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Abstract 

Doxorubicin is a DNA-damaging agent, widely used as a chemotherapeutic in clinics to treat 

HER2-positive breast cancer patients. Despite the overall cytotoxic effect, some cancerous 

cells may survive the treatment by successfully repairing DNA breaks or converting the 

original damage into mutations. In the long term, their sustained presence may lead to therapy 

resistance, cancer relapse, and secondary malignancies. The interaction between DNA damage 

induced by drugs and repair pathways leaves characteristic patterns, called mutational 

signatures. While base substitutions or small indel signatures have been annotated for some 

chemotherapies, the pattern and impact of structural variants (SVs) have remained 

underexplored. In this thesis, I investigated the SV burden and transcriptomic changes 

promoted by doxorubicin, at the single-cell level, in a murine mammary gland organoid model 

of HER2-positive breast cancer. 

Single-cell transcriptomic profiling revealed the three main cell types present in the murine 

mammary gland organoids, as well as both global and cell-type-specific, changes induced by 

doxorubicin. 

In addition, single-cell DNA template strand sequencing (Strand-seq) was further developed 

and applied here for the first time to characterize doxorubicin-associated genomic instability 

in murine organoids. Thanks to a novel computational single-cell multi-omic method, 

scNOVA, genomic data were integrated with nucleosome occupancy (NO) measurements to 

enable simultaneous SV detection and cell-type classification in the same cell. Strand-seq and 

scNOVA integration showed that doxorubicin is associated with a higher SV burden and 

increased frequency of sister chromatid exchanges in all three cell types of murine mammary 

gland organoids. Deletions and complex rearrangements emerged as candidate mutational 

patterns of doxorubicin. 

Taken together, the results presented in this thesis exemplify the synergistic integration of 

organoid models with single-cell multi-omic readouts for the systematic study of heterogenous 

populations and demonstrate the necessity to expand the search for therapy-associated 

mutational signatures to SVs. 
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Zusammenfassung 

Doxorubicin ist ein DNA-schädigender Wirkstoff, der in Kliniken häufig als 

Chemotherapeutikum zur Behandlung von HER2-positiven Brustkrebspatientinnen eingesetzt 

wird. Trotz der insgesamt zytotoxischen Wirkung der Behandlung können einige Krebszellen 

überleben, indem sie DNA-Brüche erfolgreich reparieren oder die ursprünglichen Schäden in 

Mutationen umwandeln. Langfristig kann ihre anhaltende Präsenz zu Therapieresistenz, 

Krebsrückfällen und sekundären Malignomen führen. Die Wechselwirkung zwischen den 

durch Medikamente verursachten DNA-Schäden und den Reparaturwegen hinterlässt 

charakteristische Muster, die so genannten Mutationssignaturen. Während für einige 

Chemotherapeutika Basensubstitutionen oder kleine Indelsignaturen beschrieben wurden, sind 

die Muster und Auswirkungen von Strukturvarianten (SVs) noch nicht ausreichend erforscht. 

In dieser Arbeit untersuchte ich die SV-Belastung und die transkriptomischen Veränderungen, 

die durch Doxorubicin gefördert werden, auf Einzelzellebene in einem murinen 

Brustdrüsenorganoidmodell von HER2-positivem Brustkrebs. 

Einzelzell-Transkriptom-Untersuchungen zeigten die drei wichtigsten Zelltypen, die in den 

Brustdrüsenorganoiden der Maus vorkommen, sowie globale als auch zelltypspezifische 

Veränderungen, die durch Doxorubicin ausgelöst werden. 

Darüber hinaus wurde die Einzelzell-DNA-Template-Strangsequenzierung (Strand-seq) 

weiterentwickelt und hier zum ersten Mal angewandt, um die Doxorubicin-assoziierte 

genomische Instabilität in murinen Organoiden zu charakterisieren. Dank einer neuartigen 

computergestützten Multi-Zell-Methode, scNOVA, wurden genomische Daten mit Messungen 

der Nukleosomenbelegung (NO) integriert, um eine gleichzeitige SV-Erkennung und Zelltyp-

Klassifizierung in derselben Zelle zu ermöglichen. Die Integration von Strand-seq und 

scNOVA zeigte, dass Doxorubicin mit einer höheren SV-Belastung und einer erhöhten 

Häufigkeit von Schwesterchromatidaustauschen in allen drei Zelltypen von 

Brustdrüsenorganoiden der Maus verbunden ist. Deletionen und komplexe Rearrangements 

erwiesen sich als mögliche Mutationsmuster von Doxorubicin. 

Zusammengenommen veranschaulichen die in dieser Arbeit vorgestellten Ergebnisse die 

synergistische Integration von Organoidmodellen mit multizellulären Einzelzellmessungen für 

die systematische Untersuchung heterogener Populationen und machen deutlich, dass bei der 

Suche nach therapieassoziierten Mutationssignaturen SVs einzuschliessen sind.  
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Chapter 1  Introduction 

1.1 Breast cancer: disease characteristics 

The extraordinary importance of mammary glands in the evolutionary success of mammals is 

best illustrated by the fact that this entire group of animals is named after mamma, a Latin word 

for breast. The mammary glands are present in both females and males but the male breast 

tissue is residual, and the other aspects and functions of this organ are clearly sexually 

dimorphic1. The female mammary gland is a branching structure composed of ducts and alveoli 

(clustered into lobules) that undergo development and differentiation until adulthood to enable 

the production of milk during lactation2 (Figure 1A). Although all these sophisticated 

morphological changes are tightly regulated over time by different hormones and signaling 

pathways, in certain cases the mammary epithelial cells would start dividing uncontrollably 

resulting in cancer. Breast cancer is the most frequent cancer type affecting women worldwide 

(11.7% of all cancer cases reported in 20203). Breast cancer in men is very rare with 

approximately 1% of all breast cancers4. Because of its high prevalence in females, breast 

cancer has got sufficient attention in developed countries to better detect and manage the 

disease through, for example, mammography and genetic counseling screening programs, or 

the development of targeted therapy. Early-diagnosed breast cancer with no detectable 

metastasis can be potentially curable but up to 30% of all breast cancer patients will experience 

relapse or metastasis, months or years after the initial treatment5. Metastatic breast cancer 

remains incurable with currently available methods which makes breast cancer the leading 

cause of cancer deaths in females in the majority of countries (15.5% of the total cancer deaths 

in females; much higher fatality rates are reported in underdeveloped regions3). The challenge 

to cure breast cancer continues mostly because the disease is highly heterogeneous with 

different subtypes, molecular characteristics, treatment options, and survival chances6. 

1.1.1 The clinical significance of tumor heterogeneity 

By definition, heterogeneity is a state of being diverse in content. In cancer biology, 

heterogeneity includes interpatient heterogeneity, intrapatient heterogeneity, and intratumor 

heterogeneity. Interpatient heterogeneity or intertumor heterogeneity refers to differences 

between different patients diagnosed with presumably the same cancer type based on its 

morphological features7. Intrapatient heterogeneity extends to the tumors in the same patient 

as cancer cells forming the primary tumor are different from the ones in metastases8.  
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Figure 1 Different types of heterogeneity in breast cancer. 
Tumor heterogeneity manifests as the presence of subpopulations of cancer cells with distinct genotypes 
and/or phenotypes. (A) Patients diagnosed with breast cancer are stratified based on the location of the 
tumor or stages, and subtypes (subtypes explained in detail in the main text). The presence of abnormal 
cells can be restricted only to a milk duct or lobules, causing ductal carcinoma in situ (DCIS) or lobular 
carcinoma in situ (LCIS). If the cancerous cells start infiltrating nearby tissues or distant organs, 
invasive ductal carcinoma (DC) or invasive lobular carcinoma (LC) is diagnosed.  
(B) Intertumor and intratumor heterogeneities in breast cancer involve different cell populations that 
may differ with respect to a high number of capabilities, including genetic changes, differentiation or 
transcriptomic state, as well as extrinsic factors such as the interaction with the microenvironment or 
the infiltration of the immune system. 

Intratumoral heterogeneity encompasses the diversity of cells within a single disease site9. All 

aspects of tumor heterogeneity influence tumor progression and impact treatment choices 

(Figure 1B). Considering the significance of interpatient heterogeneity, each patient would 

ideally receive a targeted therapy tailored to their specific cancer case. Such a scenario is 

however impossible due to the economic limitations and a finite number of available drugs. 

Because of that, the patients need to be stratified to direct care. 

1.1.2 The molecular subtypes of breast cancer 

In the context of breast cancer, the grouping of patients can refer to the location of the tumor, 

or, more importantly, its histopathological status of estrogen receptor (ER), progesterone 

receptor (PR), and epidermal growth factor receptor 2 (HER2)10 (Figure 1A). Almost all 

instances of breast cancer originate in the lobules or ducts, leading to lobular or ductal 
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carcinoma, respectively. In the earlier stages of cancer, uncontrolled growth of cells is limited 

only to the lumen of mammary glands without spreading outside of lobules or ducts (in situ). 

In patients with invasive cases or metastasis, cancer cells are also detected in the surrounding 

breast tissue or other organs. To provide the most optimal treatment, breast cancer was initially 

divided into three main groups (ER/PR-positive, HER2-positive, and triple-negative). 

Although such an approach is straightforward and still commonly used in clinics, it is rather 

outdated and does not fully represent the spectrum of genetic mutations and gene expression 

patterns in primary breast tumor samples. Therefore, doctors are increasingly using genetic 

information about breast cancers to better guide decisions about treatment and infer survival 

chances. Based on molecular profiling at least five major breast cancer subtypes can be 

classified: luminal A, luminal B, HER2+, basal-like, and claudin-low11. Luminal tumors are 

most frequent with subtype A being the most commonly diagnosed one (approximately half of 

the cases)12. Both subtypes A and B are hormone receptor-positive but the levels of ER and PR 

are lower in subtype B13. Luminal subtype B shows higher expression of proliferative marker 

Ki67 and may have amplified HER2, which leads to a much poorer prognosis compared to 

subtype A13. The HER2-positive group of tumors has ERBB2 locus amplification (encoding 

HER2) with varied hormone-receptor status (generally negative). Amplification of the ERBB2 

leads to a higher number of HER2 receptors on the cell surface. HER receptors contain three 

important domains: an extracellular ligand-binding domain, a transmembrane domain, and 

an intracellular tyrosine kinase domain. Upon ligand binding, homodimerization or 

heterodimerization is induced leading to the activation of pro-survival downstream signaling 

pathways. HER2 amplification and overexpression drive hyperactivation and abnormal 

signaling, also in the absence of the ligand14. HER2-positive subtype accounts for ~20% of 

breast cancer cases and is also associated with low survival chances15,16. Basal-like and claudin-

low cancers represent the most aggressive subtypes17, predominantly triple-negative (ER-,   

PR-, HER2-). Basal-like tumors are characterized by the expression of basal epithelial 

cytokeratins (5, 14, 17), while claudin-low tumors have decreased levels of tight-junction and 

adhesion proteins (like E-cadherin or claudins)13. 90% of male breast cancers are hormone 

receptors (HR)-positive and HER2-negative4. 

In the context of this thesis, it is important to remember that cancer is not simply an agglomerate 

of identical mutated cells but rather a complex structure with spatial and temporal changes, 

also affected by the surrounding microenvironment7. Normal tissue functions in 

an environment where access to oxygen and nutrients through vasculature is optimized. 
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However, a cell growing in a solid tumor, especially with disorganized blood vessels, is 

exposed to abnormal levels of oxygenation, growth factors, and pH which may promote 

dissemination and start the metastatic cascade9,18. Breast cancer subtypes differ in 

the metastasis-free period and site of relapse. ER-negative cancer tends to spread more to 

visceral organs (lung, liver, and brain) and bones, while ER-positive metastases show tropism 

mainly toward bones19. Microenvironment heterogeneity includes also heterogeneity in 

immune cell infiltration, in particular, tumor-infiltrating lymphocytes are clinically relevant 

biomarkers of breast cancer prognosis. Different breast cancers show different levels of 

immune infiltration with more aggressive and genomic unstable subtypes being more 

infiltrated (probably due to fostered generation of neoantigens) than luminal subtypes. 

The infiltration also decreases during disease progression which additionally impacts the 

potential response to immunotherapy20. 

1.1.3 Genetic heterogeneity in breast cancer and the role of SVs 

Breast cancer subtypes are characterized by overall different mutational burdens and different 

frequently mutated genes. Describing genetic heterogeneity between subtypes seems to be 

the most studied type of tumor heterogeneity as the advancements in bulk DNA sequencing 

technologies enable better and faster annotation of tumor-associated mutations and their 

functional impact. For example, mutations in GATA3 are found almost exclusively in luminal 

A subtype21 which is also considered to have the lowest mutation rate and usually almost 

completely diploid genome22. This is in stark contrast to basal-like tumors that are genetically 

unstable and show a high frequency of chromosome number alterations23. Interestingly, 

the basal-like subtype is frequently developed by patients with a germline BRCA1 mutation23. 

BRCA1 similar to some other known breast cancer susceptibility genes (like ATM, BARD1, 

BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53)24, is involved in the DNA damage 

repair pathway which emphasizes the crucial role of DNA integrity in breast epithelium. 

Importantly, the majority of studies on mutations in breast cancer have focused on identifying 

single nucleotide variants (SNVs), relatively easy with next-generation sequencing data. 

However, breast cancer has on average one of the lowest frequencies of SNVs in solid tumors25 

suggesting that structural variants (SVs) may play an important role in tumorigenesis. 

SVs are a class of mutations, next to point mutations (including SNVs) and small insertions or 

deletions (indels). From these three groups, SVs are comprised of larger genomic changes as 

they are bigger than 50 base pairs (bp) and can scale up to entire chromosomes26. SVs include 

deletions, insertions, duplications, amplifications, inversions, translocations, chromosomal 
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losses or gains (aneuploidy), and complex DNA rearrangements patterns like chromothripsis, 

chromoplexy, and breakage-fusion-bridge cycles27 (methods to detect them are explored more 

in detail in chapter 1.4.1). Various processes of DNA repair and/or DNA replication contribute 

to the formation of such a variety of rearrangements, and only for a fraction of them there is 

a clear mechanistic explanation of how they occur post-DNA break or during a faulty cell 

division28. Viral integration (for example, of human papillomavirus (HPV)) or activation of 

mobile elements can also result in the formation of SVs27. The functional consequences of SVs 

preserved in the genome can be dreadful leading to congenital disorders26 or tumorigenesis. 

For example, SVs may disrupt genes or their regulatory elements, affecting the three-

dimensional organization of the genome or creating novel protein-coding gene fusions (change 

of DNA order)27,28. DNA copy number changes may result in the deletion of tumor suppressor 

genes or amplification of oncogenes (change of DNA dosage). In fact, in the case of HER2-

positive tumors, the overexpression of HER2 is a result of gene amplification, for example as 

a consequence of repeated breakage-fusion-bridge cycles29. 

Early studies with copy number arrays allowed to characterize chromosome gains and losses 

in breast cancer subtypes, beyond HER2 amplification,30 but annotation of complex 

rearrangements has been challenging. Only recently, thanks to the efforts such as 

the International Cancer Genome Consortium (ICGC) and the Pancancer Analysis of Whole 

Genomes (PCAWG) consortium, a more detailed description of the SV landscape in breast 

cancer has been reported identifying breast cancer as one of the types most affected by 

chromothripsis and reporting an increased burden of small (less than 10 kilo base pairs (kb)) 

somatic SV deletions and tandem duplications associated with tumors with germline BRCA1 

and BRCA2 mutation31,32. 

Within a tumor, newly emerging mutations may affect gene expression patterns leading to 

transcriptional heterogeneity. However, such phenotypic heterogeneity may be also 

a consequence of non-genetic factors such as stochastic changes in gene regulation9. It is worth 

noting that before the development of single-cell techniques, all forms of intertumor 

and intratumor heterogeneity have been predominantly described based on a regional sampling 

of tumors, and even a few biopsies taken from a single tumor may not fully represent the extent 

and complexity of different clones33. All the factors: genetic, epigenetic, phenotypic or 

microenvironment heterogeneity, both intertumor and intratumor, may influence how cancer 

cells respond to treatment. 
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1.2 The opportunities and challenges to defeat cancer 

1.2.1 Treatment options for breast cancer 

Breast cancer was possibly the earliest ever written description of the disease. According to 

this first report, found in the Edwin Smith Papyrus that dates back to approximately 3000 BC, 

there was no treatment for breast cancer. As medicine developed, in particular in Asian 

countries, more successful attempts at treating breast cancer were introduced by applying 

herbal remedies but the goal was rather to minimize the pain than cure the patient. 

The physicians in the oldest known human civilizations recommended early and aggressive 

surgical therapy to remove the tumor34, and until now surgery has been usually the first type of 

treatment for primary breast cancer35,36. Radical mastectomy introduced by Halsted at the end 

of the 19th century included the removal of the whole breast, all the lymph nodes under the arm, 

and the chest wall muscles, regardless of the type and size of the tumor, or the patient’s age. 

This approach is very different from surgeries performed now with the goal of breast 

conservation (without compromise to the control of the disease) or immediate reconstruction. 

Depending on the specific case, patients will receive additional therapy before or after 

the surgery, including radiotherapy, hormone (endocrine), targeted therapy, or 

chemotherapy35,36. HR-positive breast cancer cells depend on the estrogen and/or progesterone 

signaling pathways, so the goal of hormonal therapy is to lower the amounts of these hormones 

produced in ovaries (in premenopausal women) or body fat and muscle (post-menopause), or 

to block their effects37,38. Patients with HR-positive disease (particularly with luminal A 

subtype) are recommended endocrine therapy with tamoxifen or in the case of postmenopausal 

women, aromatase inhibitors (anastrozole, letrozole, and exemestane)36. Targeted therapy is 

offered in combination with chemotherapy for HER2-positive cases. HER2 targeting agents 

are available as monoclonal antibody (Trastuzumab) or small molecule inhibitors (lapatinib, 

neratinib)16,39. From 2018, metastatic HER2-negative breast cancer patients with germline, 

cancer-associated BRCA1 or BRCA2 mutations are eligible for treatment with the poly-(ADP-

ribose) polymerase (PARP) inhibitors (olaparib and talazoparib). PARP inhibitors induce 

synthetic lethality in BRCA mutated cells that rely on PARP as an alternative DNA damage 

repair mechanism40,41. Systemic chemotherapy is generally recommended for all patients. For 

patients with subtypes that are not adequate for hormonal or targeted therapy, chemotherapy is 

the only option for drug treatment36. Depending on the country and its healthcare system, and 

breast cancer subtype, there are several standard chemotherapy variants, usually with an 

anthracycline (typically doxorubicin) and/or a taxane (most commonly paclitaxel)36. Other 
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regimens may include platinum agents (carboplatin, cisplatin), alkylating agents 

(cyclophosphamide), or an antimetabolite (5-fluorouracil). Although different groups of 

chemotherapeutics have different mechanisms of action, they are administered to, ideally, kill 

cancer cells, or stop them from dividing. However, chemotherapy is associated with significant 

side effects due to the harm to normal healthy cells42. 

1.2.2 Chemotherapy-associated mutational signatures 

Direct or indirect DNA damage is a mechanism through which the most common 

chemotherapeutics, as well as radiotherapy, are designed to induce cell death. This may seem 

counterintuitive as DNA damage and genomic instability are both causes and consequences of 

cancer. DNA breaks impair DNA transcription and RNA polymerases leading to limited gene 

expression or DNA replication, stalling the cell cycle progression and proliferation. If the DNA 

damage load is too high or DNA repair is unsuccessful, apoptosis will be induced43. However, 

cancer cells can show abnormal DNA repair activity or escape apoptosis despite persistent 

DNA damage44. Such a response comes with a trade-off, as even cancer cells cannot sustain all 

tasks like proliferation, evading cell death, and immune suppression at the same time as they 

all require energy resources and a favorable microenvironment45. Because of that, cancer cells 

exposed to a drug may either die if not resistant, enter the state of drug tolerance manifested 

by being able to survive but not proliferate, or inhibit further growth for some time until DNA 

is repaired (usually for hours or days)44. The repair of DNA breaks may be successful and leave 

no trace, or if erroneous, result in the formation of mutations43. It has been speculated that 

chemotherapies may leave specific imprints, called mutational signatures46,47, in the genomes 

of exposed cells and their progeny. Mutational signatures are patterns of modifications of single 

or a few consecutive nucleotide bases (also sequence-context-dependent), or indels, shared by 

individuals with diseases of similar etiology or exposed to the same mutagens47. Mutational 

signatures have been identified for platinum-based drugs48–51 and 5-fluorouracil51,52. These 

studies rely on the statistical analysis of cancer genomes in exposed patients, or experimental 

model systems. The research in the area of mutational signatures has been focusing on single 

or doublet base substitutions and indels but virtually nothing is known if chemotherapies 

promote the formation of SVs. The correlation between the treatment with a chemotherapeutic 

drug and the emergence of SVs was explored in detail in my PhD project. 
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1.2.3 Doxorubicin: mechanism of action and metabolism 

Of all the chemotherapeutics, doxorubicin is the main focus of this thesis. Doxorubicin is 

an anthracycline antibiotic isolated first from one of the Streptomyces strains. Other clinically 

important anthracyclines include daunorubicin, idarubicin53 and epirubicin54. Doxorubicin has 

a broad spectrum of use, treating both adult and childhood cancers, such as acute leukemia, 

non-Hodgkin lymphomas, soft tissue sarcomas, and solid tumors55. Doxorubicin can be 

included in the treatment regimens for most types of invasive and metastatic breast cancers, 

also together with targeted therapy for HER2-positive cases. There are several proposed 

mechanisms for how it kills cancer cells, but the exact mode of action seems to be also 

influenced by the dose of the drug (which depends on the cancer type, duration of treatment, 

gender, body mass, and/or age)55. Doxorubicin directly targets DNA by intercalating into 

the helix causing topological and torsional stress that leads to stalling of DNA and RNA 

polymerases. It inhibits topoisomerase IIa (TOP2A) and IIβ (TOP2B), enzymes that regulate 

DNA superhelical states and relax positive supercoils. TOP2A and TOP2B share catalytic 

and most structural properties but they are not functionally redundant. TOP2A is the major 

form of the enzyme in dividing cells, while TOP2B is expressed in non-dividing cells, for 

example, cardiomyocytes56. TOP2 enzymes act as homodimers that catalyze the cleavage and 

re-ligation of DNA. During that process, both strands of DNA are cut and TOP2 temporarily 

attaches to the 5’ ends of cleaved DNA via covalent phosphotyrosyl bonds. As a result, the 

DNA ends are protected and are not recognized by cellular DNA repair pathways57. Poisoning 

of TOP2A and TOP2B results in the enzymes being trapped and stabilized in a state that they 

cannot reseal DNA double-strand breaks55,58 (DSBs). Trapped TOP2 complex is primarily 

removed by ubiquitin-dependent proteolytic degradation or SUMOyaltion-induced direct 

hydrolysis of the bonds between TOP2 and DNA. After the removal of the trapped TOP2 from 

DNA, DSBs on naked DNA are recognized by the repair pathway machinery57. Doxorubicin 

interferes also with metabolic processes including the mitochondria’s respiratory functions (by 

contributing to the production of reactive oxygen species (ROS)), calcium and iron 

homeostasis, or ceramide production56. Very high doses of doxorubicin (9 µM) used in one 

study caused histone eviction from open chromosomal areas in a human melanoma cell line 

(MelJuSo) and AML patients post-treatment59. Lower concentrations of doxorubicin have been 

shown to cause chromatin damage and induce nucleosome turnover around promoters in 

murine squamous cell carcinomas cell lines 60. In a more recent study, the authors showed that 

anthracycline variants that induce DNA damage but not DSBs have similar anticancer activity 
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in cell lines, mice, and human acute myeloid leukemia patients indicating a significant role of 

chromatin damage as a cytotoxic mechanism of these drugs contributing to the cardiac 

dysfunction61. Interestingly, it was demonstrated in a different study that breast cancer patients 

show a naturally occurring variation in the expression level of certain chromatin regulatory 

genes (including the members of Polycomb and Trithorax complexes) that dictates chromatin 

accessibility and sensitivity to anthracycline therapy62. This has important implications to 

better stratify patients and distinguish those who will benefit from therapy based on the 

signature pattern of these chromatin regulatory genes. 

So far, a mutational fingerprint of doxorubicin has not been specified. According to one study 

that aimed to assay the mutagenic impact of common chemotherapeutics in an established DNA 

repair model system (chicken DT40 lymphoblast cell line), doxorubicin had no detectable 

mutagenic activity as measured by single or doublet base substitutions and small indels63. 

A more recent analysis of 570 advanced and metastatic cancer patients (including breast cancer 

patients) associated doxorubicin with SBS17b mutational signature (single-base substitution, 

T>G with nonrandom sequence context at -2 bp and +2 bp46) but it was more frequent in 

chemotherapy regimens combining both doxorubicin and platinum-based compounds64. In one 

of the studies from the Korbel group, doxorubicin was used as a perturbation agent that 

promotes DNA alterations in an untransformed cell line (human hTERT RPE-1 retinal pigment 

epithelial cell line) leading to complex genomic rearrangements giving growth advantage65. 

These examples suggest that treatment with doxorubicin may be associated with the formation 

of SVs, rather than base substitutions or indels. 

Doxorubicin appears on the List of Essential Medicines created by the World Health 

Organization but it is not a perfect drug. In fact, it is associated with severe side effects 

including heart muscle damage (both acute or chronic, appearing later in life)66. There is a 

correlation between the dose of anthracycline (cumulative exposure) and the risk of 

cardiomyopathy, and there is also growing evidence that genetic variation (in form of single 

nucleotide polymorphisms (SNPs) in, for example, genes associated with drug transformation 

or DNA repair) contributes to the chemotherapy-related cardiac dysfunction67. Due to its 

characteristic red color (highlighted also by ‘ruby’ in doxorubicin) and fatal complications, 

doxorubicin is called ‘red devil’. 

Doxorubicin is injected intravenously, quickly achieves high concentration in blood, and is 

rapidly absorbed into tissues but the elimination takes much longer (half-life of 24-36 hours). 
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Despite the fast distribution of the drug and high penetrance to cells, doxorubicin cannot pass 

the blood-brain barrier68. 

The metabolism and pharmacokinetics of doxorubicin are fairly well described but different 

pathways might be involved in its metabolism in cardiac cells (covered in detail in a recent 

review67). Several transporters are involved in influx (SLC22A1669, and supposedly heart-

specific: SLC28A3, SLC10A2, SLC22A1767) and efflux (ABCB1, ABCC1, ABCC270, 

ABCG2, RALBP171) of doxorubicin. Doxorubicin also enters the cell via passive diffusion68. 

Once inside the cell, doxorubicin is metabolized through one of three main routes: one-electron 

reduction, two-electron reduction, and deglycosidation72. However, approximately 50% of the 

drug is eliminated from the body unchanged68. The major pathway involves a two-electron 

reduction of doxorubicin to a secondary alcohol, doxorubicinol. Depending on the cell type, 

different cytoplasmic NADPH-dependent carbonyl, and aldo-keto reductases can carry out this 

reaction, for example, CBR1 and CBR3 in liver73,74, AKR1A in heart75. Doxorubicin-

semiquinone radical is formed as a result of the one-electron reduction. This reaction can be 

catalyzed by several oxidoreductases located in different organelles inside the cell: 

mitochondrial NADH dehydrogenases (in mitochondria and sarcoplasmic reticulum): 

NDUFS2, NDUFS3, NDUFS7; NADPH dehydrogenase (NQO1, cytosolic), xanthine oxidase 

(XDH, cytosolic), nitric oxide synthases (NOS1, NOS2, NOS3, cytosolic)66. During the re-

oxidation of the radical to doxorubicin, ROS and hydrogen peroxide are formed. ROS can be 

deactivated by glutathione peroxidase (GPX1), catalase (CAT), and superoxide dismutase 

(SOD1)55. The third, minor way, hydrolytic or reductive deglycosidation leading to the 

formation of 7-hydroxy- or 7-deoxyaglycones, is less characterized. Aglycones do not have 

cytotoxic activity but they have been suggested to be cardiotoxic72. 

As outlined in this chapter, doxorubicin is a relatively well-studied drug but many aspects of 

its metabolism and mechanism of action are elusive. Considering the clinical importance of 

doxorubicin, more research is still needed to fully understand its pharmacodynamics and 

characterize why some cancer cells stop responding to the treatment with anthracyclines. 

1.2.4 Mechanisms of resistance during tumor evolution 

Cancer cells vary widely in their susceptibility to chemotherapeutics, including doxorubicin, 

and very often show resistance to the treatment. Resistance to cancer therapies falls into two 

categories: primary (intrinsic) and secondary (acquired). Patients with primary resistance do 

not respond at all to the therapy, those with acquired one experience reoccurrence of the disease 
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after the initial successful treatment. Such acquired resistance is most commonly associated 

with the effect of the genetic evolution of cancer in response to the therapeutic challenge but 

the role of non-genetic mechanisms has been more and more recognized. Non-genetic 

reprogramming allows cells to adapt faster to changing conditions76, and such phenotypic 

plasticity has been recently accepted in the field as yet another hallmark of cancer77. Regardless 

of how the resistance has been achieved, the most straightforward method to reduce the toxic 

effect of the drug is to lower its concentration inside the cell through, for example, increasing 

its secretion by upregulating the levels of efflux transporters in the plasma membrane44. 

The members of the ABC gene family are among the most commonly reported multifunctional 

transporters involved in multidrug resistance and a wide range of cancer drugs, including 

doxorubicin, are their substrates. In the context of breast cancer resistance, the major efflux 

transporter protein is ABCG2 (also called BCRP, breast cancer-resistant protein). The other 

strategy exploited by cancer cells is to inactivate the drug with detoxifying enzymes such as 

aldehyde dehydrogenases or the members of the glutathione-S-transferase (GST) family78. 

Drug treatment may induce dramatic metabolic changes, beyond the detoxification of 

xenobiotics, and metabolic adaptation is getting more recognition as a therapy resistance 

mechanism. In a recent study, the authors showed using human breast cancer cell lines and 

a xenograft model that the resistance to two anthracyclines, doxorubicin, and epirubicin, is 

mediated through metabolic adaptations but there is a different mechanism for each drug. 

Doxorubicin-resistant cells used glutamine to drive oxidative phosphorylation and cells 

resistant to epirubicin significantly upregulated the mitochondrial ATP production79. As 

described in chapter 1.2.1 the treatment of certain breast cancer subtypes includes also different 

drugs than chemotherapeutics. Resistance to targeted therapies manifests through the activation 

of alternative signaling pathways or engagement of upstream or downstream effectors80. For 

example, HER2-positive patients treated with HER2-targeting agents like Trastuzumab or 

lapatinib may stop responding to the drug as tumors may lose HER2 expression due to 

therapeutic pressure, or promote a constitute activation of the downstream phosphoinositide   

3-kinase (PI3K) pathway without reliance on HER2 signaling80. 

In the next paragraph, I will summarize the ultimate solutions that cancer cells can implement 

to avoid apoptosis due to drug-induced pressure. 

1.2.5 Dormancy and its implications for MRD formation 

Extreme cases of sustained growth arrest with increased resistance to cell death in response to 

stress include senescence and dormancy. It is difficult to distinguish these states with clear 
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definitions as there are no ‘gold standard’ markers for each of them, and especially the words 

‘dormant’ and ‘dormancy’ are used inconsistently81. For clarity, I will refer to senescent cells 

as the ones with mostly irreversible cell-cycle arrest, resistance to proliferative stimuli, 

increased activity of lysosomal senescence-associated β-galactosidase (SA-β-gal), 

and secretion of senescence-associated secretory phenotype (SASP) composed of pro-

inflammatory cytokines, growth factors and matrix metalloproteinases (MMPs)82. They remain 

metabolically active but in an altered state83. Contrastingly, dormant cells have the potential to 

exit the cell-cycle arrest. They are characterized by decreased expression of proliferation 

marker Ki67 and reduced metabolic activity84. Such a state is under dynamic control of both 

cell-intrinsic factors (for example, activation of immune evasion mechanisms) and cell-

extrinsic ones provided by the niche in which dormant cells reside81,84. It is still debatable if 

dormant cancer cells are/can be considered cancer stem cells85. Cells that survived the initial 

treatment and entered dormancy may get reactivated to form a relapse but not all dormant 

cancer cells are metastasis-initiating81.  

Dormant cells contribute to minimal residual disease (MRD) formed by the remaining cancer 

cells that are present in the patient after seemingly complete radiographical and pathological 

remission. MRD can appear in three different forms: locally found residual disease (not 

successfully removed during surgery), circulating tumor cells (found in the bloodstream), or 

disseminated tumor cells (that invaded different organs). The exact mechanisms of how cancer 

cells enter and leave dormancy are still unclear but there is a growing interest in treating MRD. 

Cells that contribute to MRD have already adapted to stress- and drug-induced selective 

pressure, therefore MRD has most likely less clonal complexity than the primary tumor. As 

a result, targeting MRD, presumably less heterogenous, could be more successful once a proper 

drug to which MRD cells are sensitive, is identified. Patients at this stage are also in better 

physical condition to undergo additional therapy but there is a risk of overtreatment 

and unjustified costs. It is better to prevent metastasis than to treat them, and targeting MRD 

may be one solution for blocking the development of metastasis86,87. However, that requires 

frequent use of sensitive MRD-assessment techniques (based on flow cytometry or sequencing) 

which are not routinely used in the clinics86. In an ideal scenario, relapses would not occur if 

the initial treatment has maximum effectiveness. Therefore, there is a constant need to better 

understand the resistance of tumors to currently used chemotherapies and to enhance or develop 

new therapeutic strategies with minimum side effects. Further in the thesis, I investigate 

whether treatment with doxorubicin promotes MRD phenotype. To do that I take advantage of 
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murine mammary gland organoids. In the following section, I describe the benefits and 

challenges of applying murine mammary glands and organoids derived from them, to study 

resistance mechanisms and dormancy in breast cancer. 

1.3 Murine mammary gland-derived organoids as a proxy for the human breast 

1.3.1 Cellular composition of the human and mouse mammary gland 

One of the toughest questions faced by any scientist is the choice of the right model to study 

and answer their biological question. The proper system should resemble the physiology 

and pathology of the relevant organism, organ, or tissue. The cellular composition of human 

and murine mammary gland epithelium is similar and mouse mammary glands are suitable 

models to study human mammary biology and associated diseases including breast cancer88. 

In both species, the mammary gland starts forming during mid-embryonic stages but shows 

more striking dynamic changes within its epithelium during puberty and reproductive times as 

a response to fluctuating hormones during estrous cycles (menstrual cycles in humans) and 

pregnancy. The mammary gland is formed by a complex epithelial ductal tree surrounded by 

a stromal matrix containing fibroblasts, adipocytes, endothelial cells, and immune cells. At 

a cellular level, the mammary gland is a bi-layered structure composed of two major lineages: 

luminal and basal. Luminal cells, found in the inner layer towards the central lumen, generate 

milk protein and secrete them during lactation. Basal cells adjacent to the basement membrane 

are contractile, which is crucial for milk ejection and its transport along the duct to the 

nipple89,90. There are certain anatomical differences between the mammary glands of humans 

and rodents, for example, in the human breast, the ductal tree is much more complex than the 

mice one, and several individual branched ductal networks lead to the nipple. In the case of 

mice, a network of ducts leads to a single primary duct that ends in the nipple88. Also, the mice 

stroma is adipocyte-rich in contrast to the more fibrous stroma present in humans91. Despite 

the essential role of the mammary gland and extensive research in this field, the mammary 

epithelial cell differentiation process is still inconclusive. Experiments with two important 

techniques, the mammary transplantation assay, and lineage tracing, confirmed that mammary 

epithelial differentiation is rather a hierarchical process with a multipotent, mammary stem cell 

(MaSC) giving rise to increasingly more lineage-restricted progenitors89. The development of 

novel single-cell technologies like single-cell RNA sequencing (scRNA-seq) and single-cell 

sequencing assay for transposase-accessible chromatin (scATAC-seq) allows to better 

understand how mammary cells differ during consecutive stages of development, and whether 
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MaSCs or only lineage-restricted stem cells exist postnatally. Surprisingly, different studies 

come to opposite conclusions, and the existence of MaSC in adults is still controversial92. Such 

confusion in the field highlights the urgent need to unify the findings from mammary gland 

development studies to describe which mammary cell populations universally exist, what their 

commonly used names are, and what their markers are for single-cell transcriptomic analysis 

or fluorescence-activated cell sorting (FACS). Proper annotation of cell types, in both human 

and murine mammary glands, is particularly important in the context of drug resistance in 

breast cancer as it remains debatable whether the resistance emerges from pre-existing clones 

of stem-cell-like properties or more differentiated cell states93. 

1.3.2 Organoid models for mammary gland studies and breast cancer 

Progress to understand mammary biology and breast cancer formation would not be possible 

without using mice as an in vivo model for experimental manipulations. However, research 

including animals is slow, expensive, and the results are often difficult to interpret due to the 

study design94. Novel cell culture methods, beyond traditional two-dimensional monolayers, 

allow to better represent complex human diseases while minimizing the drawbacks of animal 

testing. Applying organoid technology to model different stages of tumorigenesis, especially 

the response to drugs is a very promising approach. An organoid is a self-organizing three-

dimensional structure generated from pluripotent stem cells, adult stem cells, or somatic cells 

from normal or malignant primary tissue (either human or mice, but more exotic organoids 

have been also reported derived from, for example, crypts isolated from the intestines of bats95, 

or snake venom glands96). Organoids retain the near-physiological cellular composition and if 

grown in a medium containing specific growth and stem-cell renewal factors, they can be 

expanded extensively. They recapitulate histological and genetic features of original tissue 

making them suitable for translational studies and drug screenings97. For breast cancer research 

and basic studies to understand mammary gland development, two types of organoids are 

especially relevant: derived from biopsies from breast cancer patients, or propagated from 

normal tissue (either from murine mammary gland organoids, or from samples collected during 

reduction mammoplasties (performed to reduce breast size), or from prophylactic 

mastectomies (for breast cancer prevention))98. There are various protocols to culture breast 

cancer or mammary epithelial organoids, which differ mainly regarding matrix type, medium 

components, and plating strategy. These protocols may or may not include additional 

purification steps (like FACS, differential centrifugation, or cell straining) to enrich certain cell 

types99. One attempt to increase reproducibility after following a universal protocol is to 
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develop biobanks. For example, authors of two independent breast cancer organoid biobanks 

created in total almost 200 primary and metastatic breast cancer organoid lines that recapitulate 

histological and genetic features of original tumors, and represent different breast cancer 

subtypes100,101. The biobanks derived from patients’ samples provide a great representation of 

interpatient heterogeneity crucial for high-throughput drug testing. 

1.3.3 An inducible mouse model for studying tumor progression of HER2-positive 

cancer 

In certain cases, such genetic, transcriptomic, or metabolic variation provided by biobanks to 

progress personalized medicine, may introduce too much complexity due to practically 

unidentifiable parameters. Because of that, in my project, I am using organoids derived from 

mammary glands from a well-defined, inbred, transgenic mouse strain (Figure 2A). Applying 

the TetO-cMYC/TetO-Neu/MMTV-rtTA tetracycline-inducible model of breast cancer allows 

studying the mechanisms of HER2-positive breast disease together with cMYC 

activation102,103. Overexpression of both HER2 and cMYC is a common case in breast cancer 

and correlates with aggressive phenotype and poor prognosis104,105. 

With the model used in this thesis, it is possible to temporally (with Tet-On106) and spatially 

(in the mammary gland, owing to mouse mammary tumor virus long terminal repeat (MMTV-

LTR) sequence) control tumorigenesis. Upon addition of doxycycline (tetracycline-derivative) 

to the medium (in 3D cultures, or to the animal diet), the system allows for overexpression of 

two potent oncogenes (activated rat Neu/Erbb2 (homolog of human HER2) and truncated 

human CMYC gene with exon 2 and 3) that are also dysregulated in Her2-positive breast cancer 

patients (Figure 2B). Tumor formation and maintenance are then dependent on the action of 

these two oncogenes, mimicking oncogene addiction. In the case of mammary gland organoids 

derived from this strain, the induction of oncogenes causes the transformation of the hollow 

acini into highly proliferative solid spheres that represent ductal carcinoma in situ. If the 

expression of oncogenes is silenced by the removal of doxycycline from the medium, the filled-

in spheres regress to the re-polarized monolayer of viable cells that escape oncogene 

withdrawal and appear normal in morphology, corresponding to the dormant state of MRD 

seen in the clinic. As in breast cancer patients, after complete regression mice develop 

spontaneous relapse without doxycycline induction. Similar reactivation is observed in the 

organoids that increase proliferation rate without repeated induction making again solid 

structures102 (not included in panel B of Figure 2). Previous work using mammary gland 

organoids derived from TetO-CMYC/TetO-Neu/MMTV-rtTA mice, and verified in the mouse 
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model in vivo, as well as correlated with patient-derived samples, has characterized metabolic 

changes that drive tumor reoccurrence upon perfect targeted therapy at the driver oncogenes103. 

However, silencing of both oncogenes is an idealized scenario, as CMYC is still considered 

undruggable107, and the experiments (RNA-seq, lipidomic profiling, untargeted and targeted 

metabolomic analysis, DNA methylation analysis) were performed in bulk not considering the 

impact of cell-type differences and single-cell heterogeneity. In chapter 1.4, I provide 

background information on the single-cell methods crucial to characterize responses to drug 

treatment with a particular focus on single-cell DNA template strand sequencing (Strand-seq) 

and computational pipelines created around it. 

 

 
Figure 2 Organoid culture of mammary glands from tritransgenic mice. 
(A) For the project described in this thesis, I was culturing organoids from the mammary glands of 
tritransgenic mice (TetO-CMYC/TetO-Neu/MMTV-rtTA). The mammary glands of adult virgin mice are 
first digested overnight to remove fat and muscle tissue, and cultured for one night on collagen-coated 
plates to enrich the population of epithelial cells. A suspension of single cells is then mixed with 
Matrigel and cultured 3D in a well-defined medium containing mammary epithelial cell growth 
supplement (MEpiCGS). (B) With this model, depending on the status of the Tet-ON system for 
doxycycline-inducible gene expression, it is possible to mimic different stages of tumorigenesis, from 
healthy tissue, cancer state, and MRD. MMTV-LTR sequence restricts the expression of the reverse 
tetracycline-dependent transcriptional activator (rtTA) to mammary glands. If doxycycline is added to 
the medium, the doxycycline-rtTA complex binds to the tetracycline operator (TetO), driving the 
transcription of the transgene oncogenes and inducing tumorigenesis. Doxycycline removal from the 
system results in the silencing of the expression of the oncogenes. Induction and deinduction of 
oncogenes affect the morphology of the organoids represented by schematic graphics and visible on 
histological stainings of the organoids. Representative histological stainings of the organoids used in 
panel B are adapted from Havas et al.102 (scale bar 50 µM). 
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1.4 Applying single-cell multi-omic approaches to study tumorigenesis 

In the previous chapters of the introduction, I already indicated the importance of applying 

single-cell technologies to better understand cancer progression, resistance to treatment, 

and cell type hierarchy of the mammary gland. The last couple of years have witnessed an 

explosion in the development of single-cell methods, both regarding experimental and 

statistical analysis. These technologies allow to molecularly characterize single cells on 

a genomic, transcriptomic, epigenomic, metabolomic, and protein level but none of the 

techniques is omni-comprehensive. Therefore, with even more sophisticated approaches, a few 

functional readouts can be collected from the same single cells, and different assays can be 

analytically linked to create a truly muti-omic picture of a cell reducing the impact of technical 

and batch effects108. However, with collecting more information comes the computational and 

statistical challenge of how to integrate big data and how to compensate for the fact that 

different techniques capture only a fraction of molecules that are present in the cell. For 

example, single-cell transcriptomics is the most frequently used single-cell technology and 

scRNA-seq protocols seem to be the most optimized and user-friendly, yet high-throughput 

protocols capture only 5% to 20% of RNA present in the cell (also not accounting for cell-type 

specific differences in RNA content)109. The sparsity of starting material is yet more 

pronounced when it comes to single-cell DNA sequencing (scDNA-seq) and scATAC-seq as 

normal cells have only two copies of their nuclear genes and only part of chromatin-accessible 

sites can be extracted. Until recently, even bigger limitations of the scDNA-seq techniques 

were that they do not provide any information on cell type, function, or state of analyzed 

cells110, and were limited in their resolution (to copy-number profile analyses) and 

characterization of functional consequences of the genomic rearrangements27. In my project I 

take advantage of the unique features of Strand-seq111,112 as well as of two computational 

methods, single-cell tri-channel processing (scTRIP)113 and single-cell Nucleosome 

Occupancy and Genetic Variation Analysis (scNOVA)114, to identify and characterize diverse 

SV classes in a heterogenous population of single cells preserving the information about their 

cell types. 

1.4.1 Detection of SVs 

Compared to well-studied SNVs and indels, SVs, introduced in chapter 1.1.3, are the most 

common, yet understudied, class of driver mutations in cancer. The identification of SVs, 

regardless of the technology, is difficult115,116. 
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SV discovery methods can be divided into four main groups: cytogenetics, short-read-based 

methods, long-fragment-based methods, and scDNA-seq27. Cytogenetics approaches such as 

fluorescence in situ hybridization (FISH), spectral karyotyping, or microarray-based 

comparative genomic hybridization are commonly used in the clinics as diagnostic tools for 

genetic disorders but they are unsuitable to detect complex, overlapping, or nested SVs, labor-

intensive and low-throughput116. With both cytogenetics approaches and sequencing based-

strategies, it is possible to confirm the presence of common germline variants or highly frequent 

pathogenic SVs115 but the sequencing approaches provide a better resolution. In theory with 

high coverage short-read whole genome sequencing data (and sometimes whole exome 

sequencing data) all SVs may be detected and breakpoints annotated. However, in cases where 

SVs cover a large part of the read or are even larger than the read, the mapping to the reference 

genome becomes problematic. Detection of SVs in segmental duplications and repetitive 

regions of the genome is also complicated, if not impossible with short reads. These problems 

are circumvented by using third-generation sequencing technologies that feature long reads 

without amplifying the templates. As the reads can span sequences as long as a megabase (Mb), 

entire SVs can be captured. The main drawbacks of long-read sequencing are the high error 

rates, and the need to provide high-quality high molecular weight DNA as a starting 

material115,116. The common disadvantage of all strategies described so far is that they are 

limited in detecting SVs of subclones with lower frequency. One solution is to perform 

multiregional sampling and profiling to get a better overview of clonal evolution108,117 but 

precise clonal dynamics can be assessed only with single-cell resolution. Because of that, there 

is an increasing interest in applying single-cell genomic platforms, especially to create 

phylogenetic relationships between subclones108. Considering the limited amount of DNA in 

single cells, a common approach is to include a whole-genome amplification step during library 

preparation to increase the amount of DNA available for sequencing118. It is not a perfect 

solution as PCR amplification can be biased and may introduce artifacts that impact variant 

calling, especially for SVs. 

1.4.2 SV discovery and functional annotation with Strand-seq 

Strand-seq is a unique technology as it preserves the information about the homologs in the 

individual cells by sequencing exclusively the template strands (Figure 3A). It allows the 

discovery of balanced, imbalanced, and complex DNA rearrangements down to 200 kb 

resolution111–113. Strand-seq protocol relies on the incorporation of BrdU, a thymidine analog, 

into nascent DNA strands while the cell completes exactly one cell division. BrdU-labelled 
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single nuclei are isolated by FACS. The presence of BrdU in a DNA strand changes the binding 

pattern of Hoechst 33258 leading to a decreased fluorescence signal. Therefore, nuclei with 

hemi-substituted DNA have half the fluorescence compared to nuclei without BrdU 

incorporation and after identification, they can be sorted into 96-well plates. BrdU-labelled 

single nuclei are subjected to library preparation without any pre-amplification steps. First 

DNA is fragmented with micrococcal nuclease (MNase). Then the nascent DNA strands are 

nicked at the sites of BrdU incorporation during UV irradiation. In the next step, only the 

original DNA template strand is amplified during PCR as single-stranded nicks on the nascent 

strand inhibit proper elongation by the polymerase. PCR also allows for the introduction of 

unique barcodes for each analyzed cell, so that the barcoded directional libraries can be pooled 

and sequenced on an Illumina platform112. 

 

 
Figure 3 Overview of Strand-seq and scTRIP. 
(A) Strand-seq, a single-cell sequencing technique, takes advantage of the directionality of single-
stranded DNA molecules, distinguishable as Crick (’C’, forward strand, green) and Watson (‘W’, 
reverse strand, orange). During DNA replication BrdU is incorporated into nascent DNA strands 
(dashed lines). Daughter cells inherit CC, WW, or WC template strands of each parental chromosome. 
Nuclei from hemi-substituted cells are sorted and the isolated DNA is used to prepare Strand-seq 
libraries. (B) After sequencing and alignment, the generated data can be used to call copy number 
alterations and balanced DNA rearrangements (including translocations and inversions) by single-cell 
tri-channel processing (scTRIP), which integrates read depth, template strand, and whole-chromosome 
haplotype assignments (H: haplotype). (C) Each of these DNA rearrangements can be recognized based 
on ‘diagnostic footprints’. In the presented example, a deletion is detected as a loss in read depth 
affecting a single haplotype without a change in the read orientation. Panel A adapted from Sanders et 
al.112, and panels B and C are adapted from Sanders et al.113. 
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Results of Strand-seq experiments have been used to study chromosome segregation119, sister 

chromatid exchange (SCE) events111,120–122, perform whole-chromosome haplotyping and 

de novo genome assembly123–126, and characterize SVs in single cells111,113,114 with a particular 

focus on inversions127,128. SV detection in Strand-seq data is even more precise than manual 

annotation thanks to scTRIP113. scTRIP is a computational framework built for Strand-seq data 

to facilitate and automate SV discovery. It incorporates three readouts from Strand-seq 

libraries: depth coverage, read orientation, and haplotype phase (Figure 3B). Several different 

types of SVs (including deletions, duplications, balanced inversions, inverted duplications, 

balanced translocations, aneuploidies, chromothripsis, and breakage-fusion-bridge-cycle 

events) can be identified via a specific ‘diagnostic footprint’ that combines the information 

from all three channels. For example, deletion is characterized by a read-depth loss affecting a 

single strand and haplotype (Figure 3C). The great advantage of scTRIP is that it can identify 

these SVs in a heterogeneous population at very low clonal frequency levels, including in 

individual cells. Another computational pipeline very recently developed in our group, 

scNOVA114, combines the SV discovery of scTRIP with molecular phenotyping to infer gene 

expression as a readout. Since MNase is used for Strand-seq library preparation, an enzyme 

that cuts nucleosome-free regions of DNA, we additionally gain the ability to analyze 

nucleosome occupancy (NO) profiles providing a complementary epigenetic readout in the 

same single cells. scNOVA relies on deep convolutional neural networks and negative binomial 

generalized linear models to infer gene activities from this epigenetic readout. As shown with 

Strand-seq data from cell lines and patient-derived leukemic samples, it is now possible to infer 

cell types based on the NO of lineage-specific genes (as long as reference data is available) and 

predict gene expression differences between defined cell populations (for example, subclones 

distinguishable on the presence of an SV). In summary, scTRIP, and scNOVA, a truly multi-

omic technique, offer a unique chance to explore the consequences of structural variation in 

heterogeneous cell populations. 

Taken together, with the great progress of single-cell technologies and the development of 

organoid models, it is now possible to study the consequences of multi-layered heterogeneity 

of breast cancer cells, especially in the context of treatment resistance. What is still missing 

though, is an in-depth analysis of chemotherapy-related mutational signatures focusing on SVs. 
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Chapter 2  Objectives and thesis outline 

The majority of chemotherapeutics, including doxorubicin, damage DNA and induce cell death 

due to the stress-related burden. However, some cells survive the treatment and their presence 

may result in the development of therapy resistance. These residual cells have managed to 

successfully repair DNA breaks or converted the original damage into mutations so that 

the DNA integrity is protected. For some chemotherapies, the mutational signatures, including 

base substitutions or small indels, have been identified but the contribution of SVs has been 

underexplored. Characterizing the genetic and phenotypic composition of the tumor pre- and 

post-treatment will provide a better understanding of how different cell types are affected by 

the same drug, and whether the surviving populations show a cell-type bias and dormancy 

phenotype that could contribute to the development of minimal residual disease. Such results 

would be particularly important to identify novel vulnerabilities that could be translated into 

clinical use for cancer patients (in the context of this thesis, for breast cancer patients). 

The overall goal of this dissertation is to identify SVs induced by doxorubicin in different cell 

types of murine mammary gland organoids from TetO-CMYC/TetO-Neu/MMTV-rtTA strain, 

and classify cell-type specific transcriptomic changes following doxorubicin treatment in the 

same breast cancer model. As indicated in the introduction, this study relies on the reductionist 

model of breast cancer and takes advantage of new technologies that provide a detailed single-

cell resolution, necessary to profile heterogeneous samples. I hypothesize that certain SV types 

will be more common after doxorubicin treatment, depending also on the cell type present in 

murine mammary gland organoids.  

 

The thesis is structured as follows: 

In Chapter 1 I review relevant literature to provide background information for the project. 

Chapter 2 and Chapter 3 include the objectives and a statement of contribution. 

In Chapter 4 I present the results of a drug screen on murine mammary gland organoids. 

The aim of the screen was to find drugs and their concentrations that could be used to mimic 

the treatment received by the patients. Based on the obtained data, I decided to focus on 

doxorubicin for the follow-up experiments. 
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In Chapter 5 I outline the attempt to characterize cell-type-specific transcriptomic changes 

induced by doxorubicin in murine mammary gland organoids. Based on the expression of 

canonical markers, I identified five different cell types present in the organoids. I also showed 

that doxorubicin treatment induced G1-cell cycle arrest and was particularly cytotoxic for 

the population of basal cells. Doxorubicin had a strong negative effect on the fundamental 

cellular processes. 

In Chapter 6 I describe experimental and computational challenges that needed to be overcome 

to adapt Strand-seq, scTRIP and scNOVA for the purposes of this project. I established Strand-

seq protocol in organoids and thus a solid tumor model for the first time. Altogether, these 

technologies allow identifying SVs in cells of murine mammary gland organoids in a cell-type-

specific manner. 

In Chapter 7 I summarize the SVs induced by doxorubicin in murine mammary gland 

organoids. I detected a higher SV burden, as well as an increased frequency of SCEs in all cell 

types following doxorubicin treatment compared to controls. Complex events occurred 

exclusively in drug-treated cells.  

In Chapter 8 I discuss the findings considering the strengths and weaknesses of the approaches 

used in this dissertation. 

Chapter 9 contains the details of the experimental and computational methods applied in this 

project, while in Chapter 10 I provided supplementary data. 
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Chapter 3  Contributions 

Unless stated otherwise, I performed all the experiments, analyzed the data, and interpreted 

the results, with support from my supervisor Prof. Dr Jan Korbel in collaboration with 

Dr. Martin Jechlinger. 

I cultured mammary gland organoids and cell lines for all the experiments, and I isolated the 

mouse embryonic fibroblasts from embryos. I confirmed the correct genotype of the mice used 

in this study. I applied molecular biology methods and techniques, such as 

immunofluorescence (including imaging), RNA and DNA extraction, real-time qPCR, 

cytotoxicity assays, and flow cytometry. I prepared the samples for Strand-seq and created the 

libraries for scRNA-seq and scATAC-seq. I analyzed the data from single-cell sequencing 

technologies and whole-genome sequencing of murine mammary gland organoids. I created all 

the schemes and figures presented in this thesis apart from figures 3, 12, 14, and 15 (indicated 

also in the figure legends). I wrote the entire text of this dissertation. 

The following people contributed to the work presented in this doctoral thesis: 

Dr Hyobin Jeong (Korbel group, EMBL Heidelberg) adapted scTRIP for the murine genome. 

She performed the computational analysis related to establishing the scNOVA cell-type 

classifier and inference of gene expression changes. 

Marta Garcia Montero and Dr. Martin Jechlinger (Jechlinger group, EMBL Heidelberg) 

maintained the mouse colony, euthanized the mice used in this study, and provided technical 

support to isolate mammary glands. 

Dr. Sylwia Gawrzak and Marta Garcia Montero (Jechlinger group, EMBL Heidelberg) were 

involved in the design of the drug screen and provided technical support with organoid seeding, 

medium change, and endpoint assays related to the screen. 

The Strand-seq libraries were generated by Dr. Eva Benito Garagorri, Catherine Stober 

Brasseur, Patrick Hasenfeld, Dr. Maise Gomes Queiroz, and Benjamin Raeder (Korbel group, 

EMBL Heidelberg). 

Laura Villacorta (Genomics Core Facility, EMBL Heidelberg) provided technical assistance 

during the generation of scRNA-seq libraries. 
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I received technical support with FACS from the members of the Flow Cytometry Core Facility 

at EMBL Heidelberg: Dr. Diana Ordonez, Dr. Beata Ramasz, Dr Daniel Gimenes, Michael 

Bonadonna, and Dr. Malte Paulsen. 

All sequencing was performed at the Genomic Core Facility at EMBL Heidelberg. 

  



 

 25  

Chapter 4  Results: identification of doxorubicin as 
a drug of interest through a drug screen on murine 
mammary gland organoids. 

The 3D culture system of murine mammary glands from TetO-CMYC/TetO-Neu/MMTV-

rtTA strain faithfully recapitulates the dynamics of tumorigenesis of HER2 positive breast 

disease together with cMYC activation102,103. Doxycycline-controlled oncogene induction 

offers a unique opportunity to study the impact of the drugs on both healthy and cancer cells 

coming from the same organism. I intended to adapt a drug screening platform using murine 

mammary gland organoids derived from TetO-CMYC/TetO-Neu/MMTV-rtTA strain, so that 

my experimental setup would mimic the treatment received by the patients. I decided to focus 

on the drugs that are clinically relevant for HER2-positive breast cancer patients, such as 

doxorubicin, lapatinib, and paclitaxel, and for each of them to find the IC50 value, which 

corresponds to the concentration at which 50% of cells in a population die after being exposed 

to the substance. Knowing the concentration range in which the drugs were active was the first 

step to planning single-cell transcriptomic and genomic experiments that aimed at 

characterizing the impact of these drugs on cancer cells. 

4.1 Experimental design to test the cytotoxicity of common cancer drugs 

Reported IC50 values for 3D cultures are known to be usually higher than for 2D cultures129, 

and there are no literature reports with information about concentrations that could be used 

specifically for murine mammary gland organoids. Because of that, the choice of the initial 

concentration range for experiments was based on the data from breast cancer cell lines 

included in the ‘Genomics of Drug Sensitivity in Cancer’ project (the Wellcome Sanger 

Institute). The screen was performed using mini 3D gels (seeding density of 600 cells in 10 µl) 

growing in 96-well plates. Such an approach reduces variability as all concentrations of a drug 

(including necessary controls) can be tested on the same plate, and there are enough technical 

replicates per concentration to perform statistical testing. Seven days after seeding, when the 

structures reached their final size, doxycycline was added to the medium to induce oncogene 

overexpression. The organoids, both those never induced and those treated with doxycycline 

for seven days were then treated with drugs for 72 hours (each drug was tested at five different 

concentrations with four to five technical replicates). Treatment with dimethyl sulfoxide 
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(DMSO), a solvent for all the drugs, was used as a control. The growth of the organoids was 

monitored regularly using a high-throughput brightfield microscope. 

Following the incubation with the drugs, I performed commercially available cytotoxicity and 

cell viability assays (that can be multiplexed) and then calculated the IC50 value for each of 

the drugs. After optimizing the culture and handling conditions, I successfully performed three 

(for paclitaxel) and four (for lapatinib and doxorubicin) biological replicates (different mice 

used for cell isolation and different days of seeding) of the screen with consistent results 

between the screens. The fluorescence-based cytotoxicity assay detects biomarkers released to 

the medium during apoptosis, while the viability assay provides a luminescent signal 

proportional to ATP levels released from lysed metabolically active cells. For all tested drugs, 

for both never induced organoids and induced with doxycycline, these two inverse measures 

of cell health resulted in IC50 agreement, and for clarity, only the data from the cell viability 

assay is shown in this chapter. 

4.2 Doxorubicin, but not paclitaxel, has a cytotoxic effect on murine mammary 

gland organoids 

Doxorubicin is a commonly used chemotherapeutics that induces cell death via several 

mechanisms covered in detail in section 1.2.3 of the introduction. The data from the drug screen 

indicated that treatment with increasing concentrations of doxorubicin negatively affected the 

viability of both healthy and cancer cells (Figure 4A). Non-induced cells were more sensitive 

to drug concentrations higher than 500 nM, reflected by the calculated IC50 value: 800 nM for 

non-induced cells and 1 µM for cells induced with doxycycline. 

Paclitaxel is a cytoskeletal drug that promotes the assembly of microtubules and inhibits tubulin 

disassembly. The exact mechanism by which paclitaxel induces cell death is still unclear, but 

one hypothesis is that it affects mitotic spindle formation and therefore affects proper 

chromosome segregation fidelity during cell division130. Although paclitaxel is a widely used 

microtubule toxin used to treat a number of types of cancer, it did not have a strong cytotoxic 

effect on either healthy or cancerous cells from murine mammary gland organoids, even if they 

were exposed to very high concentrations of the drug (Figure 4B). In fact, some of the tested 

concentrations were so high that paclitaxel precipitated in the medium and formed crystals 

visible in brightfield (this effect was observed with micromolar concentrations, whereas the 

typical IC50 value for paclitaxel, reported for human cell lines, is in the nanomolar range) (Sup. 

Figure 1). 
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Figure 4 Summary of cytotoxic effect of chemotherapeutics (paclitaxel, doxorubicin) on murine 
mammary gland organoids and human cell lines. 
Murine mammary gland organoids, both never-induced (NI) and induced with doxycycline (On_dox) 
to overexpress CMYC and HER2 (and mimic cancer phenotype) were treated with increasing 
concentrations of drugs for 72 hours before measuring the cell viability. Treatment with DMSO 
(a solvent for both drugs) was used as a control. The results of the luminescence-based assay are 
presented from 3 or 4 biological replicates. (A) The viability of both NI and On_dox cells decreases 
with increasing concentration of doxorubicin. (B) Very high concentrations (higher than 100 nM) of 
paclitaxel reduce slightly the viability of cells forming organoids but the concentration of the drug is 
much beyond the reported concentration range of paclitaxel cytotoxicity. (C) To exclude the possibility 
that the drug is not active or the exposure time is too short, I measured the cytotoxic effect of paclitaxel 
on human mammary gland (MCF10a) and breast cancer (BT474) cell lines. The cells were incubated 
with increasing concentrations of the drug for up to 120 h. The cytotoxic activity of paclitaxel is already 
present in the nanomolar concentration range. Prolonged exposure does not increase cytotoxicity. Data 
from three experimental replicates. 

To exclude the possibility that the drug I acquired for the screen was inactive, or that the cells 

should have been treated for a longer time (as they might require more time to divide), 

I performed a similar drug test on two cell lines, MCF10a (a spontaneously immortalized 

human breast epithelial cell line) and BT474 (a human breast tumor cell line overexpressing 

HER2) which differ in the doubling time (approximately 16 hours for MCF10a and 60-80 hours 

for BT474, data from the American Type Culture Collection, ATCC). The cells were exposed 
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to paclitaxel for 72, 96, or 120 hours. With both cell lines, I could observe that the higher the 

concentration of the drug, the lower the viability of the cells (Figure 4C). The cytotoxic effect 

was already present after 72 hours and the longer exposure did not increase the cytotoxicity. In 

addition, using the same cell lines, I compared the activity of the drug that I used for organoid 

screens to one from a different vendor and did not observe any differences. The presented data 

confirm that exposure to paclitaxel does not affect the viability of murine mammary gland 

organoids. Nevertheless, it is still possible that paclitaxel induces genomic rearrangements in 

these organoids but they are not detectable with cell viability or cytotoxicity assays (used as 

a proxy for DNA damage as they allow high-throughput readout). 

4.3 Lapatinib negatively affects the viability of murine mammary gland 

organoids regardless of their HER2 status 

Contrary to paclitaxel and doxorubicin, treatment with lapatinib (used in a form of lapatinib 

ditosylate) is an example of targeted therapy. Lapatinib is a dual tyrosine kinase inhibitor 

blocking HER2 and EGFR signalling pathways131. In contrast to trastuzumab (Herceptin), 

an anti-HER2 antibody used in the clinics that is binding only to human HER2132, lapatinib has 

been already demonstrated to bind, in addition to the human HER2, to mouse and rat 

HER2/ERBB2/NEU133 (and one of the transgenes overexpressed by the doxycycline induced 

organoids used in this study is rat Her2/Erbb2/Neu). 

Like during the treatment with doxorubicin, the viability of organoids exposed to lapatinib was 

affected in a concentration-dependent manner (Figure 5A). Surprisingly though, there was not 

much difference in the cytotoxic effect of lapatinib between cells that had been induced with 

doxycycline (so overexpressing HER2 and CMYC) and those that had not (IC50 values 2 µM 

and 1.95 µM respectively). Potential explanations for that might be that the non-induced cells 

already had a high level of expression of Her2, or that the system is leaking, which would result 

in the overexpression of oncogenes in the absence of doxycycline. I excluded these possibilities 

by performing reverse transcription quantitative real-time PCR (RT-qPCR) to check the 

mRNA levels of the oncogenes, both mouse-specific and from the transgenes (human CMYC 

and rat Erbb2/Neu) at three different time points (before induction, after seven days on 

doxycycline and after seven days on doxycycline followed by seven days off doxycycline). 

The transgenes were expressed strongly only if the cells were grown in the medium containing 

doxycycline (Figure 5B).  
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Figure 5 Non-specific cytotoxic effect of lapatinib on murine mammary gland organoids. 
(A) Murine mammary gland organoids, both never-induced (NI) and induced with doxycycline 
(On_dox) to overexpress CMYC and HER2 were treated with different concentration of lapatinib for 
72 hours before measuring the cell viability. Treatment with DMSO (a solvent for lapatinib) was used 
as a control. The results of the luminescence-based assay are presented from 4 biological replicates. 
Even though lapatinib should only target the cells overexpressing HER2, it had a similar cytotoxic effect 
on organoids without and with induced overexpression of HER2. (B) By performing RT-qPCR on RNA 
extracted from mammary gland organoids at different stages of growth, I confirmed that the HER2 
transgene is overexpressed only if the cells are induced with doxycycline and the baseline expression 
of murine Erbb2 is low. Off_dox cells were grown for 6 days without doxycycline, then induced with 
doxycycline for 7 days followed by 7 days off doxycycline. Data from three biological replicates. 

According to the supplementary data, provided by Dr. Sylwia Gawrzak, 3D cultures of human 

breast cancer cell lines overexpressing HER2 (BT474 and SKBR3) are more sensitive to 

lapatinib than cells without the amplification of the HER2 oncogene (MCF-7, MDA-MB-231) 

with app. up to a 10-fold difference in the IC50 value (IC50 values were as followed: BT474: 

0.94 µM, SKBR3: 2.1 µM, MCF-7: 9.6 µM, MDA-MB-231: 9.1 µM). The reason why 

the viability of not-induced organoids was negatively affected by lapatinib remains elusive. 

All three drugs were interesting potential candidates for follow-up genomic and transcriptomic 

experiments that would allow me to understand how different drugs affect tumor heterogeneity, 

and whether they could be associated with certain mutational signatures (especially important 

in the context of doxorubicin that directly affects DNA and paclitaxel which impacts 

chromosome segregation potentially contributing to genomic instability). Considering the 

mechanism of action of anthracyclines and their clinical significance for HER2-positive breast 

cancer patients, as well as the clear cytotoxic effect on murine mammary gland organoids, 

I decided to focus my further research on doxorubicin.  
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Chapter 5  Results: single-cell transcriptomic 
profiling of murine mammary gland organoids after 
doxorubicin treatment 

In the next step, to get a better assessment of how heterogenous the cell population is after 

doxorubicin treatment at the transcriptome level, I performed scRNA-seq. With the generated 

data, I would be able to annotate for the first time the cell types present in murine mammary 

gland organoids and detect if there are subpopulations or cell types affected differently by 

doxorubicin. In addition, with these results, I would be able to determine if cells after 

doxorubicin treatment show early indications of dormancy and MRD phenotype or express 

candidate genes that could be associated with doxorubicin resistance. 

5.1 Experimental workflow and data processing 

Based on the results of the screen, for further experiments, I selected the concentration of 

doxorubicin of 100 nM. Organoids in the cancer state (induced with doxycycline for 6 days) 

from mammary glands of two independent mice (mouse_498, mouse_000) were treated with 

doxorubicin or DMSO (solvent for doxorubicin) for 72 hours and allowed to recover for the 

next three days. Matching control consisted of same-age organoids induced with doxycycline 

but not treated with DMSO or the drug. For each condition, I sorted cells based on their viability 

(excluding dead and early apoptotic cells which were present as a consequence of the 

drug/solvent treatment, or as an effect of the dissociation of organoids from the matrix into 

single cell solution) and then prepared libraries for scRNA-seq using the 10x Chromium 

platform. Flow sorting of cells before the 10x Genomics assay is a standard clean-up procedure 

that allows also to remove the debris that could potentially clog the microfluidic chip. All the 

libraries were pooled and sequenced together during one run of Illumina NextSeq 2000 to avoid 

batch effects. 

To analyze the sequencing data, I first applied two steps of Cell Ranger (cell ranger mkfastq 

and cell ranger count), an analysis pipeline provided by 10x Genomics. The Illumina 

sequencer’s base call files were demultiplexed and converted into FASTQ files. Then the 

sequencing reads were aligned to a mouse reference transcriptome. As next, the generated 

feature-barcode matrices were processed with the Seurat R package, one of the most common 

toolkits for quality control and exploration of scRNA-seq data134. After filtering high-quality 



 

 31  

cells, I corrected for technical variability with sctransform, a modeling framework for the 

normalization implemented in the Seurat workflow135. A total of 17,445 cells were used for 

subsequent analysis (for two biological replicates (mouse_498 and mouse_000 respectively): 

2293 or 4005 for untreated control, 3326 or 4770 for DMSO-treated, 255 or 2796 for 

doxorubicin-treated). Visual inspection of the data following dimensionality reduction and 

clustering indicated that cells group by cell type or experimental condition, and cells coming 

from the same experimental condition but a different biological replicate mix well together 

(Figure 6A). 

 

 
Figure 6 Successful cluster identification and cell-type annotation of cells in murine mammary 
gland organoids. 
(A) Uniform Manifold Approximation and Projection (UMAP) embedding of scRNA-seq of cancer 
cells forming murine mammary gland organoids, treated with doxorubicin (dxr), DMSO (DMSO), or 
left untreated (con). Each of the 17,445 cells is represented by a dot and color-coded based on the 
experimental condition and a biological replicate (organoids were derived from mammary glands of 
two different mice, 000 and 498 are mice ID numbers). (B) The cell type for each cell was inferred and 
annotated based on the expression of marker genes (based on a literature review). Five different cell 
types (labelled with different colors) were present in murine mammary gland organoids: luminal 
progenitors (LP), mature luminal (ML), basal (B), myoepithelial (My), and fibroblasts (F). (C) Dot plot 
showing the relative average expression of cell-type specific marker genes between different 
subpopulations in murine mammary gland organoids. The size of the dot represents the percentage of 
cells expressing the gene, and the color corresponds to the average expression across the cell type. 
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5.2 Identification of major mammary cell types from scRNA-seq profiles 

To annotate 17 clusters generated through unbiased clustering, I took advantage of several 

recent papers in which authors performed scRNA-seq of murine mammary glands at different 

developmental stages and at different phases of the estrous cycle136–139. Although these studies 

provide valuable contributions to understanding the complex composition of the mammary 

epithelium, their results are not fully coherent, probably due to experimental differences (for 

example, different markers for cell sorting) and data analysis strategies2. It should be noted that 

the culture conditions and medium composition for murine mammary gland organoids select 

for epithelium cells. Therefore, in the analyzed dataset, I did not detect any endothelial, 

neuronal, or immune cells that would be normally present in the mammary gland immediately 

after extraction. Based on the expression of canonical markers, I identified 11 clusters with 

luminal cells, five clusters with a basal profile, and one cluster containing fibroblasts (for 

clarity only annotated clusters are shown, Figure 6B). Particularly the luminal population 

seemed to display a differentiation continuum rather than clearly separated clusters. The cells 

from the luminal compartment did not express progesterone or estrogen receptors (Pgr, Esr1) 

but they did express prolactin receptor (Prlr) (Figure 6C). Within the basal cells, I identified a 

subgroup that shows signatures of myoepithelial cells like a high expression of Acta2, Myl9, 

and Mylk. Despite the fact that lactation is normally induced by hormonal changes during 

pregnancy, luminal cells, in particular luminal progenitors, expressed genes associated with 

milk production (Csn2, Csn1s1, Wap, Lalba). Apart from Cd14, the cells included in this 

analysis did not express other progenitor markers like Aldh1a3 or Kit. Altogether, these results 

indicate that murine mammary glands organoids are formed by at least five distinct cell types 

(luminal progenitors (LP), mature luminal (ML), basal (B), myoepithelial, and fibroblasts) 

and that the majority of cells resemble a more differentiated alveolar state. 

5.3 Doxorubicin affects the cell-type composition of organoids and the cell cycle 

Once the cell types were annotated, the immediate observation was that after the treatment with 

doxorubicin, the cell-type composition of murine mammary gland organoids changed. In 

normal conditions, the majority of epithelial cells in the mammary glands of adult, nulliparous 

mice are luminal cells, and the frequency of basal cells is between 20-30%136,138,140. 

The distribution of cell types similar to the previously reported ones was observed in the murine 

mammary gland organoids from untreated or DMSO-treated samples (Figure 7A,  
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Figure 7 Impact of doxorubicin on the cell-type composition of murine mammary gland organoids 
and cell cycle phase. 
(A) Relative frequency bar chart of cell types present in murine mammary gland organoids treated with 
doxorubicin (dxr), DMSO (DMSO), or left untreated (con). Data from two biological replicates (000 
and 498 are ID numbers of mice from which mammary glands were extracted). The population of basal 
cells decreases after doxorubicin treatment. (B) UMAP embedding of scRNA-seq data colored by the 
assigned cell-cycle phase. The phase of the cell cycle is one of the main factors that drive cell separation. 
(C) Relative frequency bar chart of cell cycle phases associated with different conditions. Both 
doxorubicin and DMSO affect cell cycle progression compared to the control but only doxorubicin 
induces G1 arrest. 

Sup. Figure 2). After the drug treatment, the population of basal cells decreased as observed in 

both independent biological replicates indicating that basal cells are more sensitive to the 

cytotoxic effect of doxorubicin. 

Considering that doxorubicin acts predominantly by the induction of DNA damage which may 

lead to cell cycle arrest or cell death, I checked how the treatment with doxorubicin affected 

the cell cycle progression. One of the most common practices in scRNA-seq data analysis is to 

correct for the effect of the cell cycle as in certain cases it may confound a true biological 

signal141. However, in this experiment, the information about the cell cycle state following 

doxorubicin treatment was particularly crucial, therefore it was not regressed out. Using one of 

the Seurat functions, I assigned each cell a cell cycle score based on the expression of S and 

G2/M markers (cells expressing neither of them are classified as G1). Indeed, the cell cycle 

state was one of the main factors driving the clustering of cells within the same cell type (Figure 

7B). After doxorubicin treatment, the vast majority of cells could be associated with the G1 

state with only a low fraction of cells entering the S or G2/M phases (Figure 7C). In all three 

most abundant cell types (B, LP, ML) the effect of doxorubicin on cell-cycle was the same 

(Sup. Figure 3). Surprisingly, treatment with DMSO also affected cell cycle progression with 

a higher fraction of cells in S and G2/M phases compared to untreated organoids. Only cells 

from untreated and DMSO-treated samples contributed to a subgroup of luminal cells 

considered highly proliferative based on high expression of proliferation-promoting genes 

(such as Mki67, Birc5, and Tyms). Overall, these data indicate that doxorubicin treatment 
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induces a G1 arrest, and additional recovery time after doxorubicin treatment is required for 

cells to be able to divide again. 

5.4 Comparison of the shared and cell-type-specific transcriptomic responses to 

doxorubicin 

To summarize global changes induced by doxorubicin, I performed differential gene 

expression analysis (using log-normalized data from both biological replicates and DMSO-

treated samples as controls) and gene ontology (GO) and gene set enrichment analysis (GSEA) 

(with Cluster profiler 4.0142,143). Compared to the DMSO-treated control, doxorubicin-treated 

cells downregulate the expression of 803 genes and upregulate the expression of 427 

(avg_log2FC smaller or bigger than 0.2, adjusted p-value smaller than 0.05) (Figure 8A). 

Products of upregulated genes were involved in biological processes connected to cell motility 

and migration, as well as stress and inflammatory response, while products of downregulated 

genes were participating in the most crucial cellular functions such as protein synthesis and 

translation, and cellular respiration (Figure 8B). On a global level, cells after doxorubicin 

treatment downregulated the expression of Top2a, one of the direct targets of doxorubicin, and 

Topbp1, DNA topoisomerase 2-binding protein 1 (TOPBP1), a binding partner of TOP2A, also 

involved in DNA repair144. Downregulation of Top2a is observed in doxorubicin-resistant 

cells145,146. Apart from Top2a, doxorubicin-exposed cells did not significantly deregulate the 

expression of some of the most common genes whose products may promote resistance, such 

as multidrug resistance transporters. Based on the GSEA results, doxorubicin-treated cells did 

not show the phenotype of senescent cells147. Taken together, the treatment with doxorubicin 

has a strong effect on the transcriptome of cancer cells forming murine mammary gland 

organoids, and the consequences are still visible after 3 days since the drug was removed from 

the medium. 

In the next step, I wanted to get more insight into whether different cell types of mammary 

gland organoids have unique responses to doxorubicin. In all samples the fraction of luminal 

cells, both progenitors and mature, is the highest. Compared to untreated and DMSO-treated 

controls, only the population of basal cells decreases strongly after doxorubicin treatment 

indicating that basal cells were more sensitive to the cytotoxic effect of doxorubicin. To look 

for cell-type specific differentially expressed genes, I performed the analysis with         

EdgeR148–150 (based on the design matrix and voom method151 available in the R package 
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Figure 8 Identification of key genes and biological processes following doxorubicin treatment. 
(A) Volcano plot showing differentially expressed genes of doxorubicin-treated cells compared to 
DMSO-control. Significantly up-regulated and down-regulated genes are shown as orange and blue 
dots, respectively. The differential expression test was performed based on the Wilcoxon rank sum test, 
adjusted p-value based on Bonferroni correction. (B) Bubble plot showing GO enrichment of 
differentially expressed genes between doxorubicin vs DMSO-treated cells. The top 10 GO terms of 
biological processes significantly enriched by up-regulated (top) and down-regulated (bottom) genes 
(Bonferroni-adjusted p-values). (C) A heatmap comparing the expression of 236 deregulated genes 
shared by basal and luminal cells after differential gene expression analysis using cell type as a 
confounding factor. For each cell type, the difference in gene expression was calculated between the 
doxorubicin-treated sample and solvent control.  

limma152, adjusted p-value based on Bonferroni correction). Both luminal cell types show 

a greatly increased number of statistically significant (adjusted p-value smaller than 0.05) 

deregulated genes compared to basal and myoepithelial cells (number of deregulated genes: 

956 for luminal progenitor, 1,215 for mature luminal, 470 for basal and 55 for myoepithelial). 

Two luminal subtypes shared 785 deregulated genes of which 236 were also deregulated in the 

same direction in basal cells (Figure 8C). Genes whose products control cell cycle progression 

(like Mki67), as well as Top2a and Topbp1, were downregulated in all three cell types. 

Interestingly, luminal cells but not basal cells, strongly downregulate Cbr3 coding for carbonyl 

reductase that catalyzes the reduction of doxorubicin to toxic alcohol metabolites. GO 

and GSEA on luminal-specific deregulated genes were inconclusive and did not provide 
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an explanation why these cells may have a different response to doxorubicin or a survival 

advantage compared to basal cells. 

The analysis described in this chapter revealed the cell-type composition of murine mammary 

gland organoids and confirmed that all major cell types from epithelial lineage normally present 

in murine mammary glands are preserved. Treatment with doxorubicin induces strong 

transcriptomic changes that affect the expression of genes essential in regulating cell cycle 

progression and metabolism. Although the basal cells seem to be more sensitive to the drug, 

the findings suggest that the overall transcriptional changes are rather shared between all cell 

types. 
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Chapter 6  Results: establishing a single-cell multi-
omics approach to study cell-type specific SVs 

Even though it is well-established that doxorubicin is a DNA-damaging agent, surprisingly 

little is known about whether it can be associated with mutational signatures and the formation 

of SVs. To get better insight into cell-type specific mutation patterns observed after 

doxorubicin treatment, I took advantage of a single-cell genomics technique Strand-seq, and 

computational methods built around it, scTRIP and scNOVA. In this chapter, I describe how I 

adapted both experimental and computational workflows for the needs of this project. In 

Chapter 7 using scTRIP and scNOVA modified for mice genome, I characterize the types and 

frequencies of SVs detected in different cell types present in murine mammary gland 

organoids, at different stages of tumorigenesis (from normal cells to cancer cells before and 

after doxorubicin treatment). 

6.1 Successful generation of Strand-seq libraries from cells of murine mammary 

gland organoids 

The critical step in the Strand-seq protocol is BrdU incorporation into nascent DNA strands 

followed by the isolation of single nuclei. Although Strand-seq libraries have been previously 

generated from human112–114, primate127,153, and mouse111 cell lines, human primary cells113,114, 

and yeast120, there are no published reports of applying Strand-seq libraries on cells forming 

organoids. 

I first optimized the protocol to isolate the nuclei from 3D structures (Figure 9A) and for clarity, 

I present the most optimal method relying on enzymatic digestion. Such an approach was more 

efficient in my hands compared to non-enzymatic methods (including dissolving with ice-cold 

phosphate-buffered saline (PBS) or a commercially available non-enzymatic dissociation 

reagent), and its first steps were also applied to isolate single cells before scRNA-seq (described 

in the previous chapter). Briefly, Matrigel, the matrix in which organoids grow, was 

enzymatically digested and the loose gel was mechanically disrupted by pipetting up and down. 

A high concentration of trypsin was used to isolate single cells from the organoids, and the 

single nuclei were extracted with previously reported ‘nuclei staining buffer A’ (a high salt 

buffer with a detergent)113. As high concentrations of BrdU might be toxic to primary cells 

(and supposedly to organoids derived from them), I then tested if it was also the case for murine 

mammary gland organoids. These organoids are most sensitive to perturbed growth conditions 
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at the very beginning of culture, therefore I treated them for 72 hours with different 

concentrations of BrdU already two days after seeding. BrdU concentration of 40 µM is 

typically used in Strand-seq experiments on human cell lines and was also used in one study 

including a murine cell line. Although even the lowest tested BrdU concentration (5 µM) 

negatively affected cell viability, the effect was much stronger with concentrations higher than 

20 µM (Figure 9B). Based on the results, a BrdU concentration of 20 µM was selected for all 

Strand-seq experiments performed on murine mammary gland organoids. 

 

 

Figure 9 Establishing an experimental workflow for detection and isolation of BrdU-positive 
nuclei from murine mammary gland organoids. 
(A) Organoids were released from Matrigel through enzymatic dissociation and mechanical disruption 
of the matrix. Single cells were isolated following trypsinization, and single nuclei were extracted with 
an established gentle cell lysis buffer. (B) Never-induced murine mammary gland organoids were 
cultured in the presence of different concentrations of BrdU for 72 hours before measuring cell viability 
with a luminescence-based assay. The plot shows the results of three independent experiments. (C) 
Murine mammary gland organoids induced with doxycycline were incubated with either 20 µM BrdU 
or 20 µM EdU for 24 and 48 hours. The frequency of BrdU-positive and EdU-positive cells was 
analyzed with flow cytometry based on Hoechst quenching or Click-iT staining. BrdU and EdU are 
incorporated into the DNA of cells forming murine mammary gland organoids with the same efficiency 
(not significant difference, Student’s t-test). The plot shows the results of three independent experiments 
(with at least 10,000 single nuclei or cells recorded). (D) Doxycycline-induced murine mammary gland 
organoids were cultured in the absence or presence of 20 µM EdU for 24 or 48 hours. The gels 
containing the organoids were then cut into 8 µm cryosections. The cryosections were fixed and labeled 
for EdU with Click-iT chemistry (green) and DNA was counterstained with 4’,6-diamidino-2-
phenylindole (DAPI) (blue). Example images of single organoids are presented showing that EdU is 
incorporated into cells growing both inside and on the rim of structures. Scale bar 50 µm. 
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To confirm that cells inside the organoid are incorporating BrdU as well as the cells in the outer 

rim of the structure, I intended to analyze them by immunofluorescence with an anti-BrdU 

antibody. However, assays based on anti-BrdU antibodies require that DNA is first denatured 

with acid or heat to expose BrdU (Sup. Figure 4). In my hands, despite testing different 

protocols on both whole gels or cryosections, such harsh processing destroyed the structural 

complexity of the samples. Because of that, I took advantage of Click-iT EdU labeling. EdU is 

a nucleoside analog to thymidine, and like BrdU, it is incorporated into DNA during active 

DNA synthesis. EdU can be detected based on a click reaction between one of its alkyne 

moieties and the azide coupled to an Alexa Flour® dye. Contrary to anti-BrdU antibody 

staining, the click reaction is performed under mild conditions. To verify that BrdU and EdU 

are incorporated with the same frequency, I first incubated the doxycycline-induced organoids 

with either 20 µM BrdU or 20 µM EdU for 24 hours or 48 hours. BrdU- and EdU-negative 

organoids were used as control. BrdU-positive nuclei or EdU-positive cells were detected with 

flow cytometry following respective stainings. BrdU incorporation can be identified by 

quenching of Hoechst fluorescence, and the presence of EdU in DNA is proportional to the 

fluorescent signal of a dye after the click reaction. Based on flow cytometry data, there was no 

statistically significant difference between the frequency of BrdU and EdU incorporation into 

murine mammary gland organoids at two different time points which suggests that EdU 

labeling would resemble well anti-BrdU staining (Figure 9C). Organoids that were cultured 

longer in the presence of BrdU and EdU have a higher number of positive cells. By performing 

Click-iT EdU reaction on 8 µm cryosections of gels containing doxycycline-induced organoids 

and visualizing them with the confocal microscope, I confirmed that EdU was incorporated by 

cells growing both on the outer rim of the structures as well as cells inside the organoids (Figure 

9D). 

Encouraged by the results, I proceeded to generate the first Strand-seq libraries in an organoid 

system, by using the murine mammary gland organoids at different time points during the 

culture: never induced with doxycycline (representing healthy tissue) and induced with 

doxycycline for 5 and 12 days (corresponding to cancer phenotype). The optimal duration of 

BrdU exposure was tested for each sample and ranged between 20 hours to 48 hours. Single 

nuclei were isolated as described above and profiled with flow cytometry (Figure 10A) to 

determine what proportion of cells had divided (Figure 10B). Single, hemi-substituted nuclei 

were then sorted into 96-well plates and processed on a Biomek FXP liquid-handling robotic 
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system to prepare libraries from each well. Pooled single libraries were sequenced by paired-

end sequencing on the NextSeq Mid sequencer. 

Taken together, these data indicate that I succeeded in optimizing a wet-lab workflow for 

producing Strand-seq libraries from murine mammary gland organoids. 

 

 

Figure 10 BrdU-positive nuclei are detected using flow cytometry based on Hoechst quenching. 
(A) Gating strategy: nuclei are selected from debris based on the forward (FSC) and side (SCC) scatter. 
Doublets are excluded by size. The cell-cycle kinetic and BrdU incorporation status is then analyzed 
with Hoechst staining. (B) Nuclei from murine mammary gland organoids incubated with (orange) and 
without (grey) BrdU for 30 hours were isolated and stained with Hoechst before analyzing on a BD 
FACS Melody. BrdU-positive and BrdU-negative populations are distinguished due to the difference 
in the fluorescent quenching in the Hoechst channel. The sorting gate (in red) is set on the peak that has 
half of the fluorescence compared to the G1 peak of the BrdU-negative sample. 

6.2 Updating the scTRIP pipeline for the mouse genome 

As the next step, I wanted to combine the experimental setup with scTRIP computational 

analysis113, so that we would have a tool that will allow us to detect SVs in individual cells of 

murine mammary gland organoids. First, I wanted to test the pipeline on samples without drug 

treatment to check if it can be applied to correctly detect germline SVs and to get the initial 

estimate about the frequency of somatic SVs without any perturbations. 

scTRIP has been previously successfully applied to the human genome to analyze the 

frequency of different SV classes in transformed epithelial cell lines and patient-derived bone 

marrow and leukemic samples113. We reasoned that, after certain modifications, scTRIP could 

be also used to discover somatic SVs in mice genomes. Therefore, we adapted the pipeline, 

developed by a past lab member Dr. Sascha Meiers in collaboration with the group of Prof. Dr. 

Tobias Marschall (Universitätsklinikum Düsseldorf), for the project. After sequencing, the raw 

data (as fastq files) from every single library were aligned to the mouse reference genome 

(mm10), marked for duplicates, sorted into bam files, and indexed. In the next step, strand-

specific reads (Watson or Crick) were counted into bins of various sizes (20 kb, 50 kb, 100 kb, 
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200 kb, 500 kb) and plotted as histograms on a cell-by-cell basis (Figure 11). Each overview 

plot (representing a single cell) was manually curated so that further analysis would be 

performed without low-quality cells (e.g. cells with incomplete BrdU incorporation, cells that 

divided twice in the presence of BrdU, cells with too few sequencing reads, or far too many 

reads compared to the other single cells) (Sup. Figure 5). 47 never-induced cells, and 49 and 

47 doxycycline-induced (for 5 and 12 days, respectively) cells state passed the quality control 

step and were included in the downstream analysis. 

 

 

Figure 11 Example of high-quality Strand-seq library from a cell of never-induced murine 
mammary gland organoid. 
As Strand-seq libraries show variability in coverage and background, a quality control (QC) step is 
performed at the beginning of the analysis to exclude low-quality cells. An ideogram is generated for 
each library (using the Strand-seq plotting pipeline). After the alignment to the murine reference 
genome (mm10), chromosomes are represented with Watson reads in orange and Crick reads in blue. 
For any given chromosome, the cell can inherit the maternal and paternal template strands as either 
WW and CC, or WC and CW. A high-quality library shows consistent coverage on all chromosomes 
and directionality, with at least 200,000 reads (ideally more than 300,000). The QC is done manually 
on each library in an experiment, and the maximum acceptable values for background levels are 
dependent on the analyzer (but remain constant between experiments). 

The scTRIP pipeline is composed of segmentation, haplotype phasing, and Bayesian 

calculation steps to accurately identify SVs. We first ran these steps of the scTRIP pipeline 
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without blacklisting any genomic regions, without normalization, and a ploidy estimate to 

verify which parts of the workflow would have to be corrected. The obtained results were 

clearly incorrect as the genome was not segmented properly, and the SVs were called even 

though there were no indications or diagnostic footprints of them (Sup. Figure 6). These issues 

were solved by including blacklisting (the list of regions of low mappability in the mm10 

reference genome was created by Dr. Hyobin Jeong) and correcting a segmentation bug that 

was additionally identified. Once the pipeline was optimized, I was able to annotate all 

germline and somatic SVs present in cells forming mammary gland organoids. These results 

are covered in detail in Chapter 7  

6.3 scNOVA as a tool for cell-type prediction and inference of gene activity 

changes 

scNOVA, a recent development in the Korbel lab, allows us to integrate the discovery of 

somatic SVs and NO measurements in the same cell114. As scNOVA has been applied so far 

only to the human genome, we decided to expand its utility also to the mice genome and mice 

tissues, with a particular focus on murine mammary gland organoids. In this project, we applied 

one of scNOVA functionalities to annotate a cell type (basal, luminal progenitor, or mature 

luminal) to each of Strand-seq libraries derived from murine mammary gland organoids, 

and then characterized drug-induced SVs in those organoids in a cell-type specific manner. 

6.3.1 Creating and validating a cell type classifier for mammary cells 

While applying scNOVA, we take advantage of one of the Strand-seq library preparation steps 

during which DNA is digested with MNase. MNase digests protein-unbound DNA, so that 

DNA wrapped around histones remains intact and contributes to sequence read counts154. 

scNOVA has two main functions: supervised cell-type classification and inference of altered 

gene activities between cell populations or conditions. The first functionality, which will be 

covered in detail now, is based on the fact that transcribed genes exhibit reduced NO in their 

transcription start sites and gene bodies114. Chromatin accessibility patterns are tightly 

regulated by a network of transcription factors and the motifs, and their combinatorial activity 

drives cell-type-specific gene expression programs. Using one type of single-cell epigenomic 

data as a reference, we can build a supervised classifier that classifies single cells into one of 

the cell-type categories based on the activity of the transcription factor motifs as a feature set. 

And then we can use that information to classify the cell type of each single-cell library newly 

generated with the same or different kind of single-cell epigenomics method. 



 

 43  

To create a cell-type classifier, it is required to train the model using a reference single-cell 

epigenome dataset in which a correct cell type was labelled for each single-cell library. In 

the currently ongoing study in the Korbel group, in which the scNOVA pipeline was applied 

to the human hematopoietic system, the authors created a single-cell micrococcal nuclease 

sequencing (scMNase-seq) reference for human bone marrow and umbilical cord blood 

hematopoietic stem and progenitor cells. Such an approach is appropriate as NO profiles 

generated during the Strand-seq protocol are highly similar to the ones obtained after scMNase-

seq114. Performing scMNase-seq relies on index sorting: cells are first stained based on the 

expression of cell-surface markers and then sorted with flow cytometry into a 96 or 384-well 

cell culture plate in a way that it is possible to identify which cell was sorted to which well. 

Index sorting is a common practice to analyze, for example, hematopoietic cells with well-

established cell-surface markers, but it is difficult to do on cells without specific cell-surface 

markers like mammary cells. For this project instead, I decided to apply scATAC-seq data from 

mammary glands for model training as this technique measures chromatin accessibility in the 

motifs, does not rely on index sorting, and is broadly used in the field allowing us to take 

advantage of public datasets. In addition, fewer cells are required as starting material for 

scATAC-seq compared to scMNase-seq, and commercial protocols for scATAC-seq are more 

and more available. Opposite to scMNase-seq, scATAC-seq data contains information about 

nucleosome-depleted chromatin in a cell rather than NO155. Therefore, during the cell type 

annotation, we need to invert the Strand-seq-derived-NO Z-score to obtain chromatin 

accessibility (more details described below). We used published data to create a cell-type 

classifier, and as an additional sanity check, I performed scATAC-seq on murine mammary 

gland organoids to confirm the correlation between the reference and our data. 

A study performed by Chung et al. contains single-nucleus (sn)ATAC-seq data of fetal and 

adult mammary cells140. The authors profiled 7,846 high-quality single nuclei derived from 

2,577 fetal and 5,269 adult cells, and only the data from the adult cells were used for the model 

training. During the sample preparation, they removed non-epithelial stromal and blood cells, 

so that snATAC-seq was performed only on epithelial cells. The results reveal chromatin 

changes that correlate with basal and luminal (progenitor and mature) cell states, which 

perfectly corresponds to cell types that we expect in murine mammary gland organoids (that 

are enriched for epithelial cells during culture, check Methods). For our aim, the snATAC-seq  
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Figure 12 Establishing a mammary gland cell-type classifier for scNOVA from snATAC-seq. 
To train the cell-type classifier of murine mammary gland organoids, we used publicly available 
snATAC-seq reference data of murine mammary glands. The motif accessibility on 23 motifs differs 
between three main cell types (B, LP, ML) allowing to distinguish these cell types based on NO. 
Transcription factors that are well-known to regulate different mammary cell states are enriched in their 
corresponding groups. Heatmap prepared by Dr. Hyobin Jeong. 

count matrix (peak by cells) from Chung et al. was first converted into a motif accessibility 

matrix (motifs by cells) using the chromVAR package156. This motif accessibility was then 

used as a feature to build a classifier using Partial least squares discrimination analysis (PLS-

DA). For feature selection, we calculated Variable Importance in Projection (VIP) values 

which measure discriminant power for each motif. We took motifs with significant VIP values 

compared to null distribution (FDR 10%) to finalize the model and evaluated the performance 

using leave-one-out cross-validation. Our scATAC-seq-based classifier relies on 23 (short 

version based on the stringent feature selection criteria using FDR of VIP <10%) (Figure 12) 

or 50 (extended version based on the lenient criteria using VIP values >90% of the null 

distribution) motifs. For further applications, only the classifier based on 23 motifs was used. 

To predict cell types of single cells profiled by Strand-seq, their NO count matrix (peak by 
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cells) is converted into motif occupancy matrix (motifs by cells) using chromVAR156. Then we 

inverted this motif occupancy matrix into an accessibility matrix (motifs by cells) using 

a formula: motif accessibility=(-1)*motif NO Z-score. The resulting matrix is then used as 

an input to the classifier which provides information about the most likely cell type of each 

single-cell library. 

The reference dataset used to create a cell-type classifier contains mammary tissue freshly 

isolated from murine late-stage embryos and adults. To confirm that the cell-type-specific 

patterns of chromatin accessibility are not affected by culture conditions and that they are 

shared by cells forming mammary gland organoids, I performed scATAC-seq (using the 10x 

Genomics Chromium Next GEM Single Cell ATAC v1.1 protocol) on two independent 

biological replicates of murine mammary gland organoids that have been in culture for 7 days. 

After scATAC-seq library preparation, sequencing, and filtering out low-quality nuclei, I 

obtained 1,443 cells (882 from biological replicate 1 (mouse_788) and 561 from biological 

replicate 2 (mouse_839)) for further analysis with Signac157. The median reads per nucleus 

were similar between the two replicates (33,451 and 45,333), like the median reads in peaks 

(69% and 66%). In both samples app. 86% of peaks were derived from promoter-distal regions. 

I then created a common set of peaks for these two replicates and merged the samples. After 

data processing and dimensionality reduction, I performed unbiased clustering on all peaks 

(Figure 13A). Interpretation of clusters in scATAC-seq data is particularly challenging due to 

its sparsity, and limited information about the functional role of chromatin accessibility 

compared to the actual transcription of genes. To overcome these issues and to annotate 

the groups revealed by the UMAP visualization, I first generated a gene activity matrix for each 

cell (by summing the fragments intersecting the gene body and promoter region), and then 

classified them by label transfer based on scRNA-seq data from the same biological system 

(from the experiment on murine mammary gland organoids described in Chapter 5 With such 

an approach, I aimed to identify shared correlation patterns between the gene activity matrix 

and different cell types present in the scRNA-seq dataset, resulting in a classification score for 

each cell from scATAC-seq data. This allowed me to distinguish clusters of epithelial cells: 

luminal progenitor, mature luminal, basal, and myoepithelial cells, as well as a minor 

population of stromal cells (fibroblasts) (Figure 13B). The LP, ML, and basal cells represent 

69%, 20%, and 8% of the total population included in the analysis, respectively. The cellular 

composition resembles more of a fetal-like population described in Chung et al., probably 

because the mammary gland organoids used for scATAC-seq were in culture only for 7 days.  
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Figure 13 Up to 5 different cell types can be detected in scATAC-seq from murine mammary 
gland organoids. 
scATAC-seq was performed on mammary gland organoids derived from two different mice 
(mouse_788 and mouse_839) using a commercially available kit. (A) UMAP representation of the 
scATAC-seq results after merging the data from two biological replicates by creating a common peak 
set. (B) scATAC-seq cells were annotated via label transfer from scRNA-seq experiments. Major 
epithelial cell types present in mammary glands were identified (LP, ML, B, My), as well as a small 
population of fibroblasts. (C) Aggregate scATAC-seq profiles of different cell types present in 
mammary gland organoids. Tracks are normalized to correct for the number of cells and potential 
differences in sequencing depth. Signal ranges are shown in parentheses. 

As an additional control, I confirmed that LP, ML, and basal cells differ in accessibility and 

expression of canonical markers (as visualized using pseudobulk chromatin accessibility 

profiles and pseudoexpression data) (Figure 13C). Luminal cells are more accessible at pan-

luminal markers such as Krt19, with LP cells showing higher accessibility at progenitor marker 

Elf5. Basal cells are characterized by increased accessibility at basal marker Krt14, 

and fibroblasts- at fibroblast-specific Col1a2. Altogether, these initial results showed that the 

scATAC-seq data from murine mammary gland organoids is of high quality and that based on 

chromatin accessibility we can detect all cell types that have been reported in the reference 

dataset from murine mammary glands used for the scNOVA-based cell-type classifier. 
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To further investigate the similarity between scATAC-seq from murine mammary gland 

organoids and the reference dataset, we focused on motif-based analysis. By using chromVAR 

we annotated scATAC-seq peaks depending on the presence of transcription factor (TF) motifs, 

including 23 motifs used in the cell-type classifier (Figure 14A). We then compared the cell-

type specific motif accessibility between the reference and scATAC-seq datasets on these 23 

motifs. There was a positive correlation between corresponding cell types in these two samples 

(Figure 14B) confirming the utility of the published dataset to create our cell-type classifier. 

 

 
Figure 14 Assessing the correlation in motif accessibility between reference and control scATAC-
seq datasets. 
(A) scATAC-seq peaks (derived from three different epithelial cell types present in murine mammary 
gland organoids) were annotated based on the presence of TF motifs. Similarly to the reference dataset, 
the accessibility of 23 motifs that were used to create a cell-type classifier, differs between B, LP, and 
ML cells (see Figure 12). (B) Boxplot of correlation scores for B, LP, and ML cells. For each cell type 
identified in the scATAC-seq dataset from the organoids, we compared how well it correlates with the 
accessibility of 23 motifs to cell types present in the reference dataset. For each cell type, there was a 
positive correlation between the two datasets. Heatmap and correlation plots were prepared by 
Dr. Hyobin Jeong and adapted by me. 
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Once the first functionality of scNOVA based on supervised cell-type classification was ready, 

we annotated cell types (luminal progenitor, mature luminal, or basal) to all single-cell Strand-

seq libraries generated from murine mammary gland organoids. These results are further 

explored in Chapter 7  

6.3.2 Prediction of gene expression differences between cell populations 

The second functionality of scNOVA is the inference of altered gene expression based on 

the changes in NO at gene bodies (as NO is negatively correlated with gene expression158). 

Such functionality is particularly useful to analyze deregulated pathways in distinct subclones 

of one sample, or between two conditions of the same sample (for example, before or after drug 

treatment) regardless of their cell type of origin. scNOVA integrates deep convolutional neural 

network (CNN) based machine learning, and negative binomial generalized linear models114. 

The CNNs use five features (NO, NO variance, GC content, CpG content, and replication 

timing) on 150 genomic bins (spanning gene bodies and their ±5 kb surrounding regions) to 

infer the expression status of the genes (expressed/unexpressed) and then filters out genes 

inferred to be non-expressed. Then, for those genes predicted to be expressed, scNOVA uses 

negative binomial generalized linear models (from the DESeq2 package159) to compare NO 

changes at gene bodies and accordingly infer differential expression. 

To create the training and test datasets needed to generate the scNOVA model for mice genome 

and benchmark, I performed both bulk RNA sequencing (to provide the ground truth of gene 

expression of a particular cell population), and Strand-seq (to generate the data on cell-type-

specific NO pattern) on two different cell types: mouse embryonic stem cells (mESCs) from 

129 x C57BL/6J strain, and mouse embryonic fibroblasts (MEFs) isolated from FVB/NJ strain. 

We obtained 62 high-quality Strand-seq libraries from MEFs, and 33 from mESCs. By 

analyzing pooled NO profiles from single cells of each sample, we observed, as expected, 

a negative correlation between NO along the gene body and gene expression level (Figure 

15A), particularly strong at the transcription start site (TSS) (Figure 15B, for clarity only data 

from MEFs is shown in panels A and B). We also analyzed the differences in NO at gene bodies 

using Strand-seq data from MEFs and publicly available scMNase-seq datasets from 48 

NIH3T3 single cells (highly rearranged mouse embryonic fibroblast cell line) and 278 mouse 

naïve CD4 T cells160. Based on unsupervised clustering, MEFs locate closely with NIH3T3 

cells rather than T cells (Figure 15C), reassuring that Strand-seq-derived NO tracks are 

consistent with scMNase-seq experiments. Strand-seq libraries from MEFs were then split into 

two sets (each with 31 cells) and used to build the CNN model. scNOVA version for mice  
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Figure 15 Extending the functionality of scNOVA to infer global patterns of gene expression in 
murine cells using single-cell NO profiles. 
(A) NO along gene bodies ±2 kb for protein-coding genes of MEFs based on 62 pooled Strand-seq 
libraries (shown on the y-axis as reads per million). Genes were grouped and color-coded based on their 
expression level from bulk RNA-seq data (FPKM stands for fragments per kilobase of exon per million 
mapped fragments; from grey: unexpressed to red with FPKM>3: highly expressed). TTS: transcription 
termination site (B) Nucleosomes are strongly depleted on the TSS of expressed genes. (C) Based on 
NO at gene bodies derived from Strand-seq (for MEFs) and scMNase-seq (NIH3T3 and T cells), freshly 
isolated MEFs resemble more NIH3T3 cell line than T cells. (D) The NO at gene bodies obtained by 
scNOVA correctly separates two different cell type populations (MEFs and mESCs). (E) Top 
differentially expressed genes between MEFs and mESCs predicted by scNOVA are confirmed by 
RNA-seq data (two experimental replicates per cell type). Analysis and figures A-D by Dr. Hyobin 
Jeong. 

genome was then benchmarked using Strand-seq-derived NO profiles from MEFs and mESCs. 

scNOVA correctly predicted changes in gene activity between these two different cell types by 

analyzing NO at gene bodies (AUC of 0.7593 for the 10 most differentially expressed genes). 

MEFs and mESCs create separate clusters (apart from one outlier mESC) (Figure 15D). 

The levels of the 50 most differentially expressed genes between MEFs and mESCs (AUC of 

0.7311) predicted by scNOVA were confirmed in RNA-seq datasets (Figure 15E). These genes 
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include well-known markers of stem cells (for example, Sox2, Nanog, Tfcp2l1161, Gldc162) 

and fibroblasts (such as genes encoding proteins of extracellular matrix scaffold from collagen 

and lysyl oxidase gene families163) confirming that scNOVA accurately infers gene activity 

changes. As an additional proof of principle, we tested if scNOVA will correctly predict gene 

expression changes in mammary gland organoids (derived from TetO-CMYC/TetO-

Neu/MMTV-rtTA mice) following doxycycline induction. 

The addition of doxycycline to the medium activates two strong oncogenes (HER2 and CMYC) 

which induces drastic changes in cell phenotype102. We applied scNOVA on Strand-seq 

libraries generated from never-induced cells and induced for 5 days with doxycycline 

(described in chapter 6.1). After applying a 10% FDR cut-off, 68 genes showed a change in 

NO in doxycycline-induced cells compared to not-induced cells. To validate if the predicted 

genes with decreased or increased NO show expected changes also at the transcriptome level, 

I analyzed a public dataset containing bulk RNA-seq results from 16 samples of mammary 

gland organoids of the same inbred strain (8 never-induced, 4 tumor and 4 residual in which 

doxycycline was removed from the culture medium to silence oncogene overexpression)103. 

However, the RNA-seq results should be considered a proxy of the actual changes in expression 

level as the organoids used in these experiments have not been seeded and collected at the same 

time, and the organoids used in the RNA-seq experiment were induced with doxycycline for 2 

more days (7 days in total) comparing to the ones used for Strand-seq. I performed differential 

expression analysis on bulk RNA-seq data using DESeq2159 including the animal and condition 

as confounding factors in the model design. 55 out of 68 genes predicted by scNOVA were 

expressed in dox-induced and never-induced cells (37 genes with statistically significant 

diffExp), from which 19 showed expected pattern (if a gene shows decreased NO, we expect 

that it will be highly expressed; increase in NO, should decrease the expression of the gene, 

accordingly) (Figure 16). For example, among activated genes, there are known Myc-target 

genes (like Dctd, Itpk1)164, and two of the downregulated genes are other members of the EGFR 

family (Egfr, Erbb4). Despite certain differences between scNOVA predictions and RNA-seq 

results, these data indicate that we can indeed infer gene expression changes from single-cell 

NO profiles using scNOVA. 

Taken together, the results presented in this chapter demonstrate the construction of the 

scNOVA-based supervised cell type classifier for mammary gland organoids. We succeeded 

in updating scNOVA functionality to infer altered gene expression in Strand-seq data from 

murine cells. In Chapter 7 I show for the first time in the mammary gland field110 how this tool, 
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together with scTRIP, can be used to analyze SVs in different cell types or murine mammary 

gland organoids at a single-cell level. 

 

 

Figure 16 scNOVA confirms changes in NO on cMYC target genes and EGFR family members 
after doxycycline induction. 
scNOVA was used to infer genes with differential NO in cells before and after induction with 
doxycycline. The actual changes in the expression of the predicted genes were confirmed using 
previously reported bulk RNA-seq of mammary gland organoids from the same transgenic model103. 
(Left) A heatmap representing NO on genes predicted by scNOVA in single cell Strand-seq libraries 
before (NI) and after (DOX_5 days) induction with doxycycline. NO is anticorrelated with gene 
expression, as shown on a heatmap summarizing RNA-seq results (right). Bulk RNA-seq was 
performed on murine mammary gland organoids: never induced with doxycycline (NI), induced with 
doxycycline (DOX), or after doxycycline removal (MRD) derived from four different mice (mice ID 
numbers on the plot). NI cells were collected at three different timepoints: before the organoid seeding 
(T0), and after 5 and 12 days of organoid culture (T5 and T12, respectively). 
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Chapter 7  Results: assessing SV burden in murine 
mammary gland organoids after doxorubicin 
treatment. 

Having optimized the experimental workflow of Strand-seq for organoids, adapted scTRIP for 

murine genome, and created a scNOVA-based cell-type classifier for murine mammary gland 

cells, I wanted to combine all these techniques and computational workflows to analyze the SV 

landscape after doxorubicin treatment in a cell-type specific manner. The annotation of 

mutational signatures of DNA-damaging and cytotoxic agents has been concentrated primarily 

on base substitutions and small indels detected in whole genome sequencing data. Here, 

I present the results based on single-cell sequencing with a particular focus on SVs. 

7.1 Overview of the samples profiled with Strand-seq 

In chapter 6 I reported generating the first Strand-seq libraries from cells forming the organoids 

derived from the mammary glands of a murine strain TetO-CMYC/TetO-Neu/MMTV-rtTA. 

The organoids were either never induced with doxycycline or induced with doxycycline for 5 

and 12 days representing healthy tissue or in a cancer state (these samples are labeled as NI, 

DOX_5days, and DOX_12days). In addition, to optimize scNOVA for mice genome, I made 

Strand-seq libraries from other murine cells: mouse embryonic stem cells from 129 x C57BL/6J 

strain and mouse embryonic fibroblasts from FVB/NJ strain. The data from these samples 

would allow me to detect the germline SVs characteristic for the strain used in this study, assess 

the baseline level of SVs present in cells of mammary gland organoids (without a drug 

perturbation) and compare it to other murine cell types. 

In order to investigate single-cell SV patterns following exposure to doxorubicin, I performed 

Strand-seq experiments on doxycycline-induced organoids treated with different 

concentrations of doxorubicin for 72 hours and then incubated without a drug for up to 7 days 

(Figure 17A). Strand-seq protocol requires that cells divide exactly once after incorporating 

BrdU, therefore it was crucial to let the cells recover. Without the ‘recovery time’, the cells 

that managed to survive the drug treatment were unable to divide, presumably because of the 

cell cycle arrest induced by DNA damage. I successfully sorted nuclei after treatment with 

10 nM and 100 nM doxorubicin (the following ‘recovery time’ was 96 h or 7 days, 

respectively). As an experimental control, for both conditions, I also isolated single nuclei from  
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Figure 17 Successful SV annotation and cell-type prediction in more than 400 cells from 
mammary gland organoids. 
(A) Experimental workflow: mammary glands are isolated from TetO-CMYC/TetO-Neu/MMTV-rtTA 
and cells are used for seeding the organoids. After 6 days of unperturbed growth, the organoids are 
treated with doxycycline for 7 days to induce oncogene overexpression (doxycycline is afterward 
always added to the medium, highlighted in grey). Cells are then treated with two different 
concentrations of doxorubicin for 72 h (or DMSO in case of controls) and then left to recover (up to 7 
days) until they start proliferating again. At the end of the experiment, Strand-seq libraries are 
generated. Samples collected at different time points corresponding to different stages of tumorigenesis 
are in green. With the transgenic model used in this study, it is also possible to mimic an idealized 
situation of relapse: cells are first induced with doxycycline, then doxycycline is removed from the 
medium and the cells remain in the MRD state until they spontaneously start dividing again and enter 
cancer phenotype without oncogene addiction. (B) Quality control of Strand-seq cells. Each single-cell 
Strand-seq library from all different samples and conditions was scored and only high-quality cells 
(assessed based on the factors described in chapter 6.2) were included for further analysis. Libraries 
from 0-cell and 100-cell controls are not included in the plot. (C) Each Strand-seq library generated 
from murine mammary gland organoids was annotated with the most probable cell type (B, LP, ML) 
based on the outcome of the scNOVA cell-type classifier. 

cells (hemi-substituted with BrdU) forming doxycycline-induced organoids that were seeded 

at the same time and kept in culture for the same period as doxorubicin-treated but were treated 

with DMSO instead of the drug (I will refer to these samples later as DXR_10nM and its 

matching control: Control1, similarly: DXR_100nM and Control2). Strand-seq libraries were 

processed as described in chapter 6.1. The stringent quality control resulted in including the 

following number of cells for downstream analysis: 62 MEFs, 33 mESCs, and more than 

400 cells from mammary gland organoids at different stages of tumorigenesis: 47 NI, 

49 DOX_5days, 47 DOX_12days, 49 DXR_10nM, 33 Control1, 105 DXR_100nM, 

84 Control2 (Figure 17B). In single-cell genomics each cell can be considered a separate 

biological replicate but to increase the number of sequenced cells I performed the experiment 

with a higher concentration of doxorubicin and the matching control three times (using 
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mammary glands from three different mice for organoid seeding). The results from these three 

experiments are presented here together (in all these replicates I observed a similar frequency 

of SVs and cell-type contribution). 

To analyze Strand-seq data, I used scTRIP, described in detail in chapter 6.2, and 

PloidyAssignR (developed by a previous student in the group, Tania Christiansen; manuscript 

in preparation). PloidyAssignR automatically infers the ploidy state of a cell based on the 

binomial distribution of strand state segregation patterns. As a result, it allows for 

characterizing subclonal aneuploidy events beyond the diploid genome. After manual curation 

of scTRIP and PloidyAssignR outputs, I confidently called SVs in single cells ranging in size 

(from 200 kb to whole-chromosome copy number alterations) and complexity (deletions, 

duplications, inversions, and complex rearrangements). I also applied the scNOVA-based cell-

type classifier to the samples from murine mammary gland organoids, so that each Strand-seq 

library was annotated with one of the three possible cell types: luminal progenitor, mature 

luminal, and basal (Figure 17C). In the next subchapters, I focus on the analysis of the germline 

SVs, somatic SVs induced by doxorubicin treatment, and another marker of genomic 

instability: SCEs. 

7.2 Determination of strain-specific SVs 

Germline genomic rearrangements are present in all cells derived from an organism, and in 

the case of an inbred mouse strain, they are shared by all animals. The inbred mouse strain used 

in this study (TetO-CMYC/TetO-Neu/MMTV-rtTA) has an FVB/NJ background, and its 

germline SVs could be also detected in Strand-seq libraries derived from FVB/NJ mouse 

embryonic fibroblasts, but not mouse embryonic stem cells from 129 x C57BL/6J strain (Figure 

18A). These observations imply that the annotated genomic rearrangements are germline SVs 

unique to FVB/NJ strain and not an error in the mouse reference genome which is based on 

C57BL/6J strain. In a previous study that aimed to characterize ‘private’ SNPs and SVs of 

FVB/NJ strain using short-read whole genome sequencing (WGS), the authors reported only 

the presence of indels (up to 50 bp) and two deletions (between 6-10 kb)165 which are below 

the detection limit of Strand-seq (200 kbp). Despite the widespread usage of the FVB/NJ strain, 

especially for the production of transgenic animals, this strain was not included in WGS studies 

aiming to catalog SVs in multiple mice genomes166–169 or in the most recent project utilizing 

long-read sequencing170. Therefore, to support the results from Strand-seq, I isolated genomic 

DNA from never induced mammary gland organoids of the tritransgenic strain which was then 
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sequenced with 30x coverage using the short-read WGS method. With WGS data, I confirmed 

the coordinates of germline SVs called with Strand-seq (excluding inversions which are 

particularly difficult to detect in WGS results) (Figure 18B). Because the resolution of WGS 

data is much better than that of Strand-seq (1 bp vs 200 kb), there were some differences in the 

exact size or precise location of SVs which did not influence the overall quality of Strand-seq 

results (Sup. Table 1). As germline SVs are shared by all cells coming from a particular strain, 

they were ignored in further analysis. 

 

 
Figure 18 Germline SVs in different mice strains can be characterized using Strand-seq. 
(A) Summary of SVs detected in three different strains used in this study. Tritransgenic mice (TetO-
CMYC/TetO-Neu/MMTV-rtTA) were created in FVB/NJ background, therefore they share all 
germline SVs present in the parental line but not 129xC57BL/6J strain. InvDup- inverted duplication, 
Inv- inversion, Del- deletion (B) Example of an SV (InvDup) detected in Strand-seq data (top) in cells 
from mammary gland organoids derived from tritransgenic strain. The presence of this SV was 
confirmed in WGS data (bottom) and visualized in Integrative Genomics Viewer (IGV)171. 

7.3 Doxorubicin induces a wide spectrum of SVs in cells forming murine 

mammary gland organoids 

As next, I searched for SVs present in MEFs and mESCs to get an overview of SV frequency 

in murine cells. I identified 6 SVs in 4 cells of MEFs (out of 62), and 13 SVs in 10 cells of 

mESCs (out of 33). Apart from one duplication, all SVs detected in MEFs were either 

chromosome losses or gains. Similarly, in mESCs majority of events were whole-chromosome 

copy number changes. Interestingly, 2 cells of mESCs had trisomy 8, and 1 cell had trisomy 8 

and 11. Trisomy of these two chromosomes has been shown to be clonally selected in mESCs 

giving growth advantage (while preserving their differentiation potential)172,173. A higher 

frequency of chromosomal abnormalities detected in mESCs passaged for a longer period 
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indicates that these cells are more chromosomally unstable compared to MEFs, freshly isolated 

from embryos and kept in culture for short time. 

I then focused on somatic SVs present in the cells of murine mammary gland organoids before 

and after doxorubicin treatment. I intended to determine if exposure to doxorubicin could be 

associated with a specific SV pattern and whether different cell types would show different 

frequencies of SVs. There were no de novo SVs present in the NI sample which represents 

normal cells of the murine mammary gland (Figure 19A). Cells induced with doxycycline for 

5 and 12 days had 5 and 6 SVs, respectively (present in 3 out of 49 cells, and in 4 out of 47 

cells). Cells treated with doxorubicin were characterized by the highest number of SVs: in 

DXR_10nM 6 cells out of 49 had at least one SV (7 SVs in total) and in its matching control 

(Control1) only 1 cell out of 33 had an SV. In DXR_100nM 39 cells out of 105 had at least one 

genomic rearrangement with a total number of 80 somatic SVs, while in Control2 the frequency 

of SVs was much lower: 4 cells out of 84 with at least one SV (6 SVs in total). Apart from the 

samples DXR_10nM and Control1, chromosome gains and/or losses were present in all 

conditions (Figure 19B). Together with the data from MEFs and mESCs, this suggests that 

many SVs present in normal or cancer cells are a consequence of mitotic errors that lead to 

chromosome number changes. Deletions and duplications were present in all samples 

(excluding NI) with different frequencies (Figure 19C). Complex events occurred exclusively 

after doxorubicin treatment (Figure 19D), and deletions were the most common SV type 

induced by doxorubicin. All the events that I identified in all samples from murine mammary 

gland organoids were singleton SVs (detected only in a single cell). This indicates that 

treatment with doxorubicin induces genomic heterogeneity within the population of mammary 

gland cells as new potential subclones emerge. 
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Figure 19 Doxorubicin-induced SVs vary in type and complexity. 
(A) Cells treated with a higher concentration of doxorubicin (DXR_100nM) had the highest frequency 
of SVs among all the samples that had been sequenced for this project. As the number of high-quality 
libraries differed between the samples, the data was normalized per condition. Even in the cells that 
were induced only with doxycycline (DOX_5days, DOX_12days), or were used as controls for the drug 
treatment (Control1, Control2), there were already some SVs detected but at very low frequency (and as 
expected, the majority of them were mitotic errors that led to chromosome gains or losses). 
(B) Summary of different types of SVs detected in Strand-seq libraries from murine mammary gland 
organoids. The data presented in this graph is the same as in (A) but such visualization allows to 
highlight that complex events are present only after doxorubicin treatment and that deletions are the 
most common SVs induced by the drug. (C) Examples of intrachromosomal and terminal deletions and 
duplications discovered on chromosome 11 in different cells of DXR_100nM sample. (D) Examples of 
complex rearrangements involving clustered deletions, amplifications and/or inversions discovered on 
two chromosomes in one of the cells from the DXR_100nM sample. 
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Deletions and duplications reported for 105 cells of DXR_100nM were present on all 

chromosomes and there was no bias toward a certain chromosome having a higher number of 

SVs than the other chromosomes (permutation test, 10,000 permutations, p-value 0.7469) 

(Figure 20A). Such an observation suggests that all chromosomes are equally vulnerable to 

DNA damage caused by doxorubicin. Among deletions and duplications, there were both 

terminal and intrachromosomal affecting one haplotype. The size of doxorubicin-induced 

deletions did not follow a normal distribution (Figure 20B) but it is difficult to assess whether 

this effect is an actual consequence of doxorubicin treatment that could be associated with its 

mechanism of action, or whether we are simply more biased towards the discovery of bigger 

SVs as they are more obvious to detect. 14 complex events detected in 10 cells were affecting 

the entire chromosome suggesting that chromothripsis occurred, or parts of chromosomes 

indicating other complex and ongoing DNA rearrangement processes. 

 

 
Figure 20 After doxorubicin treatment the cells are affected by deletions and duplications of 
different sizes. 
(A) Karyogram showing the location of 33 deletions (in blue) and 22 duplications (yellow) detected in 
105 cells of DXR_100nM. Common fragile sites of the murine genome are highlighted in grey. All 
cells were derived from female mice, therefore no SVs were called on the Y chromosome. (B) The size 
distribution of copy-number variants (deletions in blue, duplications in yellow) presented in panel A. 
Chromosome gains and losses are not included. The median size for each SV class is indicated as a red 
line. Individual SVs are plotted along the X-axis in order of increasing size. Doxorubicin-induced 
deletions do not follow a normal distribution (Shapiro-Wilk normality test: for deletions                                  
p-value=0.01633, for duplications p-value: 0.3603). 
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Taking advantage of the data from the scNOVA-based cell-type classifier, I was able to 

summarize the frequency of SVs in different cell types. In all analyzed samples libraries were 

coming from three different mammary epithelial cells: LP, ML, and B. All different SV types 

were detected in all three mammary epithelial cells of DXR_100nM (Figure 21A). In samples 

exposed to two different concentrations of doxorubicin and their corresponding controls, the 

frequency of SVs was similar in all cell types (Figure 21B). For example, after the treatment 

with a higher concentration of doxorubicin, between 35-40% of cells from each cell type had 

at least one SV. The frequency of SVs was much lower in the cells of Control2 but shared 

between all three cell types present in that sample. These observations imply that all three 

epithelial cell types of mammary glands in the cancer state are equally susceptible to DNA 

damage and resulting genetic alterations. 

Taken together, this data shows that the increased frequency of deletions and the presence of 

complex events can be considered a mutational signature of doxorubicin. At the genomic level, 

different cell types present in the murine mammary gland share a much alike response to the 

drug. 
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Figure 21 Increased genomic instability after doxorubicin treatment is not cell-type-specific. 
(A) Dotplot summarizing all SVs on different chromosomes detected in 105 cells of DXR_100nM. 
Cells are grouped based on the predicted cell type, and within each group, they are ordered according 
to the total number of SVs. (B) Frequency of SVs detected in different cell types of doxorubicin-treated 
and control samples. There is a statistically significant association between the frequency of SVs and 
treatment with higher (but not lower) doxorubicin concentrations compared to control (2x2 contingency 
tables, Fisher’s exact test, p-value <0.001) but in all the samples there is no correlation between the 
frequency of SVs and cell types (2x3 contingency tables, the Freeman-Halton extension to Fisher’s 
exact test). 

 
 
  



 

 61  

7.4 Increased frequency of SCEs after doxorubicin treatment 

The increased prevalence of genomic rearrangements is a clear example of genomic instability. 

SCEs, which occur during the S phase and mitosis when DSBs are repaired by homologous 

recombination pathways, are another marker of genomic stress122. In the next step, I wanted to 

check if the treatment with doxorubicin correlates with increased SCE frequency. SCEs are 

typically undetectable by single-cell sequencing technologies but Strand-seq was actually 

developed to help map such events. SCEs can be detected as points on chromosome plots where 

reads mapping to both Watson and Crick strands switch to reads mapping to either the Watson 

or the Crick strand (without affecting the average read count). Rare events of complete switches 

from Watson-only to Crick-only template strand reads might be an indication of misorientation 

in the reference genome rather than SCEs. I observed a complete switch at exactly the same 

location in chromosome 14 (between 19.3-19.6 Mb) in every Strand-seq library in which that 

region inherited both Watson or both Crick template strands (Figure 22A). As reported for 

the mm9 reference genome111, the region of the template switch corresponds to an unbridged 

gap of unknown sequence that is difficult to map, and the relative orientation of contigs around 

it is not confirmed.  

The observation that this event happened in multiple cells coming from different murine strains 

included in this study (a total of 37 libraries from MEFs, 14 from mESCs, 206 from mammary 

gland organoids) supports the hypothesis that the orientation of the contigs in this area might 

be erroneous also in the mm10 reference genome. Indeed, the orientation of the contigs on 

chromosome 14 (reported in the previous study to be wrong in mm9) has not been corrected in 

mm10. 

For all the samples, including MEFs and mESCs, I annotated the number of SCEs in each 

single-cell Strand-seq library. Regardless of the experimental condition, SCEs were detected 

on all chromosomes, and their number per chromosome directly correlated with the 

chromosome length suggesting that all chromosomes are prone to DNA breaks repaired via 

SCE (Figure 22B).  

Libraries from MEFs, mESCs, NI, DOX_5days, DOX_12days, Control1, and Control2 had on 

average four-five SCEs per cell, while treated with doxorubicin more than eight (with up to 24) 

(Figure 22C).  
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Figure 22 Identification of SCE events in Strand-seq data. 
(A) Ideograms of chr14 from different exemplary single-cell libraries (indicated with library number) 
generated from NI, MEFs, and mESCs (all three samples are derived from different murine strains). 
Orange and green lines represent reads aligning to the Watson and Crick strands, respectively. Grey 
areas correspond to blacklisted regions. A switch from Crick/Crick (or Watson/Watson) to 
Watson/Crick reads can be seen in libraries 35 and 50 from NI, 46 and 51 from MEFs, and 2, 32, and 
87 from mESCs indicating that SCE events have occurred (black arrow). A complete switch from 
Watson to Crick reads (red arrow) is present in all Strand-seq libraries from murine cells in which two 
Watson or Crick template strands are inherited but is not apparent if both Watson and Crick templates 
are inherited (libraries 3 from NI, 46 from MEFs and 87 from mESCs). (B) In all the analyzed 
conditions, the frequency of SCEs per chromosome increases with chromosome size. SCE frequency is 
equal to the total number of SCEs detected on each chromosome divided by the number of libraries in 
the sample. Chromosome sizes (corrected for blacklisted regions) are plotted on the X-axis. For clarity, 
only data from two samples is shown on the graph. (C) Total number of SCEs counted in each single 
Strand-seq library generated from mESCs, MEFS, and different conditions of murine mammary gland 
organoids. Only statistically significant differences are indicated (one-way analysis of variance 
(ANOVA), p-value=3.29E-26, with Tukey post-hoc tests). Different p-value thresholds are represented 
as follows: p<0.05 (*), p<0.001 (***). 

The frequency of SCEs in MEFs, mESCs, and cells of mammary gland organoids not exposed 

to doxorubicin, corresponds to the previously reported values in mESCs (based on cytogenetic 

studies) and to the values observed in hematopoietic stem cells from the bone marrow of 

healthy donors (data from Strand-seq experiments, shared by Dr. Karen Grimes, unpublished). 

Focusing more on the data from the DXR_100nM sample, cells with at least one SV (39 cells) 

had a similar frequency of SCEs to the ones in which I did not detect any genomic 
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rearrangement (66 cells) (Figure 23A). Different cell types present in mammary gland 

organoids showed within each sample a similar frequency of SCEs (Figure 23B). This 

observation, corresponding to the one about the frequency of SVs in different cell types, 

supports the claim that the genomic response to doxorubicin is independent of the cell type 

present in the mammary gland. 

 

 
Figure 23 SCE frequency does not depend on the presence of SVs or cell type. 
(A) Based on the data from the sample DXR_100nM, cells without SVs (-SV; 66 cells) and cells with 
at least one SV (+SV, 39 cells) have a similar frequency of SCEs per cell. Each dot represents a single 
library, additionally color-coded based on the annotated cell type. Statistical significance was calculated 
with the Mann-Whitney U test (p-value=0.14156). (B) All single-cell libraries from different samples 
of murine mammary gland organoids were annotated with a cell type, and then within each sample, 
the frequency of SCEs was compared between different cell types. In all conditions, the differences in 
SCE frequency between cell types were non-significant (ns) according to one-way ANOVA. 

As a following step, I checked if the SV breakpoints as well as the location of SCEs correlated 

with common fragile sites (CFSs). CFSs are specific genomic loci associated with a higher 

tendency to form gaps or breakages leading to chromosomal rearrangements and copy number 

variation. They usually span a genomic region of between several kilobases to megabases, 

and many of them are located within, or in close proximity to large genes. The activity of CFSs 

is very often cell-type-specific and dependent on the chemical that acts as an inducer174. 

Contrary to CFSs in the human genome, CFSs in the murine genome are understudied and their 

exact location is not precise. Two previous studies that focused on murine CFSs used an old 

mouse reference genome (mm9 or older) and the authors reported the location of CFSs as entire 

cytogenetic bands175,176. This creates a problem as cytogenetic bands do not always correspond 

between reference genomes. Therefore, I updated the annotation of common fragile sites in 

mm10. Based on the literature review, I identified 12 murine CFSs, their human homologs, and 

if possible, large genes that are associated with these fragile sites. I then revised whether 
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the chromosome bands containing each CFS from mm9 should be corrected in a new reference 

genome. As an additional control, I performed a liftover (conversion of coordinates between 

assemblies) of the coordinates from human CFSs177 to mice genome and confirmed a proper 

annotation of murine CFSs (Sup. Table 2, Sup. Figure 7). Deletions and duplications after 

doxorubicin treatment are not enriched within CFSs. Based on the scTRIP output, I annotated 

the location (±100 kb) of all SCEs from DXR_100nM (874 SCEs in 105 cells) and Control2 

samples (430 SCEs in 84 cells), and then checked if they cluster in certain CFSs. Only after 

doxorubicin treatment, there was a tendency of SCEs to be enriched in FraXC1 (Figure 24) 

(permutation test, 10,000 permutations, p-value 0.0848). 

 

 
Figure 24 SCE events are not more frequent in murine CFS after doxorubicin treatment. 
The location of SCE events (±100 kb) was annotated for all the libraries from DXR_100nM and 
Control2 samples (874 events from 105 cells of DXR_100nM and 430 events from 84 cells of Control2) 
and visualized on a karyogram. All cells in this study were derived from the mammary glands of female 
mice, therefore chromosome Y was not included in the analysis. To check if the SCEs are enriched 
within common fragile sites (indicated in grey), for each CFS I performed a permutation test (with 
10,000 permutations) to assess if the overlap is higher than expected by chance. Only for the CFS 
FraXC1 (highlighted in red), there is a tendency of SCEs in DXR_100nM samples to be enriched           
(p-value=0.0848; the result of the test for Control2 and this locus was insignificant). In the permutation 
tests, the blacklisted regions (in black) were masked from the mm10 genome. 

Together the data included in this chapter provides evidence that doxorubicin promotes the 

formation of SVs, including complex rearrangements, and its effect is similar in three main cell 

types present in mammary gland organoids. The increased genomic instability, indicated also 
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by a higher frequency of SCE events, results in karyotypic diversity and may be one of the 

factors accelerating tumor evolution under cancer treatment. 
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Chapter 8  Discussion 

Genomic instability, defined as an increased rate of acquisitions of chromosomal alterations 

and mutations, is a phenomenon observed in most human cancers. High-level of genomic 

instability affects tumor evolution and correlates negatively with patient prognosis in numerous 

tumor types178. Chemotherapy, a standard-of-care against cancers, targets cells of high genome 

instability inducing additional DNA damage and putting overwhelming pressure on the DNA 

repair pathways, eventually leading to cell death179. DNA-damaging cytotoxic agents can 

significantly change the mutational profile of cells that survive the treatment, leading to further 

genomic instability and promoting heterogeneity. In this sense, chemotherapy can be a double-

edged sword, which on one side destroys cancer cells, but on the other sets the stage for drug 

resistance and a future relapse. Indeed, the relapsing clones carry mutational signatures 

associated with previous chemotherapeutic exposure. However, the role played by such 

mutations is still underexplored and this is especially true for SVs, as most studies focused on 

mutational signatures have been so far restricted to base substitutions and indels. In addition to 

the DNA damage itself, the cell-type effect and transcriptional states can contribute to 

resistance, survival, and the eventual establishment of a minimal residual clone. 

In this thesis, I explored the consequences of doxorubicin treatment on the genome 

and transcriptome of cancer cells, with a particular interest in cell-type-specific consequences, 

using an organoid model of HER2-positive breast cancer and single-cell technologies. 

8.1 Organoid technology in disease modelling and drug testing 

Breast cancer is highly diverse and in fact, each of its subtypes can be considered a separate 

disease. One of them, characterized by overexpression of two strong oncogenes: HER2 and 

CMYC, has an aggressive phenotype and particularly poor prognosis. After the initial 

treatment, many patients will experience relapse, and such cases are difficult to treat as 

the cancer cells have been already exposed to very potent therapy regimens that promoted 

the pro-survival response despite the toxic effect of the drugs through genomic, epigenomic, 

transcriptomic and/or metabolic changes. In this project, I aimed to identify, on a genomic and 

transcriptomic level, how a chemotherapeutic drug influences an adaptation potentially leading 

to therapy failure. To do so, I used an organoid model of HER2-positive breast cancer with 

CMYC overexpression102,103. In this system, primary epithelial cells are harvested from 

mammary glands of TetO-cMYC/TetO-Neu/MMTV-rtTA mice (adult, nulliparous females) 
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and cultured in 3D, with Matrigel mimicking the extracellular matrix. The organoid cultures 

have been shown to better represent the physiological conditions and cell-to-cell interactions 

than standard 2D cell lines. With the system described in this thesis, it is possible to recapitulate 

different stages of tumorigenesis depending on whether doxycycline is added to the medium, 

from normal tissue to tumor initiation and progression (after induction of HER2 and CMYC 

overexpression). Importantly, the transgenic murine strain used in this study comes from 

an inbred line providing a homogenous genetic background and a reproducible, controlled 

model. 

Apart from disease mimicking, the organoids are suitable for drug toxicity testing. I performed 

a small-scale drug screen on murine mammary gland organoids to identify a drug for follow-

up experiments and the concentration range in which it would be active. In the screen, I 

included three drugs that are particularly relevant for breast cancer patients: two 

chemotherapeutics: doxorubicin and paclitaxel, and an example of targeted therapy: lapatinib. 

Among the three tested drugs, only doxorubicin showed a clear dose-dependent cytotoxic 

effect. Interestingly, the viability of cells forming murine mammary gland organoids, both not-

induced and induced with doxycycline, was not strongly affected even with very high 

concentrations of paclitaxel. This indicates that the cells may have intrinsic resistance to this 

particular drug and such mechanisms of resistance do not protect the cells from the toxic effect 

of doxorubicin. The other possibility is that doxorubicin and paclitaxel have different efficiency 

of diffusion within Matrigel. It has been reported that doxorubicin diffuses well within 3D 

spheroids derived from human breast cancer cell lines growing in Matrigel180 but it may not be 

the case for paclitaxel. Such observation additionally strengthens the point of using organoids 

rather than the conventional 2D cell cultures for drug discovery, repurposing, and testing as 3D 

cultures with the extracellular matrix of various stiffness and concentration gradients can better 

resemble the complex environment in which tumor cells grow181. 

The other surprising result was connected with the treatment with lapatinib. Lapatinib, a small 

molecule tyrosine kinase inhibitor of both HER2 and EGFR, approved for advanced HER2-

amplified breast cancer131, was similarly active against cells with and without HER2 and 

CMYC overexpression. The results of additional RT-qPCR experiments presented in chapter 

4.3 did not explain why this drug had a cytotoxic effect on cells with a basal level of HER2 

expression. Considering the high variability across experiments with paclitaxel and lapatinib, 

I decided to focus on doxorubicin, which showed a more consistent cellular response and higher 

experimental reproducibility. 
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8.2 Single-cell transcriptome profiling after doxorubicin treatment reveals 

shared responses of distinct cell types to the drug 

As a first step, I wanted to assess the transcriptomic heterogeneity of the population shortly 

after doxorubicin treatment. Characterizing the phenotypic diversity provides additional insight 

into the potential genetic changes that can be associated with the drug as the transcriptional 

response has a more immediate effect on cellular phenotypes. I performed scRNA-seq on 

murine mammary gland organoids in a cancer state (induced with doxycycline) treated with 

100 nM doxorubicin for 72 hours and then let to recover for the next 72 hours in a drug-free 

medium. Such an approach, although does not fully represent the situation experienced by 

the patients in the clinics, allows to analyze the initial response of cells to doxorubicin after a 

single exposure to the drug. Another strategy applied often in the studies focusing on resistance, 

including doxorubicin resistance79,182, is to perform a continuous treatment with increasing 

concentrations of a drug, with or without recovery phases until the cells are adapted to 

a maximum tolerated dose. Such a method is also not perfect as most chemotherapeutic 

regimens include repeated dosing at regular intervals over months, optimized for a particular 

patient, their body weight, and their condition. Transferring a clinical scheme for in vitro 

experiments is challenging, if not impossible183, therefore reductionist models are needed. 

With the results of the scRNA-seq experiment, I wanted to annotate, for the first time, which 

cell types are present in the murine mammary gland organoids, which genes and pathways are 

deregulated in doxorubicin-treated cells compared to DMSO-treated control, and whether there 

are differences between cell types how they react to the drug. 

Based on the expression of previously reported cell-type specific markers136–139, I identified 3 

main clusters of epithelial cells in murine mammary gland organoids: luminal progenitors, 

mature luminal, and basal. Within a basal compartment, I detected cells that resemble a more 

differentiated or specialized myoepithelial state. In addition, the dataset contained a very low 

number of fibroblasts. These cells were probably transferred from the stroma during 

the isolation of mammary glands and survived the culture in Matrigel. As shown also by 

immunostaining, both luminal and basal cells are present in a single organoid and the luminal 

cells are more common than the basal. These results confirm that mammary gland organoids 

represent well the cell-type composition of the tissue from which they are derived. 

Treatment with doxorubicin had a profound effect on the transcriptome of the cancer cells that 

survived. Products of downregulated genes were involved in fundamental cellular processes 
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like respiration, energy production, translation, or peptide synthesis. Cells did not progress in 

the cell cycle but upregulated their stress response. They did not show the resistance or 

senescence-associated phenotype presumably because a single drug treatment is not strong 

enough to promote such a reaction. Interestingly, among upregulated processes in doxorubicin-

treated cells were the ones connected with cell motility and migration. Similar observations 

were recently reported by different groups and the authors demonstrated using human breast 

cancer cell lines that sublethal doses of doxorubicin activate pro-invasive programs184–186. 

The population of basal cells was particularly decreased after the drug treatment which may 

indicate that these cells are more sensitive to the drug than the luminal lineage. However, 

the cell-type-specific analysis did not provide a clear explanation of why luminal cells would 

be better adapted to the toxic effect of doxorubicin. After the drug treatment, all cell types 

downregulated the expression of Top2a, which product is a direct target of doxorubicin. There 

are indications that basal and luminal cells differed in the expression of the enzyme involved 

in the detoxification of doxorubicin (Cbr3) but additional experiments would be needed to 

validate this hypothesis. The data from the scRNA-seq experiment showed that after a single 

doxorubicin treatment, cells drastically altered their transcriptome in a largely similar way 

within their population. 

8.3 Progress and challenges of multi-omics profiling of heterogeneous cell 

populations 

Considering that the main mechanisms of action of doxorubicin involves DNA damage, I 

intended to assess the impact of the drug on the genomes of cancer cells by measuring 

the frequency of de novo SVs. It is now possible to do that with the updated versions of 

computational frameworks, scTRIP113 and scNOVA114, made to facilitate and advance 

the analysis of Strand-seq data. 

In Chapter 6 I showed that Strand-seq libraries can be generated from cells forming organoids. 

This is the first application of Strand-seq in organoids, and it opens up the potential use of 

the method in solid tumors. Also in Chapter 6 I presented a joint effort to adapt scTRIP 

workflow for the detection of SVs in the mouse genome. We established a scNOVA-based 

cell-type classifier using publicly available scATAC-seq data from murine mammary cells140 

as a training set. As a result, we are now able to annotate one of the cell types (LP, ML, basal) 

to Strand-seq libraries prepared from cells of murine mammary gland organoids. Such a multi-

omic approach allows the discovery of SVs in a cell-type aware manner. This is significant 
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progress for the mammary gland field as so far, the single-cell DNA-sequencing methods alone 

were limited in providing the information about a cell state and there is no need for 

an additional indexing or selection step with the scNOVA-based classifier.  

However, there are some limitations to how Strand-seq, scTRIP, and scNOVA can be used. As 

the resolution of Strand-seq is currently set to 200 kb, rearrangements smaller than that are not 

detected with this method. Strand-seq protocol requires that the cells are BrdU-labelled, 

therefore the libraries can be made only from mitotically-active cells and not fixed samples. 

Because the isolation of single nuclei relies on FACS, there is also a minimum number of cells 

needed as input. The scNOVA-based cell-type classifiers have been generated only for human 

bone marrow and umbilical cord blood hematopoietic stem and progenitor cells, and murine 

mammary glands. Expanding this functionality of scNOVA to different cell types would 

require additional reference training datasets. In this project, we applied the classifier to 

the Strand-seq libraries from cells of murine mammary-gland organoids before and after 

doxycycline induction, so in normal and cancer state. We additionally validated that 

the accessibility of the motifs used to create the classifier is shared between corresponding cell 

types from the reference and scATAC-seq data from not-induced murine mammary gland 

organoids. However, we cannot exclude that the longer the culture period in presence of 

doxycycline or a drug, the motif accessibility patterns present in normal cell types would 

change over time. Taken together, despite certain constraints, this method offers a unique 

means to study SVs in single cells while preserving the information about their cell type. 

8.4 Identification of germline and somatic SVs in mouse genomes 

Throughout this project, I analyzed Strand-seq data coming from different murine samples: 

MEFs, mESCs, and mammary gland organoids. Strand-seq libraries from mESCs and MEFs 

were generated to create and test one of the scNOVA functionalities, while with Strand-seq 

experiments on mammary gland organoids, I wanted to assess the mutagenic effect of 

doxorubicin. MEFs, mESCs, and mammary glands were derived from three different murine 

strains, and for each of them, I summarized germline SVs specific to a particular line. I 

excluded these germline SVs in the further analysis as they are shared by all the cells coming 

from a specific mouse strain. It was previously shown that the mm9 mouse reference genome 

assembly contains some misoriented contigs that span nearly 1% of the genome111. I was able 

to confirm that one of the reported contigs on chromosome 14 is still misoriented in the mouse 

reference genome mm10. 
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After the successful annotation of germline SVs, I focused on the discovery of somatic SVs in 

the samples. MEFs were freshly isolated from normal embryos, while mESCs had been in 

culture for some time before. The differences in genomic instability of these two cell types 

were represented by the frequency of SVs. As expected, MEFs had a very low SV burden, 

while mESCs were characterized by a higher number of chromosomal abnormalities, including 

previously reported trisomies 8 and 11 that give a growth advantage172,173. The majority of 

the detected SVs were aneuploidies which are likely a consequence of mitotic errors187. Even 

though changes in the chromosome copy number may be detrimental to cell fitness188, it has 

been shown that normal cells in human bodies also experience aneuploidies and the fluctuations 

in ploidy are common in cells growing in culture187. 

8.5 Increased karyotypic heterogeneity induced by doxorubicin 

Strand-seq libraries from mammary gland organoids were prepared at different time points: in 

the normal state before the induction with doxycycline, after the doxycycline-induced 

overexpression of HER2 and CMYC, including after the treatment with two different 

concentrations of doxorubicin (10 nM and 100 nM). As shown with the results of scRNA-seq, 

doxorubicin induces cell-cycle arrest, and a recovery period in a drug-free medium was needed 

after the exposure to the drug until the cells started proliferating again (a prerequisite for 

Strand-seq). Overall, I analyzed more than 400 single cells from mammary gland organoids at 

different stages of tumorigenesis. For every single library, I listed SVs (if present) and assigned 

the most probable cell type based on the predictions of scNOVA-based classifier. 

In all the samples, apart from the never-induced condition, cells had at least one SV but the 

frequency differed, with doxorubicin-treated cells showing the highest frequency (with 37% of 

cells with at least one SV in their genome). Deletions of various sizes were the most frequent 

type of SVs detected after doxorubicin treatment and complex rearrangements occurred 

exclusively in cells exposed to the drug. In the cells treated with the higher concentration of 

the drug, the frequency of SVs was higher compared to the treatment with 10 nM doxorubicin. 

All the events that I detected were singletons, present only in one cell indicating that the genetic 

heterogeneity within the population increased. This suggests that new clones, potentially with 

growth advantage, may have a chance to expand. At the same time, extremely high levels of 

genomic instability, either intrinsic or drug-induced, may have an adverse effect on the fitness 

of cancer cells and prevent them from further replication possibly leading to dormancy. The 

results of scRNA-seq experiment showed that after a single drug treatment, the cells did not 
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have the phenotype of senescence or dormancy. It can be speculated that multiple rounds of 

therapy or longer exposure to the drug would be necessary to induce such extreme reactions. 

For cell-type-specific SV discovery, we applied the scNOVA-based classifier to all Strand-seq 

libraries from murine mammary gland organoids and annotated the most likely cell type (LP, 

ML, basal) to each cell. Interestingly, after doxorubicin treatment, all three different cell types 

were similarly affected by SVs and up to 40% of cells from each cell type had at least one SV. 

Such an observation was surprising, as the results of both scRNA-seq and Strand-seq indicate 

that both genomic and transcriptomic responses were largely similar across cell types, and yet 

basal cells were more sensitive to the cytotoxic effect of doxorubicin. Potential explanations 

are discussed in section 8.6. 

With Strand-seq data I was also able to correlate doxorubicin treatment with a higher frequency 

of SCE events in all three cell types, an additional indicator of genomic stress and instability. 

For the purpose of this project, I updated the coordinates of common fragile sites for the mm10 

reference genome as they have been annotated only in the previous reference assemblies. 

Neither SVs nor SCEs induced by doxorubicin were enriched within CFS. As the expression 

of CFSs is cell-type-dependent174, it might be that the loci previously reported as murine CFSs 

are not breakage-prone in mammary cells. It has to be noted that BrdU is among a few chemical 

agents that are known to be capable of inducing CFS breakages189. However, BrdU is 

associated only with rare fragile sites in the human genome177, and the impact of BrdU on the 

integrity of the genome was thoroughly tested when the Strand-seq protocol was being 

established. It was also demonstrated that variable BrdU concentrations in the cell culture 

medium (10-200 µM) have no effect on the frequency of SCEs in normal human cells 

(fibroblasts and lymphoblasts) and in cells from patients with Bloom syndrome, which is 

characterized by high levels of genomic instability and SCEs190. 

8.6 Lineage-specific differential sensitivity to doxorubicin 

As summarized in the previous subchapter, all three different cell types present in the murine 

mammary gland organoids experienced similar levels of genomic damage (measured by 

the frequency of SVs and SCEs). Such observation would indicate that distinct cell types 

present in mammary glands have a comparable capacity for DNA repair. Different organs or 

tissues are exposed to different mutagens leading to various types of DNA damage. Therefore, 

depending on the type of the DNA lesion, particular DNA repair pathways might be involved 

to fix the damage191. However, cell-type-specific differences in DNA repair strategies within 
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an organ are understudied. In a recent report, the authors showed that mammary epithelial 

lineage influences the choice of DNA repair pathway after DNA DSBs induced by 

irradiation192. According to their data, all mammary epithelial cells are capable of non-

homologous end joining but homologous recombination is predominant only in luminal cells. 

Such claims are not fully consistent with the results presented in this thesis. Certain deficiencies 

in DNA repair of basal cells which would lead to cell death if the DSBs overload is too high 

may explain why basal cells are more sensitive to doxorubicin (as seen in the scRNA-seq 

experiment) but on the contrary, the basal cells show the same frequency of SCEs, resolved by 

HR, as luminal cells (according to Strand-seq data). Both irradiation and doxorubicin induce 

DSBs in DNA and are associated with the generation of ROS (which may lead to DNA base 

damage), but irradiation causes also single-strand breaks193 that have not been reported for 

doxorubicin. More detailed research would be needed to determine if the choice of DNA repair 

pathway is more influenced by the type of damage rather than dictated by the cell lineage in 

the mammary gland. I hypothesize that the toxic effect of doxorubicin on basal cells could be 

connected with the faulty metabolism of the drug in this particular cell type. Cbr3, an enzyme 

that catalyzes the conversion of doxorubicin to toxic metabolites, is downregulated upon 

doxorubicin treatment in luminal cells but not basal. Unsuccessful detoxification of a drug and 

accumulation of toxic metabolites leading to cell death may explain the lineage-specific 

sensitivity to doxorubicin. 

8.7 Outlook 

Taken together, in this thesis I showed that treatment with doxorubicin induces SVs 

and promotes genomic heterogeneity and that the overall genomic and transcriptomic response 

to the drug is shared by the three major cell types of mammary lineage. To my knowledge, this 

is the first study in which chemotherapy-induced mutational signatures were systematically 

analyzed beyond base substitutions and indels. The results indicate that deletions and complex 

genomic rearrangements emerge as potential mutational signatures of doxorubicin. To 

strengthen this claim, SV patterns should be ideally validated with the statistical analysis of 

cancer genomes in doxorubicin-treated patients. Such analysis may have a true clinical 

relevance as the concentration of doxorubicin used in this study falls in the range of values 

detected in the blood of breast cancer patients undergoing chemotherapy 194,195. 

Beyond biological significance, one of the key outcomes of this study is expanding the utility 

of Strand-seq and scNOVA. For the first time in the mammary gland field, I was able to couple 
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the detection of structural variants in single cells while preserving the information about their 

cell type. There is still more to explore with scNOVA as one of its functionalities allows, based 

on Strand-seq data, to predict gene expression differences between specified cell populations. 

This module of scNOVA was previously used to identify and characterize the functional 

consequences of dysregulated genes in subclones bearing different SVs present in 

lymphoblastoid cell lines and patient-derived leukemia samples114. In this project, we created 

this functionality for mice genome and used it to infer genes with differential NO in cells before 

and after induction with doxycycline. In the future, scNOVA could be applied to look for NO 

changes between cells treated with doxorubicin (also considering the annotated cell type) 

and their corresponding controls, and the obtained results could be integrated with the already 

created scRNA-seq dataset. However, in the context of this project, it would not be possible to 

dissect the functional effect of doxorubicin-induced SVs purely using Strand-seq data as all 

the events were singletons and to apply scNOVA one would need at least two single cells that 

share a common SV. 

The results included in this thesis highlight that doxorubicin, a drug widely used in the clinic 

for many years, may promote the formation of new mutations in the tumor. For many cancer 

patients, the benefits of receiving the drug will outweigh the side effects and potential 

mutagenic risks. However, as cancer patients live longer thanks to therapeutic advancements, 

it will be necessary in the future to focus on the effect of chemotherapeutics on healthy cells 

and the long-term consequences of chemotherapy. By using Strand-seq, a method that allows 

the detection of a wide variety of DNA rearrangement processes, in organoids, it will now be 

possible to study such potentially harmful consequences of cancer therapy. 
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Chapter 9  Materials and methods 

If not indicated otherwise, all buffers were prepared by Media Kitchen at EMBL Heidelberg. 

9.1 Animals and mouse cell culture 

9.1.1 Animals 

Mouse colonies used in this study (strain TetO-CMYC/TetO-Neu/MMTV-rtTA in FVB 

background, and FVB/NJ strain102) were bred and maintained in LAR (Laboratory Animal 

Resources) facility at EMBL Heidelberg, under veterinarian supervision and in accordance to 

the guidelines of the European Commission, revised Directive 2010/63/EU and AVMA 

Guidelines 2007. Animals were kept on a 12-hour light/12-hour dark cycle, with constant 

ambient temperature (23±1°C) and humidity (60±8%), and pellet food and water were provided 

ad libitum. 

9.1.2 Genotyping 

The correct genotype of tri-transgenic mice was determined by PCR on genomic DNA from 

the tail tissue. Genomic DNA was extracted by digestion of the tail in 75 µl of digestion buffer 

(NaOH 25 mM + EDTA 0.2 mM) at 98°C followed by neutralization with 75 μl Tris-HCl 

(40 mM, pH 5.5) and centrifugation at 4000 rpm for 3 min. 2 μl of the supernatant was used in 

the PCR reaction summarized in the Table 1. Primer sequences and PCR programs are included 

in Table 2 and Table 3, respectively. Agarose gel electrophoresis (1.5% agarose gel, 100 V, 60 

minutes using 1 kb or 100 bp DNA ladders (Thermo Fisher Scientific) as size markers) was 

used to detect PCR products of expected sizes (TetO-Myc: 630 bp, TetO-Neu: 386 bp, MMTV-

rtTA: 380 bp).  

Table 1 Reaction mix for genotyping. 
Component Stock Final concentration 

Forward primer 10 µM 0.25 µM 

Reverse primer 10 µM 0.25 µM 

dNTP mix 10 mM each 200 µM each 

Taq polymerase x 1 µl per 50 µl reaction 

DreamTaqÔ buffer (Thermo Fisher Scientific) 10x 1x 

Taq polymerase was produced by the Protein Expression Facility at EMBL Heidelberg. 
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Table 2 Primer sequences for genotyping. 
Transgene Forward primer (5’-3’) Reverse primer (5’-3’) 

TetO-CMYC TAGTGAACCGTCAGATCGCCTG  TTTGATGAAGGTCTCGTCGTCC  

TetO-Neu GACTCTCTCTCCTGCGAAGAATGG CCTCACATTGCCAAAAGACGG  

MMTV-rtTA GTGAAGTGGGTCCGCGTACAG GTACTCGTCAATTCCAAGGGCATCG 

 

Table 3 PCR programs for genotyping. 
Transgene TetO-CMYC TetO-Neu MMTV-rtTA 

PCR program 94ºC- 3 min 

10x: 94ºC- 10s 

        62ºC- 30s 

        68ºC- 1:30 min 

28x: 94ºC- 10s 

        60ºC- 30s 

        68ºC- 2 min 

72ºC- 10 min 

10ºC- hold 

95ºC- 1 min 

2x: 95ºC- 15 s 

      64ºC- 15 s 

      72ºC- 1:30 min 

2x: 95ºC- 15 s 

      61ºC- 15 s 

      72ºC- 1:30 min 

23x: 95ºC- 15 s 

        58ºC- 15 s 

        72ºC- 1:30 min 

18x: 95ºC- 15 s 

        55ºC- 15 s 

        72ºC- 1:30 min 

72ºC- 10 min 

10ºC- hold 

94ºC- 5 min 

39x: 94ºC- 30 s 

        57ºC- 30 s 

        72ºC- 30 s 

72ºC- 5 min 

10ºC- hold 

 

9.1.3 3D culture of mouse mammary gland organoids 

6- to 10-week-old female virgin mice were euthanized by CO2 overdose or cervical dislocation, 

and all mammary glands were harvested. The tissue was digested overnight (max. 16 hours) in 

5 ml of digestion medium (DMEM/F12 (Lonza) with 25 mM HEPES, supplemented with 1% 

penicillin/streptomycin (Thermo Fisher Scientific), 150 U Collagenase type 3 (Worthington 

Biochemical Corporation) and 20 µg Liberase (Roche)) at 37°C and 5% CO2, in a loosely 

capped 50 mL polypropylene conical tube. The glands were then mechanically disrupted by 

pipetting with a 5 ml pipette, washed with phosphate-buffered saline (PBS), and centrifuged at 

300xg for 5 minutes. The layer of fat and medium with PBS was removed, and 5 ml of 0.25% 

Trypsin-EDTA (Thermo Fisher Scientific) was added to the cell pellet. After incubation for 

45 minutes at 37°C and 5% CO2 the enzymatic reaction was stopped by the addition of 40 ml 
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of serum-supplemented media (DMEM/F12 (Thermo Fisher Scientific) with 25 mM HEPES, 

1% penicillin/streptomycin (Thermo Fisher Scientific), and 10% fetal bovine serum (FBS) 

(Thermo Fisher Scientific)). The cells were centrifuged again, the pellet was resuspended in 

mammary epithelial cell basal medium (MEBM) (PromoCell) enriched with MEpiCGS 

(ScienCell Research Laboratories), and the cell suspension was transferred to collagen-coated 

plates (Corning). During overnight incubation at 37ºC and 5% CO2, epithelial cells adhere to 

the surface of the plate while cells of other cell types and dead cells float in the medium. On 

the following day, the medium with non-epithelium cells was removed, and after washing in 

PBS and trypsinization (incubation with 0.25% Trypsin-EDTA for 5-7 minutes at 37ºC and 5% 

CO2, followed by inactivation with serum-supplemented media), the epithelial cells were 

detached from collagen-coated plates. The cells were centrifuged, resuspended in MEBM with 

MEpiCGS, and counted. If not indicated otherwise, 10,000 cells were seeded per 1 well of a 

12-well plate in 90 µl of ice-cold solution 4:1 of Matrigel (Corning): PBS. Matrigel-PBS-cell 

solution droplets were dispensed into the bottom of wells and incubated for 30-45 minutes at 

37ºC and 5% CO2 until the mixture solidified. Then 1.5 ml of MEBM with MEpiCGS was 

added to each well, and the organoids were let to grow at 37ºC and 5% CO2. For drug screen, 

BrdU, and DMSO titration experiments, primary murine mammary gland epithelial cells were 

isolated as described above but they were seeded on 96-well plates (Falcon® 96-well 

Black/Clear Flat Bottom TC-treated Imaging Microplate with Lid, Corning) (600 cells in 10 µl 

gels) and incubated with 200 µl MEBM with MEpiCGS. The medium was changed one day 

after seeding, and then every second day (every 3 days in case the organoids were growing in 

a 96-well plate). If required by experiment conditions, the organoids were induced with 

200 ng/ml of doxycycline (doxycycline hyclate, Sigma) 7 days after seeding. 200 ng/ml of 

doxycycline was then always added to the medium.  

9.1.4 Dissociation of 3D structures 

Gels containing organoids (growing in single wells of 12-well plates) were incubated for 

2 hours at 37°C with 75 U Collagenase type III (Worthington Biochemical Corporation) and 

10 µg Liberase (Roche), and then disintegrated completely by mechanical disruption with 

pipetting up and down with a 1000 µl pipette. The suspension from each well was transferred 

to its 15 ml falcon and centrifuged at 300xg for 5 minutes. After washing once in pre-warmed 

PBS and removing any leftovers of Matrigel that remained above the cell pellets, the pellets 

were resuspended in 200 µl of 0.25% Trypsin-EDTA (Thermo Fisher Scientific) and incubated 

for 5 minutes in 37ºC water bath. Trypsin was then deactivated with 5 ml medium containing 
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DMEM/F12 (Thermo Fisher Scientific) with 25 mM HEPES, 1% penicillin/streptomycin 

(Thermo Fisher Scientific), and 10% FBS (Thermo Fisher Scientific). Suspensions of single 

cells were centrifuged at 300xg for 5 minutes, and the pellets were washed once in PBS. For 

both scRNA-seq and scATAC-seq all gels seeded in a 12-well plate were collected and pooled, 

for Strand-seq two gels from a 12-well plate containing organoids pulsed with BrdU at the same 

time were collected and pooled. 

9.1.5 Isolation and culture of MEFs 

Fibroblasts were isolated from 13.5-day FVB/NJ mouse embryos. A pregnant female was 

euthanized by cervical dislocation and the uterus was dissected. The yolk sac was opened and 

individual fetuses were exposed. Head, liver, and heart were removed from each embryo. The 

remainings were then cut into fine pieces, and all material was transferred into 15 ml falcon 

tubes. The tissue from up to 5 embryos coming from one mother was pooled into one falcon, 

and incubated overnight at 4ºC in 15 ml of ice-cold 0.25% trypsin-EDTA (Thermo Fisher 

Scientific). On the next day, most of the trypsin solution was aspirated (leaving an amount 

equivalent to approximately two volumes of the tissue) and the tube was incubated for 

30 minutes in a 37ºC water bath. 25 ml of MEF culture medium (high-glucose DMEM (Thermo 

Fisher Scientific), with 10% FBS (Thermo Fisher Scientific) 1% penicillin/streptomycin 

(Thermo Fisher Scientific)) was added to the tube, and the digested tissue was broken up into 

a cell suspension by vigorously pipetting the solution up and down. More MEF culture medium 

was added, and cells were plated in T75 tissue culture flasks. Cells were maintained at 37ºC 

with 5% CO2. MEFs were passaged every second day and cells from up to the first 5 passages 

were used for experiments. For RNA-seq and Strand-seq, cells were seeded at a density of 

1x105 cells/well in a 6-well plate, and for both experiments they were collected on the same 

day, 3 days after seeding. For RNA-seq cells from two wells were pooled as one technical 

replicate and two technical replicates were submitted for sequencing. For Strand-seq MEFs 

were incubated with 40 µM BrdU (Sigma, B5002) for 18h before nuclei isolation and single-

nuclei sorting.  

9.1.6 Culture of mESCs 

A plate of mESCs (129 x C57BL/6J) was a gift from Noh lab, EMBL Heidelberg. To reduce 

the risk of contamination with feeder cells, mESCs were transferred into feeder-free gelatin-

coated plates (0.1% sterile gelatin solution) one passage before seeding for experiments. 

Gelatin coating was performed on all plates used for experiments with mESCs. The medium, 
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containing KnockOut DMEM (Thermo Fisher Scientific) with 15% EmbryoMax FBS (Merck 

Millipore) and 20 ng/ml leukemia inhibitory factor (produced by the Protein Expression 

Facility at EMBL Heidelberg), 1% nonessential amino acids (Thermo Fisher Scientific), 1% 

GlutaMAX (Thermo Fisher Scientific), 1% penicillin/streptomycin (Thermo Fisher Scientific) 

and 1% of 55 mM β-mercaptoethanol solution (Sigma), was changed every day. Cells were 

maintained at 37ºC with 5% CO2. For RNA-seq and Strand-seq, cells were seeded at a density 

of 1.6x105 cells/well in a 6-well plate, and for both experiments they were collected on the same 

day, 2 days after seeding. For RNA-seq cells from two wells were pooled as one technical 

replicate and two technical replicates were submitted for sequencing. For Strand-seq mESCs 

were incubated with 20 µM BrdU (Sigma, B5002) for 13h before nuclei isolation and single-

nuclei sorting.  

9.2 Human cell culture 

Human hTERT-immortalized retinal pigment epithelial cells RPE-1 were purchased from 

ATCC, and cultured in DMEM/F12 medium (Thermo Fisher Scientific) supplemented with 

10% FBS (Thermo Fisher Scientific). 

Human mammary gland cell line MCF10a (purchased from ATCC) were cultured in 

DMEM/F12 medium without HEPES and phenol red (Thermo Fisher Scientific) supplemented 

with 5% horse serum (Thermo Fisher Scientific), 20 ng/ml EGF (Biotrend), 0.5 µg/ml 

hydrocortisone (Sigma), 100 ng/ml cholera toxin (Sigma) and 0.01 mg/ml human insulin 

(Sigma). 

Human invasive ductal carcinoma cell line BT-474 was a gift from Dr. Matt Boucher, 

Jechlinger group, EMBL Heidelberg. The cells were cultured in high glucose DMEM (Thermo 

Fisher Scientific) supplemented with 10% FCS (Thermo Fisher Scientific), 1% non-essential 

amino acids (Thermo Fisher Scientific), 1% sodium puryvate (Thermo Fisher Scientific), 1% 

L-glutamine (Thermo Fisher Scientific), 10 mM HEPES. 

All cell lines were cultured in standard conditions (37ºC, 5% CO2). 

9.3 Cytotoxicity analysis 

9.3.1 Drug screen on murine mammary gland organoids 

To test the effect of drugs on murine mammary gland organoids, different chemotherapeutics 

were added to the media of both not-induced organoids and structures induced with 
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doxycycline for 7 days (after 7 days of normal growth). Each drug was tested at five different 

concentrations with four to five technical replicates for 72 hours. Depending which solvent was 

used to dissolve the drugs, cells were treated with either DMSO (Sigma) or water as a control. 

Following the incubation with the drugs, both cytotoxicity and cell viability assays were 

performed, and then an IC50 value for each of the drugs was calculated. 

The following drugs were included in the screen: lapatinib (GW-572016) ditosylate 

(Selleckchem), paclitaxel (NSC 1259733, Selleckchem), InSolution Paclitaxel (Sigma), 

doxorubicin-hydrochlorid (D1515, Sigma). 

9.3.1.1 Bright-field imaging 

To visually assess the growth of organoids and the impact of drugs on their morphology, bright-

field imaging was performed at different time points (on day 1 after seeding, on day 8 before 

doxycycline induction, on day 15 before drug treatment and on day 18 (72 hours after drug 

treatment) at the end of the experiment). All 96-well plates used in the drug screen were imaged 

on the ScanR (High Content Screening Station, Olympus) with 4x objective, in 4 quadrant 

fields of view per well. To acquire the data from the entire gel drop with organoids, 21 images 

were recorded at z-steps intervals of 100 µm in each four fields of view. Using custom-made 

macros and scripts (provided by Dr. Sylwia Gawrzak and Dr. Matt Boucher, Jechlinger group, 

EMBL Heidelberg) with modifications, the z-stacks were processed to show a maximum 

projection image of each field of view, and then the four projections were joined together to 

represent each well.  

9.3.1.2 Cell cytotoxicity and cell viability assays  

The cytotoxic effect of drugs was quantified using a fluorescence-based commercially 

available kit CellToxTM Green Cytotoxicity Assay (Promega) that measures changes in 

membrane integrity following cell death. After 72 hours of drug treatment, 100 µl of media 

was removed and 20 µl of the working solution was added to each well. The plate was then 

gently shaken at room temperature for 1 hour, and after the incubation, the fluorescent signal 

(at an excitation wavelength of 485-500 nm and an emission of 520-530 nm) proportional to 

cell death in each well was measured at the Chemical Core Facility at EMBL Heidelberg, using 

an EnVisionTM Multilabel Plate Reader (PerkinElmer). 

Cell cytotoxicity measurement was multiplexed with a luminescence-based cell viability assay 

(CellTiter-Glo® 3D Cell Viability Assay, Promega) that quantifies the ATP present, an 

indicator of metabolically active cells. Once the data from cell cytotoxicity was recorded, 75 µl 
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of CellTiter-Glo® 3D Cell Viability Assay was added to the media per well and the whole plate 

was again gently shaken at room temperature for 1 hour. The luminescence signal was recorded 

using the Infinite® M1000 microplate reader (Tecan). The raw data from the plate reader was 

analyzed using GraphPad6 (Prism) to generate drug-response curves and calculate IC50 values 

for each drug and assay.  

9.3.2 BrdU and DMSO titration experiments 

Similarly to the drug screen, mammary gland organoids were seeded on 96-well plates with 

600 cells in 10 µl in each well. The organoids were grown for 72 hours unperturbed (apart from 

a change of medium one day after seeding), and then they were treated with increasing 

concentrations of BrdU (Sigma, B5002) or DMSO (Sigma) for the next 72 hours. Five different 

concentrations of each substance were tested (with three technical replicates per condition). 

Organoids not exposed to BrdU or DMSO were used as a control. Cell viability assay alone 

(without cell cytotoxicity assay) was performed as the endpoint of the BrdU and DMSO 

titration experiment. 

9.3.3 Drug screens on human cell lines 

MCF10a and BT-474 cells were seeded on 96-well plates (Falcon® 96-well Black/Clear Flat 

Bottom TC-treated Imaging Microplate with Lid, Corning), 1x104 cells per well. One day later 

they were treated with 4 different concentrations of either doxorubicin, lapatinib, or paclitaxel 

with 3 technical replicates for each tested drug and dilution. Cells treated with DMSO (solvent 

for all the drugs) were used as a control. Cell viability assay (CellTiter-Glo® Luminescent Cell 

Viability Assay, Promega) was performed after 72 hours of drug exposure, and additionally 

after 96 hours and 120 hours of paclitaxel treatment. Similarly to the assay used for the readout 

in the drug screens on organoids, this kit quantifies the ATP present in the cells, proportional 

to the number of cells alive. 75 µl of the reagent was added to the media in each well and the 

whole plate was gently shaken at room temperature for 20 minutes. The luminescence signal 

was recorded using the Infinite® M1000 microplate reader (Tecan) and the raw data were 

analyzed using Excel to quantify the proportion of alive cells following drug treatment in 

comparison to DMSO control.  
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9.4 Molecular biology methods 

9.4.1 RT-qPCR (murine mammary gland organoids) 

Total RNA was extracted from mammary gland organoids derived from tri-transgenic mice 

(TetO-CMYC/TetO-Neu/MMTV-rtTA in FVB/NJ background) at three different time points: 

6 days after seeding, after 7 days of doxycycline induction and after 7 days after the deinduction 

(on the day of the deinduction the gels were washed for 10 minutes in PBS, once for 10 minutes 

in STOP media (DMEM/F12 (Thermo Fisher Scientific) with 25mM HEPES, 1% 

penicillin/streptomycin (Thermo Fisher Scientific)), and again for 10 minutes in PBS; after 

that, they were cultured in the MEBM with MEpiCGS but without doxycycline). Organoids 

from two wells were pooled for each condition for each biological replicate. After the 

dissociation of 3D structures (as described above), the pellets containing single cells were used 

as a starting material for the RNA isolation performed with the kit innuPREP DNA/RNA Mini 

Kit (Analytik Jena) according to the manufacturer’s protocol. RNA concentration was 

measured using the NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific). 

Complementary DNA (cDNA) was prepared from 50 ng of RNA using SuperScript™ III First-

Strand-Synthesis SuperMix for qRT-PCR (Invitrogen) in 20 µl. The synthesized cDNA was 

diluted 4x, and 2 µl were used for qPCR reaction (with 10 µM primers) on a StepOneÔ Real-

Time PCR System (Thermo Fisher Scientific). Primer sequences are shown in Table 4. Three 

technical replicates were included per each analyzed gene, condition, and biological replicate. 

Standard ‘no template’ and ‘no reverse transcriptase’ controls were always performed. Agarose 

gel electrophoresis (2% agarose gel, 100 V, 30-45 minutes using 1 kb or 100 bp DNA ladders 

(Thermo Fisher Scientific) as size markers) was performed to confirm the presence of single 

amplicons of the correct size. Beta-actin (Actb) was used as a reference. The fold changes in 

gene expression were calculated using the ΔΔCt method, and the results are presented as fold 

change of values obtained for never-induced organoids. 

Table 4 Primer sequences for RT-qPCR. 
Target  Forward primer (5’-3’) Reverse primer (5’-3’) 

mouse Erbb2 GAGACAGAGCTAAGGAAGCTGA ACGGGGATTTTCACGTTCTCC 

rat TetO-Neu GAATCCCTGCTGGGGCACC CAGTGCCTGGGGTAGGGTCC 

mouse Actb AGAGCTACGAGCTGCCTGAC AGCACTGTGTTGGCGTACAG 
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9.4.2 RNA-seq (MEFs and mESCs for scNOVA) 

Before RNA isolation, MEFs and mESCs growing in 6-well plates were washed once in PBS 

and trypsinized for 5 minutes (incubation with 0.25% Trypsin-EDTA at 37ºC and 5% CO2). 

The cells were then resuspended in their respective medium and centrifuged (5 minutes, 1200 

rpm). The cell pellets were washed once in PBS and the solutions were centrifuged again. 

The cell pellets were used as the starting material for RNA extraction using RNeasy Mini Kit 

(QIAGEN). Once the pellets were resuspended in the lysis buffer, the cells were additionally 

disrupted mechanically by passing the solutions through needles with syringes (20G) (each 

sample 10 times). After elution, RNA concentrations were measured with the NanoDrop 1000 

spectrophotometer (Thermo Fisher Scientific) and high-quality RNA was submitted to 

Genomics Core Facility at EMBL Heidelberg for library preparation. All 4 libraries (2 technical 

replicates for MEFs and 2 for mESCs) were multiplexed and sequenced together on a NextSeq 

500 High sequencer (75 single-ends). 

9.4.3 RNA-seq (murine mammary gland organoids for validation of scNOVA) 

A table containing raw gene counts from RNA-seq experiments performed on murine 

mammary gland organoids was downloaded from Array Express under accession number E-

MTAB-8834. The differential expression analysis was performed with DESeq2159 following 

the authors’ manual. Genes with fewer than 10 counts across all samples were filtered out. 

The animal and condition were used for multifactor design. Genes with adjusted p-values (after 

a Bonferroni correction for multiple testing) smaller than 0.1 were considered significantly 

differentially expressed. 

9.4.4 Isolation of genomic DNA and WGS 

Mammary gland organoids (tissue derived from TetO-CMYC/TetO-Neu/MMTV-rtTA in 

FVB/NJ background mice) were cultured for 8 days and then dissociated as described before. 

Genomic DNA from all organoids growing in one plate was isolated using QIAAmp DNA 

Mini and Blood Mini kit (QIAGEN) according to the manufacturer’s protocol (including a 

recommended additional step of RNase and protease treatment). DNA concentration was 

measured using the NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific) and with a 

QubitÔ 3.0 Fluorometer following the staining with QubitÔ dsDNA HS-Assay Kit (Thermo 

Fisher Scientific). DNA was submitted to Genomics Core Facility at EMBL Heidelberg for 

library preparation. The completed library was sequenced on a HiSeq4000 sequencer (150 

paired ends). 
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9.4.5 Analysis of bulk WGS data 

Raw whole genome sequencing data (in fastq format) was aligned to the mice reference 

genome mm10, sorted, marked for duplicates, and indexed. The high quality of data was 

confirmed with Alfred, a command-line application that computes quality control metrics (for 

example, GC bias, base composition, insert size, and sequencing coverage distributions). 

The presence of each germline SV called by Strand-seq was manually verified in WGS data by 

checking the differences in the read count around the predicted SV breakpoints in 

the Integrative Genomics Viewer (IGV) (version 2.13.2)171. 

9.5 Immunofluorescence 

9.5.1 Anti-BrdU staining on RPE-1 cells 

Before cell seeding, cover glasses were immersed in 70% EtOH and incubated for 1 hour under 

UV light in a laminar flow hood. Each sterile cover glass was then placed at the bottom of 

a well of a 6-well plate immediately after plating the cells. The RPE-1 cells were seeded at the 

density of 1.5x105 cells/well. One day later, the cells were treated with 40 µM BrdU (Sigma, 

B5002) (excluding one well) and incubated for 24 h. After that time, the medium was removed 

from both BrdU-containing and BrdU-negative wells, and the cover glasses were washed twice 

with PBS. The cells were fixed with 4% paraformaldehyde (PFA) (Electron Microscopy 

Sciences) for 10 minutes and washed twice with PBS. To permeabilize the cell membranes, the 

cells were treated with 0.2% Triton X-100 in PBS for 15 minutes at room temperature 

and washed again twice with PBS. Depending on the experimental conditions, the cells were 

treated with 2 M HCl for 5, 15, or 30 minutes, and then incubated for 30 minutes in a 

neutralization buffer (boric acid/potassium chloride/sodium hydroxide, pH 9.0) (Merck). Cells 

treated with PBS (without treatment with HCl and the neutralization buffer) were used as 

a control. All cover glasses were transferred to a humidified chamber for downstream steps. 

Blocking was performed in 10% goat serum (Merck) in 0.2% Triton X-100 in PBS for 

30 minutes at room temperature. After washing with PBS, the cover glasses were incubated 

with 1:250 dilution of anti-BrdU antibody (ab6326) (Abcam) for 1 hour at room temperature. 

The cells were washed three times with PBS, and incubated with 1:1000 dilution of anti-rat 

IgG Alexa Fluor 488-conjugated antibody in 10% goat serum in 0.2% Triton X-100 in PBS, 

for 1 hour at room temperature. The cells were washed three times with PBS before DNA 

staining with Hoechst 33258 (1:10000) in 10% goat serum in 0.2% Triton X-100 in PBS, for 

20 minutes at room temperature. The cells were washed once in PBS and once in the ultrapure 



 

 85  

water (Milli-QÒ EQ 7000 quality) before fixing with Vectashield® Antifade Mounting 

Medium (Vector Laboratories) on microscopy slides. The samples were imaged at 6 random 

locations per tested condition, using the same settings, with Zeiss Cell Observer HS (Zeiss) 

fluorescence microscope. Fiji196 was used for image processing. 

9.5.2 Cryosections 

3D culture gels for Click-iT EdU imagining or immunofluorescence staining were collected 

from the wells of the plate and transferred to Tissue-Tek® Cryomold® moulds (Sakura) filled 

with Tissue-Tek® O.C.T.™ Compound (Sakura). The moulds were stored on dry ice for 

10 minutes until the matrix solidified and then transferred to -80ºC for long-term storage. 

The samples were then cut on a cryostat to obtain 8 µm sections (2-3 sections per slide), 

and the slides with sections were processed within a week (stored at -80ºC in the meantime). 

9.5.3 Click-iT EdU staining on cryosections (murine mammary gland organoids) 

Mammary gland organoids derived from tri-transgenic mice (TetO-CMYC/TetO-Neu/MMTV-

rtTA in FVB/NJ background) were cultured for 7 days and then induced with doxycycline. 

After 3 or 4 days they were treated with 20 µM EdU for 48 h or 24 h or left untreated before 

collecting and processing for cryosections as described above. After thawing, the slides with 

sections were washed once in PBS, and then the cells were fixed with 4% PFA (Electron 

Microscopy Sciences) for 10 minutes and washed once with PBS. The cell membranes were 

permeabilized with 0.2% Triton X-100 in PBS for 10 minutes at room temperature. The slides 

were washed three times with PBS. A label mix containing PBS, 2 mM CuSO4·5H2O (Sigma), 

20 mg/ml ascorbic acid (Sigma), and 8 µM sulfo-Cy3-azide (Lumiprobe) was prepared freshly 

and added to the cells. After 30 minutes of incubation, the cells were washed three times with 

PBS and then stained with 1:1000 DAPI (Thermo Fischer Scientific) for 20 minutes. After one 

wash in PBS and then water, cryosections were mounted with Vectashield® Antifade 

Mounting Medium (Vector Laboratories) and protected with a cover slip. The images were 

collected with a confocal microscope Zeiss LSM 900 (Zeiss). All image processing was 

performed with Fiji196. 

9.5.4 Anti-keratin staining on cryosections (murine mammary gland organoids) 

Mammary gland organoids derived from tri-transgenic mice (TetO-CMYC/TetO-Neu/MMTV-

rtTA in FVB/NJ background) were cultured for 7 days and then induced with doxycycline for 

5 days. The gels containing 3D structures were collected and processed for cryosections as 

described above. After thawing, the slides with sections were transferred to a humidified 
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chamber and were washed once in PBS. Then the cells were fixed with 4% PFA (Electron 

Microscopy Sciences) for 10 minutes and washed twice with PBS. The cell membranes were 

permeabilized with 0.2% Triton X-100 in PBS for 15 minutes at room temperature. The slides 

were washed twice with PBS and incubated with a blocking solution (10% goat serum (Merck) 

in 0.2% Triton X-100) at room temperature. After 30 minutes, the blocking agent was removed 

and a 1:200 dilution of primary antibodies (anti-keratin 14 (ab7800) and anti-keratin 19 

(ab52625), both from Abcam) in the blocking solution was added to the sections. One slide 

was incubated without the primary antibodies as a negative control. After 1 hour, the slides 

were washed three times with PBS and all of them were stained with 1:1000 dilution of 

secondary antibodies (Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary 

Antibody, Alexa Fluor™ 555, Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed 

Secondary Antibody, Alexa Fluor™ 647, both from Thermo Fisher Scientific) in the blocking 

solution for 1 hour. Then the slides were washed three times with PBS and stained with 

a 1:5000 dilution of Hoechst 33258 dye. Finally, the slides were washed once in PBS, and once 

in the water. The cryosections were mounted with Vectashield® Antifade Mounting Medium 

(Vector Laboratories) and protected with a cover slip. The images were collected with 

a confocal microscope Zeiss LSM 900 (Zeiss). All image processing was performed with 

Fiji196. 

9.6 Flow cytometry 

9.6.1 Click-iT EdU flow cytometry labeling 

Mammary gland organoids derived from tri-transgenic mice (TetO-CMYC/TetO-Neu/MMTV-

rtTA in FVB/NJ background) were cultured for 7 days and then induced with doxycycline. 

After 3 or 4 days they were treated with 20 µM EdU for 48 h or 24 h or left untreated before 

dissociating into single cells as described above. Organoids used for Click-iT microscopy 

staining and flow cytometry labeling were seeded and collected on the same day. 

The suspension of single cells isolated from the mammary gland organoids was stained using 

Click-iT® EdU Flow Cytometry Assay Kit (with Alexa Fluor® 488 azide; Thermo Fisher 

Scientific) and following manufacturer’s protocol. The frequency of EdU-positive cells was 

recorded using flow cytometer LSR Fortessa Analyser (BD Biosciences) in the EMBL Flow 

Cytometry Core Facility, and the raw data was analyzed using FlowJo™ v10 software (BD 

Biosciences). 
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9.6.2 Detection of BrdU-positive nuclei with flow cytometry 

To isolate nuclei, the pellets containing PBS-washed single cells (from murine mammary gland 

organoids, MEFs, or mESCs), both BrdU-pulsed and BrdU-negative, were resuspended in 

300 µl nuclei isolation buffer each (the composition summarized in Table 5) and incubated on 

ice for 20 minutes in dark. Nuclei were then analyzed using BD FACS MelodyÔ Cell Sorter 

(BD Biosciences) or BD LSRFortessaÔ Cell Analyzer (BD Biosciences). After removing 

debris (based on forward and side scatter) and doublets (based on size), the nuclei from the 

negative control were used to establish the Hoechst profile and identify the G1 peak. 

The sorting gate for BrdU-positive cells was set on the peak showing half Hoechst fluorescence 

compared to no-BrdU control. 

Table 5 Composition of the nuclei staining buffer (NSB) 
Stock solution Final concentration For 10 ml of NSB 

1 M Tris-HCl pH 7.4 100 mM 1 ml 

5 M NaCl 154 mM 308 µl 

1 M MgCl2 0.5 mM 5 µl 

1 M CaCl2 1 mM 10 µl 

7.5% BSA solution 0.20% 267 µl 

10% NP-40 substitute 0.1% 100 µl 

dH2O - 8.3 ml 

10 mg/ml Hoechst 33258 10 µg/ml 10 µl 

NP-40 subsitute was purchased from MillporeSigma. 

9.7 Single-cell sequencing technologies 

9.7.1 scRNA-seq 

9.7.1.1 scRNA-seq library preparation 

Mammary gland organoids derived from tri-transgenic mice (TetO-CMYC/TetO-Neu/MMTV-

rtTA in FVB/NJ background) were cultured for 7 days and then induced with doxycycline. 

After 6 days they were treated for 72 hours with 100 nM doxorubicin, 0.5% DMSO or left 

untreated, and then the medium was changed and the organoids were left to recover for the next 

72 hours. For each sample, the organoids were extracted from Matrigel and dissociated as 

described before. The pellet of single cells was resuspended in 400 µl of filtered solution of 

0.4% BSA in PBS. The cells were stained with DRAQ7Ô dye (Thermo Fisher Scientific) 

and IncuCyteÒ Caspase-3/7 Green Apoptosis Assay Reagent (IncuCyte) to detect dead 
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and early-apoptotic cells, and the double-negative population was immediately sorted to 15 ml 

falcons containing 1 ml of 0.4% BSA in PBS at the bottom. Depending on the sample, up to 

1x106 cells were collected. After sorting the cells were immediately counted and then 

resuspended in app. 50 µl of 0.4% BSA in PBS. The cells were counted again and then a 100 µl 

solution of cells was prepared with a desired concentration of 1000 cells/µl. All counting steps 

were performed using a Countess II FL Automated Cell Counter (Thermo Fisher Scientific). 

scRNA-seq libraries for each sample were then prepared following the user guide of 10x 

Genomics Chromium Next GEM Single Cell 3’ Reagent Kit v3.1 (dual index) with 

the expected sequencing depth of 20,000 read pairs per cell and 8,000-10,000 cells per sample. 

1:10 dilution of each constructed library was run on the Agilent Bioanalyzer High Sensitivity 

DNA chip (Agilent) to confirm their high-quality and assess the concentration. 

The concentration of libraries was additionally measured with a QubitÔ 3.0 Fluorometer 

following the staining with QubitÔ dsDNA HS-Assay Kit (Thermo Fisher Scientific). 

Completed libraries were pooled and sequenced on NextSeq 2000 sequencer (using P3 

reagent). 

9.7.1.2 scRNA-seq data processing 

The Cell Ranger Single Cell Software (10x Genomics), version 6.1.2, was used for sample 

demultiplexing and conversion of raw base call files into FASTQ files generated by Illumina 

sequencer (function: cellranger mkfastq), alignment to the mm10 mouse reference 

transcriptome (mm10-2020-A), filtering, barcode and unique molecular identifier (UMI) 

counting (function: cellranger count). Samples were then aggregated to normalize the runs to 

the same sequencing depth and then the feature-barcode matrices were recomputed (function: 

cellranger aggr) and after importing to R (version 4.2.0) they were used for further analysis. R 

packages Seurat134 (version 4.1.1) and sctransform135 (version 0.3.3) were used, following the 

recommended settings, for filtering of high-quality cells, normalization, principal component 

analysis, variable genes finding, clustering analysis, and UMAP dimensional reduction. Cells 

were grouped into 5 cell types based on the expression of signature genes identified in the 

previous studies136,138,139 (on data following sctransform normalization). Differential gene 

expression analysis, GO and GSEA were performed on the log-normalized data using available 

functions from Seurat and Cluster profiler 4.0142,143. Differential gene expression analysis with 

cell type as a confounding factor was performed with EdgeR148–150. 
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9.7.2 Strand-seq and SV discovery 

9.7.2.1 Strand-seq library preparation 

Strand-seq libraries were prepared according to a previously published protocol112. Briefly, 

cells (mammary gland organoids, MEFs, or mESCs) were incubated first with BrdU for exactly 

one cell division, then the single nuclei were isolated and analyzed by flow cytometry using 

nuclei from a BrdU-negative control to set up gates. Then single BrdU-containing nuclei were 

sorted into individual wells of a 96-well plate (100 µm nozzle, BD LSRFortessaÔ Cell 

Analyzer (BD Biosciences)) containing 5 µl of freeze buffer (the composition summarized in 

Table 6), centrifuged for 5 minutes at 4ºC at full speed, and immediately frozen at -80ºC. Final 

libraries were prepared using a Beckman Coulter Biomek FxP liquid-handling robotic system 

(Beckman coulter) and then sequenced on a NextSeq Mid sequencer (75 paired ends). 

Table 6 Composition of the freezing buffer. 
Stock solution For 5 ml freezing buffer 

ProFreezeÔ-CDM (Lonza) 2.125 ml 

DMSO 375 µl 

PBS 2.5 ml 

 

9.7.2.2 Bioinformatic analysis (pre-processing) 

Raw sequencing data from Strand-seq libraries were demultiplexed and aligned to the mouse 

reference genome mm10 using BWA (0.7.15). PCR duplicates were marked before sorting 

and generating indexed bam files. Reads were then allocated to 200 kb bins across the genome 

(excluding blacklisted regions) and plotted as Strand-seq ideograms that show directional read 

distribution across all chromosomes in a cell. Low-quality libraries were removed based on 

manual curation of the ideograms (excluded libraries include the ones with fewer than 150,000 

uniquely mapped reads, showing low or excess BrdU incorporation), and only high-quality 

libraries were then analyzed with scTRIP. 

9.7.2.3 GC correction 

In certain cases, if Strand-seq libraries were particularly affected by uneven read distribution 

along the chromosome (due to sequence bias of MNase) (visible as ‘waviness’ on Strand-seq 

ideograms), the data was GC corrected using a custom-made script by Dr. Marco Cosenza from 

Korbel lab. GC-corrected data was only used for a clearer presentation of Strand-seq results on 

ideograms.  
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9.7.2.4 Blacklisting 

A blacklist for mm10 was created following the approach presented in the original scTRIP 

publication113. The list of excluded genomic regions was generated based on the data from 5 

different Strand-seq experiments performed on murine cells (Strand-seq libraries derived from 

samples described in this thesis: murine mammary gland organoids never induced with 

doxycycline and induced with doxycycline for 5 days, and samples previously generated in 

the lab: B6xMEFxP5x02, B6CAST1F1, CAST1D1). The genome was divided into 100 kb 

windows, and bins with consistently distorted mean coverage across sequenced cells (<50% or 

>200% of the mean coverage in all bins) were blacklisted. 

9.7.2.5 scTRIP 

SV discovery (of duplications, deletions, inversions, and inverted duplications, as well as 

chromosome gains and losses) and annotation in high-quality Strand-seq libraries was 

performed with scTRIP that integrates template strand, read depth, and haplotype phase113. 

The pipeline relies on binned read counting, normalization of coverage, segmentation, strand 

state, SCE detection, and haplotype-aware SV classification. For this project, the original 

version of scTRIP for the human genome was updated for mm10. The ‘strict’ SV caller, 

optimized for the detection of SVs with clonal frequency ≥ 5%, was used to annotate germline 

SVs present in murine mammary gland organoids, while the ‘lenient’ caller was applied to 

detect SVs present in a single cell only. 

9.7.2.6 Ploidy AssignR 

Aneuploidies detected in Strand-seq libraries by scTRIP or through manual investigation were 

additionally confirmed using Ploidy AssignR, a newly developed tool from Korbel lab that 

accurately identifies aneuploidies in single cells independent of ploidy reference based on 

Strand-seq strand inheritance patterns. 

9.7.2.7 SCE detection in individual cells 

SCEs were identified in single cells as points on chromosome plots where reads mapping to 

both Watson and Crick strands switch to reads mapping to either the Watson or the Crick strand 

(without affecting the average read count). Coordinates of SCEs were extracted from the output 

of scTRIP, and to correct for Strand-seq resolution (200 kb), each SCE breakpoint was 

converted into a region ±100kb. 
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9.7.3 scNOVA 

Generation of scNOVA, a computational framework using Strand-seq data for functional 

characterization of somatic SVs and prediction of gene activity changes based on differences 

in NO, is covered in detail in the original publication114 (including definition of NO and CNN 

model). Here, I briefly describe how scNOVA was adapted for this project. 

9.7.3.1 Cell-type classification 

Cell-type classifier was built and trained on the scATAC-seq reference data140. The count 

matrix (peak by cells) was converted into motif accessibility matrix (motifs by cells) using 

chromVAR package156. The motif accessibility was then used as a feature to build a classifier 

based on PLS-DA. For feature selection, VIP values measuring discriminant power for each 

motif were calculated, and motifs with significant VIP values compared to null distribution 

(FDR 10%) were used to finalize the model and assess the performance with leave-one-out 

cross-validation. To apply the classifier on the Strand-seq data from murine mammary gland 

organoids, the NO count matrix (peak by cells) was converted into motif NO matrix (motifs by 

cells) using chromVAR. This matrix was then converted to motif accessibility matrix (motifs 

by cells): motif accessibility=(1)*motif NO Z-score. Based on the provided motif accessibility 

matrix, the classifier outputs the most likely cell-type of each Strand-seq library. 

9.7.3.2 Inference of genome-wide changes in gene activity 

To infer gene dysregulation, scNOVA follows two steps: in the first step, genes unlikely to be 

expressed are filtered out. This is performed based on the analysis of both NO and gene-

context-specific features using CNNs. In the second step, the dysregulated (differentially 

expressed) genes between subclones are inferred using a generalized liner model. 

The CNN model was trained (including leave-one-chromosome-out cross validation) 

and parametrized on the NO computed from Strand-seq data of MEFs and further validated 

using data from MEFs and mESCs. Ground-truth labels of not-expressed genes (NEs) 

and expressed genes (EGs) were defined based on bulk RNA-seq data from these two murine 

cell types (sample preparation described in 9.4.2). Reads were aligned to mm10 with STAR 

aligner (v2.6.0)197 using gene annotations from ENSEMBL GTF. The relative gene expression 

was assessed using the FPKM values, with genes with FPKM>1 considered as EGs, and all 

the others as NEs. 
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9.7.4 scATAC-seq (for validation of scNOVA-based cell-type classifier) 

9.7.4.1 scATAC-seq library preparation 

Cells forming 1-week-old organoids derived from TetO-CMYC/TetO-Neu mice were 

harvested as described before. The solution of single cells was resuspended in 1 ml of 0.04% 

BSA in PBS and passed through a 30 µm MACS SmartStrainer (Miltenyi Biotec) into a 15-ml 

conical tube. 1 ml more of 0.04% BSA (Thermo Fisher Scientific) in PBS was passed through 

the strainer and the flowthrough was collected in the same conical tube. Cells were counted 

using a Countess II FL Automated Cell Counter (Thermo Fisher Scientific) and, depending on 

the sample, 200,000-300,000 cells were used for nuclei isolation according to the demonstrated 

protocol from 10x Genomics (‘Nuclei Isolation from Mouse Brain Tissue for Single Cell 

ATAC Sequencing, Rev B, CG000212) with modifications (nuclei isolation with 1x Lysis 

Buffer instead of 0.1x, and for 9 minutes instead of 5 minutes). scATAC-seq libraries for each 

sample were prepared as per the standard 10x Genomics Chromium Next GEM Single Cell 

ATAC (v1.1) protocol (Rev F, CG000209). Targeted nuclei recovery was set for 7,000 per 

sample, and 13 cycles were included in sample index PCR. 1 µl of each constructed library was 

run on the Agilent Bioanalyzer High Sensitivity DNA chip (Agilent) to determine fragment 

size and confirm the presence of peaks indicative of the periodicity of the chromatin structure 

(nucleosome-free, mononucleosome, dinucleosome, and multinucleated fragments). 

The concentration of libraries was additionally measured with a QubitÔ 3.0 Fluorometer 

following the staining with QubitÔ dsDNA HS-Assay Kit (Thermo Fisher Scientific). 

Completed libraries were sequenced on a NextSeq2000 platform (50 bp paired-ends). 

9.7.4.2 scATAC-seq data processing and cluster analysis 

Raw base call files generated during sequencing were demultiplexed into FASTQ files using 

cellranger-atac (10x Genomics, version 2.1.0) mkfastq pipeline, and the downstream steps such 

as read filtering, alignment to the mouse reference genome (mm10) and peak calling were 

performed with the cellranger-atac count. Further data processing was performed using 

Signac157, an R-based package for the analysis of scATAC-seq. The data from two samples 

were merged after creating a unified set of peaks containing promoter-proximal (-1000 bp, 

+100 bp of any TSS), promoter-distal (within 200 kb of the closest TSS or overlapping a gene 

body) or intergenic regions (not mapped to any gene). Cells with fewer than 3000 reads, cells 

with reads in peak ratio <15%, cells with nucleosomal signal >4, and cells with the TSS 

enrichment score <2 were considered of low quality and removed from the dataset. 



 

 93  

Normalization, feature selection, and dimensionality reduction were carried out using 

the recommended settings. The correlation between each latent semantic indexing (LSI) 

component and sequencing depth was assessed, and the first LSI component was removed from 

the downstream analysis as it captured sequencing depth (technical variation) rather than 

biological variation. A low-dimensional visualization of the DNA accessibility was constructed 

using UMAP. Cell type identification was performed by cell type label transfer from 

the annotated scRNA-seq assay (of mice mammary gland organoids) to a new gene activity 

assay derived from the scATAC-seq data. This strategy relies on summing the fragments that 

span the body and promoter region of each gene and using the resulting value as a proxy of 

gene expression (assuming a general correspondence between the chromatin accessibility of 

a specific gene and its expression). To validate that the cell-type-specific motif accessibility 

between cell types was shared between the reference and scATAC-seq dataset described here, 

the scATAC-seq peaks were annotated depending on the presence of TF motifs using 

chromVAR156. The correlation matrix was restricted to 23 motifs used in the cell-type 

classifier.  

9.8 Statistical analysis 

Statistical analysis was performed using R (versions 4.0.0, 4.0.5, 4.1.1, 4.1.3) or the free online 

version of GraphPad Software (Dotmatics). Permutation tests were performed with an R 

package regioneR198. The information about a number of experimental/biological and technical 

replicates, as well as the statistical test used, is provided for each experiment in the Methods 

section and/or on corresponding figures. 
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Chapter 10  Supplementary data 

 

Sup. Figure 1 Paclitaxel precipitates in the medium when added in high concentrations. 
Summary panel from one of the biological replicates of drug screen performed on murine mammary 
gland organoids (both never induced (NI) or induced with doxycycline (On_dox)). Paclitaxel crystals 
or precipitates are visible to the naked eye with concentrations above 50 µM. Each representative image 
included in the panel is a projection of 21 images taken per well (one well corresponds to one technical 
replicate). 
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Sup. Figure 2 Keratin staining patterns of murine mammary gland organoids. 
Mammary cells can be classified based on the cell surface markers and expression patterns of keratins 
as visualized on microscopic images. The gels containing the doxycycline-induced organoids 
(corresponding to cancer state) were cut into 8 µm cryosections. The cryosections were then fixed and 
stained for Krt19 (magenta) and Krt14 (green), and DNA was counterstained with (DAPI) (blue). 
Example images of single organoids show that luminal cells characterized by expression of Krt19 are 
more frequent in the organoids than basal cells expressing Krt14. Scale bar 50 µm. 
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Sup. Figure 3 Differences in cell cycle progression after doxorubicin treatment are shared by cell 
types present in murine mammary gland organoids. 
Relative frequency bar chart of cell types (B, F, LP, ML, My) present in murine mammary gland 
organoids treated with doxorubicin (dxr), DMSO (DMSO), or left untreated (con). Data from two 
biological replicates (000 and 498 are ID numbers of mice from which mammary glands were 
extracted). In both biological replicates, the population of fibroblasts was marginal (below 1% of all 
analyzed cells in the sample) or absent (as was the case for con_000 and dxr_000). 
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Sup. Figure 4 Successful anti-BrdU staining requires acid treatment during sample preparation. 
RPE-1 cells were plated on coverslips and exposed for 24 hours to BrdU. Coverslips were then fixed 
and processed for immunofluorescence. The BrdU incorporated into DNA was detected only if 
the samples were pretreated with HCl before the incubation with the primary antibody (green). Already 
5 minutes of incubation with HCl allows detecting BrdU, with longer exposure (within the tested range 
of 5 to 30 minutes) giving a better signal. Nuclei were counterstained with Hoechst 33258 (blue). Scale 
bar: 50 µm. 
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Sup. Figure 5 Examples of Strand-seq libraries of low quality and library preparation controls. 
Depending on the length of BrdU exposure and gating conditions during the FACS, some libraries may 
exhibit signs of incomplete BrdU incorporation indicated by regions of increased reads of the opposite 
strand (A), or they have gone through more than a single round of BrdU incorporation which results in 
missing reads for one or both templates across all chromosomes (B). During the sort, two controls are 
introduced in each 96-well plate: 100-cell control (positive control) and no cells (negative control). (C) 
The 100-cell control shows much higher coverage than any single-cell library, and it resembles a whole-
genome sequence pattern with all chromosomes represented by Watson and Crick reads. (D) The 0-cell 
control (as well as libraries lost during preparation on the robot) show no or extremely low number of 
sequencing reads. All ideograms were generated using the Strand-seq plotting pipeline. Examples come 
from different single-cell libraries from never-induced murine mammary gland organoids.  
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Sup. Figure 6 Blacklisting and normalization are necessary for proper SV calling with scTRIP. 
Example of chr1 from a Strand-seq library of one cell (ID: PE20301) derived from murine mammary 
gland organoids induced with doxycycline for 5 days. Before the corrections, the scTRIP pipeline 
detected several SVs in that chromosome (indicated as colored boxes, color-coding according to the SV 
class) which were technical artifacts. Only one inverted duplication (between 171.5 and 171.7 Mb) was 
a true call. For the correct SV calling, strand-specific read counts need to be normalized and the regions 
of low mappability removed (indicated with a black thick line). 
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Sup. Figure 7 A karyogram summarizing the location of murine common fragile sites in mm10. 
Human CFS and their murine homologs were identified based on a literature review. The cytobands 
containing murine CFSs were reported only for the reference genome mm9 and needed to be updated 
for mm10 (shown in light grey, names of CFSs in black). To check that the updated annotation is correct, 
I converted the coordinates of human homologous CFSs (coordinates extracted from a database177) from 
hg38 to mm10 based on synteny (physical co-localization of genetic loci on the same chromosome 
between species). The lifted CFS in the murine genome are shown in dark grey, and the names of CFS 
in grey and in capital letters correspond to the human CFS homolog. 
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Sup. Table 1 Germline SVs present in murine strain TetO-CMYC/TetO-Neu/MMTV-rtTA 
in FVB/NJ background, detected with Strand-seq and validated with whole genome sequencing. 

Strand-seq WGS 
SV type Coordinates (mm10) Size SV type Coordinates (mm10) Size 

InvDup chr1: 171.5-171.7 Mb 200 kb Dup chr1: 171,505-171,583 kb 78 kb 

Inv chr3: 93.6-94.0 Mb 400 kb - - - 

Del chr4: 112.1-112.6 Mb 500 kb Del chr4: 112,057-112,600 kb 543 kb 

Del chr4: 112.8-113.6 Mb 800 kb Del not detected - 

Inv chr4: 130.5-130.7 Mb 200 kb - - - 

InvDup chr5: 15.4-15.7 Mb 300 kb Dup chr5: 15,457-15,716 kb 259 kb 

Del chr7: 14.9-15.6 Mb 700 kb Del chr7: 14,990-15,115 kb 125 kb 

Dup chr7: 38.1-38.3 Mb 200 kb Dup chr7: 38,175-38,201 kb 26 kb 

Inv chr8: 20.2-20.4 Mb 200 kb - - - 

Inv chr12: 18.2-19.4 Mb 1.2 Mb - - - 

Del chr12: 87.7-88.2 Mb 500 kb Del chr12: 87,655-87,756 kb 101 kb 

Dup chr12: 115.1-115.9 Mb 800 kb Dup chr12: 115,100-116,000 kb 900 kb 

Inv chr13: 65.4-68.6 Mb 400 kb - - - 

Inv chr14: 0-19.6 Mb 19.6 Mb - - - 

Del chr14: 44.2-44.7 Mb 500 kb Del chr14: 44,200-44,700 kb 500 kb 

Del chr17: 6.4-6.6 Mb 200 kb Del chr17: 6,420-6,590 kb 170 kb 

 

Del: deletion, Dup: duplication, InvDup: inverted duplication, Inv: inversion 
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Sup. Table 2 List of murine common fragile sites and their coordinates in the reference genome 
mm10. 
Large genes bigger than 0.5 Mb located within CFS are indicated with bold font. In red cytogenetic 
bands containing murine CFS that are different than the originally reported cytobands with CFS; for 
example, murine CFS Fra12C1 was reported to be located in the cytogenetic band 12qC1 but in mm10, 
this region corresponds to the band 12qB1. Coordinates of human CFS were extracted from 
a database177. 

LITERATURE Cytogenetic band mm10 Coordinates of human homolog 
(hg38) 

Liftover to mice genome  

hg38-mm10 

Murine 
CFS 

Human 
CFS 

Large 
gene 

(>0.5 Mb) 

Cyt. 
band 

mm10 
Chr Start End Chr Start End Chr Start End 

Fra6C1 FRA4F Grid2 6qC1 chr6 62634895 74378937 chr4 92303966 93810456 chr6 63256027 64668285 

Fra8E1 FRA16D Wwox 8qE1 chr8 110647414 123775073 chr16 24200000 28100000 chr8 114439655 115352708 

Fra12C1 FRA7K Immp2l 12qB1 chr12 39162941 44003304 chr7 107400000 114400000 chr12 40169806 44612010 

Fra14A2 FRA3B 
Fhit 

14qA2 chr14 1 14988269 chr3 58600000 63700000 chr14 8327179 13773275 
Ptprg 

Fra2D FRA2G Igrp, Lrp 2q2C chr2 68527140 71812688 chr2 169700000 183000000 chr2 69795384 80550637 

Fra6A3.1 FRA7G Cav1, 
Cav2, Lpa 6qA2 chr6 16637394 21530745 chr7 114600000 117400000 chr6 15356232 18087378 

Fra6B1 FRA7H Sec8 
(Exoc4) 6qA3.3 chr6 28381436 34253458 chr7 130400000 132600000 chr6 30656437 32616490 

Fra4C2 FRA9E Astn2 4qC1 chr4 63371384 69612505 chr9 108383899 118069329 chr4 56311755 67303093 

FraXC1 FRAXC Dmd, 
Il1rapl1 XqC1 chrX 82311893 91183833 chrX 31500000 37800000 chrX 80616184 84779479 

Fra5A3 - Magi2 5qA3 chr5 16336643 25465943 - - - chr5 19907745 20702126 

Fra3A3 FRA3O Nlgn1, 
Naaladl2 3qA3 chr3 20492885 35618587 chr3 170900000 175700000 chr3 23910456 28787171 

Fra2G1 FRA20B Macrod2 2qG1 chr2 141278557 146910925 chr20 12000000 17900000 chr2 138366610 144218117 

 

  



 

 103  

References 

1. Szabo GK., Vandenberg LN. The male mammary gland: a novel target of endocrine-disrupting 
chemicals. Reproduction 162, F79–F89 (2021). 

2. Cristea S., Polyak K. Dissecting the mammary gland one cell at a time. Nature Communications 
9, 1–3 (2018). 

3. Sung H., Ferlay J., Siegel RL., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global 
Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 
Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 71, 209–249 (2021). 

4. Giordano SH. Breast Cancer in Men. New England Journal of Medicine 378, 2311–2320 (2018). 

5. Sauer S., Reed DR., Ihnat M., Hurst RE., Warshawsky D., Barkan D. Innovative Approaches in 
the Battle Against Cancer Recurrence: Novel Strategies to Combat Dormant Disseminated 
Tumor Cells. Frontiers in Oncology 11, 1–19 (2021). 

6. Zhang M., Lee A v., Rosen JM. The cellular origin and evolution of breast cancer. Cold Spring 
Harbor Perspectives in Medicine 7, 1–15 (2017). 

7. la Rosa S., Rubbia-Brandt L., Scoazec JY., Weber A. Editorial: Tumor Heterogeneity. Frontiers 
in Medicine 6, 1–2 (2019). 

8. Garattini S., Fuso Nerini I., D’Incalci M. Not only tumor but also therapy heterogeneity. Annals 
of Oncology 29, 13–18 (2018). 

9. Marusyk A., Janiszewska M., Polyak K. Intratumor Heterogeneity: The Rosetta Stone of 
Therapy Resistance. Cancer Cell 37, 471–484 (2020). 

10. Banin Hirata BK., Oda JMM., Losi Guembarovski R., Ariza CB., Oliveira CEC de., Watanabe 
MAE. Molecular markers for breast cancer: Prediction on tumor behavior. Disease Markers 
2014, 1–13 (2014). 

11. Prat A., Perou CM. Deconstructing the molecular portraits of breast cancer. Molecular Oncology 
5, 5–23 (2011). 

12. O’Brien KM., Cole SR., Tse CK., Perou CM., Carey LA., Foulkes WD., Dressler LG., Geradts 
J., Millikan RC. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina 
Breast Cancer Study. Clinical Cancer Research 16, 6100–6110 (2010). 

13. Koboldt DC., Fulton RS., McLellan MD., Schmidt H., Kalicki-Veizer J., McMichael JF., Fulton 
LL., Dooling DJ., Ding L., Mardis ER., et al. Comprehensive molecular portraits of human 
breast tumours. Nature 490, 61–70 (2012). 

14. Swain SM., Shastry M., Hamilton E. Targeting HER2-positive breast cancer: advances and 
future directions. Nature Reviews Drug Discovery 22, 101–126 (2022). 

15. Marchiò C., Annaratone L., Marques A., Casorzo L., Berrino E., Sapino A. Evolving concepts 
in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. 
Seminars in Cancer Biology 72, 123–135 (2021). 

16. Loibl S., Gianni L. HER2-positive breast cancer. The Lancet 389, 2415–2429 (2017). 



 

 104  

17. Milioli HH., Tishchenko I., Riveros C., Berretta R., Moscato P. Basal-like breast cancer: 
molecular profiles, clinical features and survival outcomes. BMC Medical Genomics 10, 1–17 
(2017). 

18. Lüönd F., Tiede S., Christofori G. Breast cancer as an example of tumour heterogeneity and 
tumour cell plasticity during malignant progression. British Journal of Cancer 125, 164–175 
(2021). 

19. Milczarek M. The premature senescence in breast cancer treatment strategy. Cancers 12, 1–22 
(2020). 

20. Dieci MV., Miglietta F., Guarneri V. Immune infiltrates in breast cancer: Recent updates and 
clinical implications. Cells 10, 1–27 (2021). 

21. McCleskey BC., Penedo TL., Zhang K., Hameed O., Siegal GP., Wei S. GATA3 expression in 
advanced breast cancer: Prognostic value and organ-specific relapse. American Journal of 
Clinical Pathology 144, 756–763 (2015). 

22. Ciriello G., Sinha R., Hoadley KA., Jacobsen AS., Reva B., Perou CM., Sander C., Schultz N. 
The molecular diversity of Luminal A breast tumors. Breast Cancer Research and Treatment 
141, 409–420 (2013). 

23. Kwei KA., Kung Y., Salari K., Holcomb IN., Pollack JR. Genomic instability in breast cancer: 
Pathogenesis and clinical implications. Molecular Oncology 4, 255–266 (2010). 

24. Dorling L., Carvalho S., Allen J., González-Neira A., Luccarini C., Wahlström C., Pooley KA., 
Parsons MT., Fortuno C., Wang Q., et al. Breast Cancer Risk Genes — Association Analysis in 
More than 113,000 Women. New England Journal of Medicine 384, 428–439 (2021). 

25. Kandoth C., McLellan MD., Vandin F., Ye K., Niu B., Lu C., Xie M., Zhang Q., McMichael 
JF., Wyczalkowski MA., et al. Mutational landscape and significance across 12 major cancer 
types. Nature 502, 333–339 (2013). 

26. Carvalho CMB., Lupski JR. Mechanisms underlying structural variant formation in genomic 
disorders. Nature Reviews Genetics 17, 224–238 (2016). 

27. Raffaele Cosenza M., Rodriguez-Martin B., Korbel JO. Structural Variation in Cancer: Role, 
Prevalence, and Mechanisms. Annual Review of Genomics and Human Genetics 23, 123–152 
(2022). 

28. Dahiya R., Hu Q., Ly P. Mechanistic origins of diverse genome rearrangements in cancer. 
Seminars in Cell and Developmental Biology 123, 100–109 (2022). 

29. Marotta M., Chen X., Inoshita A., Stephens R., Thomas Budd G., Crowe JP., Lyons J., 
Kondratova A., Tubbs R., Tanaka H. A common copy-number breakpoint of ERBB2 
amplification in breast cancer colocalizes with a complex block of segmental duplications. 
Breast Cancer Research 14, 1–19 (2012). 

30. Nishizaki T., DeVries S., Chew K., Goodson WH., Ljung BM., Thor A., Waldman FM. Genetic 
Alterations in Primary Breast Cancers and Their Metastases: Direct Comparison Using Modified 
Comparative Genomic Hybridization. Genes Chromosomes and Cancer 19, 267–272 (1997). 

31. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of 
whole genomes. Nature 578, 82–93 (2020). 



 

 105  

32. Li Y., Roberts ND., Wala JA., Shapira O., Schumacher SE., Kumar K., Khurana E., Waszak S., 
Korbel JO., Haber JE., et al. Patterns of somatic structural variation in human cancer genomes. 
Nature 578, 112–121 (2020). 

33. Black JRM., McGranahan N. Genetic and non-genetic clonal diversity in cancer evolution. 
Nature Reviews Cancer 21, 379–392 (2021). 

34. Hajdu SI. A note from history: Landmarks in history of cancer, part 1. Cancer 117, 1097–1102 
(2011). 

35. Kerr AJ., Dodwell D., McGale P., Holt F., Duane F., Mannu G., Darby SC., Taylor CW. 
Adjuvant and neoadjuvant breast cancer treatments: A systematic review of their effects on 
mortality. Cancer Treatment Reviews 105, 1–14 (2022). 

36. Moo TA., Sanford R., Dang C., Morrow M. Overview of Breast Cancer Therapy. PET Clinics 
13, 339–354 (2018). 

37. Migliaccio I., Malorni L., Hart CD., Guarducci C., di Leo A. Endocrine therapy considerations 
in postmenopausal patients with hormone receptor positive, human epidermal growth factor 
receptor type 2 negative advanced breast cancers. BMC Medicine 13, 1–6 (2015). 

38. Tremont A., Lu J., Cole JT. Endocrine Therapy for Early Breast Cancer: Updated Review. 
Ochsner Journal 17, 405–417 (2017). 

39. Yu S., Liu Q., Han X., Qin S., Zhao W., Li A., Wu K. Development and clinical application of 
anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Experimental 
Hematology and Oncology 6, 1–15 (2017). 

40. Jerez Y., Márquez-Rodas I., Aparicio I., Alva M., Martín M., López-Tarruella S. Poly (ADP-
ribose) Polymerase Inhibition in Patients with Breast Cancer and BRCA 1 and 2 Mutations. 
Drugs 80, 131–146 (2020). 

41. Fu X., Tan W., Song Q., Pei H., Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and 
Therapeutic Strategies. Frontiers in Cell and Developmental Biology 10, 1–11 (2022). 

42. Anand U., Dey A., Chandel AKS., Sanyal R., Mishra A., Pandey DK., de Falco V., Upadhyay 
A., Kandimalla R., Chaudhary A., et al. Cancer chemotherapy and beyond: Current status, drug 
candidates, associated risks and progress in targeted therapeutics. Genes and Diseases (2022). 
doi:10.1016/j.gendis.2022.02.007 

43. van den Boogaard WMC., Komninos DSJ., Vermeij WP. Chemotherapy Side-Effects: Not All 
DNA Damage Is Equal. Cancers 14, 1–27 (2022). 

44. Weiss F., Lauffenburger D., Friedl P. Towards targeting of shared mechanisms of cancer 
metastasis and therapy resistance. Nature Reviews Cancer 22, 157–173 (2022). 

45. Hausser J., Alon U. Tumour heterogeneity and the evolutionary trade-offs of cancer. Nature 
Reviews Cancer 20, 247–257 (2020). 

46. Alexandrov LB., Kim J., Haradhvala NJ., Huang MN., Tian Ng AW., Wu Y., Boot A., 
Covington KR., Gordenin DA., Bergstrom EN., et al. The repertoire of mutational signatures in 
human cancer. Nature 578, 94–101 (2020). 

47. Alexandrov LB., Nik-Zainal S., Wedge DC., Campbell PJ., Stratton MR. Deciphering 
Signatures of Mutational Processes Operative in Human Cancer. Cell Reports 3, 246–259 
(2013). 



 

 106  

48. Liu D., Abbosh P., Keliher D., Reardon B., Miao D., Mouw K., Weiner-Taylor A., Wankowicz 
S., Han G., Teo MY., et al. Mutational patterns in chemotherapy resistant muscle-invasive 
bladder cancer. Nature Communications 8, 1–11 (2017). 

49. Boot A., Huang MN., Ng AWT., Ho SC., Lim JQ., Kawakami Y., Chayama K., Teh BT., 
Nakagawa H., Rozen SG. In-depth characterization of the cisplatin mutational signature in 
human cell lines and in esophageal and liver tumors. Genome Research 28, 654–665 (2018). 

50. Kucab JE., Zou X., Morganella S., Joel M., Nanda AS., Nagy E., Gomez C., Degasperi A., 
Harris R., Jackson SP., et al. A Compendium of Mutational Signatures of Environmental Agents. 
Cell 177, 821-836.e16 (2019). 

51. Pich O., Muiños F., Lolkema MP., Steeghs N., Gonzalez-Perez A., Lopez-Bigas N. The 
mutational footprints of cancer therapies. Nature Genetics 51, 1732–1740 (2019). 

52. Christensen S., van der Roest B., Besselink N., Janssen R., Boymans S., Martens JWM., Yaspo 
ML., Priestley P., Kuijk E., Cuppen E., et al. 5-Fluorouracil treatment induces characteristic 
T>G mutations in human cancer. Nature Communications 10, 1–11 (2019). 

53. Wang H., Xiao X., Xiao Q., Lu Y., Wu Y. The efficacy and safety of daunorubicin versus 
idarubicin combined with cytarabine for induction therapy in acute myeloid leukemia: A meta-
analysis of randomized clinical trials. Medicine 99, e20094 (2020). 

54. Khasraw M., Bell R., Dang C. Epirubicin: Is it like doxorubicin in breast cancer? A clinical 
review. Breast 21, 142–149 (2012). 

55. Meredith AM., Dass CR. Increasing role of the cancer chemotherapeutic doxorubicin in cellular 
metabolism. Journal of Pharmacy and Pharmacology 68, 729–741 (2016). 

56. Yang F., Teves SS., Kemp CJ., Henikoff S. Doxorubicin, DNA torsion, and chromatin 
dynamics. Biochimica et Biophysica Acta - Reviews on Cancer 1845, 84–89 (2014). 

57. Uusküla-Reimand L., Wilson MD. Untangling the roles of TOP2A and TOP2B in transcription 
and cancer. Science Advances 8, 1–16 (2022). 

58. Baron B. Doxorubicin: An Overview of the Anti-Cancer and Chemoresistance Mechanisms. 
Ann Clin Toxicol 3, 1–12 (2020). 

59. Pang B., Qiao X., Janssen L., Velds A., Groothuis T., Kerkhoven R., Nieuwland M., Ovaa H., 
Rottenberg S., van Tellingen O., et al. Drug-induced histone eviction from open chromatin 
contributes to the chemotherapeutic effects of doxorubicin. Nature Communications 4, 1–13 
(2013). 

60. Yang F., Kemp CJ., Henikoff S. Doxorubicin enhances nucleosome turnover around promoters. 
Current Biology 23, 782–787 (2013). 

61. Qiao X., van der Zanden SY., Wander DPA., Borràs DM., Song J-Y., Li X., van Duikeren S., 
van Gils N., Rutten A., van Herwaarden T., et al. Uncoupling DNA damage from chromatin 
damage to detoxify doxorubicin. Proceedings of the National Academy of Sciences 117, 15182–
15192 (2020). 

62. Seoane JA., Kirkland JG., Caswell-Jin JL., Crabtree GR., Curtis C. Chromatin regulators 
mediate anthracycline sensitivity in breast cancer. Nature Medicine 25, 1721–1727 (2019). 



 

 107  

63. Szikriszt B., PótiÁdám., Pipek O., Krzystanek M., Kanu N., Molnár J., Ribli D., Szeltner Z., 
Tusnády GE., Csabai I., et al. A comprehensive survey of the mutagenic impact of common 
cancer cytotoxics. Genome Biology 17, 1–16 (2016). 

64. Pleasance E., Titmuss E., Williamson L., Kwan H., Culibrk L., Zhao EY., Dixon K., Fan K., 
Bowlby R., Jones MR., et al. Pan-cancer analysis of advanced patient tumors reveals interactions 
between therapy and genomic landscapes. Nature cancer 1, 452–468 (2020). 

65. Mardin BR., Drainas AP., Waszak SM., Weischenfeldt J., Isokane M., Stütz AM., Raeder B., 
Efthymiopoulos T., Buccitelli C., Segura‐Wang M., et al. A cell‐based model system links 
chromothripsis with hyperploidy. Molecular Systems Biology 11, 1–13 (2015). 

66. Cappetta D., de Angelis A., Sapio L., Prezioso L., Illiano M., Quaini F., Rossi F., Berrino L., 
Naviglio S., Urbanek K. Oxidative stress and cellular response to doxorubicin: A common factor 
in the complex milieu of anthracycline cardiotoxicity. Oxidative Medicine and Cellular 
Longevity 2017, 1–13 (2017). 

67. Bhatia S. Genetics of Anthracycline Cardiomyopathy in Cancer Survivors. JACC: 
CardioOncology 2, 539–552 (2020). 

68. Tacar O., Sriamornsak P., Dass CR. Doxorubicin: An update on anticancer molecular action, 
toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology 65, 157–170 
(2013). 

69. Okabe M., Unno M., Harigae H., Kaku M., Okitsu Y., Sasaki T., Mizoi T., Shiiba K., Takanaga 
H., Terasaki T., et al. Characterization of the organic cation transporter SLC22A16: A 
doxorubicin importer. Biochemical and Biophysical Research Communications 333, 754–762 
(2005). 

70. Calcagno AM., Ambudkar S v. Molecular mechanisms of drug resistance in single-step and 
multi-step drug-selected cancer cells. Methods in molecular biology 596, 77–93 (2010). 

71. Singhal S., Singhal J., Nair M., Lacko A., Awasthi Y., Awasthi S. Doxorubicin transport by 
RALBP1 and ABCG2 in lung and breast cancer. International Journal of Oncology 30, 717–
725 (2007). 

72. Siebel C., Lanvers-Kaminsky C., Würthwein G., Hempel G., Boos J. Bioanalysis of doxorubicin 
aglycone metabolites in human plasma samples–implications for doxorubicin drug monitoring. 
Scientific Reports 10, 1–7 (2020). 

73. Bains OS., Karkling MJ., Lubieniecka JM., Grigliatti TA., Reid RE., Riggs KW. Naturally 
occurring variants of human CBR3 alter anthracycline in vitro metabolism. Journal of 
Pharmacology and Experimental Therapeutics 332, 755–763 (2010). 

74. Kassner N., Huse K., Martin HJ., Gödtel-Armbrust U., Metzger A., Meineke I., Brockmöller J., 
Klein K., Zanger UM., Maser E., et al. Carbonyl reductase 1 is a predominant doxorubicin 
reductase in the human liver. Drug Metabolism and Disposition 36, 2113–2120 (2008). 

75. Fujii J., Homma T., Miyata S., Takahashi M. Pleiotropic actions of aldehyde reductase (Akr1a). 
Metabolites 11, 1–22 (2021). 

76. Marine JC., Dawson SJ., Dawson MA. Non-genetic mechanisms of therapeutic resistance in 
cancer. Nature Reviews Cancer 20, 743–756 (2020). 

77. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discovery 12, 31–46 (2022). 



 

 108  

78. Ji X., Lu Y., Tian H., Meng X., Wei M., Cho WC. Chemoresistance mechanisms of breast cancer 
and their countermeasures. Biomedicine and Pharmacotherapy 114, 1–9 (2019). 

79. McGuirk S., Audet-Delage Y., Annis MG., Xue Y., Vernier M., Zhao K., St-Louis C., Minarrieta 
L., Patten DA., Morin G., et al. Resistance to different anthracycline chemotherapeutics elicits 
distinct and actionable primary metabolic dependencies in breast cancer. eLife 10, 1–29 (2021). 

80. Braga S. Resistance to Targeted Therapies in Breast Cancer. Methods in Molecular Biology 
1395, 105–136 (2016). 

81. Phan TG., Croucher PI. The dormant cancer cell life cycle. Nature Reviews Cancer 20, 398–411 
(2020). 

82. Wang L., Lankhorst L., Bernards R. Exploiting senescence for the treatment of cancer. Nature 
Reviews Cancer 22, 340–355 (2022). 

83. Kwon SM., Hong SM., Lee YK., Min S., Yoon G. Metabolic features and regulation in cell 
senescence. BMB Reports 52, 5–12 (2019). 

84. Gomis RR., Gawrzak S. Tumor cell dormancy. Molecular Oncology 11, 62–78 (2017). 

85. Triana-Martínez F., Loza MI., Domínguez E. Beyond Tumor Suppression: Senescence in 
Cancer Stemness and Tumor Dormancy. Cells 9, 1–28 (2020). 

86. Luskin MR., Murakami MA., Manalis SR., Weinstock DM. Targeting minimal residual disease: 
A path to cure? Nature Reviews Cancer 18, 255–263 (2018). 

87. Tachtsidis A., McInnes LM., Jacobsen N., Thompson EW., Saunders CM. Minimal residual 
disease in breast cancer: an overview of circulating and disseminated tumour cells. Clinical and 
Experimental Metastasis 33, 521–550 (2016). 

88. Sumbal J., Budkova Z., Gunnhildur &., Traustadóttir Á., Koledova Z. Mammary Organoids and 
3D Cell Cultures: Old Dogs with New Tricks. Journal of Mammary Gland Biology and 
Neoplasia 25, 273–288 (2020). 

89. Fu NY., Nolan E., Lindeman GJ., Visvader JE. Stem cells and the differentiation hierarchy in 
mammary gland development. Physiological Reviews 100, 489–523 (2020). 

90. Gieniec KA., Davis FM. Mammary basal cells: Stars of the show. Biochimica et Biophysica 
Acta - Molecular Cell Research 1869, 1–6 (2022). 

91. Dontu G., Ince TA. Of Mice and Women: A Comparative Tissue Biology Perspective of Breast 
Stem Cells and Differentiation. Journal of Mammary Gland Biology and Neoplasia 20, 51–62 
(2015). 

92. Twigger AJ., Khaled WT. Mammary gland development from a single cell ‘omics view. 
Seminars in Cell and Developmental Biology 114, 171–185 (2021). 

93. Ren L., Li J., Wang C., Lou Z., Gao S., Zhao L., Wang S., Chaulagain A., Zhang M., Li X., et 
al. Single cell RNA sequencing for breast cancer: present and future. Cell Death Discovery 7, 
1–11 (2021). 

94. Li M., Izpisua Belmonte JC. Organoids — Preclinical Models of Human Disease. New England 
Journal of Medicine 380, 569–579 (2019). 

95. Zhou J., Li C., Liu X., Chiu MC., Zhao X., Wang D., Wei Y., Lee A., Zhang AJ., Chu H., et al. 
Infection of bat and human intestinal organoids by SARS-CoV-2. Nature Medicine 26, 1077–
1083 (2020). 



 

 109  

96. Post Y., Puschhof J., Beumer J., Kerkkamp HM., de Bakker MAG., Slagboom J., de Barbanson 
B., Wevers NR., Spijkers XM., Olivier T., et al. Snake Venom Gland Organoids. Cell 180, 233-
247.e21 (2020). 

97. Drost J., Clevers H. Organoids in cancer research. Nature Reviews Cancer 18, 407–418 (2018). 

98. Rosenbluth JM., Schackmann RCJ., Gray GK., Selfors LM., Li CMC., Boedicker M., Kuiken 
HJ., Richardson A., Brock J., Garber J., et al. Organoid cultures from normal and cancer-prone 
human breast tissues preserve complex epithelial lineages. Nature Communications 11, 1–14 
(2020). 

99. Mohan SC., Lee TY., Giuliano AE., Cui X. Current Status of Breast Organoid Models. Frontiers 
in Bioengineering and Biotechnology 9, 1–7 (2021). 

100. Sachs N., de Ligt J., Kopper O., Gogola E., Bounova G., Weeber F., Balgobind AV., Wind K., 
Gracanin A., Begthel H., et al. A Living Biobank of Breast Cancer Organoids Captures Disease 
Heterogeneity. Cell 172, 373-386.e10 (2018). 

101. Bhatia S., Kramer M., Russo S., Naik P., Arun G., Brophy K., Andrews P., Fan C., Perou CM., 
Preall J., et al. Patient-Derived Triple-Negative Breast Cancer Organoids Provide Robust Model 
Systems That Recapitulate Tumor Intrinsic Characteristics. Cancer Research 82, 1174–1192 
(2022). 

102. Havas KM., Milchevskaya V., Radic K., Alladin A., Kafkia E., Garcia M., Stolte J., Klaus B., 
Rotmensz N., Gibson TJ., et al. Metabolic shifts in residual breast cancer drive tumor recurrence. 
Journal of Clinical Investigation 127, 2091–2105 (2017). 

103. Radic Shechter K., Kafkia E., Zirngibl K., Gawrzak S., Alladin A., Machado D., Lüchtenborg 
C., Sévin DC., Brügger B., Patil KR., et al. Metabolic memory underlying minimal residual 
disease in breast cancer. Molecular Systems Biology 17, 1–21 (2021). 

104. Nair R., Roden DL., Teo WS., McFarland A., Junankar S., Ye S., Nguyen A., Yang J., Nikolic 
I., Hui M., et al. C-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis 
in breast cancer. Oncogene 33, 3992–4002 (2014). 

105. Risom T., Wang X., Liang J., Zhang X., Pelz C., Campbell LG., Eng J., Chin K., Farrington C., 
Narla G., et al. Deregulating MYC in a model of HER2+ breast cancer mimics human 
intertumoral heterogeneity. Journal of Clinical Investigation 130, 231–246 (2020). 

106. Das AT., Tenenbaum L., Berkhout B. Tet-On Systems For Doxycycline-inducible Gene 
Expression. Current Gene Therapy 16, 156–167 (2016). 

107. Dhanasekaran R., Deutzmann A., Mahauad-Fernandez WD., Hansen AS., Gouw AM., Felsher 
DW. The MYC oncogene — the grand orchestrator of cancer growth and immune evasion. 
Nature Reviews Clinical Oncology 19, 23–36 (2022). 

108. Nam AS., Chaligne R., Landau DA. Integrating genetic and non-genetic determinants of cancer 
evolution by single-cell multi-omics. Nature Reviews Genetics 22, 3–18 (2021). 

109. Kharchenko P v. The triumphs and limitations of computational methods for scRNA-seq. Nature 
Methods 18, 723–732 (2021). 

110. Twigger AJ., Khaled WT. Mammary gland development from a single cell ‘omics view. 
Seminars in Cell and Developmental Biology 114, 171–185 (2021). 



 

 110  

111. Falconer E., Hills M., Naumann U., Poon SSS., Chavez EA., Sanders AD., Zhao Y., Hirst M., 
Lansdorp PM. DNA template strand sequencing of single-cells maps genomic rearrangements 
at high resolution. Nature Methods 9, 1107–1112 (2012). 

112. Sanders AD., Falconer E., Hills M., Spierings DCJ., Lansdorp PM. Single-cell template strand 
sequencing by Strand-seq enables the characterization of individual homologs. Nature Protocols 
12, 1151–1176 (2017). 

113. Sanders AD., Meiers S., Ghareghani M., Porubsky D., Jeong H., van Vliet MACC., Rausch T., 
Richter-Pechańska P., Kunz JB., Jenni S., et al. Single-cell analysis of structural variations and 
complex rearrangements with tri-channel processing. Nature Biotechnology 38, 343–354 
(2020). 

114. Jeong H., Grimes K., Rauwolf KK., Bruch P-M., Rausch T., Hasenfeld P., Benito E., Roider T., 
Sabarinathan R., Porubsky D., et al. Functional analysis of structural variants in single cells 
using Strand-seq. Nature Biotechnology (2022). doi:10.1038/s41587-022-01551-4 

115. Mahmoud M., Gobet N., Cruz-Dávalos DI., Mounier N., Dessimoz C., Sedlazeck FJ. Structural 
variant calling: The long and the short of it. Genome Biology 20, 1–14 (2019). 

116. Yang L. A Practical Guide for Structural Variation Detection in the Human Genome. Current 
Protocols in Human Genetics 107, 1–17 (2020). 

117. Caswell-Jin JL., Lorenz C., Curtis C. Molecular Heterogeneity and Evolution in Breast Cancer. 
Annual Review of Cancer Biology 5, 79–94 (2021). 

118. Macaulay IC., Voet T. Single Cell Genomics: Advances and Future Perspectives. PLoS Genetics 
10, 1–9 (2014). 

119. Falconer E., Lansdorp PM. Strand-seq: A unifying tool for studies of chromosome segregation. 
Seminars in Cell and Developmental Biology 24, 643–652 (2013). 

120. Claussin C., Porubsky D., Spierings DC., Halsema N., Rentas S., Guryev V., Lansdorp PM., 
Chang M. Genome-wide mapping of sister chromatid exchange events in single yeast cells using 
Strand-seq. eLife 6, 1–17 (2017). 

121. van Wietmarschen N., Lansdorp PM. Bromodeoxyuridine does not contribute to sister 
chromatid exchange events in normal or Bloom syndrome cells. Nucleic Acids Research 44, 
6787–6793 (2016). 

122. Heijink AM., Stok C., Porubsky D., Manolika EM., de Kanter JK., Kok YP., Everts M., de Boer 
HR., Audrey A., Bakker FJ., et al. Sister chromatid exchanges induced by perturbed replication 
can form independently of BRCA1, BRCA2 and RAD51. Nature Communications 13, 1–16 
(2022). 

123. Ebert P., Audano PA., Zhu Q., Rodriguez-Martin B., Porubsky D., Bonder MJ., Sulovari A., 
Ebler J., Zhou W., Mari RS., et al. Haplotype-resolved diverse human genomes and integrated 
analysis of structural variation. Science 372, 1–13 (2021). 

124. Porubský D., Sanders AD., van Wietmarschen N., Falconer E., Hills M., Spierings DCJ., Bevova 
MR., Guryev V., Lansdorp PM. Direct chromosome-length haplotyping by single-cell 
sequencing. Genome Research 26, 1565–1574 (2016). 

125. Porubsky D., Ebert P., Audano PA., Vollger MR., Harvey WT., Marijon P., Ebler J., Munson 
KM., Sorensen M., Sulovari A., et al. Fully phased human genome assembly without parental 



 

 111  

data using single-cell strand sequencing and long reads. Nature Biotechnology (2020). 
doi:10.1038/s41587-020-0719-5 

126. Porubsky D., Garg S., Sanders AD., Korbel JO., Guryev V., Lansdorp PM., Marschall T. Dense 
and accurate whole-chromosome haplotyping of individual genomes. Nature Communications 
8, 1–10 (2017). 

127. Porubsky D., Sanders AD., Höps W., Hsieh PH., Sulovari A., Li R., Mercuri L., Sorensen M., 
Murali SC., Gordon D., et al. Recurrent inversion toggling and great ape genome evolution. 
Nature Genetics 52, 849–858 (2020). 

128. Porubsky D., Höps W., Ashraf H., Hsieh PH., Rodriguez-Martin B., Yilmaz F., Ebler J., Hallast 
P., Maria Maggiolini FA., Harvey WT., et al. Recurrent inversion polymorphisms in humans 
associate with genetic instability and genomic disorders. Cell 185, 1986-2005.e26 (2022). 

129. Driehuis E., Kretzschmar K., Clevers H. Establishment of patient-derived cancer organoids for 
drug-screening applications. Nature Protocols 15, 3380–3409 (2020). 

130. Weaver BA. How Taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell 25, 2677–
2681 (2014). 

131. Tsang RY., Sadeghi S., Finn RS. Lapatinib, a Dual-targeted small molecule inhibitor of EGFR 
and HER2, in HER2-Amplified breast cancer: From bench to bedside. Clinical Medicine 
Insights: Therapeutics 3, 1–13 (2011). 

132. Lewis Phillips G., Guo J., Kiefer JR., Proctor W., Bumbaca Yadav D., Dybdal N., Shen BQ. 
Trastuzumab does not bind rat or mouse ErbB2/neu: implications for selection of non-clinical 
safety models for trastuzumab-based therapeutics. Breast Cancer Research and Treatment 191, 
303–317 (2022). 

133. Wan Mohamad Zain WNI., Joanne B., Bateman E., Keefe D. Cytotoxic Effects of the Dual ErbB 
Tyrosine Kinase Inhibitor, Lapatinib, on Walker 256 Rat Breast Tumour and IEC-6 Rat Normal 
Small Intestinal Cell Lines. Biomedicines 8, 1–14 (2020). 

134. Stuart T., Butler A., Hoffman P., Hafemeister C., Papalexi E., Mauck WM., Hao Y., Stoeckius 
M., Smibert P., Satija R. Comprehensive Integration of Single-Cell Data. Cell 177, 1888-
1902.e21 (2019). 

135. Hafemeister C., Satija R. Normalization and variance stabilization of single-cell RNA-seq data 
using regularized negative binomial regression. Genome Biology 20, 1–15 (2019). 

136. Bach K., Pensa S., Grzelak M., Hadfield J., Adams DJ., Marioni JC., Khaled WT. Differentiation 
dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nature 
Communications 8, 1–11 (2017). 

137. Li CMC., Shapiro H., Tsiobikas C., Selfors LM., Chen H., Rosenbluth J., Moore K., Gupta KP., 
Gray GK., Oren Y., et al. Aging-Associated Alterations in Mammary Epithelia and Stroma 
Revealed by Single-Cell RNA Sequencing. Cell Reports 33, 1–23 (2020). 

138. Pal B., Chen Y., Milevskiy MJG., Vaillant F., Prokopuk L., Dawson CA., Capaldo BD., Song 
X., Jackling F., Timpson P., et al. Single cell transcriptome atlas of mouse mammary epithelial 
cells across development. Breast Cancer Research 23, 1–19 (2021). 

139. Saeki K., Chang G., Kanaya N., Wu X., Wang J., Bernal L., Ha D., Neuhausen SL., Chen S. 
Mammary cell gene expression atlas links epithelial cell remodeling events to breast 
carcinogenesis. Communications Biology 4, 1–16 (2021). 



 

 112  

140. Chung CY., Ma Z., Dravis C., Preissl S., Poirion O., Luna G., Hou X., Giraddi RR., Ren B., 
Wahl GM. Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-
State Transcriptional Regulators and Lineage Relationships. Cell Reports 29, 495-510.e6 
(2019). 

141. Luecken MD., Theis FJ. Current best practices in single‐cell RNA‐seq analysis: a tutorial. 
Molecular Systems Biology 15, 1–23 (2019). 

142. Yu G., Wang LG., Han Y., He QY. ClusterProfiler: An R package for comparing biological 
themes among gene clusters. OMICS A Journal of Integrative Biology 16, 284–287 (2012). 

143. Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. 
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, 
1–10 (2021). 

144. Bagge J., Oestergaard VH., Lisby M. Functions of TopBP1 in preserving genome integrity 
during mitosis. Seminars in Cell and Developmental Biology 113, 57–64 (2021). 

145. Cox J., Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepatic 
Oncology 3, 57–59 (2016). 

146. Kumar U., Castellanos-Uribe M., May ST., Yagüe E. Adaptive resistance is not responsible for 
long-term drug resistance in a cellular model of triple negative breast cancer. Gene 850, 1–9 
(2023). 

147. Fridman AL., Tainsky MA. Critical pathways in cellular senescence and immortalization 
revealed by gene expression profiling. Oncogene 27, 5975–5987 (2008). 

148. Robinson MD., McCarthy DJ., Smyth GK. edgeR: A Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009). 

149. McCarthy DJ., Chen Y., Smyth GK. Differential expression analysis of multifactor RNA-Seq 
experiments with respect to biological variation. Nucleic Acids Research 40, 4288–4297 (2012). 

150. Chen Y., Lun ATL., Smyth GK. From reads to genes to pathways: differential 
expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood 
pipeline. F1000Research 5, 1–51 (2016). 

151. Law CW., Chen Y., Shi W., Smyth GK. voom: precision weights unlock linear model analysis 
tools for RNA-seq read counts. Genome Biology 15, 1–17 (2014). 

152. Ritchie ME., Phipson B., Wu D., Hu Y., Law CW., Shi W., Smyth GK. Limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 
Research 43, 1–13 (2015). 

153. Maria Maggiolini FA., Sanders AD., Shew CJ., Sulovari A., Mao Y., Puig M., Catacchio CR., 
Dellino M., Palmisano D., Mercuri L., et al. Single-cell strand sequencing of a macaque genome 
reveals multiple nested inversions and breakpoint reuse during primate evolution. Genome 
Research 30, 1680–1693 (2020). 

154. Tolstorukov MY., Kharchenko P v., Park PJ. Analysis of the primary structure of chromatin 
with next-generation sequencing. Epigenomics 2, 187–197 (2010). 

155. Yan F., Powell DR., Curtis DJ., Wong NC. From reads to insight: A hitchhiker’s guide to 
ATAC-seq data analysis. Genome Biology 21, 1–16 (2020). 



 

 113  

156. Schep AN., Wu B., Buenrostro JD., Greenleaf WJ. ChromVAR: Inferring transcription-factor-
associated accessibility from single-cell epigenomic data. Nature Methods 14, 975–978 (2017). 

157. Stuart T., Srivastava A., Madad S., Lareau CA., Satija R. Single-cell chromatin state analysis 
with Signac. Nature Methods 18, 1333–1341 (2021). 

158. Struhl K., Segal E. Determinants of nucleosome positioning. Nature Structural and Molecular 
Biology 20, 267–273 (2013). 

159. Love MI., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biology 15, 1–21 (2014). 

160. Lai B., Gao W., Cui K., Xie W., Tang Q., Jin W., Hu G., Ni B., Zhao K. Principles of nucleosome 
organization revealed by single-cell micrococcal nuclease sequencing. Nature 562, 281–285 
(2018). 

161. Ghimire S., van der Jeught M., Neupane J., Roost MS., Anckaert J., Popovic M., van 
Nieuwerburgh F., Mestdagh P., Vandesompele J., Deforce D., et al. Comparative analysis of 
naive, primed and ground state pluripotency in mouse embryonic stem cells originating from the 
same genetic background. Scientific Reports 8, 1–11 (2018). 

162. Tian S., Feng J., Cao Y., Shen S., Cai Y., Yang D., Yan R., Wang L., Zhang H., Zhong X., et 
al. Glycine cleavage system determines the fate of pluripotent stem cells via the regulation of 
senescence and epigenetic modifications. Life Science Alliance 2, 1–18 (2019). 

163. Muhl L., Genové G., Leptidis S., Liu J., He L., Mocci G., Sun Y., Gustafsson S., Buyandelger 
B., Chivukula I v., et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for 
fibroblast and mural cell identification and discrimination. Nature Communications 11, 1–18 
(2020). 

164. Lachmann A., Xu H., Krishnan J., Berger SI., Mazloom AR., Ma’ayan A. ChEA: Transcription 
factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 
26, 2438–2444 (2010). 

165. Wong K., Bumpstead S., van der Weyden L., Reinholdt LG., Wilming LG., Adams DJ., Keane 
TM. Sequencing and characterization of the FVB/NJ mouse genome. Genome Biology 13, 1–12 
(2012). 

166. Yalcin B., Wong K., Bhomra A., Goodson M., Keane TM., Adams DJ., Flint J. The fine-scale 
architecture of structural variants in 17 mouse genomes. Genome Biology 13, 1–12 (2012). 

167. Doran AG., Wong K., Flint J., Adams DJ., Hunter KW., Keane TM. Deep genome sequencing 
and variation analysis of 13 inbred mouse strains defines candidate phenotypic alleles, private 
variation and homozygous truncating mutations. Genome Biology 17, 1–16 (2016). 

168. Srivastava A., Morgan AP., Najarian ML., Sarsani VK., Sigmon JS., Shorter JR., Kashfeen A., 
McMullan RC., Williams LH., Giusti-Rodríguez P., et al. Genomes of the mouse collaborative 
cross. Genetics 206, 537–556 (2017). 

169. Lilue J., Doran AG., Fiddes IT., Abrudan M., Armstrong J., Bennett R., Chow W., Collins J., 
Collins S., Czechanski A., et al. Sixteen diverse laboratory mouse reference genomes define 
strain-specific haplotypes and novel functional loci. Nature Genetics 50, 1574–1583 (2018). 

170. Ferraj A., Audano PA., Balachandran P., Czechanski A., Flores JI., Radecki AA., Mosur V., 
Gordon DS., Walawalkar IA., Eichler EE., et al. Resolution of structural variation in diverse 



 

 114  

mouse genomes reveals chromatin remodeling due to transposable elements. bioRxiv 1–25 
(2022). doi:10.1101/2022.09.26.509577 

171. Robinson JT., Thorvaldsdóttir H., Winckler W., Guttman M., Lander ES., Getz G., Mesirov JP. 
Integrative genomics viewer. Nature Biotechnology 29, 24–26 (2011). 

172. Kim YM., Lee J-Y., Xia L., Mulvihill JJ., Li S. Trisomy 8: a common finding in mouse 
embryonic stem (ES) cell lines. Molecular Cytogenetics 6, 1–5 (2013). 

173. Gaztelumendi N., Nogués C. Chromosome Instability in mouse Embryonic Stem Cells. 
Scientific Reports 4, 1–8 (2014). 

174. Ji F., Zhu X., Liao H., Ouyang L., Huang Y., Syeda MZ., Ying S. New Era of Mapping and 
Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. 
Frontiers in Genetics 13, 1–13 (2022). 

175. Helmrich A., Stout-Weider K., Matthaei A., Hermann K., Heiden T., Schrock E. Identification 
of the human/mouse syntenic common fragile site FRA7K/Fra12C1 - Relation of FRA7K and 
other human common fragile sites on chromosome 7 to evolutionary breakpoints. International 
Journal of Cancer 120, 48–54 (2007). 

176. LeTallec B., Millot GA., Blin ME., Brison O., Dutrillaux B., Debatisse M. Common fragile site 
profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile 
sites hosting large genes. Cell Reports 4, 420–428 (2013). 

177. Kumar R., Nagpal G., Kumar V., Usmani SS., Agrawal P., Raghava GPS. HumCFS: A database 
of fragile sites in human chromosomes. BMC Genomics 19, 1–8 (2019). 

178. Andor N., Maley CC., Ji HP. Genomic instability in cancer: Teetering on the limit of tolerance. 
Cancer Research 77, 2179–2185 (2017). 

179. Kiwerska K., Szyfter K. DNA repair in cancer initiation, progression, and therapy—a double-
edged sword. Journal of Applied Genetics 60, 329–334 (2019). 

180. Lovitt CJ., Shelper TB., Avery VM. Doxorubicin resistance in breast cancer cells is mediated 
by extracellular matrix proteins. BMC Cancer 18, 1–11 (2018). 

181. Langhans SA. Three-dimensional in vitro cell culture models in drug discovery and drug 
repositioning. Frontiers in Pharmacology 9, 1–14 (2018). 

182. Wang X., Yan J., Shen B., Wei G. Integrated Chromatin Accessibility and Transcriptome 
Landscapes of Doxorubicin-Resistant Breast Cancer Cells. Frontiers in Cell and Developmental 
Biology 9, 1–18 (2021). 

183. Howard GR., Jost TA., Yankeelov TE., Brock A. Quantification of long-term doxorubicin 
response dynamics in breast cancer cell lines to direct treatment schedules. PLoS Computational 
Biology 18, 1–26 (2022). 

184. Liu CL., Chen MJ., Lin JC., Lin CH., Huang WC., Cheng SP., Chen SN., Chang YC. 
Doxorubicin promotes migration and invasion of breast cancer cells through the upregulation of 
the RHOA/MLC pathway. Journal of Breast Cancer 22, 185–195 (2019). 

185. Mohammed S., Shamseddine AA., Newcomb B., Chavez RS., Panzner TD., Lee AH., Canals 
D., Okeoma CM., Clarke CJ., Hannun YA. Sublethal doxorubicin promotes migration and 
invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer 
Research 23, 1–20 (2021). 



 

 115  

186. Canals D., Salamone S., Santacreu BJ., Aguilar D., Hernandez-Corbacho MJ., Ostermeyer-Fay 
AG., Greene M., Nemeth E., Haley JD., Obeid LM., et al. The doxorubicin-induced cell motility 
network is under the control of the ceramide-activated protein phosphatase 1 alpha. FASEB 
Journal 35, 1–17 (2021). 

187. Klaasen SJ., Kops GJPL. Chromosome Inequality: Causes and Consequences of Non-Random 
Segregation Errors in Mitosis and Meiosis. Cells 11, 1–14 (2022). 

188. Ben-David U., Amon A. Context is everything: aneuploidy in cancer. Nature Reviews Genetics 
21, 44–62 (2020). 

189. Kuwano A., Sugio Y., Murano I., Kajii T. Common fragile sites induced by folate deprivation, 
BrdU and aphidicolin: Their frequency and distribution in Japanese individuals. Journal of 
Human Genetics 33, 355–364 (1988). 

190. van Wietmarschen N., Lansdorp PM. Bromodeoxyuridine does not contribute to sister 
chromatid exchange events in normal or Bloom syndrome cells. Nucleic Acids Research 44, 
6787–6793 (2016). 

191. Sun S., Osterman MD., Li M. Tissue specificity of DNA damage response and tumorigenesis. 
Cancer Biology and Medicine 16, 396–414 (2019). 

192. Kim H., Casey AE., Palomero L., Aliar K., Parsons M., Narala S., Mateo F., Hofer S., Kislinger 
T., Pujana MA., et al. Mammary lineage dictates homologous recombination repair and PARP 
inhibitor vulnerability. bioRxiv 1–77 (2021). doi:10.1101/2021.05.14.444217 

193. Biau J., Chautard E., Verrelle P., Dutreix M. Altering DNA repair to improve radiation therapy: 
Specific and multiple pathway targeting. Frontiers in Oncology 9, 1–10 (2019). 

194. Wihlm J., Limacher JM., Levêque D., Duclos B., Dufour P., Bergerat JP., Methlin G. 
[Pharmacokinetic profile of high-dose doxorubicin administered during a 6 h intravenous 
infusion in breast cancer patients]. Bulletin du cancer 84, 603–8 (1997). 

195. Harahap Y., Ardiningsih P., Winarti AC., Purwanto DJ. Analysis of the doxorubicin and 
doxorubicinol in the plasma of breast cancer patients for monitoring the toxicity of doxorubicin. 
Drug Design, Development and Therapy 14, 3469–3475 (2020). 

196. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., 
Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image 
analysis. Nature Methods 9, 676–682 (2012). 

197. Dobin A., Davis CA., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., 
Gingeras TR. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 

198. Gel B., Díez-Villanueva A., Serra E., Buschbeck M., Peinado MA., Malinverni R. RegioneR: 
An R/Bioconductor package for the association analysis of genomic regions based on 
permutation tests. Bioinformatics 32, 289–291 (2016). 

  


