasing period.

The standard multigrid performs slightly better for larger values of ε ≥ 2−4 in the
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Figure 5.10: Anisotropic geometry. Optimal α for Brinkman operator withK =
αL−1. RT1 ×Q1, ζ = 104.

B̄
∗
M ,ℓ Aε

ℓ B̄
∗
L−1,ℓ

ε 2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−5

ℓr 4 5 6 7 4 5 6 7 4 5 6 7

L =
5 21 12 23
6 21 17 12 14 23 20
7 20 17 15 13 15 17 22 19 16
8 20 17 15 15 13 15 17 21 21 18 16 14

Table 5.6: Anisotropic case. Comparison of standard multigrid (Aε
ℓ), two-scale

multilevel Schwarz with operator optimized for axisymmetric test case
(B̄

∗
M ,ℓ), and two-scale multilevel Schwarz with operator optimized for

anisotropic geometry (B̄
∗
L−1,ℓ). ℓ0 = 0, RT1 ×Q1, ζ = 104.

anisotropic test, but for decreasing ε, which is the intended situation, the numbers are

growing and we see better test results for the two-scale multilevel Schwarz method with

B̄
∗
M ,ℓ as operator.

Now, turning our attention to the two-scale multilevel Schwarz method with the newly

introduced Brinkman operator B̄
∗
L−1,ℓ that is designed and optimized with respect to the

non-symmetric geometry, we see, that it nearly performs the same as B̄
∗
M ,ℓ with about 1

iteration more for ε ≥ 2−4. But, for a smaller period B̄
∗
L−1,ℓ this method shows the best

performance in this last test setting with only 14 iterations, which is slightly better than

the 15 iterations of the Brinkman operator with B̄
∗
M ,ℓ.
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5.9 Conclusion

In this chapter we have developed and applied an efficient and performant two-scale

multilevel Schwarz preconditioner to an Hdiv-conforming discretization of a coupled

Stokes-Brinkman model that approximates the resolved flow of a fluid through a pore-

system of periodically repeated perforated cells at pore-scale. The provided method

develops the ideas in [Neu96] for diffusion problems and extends it to the case of a

resolved Stokes flow in perforated domains. Different homogenized coarse-scale operators,

known from the literature, have been compared to the standard multigrid preconditioner

with respect to the convergence speed of GMRES preconditioned by the homogenizing

two-scale multilevel Schwarz method. It was found that the performance of the analyt-

ical homogenized coarse grid operators is non-optimal when used within the two-scale

multilevel Schwarz method. However, an optimization of the effective tensor with respect

to the iteration counts of GMRES yields an excellent performance of the method, where

the Brinkman operator appears to be the best choice regarding the pore size and the

mesh size under consideration.

148



Chapter 6

Outlook and Summary

I conclude this thesis with an outlook on solving pore-scale computations of flow and

deformation in nonlinear poroelastic media. In addition, the performance of the Schwarz

method is discussed when interface conditions are imposed inside the domain.

In Section 6.1, a two-scale multilevel Schwarz preconditioner is considered for a nonlin-

ear fluid-structure interaction problem on periodic domains that utilizes a homogenized

model of linear poroelasticity as coarse-scale operator within a Newton method.

Section 6.2 briefly discusses the imposition of strong or weak interface conditions

inside the domain to extend a physical phase accurately to an extended (virtual) region.

We provide examples for Stokes flow, linear elasticity, and a fluid-structure interaction

problem, and demonstrate that overlapping two-level Schwarz methods cannot be applied

out of the box to these kinds of problems, which makes a more in-depth investigation of

the Schwarz preconditioner necessary.

Finally, this thesis is briefly summarized in Section 6.3.

6.1 Two-scale Multilevel Schwarz Preconditioner for

High-resolution FSI Problems in Poroelasticity

As model we assume a FSI (fluid-structure interaction) problem in an ALE (arbitrary

Lagrangian-Eulerian) framework of a coupled laminar Stokes flow and an elastic solid

body that allows for nonlinear deformations described by a St. Venant-Kirchhoff material

law.

Let the open and bounded, three-dimensional computational domain

Ω = Ωf ∪ Γ ∪Ωs

consist of a connected fluid part Ωf , a connected solid matrix Ωs and an interface Γ ,
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arranged by periodically repeated microcells Y ε
i = (0, ε)3 of size ε, such that

Ω =
⋃︂

Y ε
i .

Each microcell is the image of a scaled and shifted standard periodicity cell Y = (0, 1)3

consisting of an open and bounded fluid domain Yf and an open and bounded solid

matrix Ys, such that

Y = Yf ∪ ΓY ∪ Ys,

where ΓY is the interface between Yf and Ys. Let u denote the solid displacement, p the

fluid pressure in the system, and w = v−∂tu the relative velocity where v is the seepage

velocity of the fluid. Furthermore, the deformation gradient F and its determinant J are

defined by

F = I +∇u, J = det(F ).

F describes the local change of relative position under deformation and J denotes the

local change of volume at a given time t, cf. [Ric17, Chapter 2].

The ALE formulation of the fluid-structure interaction problem we focus on is given

in dimensionless form by

−div (F (λ tr(ε(u))I + 2µε(u))) = fs in Ωs,

−div
(︂
ε2J

(︂
∇ (w + η∂tu)F

−1 +
(︁
∇ (w + η∂tu)F

−1
)︁T)︂

F−T

−JpF−T
)︂
= Jff in Ωf ,

div
(︁
JF−1 (w + η∂tu)

)︁
= 0 in Ωf ,

(6.1)

where the strain ε(u) = 1
2

(︁
∇u+∇uT

)︁
is the symmetric gradient and fs and ff are

given forces acting on the solid and fluid domain, respectively. Furthermore, λ and µ

denote the Lamé constants of elasticity and η = TT
Tc

is the ratio of the so-called Terzaghi

time TT = ν
Λε2

and the characteristic time Tc, for given fluid viscosity ν and characteristic

Young’s modulus Λ.

Additionally, a no-slip condition for the relative velocity and equivalence of the normal
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stresses are prescribed on the interface Γ , i.e.,

w = 0 on Γ, σsn = σfn on Γ,

where the solid and fluid stress fields are defined by

σs = F (λ tr(ε(u))I + 2µε(u)) ,

σf = ε2J
(︂
∇ (w + η∂tu)F

−1 +
(︁
∇ (w + η∂tu)F

−1
)︁T)︂

F−T − JpF−T .

Moreover, boundary conditions are prescribed on ∂Ω to close the system.

6.1.1 Towards Highly Resolved Poroelastic Media Computations

In the case of small deformations of the solid body, and even up to order ε, the homogeniza-

tion of the fluid-structure interaction problem leads to Biot’s linear consolidation model,

even when the elastic solid deformation is assumed to obey the nonlinear St. Venant-

Kirchhoff material law. When solving the discrete system with Newton’s method, a

linearized problem needs to be solved algebraically, which is typically done by the ap-

plication of an iterative Krylov-subspace method as GMRES. This makes the use of an

effective preconditioner necessary.

As we have seen in Chapter 5, a two-scale multilevel Schwarz method with a homoge-

nized operator on the coarse scale is promising. Thus, the idea of solving highly resolved

models of poroelastic media is as follows:

1. Formulation of the microscopic nonlinear fluid-structure interaction problem in

ALE coordinates on a domain with periodically repeated elastic obstacles as in

(6.1).

2. Extension of the variables to the whole domain alongside Chapter 5 with a Brinkman

model for the fluid velocity.

3. Discretization of the whole system with an Hdiv-conforming finite element method.

4. Iterative solution of the nonlinear equations with Newton’s method.

5. Preconditioning of the linearized equations inside Newton with a two-scale mul-

tilevel Schwarz method using either Biot’s consolidation model as coarse-scale

operator, or the Biot-Brinkman equations, with optimized effective parameters.
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In view of the results of Chapter 5, an optimized Biot-Brinkman model has the best

chances of yielding an effective preconditioner. We note, that even though system (6.1)

is nonlinear the application of Newton’s method leads to a linear system that needs

to be solved, which is expected to be similar to Biot’s consolidation model at least for

deformations up to order ε.

This argumentation is due to the application of the two-scale convergence method

to system (6.1) that we will not examine here, but briefly explain some of the details.

With the assumption that the deformation gradient remains small (up to order ε), the

formal two-scale expansion yields Biot’s linear consolidation model. Without smallness

assumption on the deformation, a two-scale expansion of system (6.1) leads to a large

system with several unknowns that depend on both scales, the macroscopic and the

microscopic scale. The missing scale-separation in this case makes it necessary to resolve

the heterogeneous structure, cf. [MB07].

6.2 Extensions to Virtual Regions

Instead of extending the physical phases with a Brinkman law, one could also follow

another monolithic approach by using the same laws in the extended regions as in the

physical domain and prescribe interface conditions on Γ directly via constraining the

corresponding degrees of freedom that are located at the interface. This leads to problems

when the multilevel Schwarz methods are applied out of the box and makes a further in-

depth investigation of the method necessary. Nevertheless, we will outline the approach in

the following concluding section for a steady Stokes flow in Section 6.2.1, linear elasticity

in Section 6.2.2, and a simplified fluid-structure interaction problem in Section 6.2.3,

and demonstrate the performance of the multiplicative two-level Schwarz method in

Section 6.2.4.

To extend a given physical phase like a fluid velocity or solid displacement stated in

a domain D ⊂ Ω to the whole computational domain Ω we introduce so-called virtual

regions Dvirtual = Ω \ D, with D ∩ Dvirtual = ∅. These regions are meant to be parts of

Ω, where we prescribe the same physical equations, but decouple it from the physically

meaningful part of the domain D such that the boundary condition on the interface

is met and the phase in the extended region Dvirtual ⊂ Ω will not have any physical

influence to the phase in D. We realize this by prescribing interface conditions tailored

to the needs of the specific equations and choosing the discretization spaces accordingly.
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6.2.1 Stokes Flow

First, we assume a Stokes fluid flowing against non-elastic obstacles without interaction

between the fluid and solid phase, where the obstacles are aligned with the computational

grid. On the interface Γ between the fluid domain F and the obstacle domain O we

assume a no-slip boundary condition of the fluid. For a sketch of a possible configuration

of the domain see Figure 6.1. In strong form we have Stokes flow given by

−∆v +∇p = f in F ,

div v = 0 in F ,

complemented by a Dirichlet boundary condition g prescribed on ∂Ω. The solution is

defined up to an additive constant, which is determined by the constraint∫︂
F
p dx = 0.

The fluid velocity v is then extended by 0 to the obstacles O by choosing the same

equations, i.e., Stokes flow, but with a no-slip interface and boundary condition

−∆v +∇p = 0 in O,

div v = 0 in O,

v = 0 on Γ ∪ ∂O.

As discretization we choose an inf-sup-stable finite element pair such as Taylor-Hood

Sk×Sk−1, or the H
div-conforming pair RTk×Qk. In the latter, we have to use an interior

penalty discontinuous Galerkin formulation to discretize the Laplacian as in (4.5). With

both discretizations we incorporate the zero boundary values directly into the system

matrix by constraining those degrees of freedom that lie on the interface Γ . To give an

example, consider a configuration of the domain Ω = F ∪O, consisting of a fluid region

F , where we aim to solve a system of equations, and an extended region O. For ease

of explanation we consider the continuous finite element space S1 of piecewise linear

polynomials in a configuration with only two cells, where the degrees of freedom are

distributed as in Figure 6.2. When the system gets assembled, each degree of freedom

that lies on the interface Γ gets constrained to zero. This is achieved as with a normal

Dirichlet boundary condition by setting the whole row to zero except for the diagonal
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O

F

∂Ω

Γ

Figure 6.1: Stokes flow against inelastic obstacle with extension to virtual region,
discretized with RT2 ×Q2 finite elements.

0

1

2

3

4

5

D Γ Dvirtual

Figure 6.2: Degrees of freedom on computational domain D and extended virtual
region Dvirtual with interface Γ .

entry, which is set to one. The resulting system then is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗
∗ ∗

1

1

∗ ∗
∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0

f1

0

0

f4

f5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the Hdiv-conforming case, we additionally have to decouple the interior face terms

that lie on Γ . This is achieved by choosing boundary terms for ΓF = ∂F ∩ Γ , as well

as for ΓO = ∂O ∩ Γ instead of the usual jump terms on faces on Γ . For an improved

readability we introduce bilinear forms afh,Γ (·, ·) and abh,Γ (·, ·) that define the face terms
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and the boundary terms of ah(·, ·), respectively, on a given set S by

afh,S
(︁
vh,φ

)︁
=
∑︂
F∈S

ηa
h

(︁
[[vh]], [[φ]]

)︁
F
−
∑︂
F∈S

(︁
{{∇vhn}}, [[φ]]

)︁
F

−
∑︂
F∈S

(︁
[[vh]], {{∇φn}}

)︁
F
,

abh,S
(︁
vh,φ

)︁
=
∑︂
B∈S

ηa
h

(︁
vh,φ

)︁
B
−
∑︂
B∈S

(︁
∇vhn,φ

)︁
B
−
∑︂
B∈S

(︁
vh,∇φn

)︁
B
.

With these bilinear forms the decoupling of the virtual region is realized by choosing

ah
(︁
vh,φ

)︁
=
∑︂
T∈Th

(︁
∇vh,∇φ

)︁
T
+ afh,ΓI,h\Γ

(︁
vh,φ

)︁
+ abh,ΓF

(︁
vh,φ

)︁
+ abh,ΓO

(︁
vh,φ

)︁
+ abh,ΓB,h

(︁
vh,φ

)︁
.

(6.2)

An example calculation with RT2 ×Q2 finite elements can be seen in Figure 6.1. The

fluid velocity as well as the pressure are zero in the extended region in the middle of the

domain. As a result, the fluid flows around the obstacle as intended.

6.2.2 Linear Elasticity

Next, we consider an elastic solid body, where the stress-strain relation is given by Hooke’s

law, i.e.,

σ(u) = 2µε(u) + λ div(u)I, ε(u) =
1

2

(︁
∇u+∇uT

)︁
.

For a given force f the constitutive equations are prescribed in terms of the displacement

u by

−div (2µε(u) + λ div(u)I) = f in O, (6.3)

where O is the solid domain. We consider displacement-traction problems, where (6.3)

is closed by a combination of a Dirichlet boundary condition gD on ΓD, and a zero

Neumann boundary condition on ΓN , i.e.,

u = gD on ΓD, σ(u)n = 0 on ΓN ,
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O Γ F O Γ F

Figure 6.3: Movement of an elastic solid block O with extension to a virtual
region F via interface constraints. Undeformed state (left), deformed
state (right).

on disjoint parts ΓD and ΓN of the boundary ∂O of the solid domain O, for which we

assume that ΓD ∩ ΓN = ∅, and ΓD ̸= ∅ to exclude rigid body movements.

Along the Neumann boundary part ΓN the solid domain O is extended to a larger

domain Ω = O ∪ Γ ∪ F , with O ∩ F = ∅, such that the interface Γ between O and F
is part of the Neumann boundary ΓN , i.e., Γ ⊂ ΓN . F plays the role of a virtual region,

that shall not affect the physically meaningful region O. To achieve this, the displacement

in F is prescribed with the same material law as in O, but the boundary conditions are

changed to a one-sided continuity condition on Γ , i.e.,

−div (2µε(uF ) + λdiv(uF )I) = fF in F ,

uF = u on Γ.

where uF denotes the extension of the solid displacement u to the virtual region F . Since

the boundary condition on Γ is sufficient to decouple the virtual region from O without

affecting it, the force fF can be chosen arbitrarily. For example, fF = 0, or fF = f ,

depending on what might be more convenient. To make it clear, the one-sided continuity

condition on Γ is prescribed as a combination of the present free Neumann boundary

condition on Γ ∩ ∂O and a Dirichlet boundary condition on Γ ∩ ∂F to assure continuity

of the extended phase uF . In summary

σ(u)n = 0 on Γ ∩ ∂O,

uF = u on Γ ∩ ∂F .

The assembled system matrix expressed in the same setting as in Figure 6.2 is then given
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by ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3

x4

x5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0

f1

f2

f3

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One can see very clearly that the physically meaningful upper part of the system, corre-

sponding to D, gets solved independently from the extension in the last two rows.

In Figure 6.3, we demonstrate this strategy in a sample calculation with S2 finite

elements. The setting is as shown in the left picture of Figure 6.3 with a Dirichlet boundary

condition pulling to the left, a free Neumann boundary condition at the remaining part of

∂O and an extension to the virtual region F that is complemented by another Dirichlet

boundary condition pulling to the right. The result is as expected, a translation of O to

the left without changing its shape and a deformation of the virtual region that does not

affect O.

Note, that if the discretization is realized with a locking free Hdiv-conforming discontin-

uous Galerkin finite element method, one needs to take care of the correct decoupling of

the deformation in the face terms of the interior penalty formulation similar to (6.2), but

taking the Neumann boundary into account and prescribing weak boundary conditions

only for the deformation in the virtual region.

6.2.3 Simplified Fluid-Structure Interaction Problem

We now combine both approaches in a simplified nonlinear fluid-structure interaction

problem,

−div (λ tr (ε(u)) I + 2µε(u)) = 0 in Ys

−div
(︂
J
[︂
∇wF−1 +

(︁
∇wF−1

)︁T ]︂− JpF−1
)︂
= 0 in Yf

divw = 0 in Yf
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S2 × S2 × S1 S2 × S2 ×Q0

OΓFΓin

Γout

Γout

Γwall

Γwall

Γwall

Figure 6.4: Fluid-structure interaction with virtual extensions of fluid velocity
and solid displacement. Continuous pressure space (middle), discon-
tinuous pressure space (right).

with interface conditions

w = 0 on Γ, σsn = σfn on Γ,

closed by mixed Dirichlet-Neumann boundary conditions as sketched in Figure 6.4, where

the solid stress σs and fluid stress σf are defined by

σs = λ tr (ε(u)) I + 2µε(u),

σf = J
[︂
∇wF−1 +

(︁
∇wF−1

)︁T ]︂− JpF−1.

We need to take care of the pressure component that couples the fluid velocity with

the solid displacement, when using continuous inf-sup stable mixed finite element spaces

S2×S2×S1. A decoupling by using a discontinuous pressure space Q0 yields the desired

result of a properly decoupled velocity field, as one can see in Figure 6.4.

6.2.4 Performance of the Two-level Schwarz Method

In Table 6.1 we observe the performance of the multiplicative overlapping two-level

Schwarz method used as preconditioner for GMRES, where we solve until the starting

residual is reduced by a factor of 10−8.

We see that the iteration numbers deteriorate with a refinement of the mesh for the

Stokes flow example and the elasticity problem when virtual extensions are used as

explained above. If no interface condition is incorporated, the counts are uniform, as can
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Stokes Elasticity FSI
h no interf. virt. ext. no interf. virt. ext. average

1/8 7 42 6 11 48.0
1/16 8 46 6 13 59.2
1/32 8 44 6 14 72.0
1/64 9 49 6 15 94.0
1/128 9 50 6 16 133.8

Table 6.1: Iteration counts of GMRES preconditioned with a multiplicative two-
level Schwarz method applied to Stokes, linear elasticity, and a sim-
plified FSI problem. Without interface incorporated (no interf.), or
extended with virtual regions (virt. ext.). Averaged iteration counts
for FSI problem.

be seen in the comparison calculations. Moreover, the numbers are much larger when

virtual regions are included.

In addition, an example calculation is performed with the fluid-structure interaction

problem discretized by S2 × S2 ×Q0 finite element spaces. Due to the nonlinear nature

of the model, a Newton method is used to solve the discrete system. Since our focus is on

the performance of the preconditioner and to make the results comparable, the iteration

counts of GMRES are averaged over the first five Newton steps. The iteration counts are

deteriorating corresponding to the previous cases.

This demonstrates that the overlapping two-level Schwarz method cannot be applied

out of the box to interface problems occurring in the extension of a domain with a

virtual region, which makes a more in-depth investigation of the Schwarz preconditioner

necessary in this particular case, which is left as an open task for future research.

6.3 Summary

In this thesis we have successfully applied overlapping two-level and multilevel Schwarz

methods as preconditioner to Hdiv-conforming discretizations of Biot’s consolidation

model and a Biot-Brinkman model. We have proved convergence of the two-level methods

and investigated the performance and robustness of the proposed methods in various

numerical test scenarios.

Moreover, we have developed a homogenizing two-scale multilevel Schwarz method as
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preconditioner for the calculation of a pore-scale porous media flow problem that resolves

the microstructure of the medium, i.e., a Stokes flow in a periodically perforated domain.
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l’élasticité, dans le cas ou les efforts sont donnés à la surface. Annales
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