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Kosmologie mit stark gekoppelter Quintessenz

Das Problem der kosmologischen Konstante motiviert alternative Ansätze zur Er-
klärung der beobachteten beschleunigten Expansion des Universums. Quintessenz-
Modelle beschreiben eine dynamische dunkle Energie mittels eines Skalarfelds, des
Kosmons; im Gegensatz zum Szenario einer kosmologischen Konstante ist die erwar-
tete gegenwärtige Menge dunkler Energie vergleichbar mit der Energiedichte der Ma-
terie. Den einfachsten Modellen fehlt jedoch eine natürliche Erklärung dafür, daß die
dunkle Energie gerade in der gegenwärtigen Epoche begonnen hat, die Energiedich-
te des Universums zu dominieren. Eine Kopplung zwischen Kosmon und Neutrinos
stellt eine mögliche Lösung dieses Koinzidenzproblems dar. Auf der Ebene von Störun-
gen in den Energiedichten vermittelt diese Kopplung eine anziehende Kraft zwischen
Neutrinos, deren Stärke diejenige der Gravitation übersteigt. Das impliziert drastische
Konsequenzen für jedwede quantitative Untersuchung des Modells. Das methodische
Standardrepertoire, namentlich lineare Störungstheorie und Newtonsche N -Körper-
Simulationen, schlägt fehlt. Selbst die Expansion des Friedmann-Lemaître-Robertson-
Walker-Hingergrunds hängt aufgrund eines Rückkopplungseffekts von nichtlinearen
Störungen ab. Wir präsentieren eine umfassende Methode, begleitet von einem vertief-
ten physikalischen Verständnis, zur quantitativen Beschreibung des Modells und eröff-
nen die Möglichkeit, den Parameterraum des Modells systematisch zu untersuchen und
einen Vergleich mit Beobachtungen herzustellen.

Cosmology with strongly coupled quintessence

The cosmological constant problem motivates alternative approaches for explaining
the observed accelerated expansion of the Universe. Quintessence models describe a
dynamical dark energy component in terms of a scalar field, the cosmon; in contrast
to the cosmological constant scenario, the predicted amount of present dark energy
is, generically, comparable to that of matter. The simplest models lack, however, a
natural explanation why the dark energy has started to dominate the energy budget of
the Universe just around the present cosmic epoch. Growing neutrino quintessence,
proposing a coupling between the cosmon and the neutrinos, is a potential solution
to this coincidence problem. At the level of perturbations in the energy densities,
this coupling mediates an attractive force between the neutrinos stronger than gravity.
This has drastic consequences for quantitative analyses of the model. The standard
technical repertoire of linear perturbation theory and Newtonian N -body simulations
fails. Even the evolution of the Friedmann-Lemaître-Robertson-Walker background
depends on the nonlinear perturbations by virtue of a backreaction effect. We present
a comprehensive method, accompanied with an improved physical understanding, for
a quantitatively reliable investigation of the model and open the door to a systematic
exploration of its parameter space and a confrontation with observational constraints.
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Preface

If I were to describe the spirit of this thesis, I would adopt a slogan that served as the
title for a 2012 workshop at Ringberg Castle: “The Dark Energy quest: when theory
meets simulations.” We are more used to theory meeting observations. However, as
will be illustrated throughout this thesis, simulations can play the role of a labora-
tory testing and inspiring new theoretical concepts and ideas. The fruitful interplay
between numerical approaches, analytical progress, and physical insights characterizes
the intellectual journey summarized in this thesis.

The research carried out for this thesis took place in exciting times for the science
of cosmology. In May 2009, I followed, among scientists and students in the lecture
hall of Heidelberg’s Physikalisches Institut, the launch of ESA’s Planck mission that
would provide measurements of the anisotropies in the cosmic microwave background
radiation — a key observable for cosmology — with unprecedented accuracy. Shortly
before the submission of this thesis, I had the pleasure to witness the presentation
of the mission’s long-awaited results, which spectacularly confirm our scientific un-
derstanding. In October 2011, during a talk at “The Dark Universe Conference” in
Heidelberg, we were all surprised and pleased by the announcement that the 2011 No-
bel Prize in physics was awarded to Saul Perlmutter, Brian P. Schmidt, and Adam G.
Riess for their 1998 discovery of the accelerated expansion of the Universe. One of
the potential explanations for this observation, dynamical dark energy, is the starting
point for this thesis. Apart from this, our understanding of many cosmological and
astrophysical observations relies on the assumption of dark matter, which does not
interact with light. During the last years, cosmologists hoped for possible hints for its
detection at CERN’s Large Hadron Collider (LHC). Although LHC data confirmed,
as became public in July 2012, the existence of a new particle, presumably the Standard
Model Higgs boson, hints for dark matter have not yet been found. In addition to the
remarkable efforts in observational cosmology undertaken in recent years, many new
projects are planned today. For example, the Euclid space telescope, with the largest
astronomical collaboration so far, is expected to provide, during the next decade, pre-
cision information about the large-scale structure in the Universe thereby scrutinizing
the idea of a hypothetical dynamical dark energy component.

Fortunately, working on this thesis has not been a solitary effort. I am indebted to
many people who have accompanied and supported me in different ways. First of all, I
am grateful to Christof Wetterich for giving me the opportunity to work in his group
and for his constant support and encouragements. With his admirable optimism and
unconventional ideas, he has a large share of the success of this thesis. My grateful
thanks are also extended to Matthias Bartelmann who agreed to be the second ref-
eree. I immensely enjoyed the innumerable fruitful discussions with my collaborators,
namely Maik Weber, Björn Malte Schäfer, Marco Baldi, and Ewald Puchwein. David
Fonseca Mota kindly provided his numerical implementation of linear perturbation
theory for the growing neutrino quintessence model, which I wish to acknowledge.
Special thanks should also be given to Rocky Kolb, who motivated the investigation

VII



whether the neutrino detections from SN1987A constrain growing neutrino quintes-
sence. I am also thankful for discussions with Luca Amendola, Nico Wintergerst,
Valeria Pettorino, Joschka Beyer, Lily Schrempp, Wessel Valkenburg, Ignacy Sawicki,
Valerio Marra, Nelson Nunes, Andy Taylor, Nicolai Christiansen, and Igor Böttcher.
Like every member of the institute, I very much appreciate the excellent administra-
tive work of Eduard Thommes and the reliable technical support by Elmar Bittner.
Finally, I wish to express my gratitude to the Deutsche Forschungsgemeinschaft and
the Transregional Collaborative Research Centre “The Dark Universe” both for the
financial support and for providing an excellent research environment.

The results presented in this thesis base largely on three published works: Ayaita
et al. (2012b): “Structure formation and backreaction in growing neutrino quintes-
sence”; Ayaita et al. (2013): “Neutrino lump fluid in growing neutrino quintessence”;
Ayaita et al. (2012a): “Investigating clustering dark energy with 3d weak cosmic shear”.
There is, consequently, an overlap between this thesis and the papers as regards the
derivations and the figures showing quantitative results. For each corresponding fig-
ure individually, I refer to the publication from which it is taken. Similarly, I indicate
whenever a section follows the presentation of one of the papers. Since these are collab-
orative works, credit is shared among the authors. My contributions focus mainly on
the overall cosmological evolution of growing neutrino quintessence (in particular on
the backreaction effect on the expansion dynamics), the modeling and the dynamics of
the cosmon perturbation, the physics and the cosmological evolution of the cosmon-
neutrino lump fluid, the analytical understanding of the pressure cancellation within
lumps and of the role of the total angular momentum in stabilizing the lumps, and nu-
merical techniques allowing for an efficient calculation of the 3d weak lensing Fisher
matrix. So far unpublished results of this thesis include the overcoming of the techni-
cal difficulties in evolving the simulations beyond the cosmological redshift z = 1, the
discussion of the subsequent cosmological evolution, the investigation of the varying
coupling model at the nonlinear level, and an analysis of the idea whether the model
can be constrained by the detection of high-energy neutrinos emitted, e. g., by super-
novae.

VIII



Contents

1 Introduction 1

1.1 The accelerating Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quintessence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Cosmology 11

2.1 Homogeneous approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Dynamics of expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Cosmic inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Chronology of the Universe . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Linear perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Nonlinear regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 The N -body technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The cosmological constant problem 42

3.1 Expected contributions to Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Quantum fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Classical configurations, phase transitions . . . . . . . . . . . . . . . 50

3.2 Anthropic argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 The anthropic principle . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Eternal inflation and the measure problem . . . . . . . . . . . . . . 54

3.3 Accelerated expansion without Λ . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Quintessence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Constraints on parametrized dark energy 71

4.1 The wCDM parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Background: equation of state . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 Perturbations: sound speed . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.3 Parametrized clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 3d weak lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Basics of weak gravitational lensing . . . . . . . . . . . . . . . . . . . 82

4.2.2 The 3d formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Fisher matrix approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 Likelihood and Fisher matrix . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2 3d weak lensing Fisher matrix . . . . . . . . . . . . . . . . . . . . . . 97

IX



Contents

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Growing neutrino quintessence 108

5.1 Introduction and homogeneous evolution . . . . . . . . . . . . . . . . . . . . 109

5.2 Studies of inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Cornerstones of the full simulation . . . . . . . . . . . . . . . . . . . . . . . . 123

5.4 Cosmon-neutrino lump fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Lumps as particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.2 Pressure cancellation in detail . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.3 The effective coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.4 Aspects of stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.5 Evolution of the lump fluid . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 A first look at observable consequences . . . . . . . . . . . . . . . . . . . . . 147

5.5.1 Neutrino mass and motion . . . . . . . . . . . . . . . . . . . . . . . . 148

5.5.2 Large-scale gravitational potentials . . . . . . . . . . . . . . . . . . . 152

6 Cosmological simulation 158

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Particle motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Fields and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Results until a = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5.1 Formation of cosmon-neutrino lumps . . . . . . . . . . . . . . . . . 177

6.5.2 Backreaction effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.5.3 Gravitational potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.6 Beyond a = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.6.1 Evaluating the cosmon perturbation . . . . . . . . . . . . . . . . . . 192

6.6.2 The constant coupling model . . . . . . . . . . . . . . . . . . . . . . . 197

6.6.3 The varying coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7 Conclusion 209

Bibliography 214

X



1 Introduction

1.1 The accelerating Universe

The discovery of an accelerated expansion of the Universe (Perlmutter et al., 1999;
Riess et al., 1998) is at odds with our basic intuition of gravity described by Newton’s
law. How can distant galaxies appear to be receding from us at an increasing velocity
if all matter attracts all other matter? According to Newton’s law of gravitation, the
relative velocity of two initially receding bodies decreases by virtue of their mutual
attraction. Nonetheless, the original discovery of the accelerated expansion, based on
the observation that distant type Ia supernovae appear dimmer than expected, has been
spectacularly confirmed and complemented by various subsequent studies. Not only
more recent supernova surveys (Astier et al., 2006; Wood-Vasey et al., 2007; Riess et al.,
2007; Kowalski et al., 2008), also precision measurements of fluctuations in the cosmic
microwave background radiation (Spergel et al., 2003; Ade et al., 2013c), large-scale
structure (Tegmark et al., 2004b), baryon acoustic oscillations (Eisenstein et al., 2005;
Percival et al., 2010), and limits on the age of the Universe (Krauss and Chaboyer,
2003) all fit into this new picture.

Einstein’s theory of general relativity (Einstein, 1915a,b) replaces Newton’s law as
the fundamental theory of (classical) gravity, and it first made possible to describe the
Universe as a whole (Einstein, 1917). Its equations allow for an accelerated expansion
in two ways. First, a cosmological constant Λ can be introduced to the theory without
violating its symmetries. This proposal goes back to Einstein himself when he vainly
argued for a static universe in which the cosmological constant would balance the
gravitational attraction of matter. Second, an exotic form of energy, called dark energy,
could fill the Universe that violates the so-called strong energy condition; it would have
a substantial negative pressure. This possibility is used in models of dynamical dark
energy such as quintessence models where the dark energy component is described by
a scalar field (Wetterich, 1988; Ratra and Peebles, 1988). As a third option, one might
consider modifications to Einstein’s theory of general relativity that account for the
accelerated expansion. This route is taken in modified gravity models (cf., e. g., Nojiri
and Odintsov, 2006a, and references therein). The second idea, i. e. dynamical dark
energy, in the form of quintessence, is the main topic of this thesis.

It is not the first time that cosmology and astrophysics reveal a gap in our physical
understanding. By a comparison between the observed velocity dispersion of galaxies
in the Coma cluster with the expectation based on the virial theorem, Zwicky (1933)
found a strong discrepancy between the total mass and the luminous mass. The idea of
dark matter, accounting for the missing mass, was born. Subsequently, a large number
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1 Introduction

of observations strengthened the hypothesis of an approximately collisionless nonrel-
ativistic matter component not interacting with light (D’Amico et al., 2009), called
cold dark matter. Today, it constitutes a main pillar of almost all cosmological models,
and its mass density in the Universe is assumed to exceed that of ordinary matter by
a factor of about five to six (Bennett et al., 2012; Ade et al., 2013c). Cold dark matter
may serve as an example how a new idea is attacked from different sides and thereby
combines efforts from different fields of physics. As the Standard Model of particle
physics does not include a cold dark matter particle, cosmology and astrophysics have
provided clear evidence of physics beyond the Standard Model. The detection of cold
darkmatter particles, e. g. in particle accelerators, is a central goal of particle physics to-
day; and this search is complemented by many theoretical efforts to propose and study
dark matter candidates in extensions of the Standard Model (Bertone et al., 2005; Feng,
2010; Rajaraman et al., 2011). At the same time, cosmologists and astrophysicists scru-
tinize the properties of cold dark matter from the observational side (cf., e. g., Viel
et al., 2005; Abdo et al., 2010).

Similarly, investigating the reasons of the Universe’s accelerated expansion brings
theorists and observers together. While observers provide much-needed information
and constraints about the properties of a hypothetical dark energy or a modification
of gravity, theorists refine their models, motivate new ideas from fundamental con-
siderations, make quantitative predictions, and thereby tell the observers where to
look for possible signatures. In the same spirit, this thesis considers a theoretically
well-motivated model of coupled dynamical dark energy, growing neutrino quintessence
(Amendola et al., 2008a; Wetterich, 2007), and presents the techniques necessary for
a confrontation with observations. Before we describe this task more concretely, we
turn to the current status of our understanding of the accelerated expansion.

From the three prominent approaches to explain the accelerated expansion, the cos-
mological constant Λ has clearly emerged as the standard working hypothesis. To-
gether with the assumption of cold dark matter (CDM), general relativity, well-known
particle physics (the Standard Model), large-scale spatial homogeneity, isotropy, and
flatness, and a nearly scale-invariant spectrum of primordial perturbations, it forms
the cosmological concordance model ‘ΛCDM’ of the (post-inflationary) Universe. With
only very few parameters like the value of the cosmological constant Λ, the energy
densities of the different components, and the amplitude of initial perturbations, this
simple model fits a huge wealth of observational data, among them all the major obser-
vational probes listed in the beginning of this chapter. It increasingly plays the role of
a de facto standard model of cosmology. A more basic use of the term ‘standard cosmo-
logical model’ is due to Peebles (1980, 1993, 1998) referring to three key observations
whose explanations form building blocks of Big Bang cosmology: the Hubble diagram
demonstrating the expansion of the Universe (Hubble, 1929), the abundances of light
elements in accordance with the predictions of Big Bang nucleosynthesis (Alpher et al.,
1948; Gamow, 1948), and the cosmic microwave background radiation (Penzias andWil-
son, 1965) emitted when the energy density of the Universe had fallen enough to allow
for the formation of neutral, and hence transparent, hydrogen. The considerable evolu-
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1.1 The accelerating Universe

tion of what we may call standard in cosmology, from basic pillars only a few decades
ago to a detailed and matured picture today, documents the impressive progress the
science of cosmology has experienced in recent times.

We may interpret the role of the cosmological constant in the current standard
paradigm of cosmology in two ways. First, we may regard it as a mere parametrization
of the unknown without, necessarily, assuming that the accelerated expansion is really
due to a cosmological constant. Even if falsified one day, the cosmological constant
might survive in this way as a useful approximation due to its technical simplicity. If
we assume general relativity to hold, a cosmic fluid — coupled to other matter only
via gravity — is generically described by two parameters, its equation of state w and
its sound speed c2

s
. The equation of state may be a function of time and completely

describes the effect of the fluid on the expansion dynamics of the Universe. The sound
speed can be a function of time and scale, and it is needed to describe the fluid’s clus-
tering in linear approximation. The fluid is equivalent to a cosmological constant if
w =−1. A natural way to allow for alternatives is to relax this restriction on w and to,
possibly, also consider nontrivial sound speeds c2

s
. This reasoning motivates the intro-

duction of the so-called wCDM parametrization of dark energy. Usually, the possible
clustering due to the sound speed is neglected, and the equation of state w is assumed
to be constant or to linearly depend on some time coordinate (typically the cosmic
scale factor a ). This parametrization has become an extremely common choice for
cosmological parameter estimations (cf., e. g., Bennett et al., 2012; Ade et al., 2013c).
Yet, the drawbacks are obvious. Not only does the wCDM parametrization exclude
possible couplings between the parametrized dark energy fluid and other components.
The simplistic time evolution of the equation of state parameter w will not resem-
ble concrete theories of dynamical dark energy such as standard quintessence models.
In these models, one expects a nonnegligible fraction of early dark energy, which the
wCDM parametrization ignores. The approach of merely parametrizing dark energy
as a generic fluid, although convenient, is clearly limited. There is a pressing need to
consider dynamical, theoretically motivated theories of dark energy.

Second, we can take the cosmological constant seriously in the sense that we suspect
it to be the true reason for the accelerated expansion of the Universe. Just as particle
physicists will need to account for cold dark matter in their models, we will then have
to search for explanations of the cosmological constant within our fundamental the-
ories. Here lies the problem. The value of the cosmological constant is ridiculously
small as compared to all fundamental energy scales we know. This is called the cos-
mological constant problem (Weinberg, 1989). Let us become more precise. Often, the
cosmological constant is either seen as a free parameter in Einstein’s theory of general
relativity or as an energy density of the vacuum, in particular of the quantum vac-
uum. Although equivalent at the level of Einstein’s field equations, these two views are
fundamentally different. Still, both have their justification, and we argue here that, in
general, we should consider several contributions to the effective, observable cosmo-
logical constant. If the classical theory of general relativity emerges from some more
fundamental theory, we might speculate, in the spirit of effective field theory, that
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1 Introduction

all terms compatible with the symmetry of the theory should appear. Among them
would be, in the effective theory of gravity, a nonzero cosmological constant ΛG. In
addition to this, we expect zero-point energies in quantum field theories. The natural
energy scale of the resulting cosmological constant contribution ΛQFT would be, in a
naive estimate, given by the cutoff scale up to which we trust our theory. If we assume
the (reduced) Planck scale MP here, this energy scale is MP ∼ 1018 GeV. Even if we
mistrust this naive quantum field theory estimate or if we hope to get away with this
contribution, e. g. due to normal ordering prescriptions, there is yet another expected
contribution to the cosmological constant to cope with. During phase transitions in
the very early Universe, the vacuum energy is believed to have changed quite sub-
stantially (cf. Carroll, 2001). For example, electroweak symmetry breaking induces a
change in the vacuum energy with the energy scale MEW ≈ 200 GeV and, correspond-
ingly, a contribution ΛEW to the cosmological constant. Similar statements can be
made about the quantum chromodynamics phase transition at MQCD ≈ 0.2 GeV and
other possible phase transitions. Hence, all these fundamental energy scales should
enter the value of the effective cosmological constant. In stark contrast to this ex-
pectation, the observationally inferred value of the cosmological constant corresponds

to a tiny energy scale ρ1/4
Λ
∼ 10−12 GeV. The comparison between this scale and the

fundamental energy scales reveals an enormous amount of fine-tuning.

Worse still, the energy scale of the cosmological constant is not only puzzling in
itself. It is just comparable to the energy density of matter in the present Universe,
whereas it was completely negligible in the early Universe and will dominate in the fu-
ture. This puzzling coincidence is a strong motivation for the investigation of dynam-
ical dark energy models. In quintessence models (Wetterich, 1988; Ratra and Peebles,
1988), the energy density of the dark energy scalar field, the cosmon ϕ, decays during
most of the cosmological evolution just like radiation and matter. The smallness of its
present energy density is then a direct consequence of the large age of the Universe. If
these models are assumed, the cosmological constant problem is reformulated. Rather
than explaining a fine-tuned tiny, but nonzero value of Λ, one now has to argue why
the cosmological constant vanishes. This task is more subtle than it might seem at
first sight since, even if the cosmological constant was zero in some high-energy limit,
phase transitions in the early Universe would be expected to change its value and to
induce a large cosmological constant for the subsequent evolution of the Universe.
A comprehensive solution to this problem has been proposed, in which the dark en-
ergy scalar field, the cosmon ϕ, naturally occurs as the pseudo-Goldstone boson of a
spontaneously broken dilatation symmetry (Wetterich, 2008). So, quintessence mod-
els address the cosmological constant problem in two steps. First, it is argued that the
cosmological constant vanishes; second, the dynamical evolution of dark energy natu-
rally accounts for a nonvanishing amount of dark energy, roughly comparable to the
matter energy density in the present Universe.

Despite of the severe cosmological constant problem, the situation of the cosmolog-
ical constant is not entirely hopeless from the theoretical side. A tentative explanation
of its tiny value that has gained in popularity is an argument based on the anthropic
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1.1 The accelerating Universe

principle. According to Carter (1974), “what we can expect to observe must be re-
stricted by the conditions necessary for our existence as observers.” Weinberg (1987)
illustrated with the help of a rough estimation that a positive cosmological constant
with an energy density three orders of magnitude above the observationally inferred
value or larger would exclude our existence. The accelerated expansion induced by
such a large cosmological constant would have started so early that no nonlinear struc-
tures and hence no galaxies, stars, and planets would have formed. The anthropic
principle has, subsequently, been refined; it is not only limited to the investigation of
strict bounds for our existence. Instead, the principle of mediocrity (Vilenkin, 1995)
and the self-sampling assumption (Bostrom, 2002) express anthropic reasoning in terms
of probability theory. In essence, these approaches base upon the idea that we should
think of ourselves as randomly selected from all observers that have ever existed or
will ever exist anywhere. In order to apply this to the value of the cosmological con-
stant, we need a theory predicting a distribution of values for Λ such that there will be
observers inferring different values for the cosmological constant depending on their
location.

Eternal inflation (Vilenkin, 1983) is a candidate for such a theory. It builds upon
inflationary theory describing a phase of rapid, exponential expansion in the very early
Universe and naturally explaining the observed flatness and isotropy of the Universe
on very large scales (Guth, 1981) and the basic properties of the primordial pertur-
bations that grew to become the inhomogeneities like the galaxy clusters, galaxies,
and stars surrounding us today (Chibisov and Mukhanov, 1982; Lukash and Novikov,
1982). Although typically assumed to happen around the scale of grand unification
MGUT ∼ 1016 GeV and thereby far beyond energy scales probed in particle accelera-
tors, the success of this theory has consolidated its place in the standard paradigm of
cosmology (cf., e. g., Mukhanov, 2005; Weinberg, 2008; Lyth and Liddle, 2009). In
many inflationary models, the phase of inflation never ends globally (inflation is eter-
nal), but different, essentially disconnected regions stop inflating at different times (cf.
Winitzki, 2009). Each of these regions (so-called pocket universes) then undergoes a
post-inflationary expansion with potentially different cosmological parameters and, in
particular, different values for the cosmological constant. With the help of this idea and
the prescription of obtaining probabilities going back to the principle of mediocrity
or the self-sampling assumption, Tegmark et al. (2006a) motivate anthropic bounds on
the value of the cosmological constant that come close to the observationally inferred
value.

This line of thought is less complete than it seems. A severe conceptual complication
is themeasure problem of eternal inflation (Winitzki, 2009). It is related to the fact that
the number of observers or civilizations expected from eternal inflation is countably
infinite. There is no uniform probability distribution on countable sets, and, con-
sequently, the principle of mediocrity and the self-sampling assumption (based upon
regarding us a random sample from such a set) are inherently ill-defined. Moreover,
anthropic constraints on Λ rely on assumptions about a prior probability distribution
of Λ on the pocket universes generated during eternal inflation. Here, it is typically
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assumed that the prior is flat in the relevant range of values (using an argument by
Weinberg, 1987). This ignores the possibility that the ‘theory space’ populated during
eternal inflation is large enough to also include models with a fundamental cancella-
tion mechanism of the cosmological constant and a dynamical dark energy component
(like the one described by Wetterich, 2008).

1.2 Quintessence

The open issues of the cosmological constant scenario motivate the investigation of
alternative models capable of describing the accelerated expansion of the Universe. In
order to provide conceptual advantages, these models should alleviate the amount of
fine-tuning associated to the cosmological constant problem. Still, the models will
rely on the assumption of a fundamental cancellation mechanism leading to a vanish-
ing of the cosmological constant (Wetterich, 2008). Whereas the energy density of a
cosmological constant has hardened in the very early Universe, the energy density of
dynamical dark energy evolves with time. This opens the possibility to explain phys-
ically why the energy density of dark energy is comparable to that of matter in the
present Universe. Rather than being fine-tuned, it decays dynamically — just as the
energy densities of radiation and matter — and naturally assumes a small value today.

A quantity that depends on time has to also depend on space since general relativ-
ity treats time and space on an equal footing. A simple and straightforward example
of such a quantity is a scalar field ϕ(x). Describing dark energy by a canonical scalar
field, the cosmon, is the starting point of quintessence models (Wetterich, 1988; Ratra
and Peebles, 1988). The name ‘quintessence’ alludes to its role as the ‘fifth element’
next to the other four basic components of the Universe, namely cold dark matter,
baryonic (i. e. ordinary) matter, photons, and neutrinos. Describing a phase of accel-
erated expansion with the help of a scalar field is not new to cosmology; the simplest
inflationary models similarly base upon a scalar field, the inflaton (Guth, 1981; Linde,
1982). A mechanism that worked in the very early Universe might also describe the
accelerated expansion in the late Universe (for a recent example of a unified picture, cf.
Wetterich, 2013).

The dynamics of the cosmon ϕ is governed by its potential V (ϕ). For a large class
of potentials, there exist tracker solutions for the evolution of the cosmon. These solu-
tions are approached for a wide range of initial conditions (Wetterich, 1988; Ratra and
Peebles, 1988; Steinhardt et al., 1999; Zlatev et al., 1999). The evolution of the cosmon
is, accordingly, insensitive to its initial value and its initial time derivative but rather
completely characterized by the parameters of the potential V (ϕ). Common choices
are an exponential potential (Wetterich, 1988) and a power-law potential (Ratra and
Peebles, 1988). In the case of the exponential potential, the tracker solution exactly
follows the dominant component. During radiation domination in the early Universe,
the energy density of the cosmon decays proportionally to the energy density in radi-
ation; and after the crossover to matter domination, dark energy decays just as matter.
As a consequence, the order of magnitude of the present-day energy fraction of dark
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energy is, automatically, roughly comparable to that of matter.

Although naturally accounting, in contrast to the cosmological constant, for a suf-
ficiently small amount of present dark energy, quintessence models suffer from a dif-
ferent fine-tuning problem. Why has the dark energy stopped so recently in cosmic
history to decay as matter and started to dominate the energy budget of the Universe,
thereby initiating a phase of accelerated expansion? This is the coincidence or why now
problem of dark energy. It similarly applies to the cosmological constant, which is
not only unnaturally small (cosmological constant problem) but just large enough to
surpass the energy density of matter around the present cosmic time. If a quintessence
model with a power-law potential is assumed, the onset of dark energy domination has
to be fine-tuned. For an exactly exponential potential and a canonical kinetic term, the
cosmon continuously rolls down the potential, its energy density follows the dominant
component forever, and no accelerated expansion will occur.

The growing neutrino quintessence model has been proposed as a possible solution
to the coincidence problem (Amendola et al., 2008a; Wetterich, 2007). A coupling be-
tween the cosmon and the neutrinos acts as an effective potential barrier that stops the
evolution of the cosmon. The approximately constant potential energy then serves as
an effective cosmological constant initiating a phase of accelerated expansion. The
resulting homogeneous evolution of the model is very similar to the cosmological
constant scenario. The model belongs to the class of coupled quintessence models
(Wetterich, 1995; Amendola, 2000). At the particle physics level, the cosmon-neutrino
coupling is expressed by a dependence of the neutrino masses on the cosmon field ϕ
(Wetterich, 2007). As the cosmon rolls down its potential V (ϕ), the neutrino masses
increase. Consequently, once the neutrinos have become nonrelativistic, their energy
density grows as compared to matter and to the cosmon following its tracker solu-
tion. This ensures that the neutrinos will have eventually, by virtue of the coupling, a
significant effect on the evolution of the cosmon. The moment when the neutrinos be-
come nonrelativistic serves as a trigger for the onset of dark energy domination. This
mechanism naturally leads to an accelerated expansion roughly at the present cosmic
epoch.

Analyzing the homogeneous evolution constitutes the first of three well-established
steps in the study of cosmological models. It is assumed to accurately describe the
expansion of the Universe and hence the cosmological evolution on the largest scales.
The second step is to allow for small, i. e. linear perturbations around this homoge-
neous solution. Linear cosmological perturbation theory provides the technical frame-
work for this task (Kodama and Sasaki, 1984; Mukhanov et al., 1992) and it is generally
expected to provide a reliable estimate for the growth of inhomogeneities on large
scales. On small scales, nonlinearities are important, and their study typically relies on
Newtonian N -body simulations as the third step (Bertschinger, 1998). Taken together,
this scheme provides a complete picture of the cosmological evolution.

The application of this scheme to the growing neutrino quintessence model revealed
tremendous technical difficulties. They are due to the cosmon-neutrino coupling be-
ing, in realistic cosmologies, substantially stronger than gravity. In the neutrino per-
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turbations, the coupling is reflected as an additional, attractive force. When linear
perturbation theory was applied to the model, neutrino overdensities were found to
grow quickly and to become nonlinear even on very large scales rendering linear the-
ory essentially useless for obtaining quantitative results (Mota et al., 2008). In Newto-
nian N -body simulations, the effective neutrino particles were quickly accelerated to
the speed of light and hence left the Newtonian limit (Baldi et al., 2011). The calcu-
lations indicated the formation of large, nonlinear neutrino lumps. Tentative studies
suggested that, within these lumps, the local cosmon field could decouple from the out-
side field (Nunes et al., 2011), and the resulting mass differences for neutrinos within
lumps as compared to the background value could exert a substantial backreaction ef-
fect (Pettorino et al., 2010). The homogeneous evolution would sensitively depend on
the evolution of nonlinear perturbations. The three steps of the standard technical
repertoire all failed.

This situation has motivated the development of a comprehensive approach, de-
signed from scratch to include all the relevant effects of the growing neutrino quin-
tessence model. These effects include relativistic neutrino velocities, locally varying
neutrino masses, strongly nonlinear structure formation, and the backreaction effect
of the nonlinear perturbations on the homogeneous evolution. This has been achieved
by Ayaita et al. (2012b), and the presentation of the approach and its quantitative re-
sults is a central part of this thesis. Whereas the first results were limited to cosmic
scale factors a ® 0.5 (Ayaita et al., 2012b), i. e. cosmological redshifts z ¦ 1, we will
explain in this thesis how to overcome this barrier with the help of adequate numerical
techniques. The completion of the method opens the door for an exploration of the
parameter space of growing neutrino quintessence and, eventually, for a confrontation
with observational constraints. We take the first steps in this road by identifying two
extreme cases of the cosmological evolution marking two qualitatively very different
regimes. In one of them, large and stable cosmon-neutrino lumps form with a substan-
tial backreaction effect on the homogeneous evolution; in the opposing regime, strong
oscillations in the cosmon-neutrino coupling parameter prohibit the formation of sta-
ble structures, and the cosmological evolution becomes similar to the ΛCDM scenario
even at the level of perturbations.

The comprehensive simulation method has served as an inspiration and as a ‘labo-
ratory’ for analyzing the physics behind the numerics. This strategy has culminated
in a detailed understanding of the physics of cosmon-neutrino lumps, their mutual in-
teractions, and of their influence on the cosmological evolution (Ayaita et al., 2013).
The collection of cosmon-neutrino lumps behaves as a fluid of nonrelativistic particles,
interacting with a coupling mediated by the cosmon field between the lumps, which is
substantially reduced as compared to the fundamental cosmon-neutrino coupling pa-
rameter. The discussion of this cosmon-neutrino lump fluid constitutes a second main
pillar of this thesis.
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1.3 Outline

In Chapter 2, we take the time to recall the fundamentals of cosmology to which
we will refer again and again throughout this thesis. The experienced reader may
safely skip this chapter or skim through it to catch the main conventions and notations
that will be used in subsequent chapters. The journey starts with the homogeneous
approximation (Sec. 2.1), i. e. the Friedmann equations describing the expansion of
the Universe in the presence of different components of the cosmic fluid. We then
account for inhomogeneities (Sec. 2.2) by first reviewing the basics of cosmological
linear perturbation theory and then discussing the nonlinear regime. In particular,
we already explain the backreaction effect and the N -body simulation technique in
the standard framework of purely gravitational structure formation. In later chapters,
we will build upon this well-established knowledge and adapt it to the needs of the
growing neutrino quintessence model.

The main theoretical motivation of this thesis are the problems related to the cosmo-
logical constant scenario. Rather than dismissing the idea of a cosmological constant
out of hand, just referring to its unnaturally small value, we discuss the cosmological
constant in quite some detail in Chapter 3. We take the attitude that the increasing
popularity of the cosmological constant as the standard explanation for the Universe’s
accelerated expansion together with its remarkable consistency with observational con-
straints motivate an intellectually honest discussion of its pros and cons. Therefore, we
describe the different facets of the cosmological constant problem (Sec. 3.1) and explain
the cornerstones of the proposed anthropic solution (Sec. 3.2), including the relevant
concepts from eternal inflation. This will show that, although considerable progress
has been made, important open issues persist. In Sec. 3.3, alternatives to the cosmo-
logical constant scenario are reviewed; most importantly, we introduce the main ideas
behind quintessence (Sec. 3.3.1).

We go a step back in Chapter 4, where we regard dark energy as a generic fluid and
investigate the potential of the 3d weak lensing method to constrain this fluid. The
wCDM parametrization of dark energy, including a nontrivial sound speed parame-
ter c2

s
, is critically introduced in Sec. 4.1, where we will also quantify the clustering

of the parametrized dark energy component. 3d weak gravitational lensing is then
explained as a proposed method to take advantage of the full three-dimensional infor-
mation stored in the cosmic shear in order to infer properties of the large-scale grav-
itational potentials and the distribution of matter (Sec. 4.2). Forecasts on parameter
constraints that will be possible with data from the Euclid mission are obtained in a
Fisher information matrix approach with suitable numerical techniques for 3d weak
lensing (Secs. 4.3 and 4.4). The presentation follows Ayaita et al. (2012a).

The growing neutrino quintessence model is the topic of Chapter 5. We explain its
basic ideas and equations in Sec. 5.1, where we also quantify and discuss the homoge-
neous evolution of the model. A review of early studies of the model (Sec. 5.2) clarifies
the technically and theoretically challenging aspects of the model. Based on this expe-
rience, we develop the key points of the comprehensive simulation method in Sec. 5.3.
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We postpone the technical details to the next chapter in order to first provide for a
firm physical understanding of the cosmological evolution. This will equip us with
the necessary concepts and insights to later understand in depth what happens in the
numerical simulations. We will describe cosmon-neutrino lumps as particles forming a
fluid, and we will show how the properties of the lumps and their mutual interactions
dictate the cosmological evolution (Sec. 5.4) following Ayaita et al. (2013). Although
no definite comparison of the model with observational constraints can be made at
this point, we briefly discuss possible observational signatures of growing neutrino
quintessence in Sec. 5.5.

We then turn to the details and to the results of the comprehensive simulation
method of growing neutrino quintessence in Chapter 6, as developed by Ayaita et al.
(2012b). The chapter starts with recalling why and how the simulation method differs
from standard cosmological simulations. A brief technical overview is given in Sec. 6.1.
We then explain the main ingredients of the simulation separately. The procedure of
obtaining initial conditions based on linear theory is the topic of Sec. 6.2. The mod-
eling and the motion of potentially relativistic effective neutrino particles under the
influence of gravity and the cosmon-mediated attractive force is explained in Sec. 6.3.
The equations of motion rely on the knowledge of fields, namely the cosmon and the
gravitational potentials. We describe how they are evaluated in Sec. 6.4, where we also
account for the backreaction effect at the technical level. Quantitative results until the
cosmic scale factor a = 0.5 (Ayaita et al., 2012b) are presented in Sec. 6.5. We next
describe how the numerical issues related to the limitation of a ® 0.5 can be solved
(Sec. 6.6). Finally, following the cosmological evolution until the present cosmic time
a = 1 (and beyond) becomes possible. We show preliminary results and make first
steps towards an investigation of the parameter space.

An overview of what has been achieved and of what will be the next steps in the
analysis of the growing neutrino quintessence model, in particular in the light of ob-
servational constraints, concludes this thesis in Chapter 7.
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The study of the Universe in its totality has developed, within about a century, a wealth
of well-established and fundamental concepts, theoretical techniques, and physical re-
sults. In the course of this thesis, we will encounter and use these fundamentals again
and again. The repertoire of these terms and concepts forms a ‘language’ in which
we shall express our ideas and findings. This concerns the dynamics of expansion, the
evolution of perturbations (in the linear and nonlinear regimes), the properties of dif-
ferent components of the cosmic fluid, and finally the discussion of observations linked
to events like recombination, i. e. the cosmic microwave background radiation.

Although the contents presented in this chapter have reached the maturity of text-
book material and, indeed, can be found in many textbooks, an overview for introduc-
ing all terms used later and for fixing conventions is in order. The experienced reader
may skip this chapter.

The chapter is divided into two main sections. First, we restrict ourselves to the ho-
mogeneous approximation, Sec. 2.1. This allows to study the dynamics of expansion,
to introduce the different species relevant in cosmology, and to give a brief account of
the most important epochs and events in the cosmic history of the Universe. Second,
we turn to the technically more challenging, yet for this thesis equally fundamental as-
pect of perturbations, Sec. 2.2. We will discuss their origin, their linear and nonlinear
evolution, standard techniques of treating them (in N -body codes), and finally their
influence, i. e. their backreaction, on the homogeneous evolution.

2.1 Homogeneous approximation

The study of celestial objects such as galaxies defines astronomy but not cosmology.
The step from the study of individual objects to the study of the Universe as a whole
requires to make assumptions about the distribution of celestial objects throughout
the Universe. If there was no regularity in the distribution of, e. g., galaxies in space,
it would be hard to think of a successful cosmological theory. Cosmology relies on
the presence of regularities, preferably symmetries, of the distribution of matter, ra-
diation, etc. in the Universe. A natural starting point is the drastic assumption of
complete homogeneity and isotropy. This is the approximation used throughout this
section. More precisely, it states that there are observers, i. e., there is a suitable coor-
dinate system such that all quantities describing the Universe do not depend on space
but only on time. It comes as no surprise that this approximation, due to its tech-
nical simplicity, was used by Friedmann to derive the first equations quantifying the
expansion dynamics of the Universe, cf. Sec. 2.1.1. Often, the working hypothesis of
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homogeneity is even promoted to a fundamental principle, the so-called Cosmological
Principle stating that the Universe should look the same for all observers within it,
regardless of their spatial location.

Of course, in a strict sense, the Universe is clearly not homogeneous. It is im-
portant to distinguish between length scales where the Universe looks very different.
On Earth, but also in our astronomical environment (Solar System, Milky Way, Lo-
cal Group, . . . ), the Universe is all but homogeneous. This picture remains valid until
length scales of about 100 Mpc (corresponding to≈ 3×108 light years or≈ 3×1026 cm)
(Sarkar et al., 2009). If we wash out all inhomogeneities on scales below ≈ 100 Mpc,
the assumption of a homogeneous Universe seems to be compatible with present-day
observations. Several remarks, however, are in order. First, observations are restricted
to the observable part of the Universe, which has a size of only several thousand Mega-
parsecs. They do not tell us how the Universe looks on larger scales. Second, the
question how well the assumption of homogeneity fits observational data is still under
dispute. This concerns the analysis of the distribution of galaxies in galaxy surveys
(Labini et al., 2009a,b) but also the large-scale anisotropies in the cosmic microwave
background radiation (Hansen et al., 2009; Hoftuft et al., 2009; Copi et al., 2009;
Ayaita et al., 2010). Third, interpreting observations as supporting the assumption of
homogeneity faces several loopholes. For example, we might happen to be located in
the center of a large-scale spherically symmetric inhomogeneity. Galaxy distributions
etc. would then still look isotropic, and assuming a wrong expansion history could
give the impression of them also being homogeneous (cf., e. g., Enqvist, 2008).

Bearing these points in mind, it is still fair to say that the assumption of a homo-
geneous Universe on large scales is, nowadays, more than a mere working hypothesis.
It is the by far simplest assumption compatible with major observational probes. On
theoretical grounds, however, it is to be expected that the Universe is highly inho-
mogeneous on scales much larger than its observationally accessible part. This is a
consequence of the theory of inflation (cf. Sec. 3.2.2). At first sight, this might seem
irrelevant as science is concerned with predictions that are accessible to experiments.
Looking at inflationary theory more closely, however, reveals that the ‘global’ struc-
ture of the Universe, although not observable directly, leads to many statistical predic-
tions that, indeed, can be tested by observations. Since this kind of reasoning is often
employed to sketch possible solutions to the cosmological constant problem, we will
not completely neglect this aspect.

Another drawback of the homogeneous approximation is of high relevance for this
thesis: the backreaction of inhomogeneities on the expansion of the homogeneous
background. Even if the Universe looks homogeneous on scales larger than 100 Mpc,
this does not imply that all calculations for the evolution of the large-scale Universe
can be performed by assuming homogeneity. Washing out small-scale inhomogeneities
technically corresponds to applying a window function Wλ(x), flat on scales |x | < λ
and falling off quickly for |x | ≫ λ. If the equations governing the expansion of the
Universe were linear, the processes of applying the window function and evolving the
equations would commute. In that case, calculations could be performed assuming
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a homogeneous Universe. Yet, Einstein’s equations describing the evolution of the
Universe are not linear. Applying the window function first and then evolving the
equations does not give the same result as first applying the equations on the full Uni-
verse including inhomogeneities and applying the window function thereafter. We will
consider this backreaction effect in Sec. 2.2.2. Although it gives only minor corrections
in most cosmological models, the effect turns out to be important, decisive even, for
the calculations performed in this thesis.

This section is structured as follows. We will recall some basic concepts of the
theory of general relativity, Friedmann’s equations governing the expansion of the
homogeneous Universe, and some related fundamental concepts in Sec. 2.1.1. The
cosmologically relevant forms of matter or components of the cosmic fluid are presented
in Sec. 2.1.2. We are then capable of describing the different epochs and events in the
evolution of the Universe in Sec. 2.1.3. This textbook material can be found in many
textbooks on modern cosmology (Weinberg, 2008, 1972; Mukhanov, 2005; Dodelson,
2003; Hobson et al., 2006). We also follow partly Ayaita (2009, Diploma thesis).

2.1.1 Dynamics of expansion

General relativity

In general relativity, we think of spacetime not as a fixed background on which physics
happens, but as a dynamical entity which itself is subject to laws of physics (Einstein,
1915a,b, 1917). In this way, the ‘expansion’ of the Universe really refers to the geometry
of spacetime.

In the (almost complete) absence of experimental data, the development of general
relativity relied on guiding principles motivated by theoretical considerations. First, of
course, in a suitable limit, general relativity must reduce to Newtonian gravity where
the gravitational field equation is the Poisson equation for the Newtonian gravitational
potential Φ,

∆Φ=
ρ

2
, (2.1)

with the energy density ρ, which, already in special relativity, is related to the 0-0
component of the energy-momentum tensor T µν : ρ=−T 0

0. For convenience, we have

set the reduced Planck mass to unity, 1 = MP =
p
ħhc/
p

8πG ≈ 2.4× 1018GeV/c2 ≈
4× 10−6 g. Here and in the following, we use units where also ħh = c = kB = 1.

Second, the theory must be generally covariant under coordinate changes. This no-
tion is physically motivated by the so-called Equivalence Principle stating that, at every
location, there is a coordinate system in which the effects of gravity vanish in the limit
of a very small environment around that location.

General relativity then describes spacetime as a four-dimensional Lorentzian mani-
fold. The effects of gravity are encoded in the geometry of the manifold. The Newto-
nian gravitational potential, e. g., is linked to geometric quantities. The gravitational
Poisson equation (2.1), tells us that the geometry must be linked to the energy content
of spacetime.
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Restricting oneself to partial differential equations of second order (motivated by,
e. g., the Poisson equation), the only generally covariant equations satisfying the cor-
rect Newtonian limit (2.1) are

Rµν −
1

2
R gµν = Tµν , (2.2)

Einstein’s field equations. Here, gµν is a Lorentzian metric tensor with the signature
(−,+,+,+). It defines the Levi-Civita connection with the following connection coef-
ficients, the Christoffel symbols:

Γ
µ

αβ
=

1

2
gµλ

�
∂β gλα+ ∂α gλβ− ∂λ gαβ

�
, (2.3)

where we abbreviate the partial derivatives according to ∂ /∂ xµ ≡ ∂µ. They can be
used to write the covariant derivative of a vector vα as

∇αvµ ≡ vµ ;α ≡ ∂αvµ+Γ
µ

αβ
vβ. (2.4)

The Ricci-tensor Rµν and the Ricci scalar R in Einstein’s field equations are contrac-
tions of the Riemann (curvature) tensor Rµναβ. The curvature tensor of a manifold
can be expressed as the change in a vector after parallel transport along an infinitesimal
closed loop,

Rµναβvµ =∇β∇αvν −∇α∇βvν , (2.5)

or directly with the Christoffel symbols

Rµναβ = ∂αΓ
µ

νβ
− ∂βΓµνα+Γ

λ
νβΓ

µ

λα
−ΓλναΓ

µ

λβ
. (2.6)

The Ricci tensor and Ricci scalar are then

Rµν = Rλµλν , R= Rλλ. (2.7)

It is often useful to work with an action principle instead of the field equations that
follow from it. This is particularly convenient if not only gravity is considered, but
if we want to add the action for some matter field. Einstein’s field equations indeed
follow from an action principle if we define the Lagrangian density LG = R/2 and
thereby the Einstein-Hilbert action for gravity,

SG =
1

2

∫
d 4x

Æ
−g (x)R(x), (2.8)

with the determinant of the metric g ≡ det(gµν ).
The ‘coupled’ system of gravity and some matter content is then described by the

action S = SG + Sm . The translation back to Einstein’s equations is given by the
definition of the energy-momentum tensor as a variation of the Lagrangian density
Lm for matter,

Tµν =
−2
p−g

δ
�p−gLm

�

δ gµν
, (2.9)
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and the equations of motion for matter are then encoded in the energy-momentum
conservation equation

∇νT µν = 0. (2.10)

Note that this equation, in general, does not give rise to a conserved charge. There is
no globally conserved energy.

In later chapters, we will need to evolve point particles on a given spacetime. In the
simplest case, where a particle of mass m and with proper time η moves only under
the influence of gravity, the equation of motion can be derived from the action

S =−m

∫
dη, (2.11)

whose variation leads to the geodesic equation

d 2 xµ

dη2
+Γ

µ

αβ

d xα

dη

d xβ

dη
= 0. (2.12)

Friedmann equations

Under the assumptions of homogeneity and isotropy everywhere, Einstein’s equations
specialize to the Friedmann equations. Whether spacetime looks homogeneous and
isotropic depends on the observer, i. e. on the chosen coordinate system. Those ob-
servers that see a (large-scale) homogeneous Universe are called comoving observers.

In general, we say that a spacetime is homogeneous if there is a suitable time coordi-
nate t (corresponding to a foliation of spacetime by spatial hypersurfacesΣt ) such that
for constant time, every point p can be mapped on any other point q by a diffeomor-
phism. We speak of isotropy around a point p if there is a four-velocity u such that
an observer located at p and moving with u cannot single out any preferred direction.
We shall see that this velocity coincides with the velocity of the cosmic fluid, hence the
name comoving.

It can be shown that for a (spatially) homogeneous and isotropic spacetime, the
Riemann tensor of the three-dimensional hypersurfaces Σt is

(3)Ri j k l = K
�
(3) gi k

(3) g j l − (3) gi l
(3) g j k

�
, (2.13)

where K quantifies the curvature and is related to the Ricci scalar by (3)R = 6K . One
can write the metric in the form

d s2 = gµνd xµd xν =−d t2+ a(t )2

 d r 2

1− k r 2
+ r 2

�
dθ2+ sin2θ dϕ2

� , (2.14)

in suitable (comoving) coordinates (xµ) = (t , r,θ,ϕ). This is the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric. k denotes the sign of K (and k = 0 for K = 0), a(t )
is the so-called scale factor describing the expansion of spacetime, r is the comoving
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distance from the origin (the physical distance of a point from the center measured by a
ruler would evolve as rph(t ) ∝ a(t ) r ). For convenience, we normalize the scale factor
at the present cosmic time t0 to unity, a(t0) = 1. The Levi-Civita connection of the
metric is given by

Γ0
i j
= ȧa(3) gi j , Γ

i
0 j
=

ȧ

a
δ i

j
, Γi

j k
= (3)Γi

j k
. (2.15)

The Hubble parameter H = ȧ/a quantifies the increase of the scale factor. The Uni-
verse is said to expand for ȧ > 0, to contract for ȧ < 0. The expansion is said to
accelerate for ä > 0 and to decelerate for ä < 0. The acceleration or deceleration is
often quantified in terms of the deceleration parameter q ,

q =−
ä a

ȧ2
=−

 
1+

Ḣ

H 2

!
. (2.16)

An artefact of the times where the Hubble parameter was not known to high accuracy
is the parameterization of the present Hubble parameter H0 as

H0 = 100h
km

s
Mpc−1, (2.17)

where the uncertainty is shifted to the dimensionless parameter h , which is of order
one. Instead of keeping the uncertainty in H0, one often shifts it to the distance unit
for which one then uses h−1Mpc.

Instead of the cosmological time coordinate t , we will often use the scale factor a,
the redshift z = 1/a− 1, or the conformal time τ given by dτ = d t/a(t ).

After having collected all the ingredients for the left-hand side of Einstein’s equa-
tions, we now turn to the right-hand side. The exact form of the energy-momentum
tensor Tµν will depend on the energy-matter content of spacetime. Since the geome-
try of spacetime, however, is directly related to its energy-matter content, Tµν is con-
strained by symmetries. Homogeneity everywhere means that the coefficients of Tµν
can only depend on time. Together with the isotropy assumption, it is clear that
T µ

ν = diag(−ρ, p , p , p) in comoving coordinates. The two remaining parameters are
the energy density ρ and the pressure p . The energy-momentum tensor has the form
of a perfect fluid,

T µν = (ρ+ p)uµuν + p gµν , (2.18)

at rest, i. e. (uµ) = (1,0,0,0).
Put together, we eventually obtain the Friedmann equations

ä

a
= Ḣ +H 2 =−

1

6
(ρ+ 3 p), (2.19)

�
ȧ

a

�2

=H 2 =
ρ

3
−

k

a2
. (2.20)
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A useful additional relation, although contained in the Friedmann equations, is given
by ∇λT 0λ = 0:

ρ̇+ 3H (ρ+ p) = 0. (2.21)

Throughout this work, we make the assumption that the Universe is flat, which is
consistent with present-day observational data (Hinshaw et al., 2012; Bennett et al.,
2012; Ade et al., 2013c,e) and expected by inflationary theory. We shall thus work with
k = 0.

Propagation of light

Light and its motion in the homogeneous Universe give rise to several often-used con-
cepts. The redshift z will be used as both a time and a distance coordinate. The propa-
gation of light also defines horizons.

A lightlike geodesic d s2 = 0 in a flat FLRW metric is described by

d t =±a(t )d r. (2.22)

Let the source S be located at r > 0, emitting signals in infinitesimal intervals d tS .
These signals are observed at r = 0 by an observer in intervals d tO . According to the
equation above, we have d tS/aS = d tO/aO . The redshift z , quantifying the change of
frequency, is then given by 1+ z = aO/aS .

We normalize aO = 1 and relate scale factor a, cosmic time t , and comoving distance
r to a cosmological redshift in the following ways:

a =
1

1+ z
, t =

∫ ∞
z

d z ′

H (z ′)(1+ z ′)
, r =

∫ z

0

d z ′

H (z ′)
. (2.23)

This cosmological redshift is not identical to the observed redshift of lines in the spec-
tra of galaxies. The redshift is changed due to the rotation of the galaxy, perturbations
along the light path, and, most importantly, by the so-called peculiar motion of the
galaxy with respect to the comoving frame.

The questions of what can be observed today and of what can, in principle, be
observed in the future, are closely related to the propagation of light. We speak of a
particle horizon and an event horizon, concepts introduced by Rindler (1956).

The maximum comoving distance from which light can reach an observer at time t
is the particle horizon

rP H (t ) =

∫ t

0

d t ′

a(t ′)
, (2.24)

where we have identified the beginning of the Universe with t = 0. If a(t ) was con-
stant, the particle horizon would correspond to the age of the Universe as expected in
special relativity. The expanding Universe satisfies ȧ > 0 at all times, most drastically
during the inflationary epoch. Consequently, rP H is very large, in principle. However,
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2 Cosmology

the Universe was opaque to photons before recombination such that the optical particle
horizon relevant for most observations is

rP H ,optical(t )≈
∫ t

trec

d t ′

a(t ′)
≪ rP H (t ). (2.25)

This restriction does not apply to gravitational wave astronomy.
The event horizon rEH (t ) encloses the region which will ultimately be reached by

light emitted at the origin at time t ,

rEH (t ) =

∫ ∞
t

d t ′

a(t ′)
, (2.26)

assuming that the Universe reaches infinite age.
The Hubble scale 1/H is also often called horizon, usuallyHubble horizon but some-

times confounded with the particle horizon. This has historical reasons because the
Hubble scale and the particle horizon are of similar order if the expansion of the Uni-
verse is dominated by radiation or matter at all times. The Hubble scale describes
at which distances the effects of the cosmic expansion become important. It is cru-
cial for classifying perturbations. Perturbations on physical scales λ≪ H−1, so-called
subhorizon perturbations, will experience growth due to gravitational attraction. On
superhorizon scales, λ≫H−1, this mechanism does not work.

2.1.2 Cosmic inventory

The two free parameters describing the energy content of the Universe are the energy
density ρ and the pressure p . It is useful to decompose the cosmic fluid into different
species that have particularly simple properties. We write

T µν =
∑

i

T
µν
i
=
∑

i

�
(ρi + pi )u

µuν + pi gµν
�

. (2.27)

The total energy density and pressure are thus sums over ρi and pi respectively.
We will see that the energy densities of different species depend differently on the

scale factor a. Not surprisingly, there are epochs during which the energy density of
one single species greatly exceeds those of the other species. For example, the Universe
was dominated by radiation at early times, later by nonrelativistic matter, and will
finally be dominated by dark energy or a cosmological constant. During each of these
epochs, the other species may be neglected for the calculation of the expansion.

The energy fraction of a species i is quantified by

Ωi ≡
ρi∑
j ρ j

=
ρi

3H 2
, (2.28)

where we used the second Friedmann equation for k = 0 in the last step. The dynamics
of expansion is particularly simple if the dominating species has a constant equation of
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2.1 Homogeneous approximation

state w ≡ p/ρ. In this case, the Friedmann equations can be integrated to give

ρ∝ a−3(1+w), a(t )∝ t
2

3(1+w) , (2.29)

where the latter equation holds for w > −1. In the case w = −1, we have a(t ) ∝
exp(H t ) with a constant Hubble parameter H .

From Eq. (2.29) above or from the second Friedmann equation, we deduce that the
expansion of the Universe can only accelerate if ρ+ 3 p < 0, i. e., if w < −1/3. This
is a violation of the so-called strong energy condition but indeed occurs in the case of
dark energy or a cosmological constant.

Photons and neutrinos

Although both, photons and neutrinos, are produced in stars, their dominant cos-
mological contribution is an approximately homogeneous and isotropic background
distribution left over from the early Universe. For photons, this is directly observ-
able as the ≈ 3K cosmic microwave background radiation (CMB) we will discuss later.
The neutrino background has not been observed due to the very small neutrino en-
ergies and, therefore, tiny reaction cross sections. In the course of this thesis, we will
even make the assumption that the neutrinos, in recent cosmic history, behave much
different.

It is very useful to establish a connection between the phase-space distribution func-
tion f (x , p) and the energy-momentum tensor,

T µ
ν = g

∫
d 3 p

1
p−g

pµ pν
|p0|

f (x , p), (2.30)

with a degeneracy g . If the species under consideration is in thermal equilibrium
everywhere, f (x , p) is a Fermi-Dirac or Bose-Einstein distribution for fermions and
bosons, respectively. Under the assumption of homogeneity, neither the temperature
T nor the chemical potential µ can depend on space:

f (x , p) = f (|p|) =
1

e
E−µ

T ± 1
, (2.31)

with E = p0 =
Æ

p2+m2.

From here, the two parameters, energy density ρ and pressure p , can be calculated,

ρ=−T 0
0 = g

∫
d 3 p

1
p−g

E f (x , p), (2.32)

p =
1

3
T i

i = g

∫
d 3 p

1
p−g

p i pi/3

|p0|
f (x , p). (2.33)
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2 Cosmology

In the massless (or highly relativistic) limit m = 0 and for vanishing chemical poten-
tial µ = 0 (which holds if particle number is not conserved), the expressions can be
evaluated (Amendola and Tsujikawa, 2010, p. 14) to yield

ρ=

(
g π2

30
T 4 for bosons

g 7
8
π2

30
T 4 for fermions

, p =
ρ

3
. (2.34)

We have just established w = 1/3 for relativistic species. We deduce ρ ∝ a−4 and
a(t )∝ t1/2.

Let us have a closer look at the photons. Since photons are essentially free-streaming
today, why did we consider an equilibrium distribution? In the early Universe, prior
to recombination, they interacted with baryonic matter via

γ +H ←→ p + e−, (2.35)

which requires a photon energy Eγ ≥ 13.6 eV. When the temperature of the plasma
fell much below 13.6 eV due to the expansion of the Universe, almost no photons had
enough energy for the above reaction.

The photons, however, kept their distribution function; it has µ= 0 because photon
number was not conserved during equilibrium. By ργ = 2(π2/30)T 4

γ and ργ ∝ a−4,

we find that the temperature parameter decreases as Tγ ∝ a−1.
In accordance with theoretical expectations, the Cosmic Background Explorer satel-

lite (COBE) confirmed the shape of the distribution function and measured Tγ =
(2.725± 0.002) K (Fixsen et al., 1996). This corresponds to a present energy fraction

Ωγ ,0 =
2 π

2

30
T 4
γ ,0

3H 2
0

≈ 5× 10−5. (2.36)

The neutrinos left thermal equilibrium much earlier. In the very early Universe,
they interacted via processes like

νe + ν̄e ←→ e−+ e+. (2.37)

The interaction rate Γ = n 〈σv〉 decreases due to the ‘thinning’ n ∝ a−3 of the number
density and 〈σv〉 ∝G2

F
T 2 with Fermi’s constant GF ,

Γ∝G2
F

T 5 ∝G2
F

a−5. (2.38)

The competing effect is the expansion rate. Once H ≫ Γ, the reaction is very unlikely
to happen. Evaluating H for a radiation-dominated Universe and comparing with Γ
yields a critical temperature of order T ∼ 1 MeV.

The relation between Tν and Tγ is Tν = (4/11)1/3Tγ . For massless neutrinos, one
would have Ων ≈ 0.68Ωγ . Yet, neutrinos are known to be not massless. The flavor
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2.1 Homogeneous approximation

eigenstates |νa〉, a = e ,µ,τ, are related to the mass eigenstates |νi 〉 by the Pontecorvo-
Maki-Nakagawa-Sakata (MNS) matrix Uai ,

|νa〉=
∑

i

Uai |νi 〉. (2.39)

In the presence of non-vanishing mass differences, neutrino oscillations can be observed.
An initial neutrino of flavor a can eventually be detected after time t as a neutrino of
flavor b (Akhmedov, 1999) with probability

Pa→b =

������
∑

j

Ub j e
−i E j t U ∗

a j

������

2

. (2.40)

These oscillations have been observed in the solar neutrino flux (Fukuda et al., 1998).
The corresponding squared mass differences (Fukuda et al., 1998; Araki et al., 2005)
indicate that at least one mass eigenstate is above mi ¦ 0.04 eV (Beringer et al., 2012).

Assuming that the neutrino mass is constant throughout cosmic history and that
the cosmological concordance model is correct, a limit of

∑
i

mi < 0.2-0.4 eV can be
inferred from cosmological observations (Goobar et al., 2006). In laboratory experi-
ments, the most stringent bounds come from the measurement of β-decays providing
an upper limit of about 2 eV (Beringer et al., 2012).

Since the exact mechanism by which neutrinos gather mass is still unknown (they
are massless in the Standard Model of particle physics), this mechanism is a possible
place for new and unexpected physics. We will come back to this point in later chap-
ters.

Dark matter and baryons

If we sample the phase-space distribution with point particles of masses mp , trajectories

x
µ
p (η) with proper time η, and four-velocities u

µ
p = d x

µ
p /dη, the energy-momentum

tensor can be written as

T µ
ν =

1
p−g

∑
p

∫
dηp mp u

µ
p up ,νδ

4(x − xp (ηp )). (2.41)

Here, we see that the pressure contribution is proportional to T i
i ∝ mp u2

p
; for non-

relativistic particles, this is negligible compared to the energy density whence w = 0.
We conclude ρ∝ a−3 and a(t )∝ t 2/3 in a matter-dominated universe.

The dominant non-relativistic component is dark matter, whose discovery goes back
to Zwicky (1933) observing the velocity dispersion in the Coma cluster, confirmed
also in the Virgo cluster (Smith, 1936). The term ‘dark’ matter refers to the lack of
interactions with light (Bond et al., 1984) whereby dark matter can only be observed
indirectly by its gravitational effects.
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2 Cosmology

Dark matter does not only account for a large fraction of the mass in the inter-
galactic space in clusters; it is also essential within galaxies as was understood by an-
alyzing galactic rotation curves, first in the Andromeda nebula (Babcock, 1939). To-
day, a large number of observations in astronomy and cosmology solidify the pres-
ence of a cold, i. e. non-relativistic, approximately collisionless dark matter component
(D’Amico et al., 2009). Its energy fraction today is about Ωc ,0 ≈ 1/5 (Bennett et al.,
2012; Ade et al., 2013c).

Baryonic matter refers to matter that interacts with light. In particular, in contrast
to the convention in other branches of physics, baryonic matter includes electrons.
Unlike dark matter, baryons do not only interact gravitationally. Instead, their dy-
namics includes very complicated physics, e. g., star formation, supernovae, and hy-
drodynamics. The correct modeling of baryonic physics starts to be a crucial caveat
for high precision calculations that will be needed to fully exploit the cosmological
information of upcoming observational data (see, e. g., Zentner et al., 2012; Gnedin
et al., 2004; Gustafsson et al., 2006). In this thesis, however, we will not be concerned
much with these details. Instead, most of the time, it will be sufficient for us to treat
baryons like dark matter, i. e., to reduce them to their gravitational effects.

In groups and clusters of galaxies, most of the baryons are located in the intergalactic
space. Their abundance can be estimated from the absorption of light (originating
from distant quasars) by hydrogen (Tytler et al., 2004), and it can be compared with
the estimated density of dark matter (White et al., 1993). Another approach is to
use the CMB radiation in combination with other cosmological probes, which gives
a ratio of baryons to cold dark matter of roughly Ωb/Ωm ≈ 1/6 (Bennett et al., 2012;
Ade et al., 2013c).

The cosmological constant

The cosmological constant Λ, introduced to general relativity by Einstein (1917), is
mathematically particularly simple but conceptually involved. It describes a contribu-
tion to the energy-momentum tensor of the form Tµν = −ρΛ gµν proportional to the

metric with ρΛ = ΛM 2
P
. In this way, it may be interpreted as the energy density of

empty space. Often, the cosmological constant is instead interpreted as a free parame-
ter in general relativity, modifying its basic equations, the Einstein-Hilbert action and
Einstein’s field equations to (setting MP = 1)

S =
1

2

∫
d 4 x

p
−g (R− 2Λ)+ Sm , (2.42)

Rµν −
1

2
Rgµν +Λgµν = Tµν . (2.43)

In fact, both interpretations are conceptually problematic. If we assume a free param-
eter ΛG in general relativity, it would not be identical to the observable cosmological
constant Λ. Instead, the observable, effective cosmological constant Λ would also in-
clude the vacuum energy,

Λ=ΛG +ρvacM
−2
P

. (2.44)
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2.1 Homogeneous approximation

Whereas ΛG would be a ‘true’ cosmological constant not depending on space and time,
ρvac is expected to depend on time. This is because it is expected to change its value
during phase transitions in the early Universe.

One may argue that ΛG is somewhat inelegant as it introduces a fundamental length
scale into the otherwise scale-free theory of general relativity. On the other hand,
in the spirit of effective field theory, ΛG should be included as it is compatible with
the symmetries of general relativity and might find its explanation in a fundamental
theory of gravity. The vacuum energy ρvac is fixed after the phase transitions in the
early Universe and can then be treated as a contribution to the cosmological constant.
We will discuss this in much more detail in Sec. 3.1.

The equation of state of a cosmological constant is wΛ = pΛ/ρΛ = −1. Unlike
the previously discussed components of the cosmic fluid, the cosmological constant
can lead to accelerated expansion ä > 0. The discovery of the Universe’s accelerated
expansion (Riess et al., 1998; Perlmutter et al., 1999) has lead to a revival of the idea
that the cosmological constant may play a crucial role in the expansion dynamics of the
Universe. The observational data can be fitted by a present energy fraction ΩΛ,0 ≈ 3/4
in a cosmological constant (Astier et al., 2006; Riess et al., 2007; Wood-Vasey et al.,
2007; Kowalski et al., 2008).

The so-called cosmological concordance model ΛCDM (CDM abbreviates Cold Dark
Matter) describes the Universe with all the components we have just introduced. It
increasingly plays the role of a standard model so far consistent with all major obser-
vational probes (Bartelmann, 2010b). Its theoretical flaws will be the subject of Chap-
ter 3. With ΩΛ,0 ≈ 2/3, the energy density is of order ρΛ,0 = 3H 2

0
ΩΛ,0 ∼ 10−47 GeV4,

ridiculously far away from all fundamental physics scales that could enter ρvac. This is
the cosmological constant problem.

Scalar fields

In the standard picture, the inflationary epoch is dominated by a scalar field, the in-
flaton φ. It accounts, similarly to a cosmological constant, for a phase of exponential
expansion. With its quantum fluctuations, it is the presumed origin of primordial in-
homogeneities. An accelerated expansion driven by a scalar field can also work in the
late Universe and thus replace the cosmological constant. Such a scalar field is called
the cosmon ϕ, introduced in Sec. 3.3.1.

Let us consider a scalar field χ with a canonical action

Sχ =

∫
d 4 x

p
−g

�
−

1

2
∂ λχ∂λχ −V (χ )

�
(2.45)

and a self-interaction potential V (χ ). Its energy-momentum tensor then is

Tµν = ∂µχ∂νχ + gµνLχ . (2.46)
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In a homogeneous universe, all spatial derivatives vanish, and we are left with

ρ=−T 0
0 =

1

2
χ̇ 2+V (χ ), (2.47)

p =
1

3
T i

i =
1

2
χ̇ 2−V (χ ). (2.48)

The equation of state w = p/ρ can, if the potential is positive, take any value between
−1 ( if the potential energy dominates over the kinetic term ∝ χ̇ 2 ) and +1 ( if the
kinetic energy dominates).

2.1.3 Chronology of the Universe

We conclude the section on the homogeneous approximation by a brief presentation
of the chronology of the Universe. First, we evaluate the energy densities according
to the dynamics of expansion explained in Sec. 2.1.1 for a ΛCDM universe. The re-
sult is shown in Fig. 2.1. At early times (a ® 10−4), the Universe was dominated by
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Figure 2.1: Energy densities of radiation, matter, and the cosmological constant as functions of the scale
factor a with the parameters of Bennett et al. (2012).

radiation. The energy density of radiation decayed more quickly than that of matter,
leading to a phase of matter domination. Eventually, the constant energy density of
the cosmological constant surpasses matter in very recent cosmic history.

In this thesis, we will be concerned with the late-time expansion history where the
onset of dark energy / cosmological constant domination takes place. The ΛCDM
model, which fits the observational data, serves as a fiducial model with which alter-
native models can be compared. For later reference, we show the evolution of the
fractional energy densities Ωi on a linear scale in a in Fig. 2.2.
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Figure 2.2: Late-time evolution of the fractional energy densities Ωr , Ωm , ΩΛ.

Let us now turn to the thermal history where we mainly follow the presentation
given by Mukhanov (2005, p. 72 et seqq.).

Planck epoch

When the temperature of the cosmic fluid was at T ∼ 1019 GeV, comparable to the
Planck mass, the theory of general relativity is expected to break down. In particular,
the classical notions of space and time become conceptually unclear. An extrapolation
of the expansion from the radiation-dominated epoch would locate the Planck epoch
at t ∼ 10−43 sec after the classical singularity. A detailed understanding would require
a full quantum theory of gravity.

Grand Unification and electroweak epochs

t ∼ 10−43-10−10 sec, T ∼ 102-1019 GeV. We may expect that the classical theory of
general relativity works well. One often assumes grand unification of the strong and
electroweak forces at energies around 1016 GeV, the GUT scale.

Near this scale, ending typically around t ∼ 10−32 sec, one expects the inflationary
epoch. During this epoch, the hypothetical inflaton φ caused a rapid expansion of
the Universe, accounting for its observed flatness and homogeneity, the dilution of
possible relics of high-energy physics (such as magnetic monopoles), an increase of the
particle horizon, and the seed of primordial perturbations. At the end of inflation,
in a process called reheating, the energy density of the inflaton was transformed into
Standard Model particles.

Until T ∼ 100 GeV, the electroweak symmetry was restored, the W and Z gauge
bosons were massless. Then, the electroweak phase transition took place breaking the
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SU(2)×U(1) symmetry of the electroweak field.

Hadron epoch

t ∼ 10−6-1 sec, T ∼ 500-0.5 MeV. At around T ≈ 200 MeV, the quark-gluon transition
took place. Neutrinos leave thermal equilibrium at T ∼ 1-2 MeV; the primordial
neutrinos decouple.

Nucleosynthesis

t ∼ 200-300 sec, T ∼ 0.05 MeV. Light elements form from neutrinos and protons. The
theory of big bang nucleosynthesis (BBN) predicts precise values for the abundances
of light elements, which are confirmed by observations.

Recombination and last scattering

t ∼ 1012-1013 sec ∼ 300,000 years, T ∼ 0.3 eV, redshift z ∼ 1100. Neutral hydrogen
has formed from electrons and protons of the primordial plasma (recombination). The
Universe became transparent, photons could travel freely and decoupled ( last scatter-
ing). They form the cosmic microwave background radiation.

Structure formation

While the baryons were still tightly coupled to photons, cold dark matter already
started to form increasing overdensities under the influence of gravity. After recombi-
nation, the baryons quickly fell into these potential wells. The overdensities eventually
became the large-scale structure, galaxy clusters, and galaxies observable today.

2.2 Inhomogeneities

The expansion history is mainly, and most directly, probed by the observation of
Type Ia supernovae (Riess et al., 1998; Perlmutter et al., 1999). This, however, con-
stitutes only a very small fraction of the observationally accessible data. The most
important probes are related to inhomogeneities, i. e. deviations from the homogeneous
approximation of Sec. 2.1.

The observation of small temperature fluctuations ∆T /T ∼ 10−5 in the cosmic mi-
crowave background radiation in satellite missions (Fixsen et al., 1996; Bennett et al.,
2003; Hinshaw et al., 2003; Ade et al., 2013a) and balloon-based experiments (Netter-
field et al., 2002; Jaffe et al., 2001) is extremely powerful in constraining cosmological
models. The temperature fluctuations are mainly due to density perturbations in the
primordial plasma. The observations, consequently, mainly probe cosmology at the
time of recombination. After last scattering, the light propagated through the expand-
ing Universe with its metric fluctuations and hence also carries information about the
geometry, expansion history, and structure formation at later times (Durrer, 2008).
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2.2 Inhomogeneities

Galaxy surveys record the distribution of galaxies in the observationally accessible
regions of the night sky (Colless et al., 2001; Cole et al., 2005; Tegmark et al., 2004a,
2006b). The galaxies’ redshifts serve as a distance measure allowing to infer the three-
dimensional distribution. The distribution of galaxies is expected to trace the inhomo-
geneities of baryons and thus ultimately of dark matter. The details of this relation
depend on the complicated process of galaxy formation and are accounted for by bias
models (Kauffmann et al., 1997; Peacock and Smith, 2000; Gao and White, 2007). A
cleaner way to measure inhomogeneities is via weak gravitational lensing (Bartelmann
and Schneider, 2001; Munshi et al., 2008). This method can, in principle, also be used
to reconstruct the three-dimensional distribution of perturbations, either incompletely
(Hu, 1999) or in a comprehensive approach (Heavens, 2003).

Regarding these powerful observations, it is far from sufficient for a cosmological
model to produce the correct expansion history; it must pass observational constraints
linked to inhomogeneities. The modeling and calculation of inhomogeneities will con-
sequently occupy a large fraction of this thesis. In growing neutrino quintessence, the
situation is even more involved. The expansion history is not decoupled from the evo-
lution of perturbations. There is a decisive backreaction, which needs to be taken into
account.

In this section, we will recall all necessary theoretical concepts and techniques that
will be used in subsequent chapters. In the early Universe, in particular for understand-
ing the CMB, one is in the lucky position that perturbations can be treated linearly,
Sec. 2.2.1. Once, under the influence of the gravitational attraction or extra forces,
the linear approximation breaks down, a switch to a nonlinear treatment is in order,
Sec. 2.2.2. In our case, the backreaction of the inhomogeneities is essential. Finally,
we present the well-established N -body technique to actually calculate the nonlinear
growth of inhomogeneities in Sec. 2.2.3. This technique will be used, adapted, and
enhanced in later chapters.

2.2.1 Linear perturbations

In linear perturbation theory, quantities A (e. g. energy densities) are decomposed into
an average background value Ā(τ) only depending on time and a perturbation δA(x)
depending on space and time. One assumes δA(x)≪ 1 such that expressions in δA
can be linearized, neglecting all higher orders. Before we go into the details, we note
three immediate technical advantages of this approach:

1. When averaging a linear expression f (A) ≈ f (Ā) + f ′(Ā)δA, the perturbation
term drops out because δA vanishes on average. In particular, if applied on
Einstein’s field equations, the averaged field equations will again give the simple
Friedmann equations. Stated differently, their is a background evolution inde-
pendent of perturbations; there is no backreaction effect. One can study the
evolution of perturbations δA on a known background.

2. Spatial derivatives ∇δA(x) are related to mere multiplications ikδA(k) in Fou-
rier space. In linear equations, different modes k, k′ do not couple. We move
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from differential equations to algebraic equations.

3. By the assumption of (statistical) isotropy, the evolution equations for the per-
turbations will not depend on the direction of the mode k but only on the abso-
lute value |k|. Consequently, the four-dimensional problem in (τ, x) is reduced
to a two-dimensional problem in (τ, |k|).

Linear perturbation theory on the expanding spacetime was developed by Lifschitz
(1946) who already introduced the so-called synchronous gauge still widely used today.
Important progress was made by a clear understanding of gauging and the introduc-
tion of a gauge-invariant formalism (Bardeen, 1980). A comprehensive and influential
review article is due to Kodama and Sasaki (1984). We will, instead, mainly stick to
the notations and the presentation of Mukhanov et al. (1992), a later review with an
emphasis also on quantum perturbations (Mukhanov and Chibisov, 1981). For a ped-
agogical introduction, see Bertschinger (2001), for a comprehensive collection of main
formulae, we refer to Ma and Bertschinger (1995).

Scalar metric perturbations

We start by considering the metric tensor gµν in linear perturbation theory,

gµν = ḡµν +δ gµν . (2.49)

We wish to consider perturbations as functions on the background spacetime, which
is given by ḡµν . We will thus use the background metric ḡµν for lowering and raising
indices and for the definition of covariant derivatives.

Rather than keeping δ gµν as ten independent functions (due to symmetry δ gµν =

δ gνµ), it is useful to start by classifying different sorts of metric perturbations. It is
straightforward to collect the possibilities in which scalar, vector, and tensor quantities
can enter into δ gµν . Four scalars φ, ψ, B , and E can be part of δ gµν . A general scalar
metric perturbation (Mukhanov et al., 1992) then is

δ g00 =−2a2ψ, δ g0i = δ gi0 =−a2B,i , δ gi j =−2a2
�
φδi j − E,i j

�
(2.50)

equivalent to the line element

d s2 = a2
�
−(1+ 2ψ)dτ2− 2B,i dτ d x i +

�
(1− 2φ)δi j + 2E,i j

�
d x i d x j

�
. (2.51)

From the evolution equations of linear perturbations, it can be shown that only scalar
metric perturbations lead to the growth of cosmic structure. Tensor perturbations de-
couple as gravitational waves and vector perturbations decay (Mukhanov et al., 1992).
Hence, it is sufficient for us to only consider scalar perturbations.
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Gauges

So far, we pretended that the split between background and perturbations was un-
problematic. Yet, on a perturbed spacetime, there is no canonical way to define a
background. Instead, many ways of splitting the spacetime into background and per-
turbations work equally well. They are related to each other by gauge transforma-
tions. Mathematically, these transformations correspond to infinitesimal changes in
the (background) coordinates used to label points on the spacetime manifold,

xµ 7→ x̃µ = xµ+ ξ µ. (2.52)

Even an unperturbed scalar quantity A= Ā would gather a perturbation after such a
transformation, A(x + ξ ) = A(x) + ξ λ∂λA(x). In the same way, a perturbation could
be gauged away by an appropriate opposite coordinate transformation. This is a pos-
sible area of confusion, which is resolved by formalizing the concept of gauges and by
introducing gauge-invariant quantities.

Under a gauge transformation (2.52), the metric tensor transforms as

gµν 7→ g̃µν =
∂ xα

∂ x̃µ
∂ xβ

∂ x̃ν
gαβ, (2.53)

which can be linearized in ξ µ and be rewritten for the perturbations (Mukhanov et al.,
1992):

δ gµν 7→Ýδ gµν = δ gµν − ξ λ∂λ ḡµν − ḡλν∂µξ
λ− ḡµλ∂νξ

λ. (2.54)

Decomposing the spatial components ξ i = ηi + δ i j∂ j ζ into a divergence free part,

∂iη
i = 0, and the derivative of a scalar valued function ζ , we can ultimately rewrite

Eq. (2.54) for the scalar metric perturbations (Mukhanov et al., 1992):

φ̃=φ+
a′

a
ξ 0, ψ̃=ψ−

a′

a
ξ 0− ξ 0′, B̃ = B + ξ 0+ ζ ′, Ẽ = E + ζ , (2.55)

where primes denote partial derivatives with respect to conformal time τ. The Bardeen
potentials Ψ and Φ are combinations of the scalar metric perturbations, which are
gauge-invariant,

Ψ≡ψ+
1

a

�
a(B − E ′)

�′
, Φ≡φ−

a′

a
(B − E ′). (2.56)

For practical calculations, apart from conceptual studies, the gauge-invariant for-
mulation of cosmological perturbation theory has never become the standard. The
synchronous gauge, for historical reasons due to its early invention (Lifschitz, 1946)
and due to minor numerical advantages, is still the most widely used gauge in so-called
Boltzmann codes for calculating linear perturbations and CMB anisotropies, namely in
CMBfast and Camb (Seljak and Zaldarriaga, 1996; Zaldarriaga et al., 1998; Lewis et al.,
2000; Lewis and Bridle, 2002), although some codes provide facilities for other gauges
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(Doran, 2005; Doran and Müller, 2004; Lesgourgues, 2011a,b). It sets ψ = B = 0. In
this way, δ g00 = δ g0i = δ gi0 = 0, hence the name ‘synchronous’ — the time compo-
nents of the metric are unperturbed. This does not entirely fix the gauge freedom. In
Camb, a specific synchronous gauge is chosen, namely such that the velocity perturba-
tion of cold dark matter vanishes.

The second very frequently used gauge is the conformal Newtonian or longitudinal
gauge setting B = E = 0. This does not only completely fix the gauge freedom, it has
several important advantages. First, the remaining scalar metric fluctuations φ and
ψ are then identical to the gauge-invariant Bardeen potentials Φ and Ψ. Second, in
the Newtonian limit, Φ and Ψ both reduce to Newton’s gravitational potential. This
is very useful when mixing general-relativistic perturbation theory with Newtonian
physics, e. g. when linear perturbation theory is matched to a Newtonian N -body
calculation. In general, we will prefer the conformal Newtonian gauge and use its line
element

d s2 = a2
�
−(1+ 2Ψ)dτ2+ (1− 2Φ)d x2

�
. (2.57)

For later reference, we collect the resulting Christoffel symbols

Γ0
00
=

a′

a
+Ψ′, Γ0

0i
= Γ0

i0
= ∂iΨ, Γ0

i j
=

�
a′

a
(1− 2(Ψ+Φ))+Φ′

�
δi j , (2.58)

Γi
00
= ∂iΨ, Γi

0 j
=

a′

a
δ i

j
−Φ′δ i

j
, Γi

j k
=−

�
∂kΦδ

i
j
+ ∂ jΦδ

i
k

�
+ ∂iΦδ j k . (2.59)

Evolution of linear perturbations

If we define the left-hand side of Einstein’s equations as the Einstein tensor Gµν ≡
Rµν −Rgµν/2, the linearly perturbed equations may be written as

Ḡµ
ν = T̄ µ

ν and δGµ
ν = δT µ

ν , (2.60)

where the first equations are the usual Friedmann equations. For the perturbations
(Mukhanov et al., 1992), we choose the conformal Newtonian gauge, which simplifies
the general expressions, and find

δG0
0 =

2

a2

�
−∆Φ− 3

a′

a

�
Φ′+

a′

a
Ψ

��
, (2.61)

δG0
i =

2

a2
∂i

�
Φ′+

a′

a
Ψ

�
, (2.62)

δG i
j =

2

a2



 

2

�
a′

a

�′
+

�
a′

a

�2!
Ψ+

a′

a
Ψ′+Φ′′+ 2

a′

a
Φ′−

1

2
∆(Φ−Ψ)


×

δ i
j
+

1

a2
∂i∂ j (Φ−Ψ). (2.63)
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The (scalar) perturbations of the energy-momentum tensor (Mukhanov et al., 1992)
are written as

δT 0
0 =−δρ, (2.64)

δT 0
i = (ρ̄+ p̄)vi , (2.65)

δT i
j = δ p δ i

j
+Σi

j , (2.66)

with the density perturbation δρ (we will often use the density contrast δ ≡ δρ/ρ in-
stead), the peculiar velocity vi , the pressure perturbationδ p , and the anisotropic shear
Σi

j , Σ
i

i = 0. If we work with the linearized Einstein’s equations, we will transform
them into Fourier space (Ma and Bertschinger, 1995) where they read

k2Φk + 3
a′

a

�
Φ′

k
+

a′

a
Ψk

�
=−

a2

2
δρk , (2.67)

k2

�
Φ′

k
+

a′

a
Ψk

�
=

a2

2
(ρ̄+ p̄) ik · vk , (2.68)

Φ′′
k
+

a′

a
(Ψ′

k
+ 2Φ′

k
)+

 
2

a′′

a
−

a′2

a2

!
Ψk +

k2

3
(Φk −Ψk) =

a2

2
δ pk , (2.69)

k2(Φk −Ψk) =
3a2

2
(ρ̄+ p̄)σk , (2.70)

with the scalar anisotropic shear perturbation σk defined by

(ρ̄+ p̄)σk ≡−
 

ki k j

k2
−

1

3
δi j

!
Σi

k j
. (2.71)

The expression ik ·vk might give the wrong impression of the above equations depend-
ing on the direction of k. One can, however, express the peculiar velocity in terms of
a scalar velocity perturbation, kvk ≡ ik · vk .

Although the perturbed part of Einstein’s equations completely determines the evo-
lution of perturbations, it will prove useful to explicitly use the automatically satisfied
energy-momentum conservation equation ∇νT µν = 0. We introduce the short-hands
w ≡ p̄/ρ̄ (the equation of state already known from the dynamics of expansion) and
the sound speed c2

s
≡ δ pk/δρk (Ma and Bertschinger, 1995) and get

δ ′
k
=−(1+w)

�
kvk − 3Φ′

k

�
− 3

a′

a

�
c2

s
−w

�
δk , (2.72)

v ′
k
=−

a′

a
(1− 3w)vk −

w ′

1+w
vk +

c2
s

1+w
kδk − kσk + kΨk . (2.73)

The last term in the second equation is the Newtonian gravitational attraction ∝∇Ψ.
Note that these equations refer to the density and velocity perturbation of the full
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energy-momentum tensor of the cosmic fluid. In practice, one will instead decom-
pose the cosmic fluid into its different components with special properties (such as
known equation of state and sound speed). If the components are only coupled to each
other via gravity, then they individually satisfy the energy-momentum conservation
equation and, accordingly, also Eqs. (2.72) and (2.73) above. If there is an additional
coupling, the energy-momentum conservation equation and thereby the perturbation
equations are modified.

Spectra and random fields

Given initial perturbations at some conformal time τ1 at all positions in space, the evo-
lution equations for linear perturbations allow the propagation of these perturbations
to any other conformal time τ2. In practice, it is more convenient to look at this from
another perspective. First, the evolution equations are independent of the direction
of the Fourier mode k, so it seems more appropriate to only evolve the equations for
varying absolute value k = |k|. Second, since the equations are linear, the evolution
will not depend on the amplitude of the initial perturbations. We shall now see how
to exploit these thoughts.

Formally, defining a vector ya
k
whose components a are all the scalar perturbation

variables introduced above, the evolution equations may be written in the form

d ya
k

dτ
=M ab

k
(τ) y b

k
(τ) (2.74)

with a matrix M ab
k
(τ) depending on time and the absolute value k = |k|. Note that

different modes do not couple, the matrix product is only taken over the different
perturbation variables. This differential equation is formally solved by applying a time
evolution operator

F ab
k
(τ1→ τ2) = T exp

∫ τ2

τ1

dτ M c d
k
(τ) (2.75)

with the time ordering operator T . If this matrix is known for all k, any initial
perturbation at τ1 can be evolved to τ2 simply by applying this operator on ya

k
(τ1).

The Boltzmann codes typically used to evolve the linear equations, however, do not
calculate the full matrix F ab

k
(τ1→ τ2). Rather, they reduce the necessary information

to a vector by reducing the freedom we have in the initial perturbations ya
k
(τ1). Typi-

cally, we choose adiabatic conditions where the entropy perturbation between any two
components vanishes. A choice of the type of initial conditions means to write

ya
k
(τ1) = η

a αk(τ1), (2.76)

where αk(τ1) is scalar valued, and η
a contains the information relating different com-

ponents to each other. From a linear code, one thus typically obtains solutions equiv-
alent to the vector F ab

k
(τ1 → τ2)η

b . Multiplying them with the initial scalar valued
field αk(τ1) eventually yields the final perturbation variables ya

k
(τ2) at τ2.
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Cosmological models are not only applicable to a particular realization of primor-
dial perturbations encoded in αk(τ1). Such a concrete realization cannot be theoreti-
cally predicted. Rather, the inflationary theory predicts statistical properties of these
primordial perturbations, namely their two-point correlation

¬
αkα

∗
k′

¶
= (2π)3 Pprim(k)δ

3(k− k′). (2.77)

Although the perturbed Universe is no longer homogeneous and isotropic, what we
have assumed here is statistical isotropy (statistical averages cannot depend on direc-
tion). In this sense, the notions of homogeneity and isotropy also apply to the, strictly
speaking, inhomogeneous Universe. We call Pprim(k) the power spectrum of primordial
perturbations.

The two-point correlation contains all the statistical information if the field α is a
Gaussian random field. This is suggested to be a very good approximation according
to observations (Bennett et al., 2012; Ade et al., 2013d); there are no clear observa-
tional hints for primordial non-Gaussianity. The condition for a random field fk to be
Gaussian are given by

¬
fk1
· · · fk2n

¶
=
∑

pairings

∏
pairs i , j

D
fk i

fk j

E
, (2.78)

¬
fk1
· · · fk2n+1

¶
= 0. (2.79)

All averages with an odd number of points vanish, and all averages with an even num-
ber of points reduce to two-point correlators (Weinberg, 2008). Since all cumulants
above the first two vanish, the probability distribution for the real and complex parts
of every fk is indeed a Gaussian probability distribution. Stated differently, the abso-
lute value | fk | is Gaussian and its phase is (uniformly) random,

p(| fk |) =
1

q
2π
¬
| fk |2

¶ exp


−

| fk |2

2
¬
| fk |2

¶

 . (2.80)

We shall use this later to generate initial conditions for αk . Of course, the above
expression for the probability distribution p becomes ill-defined in the limit where the
two-point correlator is a Dirac delta. In practice, we will discretize the fields moving
from a Dirac delta to a Kronecker delta.

In addition to their role for initial conditions, two-point correlators are an essential
tool to confront cosmological models with observational data, but also to analyze and
to understand the evolution of cosmological perturbations. For perturbation variables
δAk and δBk , we generally define the power spectrum

¬
δAk δB∗

k′

¶
= (2π)3 PδAδB (k)δ

3(k− k′). (2.81)

If δAk and δBk denote the same perturbation variable, PδAδB is the (auto-correlation)
power spectrum, otherwise it is called the cross-correlation power spectrum. Let us
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consider for now the auto-correlation spectrum and thus omit the index δAδB . Since
the Dirac delta carries the unit of volume, the power spectrum is not dimensionless. It
is often useful to define a dimensionless spectrum by

∆2(k) =
2π2

k3
P (k). (2.82)

This quantity allows for an intuitive interpretation. If we roughly relate the Fourier
mode to a real scale R, k 7→ R ∼ 1/k, the dimensionless spectrum ∆2(k) is typically
comparable to the variance σ2

R
of the perturbation variable averaged in a sphere of

radius R,

σ2
R
=

®�∫
d 3y WR(x − y)δA(y)

�2
¸

, (2.83)

where WR is chosen to be a top hat spherical window function of radius R. Note that,
due to statistical homogeneity, this definition is independent of the point x .

2.2.2 Nonlinear regime

Once one of the dimensionless spectra — this will be the cold dark matter density
perturbation (auto-correlation) spectrum ∆2

c
(k) — has grown to order unity, linear

perturbation theory becomes problematic. Beyond linear theory, the evolution equa-
tions for different modes k will couple such that once ∆2

c
(k) has become large for one

(typically large) k, this will have an effect on other scales as well. In the case of cold
dark matter, this is of importance for precision calculations but not essential for un-
derstanding large-scale perturbations. In growing neutrino quintessence, however, the
spectrum ∆2

ν (k) of neutrino density perturbations becomes large even on very large
scales. Linear perturbation theory breaks down completely.

Hence, we have to go beyond the linear approximation. A fully nonlinear treatment
of general relativity, as needed, e. g., for the collisions of black holes, can fortunately
be avoided. The metric perturbations Φ and Ψ will remain small, and we will still be
able to work with the linearly perturbed line element (2.57). The nonlinear treatment
will thus focus on an appropriate description of the energy-momentum tensor. In this
section, we will content ourselves with the introduction of a few basic concepts mainly
following the presentation of (Bernardeau et al., 2002). The main task will in the end
be numerical.

For the understanding of nonlinear cold dark matter clustering, it is sufficient to
go to the Newtonian limit: slowly varying gravitational potentials ( i. e. |Φ′| ≪ |∇Φ|),
subhorizon scales (distances are assumed to be small against the Hubble scale), nonrela-
tivistic particles (thereby no anisotropic shear perturbation and Φ=Ψ). Furthermore,
we will assume that the backreaction of the perturbations on the background is neg-
ligible. All these simplifications will become problematic or even invalid in growing
neutrino quintessence.
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Phase space and Eulerian dynamics

The hydrodynamical perturbation variables, i. e. the density perturbation δρ(x) and
the peculiar velocity v(x), do not carry the full information of the cold dark matter
distribution. Instead, they have already averaged out the ‘microscopic’ motion of the
particles. A full description of cold dark matter particles requires the phase-space dis-

tribution function f (x , p) = f (τ, x i , p j ), where we use p0 =
Æ

p2+m2. Its evolution
can be calculated from the continuity equation in phase space, which follows from
particle conservation,

d f

dτ
=
∂ f

∂ τ
+
∂ ( f x ′ i )

∂ x i
+
∂ ( f p ′

j
)

∂ p j

= 0. (2.84)

The canonical momentum variable in the expanding Universe is given by p j = amv j ,
and its time derivative is given by the Newtonian equation of motion

p′ =−am∇xΨ, (2.85)

whereby we can rewrite the continuity equation to

∂ f

∂ τ
+

p

am
·∇x f − am∇xΨ ·∇p f = 0, (2.86)

which is often called the Vlasov equation (Bernardeau et al., 2002) after a similar ap-
proach in plasma physics. The function f depends on time and the six coordinates of
phase space. A direct numerical solution is therefore inappropriate. The N -body simu-
lation method samples the phase-space distribution f with a finite number of particles
and evolves them directly according to the equation of motion. The advantage com-
pared to a six-dimensional grid is that the method automatically focusses on regions
where many particles are located, i. e., where the density is high.

The transition to the language of Eulerian hydrodynamics is achieved by averag-
ing out the microscopic motion of the particles. The energy density ρ, the peculiar
velocity v, and the stress tensor σi j appear as moments of the phase-space distribution,

∫
d 3 p f (τ, x , p) = ρ, (2.87)

∫
d 3 p

p j

am
f (τ, x , p) = ρ v j , (2.88)

∫
d 3 p

pi p j

(am)2
f (τ, x , p) = ρvi v j +σi j . (2.89)

We stop here with the second moment of f . This relies on the hope that there will be
some hierarchy predicting that the additional higher-order tensors of higher moments
are small compared to the first moments and can be set to zero or parameterized effec-
tively. Taking the zeroth and first moments of the continuity equation (2.86) yields
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the real-space continuity equation for the energy density and the Euler equation for
the peculiar velocity,

ρ′ =−∇ · (ρv) , (2.90)

v ′ =−
a′

a
v − v ·∇v −∇Ψ−

1

ρ
∂ j (ρσi j ). (2.91)

In order to close these equations, a parameterization for σi j is needed. One may in-
troduce pressure and viscosity coefficients (Bernardeau et al., 2002). Recalling the def-
inition of σi j , we see that it is a measure of the variance of the microscopic velocities.
Denoting the average momentum of the particles located at the same position x by p̄ j ,
we get from Eq. (2.89):

σi j =

∫
d 3 p
(pi − p̄i )(p j − p̄ j )

a2m2
f (τ, x , p) = ρ

¬
vmicro,i (x)vmicro, j (x)

¶
f

, (2.92)

defining the microscopic velocity vmicro as the difference between the total and the
peculiar velocity of the particle. We shall later see that the stabilization of nonlin-
ear structures is linked to a balance between this microscopic velocity dispersion and
attractive forces. An ad-hoc ansatz for σi j will thus not be appropriate for studying
nonlinear structure formation until the stabilization of structures. In growing neu-
trino quintessence, a detailed treatment of stable neutrino structures will be crucial
for the understanding of the model’s cosmological evolution. For this reason, we will
not go into the details of semi-analytical methods for nonlinear structure formation or
perturbation theory. Many approaches can be found in the recent literature (cf., e. g.,
Crocce and Scoccimarro, 2006; McDonald, 2007; Jeong and Komatsu, 2006; Matarrese
and Pietroni, 2007; Pietroni, 2008). Since they include approximations whose errors
can hardly be estimated analytically, their accuracy is investigated by a comparison
with numerical N -body simulations (Carlson et al., 2009).

Backreaction

Cosmological backreaction is the influence of perturbations on the expansion of the
background. So far, we have assumed the Friedmann equations to be valid for the
background on which perturbations evolve. Formally, this means that we have used
the FLRW metric to define the background Einstein tensor on the left-hand side of
Einstein’s equations. We now formalize this by means of volume averages. Let 〈A〉
denote the average of a scalar quantity A in a very large cosmological domain D ,

〈A〉 ≡
∫

D
d 3 x
p−g A(x)

∫
D

d 3 x
p−g

. (2.93)

We expect this expression to converge for very large D such that the concrete domain
will not matter. For vectors and tensors, one would, in principle, need to be more
careful to preserve their transformation properties. We shall neglect this subtlety for
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our discussion. The FLRW metric then is the average 〈gµν〉 of the perturbed metric.
Our approach to evaluate the background evolution may be stated as the ansatz

Gµν (〈gαβ〉) = 〈Tµν 〉. (2.94)

Formally averaging over Einstein’s field equations, however, would have given the av-
erage 〈Gµν (gαβ)〉. Obviously, the two ways of averaging are identical if perturbations
are treated linearly. If nonlinear perturbations are present, we have

Gµν (〈gαβ〉) 6= 〈Gµν (gαβ)〉. (2.95)

The correct way of obtaining the evolution of the averaged background quantities
would be to first evolve the full equations and to average in the end. The simplified
method widely used consists in first averaging and then evolving. These processes are
visualized in Fig. 2.3. The study of the cosmological backreaction effect is motivated

evolveaverage

average
evolve

Figure 2.3: Schematic, expanding cosmological domain with metric perturbations.

by the question up to which precision averaging and time evolution commute.
Until today, one of the main motivations to investigate cosmological backreaction

is the idea that nonlinear structure formation significantly modifies the observed ex-
pansion of the Universe, perhaps even removing the need for a cosmological constant,
dark energy, or a modification of gravity (Rasanen, 2010; Marra, 2008; Buchert and
Rasanen, 2012; Ellis, 2011). There are even claims that the backreaction effect could
not only account for the accelerated expansion but replace even dark matter and the
inflaton (Buchert, 2010). These ideas seem very optimistic if not implausible since
the inhomogeneity of spacetime is expressed by the scalar potentials Φ and Ψ, which
are, even during nonlinear structure formation, small. One would naively expect only
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small corrections to averaged quantities if the backreaction is properly taken into ac-
count. This is also supported by careful estimates (Wetterich, 2003; Behrend et al.,
2008).

We will in few words review the standard approach of treating cosmological backre-
action, namely Buchert’s equations (Buchert, 2000; Rasanen, 2006). Defining a local
expansion rate Hloc quantifying the expansion of a small, local volume, Buchert (2000)
derives a local version of the Friedmann equations (2.19) and (2.20) for a universe filled
with dust, i. e. p = 0,

H 2
loc
+ Ḣloc =−

ρ

6
−
Σ2

3
, (2.96)

H 2
loc
=
ρ

3
−
(3)R

6
+
Σ2

3
, (2.97)

together with the energy-momentum conservation equation

ρ̇+ 3Hlocρ= 0. (2.98)

The quantityΣ2 originates from the fact that the local expansion is, in general, anisotropic
and described by an expansion tensor Θi j , which is decomposed into an average expan-
sion Hloc and a traceless part Σi j , namely Θi j = Hloc gi j +Σi j . Buchert (2000) then

defines the scalar Σ2 ≡ Σi
j Σ

j
i/2. Performing the spatial averaging, Eq. (2.93), yields

Buchert’s equations describing the evolution of the background in the presence of in-
homogeneities,

ä

a
=

d〈Hloc〉
d t

+ 〈Hloc〉2 =−
〈ρ〉
6
+
Q
3

, (2.99)

�
ȧ

a

�2

= 〈Hloc〉2 =
〈ρ〉
3
−
〈(3)R〉

6
−
Q
6

, (2.100)

d〈ρ〉
d t
=−3

ȧ

a
〈ρ〉, (2.101)

Q = 6
�
〈H 2

loc
〉− 〈Hloc〉2

�
− 2〈Σ2〉, (2.102)

which specialize to the usual Friedmann equations forQ = 0.
Although we do not adopt the assumption that the correction terms to the Fried-

mann equations are quantitatively important, we do recognize the conceptual insights
provided by a careful averaging procedure. Buchert’s equations show that, in prin-
ciple, the expansion can be modified due to inhomogeneities. In growing neutrino
quintessence, this effect will be very important. It will, however, not be due to metric
perturbations but rather visible in the coupling term between the dark energy scalar
field and the cosmic neutrinos.

2.2.3 The N -body technique

In the presence of nonlinear clustering, the only comprehensive, established, and reli-
able method is an N -body based evolution of the Vlasov equation (2.86) by numerical
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algorithms. In the cosmological concordance model, this is required only for under-
standing small scales whereas large scales are still reasonably well described by linear
perturbation theory or mild nonlinear corrections (Bernardeau et al., 2002). Stable,
virialized, highly nonlinear structures are not well understood (semi-)analytically al-
though they are accurately described by computer simulations. For instance, computer
simulations show an approximately universal dark matter halo profile, the Navarro-
Frenk-White (NFW) profile due to Navarro et al. (1996) of the form

ρ(r ) =
ρ0

r
R

�
1+ r

R

�2
. (2.103)

So far, no generally accepted analytical argument has been given that predicts this uni-
versal profile.

In growing neutrino quintessence, we will see that the cosmological evolution, even
if we consider only the expansion history or large-scale perturbations, will crucially
depend on the properties of virialized neutrino structures. Due to relativistic neutrino
velocities, the physics of these structures is even more involved than for cold dark
matter halos. If even the latter are not well understood analytically, we may not expect
to quantitatively describe the cosmological evolution of growing neutrino quintessence
without numerical simulations.

The N -body simulation method for nonlinear clustering consists in sampling the
phase-space distribution function f (τ, x , p) with a finite number Np of effective par-
ticles. Rather than evolving the Vlasov equation (2.86) explicitly, one evolves the
equations of motion (2.85) for each effective particle together with the gravitational
potential Ψ. Here, we will briefly review the N -body method for the simulation of
cold dark matter. We will later extend the concept to also simulate neutrino clustering
in growing neutrino quintessence.

The basic principles of N -body simulations are known to astronomers since a long
time, and the main techniques still in use today have matured in the 1990s and are
summarized by Bertschinger (1998). In terms of numerical performance and accuracy,
considerable progress has been made since then until today’s state-of-the art simula-
tions (Kuhlen et al., 2012) like gadget (Springel, 2005). Our presentation will follow
Bertschinger (1998); Knebe (2004); Klypin (2000); Trenti and Hut (2008). Examples of
N -body simulations including extra forces that have some similarities with the simula-
tion methods developed for growing neutrino quintessence include Zhao et al. (2010);
Li and Barrow (2011). The question whether the N -body method really converges to a
full solution of the Vlasov equation in the limit of a very large number of particles is
not entirely settled (Marcos, 2008) but will be assumed in this thesis.

For Np nonrelativistic particles, the energy-momentum tensor (2.41) vanishes except
for the 0-0 component

ρ(x) =−T 0
0 =

Np∑
p=1

mp δ
3(x − x p ). (2.104)
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2 Cosmology

This density field sources the Newtonian gravitational potential, which is, in the New-
tonian limit, given by Poisson’s equation

∆Ψ(x) =
a2

2
ρ(x). (2.105)

The so-called particle-mesh (PM) method solves this equation on a grid {x i} of Nc
(comoving) cells. The obvious alternative is to calculate the force on particle p directly
as a sum over two-body forces,

F p =−
1

8π

∑
p 6=q

mp mq

a2 |x p − xq |3
(x p − xq ), (2.106)

called the particle-particle (PP) method. At first sight, this method seems very in-
elegant from a numerical perspective. Solving Poisson’s equation after a Fast Fourier
Transform (FFT),−k2Ψk = a2ρk/2, requires only O (Nc logNc ) numerical operations.
Moreover, the gradients are obtained essentially for free in Fourier space since they are
given by a mere multiplication with ik. The direct two-body force summation instead
will require O (N 2

p
) operations. Still, the immediate advantage of the PP method is that

the force resolution is not limited by the grid resolution. The method automatically
focusses on regions where more particles are located, providing numerical precision
where it is needed.

The combination of both methods can provide both numerical performance and a
high force resolution. These hybrid methods are called particle-particle particle-mesh
(P3M) techniques. The large-scale forces are calculated on a grid whereas short-range
forces are obtained from a particle summation. The sophistication then lies in the
matching between these two regimes. Another option to boost the PP method is to
group particles together thereby reducing the number of summations.

In a pure PMmethod, the particles effectively have the size of a grid cell since smaller
scales are left unresolved. In a PP method, the particles are, in principle, point-sized,
which leads to possible divergences in the force law. One thus has to introduce a
physical smoothing scale ∆r again fixing some effective particle size.

The grid resolution in the PM method can be improved dramatically by switching
from a fixed grid to an adaptive mesh. Thereby, the resolution can be refined where
needed. The disadvantage is that the FFT is restricted to a Cartesian grid. One has
to move to more complicated and numerically more expensive methods for solving
Poisson’s equation.

A simpler method to at least moderately increase the effective resolution is a subgrid
interpolation. A particle is then not assigned to the closest grid point. Instead, its mass
is distributed to the eight surrounding grid points in a linear manner (cloud in cell,
CIC, method). Analogously, the gravitational force is trilinearly interpolated from the
eight surrounding grid points to the precise location of the particle.

We now turn to the evolution equations for the particles, which read

x ′
p
= v p , v ′

p
=−∇Ψ(x p ) (2.107)
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2.2 Inhomogeneities

where primes again denote derivatives with respect to conformal time τ and Ψ is a
function of all particle positions and masses {x p , mp}. In principle, one could solve
these differential equations for all particles by standard techniques like Runge-Kutta
rules. These, however, require several evaluations in each step such that particle po-
sitions and velocities must be saved several times. Given the large amount of data, it
is much more convenient to employ an integration scheme where the positions and
velocities need only be known once. A standard technique is the leapfrog integration
scheme which iterates

x p (τ+∆τ/2) = x p (τ)+ v p (τ)
∆τ

2
, (2.108)

v p (τ+∆τ) = v p (τ)−∇Ψ(x p (τ+∆τ/2))∆τ, (2.109)

x p (τ+∆τ) = x(τ+∆τ/2)+ v p (t +∆τ)
∆τ

2
. (2.110)

This simple scheme is a second-order symplectic integrator and thus very well adapted
to the needs of a cosmological N -body simulation.
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3 The cosmological constant problem

A positive cosmological constant starting to dominate the energy budget of the Uni-
verse today,

ρΛ = 3H 2
0
ΩΛ, ΩΛ ≈ 2/3, (3.1)

is compatible with all major observational probes (Bennett et al., 2012; Tegmark et al.,
2006b; Percival et al., 2010; Oguri et al., 2012; Riess et al., 2007; Kowalski et al., 2008;
Ade et al., 2013c). Its simplicity on the one hand and its success in passing observational
constraints on the other are solidifying its role in the emerging ‘standard model’ of
big bang cosmology (Bartelmann, 2010b). And Λ is not a stranger to theorists. The
cosmological constant was introduced as a parameter to general relativity by Einstein
(1917), shortly after the theory’s formulation. Furthermore, a non-vanishing energy
density of the vacuum is expected in quantum field theories. Such an energy density
would constitute a contribution to the cosmological constant. Why should we be
dissatisfied with this successful story?

Besides the general importance in science to question the standard paradigms and to
investigate alternatives, there is a particular reason why many cosmologists mistrust
the cosmological constant scenario. The cosmological constant, expressed in particle
physics units, is extremely small compared to fundamental mass scales,

ρ1/4
Λ
∼ 10−12GeV≪MP , MEW, MQCD, (3.2)

with the (reduced) Planck scale MP ≈ 2× 1018 GeV, the electroweak scale MEW ≈
2× 102 GeV, and the QCD scale MQCD ≈ 2× 10−1 GeV. As we shall argue in Sec. 3.1,
we would expect the above scales to enter the value of Λ. One might argue that such
expectations are not predictions. Our fundamental theories, e. g., do not predict the
particle masses or coupling constants in the StandardModel of particle physics. Rather,
these quantities are inferred from experiments. The same is true, in principle, for
the cosmological constant. The difference lies in the concept of naturalness. Let us
illustrate this with the help of a very simple and well-known example: the self-energy
of the electrostatic field around an electron interpreted as a mass

m =
1

2

∫

|x |>re

d 3 x |E |2 =
e2

8πre

, (3.3)

evaluated according to the rules of classical electrodynamics. For a radius re → 0, this
quantity diverges. We will see a similar behavior for the expected value of the cos-
mological constant if we assume quantum field theory to be valid on arbitrarily small
scales. To be intellectually honest, we have to assume that classical electrodynamics

42



breaks down, at the latest, where quantum effects become important. In order to ob-
tain a scale, we choose the Compton wavelength and set re ∼ 1/m. From this, we
obtain the expectation

e2 ∼ 8π or α≡
e2

4π
∼ 1. (3.4)

This very rough estimate is not in good agreement with the actual value α ≈ 1/137,
but the disagreement is not dramatic. The scale seems to be ‘natural’. The case for the
cosmological constant is extremely different. We conclude: Although our theories do
not provide a prediction for Λ, we should still be puzzled by its tiny value.

Weinberg (1987, 1989) noted, however, that — looking at it from a different perspec-
tive — we should not be too astonished that the cosmological constant is tiny. If it was
much larger than the observed value, its energy density ρΛ = const. would have over-
taken the matter density ρm ∝ a−3 much earlier in cosmic history. In a Λ-dominated
universe (ΩΛ ≈ 1), linear (subhorizon) matter perturbations decay (Amendola and
Tsujikawa, 2010, p. 303) as

d 2δm

(d loga)2
+ 2

dδm

d loga
≈ 0. (3.5)

If the linearly evaluated density contrast has not, before this decay, reached the critical
value δm ≈ 1.69 (Weinberg, 2008, p. 424), where the nonlinear evolution decouples the
collapsing overdensity from the background expansion, no nonlinear structures and,
eventually, no galaxies, stars, and planets will have formed. Such a universe would be
empty of observers. There would be no physicist feeling comfortable with the more
natural value of Λ. With this argument, Weinberg (1987) calculated, for a positive
cosmological constant, the rough upper bound

ρΛ ® 103ρΛ,obs, (3.6)

three orders of magnitude larger than the observationally inferred value. Although
there still is a considerable discrepancy, this estimate is much closer to the observa-
tion than the estimate from fundamental mass scales. Recent refined and very careful
calculations suggest a bound much closer to the observational value, both for positive
and negative cosmological constants (Tegmark et al., 2006a). As a conceptual improve-
ment, this calculation is not searching for a strict upper bound for Λ compatible with
the evolution of life but merely derives a probability distribution with the help of the
anthropic principle discussed later.

At first, this merely is an observation but no explanation. Yet, there is a scenario in
which the above observation is promoted to a potential explanation for the tiny value
of Λ. Such a scenario is:

1. there is a physical mechanism giving rise to the existence of many universes1;

1We keep the expression ‘universe’ vague here. In the context of inflation, we will use the term to
denote pocket universes within the inflationarymultiverse. These pocket universes are just independently
evolving regions within the same space-time manifold. In the terminology of Tegmark (2007), they form
a level I multiverse
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3 The cosmological constant problem

2. these universes differ (among, possibly, other things) in the value of the cosmo-
logical constant;

3. in some universes, the cosmological constant is such that it allows for the exis-
tence of observers.

On a global level, there would be a distribution of different values of Λ depending
on the particular universe. From this ‘bird perspective’, there would not necessarily
be a cosmological constant problem. However, all observers measuring values of the
cosmological constant would find values consistent with their existence (anthropic se-
lection). The cosmological constant problem would be present seen from this ‘frog
perspective’ (adopting the terminology from Tegmark, 2007). The idea is illustrated in
Fig. 3.1. Remarkably, a multiverse scenario of the required type is known to cosmol-

. . .Λ3 Λ4Λ2Λ1

✗✗ ✗✓

Figure 3.1: Illustration of the anthropic selectionmechanism. Only in those realizationswith a sufficiently
small value of the cosmological constant, observers can exist (indicated by a check mark).

ogists, namely eternal inflation (Guth, 2007), which generically arises in a large class
of inflationary models (Vilenkin, 1983). Since the theory of inflation is very success-
ful and part of the current standard paradigm in the science of cosmology (cf., e. g.,
Weinberg, 2008; Mukhanov, 2005), the discussion of eternal inflation and its possible
implication for the cosmological constant is in order. We will briefly describe this rea-
soning in Sec. 3.2.2. The simplest and most predictive models of inflation, however,
use a scalar field — the inflaton φ — evolving under the rules of quantum field theory
and general relativity, assuming that the cosmological constant Λ is irrelevant for the
description of inflation. For this to work, the primordial cosmological constant would
need to be much below the energy scale of inflation. A severe problem for the tentative
explanation of the small observed value of Λ with the help of eternal inflation is the
measure problem. In our suggestive illustration, Fig. 3.1, it is tempting to just compare
the number of cases with a sufficiently small Λ (allowing for the existence of observers)
with the number of cases where Λ is too large. Yet, we will see that, as these numbers
go to infinity (which is the case for eternal inflation), this naive procedure does not
work, and there is no canonical solution.

Although the anthropic line of argument is, with the above-mentioned restrictions,
logically viable, it leaves open many questions. It essentially states that very unlikely
coincidences can happen because we have to take into account the selection bias due to
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our role as observers. Still, there might be a fundamental mechanism actually explain-
ing the coincidence physically rather than statistically. Usually, the two approaches,
anthropic selection on the one side and physical explanation on the other, are regarded
as opposites. We wish to emphasize, as a side note, that this need not be the case.
It is possible to study both ideas in a unified framework. Let us assume that there
is a possible mechanism adjusting the cosmological constant dynamically (to, say, ex-
actly zero). We further assume that the theory space populated by eternal inflation is
large enough to allow for both, universes where the cosmological constant is adjusted
to zero and universes where the cosmological constant is essentially a free parameter.
Then, one could apply anthropic selection to find out where a random observer is
most likely located, see Fig. 3.2. The observers located in universes where the physical

. . .Λ3 Λ4Λ2Λ1

✗✗ ✗✓

. . .

✓ ✓ ✓ ✓

randommechanism

0 0 0 0

Figure 3.2: A physical mechanism adjusting Λ could, in a unified picture, be preferred by anthropic selec-
tion.

mechanism works could outnumber the observers living in the rare universes where
Λ is sufficiently small just by chance. In this case, we would expect (according to the
self-sampling assumption and the principle of mediocrity introduced in Sec. 3.2.1) to
belong to the first group. Studying such a scenario is beyond the scope of this the-
sis. We just note that, even with anthropic selection, physical explanations rather than
pure coincidences can turn out more successful. This line of argument is not only
applicable to the cosmological constant problem, and it tells us that, even if the an-
thropic principle is taken seriously, it is still essential to look for physical explanations
for apparent coincidences.

We will not discuss the innumerable mechanisms that have been proposed to resolve
the cosmological constant problem (for some incomplete surveys, cf. Martin, 2012;
Amendola and Tsujikawa, 2010; Carroll, 2001; Garriga and Vilenkin, 2001; Weinberg,
1989, and references therein). One particular mechanism, however, is of interest for the
work in this thesis and should not pass unmentioned. It not only leads to a vanishing of
the cosmological constant, it also gives rise to a dark energy scalar field, the cosmon ϕ,
and motivates some of its properties, such as a flat and asymptotically vanishing scalar
potential V (ϕ) (Wetterich, 1988, 2009, 2010). Higher-dimensional dilatation symme-
try implies a vanishing of the cosmological constant in four dimensions. The spon-
taneously broken dilatation symmetry then gives rise to a Goldstone boson, which
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3 The cosmological constant problem

is — in the presence of a dilatation anomaly — in fact a massive pseudo-Goldstone
boson. This will be the dark energy scalar field. For a comprehensive discussion of
the mechanism and cosmologically relevant questions, we refer the reader to Wetterich
(2008).

3.1 Expected contributions to Λ

If we wish to take the cosmological constant problem seriously, we should first clar-
ify what known physics tells us about the cosmological constant. We shall see that
the cosmological constant problem cannot be reduced to a problem of solely general
relativity or of solely quantum fluctuations in quantum field theory. In fact, the cos-
mological constant problem is linked to several distinct effects. These include the free
parameter of general relativity (the ‘true’ cosmological constant), contributions from
the quantum vacuum, but also contributions from classical field configurations linked
to phase transitions in the early Universe. In the following, we write the observable,
effective value of the energy density of the cosmological constant as

ρΛ = ρΛG
+
∑

i

ρ(i )
vac

(3.7)

with a parameter ΛG from gravity and various contributions ρ(i )
vac

to the vacuum en-
ergy. We will discuss the latter in the following subsections. As mentioned in Sec. 2.1.2,
it is not clear which value to expect for the purely gravitational parameter ΛG . If gen-
eral relativity was a fundamental theory of gravity, a vanishing of ΛG would seemmost
natural as it makes the theory both simpler and scale free. If we interpret general rela-
tivity instead as an effective theory, we must be prepared that all terms compatible with
the symmetries of the theory can be present. In this case, ΛG 6= 0 may be expected.
If we further assume that the fundamental theory, presumably a quantum theory of
gravity, includes the Planck scale as a fundamental scale, one might even find it natural
to expect ρΛG

∼M 4
P
already at this stage.

We shall see that, although no predictions can be made, the natural scales expected to
enter the contributions ρ(i )

vac
by far exceed the observationally inferred value (Bennett

et al., 2012; Ade et al., 2013c) of the cosmological constant,

ρΛ ∼ 10−47GeV4, (3.8)

if we attribute the observed accelerated expansion and the missing energy density for
the observed spatial flatness of the Universe to a cosmological constant Λ.

By our discussion of the (well-known) expected contributions to the cosmological
constant, we wish to emphasize two points that often remain unsaid in purely cosmo-
logical treatments. First, we want to clarify that the cosmological constant problem is a
hard problem. Since the expected contributions to the cosmological constant originate
from very different effects, it is not sufficient to hope that one particular contribution,
e. g. the quantum fluctuations in quantum field theory, drops out. Potential solutions
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3.1 Expected contributions to Λ

to the cosmological constant problem must address several distinct effects at once. Ad-
hoc solutions are probably not enough.

Second, if we take the known physics of the vacuum seriously and thus expect contri-
butions to the cosmological constant, the alluring idea to just postulate a vanishing of
the cosmological constant is problematic. In the presence of various contributions that
add up to the observable value of Λ, the value Λ= 0 is not better from a fine-tuning per-
spective than the tiny positive value assumed in the cosmological concordance model.
Instead, phenomenological models that work with Λ = 0 as a working hypothesis —
this concerns works on dark energy and modified gravity — rely on the assumption of
a physical mechanism leading to a vanishing of the cosmological constant. As long as
the ideas for potential mechanisms of this kind are speculative, the phenomenological
models based on them are speculative as well. It is tempting to argue that, although
unknown, we must expect that a physical cancellation mechanism leading to a tiny or
vanishing cosmological constant is at work. Doran and Jäckel (2002) write:

“After all, this mechanism must be there, for the observed cosmological
constant is far less than the naively calculated O (M 4

P
).”

Although there obviously is some cancellation in the value of Λ, there does not need to
be a cancellationmechanism. We shall see that within eternal inflation, e. g., a tiny value
of Λ could find a potential statistical explanation related to the anthropic principle.

In our brief discussion of the different contributions ρ(i )
vac

, we will closely follow
Martin (2012), a pedagogical and fairly comprehensive review.

3.1.1 Quantum fluctuations

The expectation that the cosmological constant should be comparable to the Planck
scale, ρΛ ∼ M 4

P
, is typically attributed to the zero-point energy in quantum field theo-

ries (cf., e. g. Copeland et al., 2006). Let us briefly recall the standard argument. We
choose a very simple quantum field theory, namely a free massive scalar field χ with
Lagrangian

Lχ =−
1

2
∂ λχ∂λχ −

1

2
m2χ 2 (3.9)

in Minkowski space. The argument does not fundamentally change if we go to fermions
or vector bosons, or if we consider field theory on curved spacetime (Martin, 2012).
As usual, we may expand the field in Fourier space

χ (x) =
∫
fd k
�

ake i k·x + a†

k
e−i k·x� (3.10)

with the invariant momentum-space measure

fd k ≡
d 4k

(2π)4
2πδ(k2+m2)Θ(k0) =

d 3k

(2π)3 2ωk

(3.11)
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and ωk ≡ k0 =
p

k2+m2. We impose the commutation relations

[ak ,ak′] = (2π)
3 2ωk δ

3(k− k′) (3.12)

for the annihilation and creation operators. The energy density of the scalar field is
given by the HamiltonianHχ obtained by the Legendre transform

Hχ =πχ̇ −Lχ (3.13)

with the canonical momentum π = ∂Lχ /∂ χ̇ = χ̇ . If |0〉 denotes the vacuum state,
i. e. ak |0〉 = 0, the vacuum expectation value of the Hamiltonian can be interpreted as
the zero-point energy of the field χ ,

ρχ
vac
= 〈0|Hχ |0〉=

1

(2π)3
1

2

∫
d 3kωk . (3.14)

In the language of Feynman diagrams, this expression occurs as a vacuum bubble. For
the propagator

D(x1− x2) = 〈0|T χ (x1)χ (x2)|0〉=
i

(2π)4

∫
d 4k

ω2
k

e i k·(x1−x2), (3.15)

we obtain for x1 = x2

D(0) =
i

(2π)4

∫
d 4k

k2+m2
=−

1

(2π)3
1

2

∫
d 3k

ωk

(3.16)

after performing the integration over the time component (cf. Martin, 2012). The
structure of this expression is very similar to Eq. (3.14). It is directly related to the
trace of the energy-momentum tensor (Martin, 2012), i. e.

D(0) =
1

m2
〈0|
�

Tχ
�λ
λ
|0〉. (3.17)

The trace of the energy-momentum tensor is
�

Tχ
�λ
λ
= −ρχ + 3 pχ = −4ρχ if we

assume the equation of state w =−1 for the vacuum energy. With the Feynman rule

D(x1− x2) = (3.18)

and this result, the vacuum energy (3.14) may also be written as

ρχ
vac
=−

m2

4
(3.19)
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3.1 Expected contributions to Λ

More complicated vacuum bubbles cannot occur in our free theory. The value of this
vacuum energy is divergent unless we impose an ultraviolet cutoff on the integral in
Eq. (3.14). The integral is taken over ωk d 3k ∼ k3d k. Integrating up to infinity would
mean that the field theory is valid up to arbitrary energy scales, which is clearly not
expected. A reasonable cutoff scale M would be the energy scale up to which we would
trust our field theory. Then

ρχ
vac
≈

1

4π2

∫ M

0

k2d k
Æ

k2+m2 =
M 4

16π2
. (3.20)

The highest cutoff scale we could justify is the Planck scale M = MP since above this
scale, the effects of quantum gravity are expected to become important. But also if we
chose a much lower scale M , even known particle physics scales, Eq. (3.20) would give
huge values compared to the observed value (3.8). This argument faces a loophole.
The quantum field theory Hamiltonian is not uniquely determined by the classical
Lagrangian (3.9). In principle, we have the freedom to reorder the operators without
changing the corresponding classical field theory. In the case of normal ordering where

the creation operators a†

k
are always left from the annihilation operators ak , the zero-

point energy always vanishes because of ak |0〉= 0 for the vacuum state.
The result ρχvac ∼ M 4 is suggestive on dimensional grounds but not obvious since

the field theory itself contains a mass scale m. This is similar in more complex settings
where several mass scales exist. Furthermore, a simple cutoff is not the only way to
treat infinities. Before we claim that the above estimates are valid, we should check
what alternative regularization schemes reveal. A simple cutoff should not be taken
too seriously. For example, Martin (2012) notes that such a cutoff breaks Lorentz in-
variance and, as a consequence, even leads to a wrong equation of state for the vacuum
energy.

First, the integrals can become finite if we move from four dimensions D = 4 to
an arbitrary parameter D . The physical case D = 4 will then be a pole of otherwise
well-defined expressions. In this dimensional regularization, the scalar field is expanded
as

χ (x) =
∫

d D−1k

(2π)D−12ωk

�
ake i k·x − a†

k
e−i k·x� , (3.21)

and the repetition of the arguments (Martin, 2012) above yields the vacuum energy in
D dimensions,

ρχ
vac
=

µ4−D

(2π)D−1

1

2

∫
d D kωk =

p
πM 4

Γ(−D/2)

Γ(−1/2)

 
m2

4πµ2

!D
2

, (3.22)

where the mass parameter M is needed for the correct mass dimension in D 6= 4 dimen-
sions. The gamma function Γ(z) has poles for all negative integers including zero. In
particular, the above result is, again, divergent for D = 4 because of the term Γ(−D/2).
Still, we can make an expansion around the pole, i. e. consider Γ(−2+ǫ) and eventually
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obtain

ρχ
vac
≈−

m4

64π2

 
1

ǫ
+

3

2
− γ − log

m2

4πM 2

!
, (3.23)

where γ is the Euler-Mascheroni constant. In an MS renormalization approach (essen-
tially removing the pole at D = 4), Martin (2012) proceeds to eventually obtain

ρχ
vac
=

m4

64π2
log

m2

M 2
. (3.24)

The striking feature of this result is that the right mass dimension is now no longer
given by a cutoff scale M but rather by the mass m of the field χ . A second mass scale
M only enters logarithmically.
We will not comment on whether the above result is more realistic than the estimate

obtained by a simple cutoff. Instead, we just note that one cannot make a prediction for
the value of the cosmological constant based on quantum field theory. Similarly, quan-
tum electrodynamics does not predict the observed electron mass or charge. These
values are obtained by experiments. Particle physics theories can, however, give us
fundamental energy scales. If a measured energy scale is extremely far away from all
relevant fundamental scales, we may find this unnatural. This is the case for the cosmo-
logical constant. Since it is generally expected that the quantum field theory formalism
works until around the Planck scale, there should be fields for which the natural ul-
traviolet cutoff is indeed the Planck scale MP . Of course, a more careful discussion
should consider fermionic fields and vector bosons or also (broken) supersymmetry.
For this, we refer the reader to Martin (2012), but note here that the problem does not
fundamentally change.

3.1.2 Classical configurations, phase transitions

Concerning the quantum fluctuations, a widespread speculation is to assume that they
do not gravitate. Amendola and Tsujikawa (2010, p. 129) write about the vacuum
energy from quantum fluctuations, cf. Eq. (3.14):

“Whether or not the vacuum energy we have calculated [. . . ] really con-
tributes to dark energy is still a debatable problem. Usually this energy
can be eliminated by the normal ordering prescriptions in quantum field
theory or it can be normalized to any value.”

Amendola and Tsujikawa (2010) then go on to introduce a symmetry to general rela-
tivity where the vacuum energy completely decouples from gravity.

We shall now see that the quantum vacuum fluctuations are not the only problematic
contribution to the cosmological constant. Instead, there are also classical field config-
urations, e. g. from the Higgs field in the Standard Model after electroweak symmetry
breaking. We will consider this example more closely, following Martin (2012).
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Let us first collect the main formulae describing the Standard Model Higgs that we
shall need. The Higgs field is the doublet

φ=
1
p

2

�
φ+

φ0

�
(3.25)

of two complex scalars. Its Lagrangian Lφ can be written in terms of φ, φ†, and the
gauge-covariant derivative ∇:

Lφ =−
�
∇λφ

�†∇λφ−V (φ†,φ) (3.26)

where V is chosen to be

V (φ†,φ) =
µ2

2
φ†φ+

λ

4

�
φ†φ

�2
+V0 (3.27)

with an effective mass squared µ2 and a parameter λ > 0. We have added a constant V0

accounting for our ignorance of the total energy scale. Since the Higgs field is charged
under SU(2)×U(1), the gauge-covariant derivative is given by

∇µφ=
�
∂µ+ i gW a

µτ
a + i g ′YφBµ

�
φ (3.28)

with the generators τa = σa/2 of SU(2) (σa are the Pauli matrices), the electroweak
gauge bosons W a

µ and Bµ, coupling constants g , g ′, and the weak hypercharge Yφ.

We choose a gauge such that φ+ = 0 and φ0 is real. Furthermore, we introduce the
vacuum expectation value

v = 〈0|φ0|0〉 (3.29)

in this gauge. Occasionally, we will interpret the potential as a function of this vacuum
expectation value, V =V (v).

Before the electroweak phase transition, the effective mass squared µ2 is positive.
The minimum of the potential is at the vacuum expectation value v = 0. After the
phase transition, the effective mass squared is at a negative value µ2 < 0, and the mini-
mum of the potential is shifted. The new vacuum expectation value is

v =

s
−

2µ2

λ
6= 0. (3.30)

In the Higgs Lagrangian (3.26), after writing out the gauge-covariant derivatives, this
vacuum expectation value gives rise to effective mass terms for the W ± and Z bosons,

MW =
1

2
|g |v, MZ =

1

2

Æ
g 2+ g ′2 v, (3.31)

where these bosons are linear combinations of W a
µ and Bµ. This is the well-known

mechanism by which the Higgs field provides masses for these vector bosons.
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The potential at the new vacuum expectation value is

V (v) =V0−
µ4

4λ
, (3.32)

whereas it was V (0) = V0 before. From this, we already see that the vacuum energy
— just due to the change in the potential energy of the vacuum expectation value, not
regarding vacuum bubbles — changes by an amount

∆ρvac =−
µ4

4λ
. (3.33)

So, even if the vacuum is tuned to zero in the high-energy limit, we will encounter a
non-vanishing cosmological constant after the electroweak phase transition.

Assuming that the recently detected boson at the LHC (Aad et al., 2012; Chatrchyan
et al., 2012) indeed is the Standard Model Higgs, the parameters µ and λ are known
experimentally, i. e. they are linked to the Higgs mass mH and to the vacuum expecta-
tion value v . We shall briefly recall these results. First, introducing the field H as the
perturbation around the vacuum expectation value,

φ0 = v +H , (3.34)

and inserting into the potential, we obtain

V (φ,φ†) =V0−
λv4

16
+

1

2

λv2

2
H 2+

λv

4
H 3+

λ

16
H 4 (3.35)

and hence a mass term with mH = λv2/2 corresponding to the measured Higgs mass.
Furthermore, for the correct low-energy limit for the weak interaction (Martin, 2012),
one can establish

v2 =
1

p
2 G2

F

(3.36)

with Fermi’s constant GF . The numerical values are

v ≈ 246 GeV and mH ≈ 125 GeV (3.37)

according to the discovery at the LHC (Aad et al., 2012; Chatrchyan et al., 2012). This
gives, by Eq. (3.33), a change in the vacuum energy of

∆ρvac ∼−108 GeV4. (3.38)

This is huge compared to the observed value (3.8). If there is no physical mechanism
solving the cosmological constant problem, we can draw a few conclusions from this
result. First, the vacuum energy changes with time, i. e. during phase transitions in
the early Universe. Second, assuming Λ = 0 at one time, e. g. in the late Universe,
introduces a non-zero cosmological constant at early times. Or if the cosmological
constant is, for some reason, fundamentally zero or close to zero (in the high-energy
limit), it will not remain so in the course of the cosmic evolution.
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3.2 Anthropic argument

3.2.1 The anthropic principle

As scientists, trying to find universal laws of nature, we should be endowed with a
healthy mistrust against anthropocentric ideas reminding us of failed ancient ideas like
the Ptolemaic system of the cosmos. Did not Copernicus teach us that our location in
the cosmos is not singled out? Yet, Carter (1974) states that

“[. . . ] our location in the universe is necessarily privileged to the extent of
being compatible with our existence as observers.”

He introduces the term anthropic principle into cosmology. In its ‘weak’ form, it reads

“[. . . ] what we can expect to observe must be restricted by the conditions
necessary for our existence as observers. (Although our situation is not
necessarily central, it is inevitably privileged to some extent.)”

Logically, we may regard this as quite obvious or even a tautology, rendering it harm-
less rather than irritating. The anthropic principle as a mere statement is not fruit-
ful. Instead, it should properly be interpreted as a guiding principle how to reason
in situations where observation selection effects are important. In this way, anthropic
reasoning can be made precise, both conceptually and quantitatively, with the help
of adequate tools from probability theory. This has been clarified in some generality
by Bostrom (2002, and references therein), restricted, however, to the case of finitely
many considered observers. We shall see that the cosmologically relevant case is not
that simple since countably infinite universes are generated in eternal inflation; this
leads to the complicated measure problem (Winitzki, 2009). The connection to proba-
bility theory was established independently by cosmologists working on the measure
problem and by philosophers analyzing the anthropic principle. The general idea may
be called self-sampling, i. e. regarding us as observers or as civilization as a random
sample from all observers in the multiverse. Vilenkin (1995), describing how to make
quantitative predictions in the presence of eternal inflation, formulates the principle of
mediocrity:

“The Principle of Mediocrity suggests that we think of ourselves as a civi-
lization randomly picked in the metauniverse.”

From the philosophers’ side, in more generality, the strong self-sampling assumptionwas
proposed (Bostrom, 2002):

“One should reason as if one’s present observer-moment were a random
sample from the set of all observer-moments in its reference class.”2

2The strong self-sampling assumption is wrongly attributed to Bostrom. It is the result of applying
the idea of self-sampling to observers at a time, called observer-moments. This was first proposed by Hal
Finney in an online discussion group. Bostrom (2002) provides a comprehensive discussion of the idea,
its various criticisms, and implications.
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These principles suffer from a clear limitation. Once the set of considered observers
becomes countably infinite, the prescriptions are ill-defined. This is because there is
no uniform probability distribution on a countably infinite set. It is unclear with
which probability distribution the above-mentioned self-sampling should be described.
The absence of a canonical choice lies at the heart of the measure problem in eternal
inflation (Winitzki, 2009).

Unfortunately, there is still a lot of confusion about the anthropic principle and its
use. Bostrom (2002, p. 6) summarizes in a historical note:

“The term ‘anthropic’ is a misnomer. Reasoning about observation selec-
tion effects has nothing in particular to do with homo sapiens, but rather
with observers in general. [. . . ] When John Barrow and Frank Tipler
introduced anthropic reasoning to a wider audience in 1986 with the pub-
lication of The Anthropic Cosmological Principle, they compounded the ter-
minological disorder by minting several new ‘anthropic principles’, some
of which have little if any connection to observation selection effects. A
total of over thirty anthropic principles have been formulated [. . . ]. Not
surprisingly, the result has been some pretty wild confusion concerning
what the whole thing is about.”

We emphasize that, for the discussion of the measure problem and the anthropic ex-
planation for the small value of the observed cosmological constant, the anthropic
principle is only used in the form of the self-sampling assumption or the principle of
mediocrity.

3.2.2 Eternal inflation and the measure problem

We shall see that eternal inflation is fairly generic in inflationary models. The multi-
verse scenario with a distribution of cosmological constants mentioned in the begin-
ning of this chapter, cf. Fig. 3.1, might thus be realistic if we assume inflation to be cor-
rect. Yet, it is questionable whether this scenario can be scrutinized in the traditional
way. First, the energy scale of inflation (typically assumed to be around the GUT
scale), is hopelessly far away from the capabilities of accelerators so that we might
never be able to conclusively test the physics of inflation in the laboratory. Rather,
we are restricted to cosmological probes such as the cosmic microwave background
(Bennett et al., 2012; Ade et al., 2013c) and, in principle, gravitational wave astronomy
(Schutz, 1999; Grishchuk et al., 2001). Second, we will present the measure problem
telling us that there is no canonical way to infer, with the help of the principle of medi-
ocrity, statistical predictions from eternal inflation on, e. g., the most likely observed
value of Λ. Third, if we want to use eternal inflation as part of a potential explanation
of why the observed late-time cosmological constant is so far away from the Planck
scale, we should be able to describe the process of eternal inflation in the presence of a
large cosmological constant ρΛ ∼ M 4

P
in the first place. Obviously, we cannot expect

this to be done in the framework of general relativity and quantum field theory. So,
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for our technical discussion, we will assume that the primordial cosmological constant
is well below the energy scale of inflation. This still requires considerable fine-tuning.

Slow-roll inflation

Let us start with a brief reminder on the standard picture of inflation. Detailed in-
troductions can be found in recent textbooks (e. g. Mukhanov, 2005; Weinberg, 2008;
Lyth and Liddle, 2009). We will follow the presentations by Ayaita (2009); Weinberg
(2008). The success of inflationary theory lies in its solution to a couple of puzzling
problems in cosmology. Without inflation, the answers to at least some of the follow-
ing questions would be unclear:

1. Why is the homogeneous and isotropic FLRW metric a good approximation on
large scales?

2. Why is the CMB so isotropic — i. e., why was the primordial plasma, apparently,
in equilibrium — although angular scales ¦ 1◦ today were superhorizon scales at
recombination?

3. Why do we not observe stable ‘exotic relics’ like magnetic monopoles that we
expect from high-energy theories beyond the Standard Model?

4. Why does the large-scale spatial curvature vanish (up to current observational
uncertainties) such that the Universe can be described by a flat FLRW metric?
According to the Friedmann equations, the importance of curvature grows with
time as compared to matter or radiation. Even a small primordial curvature
should eventually become important.

5. What is the origin of the observed nearly scale-invariant spectrum of perturba-
tions in the metric and the energy density?

The most striking of the above questions presumably is the horizon problem linked
to the isotropy of the CMB. The expectation of exotic relics is uncertain due to our
ignorance of the correct high-energy theory; and the flatness of the observed Universe
might be due to some unknown fundamental reason rather than being fine-tuned.

The horizon problem is due to the fact that, in a universe filled with only radia-
tion and matter, the particle horizon is comparable to the Hubble scale, while the
latter never decreases. Fluctuations in the CMB separated by several Hubble scales at
recombination (several angular degrees today) were not within one particle horizon
and could never establish equilibrium. A solution to this problem would be a phase
of accelerated expansion during which the particle horizon grows very fast. Such a
period in cosmic history is called inflation. It was first studied by Starobinsky (1979);
Kazanas (1980). Guth (1981) then made two decisive contributions. First, he showed
that a period of accelerated expansion can be obtained in high-energy theories. Second,
he described that inflation indeed solves some of the above-mentioned puzzles. He did
not consider the question of primordial perturbations. This point was clarified shortly
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afterwards (Mukhanov and Chibisov, 1981; Chibisov andMukhanov, 1982; Lukash and
Novikov, 1982) with the help of an adequate quantum theory of cosmological pertur-
bations.

The technically simplest models of inflation are so-called ‘new inflation’ models
(Linde, 1982; Albrecht and Steinhardt, 1982). A single scalar field, the inflaton φ,
with a canonical action and a scalar potential V (φ), gives rise to the accelerated ex-
pansion. The mechanism is analogous to the description of dark energy as a scalar
field which we will consider in more detail in Sec. 3.3.1. We note than an equation of
state wφ ≈ −1, and consequently an exponential expansion a(t ) ∝ exp(H t ), occurs if

φ̇2≪V (φ) (hence the term slow roll) and if the Universe is dominated by the inflaton,

H 2 ≈
1

3

 
φ̇2

2
+V (φ)

!
≈

1

3
V (φ). (3.39)

The slow-roll condition requires

ǫ≡
1

2

�
V,φ

V

�2

≪ 1 and η≡
V,φφ

V
≪ 1, (3.40)

for the so-called slow-roll parameters ǫ and η. This tells us that the potential V (φ)
must be sufficiently flat in order for the friction term ∝ 3H φ̇ in the equation of mo-
tion to effectively reduce the kinetic energy. In order to finish inflation, the field φ
must reach a steeper part of the potential where the slow-roll conditions are no longer
satisfied. A prototypical potential V (φ) is illustrated in Fig. 3.3 (cf. also Winitzki,
2009; Guth, 2000). The number of ‘e -foldings’ by which the Universe has expanded

φ1 φ2 φ

V

Figure 3.3: Schematic, prototypical potential V (φ) for new inflation. The field exhibits slow roll between
some starting value φ1 and the end of slow roll at φ2. In the end, the field is frozen in the
minimum.

during inflation then is

N = log
a2

a1

≈−
∫ φ2

φ1

dφ
V (φ)

V,φ(φ)
. (3.41)
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Quantum perturbations

To this classical analysis, we have to add quantum perturbations. These provide the
seed for the classical perturbations described in Sec. 2.2.1 but also generically lead to
never-ending, eternal inflation. We briefly review the aspect of perturbations following
Mukhanov et al. (1992) in order to complete our picture of the evolution of perturba-
tions.

The classical slow-roll trajectory is denoted byφ0(τ). In the conventions of Sec. 2.2.1,
the perturbation δφ is related to the gauge-invariant quantity δφgi = δφ+φ

′(B−E ′),
which falls together with the perturbation δφ in the Newtonian gauge where B = E =
0. Together with the gravitational (Bardeen) potential Φ, this forms the gauge-invariant
potential

v = a
�
δφgi+ zΦ

�
(3.42)

with the short-hand z ≡ φ′
0
/(a′/a). In the action of the scalar field minimally cou-

pled to gravity, the perturbation variable v is kept up to quadratic order (for linear
equations of motion),

S = S0+
1

2

∫
d 4x

�
v ′2− ∂i v∂ j vδ

i j +
z ′′

z
v2+ · · ·

�
, (3.43)

where we have omitted a total divergence. The perturbation v is then promoted to a
scalar quantum field with canonical commutation relations with its conjugate momen-
tum ∂L /∂ v ′. This can be done similarly for the second Bardeen potential Ψ.

The quantum-to-classical transition can be described by the theory of decoherence
(Zeh, 1970). This theory has been applied to the quantum perturbations generated
during inflation (Laflamme and Matacz, 1993; Polarski and Starobinsky, 1996; Kiefer,
2000; Castagnino and Lombardi, 2003; Campo and Parentani, 2004; Martin, 2005;
Kiefer and Polarski, 2009) in quite different ways. It seems justified to calculate the
statistical properties of the classical perturbations, i. e. the two-point correlators 〈· · · 〉,
from the vacuum expectation value of the corresponding quantum operators 〈0| · · · |0〉.
Working out the equations of motion (Mukhanov, 2005, p. 355), one arrives at the
dimensionless auto-correlation spectrum of the classical metric perturbation Ψ,

∆2
Ψ
(k)∝

 
ρφ

1+wφ

!

k≈a′/a

, (3.44)

where the expression is, for each k, evaluated when k leaves the Hubble horizon. Dur-
ing slow roll, φ0 evolves only slowly whereby ρφ ≈ const. and wφ ≈ −1. If these ap-

proximations were exact, the dimensionless spectrum were constant ( scale invariant).
This is an explanation for the observed nearly scale-invariant spectrum of primordial
perturbations. Furthermore, we can even explain why the spectrum is not exactly scale
invariant but has a spectral tilt described by the spectral index nS (Mukhanov, 2005,
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p. 347):

nS − 1≡
d log∆2

Ψ

d log k
≈
�

1− 3(1+wφ)−
a

a′
d

dτ
log(1+wφ)

�

k≈a′/a

. (3.45)

When inflation approaches the end of the slow-roll regime near φ2, cf. Fig. 3.3, the
equation of state grows due to the larger kinetic energy. In this way, we naturally
expect a tilt given by nS < 1. This is also seen in observations where nS ≈ 0.96-0.97 is
found (Bennett et al., 2012; Ade et al., 2013c). This is one of the great successes of the
theory of inflation.

Eternal inflation

The quantum perturbations δφ of the inflaton have far-reaching consequences. We
have already discussed that they quickly decohere to give classical perturbations of the
field. In this way, random ‘jumps’ are superimposed on the deterministic slow-roll
evolution φ0. This becomes important when the quantum jumps are of the same or-
der or even typically larger than the deterministic evolution. In this case, the field
φ can always step back and go up the potential, delaying the point φ2 where infla-
tion ends. Our discussion of eternal inflation follows the comprehensive review by
Winitzki (2009).

The size of the random jumps can be quantified as

〈0|φ(t +∆t )2|0〉− 〈0|φ(t )2|0〉 ≈
H 3

(2π)2
∆t . (3.46)

If the quantum perturbations decohere within a time scale comparable to the Hubble
scale ∆t ∼ 1/H , the random steps have a size of δφ ∼ H/(2π). This has to be
compared with the classical solution, which evolves, in one Hubble time 1/H , by

φ̇0/H . During slow-roll, the classical equation of motion originating from the scalar
field action (cf. Sec. 3.3.1 below) may be approximated as

3H φ̇0 ≈−V,φ ≈−6H
d H

dφ
, (3.47)

where we have neglected φ̈0 against V,φ and used, in the last step, approximation (3.39)

saying that the energy density is essentially given by the potential energy V (φ0) of the

inflaton. Equation (3.47) allows us to evaluate the classical evolution φ̇0/H within one
Hubble time. The superimposed quantum jumps dominate if

H 2≫
�����
d H

dφ

����� . (3.48)

This condition is closely related to the slow-roll condition. In the extreme case of

φ̇= 0, the Hubble scale would remain constant and the above condition would always
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be satisfied. Therefore, it is not surprising that such a regime is fairly generic in models
of slow-roll inflation. It is called a fluctuation-dominated regime.

Although it is clear that a random walk of the above type can lead to a substantial
delay until the end of inflation, φ¦φ2, is reached, it is also clear that the random walk
will eventually reach this point with certainty. The fluctuation-dominated regime will
be left (we ignore possible issues at the Planck scale). Nonetheless, the reproduction
of inflating regions can give rise to eternal inflation in the sense that there will always
be inflating regions although every region, individually, will ultimately stop inflating.
During the deterministic slow-roll evolution, a region amplifies its 3-volume by a factor

n ∼
a(t +∆t )3

a(t )3
∼ (1+H∆t )3 . (3.49)

If we consider steps ∆t ∼ 1/H , this is of order ∼ 101. This is the reproduction of
an inflating domain. Since regions separated by several Hubble scales evolve indepen-
dently of one another, it is not surprising that the above reproduction with individual
random walks can lead to eternal inflation. In more precise terms (Winitzki, 2009), the
presence of eternal inflation may de defined as follows. Finitely many initial regions
of horizon size evolve into infinitely many regions of horizon size, which reach the
end of inflation. In this sense, we speak of a multiverse consisting of (pocket) universes
reaching the end of inflation at different times.

Mathematically, the randomwalk can be described in complete analogy to Brownian
motion. The full evolution of the inflaton may be written as

φ̇= φ̇0+N (3.50)

with a Gaussian random noise N =N (x) described by its two-point correlator

Cφ(x , x ′) = 〈N (x)N (x ′)〉, Cφ(x , x) =

�
H

2π

�2

, (3.51)

where the last equation follows from the random jump size δφ ∼ H/(2π). The inde-
pendence of regions separated by several Hubble scales is expressed by a fast decrease
of C for |x − x ′| of several Hubble scales.

The measure problem

We assume that some fundamental constants, among them (a contribution to) the
cosmological constant Λ, depend on the values of scalar fields χi , which have reached
constant values after inflation such that the fundamental constants no longer vary
much. We want to answer the question, assuming eternal inflation, which values of the
fundamental constants a randomly picked observer is most likely to find. This requires
us to find a probability distribution for the values of the scalar fields χi in our post-
inflationary universe. The cosmological constant, e. g., will depend on the potential
energies Vχi

(χi ) of these fields at their frozen values. The probability distribution for
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the expected observed values, pobs(χ ), will thus include the probability distribution
for the cosmological constant.

The transition from the ensemble theory (eternal inflation) to a probability distribu-
tion is achieved by the anthropic principle in the form of the principle of mediocrity or
the self-sampling assumption introduced in Sec. 3.2.1. Essentially, this is an application
of Bayesian probability in the schematic form

P (χ |obs) =
P (obs|χ )P (χ )

P (obs)
, (3.52)

where pobs(χ ) ≡ P (χ |obs) is the probability for the values χ = (χi ) under the condi-
tion of them being observed by adequate observers, P (χ ) is the prior probability dis-
tribution, and P (observed) is a normalization linked to the total number of observers
in the ensemble. If we use the principle of mediocrity, the observers are replaced by
civilizations. In the strong self-sampling assumption, instead, observers are replaced by
observer-moments of some reference class. The two approaches fall together under the
approximation that the relation between observer-moments and civilizations is statisti-
cally independent from the values χ and if we choose the reference class to include all
observers in the inflationary multiverse. For convenience, we shall use the principle of
mediocrity here. Following Vilenkin (1995); Winitzki (2009), we write

pobs(χ ) = P (χ )ngal(χ )Nciv(χ ) (3.53)

decomposing P (obs|χ ) into a factor described by cosmology (the galaxy number den-
sity ngal ) and a more involved factor describing how likely it is for life to develop
within gravitationally bound structures (the expected number Nciv of civilizations in
one galaxy). Since the number density of galaxies is normalized by volume, the prior
probability distribution here is the volume-weighted probability distribution for the
χi (at some specific time such as the end of inflation).

The conceptually problematic part is the prior probability distribution P (χ ). It
could easily be evaluated in the finite case where a number N of pocket universes with
3-volumes V j (where this value is defined, e. g., at the end of inflation) and scalar field

values χ ( j ) is generated. Then, we could write

P (χ )
∏

i

∆χi ≈

∑
|χ ( j )

i
−χi |<∆χi

V j

∑N
k=1

Vk

. (3.54)

When the number N of pocket universes goes to infinity and the intervals ∆χi are
sufficiently small, this expression vanishes exactly (unless the χi take the same values
in almost all pocket universes). It can then no longer be used for the probability
distribution.

At first sight, this might look like a mathematical subtlety, perhaps not crucial for
our purposes. Unfortunately, this is not the case. There is no canonical way to extend
finite expressions like Eq. (3.54) to the infinite case. Let us discuss this with more
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precision. We return, for the moment, to the finite case of N pocket universes. For
simplicity, the 3-volumes are assumed to be all equal. Equation (3.54) above is then
equivalent to performing an average of a quantity A( j ) taking values 0 or 1 on j =
1, . . . ,N :

A( j ) ∈ {0,1}, 〈A〉=
1

N

N∑
j=1

A( j ). (3.55)

The measure problem in this case is the question how to canonically extend this av-
eraging procedure to the case N → ∞. Although there is no uniform probability
distribution on the natural numbers, one is tempted to write

A :N→{0,1}, 〈A〉 ≡ lim
N→∞

1

N

N∑
j=1

A( j ). (3.56)

This definition has a severe disadvantage: it is not stable under reordering the natural
numbers. A reordering may be expressed as a permutation σ ∈ S

N
. The averaging then

depends on this ordering and should be written as

〈A〉σ ≡ lim
N→∞

1

N

N∑
j=1

A(σ( j )). (3.57)

This is not a correction but decisive. If A takes the values 0 and 1 each on infinite
points, this average can be made 0 or even 1 for adequately chosen σ . If there was some
canonical measure µ of finite mass defined on S

N
, we could define an average

〈A〉 ≡
∫

S
N

〈A〉σdµ(σ)

µ(S
N
)

, (3.58)

where the freedom we had in the ordering is averaged out. The same could be done
with an adequate left-invariantmean m on S

N
. This would exist if S

N
was an amenable

group. These two approaches are equivalent. A group is amenable if and only if there
is a (finitely additive) left-invariant probability measure µ on it. Unfortunately, in our
case, the result is negative: the group S

N
of permutations on the natural numbers is not

amenable. There is no canonical way to define an average 〈A〉, which is stable under
reordering.

It seems that our intuition given by the principle of mediocrity and the self-sampling
assumption fails in the infinite case. These conceptual problems have not entirely
intimidated cosmologists. Many researches have not shied away and, instead, proposed
various procedures to cope with the infinities occurring when one applies the principle
of mediocrity. Winitzki (2008) classifies these approaches into two categories:

1. Volume-basedmeasures correspond to our discussion above where we try to look
at the ensemble of all observers in the inflationary multiverse. With some pre-
scription, one needs to choose a finite subset of this infinite number of observers
or pocket universes. The results will, of course, depend on this prescription
leading to inherently ambiguous outcomes.
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2. Worldline-based measures restrict the reference class used in the self-sampling as-
sumption right from the start. This reference class only consists of observers
located near the worldline of a randomly chosen spatial coordinate x . This refer-
ence class is typically finite and the formal problems are not present. However,
since we have quite arbitrarily singled out a reference class, it is not clear how to
interpret the results in the terms of actual expectations.

3.3 Accelerated expansion without Λ

As an optimistic interpretation of our discussion in the preceding sections, we might
say that there is an emerging potential explanation for the small value of Λ based on the
anthropic principle. On the other hand, it has become clear that the arguments are still
vague and speculative. Perhaps even more importantly, the anthropic principle does
not, as we have noted, remove the need to search for a physical explanation beyond
merely statistical arguments. If there is a physical mechanism adjusting the value of Λ,
we might assume the simplest and most natural possibility Λ= 0.

So, from now on, we will assume that the cosmological constant is not responsible
for the observed accelerated expansion of the Universe. We assume that the cosmolog-
ical constant vanishes, does not gravitate, or that the cosmological constant is replaced
by a dynamical field in the correct effective theory. We have briefly mentioned these
— so far speculative — ideas, and even if they are considered not conclusive, it is still
very desirable to have alternative models to the cosmological concordance model. Al-
ternative models will in the end be required to guide observational efforts: they show
where to look for possible deviations from the standard scenario. At the present time
where many significant observational efforts are planned or already undertaken (Al-
brecht et al., 2006; Amendola et al., 2012; Amiaux et al., 2012; Ade et al., 2011), there
is a pressing need to explore alternative scenarios and their implications.

In this section, we shall see several possibilities to account for the late-time expan-
sion of the Universe without a cosmological constant. We will, throughout this thesis,
focus on quintessence models, which we consider as a very natural approach. In its
very early history, the Universe already experienced a phase of exponential expansion,
namely during the inflationary epoch. There, the simplest, most predictive, and suc-
cessful model is an expansion driven by a scalar field, the inflaton φ. A mechanism
that worked once could work for the late Universe as well. In this way, the late-time
accelerated expansion could be described without the need to introduce completely
new concepts to cosmology.

3.3.1 Quintessence

Explaining the late-time expansion by a scalar field, the cosmon ϕ, is done by quintes-
sence models of dark energy, introduced by Wetterich (1988); Ratra and Peebles (1988).
At the time of these early works, there was no (clear) observational evidence for a late-
time accelerated expansion. This underlines that there are good reasons to investigate
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the possible role of scalar fields in late-time cosmology.
The observational evidence for an accelerated expansion boosted the investigation

of quintessence models (cf., e. g., Huterer and Turner, 1999; Wang et al., 2000; Doran
et al., 2001; Wetterich, 2002). One of the most attractive features is that the models
can significantly reduce the fine-tuning required for the right order of magnitude of the
‘effective cosmological constant’ observed today. We shall see that the smallness of the
effective cosmological constant is, in quintessence models, a mere consequence of the
large age of the Universe.

If we find it unnatural to explain the accelerated expansion by a component with
constant and extremely small energy density, we might, at first, think of a time-
dependent cosmological constant ‘Λ(τ)’ as an alternative. Yet, general relativity treats
time and space on an equal footing whereby, conceptually, we must include the spatial
dependence. We are naturally driven to the study of scalar fields ϕ(x). Of course, in
this generality, neither the fundamental nature of this ‘scalar field’ nor its dynamics
are known. In fact, even in the cosmological constant model, we have argued that the
cosmological constant might take different values after phase transitions or in different
patches of the inflationary multiverse — the cosmological constant should therefore
properly also be described as space-time dependent. In contrast, in quintessence mod-
els, one typically considers the ‘canonical’ case, i. e. a scalar field with canonical action,
minimally coupled to gravity,

S =

∫
d 4 x

p
−g

�
R

2
−

1

2
∂ λϕ∂λϕ−V (ϕ)

�
+ Sm , (3.59)

i. e. with the Lagrangian Lϕ = −∂ λϕ∂λϕ/2−V (ϕ) and a self-interaction potential
V (ϕ). Most of the material we expose in this section can be found in reviews on
the subject (Amendola and Tsujikawa, 2010; Copeland et al., 2006; Peebles and Ratra,
2003).

The action implies the Klein-Gordon equation of motion,

∇λ∇λϕ−V,ϕ(ϕ) = 0, (3.60)

which is equivalent to the energy-momentum conservation equation

∇νT
µν
(ϕ)
= 0 for T

µν
(ϕ)
= ∂ µϕ∂ νϕ+ gµνLϕ. (3.61)

If the perturbations of the scalar field can be treated in linear approximation, which
we shall assume throughout this thesis, the Klein-Gordon equation can be split into a
background and a linear perturbation part,

ϕ̄′′+ 2
a′

a
ϕ̄′+ a2V,ϕ(ϕ̄) = 0 (3.62)

δϕ′′+∆δϕ+ 2
a′

a
δϕ′+ a2V,ϕϕ(ϕ̄)δϕ =−2a2V,ϕ(ϕ̄)Ψ− 4ϕ̄′Ψ′. (3.63)

In this section, we will only be concerned with the background evolution. We will
come back to the perturbation equation in later chapters. For now, we denote by
ϕ ≡ ϕ(τ) simply the background field.
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3 The cosmological constant problem

The scalar potential

For the expansion history, the interesting quantity is the equation of state

wϕ =
pϕ

ρϕ
=−

1

3

T i
(ϕ) i

T 0
(ϕ)0

=

ϕ′2

2a2 −V (ϕ)

ϕ′2

2a2 +V (ϕ)
. (3.64)

Let us first briefly discuss two extreme cases:

1. If the potential energy dominates, i. e. V (ϕ) ≫ ϕ′2/2a2, we obtain wϕ ≈ −1,
and the cosmon acts as an effective cosmological constant of value ρΛ,eff = ρϕ =
V (ϕ) = const.

2. In the other extreme, the kinetic energy dominates, V (ϕ)≪ ϕ′2/2a2, and we get
wϕ ≈+1. This implies a decrease of the energy density as ρϕ ∝ a−6, much faster
than matter or radiation.

We conclude that the cosmon can act as a cosmological constant or can adopt any other
equation of state between −1 and +1; which value is taken at early and at late times
will depend on the choice of the potential V (ϕ) and, in general, on the initial values of
ϕ and ϕ′.

In particular, the potential V (ϕ) can be chosen such that we just obtain the correct
late-time acceleration. It can even be tuned to mimic a cosmological constant with
arbitrary precision. There are, however, a few conditions one would like to impose on
V (ϕ) from a theoretical perspective. First, the potential should avoid or reduce the ne-
cessity of fine-tuning. If the quintessence scenario required more fine-tuning than the
cosmological constant, its theoretical appeal would have more or less gone. Second,
it is desirable to choose a potential V (ϕ) that typically arises in (to date speculative)
high-energy fundamental theories. A fairly detailed discussion of this point is given
by Amendola and Tsujikawa (2010). Third, from an observational perspective, the po-
tential must be chosen such that constraints, e. g. on the early amount of dark energy,
are satisfied (Pettorino et al., 2013; Wang, 2012; Grossi and Springel, 2009; Doran and
Robbers, 2006).

Two very prominent examples for V (ϕ) already proposed by the earliest works
(Wetterich, 1988; Ratra and Peebles, 1988), are the exponential potential

V (ϕ) =M 4 e−αϕ (3.65)

and the power-law potential

V (ϕ) =
M 4−α

ϕα
. (3.66)

For both potentials, one assumes α > 0. In case of the exponential potential, the mass
scale M is essentially arbitrary as a change of M corresponds to a mere shift in the field
value ϕ. The potentials do not have a minimum such that ϕ always rolls towards larger
values (although this rolling can become arbitrarily slow).
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3.3 Accelerated expansion without Λ

These two potentials belong to a large class of potentials with a very favorable fea-
ture: they allow for tracker solutions.3 For a wide range of initial conditions, the
evolution of the scalar field approaches an attractor thereby reducing the amount of
fine-tuning in the model (Wetterich, 1988; Ratra and Peebles, 1988; Steinhardt et al.,
1999; Zlatev et al., 1999). Since the initial values of ϕ and ϕ′ will not matter much,
the parameters M and α of the potential determine the late-time evolution completely.
We will briefly explain the tracking mechanism for the exponential potential (the argu-
ment is given, e. g., by Doran and Wetterich, 2003), which is the potential used in this
thesis. The tracker behavior explains why the energy-density of dark energy is compa-
rable to that of matter today because ρϕ follows the dominant component, ρϕ ≈ ρtot.
In particular, since the time evolution of the energy density is given by the equation
of state, the tracker solution adopts the equation of state wtot of the dominant com-
ponent (wtot = 1/3 during radiation domination, wtot = 0 during matter domination).
We illustrate the tracking mechanism in Fig. 3.4. The red line indicates the tracking

wϕ <wtot tracking solution

wϕ > wtot

log a

lo
g

V
∼

lo
g
ρ
ϕ

Figure 3.4: Schematic illustration of the tracking mechanism.

solution, ρϕ ∝ a−4 during radiation domination, ρϕ ∝ a−3 during matter domination.
Let us first discuss the region above this curve. There, the energy density and the po-
tential energy V (ϕ) are large and with them the term a2V,ϕ ∝ V (ϕ) in the equation
of motion. This accelerates the rolling of the field thereby increasing the equation of
state wϕ . With a larger wϕ, the energy density will decrease faster. In the region above

the curve, the opposite happens. The damping term 2a′ϕ′/a in the equation of motion
decelerates the rolling thereby lowering the equation of state. The energy density ρϕ
decreases slowly and catches up with the dominant component. In this way, we can
qualitatively understand the occurrence of an attractor. Of course, this argument can
be made precise (Doran and Wetterich, 2003), and the tracker solution is characterized

3Sometimes, the term tracker solution is distinguished from tracking solutions. While the first refers to
an attractor, the latter means that the solution follows the dominant component at the background level
(Steinhardt et al., 1999). We will not make this distinction here.
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by

ϕ(t ) =
2

α
log

t

t̄
(3.67)

1

2
ϕ̇(t )2 =

2

α2
t−2 (3.68)

V (ϕ(t )) =
2M 4

α2

1−wtot

1+wtot

t−2, (3.69)

leading to a fractional energy density of

Ωϕ =
3 (1+wtot)

2α2
. (3.70)

The amount of dark energy is completely determined by the parameter α.

The coincidence problem

The tracking solution of the exponential potential always follows the dominant com-
ponent. This regime has no end, i. e., there will be no dark energy domination and
hence no accelerated expansion. At first sight, this might seem as a clear disadvantage
since the possible explanation of the late-time expansion is, today, the main motivation
to consider quintessence models. We show the evolution of energy densities with an
exponential potential, α= 10, in Fig. 3.5.
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Figure 3.5: Energy densities of radiation, matter, and quintessence for an exponential potential.

The power-law potential V ∝ ϕ−α, which also allows for tracking solutions, is an
example where accelerated expansion is generated. This comes at a price. The param-
eters of the potentials have to be tuned such that the accelerated expansion sets in just
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3.3 Accelerated expansion without Λ

at the right time. This introduces a new fine-tuning problem. In standard models of
quintessence, one need not tune the theory to obtain a small energy density compara-
ble to the energy densities of the other components; the fine-tuning associated to the
cosmological constant problem is reduced. However, one needs to put in the starting
point for the accelerated expansion. This is called the coincidence problem since dark
energy domination has started in the very recent cosmic past.

From this point of view, we may interpret it as an advantage that the exponential
potential itself does not trigger the accelerated expansion by some explicit or implicit
fine-tuning. Instead, it leaves open the mechanism by which the cosmon is stopped and
a phase of dark energy domination is initiated. In the growing neutrino quintessence
model, we will explore the idea that a coupling of the cosmon to matter, in this case
to the neutrinos, is responsible for the onset of dark energy domination. Rather than
tuning the potential by hand, there will be a dynamical effect on the cosmon behaving
like an effective potential barrier, cf. Fig. 3.6. In such a scenario, the cosmon will

ϕ

V (ϕ)
dynamical barrier

Veff

Figure 3.6: Illustration of how additional physics could act as a dynamical barrier.

oscillate around the minimum of the effective potential and be essentially stopped due
to the friction term in its equation of motion.

3.3.2 Other approaches

The task of describing the accelerated expansion of the Universe without a cosmologi-
cal constant is a large area of research, not restricted to quintessence models on which
we focus in this thesis. We conclude this section by presenting a few other popular
approaches to the problem.

k -essence

Since the fundamental physics of dark energy is not known, we may assume that the
effective action of the dark energy scalar field is not canonical. It might have a non-
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3 The cosmological constant problem

standard kinetic term. For quintessence models, this possibility has been proposed
in order to leave the tracker solution (of the exponential potential) with the help of
a ‘leaping’ kinetic term (Hebecker and Wetterich, 2001). In k-essence models, one
assumes the scalar field LagrangianLϕ to include some function of the standard kinetic

term X =−∂ λϕ∂λϕ/2,
Sϕ =

∫
d 4 x

p
−gLϕ(X ,ϕ). (3.71)

This was originally studied for scalar field driven inflation (Armendariz-Picon et al.,
1999; Garriga andMukhanov, 1999) and shortly afterwards also for dark energy (Chiba
et al., 2000). The interest in k-essence models for dark energy mainly originated from
the observation that the onset of dark energy domination can be dynamically triggered
by the period of matter domination (Armendariz-Picon et al., 2000, 2001). In this way,
the fine-tuning related to the coincidence problem of standard quintessence models can
be reduced.

From the energy-momentum tensor

Tµν =
−2
p−g

δ
�p−gLϕ

�

δ gµν
=
∂Lϕ
∂ X

∂µϕ∂νϕ+Lϕ gµν , (3.72)

one can read off the expressions for the pressure pϕ = T i
i/3 and the energy density

ρϕ =−T 0
0 (at the background level) yielding the equation of state

wϕ =
pϕ

ρϕ
=

Lϕ
2
∂Lϕ
∂ X

X −Lϕ
. (3.73)

The behavior of k-essence models differs from quintessence particularly in the pertur-
bations where the k-essence scalar field has a nontrivial speed of sound. The adiabatic
sound speed c2

a
≡ p̄ ′ϕ/ρ̄

′
ϕ is given by

c2
a
≡

p̄ ′ϕ

ρ̄′ϕ
=
∂ p̄ϕ/∂ X

∂ ρ̄ϕ/∂ X
=

∂Lϕ/∂ X

∂Lϕ/∂ X + 2X∂ 2Lϕ/∂ X 2
(3.74)

using Eq. (3.73). The sound speed c2
s
≡ δ pϕ/δρϕ, related to the energy density and

pressure perturbations δρϕ and δ pϕ of the scalar field, is

c2
s
≡
δ pϕ

δρϕ
= c2

a
+

vϕ,k

kδϕ,k

�
3

a′

a
(1+wϕ)(c

2
a
−w)+w ′

�
(3.75)

with the scalar peculiar velocity perturbation vϕ and the density contrastδϕ in Fourier

space (Erickson et al., 2002). The sound speed thus depends on the Fourier mode k.
We will consider the dark energy sound speed in more detail in Chapter 4 and just
note, at this point, that k-essence perturbations can exhibit nontrivial and interesting
evolutions. The adiabatic sound speed can even exceed the speed of light although this
does not lead to violations of causality (Babichev et al., 2008).
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3.3 Accelerated expansion without Λ

Phantom dark energy

Quintessence models allow, as we have discussed, for any equation of state between
wϕ = −1 and wϕ = +1. The same is true for k-essence models if the kinetic energy

contributes positively to the energy density of the scalar field, i. e. ∂ Lϕ/∂ X > 0. From
a phenomenological point of view, this has a disappointing aspect: In the observational
search for deviations from the cosmological constant scenario, we can, with quintes-
sence, only describe the region wϕ > wΛ =−1 but the other side wϕ <−1.

A simple idea to obtain this possibility is to simply choose the ‘wrong’ sign in the
kinetic term, i. e. to writeLϕ =−X −V (ϕ). This implies the inverse equation of state
as compared to quintessence models, namely

wϕ =

ϕ′2

2a2 +V (ϕ)

ϕ′2

2a2 −V (ϕ)
(3.76)

with wϕ < −1 for ϕ′2/(2a2) < V (ϕ). We call ϕ a phantom or ghost field (Caldwell,
2002). If this is interpreted as more than a purely phenomenological parameterization,
the scenario is subject to instability concerns (Carroll et al., 2003).

Modified gravity

Although not directly related to the work presented in this thesis, it is in order to
mention another very popular approach to describe the accelerated expansion of the
Universe without a cosmological constant, namely a modification of Einstein gravity
(for recent introductions and reviews, cf. Clifton et al., 2012; Nojiri and Odintsov,
2006a,b; Carroll et al., 2005; Amendola and Tsujikawa, 2010). Rather than introducing
components to the cosmic fluid with w < −1/3 on the right-hand side of Einstein’s
equations, one can also establish an accelerated expansion by changing the left-hand
side.

The most straightforward way to find modified field equations is to return the
Einstein-Hilbert Lagrangian LG = R/2. It is constructed from the Ricci scalar R,
the simplest scalar quantity related to the curvature tensor Rµναβ. Alternative, more
complicated field equations are obtained if we include, in the action, more scalars con-
structed from Rµναβ such as RαβRαβ or RαβγδRαβγδ or if we allow for a more com-
plex functions of R than the linear termLG = R/2. The latter option is chosen in the
popular ‘ f (R) modified gravity’ approach (first introduced by Buchdahl, 1970) where
one chooses

SMG =
1

2

∫
d 4 x

p
−g [R+ f (R)] (3.77)

for the modified gravitational action, where f is some arbitrary function of R. It is
straightforward to show by variation of the action that the field equations are

Gµν +
d f

d R
Rµν −

1

2

�
f + 2∇λ∇λ

d f

d R

�
gµν −∇µ∇ν

d f

d R
= Tµν (3.78)
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with the usual general-relativistic Einstein tensor Gµν = Rµν −Rgµν/2. For f ≡ 0, the
above equations specialize to Einstein’s field equations. The early inflation model by
Starobinsky (1979) uses a quadratic function f (R)∝ R2 (for examples of more complex
functions, cf., e. g., Carroll et al., 2005).

At least in the classical theory (ignoring quantum effects), there is a formal relation
between f (R) gravity and scalar field theory in Einstein gravity. We call Eq. (3.77),
where gravity is modified and there is no dark energy scalar field, the Jordan frame
action. Following Nojiri and Odintsov (2006a), we introduce an auxiliary field A such
that the Lagrangian reads LMG = R+ f (A) + (R−A)d f (A)/d R. Now, we perform

the conformal transformation gµν → ĝµν = e2ϕ/
p

3 with ϕ ≡−
p

3 logA and obtain

SE =

∫
d 4x

Æ
− ĝ

�
R̂−

1

2
∂̂ λϕ∂̂λϕ−V (ϕ)

�
(3.79)

with a suitably defined potential V (ϕ). This action is called the Einstein frame action as
the standard general-relativistic action is retained, and the original modification of grav-
ity is expressed as a canonical scalar field with some self-interaction potential. From
this formal equivalence, it is already clear that we can obtain accelerated expansion in
f (R) models analogously to quintessence models.
An important question is, for these models, how to retain general relativity on small

scales such as in the Solar System or in the galaxy (Hu and Sawicki, 2007).
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4 Constraints on parametrized dark energy

Before we come to the investigation of growing neutrino quintessence, a dynamical
dark energy model proposed as a potential solution to the coincidence problem, we
take a more general point of view in this chapter. We ask how well future observations
will be able to put constraints on rather generic properties of dark energy, in particular
on its possible clustering on very large scales. Of course, this will not lead to model-
independent statements. Rather, it gives an idea of the strength and precision of future
observations to constrain large-scale gravitational potentials and their time evolution.
Once the actual observational data are taken and available, it is essential to check for
each dark energy model individually whether the constraints are met or not.

A particular dark energy parametrization, the wCDM parametrization, has become
the de-facto standard. The parametrization describes the dark energy fluid with a con-
stant equation of state w (sometimes, a constant time-derivative like d w/da, evaluated
at a = 1, is added). It is so widely used that it has become virtually obligatory if one
studies the constraining power of observational probes. This is because, if another
parametrization or a particular dark energy model is used, it is hardly possible to com-
pare the results with other studies in the literature, where the wCDM parametrization
is used almost exclusively. Therefore, although we will see a number of drawbacks of
the wCDM parametrization, we will choose it in this chapter. The parametrization
is discussed in Sec. 4.1, where we will also add a sound-speed parameter c2

s
in order to

study the influence of dark energy clustering. So far, the sound speed parameter c2
s

is essentially unconstrained (Li and Xia, 2010; de Putter et al., 2010; Bean and Dore,
2004). The questionwhether dark energy clusters cannot be answered based on present
observational data although this possibility has to be investigated if we consider dark
energy as a generic fluid (Hu, 2002b; Erickson et al., 2002; DeDeo et al., 2003; Hu
and Scranton, 2004). The situation might improve with weak lensing tomography, the
Planck satellite, future galaxy surveys, and neutral hydrogen surveys (Sapone et al.,
2010; Takada, 2006; Ballesteros and Lesgourgues, 2010; Torres-Rodriguez and Cress,
2007; Torres-Rodriguez et al., 2008). This motivates to look into 3d weak lensing
(Heavens, 2003), a method designed to take full advantage of the three-dimensional
information of the cosmic shear field, and to analyze what constraints we may expect
from it concerning dark energy clustering. As compared to weak lensing tomography,
there is less mode coupling in 3d weak lensing, and large scales — where dark energy
clustering is present — are better resolved.

We discuss weak gravitational lensing and its three-dimensional version in Sec. 4.2.
Weak gravitational lensing by large-scale structure (van Waerbeke et al., 2000) has be-
come, along with the cosmic microwave background, a well-understood cosmological
probe which does not sensitively depend on highly complicated astrophysical processes
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4 Constraints on parametrized dark energy

like the formation and evolution of galaxies (Hu and White, 2001; Refregier, 2003;
Huterer, 2010; Bartelmann, 2010a). Instead, the weak gravitational lensing formalism
depends only on gravity, and it allows to directly investigate the (dark) matter distribu-
tion rather than postulating that the matter distribution is traced by the optically acces-
sible galaxy distribution. If we assume standard general relativity, weak gravitational
lensing on sufficiently large scales is thus not plagued by conceptual uncertainties. The
situation becomes more complicated on small scales where baryonic physics and hence
astrophysical effects have to be taken into account (Duffy et al., 2010). The remarkable
potential of weak gravitational lensing to scrutinize properties of dark energy, in par-
ticular of its equation of state, is well known (cf. Huterer, 2010; Kilbinger et al., 2008;
Hollenstein et al., 2009; Amendola et al., 2008b; Heavens et al., 2006; Hannestad et al.,
2006; Takada and Jain, 2004; Bernstein and Jain, 2004; Heavens, 2003; Jain and Taylor,
2003; Huterer, 2002).

The three-dimensional version of weak lensing, 3d weak lensing, allows, in princi-
ple, to use the full three-dimensional information in the cosmic shear field in order
to, e. g., constrain cosmological models (Heavens, 2003; Heavens et al., 2006; Castro
et al., 2005; Kitching et al., 2007, 2008; Munshi et al., 2011). This might prove useful
once sufficiently large weak lensing surveys (provided with redshifts as a distance mea-
sure) will have been undertaken. We shall consider the Euclid mission here (Amendola
et al., 2012; Laureijs et al., 2011). We will apply a Fisher matrix approach, cf. Sec. 4.3,
in order to estimate how well a 3d weak lensing analysis based on future Euclid data
will constrain parametrized dark energy, namely the equation of state parameter w
and the sound speed c2

s
, both assumed constant. With adequate numerical techniques,

presented in Sec. 4.3.2, we will present the estimated constraints in Sec. 4.4. For pos-
sible 3d weak lensing constraints on a concrete, k-essence model, cf. Camera et al.
(2010). For the question whether a time-dependent sound speed could leave character-
istic traces, cf. Ansari and Unnikrishnan (2011).

The results shown in this chapter are already published in the collaborative paper
Ayaita et al. (2012a) (whose presentation we will largely follow) and have, partially,
been presented by Weber (2012). The focus of this thesis is on the computation of
the Fisher information matrix used to estimate potential parameter constraints, and
the approximate, analytical understanding of the ingredients of the 3d weak lensing
spectrum.

4.1 The wCDM parametrization

The large number of approaches to describe the accelerated expansion without a cos-
mological constant (cf. Copeland et al., 2006) motivate the search for refuge in a rather
indifferent, purely phenomenological parametrization. Unfortunately, the diversity of
models (coupled or uncoupled quintessence, k-essence, modified gravity, . . . ) tells us
that there is little hope to find a useful parametrization describing the essential features
of all of these models. We will discuss this point by comparing the standard wCDM
parametrization to uncoupled quintessence models in Sec. 4.1.1. Then, we concentrate
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4.1 The wCDM parametrization

on wCDM as the de facto standard parametrization and include dark energy clustering
by a sound speed parameter in Sec. 4.1.2. The effects of the sound speed are investigated
in more detail in Sec. 4.1.3.

4.1.1 Background: equation of state

Regarding only the evolution of the background, a possible alternative is to not con-
strain model parameters but rather (background) observables directly in a more or less
model-independent way. From this, it is relatively straightforward to check the con-
sistency of different cosmological models with these observables. As an observable,
one may choose the luminosity distance DL(z), which is directly related to supernova
Ia measurements of the cosmic expansion. Its definition is motivated by the relation
F = L/(4πD2) between distance D , luminosity L, and flux F in a Euclidean geome-
try (corresponding to a static and flat universe). Although this relation will no longer
hold in the more general case of an expanding universe, we may use it as an operational
definition of a new distance measure, the luminosity distance

DL =

È
L

4πF
. (4.1)

Taking into account the cosmological redshift ( ignoring the peculiar motion of the
source), the modified growth of the physical area of a sphere around the source, and
the lower rate of photon arrivals, the luminosity distance is DL(z) = r (1+ z), where r
is the comoving distance of the source and z is its (cosmological) redshift (Weinberg,
2008, p. 31 et seq.). Dark energy models predict the expansion history given by the
Hubble function H (z) = d z/d r . Using this relation, the Hubble function can be
reconstructed from the luminosity distance as

H (z) =
1+ z

d DL

d z
− r

. (4.2)

In order to put constraints on an entire function like DL(z), we have to first choose
some discretization scheme like constraining D(zi ) for a finite number of redshifts zi .
This naive approach corresponds to approximating the function DL(z) by a simple step
function. Alternatively, we may expand DL(z) in any set of orthonormal functions fi ,

DL(z)≈
N∑

i=0

ci fi (z), (4.3)

and then constrain the coefficients ci . This approach has been chosen by Mignone and
Bartelmann (2007); Benitez-Herrera et al. (2011).

Although such a strategy has the clear advantage of being quite general (essentially,
we have just made use of general relativity, i. e. the Friedmann equations), its limitation
is that it does not necessarily focus on the particular features of a dark energy model.
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One might hope to obtain stronger constraints by concentrating on the particularities
of a specific model or a class of models rather than constraining the set of coefficients
ci . For example, one could choose the class of uncoupled quintessence models. Then,
the essential free function which one would like to constrain is the potential V (ϕ).
Equivalently, one could consider the function Ωϕ(z), the energy fraction in dark en-
ergy. The relation between these two functions can be expressed as

V (ϕ) =
3

2
(1−wϕ)ΩϕH 2, (4.4)

wϕ =
dΩϕ/d log(1+ z)

3Ωϕ(1−Ωϕ)
, (4.5)

following Wetterich (2004). Again, one could try to constrain the entire function Ωϕ.
Alternatively, one may concentrate on a few aspects of this function. In the discussion
of tracker solutions in Sec. 3.3.1, we have seen that the cosmon ϕ tracks the dominant
component such that Ωϕ ≈ const. during a long period in matter domination. For

the exponential potential V (ϕ) ∝ exp(−αϕ), we have Ωϕ = 3/(2α2) for the tracking

solution. This amount of early dark energy Ωe is a natural parameter to constrain. It
can be complemented with a parameter describing the deviation from the cosmological
constant in recent times, such as the present equation of state wϕ,0. Between the regime
of constant Ωϕ ≈ Ωe and the late-time regime, where quintessence is characterized by
an equation of state wϕ,0, some interpolation can be made. Wetterich (2004) proposes
to parametrize

R(z)≡ log
Ωϕ(z)

1−Ωϕ(z)
, R(z)≈ R0+

3wϕ,0 log(1+ z)

1+ b log(1+ z)
, (4.6)

where b describes the position of the transitional period. The relation of b and wϕ,0

to the early amount of dark energy is

Ωe ≈
e R(0)+3wϕ,0/b

1+ e R(0)+3wϕ,0/b
. (4.7)

This already is a reasonable approximation for many uncoupled quintessence models
with the advantage of only three free parameters, Ωϕ,0, Ωe , and wϕ,0.

In the late-time Universe, close to a = 1, the parametrization is essentially equivalent
to the wCDM parametrization. In the earlier parts of matter domination, however, it
drastically deviates from wCDM as it approaches a constant energy fraction Ωe > 0.
Unfortunately, it has become the standard to not use Ωe as a parameter to describe the
deviation from the wCDM case, but rather some time derivative of w at a = 1, such
as d w/da. Such an ad-hoc parametrization cannot reproduce the interesting feature of
early dark energy present in quintessence models. We schematically compare the three
options in Fig. 4.1. At recent times, a ≈ 1, the evolution is described by the equation
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log a

log
Ωϕ

1−Ωϕ

Figure 4.1: Schematic comparison of dark energy parametrizations, the y axis marks a = 1. A realistic
quintessence scenario (red solid line) approaches a constant early dark energy fraction Ωe for
small a. The pure wCDM parametrization (black dashed line) is a straight line. A naive
extension of the wCDM parametrization including a derivative like d w/da at a = 1 (grey
dot-dashed line) does not reproduce the early behavior of quintessence.

of state wϕ,0 at present. There,

Ωϕ

1−Ωϕ
=
ρϕ

ρm

≈
ρϕ,0a−3(1+wϕ,0)

ρm,0a−3
∝ a−3wϕ,0. (4.8)

This power law is a straight line in the logarithmic plot, and it is observed in all three
curves. The pure wCDM parametrization continues along this line leading to a dark
energy density completely negligible at early times (similar to a cosmological con-
stant). The realistic case is an approach of Ωe . This is not at all mimicked by the mere
inclusion of a derivative of wϕ at a = 1. In general, it seems inadequate to perform just
a Taylor expansion of wϕ at a = 1.

We conclude that the wCDM parametrization (assuming a constant equation of
state) is a reasonable approximation for generic, uncoupled quintessence models in the
late-time Universe. It neglects, however, early dark energy. In the wCDM scenario,
dark energy becomes irrelevant quickly if we go to larger redshifts. This does not
change much if we include in w a linear function in a.

4.1.2 Perturbations: sound speed

Models of dynamical dark energy do not only differ in the predicted expansion of the
background. If we model dark energy as a cosmic fluid X with a separately conserved
energy-momentum tensor,

∇νT
µν

X
= 0, (4.9)

which is the case for uncoupled dark energy, we can characterize the fluid by three
quantities: the (present) energy-density ΩX ,0, the equation of state wX (a) as a function
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4 Constraints on parametrized dark energy

of time, and the sound speed c2
s
≡ δ pX /δρX needed for the linear perturbation equa-

tions (2.72) and (2.73) (cf. also Gordon and Hu, 2004). The sound speed, in principle,
is a function of Fourier mode as well as of time,

c2
s
≡ c2

s ,k
(a) =

δ pX ,k(a)

δρX ,k(a)
. (4.10)

The linear perturbation equations (2.72) and (2.73) are only valid in the uncoupled
case and under the assumption of general relativity. For coupled dark energy, there
will be extra terms. In modified gravity, an important effect visible only in the pertur-
bations is the possibility Ψ 6=Φ even in the absence of anisotropic shear.

The sound speed as defined by Eq. (4.10) is not a gauge-invariant quantity. So, we
still have the freedom to choose a particular frame. In the following, we shall only
consider the rest-frame speed of sound defined in a frame where the scalar velocity
perturbation vX ,k vanishes. In the case of quintessence, the linear perturbation of the
energy-momentum tensor reads, by Eq. (3.61),

δT µ
ν = ∂

µδϕ∂ν ϕ̄+ ∂
µϕ̄∂νδϕ+δ

µ
ν δLϕ, (4.11)

from which we can read off the velocity perturbation defined by δT 0
i = (ρ̄+ p̄)vi , cf.

Eq. (2.65),

vi =−
a

ϕ̄′
∂iδϕ (4.12)

using ∂i ϕ̄ = 0. In the fluid’s rest frame, we have established δϕ = 0. As a consequence,
the (rest-frame) sound speed

c2
s
=
δT i

i/3

−δT 0
0

=
ϕ̄′δϕ′− aV,ϕδϕ

ϕ̄′δϕ′+ aV,ϕδϕ
= 1 (4.13)

is just unity.
This is not a universal property of dynamical dark energy models. In the case of

k-essence, we have seen that the speed of sound can take any value, cf. Sec. 3.3.2. The
sound speed c2

s
specializes to the adiabatic sound speed c2

a
for adiabatic perturbations,

i. e. if the entropy perturbation (c2
s
− c2

a
)δ/w vanishes. The adiabatic sound speed is

defined in terms of the background quantities,

c2
a
≡

p̄ ′

ρ̄′
= w −

w ′

3 a′

a
(1+w)

. (4.14)

For a constant equation of state, we immediately note c2
a
= w.

Let us now turn to the effect of the sound speed on perturbations in the fluid. Fol-
lowing Kodama and Sasaki (1984), we write the evolution of the total density pertur-
bation δρ as

�
δρa3

�′′
+
�

1+ 3c2
a

� a′

a

�
δρa3

�′
+


k2c2

s
−

3

2
(1+w)

�
a′

a

�2

 �δρa3

�
= 0, (4.15)
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4.1 The wCDM parametrization

where we have assumed the vanishing of the anisotropic shear perturbation. The in-
teresting term in this equation is the source term driving the growth of δρ, namely

sk ≡ k2c2
s
−

3

2
(1+w)

�
a′

a

�2

. (4.16)

Ignoring the equation of state parameter w for a moment, we see that the physical
scale |cs |k/a is compared with the Hubble scale H = a′/(a2). Consequently, there is
an effective horizon no longer given by the Hubble scale but by Hs = H/|cs |. This
is called the sound horizon. Sapone and Kunz (2009) show, for scales k/a ≪ Hs well
within the sound horizon and a constant equation of state, that there is a growing
mode

δ(a)∝ (1+w)

�
a

1− 3w
+
ρm,0

k2

�
. (4.17)

For scales far outside the sound horizon (assuming a constant sound speed parameter),
k/a≫Hs , the density contrast freezes to

δ(a)∝
1+w

2

ρm,0

c2
s
k2

. (4.18)

In both cases, the proportionality constant is just the initial fluctuation amplitude.
Taking into account the equation of state w, the source term sk , Eq. (4.16), compares
the physical scale k/a with ≈

p
1+wH/|cs |. More precisely, we may define a critical

physical scale λc = a/kc where the source term vanishes,

λc =

È
2

3

1
p

1+w

|cs |
H

. (4.19)

This critical scale should be regarded as an improved definition of the sound horizon.
We plot the dependence of this scale (compared to the Hubble horizon) on w and c2

s
in Fig. 4.2.

A perturbation δk can only grow under the gravitational attraction if k/a is, at
the same time, within the Hubble horizon H and within the sound horizon 1/λc . In
particular, there are clustering modes only if the sound horizon does not exceed the
Hubble horizon, i. e. if

λc ®H−1 or c2
s
® 1+w. (4.20)

Since the present dark energy equation of state is close to −1, the sound speed must be
close to zero in order to show observable effects. These effects, in turn, are only visible
on scales above λc . In the case of quintessence models, we have c2

s
= 1 and, accordingly,

for an equation of state wϕ ≤ 0, always λc ¦ H−1. Quintessence does not cluster on
subhorizon scales.
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Figure 4.2: The critical scale λc at a = 1 in units of the Hubble scale for varying w and c 2
s
.

4.1.3 Parametrized clustering

In principle, it is straightforward to evolve the linear perturbation equations numeri-
cally in the presence of a clustering dark-energy component. Approximate parametriza-
tions of the solutions are, technically, not needed. The slight reduction of numerical
effort that can be achieved by a parametrization comes at the cost of a loss of accu-
racy, which is often not clearly quantified. In our analysis, we will not analyze actual
observational data, so that the constraints we give are just rough estimates based on
uncertain, assumed properties of the Euclid mission. Moreover, the use of the wCDM
parametrization with constant equation of state w and (rest-frame) speed of sound c2

s
renders our analysis essentially illustrative. Precision is not an issue as long as we can
account for all essential effects with reasonable accuracy. For the purpose of illustra-
tion, it is then even useful to work with parametrizations which allow some analytical
insights that would otherwise remain hidden behind the numerics. Therefore, we do
not evolve the linear perturbation equations numerically but rather use approximate,
parametrized solutions for them.

The clustering of a dark energy component X due to a nontrivial speed of sound
c2

s
< 1 has two important implications, which we will parametrize separately:

1. It leads to a growing density perturbation δρX of dark energy on scales below
the sound horizon λc . These are, in principle, observable via their gravitational
potential ΦX .

2. The gravitational potential ΦX induced by dark energy perturbations is felt by
matter perturbations. Matter perturbations consequently exhibit additional clus-
tering.
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4.1 The wCDM parametrization

We account for the first effect by introducing a quantity Q(k,a) by

ΦX ,k = [Q(k,a)− 1] Φm,k . (4.21)

We will adopt a particular parametrization for Q(k,a) proposed by Sapone and Kunz
(2009). Let us now turn to the second effect. Using the definition of Q(k,a), we can
write the Poisson equation of the total gravitational potential as

k2Φk =−
a2

2

�
δρm,k +δρX ,k

�
=−

a2

2
Q(k,a)δρm,k . (4.22)

This equation follows from Eqs. (2.67) and (2.68) if we work, for convenience, in the
Newtonian limit. It tells us that the effect of dark energy clustering on the gravitational
potential can be expressed as a variable Newton’s constant Q(k,a). This allows us to
make use of parametrizations originally developed for this scenario. The parametriza-
tion we shall use is due to Linder and Cahn (2007) and has also been employed by
Sapone et al. (2010).

The central function we shall consider is the growth function Dδ (k ,a) defined by

δρm,k(a) =Dδ (k ,a)
δρm,k(a = 1)

a
. (4.23)

Following Linder (2005), the growth function Dδ (k ,a) is parametrized by the growth
index γ = γ (k ,a),

Dδ (k ,a) = exp

∫ a

0

dã

ã

�
Ωm(ã)

γ (k ,ã)− 1
�

. (4.24)

This means that we have a complete parametrization if we find an approximate relation
between γ (k ,a), the effective Newton’s constant Q(k ,a), and the parameter w of the
model. This task has been performed by Linder and Cahn (2007), whose argument we
shall briefly present. The linear perturbation evolution equation (4.15) for dark matter
(i. e. w = c2

s
= 0 and a variable Newton’s constant Q ) is rewritten for the variable

G(k ,a) =
d log Dδ (k ,a)

d loga
. (4.25)

This change of variables has the following advantage. During matter domination, and
in the absence of dark energy clustering, δm,k grows linearly with a whence Dδ (k ,a)
is constant and G = 0. So, the effects of dark energy can be treated as a linear per-
turbation in G. Under this approximation, the evolution equation can be solved to
give

G(k ,a)+ 1=
1

H

∫ a

0

dã

ã

�
ã

a

�4

H

�
1+

3

2
Q(k , ã)Ωm(ã)

�
. (4.26)

Formally, we have replaced Q(k,a) by the corresponding quantity depending on the
dimensionless spectra of δm and δX rather than on the actual (three-dimensional)
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4 Constraints on parametrized dark energy

perturbation variables, so that it only depends on the absolute value k = |k|. The
quantity G(k ,a) is related to the growth index γ (k ,a) by Eq. (4.24). If we assume
that the effects of clustering dark energy mainly originate from the period of matter
domination where Ωm is close to one, we obtain

G(k ,a)+ 1=Ωγ (k ,a)
m

= (1−ΩX )
γ (k ,a) ≈ 1− γ (k ,a)ΩX (a). (4.27)

If we combine this with the approximate expression for G(k ,a) (4.26), one can deduce,
eventually, a useful parametrization for the growth index:

γ (k ,a)≈
3(1−w−A(k ,a))

5− 6w
, with A(k ,a)≡

Q(k ,a)− 1

ΩX (a)
. (4.28)

It will be convenient to use, next to the growth function Dδ (k ,a) for the matter
density perturbationδρm , an analogous growth function DΦ(k ,a) for the gravitational
potential,

Φk(a) = DΦ(k ,a)
Φk,0

a
, and hence DΦ(k ,a) =

Q(k ,a)

Q0(k)
Dδ (k ,a). (4.29)

We have now expressed all relevant quantities in terms of Q(k ,a). It remains to give
a useful approximation for Q(k ,a). Analyzing modes well below and far outside the
sound horizon Hs separately, and then combining the two solutions into an interpola-
tive formula, Sapone and Kunz (2009) find

Q(k ,a)− 1≈ (1+w)
ΩX (a)

Ωm(a)

a−3w

1− 3w+
2ak2c2

s

3H 2
0
Ωm(a)

. (4.30)

We show the results for this quantity as a function of k for w = −0.8 and varying
sound speed parameter c2

s
at a = 1 in Fig. 4.3. This figure already gives an impression

where we can hope to see the effects of dark energy clustering. Essentially, it illus-
trates the relation discussed in Sec. 4.1.2, namely, that the clustering of dark energy
is characterized by the critical scale kc ∼

p
1+w H/|cs | playing the role of a sound

horizon.
Using these results in Eq. (4.28) for the growth index γ (k ,a) of matter perturbations

and eventually in Eq. (4.24) for the growth function, we can quantify the influence of
dark energy clustering on the linear matter power spectrum P (k). In Fig. 4.4, we show
the effect (obtained by a numerical evolution of the perturbation equations rather
than by our parametrizations). On scales outside the Hubble horizon, the result is
strongly gauge-dependent. We have chosen the gauge-invariant perturbation variable
∆m ≡ δm+3 Ha/k (vm−B) which defines the right-hand side of the Poisson equation
for the matter-induced gravitational potential and specializes to δm in the Newtonian
limit.

On subhorizon scales, P (k) changes only at the percent level, even for sound speeds
c2

s
close to zero. For c2

s
= 0.1, the effect is well below the percent level and only
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Figure 4.3: Enhancement of the effective Newton’s constant (squared) Q(k ,a)2 felt by matter perturba-
tions due to the clustering of the dark energy component. For increasing speed of sound c 2

s
,

the effect is shifted to larger scales (smaller k ). The figure is taken from Ayaita et al. (2012a).

visible on scales very close to the Hubble horizon. The situation is more severe for an
equation of state w closer to −1. Although current observations prefer an equation of
state w very close to−1 (Bennett et al., 2012; Ade et al., 2013c), this should not be taken
too seriously as the wCDM parametrization is not a realistic model. Realistically, w
will only be close to−1 in the late Universe, hence allowing for dark energy clustering
during earlier times in matter domination.

So far, we had quantified the scale where dark energy clustering occurs by the critical
scale λc in Eq. (4.20). This gives a characteristic scale but does not tell us how large the
clustering effect will be. This information is given by the function Q(k ,a). We can use
this to define another scale telling us where the effect of dark energy clustering exceeds
some threshold, which may be motivated by the precision of future experiments. For
example, we may ask for which scales

Q(k ,a = 1)¦ 1+ ǫ (4.31)

with some small threshold ǫ. This yields a physical scale

λǫ =
1

kǫ
¦

s
2ǫ

3ΩX ,0(1+w)

|cs |
H0

=

È
ǫ

ΩX ,0

λc (4.32)

with the same dependence on w and c2
s
as the critical scale λc . For example, if we

employ exemplary values ǫ= 1% and ΩX ,0 = 0.7, we obtain

λǫ ≈ 0.1
|cs |p
1+w

H−1
0

. (4.33)

The condition for an observable effect is then estimated by λǫ ®H−1
0

.
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Figure 4.4: Growth of the (subhorizon) linear matter perturbations due to the enhanced effective New-
ton’s constant, i. e. the extra gravitational potential induced by dark energy clustering. The
figure is taken from Ayaita et al. (2012a).

4.2 3d weak lensing

4.2.1 Basics of weak gravitational lensing

Let us briefly collect some basic concepts of weak gravitational lensing in the context
of cosmology. Our presentation and notations follow the review by Bartelmann and
Schneider (2001). Details and clarifications about the range of validity of the formalism
used here can also be found there.

Generalizing the standard general-relativistic result for the deflection angle α̂ of light
passing a point mass m at impact parameter y ,

α̂=
m

2π

y

|y |2
, (4.34)

one obtains, for a nonrelativistic mass distribution ρ and the line-of-sight direction r
(assumed unperturbed):

α̂=
1

2π

∫
d 2y ′

∫
d r ρ(y ′, r )

y − y ′

|y − y ′|2
. (4.35)

It is useful to consider the mapping between observed, distorted positions ϑ on the
sky and the positions β that would be observed in the absence of the gravitational
lens. We show these quantities in Fig. 4.5 in the idealized case of a single thin lens. The
geometrical relation between ϑ and β is the lens equation

β=ϑ−α(ϑ), (4.36)
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lens source
ϑ β

α̂

Figure 4.5: Illustration of weak gravitational lensing due to a thin lens. The red line is the actual path
taken by a light ray. In the three-dimensional setting, the angles α̂, ϑ, and β are promoted to
points on the unit sphere.

where α(ϑ) is the scaled deflection angle. Here, angles are unit vectors defining a di-
rection on the unit sphere. It is obtained by a straightforward geometrical argument
using the concept of angular diameter distance DA, which is observationally defined as
the quotient of the actual transverse size l of an object and the angle ϕ under which it
is observed. In a static Minkowski spacetime, DA is just the distance (for small angles,
tanϕ ≈ ϕ). In a flat FLRW metric, we instead have DA(r ) = a r . If DA,s , DA,l denote
the angular diameter distance of the source and the lens, respectively, and DA,l s denotes
the angular diameter distance of the source from the lens, the scaled deflection angle is

α(ϑ) =
DA,l s

DA,s

α̂(DA,l ϑ). (4.37)

We may define a lensing or deflection potential ψ(r ;ϑ) whose angular gradient is the
(scaled) deflection angle. Here, r = rs is the comoving distance of the source and ϑ is,
as before, the angle under which it is observed,

ψ(r ;ϑ) = 2

∫ r

0

d r ′
r − r ′

r r ′
Φ(r ′;ϑ), αi (ϑ) = ∂iψ(r ;ϑ), (4.38)

in terms of the gravitational potential Φ in the Newtonian limit and with the abbrevi-
ation ∂i ≡ ∂ /∂ ϑ i . The deflection angle is related to the first derivative of the lensing
potential. It is constant for a constant gradient ∂iψ, corresponding to a mere shift
of the image. Since the true position of an object, typically a galaxy, is not known,
this will be irrelevant for our analysis. The second derivative ∂i∂ jψ will determine
the change of α along the image of a galaxy. This will alter the size and the shape
of the image. Even if the shapes of individual galaxies are approximated as intrinsi-
cally uncorrelated, the lensing effect induces a correlation since the second derivative
∂i∂ jψ changes more slowly than the fluctuating ellipticity field. In this way, one can
detect the lensing signal statistically. We illustrate the influence of the lensing poten-
tial on the image of a galaxy (approximated as an ellipse) in Fig. 4.6 ( inspired by Björn
Malte Schäfer, private discussion). We conclude that the observationally relevant quan-
tity, the shearing of the image, is related to the second derivatives of the gravitational
potential and hence to the energy perturbation δρ. This again expresses that weak
gravitational lensing probes the matter distribution.
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ψ= const. :

∂iψ= const. :

∂i∂ jψ= const. :

Figure 4.6: Change of a galactic image in weak gravitational lensing. A constant lensing potential leaves
the image unchanged, a constant (angular) gradient causes a mere shift. The second derivative
leads to an amplification and a shearing of the image. Higher gradients would distort the
elliptical shape.

Mathematically, we may express the distortion of the image in a locally linear ap-
proximation with the help of the lensing Jacobian

Ai j = ∂ jβi = δi j − ∂i∂ jψ(r ;ϑ). (4.39)

This is a symmetric matrix and may be decomposed into a term ∝ δi j expressing the
amplification of the image and a symmetric trace-free contribution expressing the shear
of the image,

A = (1−κ)
�

1 0
0 1

�
−
�
γ1 γ2

γ2 −γ1

�
. (4.40)

The parameters are called the convergence κ and the shear components γ1, γ2,

κ=
1

2

�
∂ 2

1
+ ∂ 2

2

�
ψ, γ1 =

1

2

�
∂ 2

1
− ∂ 2

2

�
ψ, γ2 = ∂1∂2ψ. (4.41)

The convergence κ quantifies the amplification of the image due to gravitational lens-
ing. The shear, measuring the change in the shape of the image, can be estimated from
observations of the ellipticities of galaxies. The complex ellipticity may be defined as

ε=
a− b

a+ b
e2iϕ (4.42)

for a galaxy with semi-major axis a, semi-minor axis b , and an orientation on the
sky given by the angle ϕ. Assuming that the orientations of galaxies are, intrinsically,
just random, we would have 〈ε〉 = 0 in the absence of gravitational lensing. In weak
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4.2 3d weak lensing

gravitational lensing, the shape is distorted according to ε→ ε+γ . Hence, gravitational
lensing induces the average

〈ε〉= γ1+ iγ2 (4.43)

such that the ellipticities are a (noisy) measure of the cosmic shear γ .
So, the observationally important quantity are the statistics of the shear (γ1,γ2). The

(complex) shear γ ≡ γ1+iγ2 is a spin-2 field as can be established by applying a rotation
matrix with angle ϕ,

γ 7→ γ e−2iϕ. (4.44)

This complicates the analysis and will motivate us to switch to the — observationally
less relevant but statistically equivalent— convergenceκ. The spin-2 quantity γ defined
on the sphere may be expanded in spin-weighted spherical harmonics ±2Yℓm ,

γ (ϑ) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

�
ǫℓm ± iβℓm

�
±2Yℓm(ϑ), (4.45)

and the statistical information is (cf., e. g., Hikage et al., 2011), in the linear case,

encoded in the three angular spectra C ǫ
ℓ
, C

β

ℓ
, and C

ǫβ

ℓ
defined via 〈ǫℓmǫ

∗
ℓ′m′
〉 =

C ǫ
ℓ
δℓℓ′δmm′ and so forth. These spectra include statistical information about the weak

lensing potential ψ and hence about the matter distribution.
Analogously, an angular spectrum C κ

ℓ
may be defined for the convergence κ via

〈κℓmκℓ′m′〉=C κ
ℓ δℓℓ′δmm′ . (4.46)

Let us specify the relation between the spectrum Cκ
ℓ
, the spectrum C

ψ

ℓ
of the lensing

potential, and the power spectrum PΦ(k) of the gravitational potential more precisely
following Bartelmann (2010a). First, we simply have κℓm = ℓ(ℓ+ 1)ψℓm/2 due to
∆ΩYℓm = ℓ(ℓ+ 1)Yℓm . This implies

Cκ
ℓ =
[ℓ(ℓ+ 1)]2

4
C
ψ

ℓ
. (4.47)

The convergence, consequently, contains all the statistical information of the lensing
potential; it is thus, from a theoretical point of view, not necessary to also consider the
shear spectra. Second, by expanding ψ(r ;ϑ) given by Eq. (4.38) in spherical harmon-
ics, it is straightforward to see

C
ψ

ℓ
=

2

π

∫ r

0

d r ′
r − r ′

r r ′

∫ r

0

d r ′′
r − r ′′

r r ′′

∫ ∞
0

k2d k PΦ(k) jℓ(k r ′) jℓ(k r ′′) (4.48)

with the power spectrum PΦ(k) satisfying 〈ΦkΦ
∗
k′
〉 = (2π)3PΦ(k)δ

3(k − k′). Making

use of the approximation

jℓ(k r )≈
r
π

2

1

k
p
ν
δ(r − ν/k) (4.49)
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with ν ≡ ℓ+1/2 discussed in more detail in the next section (corresponding to a Limber
projection), one obtains

C
ψ

ℓ
≈
∫ r

0

d r ′
�

r − r ′

r r ′

�2

PΦ(ν/r ′). (4.50)

This can also be related to the power spectrum P (k) of matter density perturbations by
virtue of the gravitational Poisson equation telling us k4PΦ = a4ρ2

m
P/4 in the absence

of an additional clustering component.

4.2.2 The 3d formalism

So far, the lensing potential and with it the spectra of the shear components and of the
convergence had an implicit dependence on the comoving distance r of the source. If
the source redshifts are known, we can exploit this to obtain spectra for different dis-
tances r , hence moving from a 2d analysis to a 3d method. A straightforward approach
is weak lensing tomography pioneered by Hu (1999, 2002a) where the observed source
galaxies are grouped into redshift (or, equivalently, distance) bins (cf. also Ma et al.,
2005; Takada and Jain, 2004; Refregier et al., 2004). The shear spectra can then be es-
timated for each bin separately, and these (auto-correlation) spectra are complemented
with the cross-correlation spectra between the bins. Instead of bins, one may, of course,
choose another set of orthogonal functions with preferable properties (Schäfer and
Heisenberg, 2012).

Instead of choosing a discrete collection of bins, a more direct way is to keep the
comoving distance as a continuous variable. The convergence κ and the lensing poten-
tial ψ are then three-dimensional fields. In linear perturbation theory, it has proven
very useful to study fields and their statistical information (two-point correlators) in
Fourier space, i. e. after a Cartesian Fourier transform. Since the measurements of
angular properties (position of galaxies on the sky, measurement of ellipticities) are
fundamentally different from measurements of redshifts, and since the redshift is not
only a measure of distance but also of time, it is more adequate to work in spherical
coordinates where angles and radial distances are clearly separated.

Spherical harmonic transform

The (Cartesian) Fourier transform is an expansion in eigenfunctions (plane waves)
f (k; x) ∝ exp(ik · x) of the Laplacian with eigenvalues ∆ f (k; x) = −k2 f (k; x). We
wish to analogously find eigenfunctions of the Laplacian, in spherical coordinates
(r,ϑ,ϕ), which separate according to

f (r,ϑ,ϕ) = R(r )Θ(ϑ,ϕ). (4.51)

The Laplacian in spherical coordinates can be decomposed as ∆=∆r +∆Ω/r 2 where

∆r =
1

r 2

∂

∂ r
r 2
∂

∂ r
and ∆Ω =

1

sinϑ

∂

∂ ϑ

�
sinϑ

∂

∂ ϑ

�
+

1

sin2ϑ

∂ 2

∂ ϕ2
. (4.52)
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4.2 3d weak lensing

A suitable basis of eigenfunctions Θ(ϑ,ϕ) of∆Ω is well-known: the spherical harmon-
ics Yℓm (ϑ,ϕ) satisfying ∆ΩYℓm = −ℓ(ℓ+ 1)Yℓm . It remains to choose appropriate
eigenfunctions R(r ) of the radial part ∆r . These are the spherical Bessel functions
jℓ(k r ) satisfying

∆r jℓ(k r ) =

�
−k2+

ℓ(ℓ+ 1)

r 2

�
jℓ(k r ). (4.53)

They are linked to the (cylindrical) Bessel functions Jν by

jℓ(x) =

r
π

2x
Jν (x), for ν ≡ ℓ+

1

2
. (4.54)

The orthogonality relation for the ordinary Bessel functions then translates into

∫ ∞
0

r 2d r jℓ(k r ) jℓ(k
′ r ) =

π

2k2
δ(k − k ′). (4.55)

Due to this result and the orthogonality of the spherical harmonics, we have a set of
orthonormal eigenfunctions of the Laplacian:

fℓm(k; r,ϑ,ϕ) = k

È
2

π
jℓ(k r )Yℓm (ϑ,ϕ), (4.56)

∆ fℓm(k; r,ϑ,ϕ) =−k2 fℓm(k; r,ϑ,ϕ), (4.57)∫
r 2d r

∫
dΩ fℓm (k; r,ϑ,ϕ) fℓ′m′(k

′; r,ϑ,ϕ) = δ(k − k ′)δℓℓ′ δmm′ . (4.58)

We shall, in the following, expand scalar functions like the convergence κ(r,ϑ,ϕ) in
this basis,

κ(r,ϑ,ϕ) =
∞∑
ℓ=0

+l∑
m=−l

∫
d k k κℓm(k) fℓm (k; r,ϑ,ϕ), (4.59)

κℓm =

È
2

π

∫
r 2d r

∫
dΩκ(r,ϑ,ϕ) jℓ(k r )Y ∗ℓm

(ϑ,ϕ). (4.60)

Note the inclusion of an additional factor k in the integrand of the first equation. This
is not necessary, and it will lead to further factors of k or k2 in later equations. We still
define κℓm(k) this way in order to use the same convention as Heavens (2003).

An analogous approach can be followed for the spin-2 field γ using spin-weighted
spherical harmonics ±2Yℓm instead of Yℓm = 0Yℓm .

Application to weak lensing

Let us now write the relations between the convergence κ, the lensing potential ψ, and
the gravitational potential Φ after an expansion in the basis fℓm (k; r,ϑ,ϕ). Since we
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4 Constraints on parametrized dark energy

will use 3d weak lensing to parametrize clustering dark energy, we now also include
the effects of the dark energy sound speed. The transformed relations read

κℓm(k) =−
ℓ(ℓ+ 1)

2
ψℓm(k), (4.61)

ψℓm(k) =

∫
k ′2d k ′ ηℓ(k , k ′)Φℓm,0(k

′), (4.62)

−k2Φℓm(k) =
a2

2
Q(k ,a)ρm δℓm(k), (4.63)

with the quantity

ηℓ(k , k ′) =
4

π

∫
r 2d r jℓ(k r )

∫ r

0

d r ′
r − r ′

r r ′
jℓ(k

′ r ′)
DΦ(k

′,a′)

a′
(4.64)

and the transformed matter density contrast δℓm(k). The subscript 0 refers to quanti-
ties evaluated at the present cosmic time a = 1. Here, Q(k ,a) is the enhanced, effective
Newton’s constant in the presence of dark energy clustering, and g (k ,a) is the growth
function for the gravitational potential as introduced in Sec. 4.1.3. We will often en-
counter integrals in the form of Eq. (4.62) such that it will be useful to introduce the
summation convention

A(k , k ′)B(k ′, k ′′) =
∫ ∞

0

k ′2d k ′A(k , k ′)B(k ′, k ′′) (4.65)

also used by Heavens (2003).
The cosmologically interesting quantity is the two-point correlator 〈κℓm(k)κℓ′m′(k

′)〉
related to the statistics of the lensing potential. This generalizes the two-dimensional
case given by Eq. (4.46) and gives the correlation function

〈κℓm (k)κℓ′m′ (k
′)〉=

1

k2
Cκ
ℓ (k , k ′)δℓℓ′ δmm′ , (4.66)

where the factor 1/k2 is an artefact of the extra factor k that we introduced in Eq. (4.59)
to match the convention of Heavens (2003). The Kronecker deltas are a result of
the assumed statistical homogeneity and isotropy. Using the above relations (4.61) to
(4.63), this can be linked to the matter power spectrum P0(k) at the present cosmic
time a = 1 and the effective Newton’s constant Q(k ,a) accounting for the effect of
dark energy clustering,

κℓm(k) =
ℓ(ℓ+ 1)

2
ηℓ(k , k ′)

1

2k ′2
Q0(k)ρm,0δℓm,0(k

′) (4.67)

and hence

Cκ
ℓ (k , k ′) =A2

ℓ ηℓ(k , k ′′)
Q0(k

′′)2 P0(k
′′)

k ′′4
ηℓ(k

′, k ′′) (4.68)
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4.2 3d weak lensing

with Aℓ = ℓ(ℓ+ 1)/4 ·ρm,0.
In practice, the shear field is not observable directly but it is estimated from the el-

lipticities of individual galaxies. We have to take into account the limitations given by
the survey properties. In particular, we have to include the error of the redshift mea-
surement, the survey’s galaxy distribution, and the shot noise in the shear estimation
due to the random orientations of galaxies. Rather than the shear γ , one will measure
an estimator γ̂ . For simplifying the argument, we shall (unrealistically) assume that
we could measure the convergences κg of galaxies. In that case, an estimator of the

convergence κ in some small comoving spatial volume ∆V around the point (r,ϑ,ϕ)
would be the average value

κ̂(r,ϑ,ϕ) =
1

Ng

∑
g

κg , (4.69)

where Ng is the number of galaxies located in ∆V , and the sum is taken over these

galaxies g . In the limit of a very small∆V , this relation becomes κ̂∝∑
g
κgδ

3(x−x g )

(where g runs over all galaxies), and its spherical harmonic transform is, by Eq. (4.60),

κ̂ℓm(k) =

È
2

π

∑
g

κg jℓ(k rg )Y
∗
ℓm
(ϑg ,ϕg ). (4.70)

Let us now derive the expectation value of this estimator given the properties of the
survey. The sum over the galaxies can be replaced by an integral over the expected
(assumed spherically symmetric) number density n(r ) of galaxies. In particular, we
assume a full-sky survey for simplifying our analysis. The radial part δ(r − rg ) of
the delta function is to be replaced by the redshift uncertainty p(rg |r ) expressing the
probability that the galaxy observed at rg is located at r . The measurement of the
angular position is still assumed to be exact. We thus obtain for the expectation value
κ̄ of the estimator:

κ̄(r,ϑ,ϕ) =
∫

4πr ′2d r ′ n(r ′)
∫

d r ′′ p(r ′|r ′′)κ(r ′′,ϑ,ϕ). (4.71)

In order to use Eqs. (4.61) to (4.63), we will transform both κ̄ and κ to the basis
fℓm (k). Heavens (2003) goes even further and also transforms the individual integrals,
over n(r ′) and p(r ′|r ′′), yielding

κ̄ℓm (k) = Zℓ(k , k ′)Mℓ(k
′, k ′′)κℓm(k

′′) (4.72)

with the quantities

Zℓ(k , k ′) =
2

π

∫
r ′2d r ′

∫
d r p(r ′|r ) jℓ(k

′ r ) jℓ(k r ′), (4.73)

Mℓ(k , k ′) =
2

π

∫
r 2d r n(r ) jℓ(k r ) jℓ(k

′ r ). (4.74)

89



4 Constraints on parametrized dark energy

Transforming both integrals in Eq. (4.71) introduces one unnecessary transformation.
Therefore, the product Zℓ(k , k ′)Mℓ(k

′, k ′′) will produce the orthogonality relation of
the spherical Bessel functions. We shall use this later in order to improve the numerical
efficiency.

Let us specify the functions n(r ) and p(r ′|r ), estimated for the Euclid survey (Amara
and Refregier, 2007). We use

n(r ) r 2d r =C
� z

z̄

�2

exp

�
−
� z

z̄

�β�
d z , (4.75)

with β= 3/2, d z = d z/d r · d r =H d r , and the normalization C =N β/z̄, where N
is the total number of galaxies in the (full-sky) survey. We have evaluated the normal-
ization in redshift space according to

N =

∫ ∞
0

d z n(z) =
C z̄

β

∫ ∞
0

d t t ζ−1e−t =
C z̄

β
Γ(ζ ) with t ≡

� z

z̄

�β
(4.76)

and ζ = 3/β, Γ(ζ ) = Γ(2) = (2−1)!= 1. Assuming a total number of≈ 100 galaxies per
square arcminute, N amounts to ∼ 109. The redshift parameter z̄ ≈ 0.64 corresponds
to a median redshift zmed ≈ 0.9 (Amara and Refregier, 2007).

For the redshift uncertainty, we assume a simple Gaussian error with variance σ2
z
,

p(r ′|r )d r ′ =
1

p
2πσz

exp


− (z − z ′)2

2σ2
z


 d z ′ (4.77)

with σz ≈ 0.02 (Heavens, 2003), equal for all galaxies. A more realistic assumption
would be that σz/(1+ z) is approximately constant; in this case, the probability distri-
bution p(r ′|r )would not be a function of the redshift difference (z−z ′), and numerical
optimizations regarding convolutions would not be applicable.

The estimator κ̂ can be expressed by its expectation value κ̄ plus an unbiased noise
(related to the random orientations of galaxies when we wish to infer the shear field).
The covariance matrix Cℓℓ′,mm′ (k , k ′) ≡ C κ̂

ℓℓ′,mm′
(k , k ′) splits into a signal and a noise

contribution,

Cℓℓ′,mm′ (k , k ′) = 〈κ̂ℓm(k)κ̂
∗
ℓ′m′
(k ′)〉= 〈κ̄ℓm(k)κ̄

∗
ℓ′m′
(k ′)〉+Nℓℓ′ ,mm′ (k , k ′) (4.78)

with a noise covariance N . Since we assumed a full-sky analysis and isotropic survey
properties, it is clear that the covariance will be diagonal in (ℓ,ℓ′) and independent of
m and m′. This means

Cℓℓ′ ,mm′ (k , k ′) =Cℓ(k , k ′)δℓℓ′δmm′ . (4.79)

The more general case is briefly discussed by Heavens (2003). We may use Eqs. (4.72)
and (4.67) to calculate the signal covariance. Introducing the abbreviation

Bℓ(k , k ′)≡ Zℓ(k , k ′′)Mℓ(k
′′, k ′′′)ηℓ(k

′′′, k ′), (4.80)
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4.2 3d weak lensing

we obtain

Sℓ(k , k ′)≡ 〈κ̄ℓm (k)κ̄ℓm (k
′)〉=A2

ℓ
Bℓ(k , k ′′)

Q0(k
′′)2 P0(k

′′)

k ′′4
Bℓ(k

′, k ′′). (4.81)

The signal covariance of the estimator has the same form as the covariance of the
(actual) convergence κ from Eq. (4.68). The only difference are the additional multi-
plications by the matrices Zℓ and Mℓ. The mode coupling ηℓ(k , k ′) due to gravitational
lensing is supplemented by additional mode couplings induced by the survey proper-
ties, ηℓ→ Bℓ. The linear matter power spectrum P0(k) can be obtained by a numerical
integration of the linear perturbation equations (as performed, e. g., by camb) or by a
parametrization (Eisenstein and Hu, 1997, 1998).

The shot noise in the relation between cosmic shear and ellipticities is just related to
the number density of galaxies in the survey, which, transformed to spherical harmonic
space, is encoded in the matrix Mℓ. We follow Heavens (2003) and use

Nℓ(k , k ′) =
σ2
ε

4
Mℓ(k , k ′) (4.82)

with σ2
ε ≈ 0.1. Assuming just a shot noise neglects the intrinsic alignments of neighbor-

ing galaxies, which lead to a correlation of the ellipticities (Giahi-Saravani and Schäfer,
2013b; Capranico et al., 2012; Giahi-Saravani and Schäfer, 2013a; Joachimi and Bridle,
2010; Joachimi and Schneider, 2010; Kirk et al., 2010; Schäfer, 2009; Heavens et al.,
2000). These and other systematic errors are discussed in the literature and are not
expected to have a strong impact on parameter estimation (March et al., 2011; Takada
and Jain, 2009; Kitching et al., 2008; Huterer et al., 2006). It is justified to ignore these
effects in our illustrative forecast.

A closer look at the matrices Zℓ, Mℓ, ηℓ, and Bℓ

The covariance Cℓ(k , k ′) of the estimator κ̂ℓm(k) is given by a lengthy product (4.81),
involving a large number of integrations. In order to get a better feeling for this quan-
tity, we show the matrices Zℓ ( linked to the redshift error), Mℓ (expressing the galaxy
distribution), and ηℓ (the mode coupling induced by weak lensing) in Fig. 4.7.

Let us understand these matrices in more detail analytically. This will also lead to
a drastically simplified way to approximate these quantities in numerical calculations.
From the ordinary Bessel functions Jν (x), one can construct a family of functions ηǫ(x)
which approach the Dirac delta δ(x) for small ǫ,

ηǫ(x) =
1

ǫ
J1/ǫ (ξ ) , with ξ ≡

x + 1

ǫ
. (4.83)

Choosing ν = 1/ǫ and writing ν = ℓ+ 1/2, we can translate this to the spherical Bessel
functions,

ηǫ(x) =

È
2

π
ν
p
ξ jℓ(ξ ). (4.84)
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Figure 4.7: The matrices (from top to bottom) Z10(k , k ′), M20(k , k ′), and η10(k , k ′). All units in (powers
of) Mpc.

In other words, for large ℓ, the spherical Bessel functions essentially reduce to a Dirac
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4.2 3d weak lensing

delta,

jℓ(k r )≈
r
π

2

1

k
p
ν
δ(r − ν/k). (4.85)

This essentially corresponds to the Limber approximation (cf., e. g., LoVerde and Af-
shordi, 2008; Kitching and Heavens, 2010; Bartelmann and Schneider, 2001). For con-
venience, we define rν,k ≡ ν/k.

Applying this on the matrices, we immediately find

Zℓ(k , k ′)≈
ν

k3k ′
p(rν,k | rν,k ′), (4.86)

Mℓ(k , k ′)≈
1

k2
n(rν,k )δ(k − k ′), (4.87)

ηℓ(k , k ′)≈ 2
k ′− k

k3k ′
DΦ(k

′, rν,k ′ )

a(r ′)
for k ≤ k ′ and ≈ 0 else. (4.88)

The matrix Zℓ couples modes whose associated distances rν,k = ν/k are within the
uncertainty of the redshift measurement. It reduces to a delta function when the red-
shift error is neglected. The matrix Mℓ essentially weights each mode with the galaxy
number density n(ν/k). In this approximation, the matrix Bℓ is given by

Bℓ(k , k ′)≈ 2
ν

k3k ′
DΦ(k

′,a(rν,k ′))

a(rν,k ′)

∫ ∞
r
ν ,k′

d r p(rν,k |r )n(r )
r − rν,k ′

r rν,k ′
. (4.89)

We show the matrix Bℓ(k , k ′), ℓ = 10, calculated without this approximation, in
Fig. 4.8, where we also plot the difference to the approximate calculation. This dif-
ference amounts to ® 10% of the amplitude.

In our quantitative analysis, we will not make use of the approximative scheme
although the accuracy is, at least for large enough ℓ, reasonably good. In the full
evaluation of Bℓ, it is useful to use the orthogonality relation of the spherical Bessel
functions jℓ. Thereby, the number of nested integrations is reduced considerably, and
we get

Bℓ(k , k ′) =
4

π

∫
r ′2d r ′ jℓ(k r ′)

∫
d r p(r ′|r )n(r )Fℓ(k ′, r ), (4.90)

where

Fℓ(k
′, r )≡

∫ r

0

d r ′′ jℓ(k
′ r ′′)

r − r ′′

r r ′′
DΦ(k

′,a′′)

a′′
. (4.91)

Since the probability distribution p(r ′|r ) can be written as a function of the redshift
difference p(z ′ − z) in redshift space, the inner integral in Eq. (4.90) can be written
as a convolution allowing for an efficient calculation with the help of a Fast Fourier
Transform, since the Fourier coefficients of the individual functions in the integrand
can be multiplied to give the Fourier coefficients of the convolution. The details are
explained in Ayaita et al. (2012a).
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4 Constraints on parametrized dark energy

Figure 4.8: The product Bℓ(k , k ′) = Zℓ(k , k ′′)Mℓ(k
′′, k ′′′)ηℓ(k

′′′, k ′) for ℓ= 10. The lower surface and the
contour lines quantify the difference between the full calculation and the approximation. The
figure is taken from Ayaita et al. (2012a).

4.3 Fisher matrix approach

4.3.1 Likelihood and Fisher matrix

Consider an experiment providing a data vector x (such as a list of measured galactic
ellipticities). We model the observation as a random experiment yielding data x with
some probability, the likelihood, given a vector ϑ of Nϑ model parameters. In cosmol-
ogy, as in our case, these parameters will just be the cosmological parameters we wish
to consider, ϑ = (wX , c2

s
, . . .). The probability distribution function for the data is the

likelihood function L(x ;ϑ). The ‘true’ and unknown parameters are labeled ϑ∗. If
the experimental data vector x is given, an obvious estimate for ϑ∗ are the maximum

likelihood parameters ϑ̂ for which

∂ L

∂ ϑi

�����
ϑ=ϑ̂

= 0. (4.92)

This is not just an arbitrary choice; the maximum likelihood estimator has theoreti-
cally appealing properties. It is, in the limit of very large data vectors, the ‘best unbi-

94



4.3 Fisher matrix approach

ased estimator’ (cf. Tegmark et al., 1997) in the sense

〈ϑ̂〉=ϑ∗, (4.93)

∆ϑ̂2
i
≡ 〈ϑ̂2

i
〉− 〈ϑ̂i 〉2 =min. (4.94)

The maximum of the likelihood L is thus of particular importance. Typically, we
may even assume that the likelihood falls off quickly for parameters ϑ away from the

maximum ϑ̂. Then, the local neighborhood of ϑ̂ is, essentially, equivalent to the
likelihood everywhere. As a first approximation, we may model this neighborhood by
a multivariate Gaussian,

L(x ;ϑ)≈
1

Æ
(2π)Nϑ detT

exp

�
−

1

2

�
ϑ− ϑ̂

�T
T −1

�
ϑ− ϑ̂

��
(4.95)

with a covariance matrix T . Given some (not necessarily Gaussian) likelihood L, we
may estimate T after expanding at the maximum,

log L(x ;ϑ)≈ log L(x ; ϑ̂)+
1

2

∂ 2 log L

∂ ϑi∂ ϑ j

�����
ϑ=ϑ̂

�
ϑi − ϑ̂i

� �
ϑ j − ϑ̂ j

�
(4.96)

and then identifying

T −1
i j
=−

∂ 2 log L

∂ ϑi∂ ϑ j

�����
ϑ=ϑ̂

. (4.97)

Alternatively, rather than approximating L as a Gaussian in the first place, we may
write down a similar relation to define a matrix characterizing the likelihood,

Fi j ≡
*
−
∂ log L

∂ ϑi∂ ϑ j

+
. (4.98)

This is the Fisher information matrix. If the likelihood is indeed Gaussian in the pa-
rameters ϑ, it is just the inverse of the covariance matrix Ti j .

A crucial property of the Fisher matrix is that it puts stringent bounds on how well
an estimator can be. In fact, for any unbiased estimator, the Cramér-Rao bound

∆ϑ2
i
≥

1

Fi i

(4.99)

holds (cf. Tegmark et al., 1997, for an introduction and details). For very large data sets,
the maximum likelihood estimator approaches the best unbiased estimator and this in-
equality becomes, approximately, an equality. We will, for simplicity, not sharply
distinguish between the Cramér-Rao bound and the actual uncertainty of the estima-
tor.

Estimating the Fisher matrix for a future experiment allows us to forecast how well
we will be able to constrain cosmological parameters. In order to visualize not only
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the individual constraints ∆ϑi but also the correlation between different parameters,
it has become conventional to show confidence regions for multiple parameters. If
we assume a Gaussian likelihood (in the parameters), a contour of constant likelihood
enclosing a confidence region is given by the constraint

�
ϑ− ϑ̂

�T
F
�
ϑ− ϑ̂

�
= const. (4.100)

Since F is symmetric, this equation defines an Nϑ -dimensional ellipsoid. For two
parameters ϑ1, ϑ2 (e. g. after marginalizing over the remaining parameters), this can be
visualized as an ellipse, cf. Fig. 4.9. Conventionally, one chooses 1σ or 2σ confidence

ϑ̂1 ϑ1

ϑ̂2

ϑ2

Figure 4.9: A contour enclosing a confidence region or, more precisely, the Cramér-Rao bound, for pa-
rameters ϑ1, ϑ2, also called Fisher ellipse.

regions. The projections of the ellipse on the axes give the individual uncertainties
∆ϑ1, ∆ϑ2.

We expect that, typically, the shape and size of the ellipse will not be very sensitive to

the precise assumed maximum likelihood point ϑ̂, which is, before the experiment is
performed, not known. Hence, we can forecast constraints without precise knowledge

of ϑ̂.
Let us assume that the likelihood L(x ;ϑ), as function of the data x , is also approx-

imately Gaussian with a covariance C and an average value µ = 〈x〉. Then, following
Tegmark et al. (1997), as a function of x , we write

log L(x ;ϑ)≈−
1

2
logdetC −

1

2
(x −µ)T C−1 (x −µ)−

1

2
Nx log2π. (4.101)

Using logdetC = tr logC , this becomes

log L≈−
1

2
tr
�

logC +C−1(x −µ)(x −µ)T
�
−

1

2
Nx log2π. (4.102)
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If L(x ;ϑ) is also Gaussian in the parameters ϑ, it is straightforward to obtain the
Fisher matrix via the second derivatives of log L. This further simplifies for observables
normalized such that µ = 〈x〉 = 0. This is the case for a shear measurement, and we
shall use this simplification. The Fisher matrix then reads

Fi j =
1

2
tr


C−1

∂ C

∂ ϑi

·C−1
∂ C

∂ ϑ j


 . (4.103)

4.3.2 3d weak lensing Fisher matrix

In our analysis, we choose the cosmological parameters ϑ = (Ωm ,As , h , ns , w, log10 c2
s
);

here, Ωm also determines ΩX = 1−Ωm due to the flatness condition and neglecting ra-
diation. The present Hubble parameter H0 is included as the dimensionless quantity h ,
cf. Eq. (2.17). The primordial scalar adiabatic perturbations (i. e. the initial conditions
for linear perturbation theory) are characterized by the amplitude As and the spectral
index ns , cf. Sec. 3.2.2. The dynamics of the dark energy component (its background
and its linear perturbation evolution) is described by the equation of state w ≡ wX

and the (rest-frame) sound speed c2
s
, both assumed constant. Choosing log10 c2

s
as a

parameter rather than c2
s
has two reasons. First, regarding Figs. 4.3 and 4.4, we may

not expect tight constraints on c2
s
but rather constraints for the order of magnitude of

c2
s
, i. e. on log10 c2

s
. Second, the likelihood is not expected to have an approximately

Gaussian shape if c2
s
is taken as a parameter. The weak constraints on c2

s
will be re-

flected in a likelihood extending over a wide region. This likelihood will be fitted by
a very flat Gaussian around the maximum, and this Gaussian extends to values c2

s
< 0

where we would expect a very different behavior. In other words, in a wide region,
the dependence of the matter power spectrum P0(k) on the sound speed c2

s
will not be

linear (Ballesteros and Lesgourgues, 2010). The parameter log c2
s
avoids this to some

extent.
We will use Eq. (4.103) for the computation of the 3d weak lensing Fisher matrix.

The trace is performed over ℓ, m, and k. Since the convergence covariance Cℓ(k , k ′) is
independent of m, the sum over m just returns a factor 2ℓ+1; this just reflects the fact
that, due to statistical isotropy, we have 2ℓ+1 independent modes m. The sum over ℓ
runs, in principle, from 0 to ∞. We will, however, use a finite range from some ℓmin

to ℓmax discussed later. The Fisher matrix is thus

Fi j =
ℓmax∑
ℓ=ℓmin

2ℓ+ 1

2
trk


C−1

∂ C

∂ ϑi

·C−1
∂ C

∂ ϑ j


 (4.104)

where the summation convention (4.65) is implied, and the covariance Cℓ(k , k ′) is
given by a signal and a noise part, Cℓ(k , k ′) = Sℓ(k , k ′)+Nℓ(k , k ′) defined by Eqs. (4.81)
and (4.82).

Since the trace is a basis-independent operation, we have the freedom to transform
the expression to another basis such that the computation becomes manageable. Re-
calling Eqs. (4.81) and (4.90), the calculation of Cℓ(k , k ′) already requires several nested
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4 Constraints on parametrized dark energy

integrals. The additional matrix products in Eq. (4.104) for the Fisher matrix corre-
spond to further integrations. This shows that an optimization is very useful.

Working with linear algebra, we prefer to switch to the usual notations of discrete
matrices Aℓ

kk ′
(where k, k ′ now label discrete, equidistant modes) rather than using the

continuous quantities Aℓ(k , k ′). Further, we want to use standard matrix multiplica-
tions rather than the summation convention (4.65). This is achieved by the definition

Aℓ
kk ′
=
p

k2∆k Aℓ(k , k ′)
p

k ′2∆k. (4.105)

A matrix product then automatically reproduces the summation convention:

∑
k ′′

Aℓ
kk ′′

Bℓ
k ′′k ′
=
p

k2∆k



∑
k ′′

k ′′2∆k Aℓ(k , k ′′)Bℓ(k
′′, k ′)



p

k ′2∆k (4.106)

≈
p

k2∆k

�∫
k ′′2d k ′′Aℓ(k , k ′)Bℓ(k , k ′)

�p
k ′2∆k . (4.107)

Let us know look for an orthogonal transformation Oℓ of the covariance matrix

C ℓ
kk ′
=
p

k2∆kCℓ(k , k ′)
p

k ′2∆k such that the transformed matrix

C̃ ℓ =
�

Oℓ
�T

C ℓOℓ (4.108)

can be calculated more efficiently, i. e. with less nested integrals. A way to obtain
this is to produce, by Oℓ, the orthogonality relation of the spherical Bessel functions
avoiding one integration. This is done by

Oℓ
kρ =

p
k2∆k

È
2

π
jℓ(kρ)

Æ
ρ2∆ρ. (4.109)

The orthogonality is easily verified:

�
Oℓ
�T

Oℓ =
∑

k

Oℓ
ρk

Oℓ
kρ′

(4.110)

=
Æ
ρ2∆ρ

2

π
k2∆k jℓ(kρ) jℓ(kρ

′)
Æ
ρ′2∆ρ (4.111)

≈
Æ
ρ2∆ρ

2

π

∫
k2d k jℓ(kρ) jℓ(kρ

′)
Æ
ρ′2∆ρ (4.112)

= δ(ρ−ρ′)∆ρ≈ δρρ′ . (4.113)

The transformed noise part, N ℓ
kk ′
∝M ℓ

kk ′
, even becomes diagonal,

M̃ ℓ
ρρ′
=
∑
k ,k ′

Oℓ
kρM ℓ

kk ′
Oℓ

k ′ρ′
= n(ρ)δρρ′ . (4.114)
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4.4 Results

For the signal part Sℓ
kk ′

, we recall that the signal can be written in the form Sℓ =

(Bℓ)T · · ·Bℓ according to Eq. (4.81). Transforming the signal corresponds to trans-
forming Bℓ just from the left side,

B̃ℓ
ρk ′
=
∑

k

Oℓ
kρBℓ

kk ′
=
Æ
ρ2∆ρ2

È
2

π

∫ ∞
0

d r p(ρ|r )n(r )Fℓ(k ′, r )
p

k ′2∆k . (4.115)

This means that one integral less has to be calculated than in Eq. (4.90). We will make
use of this transformation in the calculation of the Fisher matrix.

There is also an intuitive reason for the transformation Oℓ. Since the effects of red-
shift error (encoded in the matrix Zℓ) and of the galaxy distribution (in Mℓ ) are most
directly expressed in position space, a Fourier transform unnecessarily complicates
the calculations. Our transformation essentially undoes these unnecessary transforma-
tions. It would have been possible to avoid them right from the start. In this case,
angles (ϑ,ϕ) would have been transformed to multipoles (ℓ, m) in harmonic space,
but we would have kept the radial distance r rather than the Fourier mode k. As a
consequence, the covariance matrix would be of the form Cℓ(r, r ′). The Fourier trans-
formation is only essential in one part of the calculation: relating the gravitational
potential to the matter power spectrum P0(k) in Eq. (4.81). In our analysis, this is
reflected in the fact that the matrix Bℓ(k , k ′) is only transformed back to real space on
one side, i. e. to B̃ℓ(r, k ′). The right index acts on the matter power spectrum, which
is given in Fourier space.

4.4 Results

We now come to the application of the Fisher-matrix approach to the parametrized
clustering dark energy component described by two constant parameters, the equation
of state w and the rest-frame speed of sound c2

s
. This will enable us to estimate how

well the weak lensing data of Euclid, analyzed with the 3d weak lensing method, will
be able to constrain these parameters.

Concerning the sound speed c2
s
, we immediately face a complication. Usually, the

Fisher matrix analysis has the advantage of not being very sensitive to the maximum
likelihood parameters, which are, before the experimental data are taken, not known.
This means that the dependence of the Fisher matrix Fi j on the maximum likelihood

parameters ϑ̂, at which the derivatives defining Fi j are calculated, cf. Sec. 4.3.1, is

typically not strong so that the Cramér-Rao bounds are meaningful even if the maxi-

mum likelihood parameters ϑ̂ are not known to high precision. This advantage is not
present in our analysis of the sound speed. According to our analytic investigation of
dark energy clustering due to a nontrivial sound speed, we found the physical sound
horizon λc as a critical scale, cf. Eq. (4.20). We have seen that dark energy clustering
is only expected to have observable effects if λc < H−1

0
, i. e. if the sound horizon lies
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4 Constraints on parametrized dark energy

within the Hubble horizon. This requires

c2
s
® 1+w, (4.116)

showing a critical behavior for values w close to wΛ = −1, which are preferred by
current observations (Bennett et al., 2012; Ade et al., 2013c). For w =−1, no clustering
can be observed, and for w = −1 + ǫ with a small deviation ǫ > 0, the expected
constraints on c2

s
will strongly depend on the precise value of ǫ.

Our strategy is thus to vary the assumed maximum likelihood points for w and c2
s
.

In such a way, we will see how well 3d weak lensing observed by Euclid will constrain
these parameters for different assumptions of the maximum likelihood values. In this
calculation, we keep the other cosmological parameters fixed at fiducial values, taken as
the WMAP-7 recommendedΛCDM parameters (Komatsu et al., 2011). So, the parame-
ter vector readsϑ = (w, log10 c2

s
), where we choose to constrain the order of magnitude

of c2
s
rather than c2

s
itself, for reasons discussed in Sec. 4.3.2. The uncertainty∆ log10 c2

s
is related to the relative error

∆(c2
s
)

c2
s

≈ log10 ∆ log10 c2
s
. (4.117)

We compute the 3d weak lensing Fisher matrix as explained in Sec. 4.3. This Fisher
matrix is complemented by a CMB prior based on forecasts for the Planck satellite.1

Therefor, we can use the additivity Fisher matrices. For independent experiments A
and B , the likelihoods obviously multiply. So, if x ≡ (x (A), x (B)), we have

L(x ;ϑ) = L(A)(x (A);ϑ)L(B)(x (B);ϑ) (4.118)

and consequently for the total Fisher matrix

Fi j =

*
−
∂ log L

∂ ϑi∂ ϑ j

+
(4.119)

=

*
−
∂ log L(A)

∂ ϑi∂ ϑ j

+
+

*
−
∂ log L(B)

∂ ϑi∂ ϑ j

+
(4.120)

= F (A)
i j
+ F (B)

i j
(4.121)

by linearity of the derivatives and the expectation value. A CMB prior is then simply

included by adding a CMB Fisher matrix. Our construction of this matrix, F (CMB)
i j

,

follows the prescription by Perotto et al. (2006) ( including temperature, polarization,
and their cross-correlation) with expected properties of the Planck data (Hollenstein
et al., 2009; Knox, 1995) and spectra calculated with the Boltzmann code camb (Lewis
et al., 2000; Lewis and Bridle, 2002), which has built-in facilities for our wCDM+c2

s
parametrization. The multipole range included for the CMB prior is ℓ= 2 to ℓ= 2250.

1This work preceded the first data release of the Planck collaboration (Ade et al., 2013a).
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4.4 Results

Detailed explanations for our calculation of F (CMB)
i j

are found in Ayaita et al. (2012a);

Weber (2012).

As we have to scan the two-dimensional parameter space spanned by w and log10 c2
s
,

we calculate the 3d weak lensing Fisher matrix with reduced numerical precision. Con-
cretely, we use ℓmin = 2, ℓmax = 50 for the multipole range (we will argue later that high
multipoles do not play an important role), wave modes k from kmin = 10−3 Mpc−1 to
kmax = 10−1 Mpc−1 in Nk = 200 (equidistant) steps. This roughly spans from the limit
of the linear regime kmax to scales comparable to the Hubble horizon at kmin. The
redshift range is adapted to the depth of the survey and is chosen to be zmin = 10−4 to
zmax = 10 in Nz = 1000 equidistant steps.

Figure Fig. 4.10 shows the results for the Cramér-Rao bound∆ log10 c2
s
(upper figure)

and for the relative uncertainty ∆w/|w| ( lower figure). In addition, we show the scale
λǫ at which the effective Newton’s constant felt by matter perturbations is enhanced
by ǫ = 1%, i. e. Q = 1+ ǫ, cf. Eq. (4.32). At this scale, the gravitational potential
induced by dark energy perturbations amounts to a fraction of ǫ = 1% of the total
gravitational potential. The red lines mark the values (w, log10 c2

s
) for which

λǫ = 10−n H−1
0

for n = 1,2,3, (4.122)

and thereby relate λǫ to the Hubble horizon. In the upper figure, we see that the
contours in uncertainty in log10 c2

s
as a function of w qualitatively follow these red

lines.

The constraints improve for w further away from −1 and hence for a smaller sound
horizon, as expected. On the other hand, the constraints become weak if w is very
close to −1. Only for w ¦ −0.95 and very small sound speeds c2

s
, the error ∆ log10 c2

s
is below 1; so, we may only hope that, at best, the order of magnitude of c2

s
can be

determined. Stated differently, the weak lensing data of Euclid will perhaps only be
able to determine whether c2

s
vanishes, c2

s
= 0, or not.

Since the effects of a nontrivial sound speed, i. e. c2
s
6= 1, are very small, it comes as no

surprise that the expected uncertainty ∆w/|w| is almost independent of the assumed
maximum likelihood value for c2

s
. The contour lines are almost parallel to the y axis.

Moreover, the error on the equation of state is not very sensitive to the assumed value
of w either. 3d weak lensing combined with a CMB prior will be able to put tight
constraints on the equation of sate in the wCDM model, below the percent level. We
shall see later that 3d weak lensing is more important, here, than the CMB prior.

In our following calculations, we shall fix the fiducial values instead of scanning the
full parameter space. We choose them such that the effects of dark energy clustering
are not tiny. This requires a small sound speed, we take c2

s
= 10−2, and an equation of

state w not very close to −1, our choice is w =−0.8. This might seem unnatural given
that w ≈ −1 is the observationally preferred choice corresponding to a cosmological
constant. Yet, this neglects the fact that the wCDM parametrization is only, at best,
an effective description. In Sec. 4.1.1, we have argued that, in realistic models, the dark
energy equation of state wX was far away from −1 at high redshifts. For dark energy
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4 Constraints on parametrized dark energy
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Figure 4.10: Estimated uncertainties ∆ log10 c 2
s
of the sound speed parameter (upper figure) and of the

equation of state ∆w/|w | (lower figure). The three red lines (n = 1,2,3) show parameters
for which ηǫ = 10−n H−1

0
. The figures are taken from Ayaita et al. (2012a).
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Figure 4.11: Cramér-Rao bounds as estimated confidence ellipses from the 3d weak lensing Fisher matrix.
The contours show the 1σ , 2σ , and 3σ intervals. The values on constraints on As in the
figures are scaled by a factor 109. The figure is taken from Ayaita et al. (2012a).

clustering and its impact on matter perturbations, the entire growth history is impor-
tant. Seen from this perspective, the choice w = −0.8 is still conservative as it leads
to a negligible amount of dark energy (and hence no effect on matter perturbations)
at high redshift. The constant value chosen here will, in the end, correspond to an
effective time-average of the true value wX (z).

We now include further cosmological parameters such that ϑ is composed of Ωm ,
As , h , ns , w, and log10 c2

s
. The assumed maximum likelihood values are taken from

Komatsu et al. (2011). We can improve the numerical precision and include multipoles
up to ℓmax = 300 and use Nk = 500 steps for the wave modes from kmin to kmax.
The maximum wave mode kmax is related to the scale where nonlinear effects become
very important. A maximal k also motivates a maximum multipole ℓ. Recalling the
approximation of spherical Bessel functions jℓ(k r ) with a Dirac delta ∝ δ(r − ν/k),
ν = ℓ+ 1/2, we see that values ℓ and k are related to distances r ≈ ℓ/k. Since the
depth of the survey is limited, the galaxy distribution n(r ) will drop off quickly for
large r . So, for fixed k = kmax, too large values of ℓ will not give contributions because
n(ℓ/k) will approach zero. We will see this in more detail when quantifying the 3d
convergence covariance matrix.

We show the estimated confidence ellipses for pairs (ϑi ,ϑ j ) of the chosen cosmo-
logical parameters from the 3d weak lensing Fisher matrix alone (i. e. without a CMB
prior) in Fig. 4.11. All the parameters, with the exception of the sound speed c2

s
, are

reasonably well constrained. Of course, the constraints by the CMB on the primor-
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Figure 4.12: The Cramér-Rao bound ∆ log10 c 2
s
as a function of the maximum multipole ℓmax included in

the calculation of the 3d weak lensing Fisher matrix. The figure is taken from Ayaita et al.
(2012a).

dial perturbations (characterized by the scalar amplitude As and the spectral index ns )
will be much stronger. This is not true for the remaining parameters, where 3d weak
lensing can be a powerful tool.

Let us now turn to the question which multipoles ℓ are important for the sound
speed constraints. Therefor, we show the Cramér-Rao bound ∆ log10 c2

s
as a function

of the maximum multipole ℓmax in the calculation of the 3d weak lensing Fisher ma-
trix in Fig. 4.12. We see that the first multipoles are of particular importance whereas
multipoles ℓ¦ 30 do not contribute significantly to the constraints. This is reflected in
the behavior of the covariance Cℓ(k , k ′) for different multipoles, qualitatively shown
in Fig. 4.13. With increasing ℓ, the region in (k , k ′) space where the covariance is im-
portant shifts to larger wave modes. This is linked to the galaxy distribution n(r ). The
highest sensitivity is reached around the peak of the distribution n(r ). This peak posi-
tion r ∗ corresponds to r ∗ ∼ ℓ/k. So, while we increase ℓ, the important contribution
shifts to larger k as well. If we do not go above kmax in order to avoid the nonlinear
regime, the galaxy distribution relates this cut to a cut in ℓ.

The covarianceCℓ(k , k ′) shows where the 3d weak lensing signal is strong. This does
not necessarily mean that the parameter constraints are mainly given by this region.
For clustering dark energy, only scales above the characteristic scale λǫ are important.
So, for the constraints, we need both a strong 3d weak lensing signal and a signal peaked
at large scales λ ∼ λǫ. According to Fig. 4.13, this means that the first multipoles are
decisive, as confirmed by the calculation of the Fisher matrix, cf. Fig. 4.12.

Another way to look at the dependence of the parameter constraints on the multi-
pole ℓ is to consider the summands of the Fisher matrix for each ℓ. Here, we concen-
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Figure 4.13: The 3d convergence covariance matricesCℓ(k , k ′) for multipoles ℓ= 5,10,20 (top to bottom).
The red lines again show the effective scale λǫ (here, k ≡ 1/λǫ and c 2

s
= 1), above which the

clustering of dark energy becomes significant. Brighter regions indicate larger values of the
covariance matrix. The figures are taken from Ayaita et al. (2012a).
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trate on the diagonal elements Fi i ,

Fi i =
∑
ℓ

2ℓ+ 1

2
trk

�
C−1
ℓ

∂ Cℓ
∂ ϑi

�2

(4.123)

and define the sensitivity sℓ
i
as

sℓ
i
≡ trk

�
C−1
ℓ

∂ Cℓ

∂ ϑi

�2

, (4.124)

quantifying how much a mode κℓm of the 3d convergence contributes to the constraint
of parameter ϑi ; the factor 2ℓ+ 1 is then just the number of modes κℓm for fixed ℓ.
The sensitivity for the cosmological parameters ϑ is plotted in Fig. 4.14. First of all,
we notice that the sensitivity for the sound speed is very weak again telling us that no
strong constraints can be obtained. Further, all parameters except c2

s
acquire important

contributions for large multipoles ℓ. In contrast, the sensitivity on the sound speed
falls off quickly for large ℓ.

Let us briefly comment on the results presented in this section. First of all, given the
smallness of the effect a sound speed c2

s
< 1 has on the growth of perturbations, it is

remarkable that 3d weak lensing, with the data of Euclid, leads to noticeable constraints
at all. This underlines the accuracy with which this method will probe the statistics
of the gravitational potential, free from assumptions about the galaxy bias. We shall
keep this in mind when investigating the structure formation process in the growing
neutrino quintessence model.

On the other hand, we may critically conclude that a dark energy sound speed sub-
stantially above zero will not be detected. This even worsens if the equation of state
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parameter w is very close to −1. There is no chance to observe dark energy clustering
if c2

s
≫ 1+ w since the dark energy perturbations then lie outside the horizon. We

again emphasize that, in realistic dark energy models, the value of w will undergo a
time evolution. Even if w ≈−1 at the present time to a very good approximation, this
can have been different in the past. There will be early dark energy perturbations, and
these will leave an imprint on the dark matter distribution.

In the full range of considered fiducial values, −0.99 ® w ® −0.6 and 10−4 ® c2
s
®

1, our calculated Cramér-Rao bounds on ∆ log10 c2
s
are between 0.1 and 3 implying

relative errors ∆(c2
s
)/c2

s
of roughly 0.3 to 7. Clearly, these weak constraints will not

tell us the actual value of the sound speed; instead, one can hope to rule out the trivial
case c2

s
= 1 provided that the actual sound speed is sufficiently close to zero. How

we interpret this result depends on our expectation. If we are completely ignorant
about the actual value of the sound speed and consider it as an entirely free parameter,
there is a fair chance that 3d weak lensing with Euclid data will tell us something
new, i. e. ruling out either c2

s
≈ 0 or c2

s
≈ 1. If our expectation, however, is w ≈ −1

and c2
s
≈ 1 (corresponding, approximately, to a cosmological constant), we might ask

whether small deviations from these values would be observable. For the sound speed
parameter, the answer is clearly negative.

In accordance with forecasts based on weak lensing tomography (Sapone et al.,
2010), we find that the constraints on the sound speed parameter with Euclid data
will significantly improve as compared to the current status (de Putter et al., 2010; Li
and Xia, 2010). In a comparison with tomography (Sapone et al., 2010), it seems that
3d weak lensing performs slightly better. Alternative methods that will be used to im-
prove constraints on the sound speed parameter base on galaxy surveys (Takada, 2006;
Ballesteros and Lesgourgues, 2010) and neutral hydrogen surveys (Torres-Rodriguez
and Cress, 2007; Torres-Rodriguez et al., 2008).
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5 Growing neutrino quintessence

When we introduced quintessence in Sec. 3.3.1, we found that it naturally predicts a
small present energy density in the dark energy, with an order of magnitude roughly
comparable to that of matter. Although this constitutes an important step in address-
ing the fine-tuning issues of the cosmological constant scenario, the coincidence or why
now problem remained. As compared to matter, the early energy density of dark en-
ergy was small in the past, ρϕ ≪ ρm , for typically a ® 0.2, but then quickly grew to
ρϕ ¦ ρm today at a = 1. Of course, such a transition can be reproduced with a suit-
able choice of the cosmon potential V (ϕ). In the absence of a physical motivation for
such a choice, the implied fine-tuning would, however, spoil much of the theoretical at-
tractiveness of quintessence. Growing neutrino quintessence (Amendola et al., 2008a;
Wetterich, 2007) replaces the need for a fine-tuned potential by proposing another, dy-
namical mechanism for the onset of dark energy domination. A coupling between the
cosmon and the neutrinos, somewhat larger than gravity, automatically stops the evo-
lution of the cosmon and thereby converts quintessence to an effective cosmological
constant. The trigger for this event is set by the moment when the cosmic neutrinos
become nonrelativistic.

The growing neutrino quintessence model and the physical understanding, theoret-
ical modeling, and quantitative analysis of its effects will be the central topics through-
out the remainder of this thesis. The uninitiated reader will find a first introduction in
the next section (Sec. 5.1), where the mechanism, by which growing neutrino quintes-
sence naturally accounts for a recent onset of dark energy domination, is explained in
detail. Key considerations that will be used frequently are summarized in Secs. 5.2, 5.3,
and 5.4.1. These sections provide the basic ideas and intuitions on which we will build
later. The particularities of growing neutrino quintessence at the perturbation level are
illustrated by explaining the main steps and problems of earlier studies (Sec. 5.2). Both,
crucial fundamental equations and the cornerstones of the comprehensive simulation
method are explained in Sec. 5.3. We physically motivate the picture of a cosmon-
neutrino lump fluid in Sec. 5.4.1.

Coupled quintessence, in particular the form of the coupling used in growing neu-
trino quintessence, goes back to early works (Wetterich, 1995; Amendola, 2000). In
the absence of a symmetry forcing couplings to vanish, we generally have to expect
coupled dark energy. Many examples of coupled dark energy, often proposed with the
coincidence problem in mind, are studied in the literature (examples include Comelli
et al., 2003; Gumjudpai et al., 2005; Zhang, 2005; Koivisto, 2005; Huey and Wandelt,
2006; Hu and Ling, 2006; Barrow and Clifton, 2006) or are investigated in the light of
observational constraints (cf., e. g., Olivares et al., 2005; Guo et al., 2007; Bean et al.,
2008; Quartin et al., 2008; Caldera-Cabral et al., 2009). The approaches are too nu-
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5.1 Introduction and homogeneous evolution

merous and too diverse to do justice to in these few lines. A class of models with many
similarities to growing neutrino quintessence are mass-varying neutrino (MaVaN) sce-
narios (cf. Afshordi et al., 2005; Bi et al., 2005; Peccei, 2005; Weiner and Zurek, 2006;
Spitzer, 2006; Chitov et al., 2011).

5.1 Introduction and homogeneous evolution

The growing neutrino quintessence model (Amendola et al., 2008a; Wetterich, 2007)
aims at a natural explanation why the expansion of the Universe has started to accel-
erate so recently in cosmic history. Let us briefly explain why the standard ΛCDM
model but also standard models of quintessence do not provide an explanation for the
recent onset of dark energy domination. A flat ΛCDM universe with a nonvanishing
cosmological constant Λ has to enter, eventually, a Λ-dominated epoch since the con-
stant energy density ρΛ associated to the cosmological constant necessarily catches up
with the energy densities of radiation and matter,

ρΛ
ργ
∝ a4,

ρΛ
ρm

∝ a3. (5.1)

The scale factor of equality ρΛ = ρm is given by (neglecting radiation)

aeq =
3

È
ρm,0

ρΛ
∼ 3

√√√√10−46GeV4

ρΛ
. (5.2)

Although the onset of dark energy domination is guaranteed in the ΛCDM model,
the cosmological constant needs to be of an unnaturally tiny value in order to obtain
aeq ∼ 1 and hence a recent onset of dark energy domination, cf. the cosmological
constant problem discussed in Chapter 3.

In quintessence models of dark energy, which we have presented in Sec. 3.3.1, the
small energy density of dark energy as compared to fundamental physics scales is easily
explained by the dynamical evolution of the dark energy scalar field, the cosmon ϕ. Its
energy density ρϕ decays analogously to those of radiation and matter and naturally
comes close to the right order of magnitude needed for the accelerated expansion today.
The smallness of the energy density of dark energy is then simply a consequence of
the large age of the Universe. Although standard quintessence models successfully
predict a small energy density ρϕ, they do not naturally account for an onset of dark
energy domination. In the case of a purely exponential potential, Eq. (3.66), we have
seen that the energy density of quintessence in the tracker solution always follows the
dominant component, i. e. ρϕ ∝ ργ during radiation domination and then ρϕ ∝ ρm

during matter domination. There will be no accelerated expansion in this model, cf.
Fig. 3.5. The power-law potential, Eq. (3.66), does lead to dark energy domination, but
the timing when this happens has to be fine-tuned.
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5 Growing neutrino quintessence

The growing neutrino quintessence model is a potential solution to this coincidence
problem of dark energy. Amendola et al. (2008a) speculate that there is a way to guar-
antee the onset of dark energy domination even in the case of a purely exponential
potential. A coupling of the cosmon ϕ to another species, e. g. the neutrinos, might
act as an effective contribution to the potential and kick the cosmon out of its tracker
behavior, cf. Fig. 3.6. We shall see that the most straightforward type of a coupling
leads to a varying mass mν(ϕ) of the species coupled to the cosmon, which we assume
to be the neutrinos. If this mass grows while the cosmon rolls down its potential,
the energy density in neutrinos will decay less fast than in the uncoupled case or even
increase (Amendola et al., 2008a),

ρν ∝ an(γ−2), γ > 1, (5.3)

where n = 4 for relativistic neutrinos and n = 3 once the neutrinos have become non-
relativistic. So, at some point, the energy density ρν will have an order of magnitude
similar to the other components and then have a significant effect on the evolution of
the cosmon by virtue of the cosmon-neutrino coupling.

Basic equations

Let us investigate this mechanism in more detail. The proposed covariant coupling
(Wetterich, 1995; Amendola, 2000) can be expressed by an exchange of energy and
momentum between the two species and reads

∇λT
µλ
(ν)
=−βtrT(ν)∂

µϕ, (5.4)

∇λT
µλ
(ϕ)
=+βtrT(ν)∂

µϕ. (5.5)

The individual energy-momentum tensors T
µλ
(ν)

of the neutrinos and T
µλ
(ϕ)

of the cos-

mon do not satisfy conservation equations but their sum does,

∇λ
�

T
µλ
(ν)
+T

µλ
(ϕ)

�
= 0. (5.6)

We will see that Eqs. (5.4) and (5.5) are realized, at the particle physics level, as a de-
pendence of the neutrino mass mν on the scalar field ϕ. This dependence is quantified
by the coupling parameter β,

β=−
d log mν

dϕ
. (5.7)

Here, mν denotes the average neutrino mass, and the cosmon-neutrino coupling β is
assumed to be equal for the different neutrino species. This can be generalized (Wet-
terich, 2007).

The evolution of the cosmon can be obtained by varying the action

S =

∫
d 4 x

p
−g

�
LG +Lm +Lν +Lϕ

�
(5.8)
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5.1 Introduction and homogeneous evolution

of the model (here, Lm includes matter and radiation) with respect to ϕ, or by using
the energy-momentum tensor

T
µλ
(ϕ)
= ∂ µϕ∂ λϕ+ gµλLϕ, Lϕ =−

1

2
∂ λϕ∂λϕ−V (ϕ) (5.9)

and inserting it into the energy-momentum exchange equation (5.5). The result is a
modified Klein-Gordon equation

∇λ∇λϕ−V,ϕ(ϕ) =β trT(ν). (5.10)

On the background level, ϕ(x)→ ϕ̄(τ), this equation becomes (cf. Sec. 3.3.1)

ϕ̄′′+ 2
a′

a
ϕ̄′+ a2V,ϕ(ϕ̄) = a2β (ρ̄ν − 3 p̄ν ) . (5.11)

Similarly, by using the background energy-momentum tensor of the neutrinos,

T µ
(ν)λ = diag(−ρ̄ν , p̄ν , p̄ν , p̄ν ) (5.12)

in Eq. (5.4), the background evolution of the neutrino energy density is given by

ρ̄′ν + 3
a′

a
(ρ̄ν + p̄ν ) =−a2β (ρ̄ν − 3 p̄ν ) ϕ̄

′. (5.13)

If β is negative and ϕ̄ rolls down the potential V (ϕ) towards larger values, the right-
hand side of this equation exactly causes the behavior we demanded in Eq. (5.3).

Onset of dark energy domination

In the background Klein-Gordon equation (5.11), the ‘force term’ is now given by

f =−a2
�

V,ϕ −β (ρ̄ν − 3 p̄ν )
�

(5.14)

consisting of the potential gradient and the coupling term. Once the (positive) cou-
pling term overtakes the (negative) potential gradient, the cosmon is stopped due to an
effective, dynamical barrier, cf. Fig. 3.6. Afterwards, the approximately frozen value
V (ϕ̄) acts as an effective cosmological constant and leads to an onset of dark energy
domination. We will next discuss this mechanism.

Let us first investigate the case of a constant β. Then, the neutrino mass evolves
simply according to

mν (ϕ) = m̄ e−βϕ, (5.15)

with a mass m̄ normalized at ϕ = 0. This mass parameter can be adjusted such that the
neutrino mass in the early universe matches a natural neutrino mass scale. For later
use, we express Eq. (5.15) in terms of the potential,

mν (ϕ) = m̄ V
−β
α

0
[V (ϕ)]

β
α , V (ϕ) =V0 e−αϕ. (5.16)
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5 Growing neutrino quintessence

At some point, the growing mass mν(ϕ) will overtake the decaying neutrino temper-
ature Tν ∝ a−1, and the neutrinos become nonrelativistic, p̄ν ≈ 0. The coupling term
in the Klein-Gordon equation (5.11), which is proportional to β(ρ̄ν − 3 p̄ν ), will then
become important (whereas it is negligible in the ultrarelativistic case p̄ν ≈ ρ̄ν/3). The
potential gradient V,ϕ(ϕ̄) falls with a−3 during matter domination. This is a conse-
quence of the tracker behavior,

Ωϕ ≈
3

2α2
= const., and Ωϕ = 2

V (ϕ̄)

ρm,0a−3
, (5.17)

where we have used ρ̄ϕ = 2V (ϕ̄) during the tracker behavior in matter domination

where wϕ = 0 and ρtot = 3H 2 ≈ ρm,0a−3. Hence

V,ϕ(ϕ̄) =−αV (ϕ̄)∝ a−3. (5.18)

On the other hand, once the neutrinos are nonrelativistic, their energy density decays
slower than a−3 due to the growing mass. Using the scaling behavior of quintessence
and Eq. (5.15) for the neutrino mass, Amendola et al. (2008a) derive

ρ̄ν ∝ a3(γ−2) with γ = 1−
β

α
. (5.19)

This means that, for negative coupling β, the coupling term ∝ βρ̄ν will eventually
overtake the potential gradient, the force term f switches its sign, the rolling of the
cosmon is stopped, and a phase of accelerated expansion will eventually set in.

For the asymptotic late-time evolution, Amendola et al. (2008a) find the future at-
tractor

w =−1+
1

γ
, Ωϕ = 1−Ων = 1−

1

γ
+

3

α2γ 2
. (5.20)

If the present Universe is close to this attractor, the present fraction of dark energy
is, by this equation, directly related to Ων and hence to the present neutrino mass
(Amendola et al., 2008a),

Ωϕ,0 ≈
γ mν(ϕ̄0)

16eV
. (5.21)

The situation is completely different from the cosmological constant where the scale
of dark energy has to be fine-tuned to many orders of magnitude. Here, the smallness
of the neutrino mass automatically gives roughly the correct order of magnitude for
the energy density in dark energy. The precise evolution is then determined by the
dimensionless parameters α and β.

We show the late-time evolution of the fractional energy densities Ωϕ, Ων , and Ωm

in Fig. 5.1. Here, we have chosen α= 10 to ensure a sufficiently small amount of early
dark energy,

Ωe ∼
1

α2
= 10−2, (5.22)
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Figure 5.1: The late-time evolution of the fractional energy densities Ωϕ , Ων , and Ωm in the constant β
model. The parameters are α= 10 and β=−52.

as required to match observational constraints (Doran et al., 2007; Reichardt et al.,
2012; Pettorino et al., 2013). The value ofβ has then to be chosen large enough in order
to realize the onset of dark energy domination at the right time, we take β = −52.
These parameters lead to a rather large present-day neutrino mass as can be seen in
Fig. 5.2. The present value reaches mν ≈ 2 eV, which is, essentially, the current upper
limit allowed by laboratory constraints (Beringer et al., 2012). A consequence of this
large mass is a rather high energy density in neutrinos, Ων,0 ¦ 10%. Smaller present-day
neutrino masses can be obtained for larger values of β — large values of β compensate
a smaller mass in the coupling term ∝ βρ̄ν . So, the above scenario can be regarded as
the case of a minimal |β| leading to an expansion history similar to the ΛCDM model
while at the same time respecting constraints on early dark energy and the neutrino
mass. In Fig. 5.2, we also see the characteristic feature of the model that the neutrino
mass was small in early cosmic history. Cosmological upper limits for the neutrino
mass (Goobar et al., 2006; Ade et al., 2013c) are easily passed.

Varying coupling parameter

For the purpose of simplicity, we have assumed a constant coupling parameter β. We
have seen that sufficiently small present-day neutrino masses require typically β ∼
−102, which might seem an unnaturally large value. In general, however, β should be
regarded ϕ-dependent,β=β(ϕ), and the approach of large values can find a dynamical
explanation. The constant β model is then merely an approximation in the case that
the functionβ(ϕ) is sufficiently flat in late-time cosmology. Wetterich (2007) considers
a cascade mechanism for explaining the neutrino masses (Magg and Wetterich, 1980;
Lazarides et al., 1981; Schechter and Valle, 1980), according to which the neutrino mass
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Figure 5.2: The evolution of the neutrino mass mν (ϕ̄) in the constant β model.

acquires a contribution proportional to M−2
t

, where Mt is the mass of a scalar SU(2)

triplet field, and generically Mt ∼ MGUT ∼ 1016 GeV. Wetterich (2007) then assumes
that Mt depends on ϕ and has a zero, Mt (ϕcrit) = 0. When ϕ, in the course of its
cosmological evolution, approaches ϕcrit, this automatically leads to growing neutrino
masses and large couplings β(ϕ). A concrete realization is

mν (ϕ) =
m̄

ϕcrit−ϕ
, (5.23)

which may approximate the (fundamental and more complex) function close to the
pole (Wetterich, 2007), with

β(ϕ) =−
d log mν

dϕ
=

1

ϕ−ϕcrit
. (5.24)

In such a model, we will naturally encounter large couplings. It is also appealing from
the particle physics perspective; the scale of neutrino masses would, from a comparison
of fundamental scales in the neutrino mass generationmechanism, naively be estimated
(Wetterich, 2007) as

mν ∼
v2

MGUT

∼ 10−3 eV, (5.25)

with the Higgs vacuum expectation value v ≈ 246 GeV, cf. Sec. 3.1.2, and the GUT
scale. Yet, observations indicate that at least one neutrino mass eigenstate is above
mi ¦ 0.04 eV (Beringer et al., 2012). In the growing neutrino quintessence model, a
more natural value mν ∼ 10−3 can be realized in the early Universe, while the neutrino
mass can be much larger today.
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This varying β model also leads to realistic expansion histories. We again show the
energy fractions Ωϕ, Ων , and Ωm in Fig. 5.3. The expansion history is very similar to
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Figure 5.3: The late-time evolution of the fractional energy densities Ωϕ , Ων , and Ωm in the varying β
model.

the ΛCDM model. The stopping mechanism is even more pronounced than in the
constant β model since the effective potential barrier is steeper. Moreover, in this
example, the present-day neutrino mass is smaller as is expressed by a much smaller
energy fraction Ων . The evolution of the neutrino mass is shown in Fig. 5.4. It reaches
mν ≈ 0.3 eV at the present cosmic time.

Aspects of the cosmon-neutrino coupling

We have already mentioned that the dependence of a fundamental mass scale in the
mechanism of neutrinomass generation on the cosmonϕ leads to the cosmon-neutrino
coupling assumed in the growing quintessence model. On a particle physics level,
the neutrinos (we do not, for simplicity, discriminate between the different neutrino
species) can be described with a Majorana Lagrangian

Lν = iψ̄
�
γλ∇λ+mν (ϕ)

�
ψ (5.26)

on curved spacetime (Brill and Wheeler, 1957), where γλ denote the gamma matrices
contracted with the vierbeins, γλ = γ a eλ

a
, and gµν = e

µ
a e ν

b
ηab . Working out the equa-

tions of motion following from this action and the usual scalar field action, Ayaita et al.
(2012b) find that the coupling defined by the energy-momentum exchange equations
(5.4) and (5.5) is exactly reproduced. The details of the derivation can be found in
Ayaita et al. (2012b); Weber (2012).

A concern one has to consider is that the cosmon-neutrino coupling changes the
Fermi scale of the weak interactions due to loop contributions. The effect of the
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Figure 5.4: The evolution of the neutrino mass mν (ϕ̄) in the varying β model.

cosmon-neutrino coupling on the electronmass has been analyzed byWetterich (2007).
In fact, if the cosmon-neutrino coupling is realized by a dependence of the triplet mass
Mt on the cosmon ϕ, a rather strong variation of the Fermi scale is possible. The situ-
ation is different if the cosmon-neutrino coupling is realized, e. g., by the dependence
of the right-handed neutrino mass on ϕ.

Although we will not go into the details of the fundamental physics realization of
the growing neutrino quintessence model, we briefly mention an early criticism of
models with an exponential potential and a fermion coupling of the type mν (ϕ) ∝
exp(−βϕ). Doran and Jäckel (2002) argue that fermion fluctuations as shown in
Fig. 5.5 would effectively contribute to the scalar potential and even dominate. The

. . .

. . .

Figure 5.5: Solid lines indicate neutrinos, dashed lines the (scalar) cosmon field. In the case of a linear
approximation, mν (ϕ)≈ mν(ϕ̂)(1−βϕ̂), only one external line on each side would appear.

potential V (ϕ) would be unstable under quantum fluctuations in the presence of a
coupling to fermions. A response to this criticism has been given by Wetterich (2008):
If the quintessence theory is properly constructed from a broken dilatation symmetry
— the cosmon is then the pseudo-Goldstone boson of this spontaneously broken sym-
metry —, the exponential potential can already be the full, effective potential including
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5.2 Studies of inhomogeneities

all quantum contributions. In this scenario, the cosmological constant problem is ad-
dressed on a fundamental level.

5.2 Studies of inhomogeneities

Linear perturbations

After having found a promising background evolution with an expansion history very
similar to the standard ΛCDM model, the ‘canonical’ next task is the study of linear
perturbations. Typically, linear perturbation theory already allows to draw a lot of
important conclusions and to make contact with a variety of observational probes and
constraints. This is because linear perturbation theory is, typically, a good approxi-
mation on large scales even if small scales already undergo a nonlinear evolution. One
might hope to predict, with the help of linear perturbations, an angular power spec-
trum Cℓ of CMB temperature fluctuations and a large-scale matter power spectrum
P (k) as probed by galaxy surveys. We shall see in this section that this does not work
in the growing neutrino quintessence model. Nonlinearities become important even
on large scales. The investigation of linear perturbations is, nonetheless, an important
task as it will provide the initial conditions for a thorough nonlinear treatment. We
now briefly review the application of linear perturbation theory to the growing neu-
trino quintessence model as worked out by Mota et al. (2008). The resulting modified
version of the Boltzmann code camb, capable of treating growing neutrino quintes-
sence at the linear level, will be used later for the generation of initial conditions.

Linear perturbations in the cosmon ϕ are described by the linearly perturbed part
of the modified Klein-Gordon equation (5.10). In Fourier space, it reads (Mota et al.,
2008)

δϕ′′+ 2
a′

a
δϕ′+

�
k2+ a2V,ϕϕ(ϕ̄)

�
δϕ+ 2a2V,ϕ(ϕ̄)Ψ−

�
Ψ′+ 3Φ′

�
ϕ̄′ =

= a2
�
β(ϕ̄) (δρν − 3δ pν )+β,ϕ(ϕ̄) (ρ̄ν − 3 p̄ν)δϕ+ 2β(ϕ̄) (ρ̄ν − 3 p̄ν )Ψ

�
. (5.27)

For the neutrinos, we need the evolution of the density perturbation δρν and also
of the pressure perturbation δ pν . The linear evolution equations (2.72) and (2.73)
discussed in Sec. 2.2.1 only provide both perturbations if we assume a sound speed
c2

s
= δ pν/δρν . Since the latter is not known a priori, one has to take a different

approach. This is done by perturbing the neutrino phase-space distribution (Mota
et al., 2008; Ma and Bertschinger, 1995),

fν (τ, x i , p j ) = fν,0(p)
�

1+ψ(τ, x i , p j )
�

, (5.28)

where p = |p| denotes the absolute value of the spatial comoving momentum. Insert-
ing this linear expansion into the phase-space conservation equation, cf. Eq. (2.84), in
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Fourier space gives the first-order Boltzmann equation (Mota et al., 2008)

ψ′+ i
k · p

E
ψ+

d log fν,0

d log p

�
Φ′− i

E

p2
k · pΨ

�
=

=−i
k · p

E

k

p2
a2mν(ϕ̄)

2β(ϕ̄)
d log fν,0

d log p
δϕ (5.29)

with the energy E = E (p ,ϕ) =
Æ

p2+ a2mν (ϕ̄)
2. The density and the pressure pertur-

bations are then, cf. Eqs. (2.32) and (2.33), obtained as integrals, e. g.

δρν =
∫

d 3 p
1
p−g

�
E (p , ϕ̄+δϕ) fν,0(1+ψ)− E (p , ϕ̄) fν,0

�
, (5.30)

where E (p , ϕ̄+δϕ)≈ E (p , ϕ̄)+ E,ϕ(p , ϕ̄)δϕ in linear approximation. In a numerical

computation, rather than evolving the full function ψ = ψ(τ, x i , p j ), it is adequate to

expand ψ in Legendre polynomials (Mota et al., 2008).
We apply the linear perturbation equations to show the dimensionless spectra∆ν (k)

and ∆m(k) of neutrino and matter density perturbations at a = 1 in the constant β
model (β = −52 and α = 10) in Fig. 5.6. Obviously, the cosmon-neutrino coupling
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Figure 5.6: The dimensionless spectra ∆ν (k) and ∆m(k) (in the synchronous gauge) according to linear
perturbation theory of the growing neutrino quintessence model with constant coupling pa-
rameter β. Confer the corresponding figure in Mota et al. (2008).

has led to a rapid growth of neutrino perturbations exceeding the boundary between
the linear and the nonlinear regime, ∆ν ∼ 1, even on large scales. Recalling that the
coupling becomes only effective once the neutrinos are nonrelativistic, which happens
around z ≈ 5 or a ≈ 0.2, we get an impression of the enormous impact of the cosmon-
neutrino coupling. In Fig. 5.7, we show the scale factor anl(k) where the neutrino
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Figure 5.7: The scale factor anl where neutrino perturbations start to become nonlinear, as a function of
scale. Confer the corresponding figure in Mota et al. (2008).

density perturbations start to become nonlinear, i. e. ∆ν (k;anl) = 1. In stark contrast
to cold dark matter, whose perturbations enter the nonlinear regime on small scales
first and then form, from there, larger structures, the neutrino density becomes first
nonlinear at the comoving scale λ∼ 100h−1Mpc. We thus have to expect the formation
of very large structures first. In particular, linear perturbation theory breaks down
even on large scales. Hence, the formation of large-scale nonlinear neutrino structures
has been a prediction by Mota et al. (2008).

First nonlinear attempts

A first, tentative investigation of these structures has been performed by Wintergerst
et al. (2010). In order to include at least some nonlinear contributions and to model
the neutrino density of an idealized, forming lump in position space, a hydrodynamic
approach was chosen, cf. Sec. 2.2.2. The velocity dispersion σi j quantifying the ‘micro-
scopic’ velocity of the neutrinos, cf. Eq. (2.92), which — as we shall see in Sec. 5.4.4 —
is essential in stabilizing the neutrino structures and which encodes the effect of shell
crossing, has been neglected. The calculation was necessarily unstable and only reason-
ably accurate as long as σi j is small and the Newtonian limit holds. The hydrodynamic
equations in the Newtonian limit (ignoring matter) that were used (Wintergerst et al.,
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2010) read

δ ′ν =−vν ·∇δν − (1+δν )∇ · vν , (5.31)

v ′ν =−
�

a′

a
−βϕ̄′

�
vν − (v ν ·∇)v ν −∇Φ+β∇δϕ, (5.32)

∆δϕ =−a2βρ̄νδν , (5.33)

∆Φ=
a2

2
ρ̄νδν . (5.34)

These equations show that, in the Newtonian limit, the cosmon-neutrino coupling
is completely analogous to gravity. The cosmon perturbation δϕ plays the roll of a
gravitational potential, with an enhanced coupling constant. Obviously, δϕ =−2βΦ,
and the force term in Eq. (5.32) picks up another factor of β. We see that the cosmon-
mediated force between neutrinos is, in the Newtonian limit,

|F |= 2β2 |F G |, (5.35)

a factor 2β2 larger than the gravitational interaction. This is of order 104 forβ∼−102.
This very strong attractive force explains the rapid neutrino clustering that we ob-
served already in linear theory. This clustering has also been seen in the hydrodynamic
approach (Wintergerst et al., 2010) for an initially spherically symmetric overdensity.
It has also been investigated in a spherical collapse approach (Wintergerst and Pet-
torino, 2010). Since the calculations are unstable, no physical properties of the final
sate of the neutrino structures could be inferred.

Nonetheless, Pettorino et al. (2010) have tried, essentially with intelligent guesses
about the properties of the structures and with modeling the neutrino density by a
collection of point-shaped peaks, to get an idea of the impact of these structures on
the CMB temperature fluctuation spectrum Cℓ. Although the quantitative results are
clearly speculative and hard to interpret, the authors emphasized the importance of
the backreaction in growing neutrino quintessence, with which we shall be concerned
later:

“[. . . ] the neutrino mass within a virialized lump may differ from the cos-
mological value outside the lump. As an effect, the fluctuations on larger
length scales may ‘see’ a modified effective neutrino mass and a modified
ϕ-dependence of m̄ν (ϕ).”

As a consequence, large scales, and even the background solution, cannot be calculated
accurately without taking into account the backreaction from small scales which mani-
fests itself in a modified neutrino mass. We will see later in a full nonlinear treatment
that this effect is quantitatively very important and leads to drastic consequences, e. g.
for the expansion of the Universe.

The possibility of even a mass freezing within neutrino lumps — decoupling the
lumps from the background evolution of the cosmon— has been investigated byNunes
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et al. (2011). The idea was to model a spherical neutrino structure and to consider
the Klein-Gordon equation for a spherically symmetric cosmon ϕ(r ) with boundary
conditions

∂ ϕ

∂ r

�����
r=0

= 0 and lim
r→∞

ϕ(r ) = ϕ̄, (5.36)

i. e. with regularity in the center of the structure and an approach of the cosmological
background value far outside the structure. For the neutrino number density, anNFW-
type profile has been assumed, Eq. (2.103). Nunes et al. (2011) discussed two important
effects.

First, the radial Klein-Gordon equation for a static field indeed leads to a mass freez-
ing in the sense that the value inside the lump ϕl = ϕ(r = 0) is not sensitive to the
background value ϕ̄ = ϕ(r →∞),

dϕl

d ϕ̄
≪ 1. (5.37)

We illustrate this effect in Fig. 5.8. As the background cosmon rolls down the potential

ϕ

r

∆ϕl

∆ϕ̄

Figure 5.8: Schematic illustration of the mass-freezing effect. The cosmon field within the lump does not
follow the background value far outside the lump.

towards larger values, the cosmon field within the lump reacts only mildly. This has
severe consequences for the background expansion since the stopping mechanism is
significantly reduced.

Second, Nunes et al. (2011) argue that, depending on the steepness of the neutrino
number density close to the center, it is possible that the neutrinos become relativistic
again. This is due to the mass suppression induced by the local cosmon field ϕ(r )
which shows a potential well as illustrated in Fig. 5.8.
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5 Growing neutrino quintessence

Newtonian N -body simulation

The next big step forward in investigating the cosmological dynamics of the model
and, in particular, the formation of neutrino structures, was due to Baldi et al. (2011)
(cf. also Baldi, 2011, 2012), who overcame the instability of the purely hydrodynamic
approach by switching to a Newtonian N -body treatment. The backreaction effect
(Pettorino et al., 2010), the dependence of the neutrino mass on the local cosmon
field ϕ(x) (rather than merely on the background value ϕ̄(τ)), and the possibility of
relativistic neutrino velocities (Nunes et al., 2011) have not been included in this early
work. Nonetheless, Baldi et al. (2011) could successfully simulate the beginning of
the neutrino lump formation in an adapted gadget-2 N -body simulation (Baldi et al.,
2010; Springel, 2005).

The equation of motion for effective neutrino particles in the N -body simulation
reads

v ′ =−
�

a′

a
−βϕ̄′

�
v −∇Φ+β∇δϕ, (5.38)

where the cosmon perturbation is given by the Poisson equation (5.33). Instead of
solving it on a grid, it is implemented as a two-body force in complete analogy to
Newtonian gravity. The mass variation — in this simulation only taken into account
at the background level, mν = mν(ϕ̄) — is reflected in a modified Hubble damping
term now including a contribution ∝ βϕ̄′. If ϕ̄ oscillates, this modified damping can
change its sign and lead to accelerations of the N -body particles. This is a strong effect
and can even tear forming structures apart. Baldi et al. (2011) hence observed what
they called an “oscillating structure formation”. We show the modified damping term
from Eq. (5.38) as compared to the usual Hubble damping ∝ a′/a in Fig. 5.9. As we

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

modified damping
Hubble damping

scale factor a

da
m
p
in
g
te
rm

[M
p
c−

1
]

Figure 5.9: The modified Hubble damping from Eq. (5.38) compared to the usual Hubble damping a′/a.

shall see later, this result is not physical but, instead, an artefact of neglecting local
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5.3 Cornerstones of the full simulation

mass variations. As already speculated by Nunes et al. (2011), an effective mass freezing
occurs in the lumps, and the background oscillation of ϕ̄ is effectively shielded, i. e.
compensated by the perturbations.

The simulations performed by Baldi et al. (2011) also verified that, indeed, the effec-
tive N -body particles are accelerated to relativistic velocities, hence leaving the New-
tonian limit. At redshift z = 1 (corresponding to a = 0.5), already 20% to 30% of
the effective N -body particles have reached the speed of light. Here, at the latest, the
Newtonian N -body simulation can no longer be used.

5.3 Cornerstones of the full simulation

The considerable amount of original work to understand the cosmological evolution
of growing neutrino quintessence, which we have briefly summarized in the preced-
ing section, has not given a comprehensive picture, nor does it enable us to make
quantitative predictions; instead, it underlines that a variety of drastic and initially
unexpected effects are decisive for any quantitative description of growing neutrino
quintessence cosmology (Amendola et al., 2008a; Wetterich, 2007; Brouzakis et al.,
2008; Mota et al., 2008; Dent et al., 2009; Pettorino et al., 2009; Wetterich and Pet-
torino, 2009; Ayaita et al., 2009; Wintergerst et al., 2010; Wintergerst and Pettorino,
2010; Pettorino et al., 2010; Baldi et al., 2010; Brouzakis et al., 2011; Schrempp and
Brown, 2010; Nunes et al., 2011; Baldi et al., 2011). This motivates the development
of a unified approach, designed from scratch to include all essential effects in a com-
prehensive and self-consistent method, starting from the fundamental equations of the
theory. This has been achieved by Ayaita et al. (2012b); encouraged by the promising,
yet incomplete results of the Newtonian N -body simulations (Baldi et al., 2011), an
N -body based approach has been chosen.

This new N -body simulation scheme for growing neutrino quintessence is the topic
of Chapter 6. Here, we will anticipate several key points of these simulations in order
to investigate the physics of the model, in particular of the forming neutrino structures,
more closely. In fact, we shall see that many aspects of these structures or lumps can be
understood analytically, providing a clear framework of concepts that we can employ
later to interpret the results of the full simulation runs.

This section serves both as an (incomplete) introduction to the simulation method
and as the basis for our analytical investigations. The results of the simulations will
guide us to some extent and allow us to numerically test our analytical hypotheses.
Therefore, we briefly explain which effects are included in the simulations and quote
some fundamental equations on which we will rely in the course of this chapter. The
technical details are postponed to Chapter 6.

We will build upon this section when we argue that the cosmon-neutrino lumps can
be treated as effective, nonrelativistic particles in Sec. 5.4.1. Once the neutrinos are
bound in structures, the cosmological dynamics depends on the nonrelativistic fluid of
lumps (not only the neutrinos, as we will see, but also the local cosmon field sourced
by them has to be regarded as a part of the cosmon-neutrino lump).
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5 Growing neutrino quintessence

Relativistic neutrinos

In order to fully account for the possibility of relativistic neutrino velocities, we de-
scribe the motion of effective neutrino N -body particles with a fully relativistic equa-
tion of motion. The energy density ρν and the pressure pν have to be calculated in-
cluding relativistic effects. They are given by the T 0

(ν)0 and the T i
(ν)i components,

respectively. In a realistic treatment, also the off-diagonal components T i
(ν) j are im-

portant, as they account for the anisotropic shear perturbation, cf. Eq. (2.66). We

model T
µλ
(ν)

by a collection of neutrino particles with standard one-particle energy-
momentum tensors

T µν =
1
p−g

∫
dηmν (ϕ) u

µuν δ4(x − ξ ) (5.39)

with the proper time η, the particle trajectory ξ (η), the cosmon-dependent neutrino
mass mν (ϕ) evaluated at the particle position ξ (η), and the four-velocity uµ ≡ dξ µ/dη,
cf. Eq. (2.41). This manifestly covariant expression can be rewritten in a simpler form
by performing the integration over proper time, i. e. writing

∫
dηδ4(x − ξ ) =

∫
dη

dξ 0
dξ 0δ(x0− ξ 0)δ3(x − ξ ) =

dη

dξ 0
δ3(x − ξ ). (5.40)

The derivative of proper time η with respect to coordinate time ξ 0 = τ is linked to the
special-relativistic Lorentz factor

γ =

p−g00 dξ 0

dη
=

1
Æ

1− (1− 2Ψ− 2Φ)v2
. (5.41)

The term
p−g00 absorbed in γ just changes the factor

p−g to its spatial versionÆ
(3) g ,

(3) g = det(gi j ) and hence
Æ
(3) g = a3 (1− 3Φ). (5.42)

The one-particle energy-momentum tensor then reads

T µν =
1

Æ
(3) g

mν (ϕ)

γ
uµuν δ3(x − ξ ). (5.43)

Several approaches of deriving the equation of motion for these particles will be
mentioned in Sec. 6.3. The simplest approach just uses the standard relativistic one-
particle action, supplemented by a ϕ-dependent mass,

S =

∫
d 4x

p
−g T λ

λ =−
∫

dηmν (ϕ(ξ )), (5.44)
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5.3 Cornerstones of the full simulation

which has to be varied with respect to the trajectory ξ (η). By derivatives acting
on mν(ϕ(ξ )), this variation will induce extra terms to the usual general-relativistic
geodesic equation expressing the cosmon-neutrino coupling:

d uµ

dη
+Γµρσ uρuσ =β∂ µϕ+βuλ∂λϕ uµ, (5.45)

where β is the cosmon-neutrino coupling parameter. With the Christoffel symbols
from Eqs. (2.58) and (2.59), this fully relativistic equation of motion is used in the N -
body approach for the effective N -body particles, and the neutrino energy momentum
tensor is evaluated as the sum over the one-particle contributions.

Local mass variation

Another crucial ingredient is to include local variations of the neutrino mass, which
will be decisive for the backreaction effect discussed in Sec. 5.2. The local mass is a
function of the local cosmon field,

mν (ϕ) = mν (ϕ̄(τ)+δϕ(τ, x )) = m̄ e−βϕ̄ e−βδϕ, (5.46)

where the last equation holds for the constant β model, with a background mass and
a local fluctuation. Although we will see that cosmon perturbations are linear in the
sense δϕ≪ 1, the term βδϕ in the mass perturbation can reach order one; the mass
function mν (ϕ̄+δϕ) can thus not be linearized.

The cosmon perturbation δϕ is obtained by solving the linearly perturbed Klein-
Gordon equation, cf. Eq. (5.27). Numerically, we have to neglect the time derivatives
δϕ′′ and δϕ′ against the spatial derivatives (in a time integration, the small quantity
δϕ′′ would be calculated as the difference of two large quantities, namely∆δϕ and the
source perturbation δ(βtrT(ν)) — this cancellation effect cannot be resolved numeri-

cally). So, the equation for δϕ is approximately given by

∆δϕ− a2V,ϕϕ(ϕ̄)δϕ+ 2

�
ϕ̄′′+ 2

a′

a
ϕ̄′
�
Ψ= a2δ

�
βtrT(ν)

�
. (5.47)

The left-hand side has been linearized in δϕ, but the right-hand side is a complicated,
nonlinear function of δϕ. Even in the constant β model, where β can be taken out
of the perturbation, δtrT(ν) contains the neutrino mass ∝ exp(−βδϕ). The solution
of this equation is a crucial part of the N -body method.

Backreaction

The coupling term in the background part of the Klein-Gordon equation (5.11) has
been given by a2β(ρ̄ν − 3 p̄ν ). The usual procedure of calculating the cosmological
evolution would go as follows. First, the pure background equations are integrated,
providing the results that we have already shown in Sec. 5.1. Then, on this precom-
puted background, the perturbations are evolved. This procedure is only exact in the
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5 Growing neutrino quintessence

linear case, since the averaging is, as well, a linear operation. In the case of nonlinear
structure formation, averaging the nonlinear equations first and then evolving them
leads, in general, to a different result than evolving the full nonlinear equations first
and averaging thereafter. We have discussed this in the case of gravity in Sec. 2.2.2,
illustrated in Fig. 2.3. In our case, the averaging problem can be stated as the inequality

β(ϕ̄)trT(ν)(ϕ̄) 6=β(ϕ)trT(ν)(ϕ), (5.48)

since both, β(ϕ) and the mass function mν(ϕ) can lead to nonlinear contributions in
the cosmon perturbation δϕ. Most neutrinos will be located in lumps where δϕ is
negative and the mass is consequently suppressed. In the varying β model, |β| grows
with ϕ and is, accordingly, also suppressed in lumps, |β(ϕ̄ + δϕ)| < |β(ϕ̄)|. So, the
local cosmon perturbations systematically suppress the right-hand side of Eq. (5.48) as
compared to the background calculation given by the left-hand side.

Moreover, Eq. (5.48) veils another important contribution to the backreaction effect.
In a background calculation, the neutrino equation of state wν = p̄ν/ρ̄ν decreases be-
cause of the growing mass. This means that wν ≈ 0 in the late-time evolution. Thus, the
background computation gives trT(ν)(ϕ̄) ≈ −ρ̄ν . In the perturbations, neutrinos can
again accelerate to relativistic velocities, and the absolute value of the trace is smaller,
trT(ν) =−ρν + 3 pν . This intensifies the suppression of the right-hand side.

Formation of lumps

The technical details of the simulation and a quantitative analysis of its results are
given in Chapter 6. We conclude this section with a qualitative discussion of one essen-
tial and characteristic result of the constantβmodel. Once the neutrinos have become
nonrelativistic, the perturbations in the neutrino density grow quickly to become non-
linear on comoving scales λ ∼ 100h−1Mpc, cf. Fig. 5.7 at a ¦ 0.3. Subsequently, large
nonlinear, stable neutrino lumps form until a ≈ 0.5. We show these structures in a
simulation box of size L = 600h−1Mpc and for the model parameters β = −52 and
α = 10 at a = 0.5 in Fig. 5.10. Nearly all the cosmic neutrinos are collected in these
lumps. This tells us that a thorough analysis of the physics of these lumps is essential
for understanding the subsequent cosmological evolution.

We next give some quantitative results of the lump distribution as obtained by Ayaita
et al. (2013). In 10 simulation runs, lumps at a = 0.5 have been identified as local
maxima of the neutrino number density. This lump identification scheme is also well-
known for finding dark matter halos, where it is called the denmax method (Gelb and
Bertschinger, 1994). This lump identification agrees with visually identifying the lumps
in, e. g., Fig. 5.10; the concrete procedure chosen is not essential for our purposes.

We characterize the lumps l by the number of neutrinos Nν (Vl ) in the volume Vl of
the lump l . This can be normalized by the total number of neutrinos in the (present)
Hubble horizon, Nν (VH0

), defining the fraction

fl =
Nν (Vl )

Nν (VH0
)

(5.49)
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5.3 Cornerstones of the full simulation

Figure 5.10: Neutrino lumps in the full N -body simulation at a = 0.5, in a box of size L = 600h−1Mpc.
Indicated are regions with a neutrino number density contrast δnν/n̄ν ≥ 5. The figure is
taken from Ayaita et al. (2013).

where the Hubble volume is of size H−3
0

. The simulation boxes have the dimension

L = 600h−1Mpc. The average abundance Nl of lumps in VH0
exceeding a neutrino

number fraction threshold, Nl ( fl > f ), is shown in Fig. 5.11.

We divide the number fraction fl in bins and also calculate the average lump mass
Ml in each bin, as well as the standard deviation σM . We plot the result in Fig. 5.12. We
have found a number of 103 to 104 lumps in the present Hubble volume; the largest
lumps we have observed reach ∼ 1017 solar masses. As we will see in detail in Sec. 5.4,
the lump mass consists of two contributions, a neutrino part Mν,l and a (subdominant)
cosmon part Mδϕ,l given by the local cosmon contribution. If we denote by ϕ̂ the
external cosmon field (not attributed to the lump) and by γl the Lorentz factor of the
lump (although to a good approximation γl ≈ 1), the masses are given by integrating
the energy density in the lump volume Vl (cf. the next section for details),

γl Mν,l =

∫

Vl

d 3 x
Æ
(3) g ρν ≈

∑
p

γp mν (ϕ(x p )), (5.50)

γl Mδϕ,l =

∫

Vl

d 3 x
Æ
(3) g (ρϕ −ρϕ̂), (5.51)

where the sum is performed over particles labeled by the index p , and the cosmon
energy density is

ρϕ =
ϕ̇2

2
+
|∇ϕ|2

2a2
+V (ϕ). (5.52)
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Figure 5.11: Lump abundances as a function of the neutrino number fraction fl defined in Eq. (5.49) at
a = 0.5. The figure is taken from Ayaita et al. (2013).

5.4 Cosmon-neutrino lump fluid

5.4.1 Lumps as particles

The question whether the cosmological evolution of growing neutrino quintessence in
the constant β model (which we will assume throughout this section), after the lump
formation has finished at a ≈ 0.5, can be modeled with the help of a ‘fluid of lumps’ is,
at first sight, not easy to answer. It is tempting to think, considering Fig. 5.10, that the
lumps can be treated as particles forming a cosmic fluid. Yet, the particle description
relies on an important condition. The one-particle energy-momentum tensor T µν , cf.
Eq. (5.39), is pressureless in the rest frame where u i = 0:

p =
1

3
T i

i ∝ u i ui = 0, (5.53)

which means: particles have no internal pressure.
This condition seems to be clearly violated for neutrino lumps. As we have already

discussed, the neutrinos within lumps can reach relativistic velocities, both due to the
cosmon-mediated attractive force and due to the mass suppression. In the sum over
the particles forming the lump, there will, accordingly, be a considerable pressure con-
tribution due to the nonnegligible dispersion 〈u2〉. It amounts to typically wν ≈ 0.1
(Ayaita et al., 2012b). So, if the lumps were only neutrino lumps, they could not be
treated as particles.

In fact, we have to also count the local cosmon perturbation δϕ, sourced by the neu-
trinos of the lump, as part of the lump. Although the energy density of this cosmon
perturbation is subdominant as compared to the neutrinos, the pressure contribution
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Figure 5.12: Lump masses (in solar masses) and standard deviations for different neutrino number frac-
tions at a = 0.5. The figure is taken from Ayaita et al. (2013).

is important. We will see that it leads to a cancellation of the neutrino pressure at suffi-
ciently large distances from the center of the lump. Lumps are thus properly considered
as cosmon-neutrino lumps, and they are approximately pressureless in this description,
which allows a particle treatment. This idea was established by Ayaita et al. (2013), and
we repeat the reasoning as well as the analysis based on it here.

A well-known physical example with an analogous behavior is a gas of nonrelativis-
tic atoms. This fluid obeys T i

i = 0 — it has no relativistic pressure. Still, the electrons
within the atoms have a small but nonnegligible pressure contribution. How can these
two aspects be reconciled? We have ignored the electromagnetic field. In fact, the
electromagnetic field around the atom exactly cancels the pressure contribution due to
the electrons such that, at sufficiently large distances, the atoms are pressureless. Prop-
erly defined, the atom does not only consist of the nucleus and the electrons, but also
of the local electromagnetic field. Another example are the nuclei themselves, where
one would naively expect many pressure contributions from quarks and gluons but
eventually finds that a nucleus at rest is pressureless.

The universality of this observation indicates that there is a fundamental principle
behind it. Indeed, we will give an argument in Sec. 5.4.2 that guarantees the pressure
cancellation under very general conditions. For our discussion, we may neglect the
gravitational potential against the cosmon-mediated attractive force such that the argu-
ment can be formulated without metric perturbations (i. e. in Minkowski space or a
flat FLRW metric). The conditions for a pressure cancellation of an object are:

1. The energy-momentum tensor T µν describing the object obeys the conservation
equation∇νT µν = 0.

2. The object can be completely localized in a finite volume V such that T µν = 0
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outside V .

3. The object is static in the sense ∂0(
Æ
(3) g T µν ) = 0.

To a more or less good approximation, these conditions are applicable to a large class
of stable objects. Before we briefly discuss the restrictions, let us perform a numerical
check for lumps in the growing neutrino quintessence model.

Ayaita et al. (2013) have simulated a single lump in a simulation box. The lump was
constructed such that it remains static due to an exact balance between the cosmon-
mediated force and the local neutrino velocity dispersion σi j . We will give this bal-
ance equation in Sec. 5.4.4. Matter and gravity have been neglected, and the lump
was chosen spherically symmetric such that the field equation for δϕ becomes a one-
dimensional differential equation in the distance r from the lump’s center, which is
straightforward to solve for the boundary condition of a vanishing perturbation at
infinity. If the neutrinos are modeled by a sum over one-particle energy-momentum
tensors of the form of Eq. (5.43), their pressure contribution, integrated up to a radius
r , reads

Pν (r ) =
1

3

∫ r

0

4πr ′2d r ′
Æ
(3) g T i

(ν)i =
1

3

∑
p

mν,p

γp

u i
p

up ,i , (5.54)

where the index p labels the particles. The cosmon pressure can be calculated from the
cosmon energy-momentum tensor. We can assume a static cosmon perturbation here:

Pδϕ(r ) =−
∫ r

0

4πr ′2d r ′
Æ
(3) g


 1

6a2

�
∂ δϕ

∂ r

�2

+V,ϕ(ϕ̄)δϕ


 . (5.55)

We already see the opposite signs of the contributions in these equations. The measure-
ment of Pν (r ), Pδϕ(r ), and their sum is shown in Fig. 5.13. The neutrino contribution

grows quickly as r increases and becomes constant at aRν ¦ 5h−1Mpc. This simply
reflects the fact the neutrino number density has fallen off to a small value above Rν .
The cosmon contribution, however, extends to aRδϕ ¦ 20h−1Mpc. This also defines
the size Rl of the cosmon-neutrino lump at which the lump can be modeled as a pres-
sureless particle. The total pressure Pν + Pδϕ has fallen to almost zero at this distance.

The particle description of lumps is thus applicable if the effective cosmon-neutrino
lump size Rl is smaller than the typical distance D between neighboring lumps. Then,
the lump fluid can be described by the mutual interactions between cosmon-neutrino
lump particles. In the simulation, we observe typically D ∼ 100h−1Mpc. This can be
explained by our observation, already in linear theory, that the neutrino perturbations
become nonlinear first at scales ∼ 100h−1Mpc, cf. Fig. 5.7. These initial nonlinearities
then shrink to the lumps we see at a ≈ 0.5.

The hierarchy of scales is visualized in Fig. 5.14 and may be stated as

Rν ≪ Rl ≪ D . (5.56)

We introduce an intermediate scale λ with Rl < λ < D . On scales ∼ λ, the particle
description of neutrino lumps is useful since the cosmon-neutrino lumps are smaller
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Figure 5.13: Pressure contributions Pν (r ), Pδϕ(r ), and their sum integrated to the radius r and normalized
by the mass M l of the static lump. The figure is taken from Ayaita et al. (2013), cf. also Fig. 7.2
in Weber (2012).

than λ but the typical distance between the lumps is larger than λ such that different
lumps are clearly separated. This intermediate scale will play an important role in our
analysis.

In the idealized, static lump, the pressure cancellation was exact. The three condi-
tions necessary for the general argument are met. Realistically, however, all conditions
are only satisfied approximately; strictly speaking, there are effects violating each of
them. The neutrino lumps are then not exactly pressureless but they keep a residual,
small pressure. The simulations show that the pressure cancellation works to roughly
one order of magnitude such that there is a small deviation of order ∼ 10%. This
quantifies the error of the particle description although a part of the deviation might
simply be due to limitations of the numerics, e. g. regarding the spatial resolution. Let
us discuss the three conditions in a realistic context.

1. Only the total energy-momentum tensor of the neutrinos, the local cosmon
field attributed to the lump, and the outside cosmon field satisfies a conservation
equation. Consequently, the cosmon-neutrino lump energy-momentum tensor
is not exactly conserved — the deviation is essentially given by the background
evolution of the cosmon.

2. The cosmon perturbation behaves similarly to the gravitational potential around
a point mass, i. e. approximately δϕ ∝ r−2 (due to the very small scalar mass
term V,ϕϕ that becomes only important at large distances). But the particle
description assumes Rl ≪ D ; the typical distance between neighboring lumps
sets a limit up to which we can attribute the local cosmon perturbation to the
lump.
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Figure 5.14: Illustration of the hierarchy of scales in the cosmon-neutrino lump picture. The two red
circles indicate two neighboring neutrino lumps. The size of the red circle is the typical
extension Rν of the neutrino number density. The pressure of the local cosmon perturbation
extends until Rl (indicated by the dashed circle). Above this scale, the lump can be modeled
as a (pressureless) particle. This scale can be compared to the typical distance D between the
lumps. We also define an intermediate scale λ.

3. The staticity of the energy-momentum tensor is again violated by the effect of the
outside cosmon, even if the lump has virialized. The internal cosmon field still
‘feels’ the outside field, which essentially plays the role of a boundary condition,
cf. Fig. 5.8. The approximate mass freezing within neutrino lumps shows that
this effect is small.

The corrections due to these restrictions are expected to be small since the external
field evolves on a time scale much larger than the dynamical time scale of the lump. In
the limit of a static background, the cancellation would be exact (neglecting the second
point). The second point only plays a small role since we have established that the
lump pressure has fallen off to a good approximation on scales well below D .

5.4.2 Pressure cancellation in detail

We now give the technical argument why stable objects, under the general conditions
given in the previous section, are pressureless at sufficiently large distances. Although
the derivative is fairly general, we will employ the example of a lump in an unper-
turbed FLRW metric (neglecting the gravitational potential). For most systems, even
for cosmon-neutrino lumps, the expansion is not important and a pure Minkowski
background could be used instead. The scale factor a in the FLRW metric could also
describe some local property of the metric, which does not vary on the length scale
of the object; hence, the argument works also for a perturbed metric as long as the
perturbations are spatially approximately constant in the considered volume.

We assume that the lump is described by an energy-momentum tensor T µ
ν (consist-

ing of a concentrated neutrino contribution and a more extended cosmon contribu-
tion) and that it is completely localized in a volume V , i. e. T µ

ν (x) = 0 for x outside
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V (this is not satisfied in an exact sense for neutrino lumps). We consider the amplitude

Aµν =

∫

V

d 3 x
Æ
(3) g T µ

ν , (5.57)

which characterizes the lump on scales larger than V . With the lump being ‘pressure-
less’, we mean that the integrated pressure

P =
1

3
Ai

i = 0 (5.58)

vanishes in the rest-frame of the lump. Of course, the coherent motion of the lump
will lead to a pressure contribution as it does for ordinary particles. In addition, we
will show Ai

j = 0 in the rest frame. This can be stated as

Aµν =−Ml δ
µ
0
δ0
ν (5.59)

in the rest frame. Of course, A0
0 = −Ml simply by the definition of the rest mass.

Furthermore, Ai0 is the total spatial momentum of the lump, and hence Ai0 = 0 in a
system where the lump is at rest. The above equation is then equivalent to Ai

j = 0 as
we have claimed.

We assume, next to the localization of the lump in the volume V , two further con-
ditions:

• Staticity in the sense that the energy-momentum content in a physical volume is
constant,

∂0

�Æ
(3) g T µ

ν

�
= 0. (5.60)

This will not hold exactly due to the reaction of the lump to the evolving external
cosmon field.

• Energy-momentum conservation stated as

0=∇λT λ
j = ∂0T 0

j + ∂i T
i

j + 3
ȧ

a
T 0

j (5.61)

with the help of the Christoffel symbols for the unperturbed FLRWmetric. For
cosmon-neutrino lumps, this equation only holds under the assumption that the
energy-momentum exchange with the external field can be neglected.

Taken together, the conditions give ∂i T
i

j = 0 and hence the vanishing of the 3-
divergence for the vector

v ≡ (T 1
j ,T 2

j ,T 3
j ), ∇ · v = 0 (5.62)

for all j = 1,2,3. For the sake of simplicity, we choose i = j = 1 without loss of
generality. We thus consider the component A1

1, which we write as

A1
1 = a3

∫
d x

∫
d y d z v1 = a3

∫
d x

∫

Sx

dS · v. (5.63)
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Figure 5.15: The geometrical situation for our analytic argument. It shows a generic lump volume V , the
slice Sx and its closure outside V .

Here, Sx is the slice of V of constant x . The situation is illustrated in Fig. 5.15. As
indicated in the figure, we extend the slice Sx to a closed surface Sclosed outside V such
that Sclosed∩V = Sx . Since the energy-momentum tensor vanishes outside V , the inner
integral in Eq. (5.63) can equally be performed over the closed surface Sclosed,

A1
1 = a3

∫
d x

∮

Sclosed

dS · v = a3

∫
d x

∫
d 3 x ′∇ · v = 0, (5.64)

where we have used that the divergence of v vanishes everywhere in the enclosed
volume. Along the same lines, one obtains Ai

j = 0 for arbitrary i and j .
If the lump exhibits a coherent motion quantified by the four-velocity uµ, the

straightforward generalization of the rest-frame result reads

Aµν =
Ml

γ
uµuν . (5.65)

This means that the lump, located at ξ , on scales much larger than V , indeed looks
like a point particle with the standard energy-momentum tensor

T µ
ν ≈

AµνÆ
(3) g

δ3(x − ξ ) =
1

Æ
(3) g

Ml

γ
uµuνδ

3(x − ξ ). (5.66)

5.4.3 The effective coupling

Based on the above argument, we assume that a lump looks, on scales ∼ λ, effectively
point-shaped with a standard one-particle energy-momentum tensor and a mass Ml .
We shall now introduce the effective coupling parameter which will turn out decisive
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5.4 Cosmon-neutrino lump fluid

for the interaction between lumps and the equation of motion of the lumps. The lump
interaction is mediated by the cosmon ϕ. On scales® λ, we attribute the local cosmon
field to the lumps. So, for the interaction between the lumps, only the large-scale
cosmon, averaged on the scale λ, is important. This large-scale or external cosmon
field ϕ̂ may be defined by

ϕ̂(x) =
∫

d 3y
Æ
(3) g Wλ(x − y)ϕ(y) (5.67)

with some window function Wλ satisfying

∫
d 3 x

Æ
(3) g Wλ(x) = 1, and Wλ(x)≈

(
const. for |x | ≪ λ,

0 for |x | ≫ λ.
(5.68)

The freedom we have in choosing such a window function and in defining the inter-
mediate scale Rl < λ < D contributes to the quantitative uncertainty inherent to our
approach.

In complete analogy to the (fundamental) cosmon-neutrino coupling parameter β,
we define the effective coupling by

βl =−
d log Ml

d ϕ̂
, (5.69)

which will be characteristic for each lump l . The fundamental coupling β quantifies
the dependence of the fundamental neutrino mass mν on the local value of the cosmon
ϕ; the effective coupling βl , in turn, describes the dependence of the lump mass Ml

on the large-scale cosmon ϕ̂, evaluated at the lump position. We will see that, in the
equation of motion of the lumps and in the field equation for the large-scale cosmon
ϕ̂, the effective coupling appears in complete analogy to the fundamental coupling.

In the same ten simulation runs as for Figs. 5.11 and 5.12, cf. Sec. 5.3, we have mea-
sured the effective couplings βl of the lumps by varying the large-scale cosmon field
ϕ̂ at the lump positions and each time measuring the resulting rest-frame lump mass
Ml according to Eqs. (5.50) and (5.51). The lumps are again classified according to the
fraction fl of neutrinos in the present Hubble volume that they contain, cf. Eq. (5.49).
These fractions are grouped in bins; we show the average effective coupling param-
eters together with their standard deviations for all bins in Fig. 5.16. We have used
a smoothing scale λ = 30h−1Mpc. The effective couplings are substantially smaller
than the fundamental coupling, and their values decrease for larger lump sizes, which
is explained by the steeper cosmon potentials δϕ and, accordingly, a more severely
nonlinear field equation.

5.4.4 Aspects of stability

A crucial assumption of the particle description is the approximate stability of virial-
ized lumps. In the end, this point has to be clarified numerically. Our N -body based
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Figure 5.16: The effective couplings as compared to the fundamental coupling β for lumps characterized
by their size, i. e. the amount of bound neutrinos fl . The figure is taken from Ayaita et al.
(2013).

simulations do not possess the required spatial resolution to ultimately answer this
question in the full cosmological context. This is left open for future work with re-
fined numerical methods. What we can do, is to simulate isolated cosmon-neutrino
lumps, and there, we indeed observe stability and, eventually, staticity of the lumps.
We will show an example at the end of this section.

Moreover, the question of stability deserves attention from a physical perspective.
It is instructive to collect some basic considerations that motivate the assumption that
cosmon-neutrino lumps are, indeed, long-lived structures. Essentially, we show a cou-
ple of similarities to the case of gravitationally bound dark matter halos. If the lat-
ter become approximately static, we then have to assume the same for the cosmon-
neutrino lumps. The stability of dark matter halos is, of course, well established both
numerically and observationally, although the problem is difficult to fully understand
analytically. Unlike physical systems in minima of a thermodynamic potential, dark
matter halos have a negative heat capacity CV . Bartelmann et al. (2013) explain this
with the behavior of the total energy U in the virialized case,

2Ekin =−Epot and thereby U =−Ekin. (5.70)

Their argument goes as follows. The kinetic energy plays the role of a temperature,
T ∼ αEkin, α > 0. If the system loses energy, the total energy decreases and hence the
kinetic energy, as seen in the above equation, increases. The heat capacity

CV =

�
∂ U

∂ T

�

V

∼−
1

α
(5.71)

in this schematic definition is negative. This shows that the question of stability is
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already involved for self-gravitating systems. The situation for the cosmon-neutrino
coupling is, at first sight, even more complex since, in addition to an attractive force,
we have to take into account the mass variation. We will argue in this section that,
despite of this additional complication, the situation is essentially analogous to a self-
gravitating system.

Angular momentum

A suitably defined total angular momentum of a cosmon-neutrino lump is conserved
in the limit of the lump being decoupled from the evolution of the external cosmon
field. We will see that, in the case of a spherically symmetric lump, the angular mo-
mentum is completely given by the neutrino motion. In this case, a total neutrino
angular momentum is conserved, similar to the matter angular momentum in self-
gravitating halos. Of course, even in the absence of such a dynamical stabilization,
the lumps would, ultimately, stabilize due to the degeneracy pressure; this scenario has
been investigated by Brouzakis et al. (2008). We argue that this scenario is not realistic.

Before we give our general argument, we brieflymention the motion of a test particle
moving under the influence of the cosmon-mediated attraction to a spherical neutrino
overdensity. The details are worked out by Weber (2012), and we repeat the main ar-
gument here. Indeed, there is an angular momentum barrier just as in the gravitational
case which stabilizes the particle against falling into the center. The motion of a test
particle in a spherically symmetric, static cosmon field ϕ(r ) is mathematically analo-
gous to the motion in a gravitational potential Φ(r ), with the exception of the varying
mass

ṁν =−βmν

uλ∂λϕ

u0
, (5.72)

where we are working with cosmic time t . Still, it is straightforward to see that the
relativistic angular momentum

L= γmν r
2ϑ̇ (5.73)

is conserved, simply since the angle ϑ in the plane of motion is a cyclic variable, and
L is the corresponding canonical momentum. This conserved angular momentum
implies an angular momentum barrier in the radial equation of motion, i. e. for the
radial momentum pr = γmν ṙ :

ṗr =
L2

γmν r 3
+
βmν

γ

∂ ϕ

∂ r
. (5.74)

Remarkably, the angular momentum barrier is even more effective than for gravity
since mν (ϕ(r )) decreases as r approaches 0 if the assumed neutrino distribution peaks
at r = 0.

We now turn from the test particle to the full distribution of particles forming

a cosmon-neutrino lump with energy-momentum tensor T µλ = T
µλ
(ν)
+ T

µλ
(ϕ)

. As in
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special relativity, we define the angular momentum density as the rank 3 tensor

lµνα = xµT να− xνT µα. (5.75)

This definition is, obviously, not useful in general spacetimes since we have arbitrarily
singled out coordinates xµ ( in our case the comoving coordinates with cosmic time
t = x0). Since, however, we can assume (an even unperturbed) FLRWmetric (neglect-
ing the gravitational interaction), which is sufficiently similar to a Minkowski space-
time, we may motivate the use of a special-relativistic definition. This is analogous to
considering the classical angular momentum for a distribution of (slow-moving) parti-
cles in Newtonian gravity. The nonvanishing Christoffel symbols of the unperturbed
FLRW metric read

Γ0
i i
= aȧ, and Γi

i0
= Γi

0i
=

ȧ

a
, (5.76)

cf. Eqs. (2.58) and (2.59).
We assume the conservation equation for the energy-momentum tensor T µν , which

corresponds to neglecting the energy-momentum exchange with the external field.
Then, this conservation equation implies

∇λ
�

1

a
l i jλ
�
=−

ȧ

a2
l i j 0+

1

a

�
T j i −T i j +Γi

λαxαT jλ−Γ j

λα
xαT iλ

�
= 0 (5.77)

with the above Christoffel symbols and the symmetry of the energy-momentum ten-
sor. This local conservation equation can be translated to the total spatial angular
momentum

Li j =

∫
d 3 x

Æ
(3) g l i j 0, (5.78)

for which one obtains, after a straightforward calculation, the conservation law

∂0

�
a2Li j

�
= 0. (5.79)

The total cosmon-neutrino angular momentum, rescaled with a2, is thus conserved. In

spherically symmetric lumps, this implies the conservation of a2L
i j

(ν)
for the neutrino

part of the angular momentum. This is because a spherically symmetric canonical
scalar field ϕ(r ) does not carry spatial angular momentum. In general, the angular
momentum density is given by

l i j 0

(ϕ)
= x i T j 0− x j T i0 =−ϕ̇

�
x i∂ jϕ− x j∂ iϕ

�
= 0. (5.80)

The nonvanishing components of the density l i j 0
ϕ are contained in the usual vector

product

lϕ =−
ϕ̇

a2
x ×∇ϕ, (5.81)
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which vanishes in the case of spherical symmetry where ∇ϕ = ∂ ϕ/∂ r e r . In the
absence of spherical symmetry, the cosmon-neutrino coupling can lead to an angu-
lar momentum exchange between the neutrinos and the cosmon. Using the energy-
momentum exchange equation (5.4), it is straightforward to derive

∇λ
�

1

a
l

i jλ
(ν)

�
=−

β

a
trT(ν)

�
x i∂ jϕ− x j∂ iϕ

�
, (5.82)

∂0

�
a2L

i j

(ν)

�
=

∫
d 3 x

Æ
(3) g a2βtrT(ν)

�
x i∂ jϕ− x j∂ iϕ

�
. (5.83)

In our derivation, we have again neglected the interaction between the lump and the
external field. The angular momentum conservation is only exact for an isolated lump
and will be violated due to the effective coupling βl . Since the gradients ∂ i ϕ̂ are
rather small compared to the concentration of the lump, this will not induce very
large corrections.

Hydrodynamic balance equation

In our consideration of the static lump configuration, cf. Fig. 5.13, for showing the
pressure cancellation between the neutrino and the cosmon contributions, we have
made use of a hydrodynamic balance equation. This equation shows that concrete,
static lump configurations exist. We will also see the dynamical stability of these con-
figurations in a numerical test. A detailed derivation can be found in Weber (2012).
We closely follow the presentation by Ayaita et al. (2013).

The idea is to start from the neutrino phase-space conservation equation

d fν
d t
=
∂ fν

∂ t
+
∂ ( fν ẋ

i )

∂ x i
+
∂ ( fν ṗ j )

∂ p j

= 0 (5.84)

and to find, from it, the hydrodynamic equations of motion by taking the first mo-
ments (including the dispersion σi j , which is responsible for stabilizing the neutrino
distribution against the cosmon-mediated attractive force). We already saw the general
procedure of obtaining the hydrodynamic equations in Sec. 2.2.2. The only difference
here is that we define fν such that its zeroth moment gives the number density nν rather
than the energy density ρν (which is because ρν , in contrast to ρm , also accounts for
the varying mass). Consequently, the velocity dispersion, originating from the second
moment, is defined with the number density,

σi j =

∫
d 3 p
(pi − p̄i )(p j − p̄ j )

a2m2
ν

fν (t , x , p) = nν (x)
¬

vmicro,i (x)vmicro, j (x)
¶

f
, (5.85)

with the local, ‘microscopic’ velocity vmicro whose local average vanishes. This is, of
course, completely analogous to Eq. (2.92). We also define the scalar quantity σ =
σ k

k/3 related to the trace of the tensor σi j .
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We do not include higher moments than the second one such that no equation of
motion will be obtained for σi j . Instead, we will infer σi j from a staticity condition
for the number density, ṅν = 0. The evolution equations for nν and the fluid velocity
v are obtained, analogously to Sec. 2.2.2, with the one-particle equations of motion.
These are simplified to only account for first-order relativistic corrections, such that
they read

ẋ i =
p i

mν

, ṗ j =

 
1−

pk pk

2m2
ν

!
βmν∂ jϕ. (5.86)

This yields, for the zeroth moment nν , the spatial continuity equation

ṅν +
1

a
∂i (nνvi ) = 0. (5.87)

Stability of the number density profile in the sense ṅν = 0 is obviously given if v = 0,
i. e. if the microscopic velocities in every fluid cell add up to zero. With this condition,
the equation of motion for the first moment is stated as

anν v̇i =−∂ jσi j +β∂iϕ
�

nν −
3σ

2

�
+β∂ jϕσi j . (5.88)

For a completely static lump, we demand, in addition to a constant nν , that also the
fluid velocity field v is constant. For spherically symmetric lumps, the above equation
can then be written as the condition

∂ σ

∂ r
(r ) =β

∂ ϕ

∂ r
(r )

�
nν (r )−

σ(r )

2

�
(5.89)

with the radial comoving coordinate r . This is the hydrodynamic balance equation
we used for the construction of static lump configurations. The velocity dispersion σ
plays the role of a pressure working against the contraction of the lump. If this effect
is dynamically stable, we have to expect that the neutrino lumps are stabilized by the
velocity dispersion rather than by the degeneracy pressure, which will only play a role
for extremely concentrated lumps (Brouzakis et al., 2008). It is most straightforward
to check the dynamical stability of the staticity condition in a numerical simulation.
An analytic investigation would require to consider the quite involved equation for v̈
and, in principle, should also take into account the equation of motion for σi j from
higher moments. Ayaita et al. (2013) have simulated an isolated lump, where the bal-
ance equation has been perturbed (by lowering σ to a value too small to compensate
the cosmon-attracted fifth force). In a realistic context, this corresponds to a lump
which is not yet virialized, i. e. the kinetic energy has not yet built up completely. As
a consequence, the lump can still shrink. However, we see the dynamical stabiliza-
tion in the number density profile, cf. Fig. 5.17. We observe a quick stabilization of
the profile in the core, which then extends to the outskirt. The approached staticity
is also expressed by the development of a pressure cancellation between the cosmon
and neutrino contributions. We show the emerging pressure cancellation in Fig. 5.18.
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Figure 5.17: The normalized radial profile 4πr 2nν (r )/Nν starting with a perturbed balance equation. For
illustration, time differences d t have been converted to scale-factor differences da = aH d t
by the Hubble parameter H at a = 0.5. The figure is taken from Ayaita et al. (2013).

The neutrino pressure starts at a rather low value (since we have lowered the velocity
dispersion in order to violate the balance equation). In the total pressure, the cosmon
contribution dominates, and the total lump pressure is negative. As the lump starts
to evolve, the neutrinos are accelerated to the center of the lump, and their pressure
contribution quickly increases and surpasses the cosmon pressure. Afterwards, the
situation quickly stabilizes and a cancellation between the cosmon and the neutrino
pressures can be observed. This cancellation is better at larger distances.

5.4.5 Evolution of the lump fluid

We will now derive and discuss the cosmological evolution equations in the regime
where the picture of a cosmon-neutrino lump fluid is valid. This means that essentially
all neutrinos have to be bound in stable lumps, and that the typical distance between
the lumps has to be larger than the characteristic extension of the local cosmon field
sourced by them. In this case, we have seen that the lumps are approximately pres-
sureless due to the cancellation of pressure between the neutrinos and the cosmon and
may be described by one-particle energy-momentum tensors with rest masses Ml . The
intermediate scale λ, smaller than the typical distances between the lumps, but larger
than their typical sizes, can be regarded as the scale where the lump picture can be
used. The cosmon field can be smoothed at this scale to give the external or large-scale
cosmon ϕ̂, defined by Eq. (5.67), which is not regarded as part of the cosmon-neutrino
lumps. The reaction of the lump mass Ml to the external field ϕ̂ is expressed by the
effective coupling βl , cf. Eq. (5.69).

We will discuss the motion of the lumps in the external field ϕ̂, the field equation

141



5 Growing neutrino quintessence

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.01  0.02  0.03  0.04  0.05

r = 100 Mpc/h
r =   20 Mpc/h

neutrino contribution

time ∆a

in
te
gr
at
ed

p
re
ss
u
re

P
(r
)/

M
l

Figure 5.18: Cancellation of the neutrino pressure at different distances from the lump center. Time dif-
ferences are expressed as scale-factor differences as in Fig. 5.17. The figure is taken from Ayaita
et al. (2013).

for ϕ̂, and the evolution for the background quantities (taking into account the back-
reaction effect). These equations will provide, under the assumption that the effective
couplingsβl are known, a full description of the cosmological dynamics. We thus also
propose a simplified simulation scheme applicable once the cosmon-neutrino lump
picture can be assumed.

Lump motion

For the equation of motion of approximately point-shaped lumps, we can start from
the usual one-particle action (in the presence of a mass dependence on the external
field),

S =

∫
d 4x

p
−g T

µν

l
gµν =−

∫
dηMl (ϕ̂), (5.90)

where η denotes the proper time of the lump. This is in complete analogy to the
fundamental one-particle action (5.44) and consequently leads to equations of motions
of the same form, cf. Eq. (5.45), just with the effective coupling βl instead of the
fundamental coupling and the external field ϕ̂ instead of the total cosmon field ϕ,

d uµ

dη
+Γµρσ uρuσ =βl∂

µϕ̂+βl uλ∂λϕ̂ uµ. (5.91)

The left-hand side is the gravitational interaction, and since the lumps do not move
at relativistic velocities, this is essentially the Newtonian equation of motion on an
FLRW background. On the right-hand side, the second term is subdominant as it is
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quadratic in the (small) lump velocity. The first term gives the cosmon-mediated attrac-
tive force between the lumps, which now is βl∇ϕ̂. As compared to the fundamental
fifth force, it is suppressed by the fact that |βl |< |β| and, typically, |∇ϕ̂|< |∇ϕ|.

Field equation for the external cosmon

The external cosmon field ϕ̂ can be separated into the background part and a smoothed
perturbation, ϕ̂ = ϕ̄+δϕ̂. The perturbation is given as the smoothed solution to the
field equation for δϕ, Eq. (5.47). In this equation, the right-hand side is the perturba-
tion of the trace trT(ν) of the neutrino energy-momentum tensor. In order to use this
equation, we have to express the right-hand side by the lumps. Let us first turn to the
left-hand side. Since the left-hand side is linear, the differentiation commutes with the
smoothing, i. e.

Ö∆δϕ(x) =
∫

d 3y
Æ
(3) g Wλ(x − y)∆yδϕ(y) (5.92)

=∆x

∫
d 3y
Æ
(3) g Wλ(x − y)δϕ(y) (5.93)

=∆δϕ̂(x), (5.94)

neglecting the metric perturbation,
Æ
(3) g = a3, and where hats now in general denote

quantities smoothed by the window function Wλ. In this way, again neglecting the
gravitational potentials against the cosmon perturbation, the smoothed field equation
for δϕ̂ reads

∆δϕ̂− a2V,ϕϕ(ϕ̄)δϕ̂ = a2β
�

trT̂(ν)− trT̄(ν)
�

, (5.95)

where we have smoothed δtrT(ν) on the right-hand side and split it into the full quan-
tity and the background part. The smoothed trace of the neutrino energy-momentum
tensor is, again, simply obtained by smoothing with the window function Wλ.

The essential step is to relate the right-hand side of Eq. (5.95) to lump properties.
We will next show that this relation can be stated as

βtrT̂(ν) ≈
∑

l

βl trT̂l , (5.96)

where the sum is performed over all lumps. Since the field equation for δϕ has its
origin in the energy-momentum exchange equation (5.5), it is natural to go back to
the energy-momentum exchange to motivate this relation. Moreover, the relation es-
sentially states that the coupling βl originally defined by how the lump reacts to the
external field ϕ̂ is the same coupling by which the lump acts, as a source, to the field
ϕ̂. This is similar to the case of mechanics where an action is accompanied by an
equal (but opposite) reaction. Mechanical force laws are, in general relativity, related
to energy-momentum exchange equations. The crucial difference between the lump
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picture and the fundamental picture lies in how the total energy-momentum tensor
T µν is separated into two components:

T µν = T
µν
(ν)
+T

µν
(ϕ)
= T

µν
lumps

+T
µν
(ϕ̂)

. (5.97)

The first equation is the fundamental picture, describing a neutrino and a cosmon
contribution. The second equation is the lump picture, where we consider a cosmon-
neutrino lump contribution and the contribution of the external cosmon ϕ̂. Energy-
momentum conservation in the lump picture can be expressed as

∇λT
µλ
(ϕ̂)
=−∇λT

µλ
lumps

. (5.98)

The term ∇λT
µλ
lumps

can be obtained under the approximation of the lumps as effective

particles, with the one-particle energy-momentum tensor, Eq. (5.66), and the equation
of motion, Eq. (5.91). This gives

∇λT
µν
lumps

≈−
∑

l

βl trTl ∂
µϕ̂. (5.99)

It remains to consider the contribution of the external cosmon. If we write the total
cosmon as ϕ = ϕ̂+δϕloc, where δϕloc accounts for the local fluctuations of the field
on scales smaller than λ, we can see — in a linear approximation in δϕloc —which part
of the total cosmon energy-momentum tensor T

µν
(ϕ)

is only related to the external field.

This is interpreted as the energy-momentum tensor of ϕ̂ and given by

T
µν
(ϕ̂)
= ∂ µϕ̂∂ ν ϕ̂− gµν

�
1

2
∂ λϕ̂∂λϕ̂+V (ϕ̂)

�
, (5.100)

which has exactly the same form as the energy-momentum tensor of the fundamental
field ϕ. In Eq. (5.99), it leads to the term

∇λT
µλ
(ϕ̂)
=
�
∇λ∇λϕ̂−V,ϕ(ϕ̂)

�
∂ µϕ̂. (5.101)

The brackets enclose the left-hand side of the Klein-Gordon equation for ϕ̂. It just
corresponds to the left-hand side of the usual Klein-Gordon equation, cf. Eq. (5.10),
smoothed at the scale λ if it is linearized in the local perturbation δϕloc (such that
the nonlinear potential can be written as V (ϕ) ≈V (ϕ̂) +V,ϕ(ϕ̂)δϕloc ). We may thus
replace the bracket in Eq. (5.101) by the smoothed right-hand side of the modified
Klein-Gordon equation (5.10). This yields

∇λT
µλ
(ϕ̂)
=βtrT̂(ν) ∂

µϕ̂. (5.102)

Together with Eq. (5.99), this eventually verifies Eq. (5.96) and allows us to write the
field equation for the smoothed perturbation δϕ̂ as

∆δϕ̂(x)− a2V,ϕϕ(ϕ̄)δϕ̂(x) = a2
∑

l

βl trT̂l − a2βtrT̄(ν). (5.103)
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5.4 Cosmon-neutrino lump fluid

Here, also the background part ∝ trT̄(ν) can be related to the lumps analogously by

βtrT̄(ν) =−
1

V

∑
l

βl

Ml

γl

(5.104)

in some (physical) volume V large enough so that the quantity has converged.

External cosmon and gravitational potential

We will now explain how to solve the field equation for the external field in the lump
picture. In particular, we will see that a calculation of ϕ̂ on a grid is not necessary.
The calculation of the gravitational potential will be similar. First, we consider more
closely the right-hand side of the field equation for δϕ̂, Eq. (5.103). The smoothed
trace of the lump energy-momentum tensor is just

trT̂l =−
Ml

γl

Wλ(x − x l ) (5.105)

for the lump l located at x l . This follows by using the delta function in the effective
one-particle energy-momentum tensor. If we are mainly interested in the solution
δϕ̂ on scales larger than λ, the window function can, to a good approximation, be
replaced by a Dirac delta. Every lump then sources, in the field equation for δϕ̂, a
simple Yukawa potential, and the solution can be given as

δϕ̂(x)≈
∑

l

βl

4πa

Ml

γl |x − x l |
e−aV,ϕϕ(ϕ̄)|x−x l |−δϕres(x), (5.106)

where we have added a residual term δϕres sourced by the background contribution

βtrT̄(ν). It is easily verified that a solution is given by

δϕres =C
eaV,ϕϕ(ϕ̄)|x |

2aV,ϕϕ(ϕ̄)|x |
+

βtrT̄(ν)�
V,ϕϕ(ϕ̄)

�2
, (5.107)

where the proportionality constant C has to be chosen such that the average value δϕ̂
vanishes in a large simulation volume. Near the lump locations, the residual term will,
of course, be subdominant.

Smoothing the gravitational Poisson equation for the metric perturbation Φ induced
by lumps (in the limit of nonrelativistic, point-shaped lumps and in the subhorizon
regime) yields

∆Φ̂(x)≈
a2

2

∑
l


Ml

δ3(x − x l )Æ
(3) g

−
Ml

V


 . (5.108)

A solution to this equation is then given by

Φ̂(x) =−
∑

l

1

8πa

Ml

|x − x l |
−Φres(x), (5.109)
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where the residual contribution Φres again accounts for the background part of the
right-hand side and can be evaluated according to

Φres(x) =
1

V

∑
l

a2Ml |x − x l |2. (5.110)

This equation only accounts for the gravitational potential induced by cosmon-neutrino
lumps. If matter is to be included, a usual Newtonian N -body approach can be used in
addition to the cosmon-neutrino lump description presented here.

The background cosmon ϕ̄ is evaluated with the background equation

ϕ̄′′+ 2
a′

a
ϕ̄′+ a2V,ϕ(ϕ̄) =

1

V

∑
l

a2βl

Ml

γl

, (5.111)

cf. Eq. (5.11). In the limit where βl and Ml are approximately constant over time (cor-
responding to perfect mass freezing) and where γl ≈ 1 (nonrelativistic lumps, which
is, indeed, found in the simulations), this background equation can be solved indepen-
dently of the perturbations. More realistically, the change of the mass Ml due to the
changing value of the external field ϕ̂ has to be taken into account. The background
equation can then not be solved separately from the perturbation equations. This re-
flects the backreaction of the perturbations on the background evolution.

Proposed simulation scheme

We conclude our discussion of the cosmon-neutrino lump fluid by proposing a sim-
plified simulation scheme of growing neutrino quintessence. It can be employed once
a collection of stable cosmon-neutrino lumps has formed, characterized by masses Ml

and effective couplingsβl . The time where this picture becomes appropriate is around
a ≈ 0.5. The period of rapid lump formation from a ¦ 0.3 to a ≈ 0.5 has still to be
treated with the help of an N -body type nonlinear treatment. A mere Press-Schechter
type approach (Press and Schechter, 1974), which is useful in the cold dark matter case
to estimate the mass function of halos, is not sufficient. In the purely gravitational case,
the total number of dark matter particles forming the halo completely determines the
long-range gravitational properties. This is not the case for cosmon-neutrino lumps
where the internal lump configuration determines both the cosmon-dependent lump
mass and the effective coupling parameter by which the lump interacts with the exter-
nal cosmon field. Consequently, a Press-Schechter approach could only, at best, predict
a number function of lumps (characterized by their amount of neutrinos fl ), but not
the masses Ml and couplings βl .

In this section, we have provided a complete set of equations characterizing the
cosmological dynamics of the cosmon-neutrino lump fluid, the external cosmon field,
and the gravitational potential. Rather than relying on a grid where one could solve
the field equations, we have seen that the knowledge of the fields (and their gradients)
at the lump positions can easily be evaluated by sums over lumps l ′ 6= l . The change
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of the lump mass due to its motion in the external field and due to the change of the
external field itself is then computed according to

d Ml

d t
=−βl Ml

d ϕ̂

d t
=−βl Ml

uλ∂λϕ̂

u0
. (5.112)

The cosmological evolution equations form a set of coupled differential equations,
which have to be solved together.

The quantitative reliability of the proposed simulation scheme depends on the sta-
bility of the lumps. The masses Ml of the lumps change due to the effective coupling
βl . But can the coupling βl be assumed constant, or should it also be regarded as a
function of ϕ̂? Figure 5.16 suggests that the effective coupling follows a rough func-
tional dependence on the neutrino number fraction fl . In the limit where there are
exact functional relations βl ( fl ), Ml ( fl ; ϕ̂), the simulation scheme is complete. Even
mergers could be treated by adding the corresponding number fractions fl = fl1

+ fl2
and looking up the new coupling and mass parameters in the corresponding functional
relations. The open issue that remains then is the question whether βl and Ml are also
functions of time, i. e. whether the internal structure of the lumps still evolves signifi-
cantly after a ≈ 0.5. Although we have collected arguments why lumps are expected to
ultimately stabilize, it is, a priori, not clear when this complete virialization is reached.
It is also not straightforward to apply detailed virialization criteria to the full simu-
lation code since it is questionable whether the resolution of the current simulations
allows to infer detailed properties of the lumps in the cosmological context.

A first hint that the properties of the lumps stabilize is the time evolution of the
total neutrino energy

E(ν) =−
∫

d 3 x
Æ
(3) g T 0

(ν)0(x)∝ ρ̄νa
3 (5.113)

shown, until a ¦ 0.5, in Fig. 5.19. At a ≈ 0.45, a transition is made from a steep increase
to a stabilization of the total energy with a residual, small slope. This corresponds to
an approximate mass freezing of the neutrino lumps; the mass still follows the growing
external cosmon field, but with a suppressed effective coupling.

5.5 A first look at observable consequences

A central goal of the efforts presented in this thesis is to provide the basis for con-
fronting the growing neutrino quintessence model with observational constraints. The
methods we present, in particular in the next chapter, allow to investigate the cosmo-
logical evolution quantitatively and thus to explore the parameter space of growing
neutrino quintessence and to find parameters yielding a realistic cosmological evolu-
tion. Yet, at the current stage, this task has just begun, and we leave the ultimate answer
whether growing neutrino quintessence eventually passes observational constraints to
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Figure 5.19: The total energy in neutrinos obtained from the full N -body method and from the pure
background equations. The figure is taken from Ayaita et al. (2013).

future work. Still, the question of observational consequences is so tempting to ask and
of utmost importance that we may not ignore it, even if our results are preliminary.

In this section, we will briefly discuss which observational probes are most impor-
tant andmost directly related to characteristic properties of the growing neutrino quin-
tessence model. We will also give a few preliminary estimates. Some results, at least
for exemplary parameter choices, will be obtained in the next chapter, where the full
simulation method is presented and used. For now, we will leave aside constraints on
the expansion history. In the homogeneous approximation, we have seen that growing
neutrino quintessence yields background evolutions very similar to the ΛCDM case,
cf. Sec. 5.1. We shall see, in the next chapter, that this becomes much more complicated
once the backreaction is fully taken into account.

5.5.1 Neutrino mass and motion

A clear indication for a varying neutrino mass would be conflicting constraints on the
neutrino masses from cosmology (related to earlier times in cosmic history) and from
laboratory experiments. In such a case, a time-dependent neutrino mass, as in growing
neutrino quintessence, would be a natural explanation. At present, cosmological con-
straints, assuming a constant neutrino mass and the cosmological concordance model
ΛCDM, indicate a limit

∑
i

mi < 0.2–0.4 eV for the sum of the neutrino mass eigenval-

ues mi (cf. Goobar et al., 2006, and Sec. 2.1.2); the Planck collaboration has recently
tightened this constraint to the upper limit 0.23 eV (Ade et al., 2013c). The laboratory
constraints are much weaker. For the beta decay of tritium, the Mainz experiment
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found an upper bound m(νe)≤ 2.3 eV (Kraus et al., 2005), where m(νe) is defined by

m(νe)
2 =
∑

j

���Ue j

���2 m2
j

(5.114)

with the mass eigenvalues m j and the MNS matrix Uai (a labels the flavor and i the
mass eigenstates, cf. Sec. 2.1.2). This tells us that there is still room for surprises if a neu-
trino mass substantially larger than the cosmological upper limits is detected. As a side
remark, we mention the controversy about a claim of a part of the Heidelberg-Moscow
collaboration to have an indication for a relevant neutrino mass between 0.1 eV and
0.9 eV (Klapdor-Kleingrothaus et al., 2001, 2004; Goobar et al., 2006; Giuliani and
Poves, 2012). Of course, if a tension between cosmological constraints and laboratory
detections occurs, it is still possible that — instead of a varying neutrino mass — the as-
sumption of a pure ΛCDM universe, or details regarding the primordial perturbation
spectrum, might be wrong and could be adjusted.

Another possibility of a direct hint for models like growing neutrino quintessence
would be the detection of an additional force felt by the neutrinos. For example,
from the supernova SN1987A, several neutrinos have been detected together with the
incoming photons (Hirata et al., 1987; Bionta et al., 1987). If the neutrinos are subject
to an additional force, the changing line-of-sight velocity and the additional bending
lead to a difference in the arrival time as compared to photons or uncoupled neutrinos.
The situation is illustrated in Fig. 5.20. The distance d between the Earth and the

d

neutrino path

SN1987A Earthphoton path

Figure 5.20: Photons and neutrinos arriving on Earth from SN1987A. The photon path is disturbed along
the line-of-sight (Shapiro delay) and due to gravitational lensing. We still illustrate it as an
approximately straight line. The neutrino path is disturbed, additionally, due to the cosmon-
neutrino coupling. A similar illustration for photons is due to Longo (1988).

supernova amounts to d ≈ 50 kpc.
At first sight, one might expect interesting constraints for growing neutrino quin-

tessence from this observation; already for uncoupled neutrinos, a remarkable upper
limit of about 16 eV could be derived for the effective neutrino mass from the fact that
no significant extra time delay of the neutrinos as compared to the photons and be-
tween neutrinos of different energies could be detected (Arnett et al., 1989). The time
delay of a neutrino i due to a nonvanishing mass is estimated to

∆ti = 2.57 sec

�
d

50 kpc

� �
E

Ei

�2 � meff

10 eV

�2

, (5.115)
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where Ei is the energy of the neutrino compared to the characteristic energy scale
E ∼ 10 MeV. We conclude that the observation is very sensitive regarding differences
in the arrival time.

Moreover, for the photons as well as for uncoupled neutrinos, the gravitational
Shapiro delay already amounts to ∼ 106 sec (Krauss and Tremaine, 1988). If pure
gravity has such a large effect, we should check whether the cosmon-mediated fifth
force is important as well (motivated by Rocky Kolb, private discussion).

Therefore, we look at the predictions given by the neutrino equation of motion,
Eq. (5.45). We consider two distinct effects separately. First, we concentrate on the
acceleration and deceleration along the line-of-sight. Second, we consider the time de-
lay due to bending transverse to the line-of-sight. In our discussion, we ignore gravity;
still, our calculations can be interpreted as providing the deviations from the geodesic
path.

In the first case, the spatial part u of the neutrino four-velocity is parallel to the
cosmon gradient, which we assume static,

u ‖∇ϕ and ϕ̇ = 0, (5.116)

for a simple approximation. The delay ∆t in the arrival time as compared to the
uncoupled case is approximately equal to the path difference after a time t = d (since
|v | ≈ 1):

∆t ≈ v0d −
∫ d

0

d t v(t ), (5.117)

where v0 is the initial velocity, and we can write v = 1− 1/γ 2 with the Lorentz factor
γ . Then,

∆t ≈
∫ d

0

d t

 
1

γ (t )2
−

1

γ 2
0

!
. (5.118)

Since γ = u0 at a = 1, the equation of motion for γ (t ) is just given by the equation of
motion for u0,

d u0

dη
=βu |∇ϕ|u0, (5.119)

neglecting gravity and using the parallelity condition. Hence,

γ̇ =βv |∇ϕ|γ , (5.120)

and since v ≈ 1,

γ ≈ γ0 eβv|∇ϕ|t (5.121)

if the gradient is assumed to be constant along the short path d . This is justified due to
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the large size of cosmon-neutrino lumps. We calculate the delay to

∆t =

∫ d

0

d t

γ 2
0

�
e−2β|∇ϕ|t − 1

�
(5.122)

≈−
∫ d

0

d t

γ 2
0

2β|∇ϕ| t (5.123)

=−
1

γ 2
0

β|∇ϕ|d 2. (5.124)

For neutrino energies E ∼ 10 MeV and even rather large neutrino masses ∼ 1 eV,
we have γ0 ∼ 107. This leads to a large suppression as compared to the gravitational
Shapiro delay. In our simulations, we measure typical values |∇ϕ| ∼ 10−5 Mpc−1. This
leads to a time delay of order

∆t ∼ 10−6 sec, (5.125)

too small to lead to observational constraints.
Let us turn to the second effect, i. e. the bending due to a transverse gradient ∇ϕ,

u ⊥∇ϕ. (5.126)

We separate, in the plane of motion, the velocity v into a parallel component v‖ along
the line-of-sight and a transverse component v⊥ aligned with the cosmon gradient.
Since there is no acceleration in the line-of-sight direction, we can write

d u‖

dη
= 0, v‖(t ) =

γ0v
‖
0

γ (t )
, γ (t ) =

γ0Æ
1− v⊥(t )2

. (5.127)

In the last equation, we may linearize in (v⊥)2 since the bending can be assumed small.
Again, the time delay is estimated by the (parallel) path distance after time d ,

∆t ≈ v
‖
0

d −
∫ d

0

d t v
‖
0

 
1−

v⊥(t )2

2

!
≈

1

2

∫ d

0

d t v⊥(t )2. (5.128)

We need to solve the equation of motion for v⊥. This reads

d u⊥

dη
=

d
�
γv⊥

�

d t/γ
=β|∇ϕ|. (5.129)

On the left-hand side, after applying the Leibniz rule, the terms γ̇v⊥ and γ v̇⊥ occur.
We note

γ̇v⊥ =
∂ γ

∂ v⊥
d v⊥

d t
v⊥ = γ v̇⊥

(v⊥)2

1− (v⊥)2
≪ γ v̇⊥, (5.130)
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whence we may neglect it. We conclude

γ v̇⊥ ≈
1

γ
β|∇ϕ| (5.131)

with the solution

v⊥(t ) =
e

2

γ2
0

β|∇ϕ|t
− 1

e
2

γ2
0

β|∇ϕ|t
+ 1

≈
1

γ 2
0

β|∇ϕ| t . (5.132)

This gives the time delay

∆t ≈
1

6γ 4
0

β2|∇ϕ|2 d 3, (5.133)

which is severely suppressed by four powers of γ0 and by an additional comparison
between |∇ϕ| and d−1. With the numbers used before, we get

∆t ∼ 10−25 sec. (5.134)

Although the cosmon-mediated fifth force is, for nonrelativistic neutrinos, substan-
tially stronger than gravity, this reverses in the limit of high-energy neutrinos. For
the latter, the cosmon-mediated fifth force vanishes, i. e. it is suppressed by powers of
the Lorentz factor γ , as compared to gravity. In the equation of motion (5.45), this is
clearly visible. Gravity is described by the term Γµρσ uρuσ , and the four-velocity carries

a factor of γ as compared to the coordinate velocity. These factors of γ do not occur
in the fifth-force term β∂ µϕ on the right-hand side of the modified geodesic equation.
So, once γ 2 ≫ β, gravity is more important. This is not true for the second force
term βuλ∂λϕuµ, which is, if Lorentz factors are counted, similar to gravity. This
term, however, only accelerates or decelerates neutrinos parallel to their velocity. If
this velocity is very close to the speed of light, the effects will be small since velocity
differences scale with γ−2. Consequently, it is difficult to constrain growing neutrino
quintessence with high-energy neutrinos. The analysis could be refined by having a
closer look on the effect of the coupling on neutrino oscillatons (cf., e. g., Rossi-Torres
et al., 2011).

5.5.2 Large-scale gravitational potentials

The most striking difference between growing neutrino quintessence cosmology and
the standard ΛCDM scenario lies in the evolution of neutrino perturbations. In the
constant β model, with the exemplary value β = −52, we have seen the formation
of very large neutrino lumps, with a total number of 103 to 104 in the Hubble vol-
ume and masses from 1015 to 1017 solar masses. The gravitational potentials induced
by these lumps have observational consequences for probes directly related to gravita-
tional potentials, namely the (late-time) integrated Sachs-Wolfe (ISW) effect and weak
gravitational lensing. Moreover, they can be observed due to their influence on the
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growth of matter perturbations, i. e. in the dark matter density power spectrum or in
the peculiar velocities. Of course, all statements will depend on the parameters consid-
ered for the growing neutrino quintessence model. For larger constantβ, the stopping
power of the cosmon-neutrino coupling regarding the rolling background field ϕ̄ is
strong enough even for smaller neutrino masses. So, in this case, we expect less massive
cosmon-neutrino lumps and, accordingly, reduced potential wells. We shall even see
preliminary results indicating that, for varying β models, there is a regime where no
stable cosmon-neutrino lumps form and hence the large-scale potentials remain small.
This again tells us that reliable and quantitative predictions regarding observations can
only be made after a thorough analysis of the parameter space of growing neutrino
quintessence with the help of the full N -body based method.

Direct probes

Let us briefly discuss the observational probes directly related to the gravitational po-
tentials. First of all, this is weak gravitational lensing, in detail presented in Chapter 4.
With future weak lensing surveys, weak lensing tomography and 3d weak lensing will
allow to probe the large-scale gravitational potentials to high accuracy. In Chapter 4,
we have even seen that very small effects due to a parametrized dark energy cluster-
ing might be observable with the Euclid survey. Clearly, large gravitational potentials
induced by cosmon-neutrino lumps would be either verified or ruled out by these
methods.

Another observational probe is the (late-time) integrated Sachs-Wolfe effect (Sachs
and Wolfe, 1967). It predicts a change in the observed temperature fluctuation of the
CMB due to the evolution of the metric perturbations along the line-of-sight direction,

�
∆T

T

�

ISW

=−
∫

dτ
�
Ψ′+Φ′

�
. (5.135)

During matter domination, the evolution equations for linear perturbations tell us that
the large-scale potentials remain constant, i. e. Ψ′ = Φ′ = 0. In the standard ΛCDM
model, the onset of Λ-domination then leads, by the accelerated expansion, to a slow
decay of the large-scale potentials. In the regime of the cosmon-neutrino lump fluid,
the formation of lumps implies growing large-scale gravitational potentials, with a sub-
sequent approximate stabilization after the lumps have formed. Thus, we expect the
opposite behavior as compared to ΛCDM. This has consequences for the CMB angular
power spectrum, as it gives a contribution

C ISW
ℓ =

2

π

∫
k2d k

|ΘISW
ℓ
(k)|2

(2ℓ+ 1)2
(5.136)

with the quantity

ΘISW
ℓ
(k)

2ℓ+ 1
=

∫
dτ
�
∆′
Ψ
(k)+∆′

Φ
(k)
�

jℓ(k(τ0− τ)) (5.137)
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and with the dimensionless spectra ∆Ψ(k) and ∆Φ(k).
The effect of cosmon-neutrino lumps on the CMB spectrum via the ISW effect has

first been analyzed by Pettorino et al. (2010) based on very rough estimates in the ab-
sence of a full simulation method. More precisely, we should speak of a Rees-Sciama
effect (Rees and Sciama, 1968) instead of an ISW effect since the change of the potential
is not due to the modified expansion history but due to the nonlinear growth of struc-
ture. Pettorino et al. (2010) find that the signal strongly depends on the details of the
nonlinear evolution and on the model parameters. This analysis will have to be redone
when the parameter space of the model is sufficiently explored.

The ISW effect can also be observed in the cross-correlation between the CMB tem-
perature and large-scale structure. This means, it is observed in the cross-correlation
spectrum between the (projected) galaxy density δg ,ℓm in harmonic space and the
CMB temperature Tℓm ,

CgT ,ℓ = 〈δg ,ℓmT ∗ℓm
〉 ≈

2T
∫

r 2d r n(r )

∫
d r n(r )PgΦ′

�
ℓ+ 1/2

r

�
(5.138)

with the galaxy number density n, in the absence of anisotropic shear (Ψ = Φ), and
in the Limber approximation (Afshordi, 2004). Since the primordial CMB is uncor-
related with the large-scale structure along the line-of-sight, it drops out of the cross-
correlation. In this way, the ISW effect measured by cross-correlations does not sensi-
tively depend on, e. g., assumptions about the primordial spectrum of perturbations.
The ISW effect has recently been detected in this way (Ho et al., 2008; Giannantonio
et al., 2008), and one of the groups found a stronger signal than expected in the ΛCDM
model at the 2σ level (Ho et al., 2008). This led to further studies with the tendency
to agree with ΛCDM (Giannantonio et al., 2012; Ade et al., 2013b) although deviations
are reported (at the 3σ level) when measuring the ISW effect by a correlation between
individual voids and the CMB temperature (Cai et al., 2013); this result is discussed by
Ilic et al. (2013).

The question whether these cross-correlation measurements could constrain grow-
ing neutrino quintessence has first been raised by Ayaita et al. (2009). This study
briefly discusses the sensitivity of the cross-correlation measurements which typically
peaks in a small redshift range. In the growing neutrino quintessence model, the time
evolution of the gravitational potentials is nontrivial. The potentials grow during the
period of lump formation, and this growth becomes mild once the lumps have stabi-
lized. Moreover, we might expect — depending on the model parameters — oscillatory
features in the mass and thereby in the potentials if the lumps still sufficiently react
to the outside cosmon. Any analysis has to take into account carefully the redshift
dependence of both the cross-correlation signal and the gravitational potentials.

Another point we mention here is that it is not obvious how the cross-correlation
spectrum CgT ,ℓ is affected by the cosmon-neutrino lumps. If the lumps and the galaxy
density are completely uncorrelated, the effect of the cosmon-neutrino lumps on Tℓm
just drops out of 〈δg ,ℓmT ∗

ℓm
〉 as does the primordial CMB. We first need to know

the precise correlation between the galaxy density and the distribution of cosmon-
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neutrino lumps. Since the latter form at very late times, they have influenced the
galaxy distribution only little. So, this point is essentially related to the question to
which extent the cosmon-neutrino lumps form in the potential wells given by cold
dark matter. The estimation of the cross-correlation spectrum PgΦ′ , which determines
CgT ,ℓ by Eq. (5.138), is, in principle, possible by N -body based simulations including
both neutrinos and matter. However, this is complicated by the fact that the gravita-
tional potential Φ evolves only very slowly. The estimation of Φ′ is thus difficult as the
fluctuations due to purely numerical effects might dominate over the true time deriva-
tive. This is why such an analysis should be postponed until simulations with higher
precision are performed.

Peculiar velocities

In the regime of stable cosmon-neutrino lumps, a promising probe are large-scale pecu-
liar velocities or bulk flows of matter. The gravitational potential induced by cosmon-
neutrino lumps is felt by the matter perturbations, which consequently undergo an
additional growth. Since this additional growth has only started recently, the effect on
the density power spectrum Pδ (k) of matter is small. The effect on the peculiar veloci-
ties can be much larger. This has been argued by Ayaita et al. (2009), and it was verified
both in Newtonian N -body simulations of growing neutrino quintessence (Baldi et al.,
2011) and in the full simulation method (Ayaita et al., 2012b). For the matter peculiar
velocity power spectrum Pv (k) defined by

〈vk v∗
k′
〉= (2π)3 Pv(k)δ

3(k− k′), (5.139)

Ayaita et al. (2009) wrote, for the linear regime,

Pv (k) =

�
a′

a

�2 f 2
k

k2
Pδ (k), fk ≡

d logδk

d loga
. (5.140)

The matter power spectrum is constrained quite accurately by galaxy surveys, but
much less is known about Pv (k) and fk . If an excess in Pv (k) as compared to the
ΛCDM scenario will be observed, this will constitute a strong hint for a recent growth
of matter perturbations.

For a first and rough estimate — in the absence of a full simulation method — the
gravitational potential Φν due to neutrino clustering has been assumed to be sourced by
point-shaped neutrino lumps of average number density nlumps = Nlumps/V ( in a suf-
ficiently large cosmological volume) and located at random positions, instantaneously
formed at a ≈ 0.4. The dimensionless shot-noise spectrum is then

∆Φν (k) =
ρν

2π
Æ

2nlumps

k−1/2 (5.141)

following Ayaita et al. (2009); Pettorino et al. (2010). This neglects the correlation of
lump positions, the motion of the lumps, the relativistic corrections, the mass suppres-
sion of neutrinos within lumps, the cosmon contribution to the lump masses, and the
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5 Growing neutrino quintessence

distribution of different lump masses. Still, it might give an idea of the importance
of the effect. In a constant β model with β = −275 and a present neutrino mass
mν,0 ≈ 0.5 eV, Ayaita et al. (2009) estimated the effect on the matter scalar peculiar ve-
locity perturbation vk as compared to the ΛCDM case. The result is a function of the
number density nlumps or, equivalently, of the fraction f of neutrinos (in the Hubble

volume) bound in every lump. It is shown in Fig. 5.21 for the scale k = 0.01/Mpc.
We observe that the peculiar velocities of matter can be enhanced by a considerable
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Figure 5.21: The enhancement of matter peculiar velocities at a = 1 due to the rough estimate of the lump-
induced gravitational potential according to Eq. (5.141). The comoving scale was fixed to
k = 0.01/Mpc, and the enhancement is a function of the fraction f of neutrinos in the Hubble
volume bound in each lump. The number of lumps in the Hubble volume is N = 1/ f . The
figure is taken from Ayaita et al. (2009).

factor if the number of neutrino lumps is sufficiently small. The more lumps form, the
smaller will be the effect. We will have a closer look at the peculiar velocity of matter
in the next chapter with the full simulation method.

The observational status regarding large-scale peculiar velocities is somewhat con-
troversial. Watkins et al. (2009); Feldman et al. (2010) reported a large-scale bulk flow,
i. e. an averaged peculiar velocity

u(x) =

∫
d 3y W (x − y)v(y) (5.142)

in a Gaussian window W of size ∼ 100h−1Mpc; this bulk flow exceeded the ΛCDM
root mean square expectation obtained by

〈u2〉=
1

2π2

∫
k2d k |W̃ (k)|2Pv (k) (5.143)

by a factor of about two and was anomalous at the 2σ level. In later works, however,
the authors claim to have retained consistency with ΛCDM at the 1σ level (Macaulay
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5.5 A first look at observable consequences

et al., 2010, 2012), although the error budget is still substantial. There is an active
debate about the claim of a coherent bulk flow on scales ¦ 300h−1Mpc and beyond,
which would be in direct conflict with the ΛCDM expectation (Kashlinsky et al., 2009;
Atrio-Barandela et al., 2010; Kashlinsky et al., 2011; Atrio-Barandela et al., 2012). The
analysis has been criticized by Keisler (2009); Osborne et al. (2011); Mody and Hajian
(2012). It seems we will have to wait until generally accepted, reliable, and reasonably
accurate results for large-scale peculiar velocities will have emerged.
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6 Cosmological simulation

The technical challenge of understanding the cosmological evolution in growing quin-
tessence models lies in the particular role of nonlinearities. The standard repertoire
of analytical and numerical techniques, such as the calculation of the Friedmann equa-
tions (together with some additional homogeneous equations describing the new com-
ponents of the model), the study of linear perturbation theory, nonlinear estimates
based on a spherical collapse and a Press-Schechter approach, and Newtonian N -body
simulations, will not give reliable predictions. The standard procedure assumes the
following hierarchical picture. The limit of very large scales is described by homoge-
neous equations, a correction to large scales is provided by linear perturbation theory,
and a further correction for small scales is obtained by, e. g., the Newtonian N -body
method. This step-by-step approach is not applicable to the growing neutrino quin-
tessence model. The nonlinear regime affects even the largest scales by virtue of a
backreaction effect — the homogeneous part ϕ̄ of the cosmon sensitively depends on
small-scale properties of the neutrinos, in particular on their local mass distribution.
Linear theory of neutrino perturbations is only useful in a very small temporal win-
dow. The cosmon-neutrino coupling typically becomes effective around a ≈ 0.2, and
the nonlinearities become important around a ® 0.4, even on very large scales.

The absence of a reliable numerical technique has not only prohibited any quantita-
tive analysis of the cosmological evolution; it was also a major obstacle for understand-
ing the physics of growing neutrino quintessence. In particular, it remained unclear
how to account for the various effects of the theory, which are absent in the stan-
dard ΛCDM model and standard models of uncoupled (or weakly coupled) quintes-
sence. Most of the early works, consequently, started from wrong assumptions about
the model, neglecting effects that, in the end, turned out to be decisive. For exam-
ple, the background studies neglected the backreaction effect (Amendola et al., 2008a;
Wetterich, 2007), which has an important impact on the background evolution; the
hydrodynamic approach neglected the ‘microscopic’ velocity dispersion (Wintergerst
et al., 2010) responsible for the stabilization of cosmon-neutrino lumps; the first study
of properties of cosmon-neutrino lumps assumed a stabilization due to the degeneracy
pressure rather than due to the velocity dispersion (Brouzakis et al., 2008); the New-
tonian N -body simulations did not account for the possibility of relativistic neutrinos
and neglected local mass variations (Baldi et al., 2011). These are just some examples,
and we have discussed these and other early studies of growing neutrino quintessence
in detail in Sec. 5.2. Of course, these early and important works are not to blame;
quite the contrary. In retrospect, it is a remarkable accomplishment that these works
have already identified and partially discussed many interesting and important effects
of the model, cf. Sec. 5.2. Although they did not provide a comprehensive picture,
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they sketched several key points around which a full simulation scheme can be built,
cf. Sec. 5.3.

Consequently, the development of a full simulation scheme (Ayaita et al., 2012b) was
not only a breakthrough regarding its capability to provide the first quantitatively reli-
able results for growing neutrino quintessence. The simulation also established the ba-
sis for a physical understanding of the model. Section 5.4 documents this aspect. Many
physical properties of the cosmon-neutrino lumps and of the cosmological evolution
have been understood. This would not have been possible without the simulation tech-
nique. The latter served as a major inspiration and clarified which effects are important
and which are not. It also allowed us to test analytical hypotheses numerically, i. e., it
played the role of a laboratory where physical ‘experiments’ guide the development of
theories. And the simulations provide the parameters (such as the effective couplings
or the masses of cosmon-neutrino lumps) that enter the semi-analytical descriptions.

From this perspective, it becomes clear that the simulations of growing neutrino
quintessence serve a completely different purpose than simulations of, e. g., the ΛCDM
model. For the latter, simulations are mainly used to obtain precision results on small
scales. For the former, simulations are bitterly needed for any quantitative treatment of
the model and also as an indispensable basis for understanding its physics. This funda-
mental difference has several consequences for the design of the simulation techniques:

1. When a dark matter N -body simulation of the ΛCDM model is developed, the
physics that will be implemented is completely known beforehand. The imple-
mentation entirely focusses on numerical precision and efficiency. For growing
neutrino quintessence simulations, it has not been clear a priori which effects
would have to be taken into account. The design of the simulation has to be
simple, modular, and flexible. There will be an interplay between understanding
the physics and implementing the corresponding numerics.

2. Since, in ΛCDM, large scales are understood already at the linear level, N -body
simulations focus on the precise modeling of small scales. Small-scale resolution
is of utmost importance, also because cold dark matter starts to form structures
on the smallest scales. As a consequence, these N -body simulations need to in-
clude as many N -body particles as possible and clever techniques to resolve the
gravitational forces at small distances. In growing neutrino quintessence, the fo-
cus is not on small scales. The simulation technique is needed to understand large
scales and even the background evolution. The smallest scales are less important
because the neutrinos cluster on large scales first. The numerical optimization,
the number of N -body particles, and the spatial resolution are not crucial.

3. As a consequence of these two points, ΛCDM simulations typically describe the
gravitational interaction on small distance scales as a two-body force; in this way,
the calculation is not limited by the resolution of a lattice on which the potential
gradients would be calculated. In growing neutrino quintessence simulations, we
may calculate the fields on a lattice instead. This is even important because the
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6 Cosmological simulation

explicit field value of the cosmon is needed for the calculation of the neutrino
mass.

These points make clear that it is inadequate to build upon a standard N -body sim-
ulation for simulating growing neutrino quintessence. The standard simulations are
so specialized to their particular scope of application (Newtonian description of cold
dark matter) that substantial and repeated modifications are complicated to realize.
This motivates the development of a new method, worked out from scratch, taking
account for the necessities of the growing neutrino quintessence model.

The resulting simulation scheme that we shall present in this chapter does not aim at
high precision (although, of course, on quantitative reliability in the sense that all im-
portant effects are consistently treated). This already tells us that the simulation results
cannot be confronted with the constraints given by precision observations. This is an
essential task for future work. The simulation scheme has just reached the necessary
maturity and reliability such that it can serve as a model for a precision simulation
based on state-of-the-art N -body simulations like gadget-2 (Springel, 2005). Before
this step, the simulation scheme presented here will be used to explore the growing
neutrino quintessence parameter space and to find interesting regions with a realistic
cosmological evolution. At the end of this chapter, we will show the first results in this
regard.

The simulation method is a collaborative work and detailed descriptions are found
in Ayaita et al. (2012b); Weber (2012). Our presentation mainly follows Ayaita et al.
(2012b). This thesis focusses on the backreaction effect and the calculation of the cos-
mon field whereas the modeling of the neutrino component and related quantitative
results are worked out in more detail by Weber (2012). In addition to the results of
Ayaita et al. (2012b) restricted to cosmic times a ≤ 0.5, we will give the first results
until a = 1 in this thesis. We also present preliminary results for the varying coupling
model at the end of this chapter.

The chapter is organized as follows. We start with a brief technical overview de-
scribing the main steps that are performed by the simulation method in Sec. 6.1. A
more pedagogical introduction describing the key points of the simulation method
that highlight the differences as compared to a standard Newtonian N -body simula-
tion has been given in Sec. 5.3 and was motivated by the discussion of earlier works
on growing neutrino quintessence, cf. Sec. 5.2. In the more technical chapter, here, we
already assume familiarity with the growing neutrino quintessence model and with the
requirements it sets for the simulation method. The initial conditions of the nonlin-
ear simulation technique are obtained somewhat differently than in standard N -body
methods. This is why we explain the procedure in detail in Sec. 6.2. The derivation
and the implementation of the equation of motion for (potentially relativistic) neutri-
nos are reviewed in Sec. 6.3, and we refer the reader to Weber (2012) for more details
on this point. We also briefly describe the motion of matter particles. In Sec. 6.4, we
turn to the calculation of the cosmon field ϕ and the two gravitational potentials Ψ
and Φ on the lattice. We also describe how to evolve the background in the presence of
the backreaction effect due to nonlinearities. The results until a = 0.5 for the constant
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coupling model, first published by Ayaita et al. (2012b), are presented and discussed in
Sec. 6.5. We then describe how to overcome the numerical problems associated to late
cosmic times (a > 0.5), and we present the first results at a = 1. At this early stage
of the analysis, we do not systematically explore the parameter space of the constant
coupling model. Rather, we discuss the influence of exemplary modifications in the pa-
rameters and show analytically how the parameter choices affect the expansion history
of the model. We will then turn to the varying coupling model, where we find a com-
pletely new regime of growing neutrino quintessence. Depending on the precise model
parameters, no stable cosmon-neutrino lumps form. Thus, the growing neutrino quin-
tessence model does not show large deviations from the standard ΛCDM model in
the perturbations. Also the expansion of the Universe is very similar to ΛCDM. The
further investigation of this point in future works is a very promising endeavor.

6.1 Overview

In order to facilitate the understanding of the technical details covered by the following
sections, we first describe the overall framework of the simulation design. Let us briefly
list the main components of the simulation.

Effective particles in the N -body approach represent the matter and the neutrino
component. They are the entities obtained by sampling the phase-space distributions
fm and fν with a number of Nm and Nν particles. These particles can be thought
of as collections of a large number of fundamental dark matter and neutrino particles,
respectively. They obey the fundamental equations of motion whereby their motion is
expected to approximate the true time evolution of the full phase-space distributions.
At every time step, each particle p is equipped with a position x p (which is more

precise than a grid cell), a coordinate velocity v p = d x p/dτ, and a mass M p . For

the effective neutrino particles, we evolve the four-velocity u
µ
p = d x

µ
p /ηp instead. It is

related to the coordinate velocity via the Lorentz factor γp . The mass parameter M p is
constant for effective matter particles but is a function of the local cosmon field ϕ(x p )
for the effective neutrino particles.

Fields and their gradients are needed in the equations of motion of the effective par-
ticles and for obtaining the mass of the neutrinos. We solve the field equations on a
fixed comoving lattice of volume V and with Nc cells. We use periodic boundary con-
ditions (also for the particles; a particle leaving the simulation box at one side enters

again at the opposite side). The side length of the simulation box is L = 3
p

V . The
comoving side length of a cell, ∆x = L/ 3

p
Nc , quantifies the resolution at which the

fields are known. Scales below ∆x are not resolved. The fields we calculate on the
lattice are the two gravitational potentials Ψ and Φ and the cosmon perturbation δϕ.
The collections of effective particles are also related to fields, namely to their energy-
momentum tensors. Specific components of these energy-momentum tensors appear
on the right-hand sides of the field equations for Ψ, Φ, and δϕ. They are evaluated
on the lattice. The lattice in position space is complemented by a reciprocal lattice
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6 Cosmological simulation

on which the discrete Fourier transforms of the fields are represented. The reciprocal
lattice is used, partially, for solving the field equations and for obtaining the gradi-
ents ∇Ψ, ∇Φ, ∇δϕ. At every time step, both the field values and their gradients are
known.

Background quantities are defined as spatial averages of fields taken over the full sim-
ulation volume. This concerns, in particular, the energy-momentum tensors of the
collection of effective particles. They appear on the right-hand sides of homogeneous,
background evolution equations, e. g. for the background cosmon ϕ̄. Also the Hubble
parameter H is given by the averaged energy density. At every instant, the background
quantities H , ϕ̄, ϕ̄′, ρ̄ν , p̄ν , ρ̄m are known. In the varying β model, we also use the

average βtrT(ν).
The main steps of the simulation are illustrated in Fig. 6.1. The first building block

Solve field equations for
Φ, Ψ, and δϕ;
evolve background H , ϕ̄;
update neutrino masses;
Sec. 6.4.

to equations of motion,
Move particles according

Sec. 6.3.

from the effective particles
and their spatial averages,
Sec. 6.4.

Calculate energy-momentum
tensors T µλ

(m)
, T µλ

(ν)

Calculate FLRW
background and two-
point functions until
aini via linear
perturbation theory.

Sample corresponding
phase-space distributions
with Nm and Nν
effective particles,
respectively.

Generate random
realizations of
the scalar pertur-
bations δm , δν ,
vm , and vpec

ν
.

Initial conditions, Sec. 6.2

Main loop

repeat until afin

Figure 6.1: Schematic, simplified description of the simulation design. We divide the method into two
main parts: first, the linear evolution and the generation of initial conditions; second, the
main loop, which evolves the fields and the effective particles within the simulation volume.

refers to the generation of initial conditions, discussed in detail in Sec. 6.2. Here, linear
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perturbation theory plays an important role. It is used to provide initial scalar per-
turbation spectra. While linear perturbation theory is valid, the background evolution
decouples from the perturbations such that the homogeneous Friedmann equations to-
gether with the background cosmon equation (5.11) can be used to calculate the FLRW
background. The spectra and the background are then passed to the N -body based sim-
ulation technique. There, random realizations of the perturbation spectra respecting
the Gaussian statistics are generated. The resulting hydrodynamic fields correspond
to the first moments of the phase-space distribution functions for matter and neutrino
particles. Neglecting higher moments (except for the thermal velocities, which we
add for the neutrino component), these first moments approximately define the full
phase-space distributions. We can use them to sample the phase-space distributions
with effective particles. Afterwards, we can switch to an N -body based simulation.
An important point we have not mentioned is that we use different initial times aini,m ,
aini,ν for the matter and the neutrino components. A nonlinear treatment of matter is
important at much earlier times. The initial conditions are thus obtained separately,
and we have to ensure the correct correlation between the initial perturbations (e. g.,
the linear neutrino density perturbations, with which we start, will have formed in
large-scale matter potential wells). Moreover, as long as only matter is evolved in the
N -body treatment, the precomputed background solution is used. Only after aini,ν , the
background quantities are evolved within the N -body based simulation.

The second and most important part is the main simulation loop. It evolves the par-
ticles, the fields, and the background quantities in global, discrete time steps ∆a. For
the constantβ model, we typically use equidistant steps in the scale factor. As a rough
prescription, the steps are chosen such that the displacement of a relativistic particle
|v | ≈ 1 within one step is small compared to the cell size ∆x , which corresponds to
the condition ∆τ ≈ ∆a/(a2H ) ≪ 1. Of course, rather than relying on this rule of
thumb, we check different step sizes and ensure that convergence is reached. For the
varying β case, the dynamical time scale of the model is proportional to 1/|β| (cf.
Baldi et al., 2011). In this case, we will adapt the step size to the varying coupling pa-
rameter. The main loop first transforms the particle distributions (given by positions,
velocities, and masses) to the relevant components of the energy-momentum tensors
on the lattice, cf. Sec. 6.4, and it computes the corresponding spatial averages in the
full box. Thereby, the right-hand sides of the field equations for Φ, Ψ, δϕ, and for the
background equations for ϕ̄′′ and H are obtained. At this stage, simulation outputs
regarding the particle distribution (e. g. the number density fields, the perturbation
spectra, the velocities, etc.) can be obtained as outputs. The next step is the solution
of the field equations on the lattice, and the evolution of the background quantities.
Now, outputs related to the fields and to the background are made. Once the fields are
known, their gradients are calculated on the reciprocal lattice, and the neutrino masses
are updated. Eventually, the particle velocities are updated by the equations of mo-
tion, and the particles are displaced by these updated velocities. This differs from the
common (second-order symplectic) leapfrog integration scheme explained in Sec. 2.2.3.
The leapfrog iteration relies on the fact that, for Newtonian gravity, the acceleration
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of particles does not depend on their velocity. This allows to calculate accelerations
and velocities at different times. In our case, however, the neutrinos are relativistic,
and the acceleration depends on the value of the velocity. Our integration method
is, consequently, not a second-order method. It can be characterized as a (first-order)
symplectic Euler method.

6.2 Initial conditions

The simulation scheme includes both neutrinos and matter, while the latter is com-
pletely modeled as cold dark matter. Both species differ in the way we obtain initial
conditions for them. The most important difference concerns the time at which the
nonlinear treatment has to start. Cold dark matter becomes nonlinear at very early
times, and in order to describe the clustering with reasonable accuracy, one has to start
sufficiently early; we typically choose a = 0.02. This early time, however, is some-
what pathological for the neutrino component. The neutrinos are highly relativistic at
these early times and become nonrelativistic, typically, around a ® 0.2. Although our
simulation scheme is capable of treating relativistic neutrinos, we prefer, for the sake
of numerical precision, to avoid the limit of highly relativistic neutrinos. Still, these
are well described in the linear code such that a later switch to the N -body method,
e. g. at a = 0.2, is appropriate. The N -body method starts at (typically) aini,m = 0.02
for matter and at aini,ν = 0.2 for the neutrinos. In the constant coupling model with
β=−52, the neutrinos are already well in the nonrelativistic regime (with an equation
of state wν ∼ 10−2) at aini,ν = 0.2, and the perturbations are still linear. Of course, the
matter and the neutrino perturbations are correlated, and the initial conditions cannot
be obtained independently. In our method, the perturbations match at the linear level.
We will mention at the end of this section how this is achieved in practice.

In contrast to standard N -body simulations, we do not use a displacement field,
obtained from the growing mode, to place particles according to the Zel’dovich ap-
proximation (as explained in Efstathiou et al., 1985; Dolag et al., 2008). Rather, we
first calculate a Gaussian random realization of the hydrodynamic fields in linear ap-
proximation, i. e. the density and the scalar peculiar velocity, and then sample the par-
ticle phase-space distribution corresponding to this realization with a finite number of
effective N -body particles.

Let us consider this in more detail, and we exemplary focus on the neutrino compo-
nent. We assume that we have, at the initial time aini,ν , realizations δν (x) and vpec,ν (x)
for the density perturbation and the peculiar velocity field. We then illustrate the pro-
cedure of obtaining the initial conditions in Fig. 6.2. The thermal velocities, which
are only included for the neutrinos (and neglected for matter), follow a Fermi-Dirac
distribution fth(|v th|), cf. Eq. (2.31). Then, we may approximate, for nonrelativistic
neutrinos, the phase-space distribution, defined as in Sec. 5.4.4, as

fν (x
i , v j ) = n̄ν fth(|v − vpec,ν (x)|) (1+δν (x)). (6.1)

This is only valid in the nonrelativistic regime where the energy density is equivalent
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(a) (b)

(c) (d)

Figure 6.2: Illustration of obtaining initial conditions for effective N -body particles, after a realization of
the hydrodynamic fields has been obtained. We show four schematic simulation cells repre-
sented by squares. Darker shades of grey (a) indicate larger values of the density field ρ̄(1+δ).
Then, a number of particles is distributed whose expectation value is related to the field value
(b). The (smooth) peculiar velocity field vpec is used (c), and random thermal velocities v th

are added following Fermi-Dirac statistics (d). More precisely, the velocities are added follow-
ing the rules of relativistic physics. Optionally, we split every particle in two with opposite
thermal velocities such that the peculiar velocity field is retained even at the level of a single
cell.

to the number density; in the relativistic case, the Lorentz factor has to be taken into
account. Although we may assume that most N -body particles are well within the
nonrelativistic regime, there will be outliers for which the random thermal velocity
just happens to be very large. In aNewtonian addition of velocities, v = vpec,ν (x)+v th,
there is thus a small but nonzero probability of obtaining superluminal values. For
the purpose of robustness, it is preferable to use a fully relativistic velocity addition
law. Although we will typically not work with initially highly relativistic neutrino
velocities, we still — at least approximately — allow for this possibility by a simplified
scheme. There, the thermal velocity clearly dominates over the peculiar velocity, and
the latter can be neglected. The velocity is then completely given by the thermal
velocity, and in a simplified approach, all neutrinos are attributed the same absolute
value of the velocity, and only the orientations are chosen at random. This can be
useful as a very robust and simple first approximation.

The phase-space distribution (6.1) just produces, in the nonrelativistic regime, local
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averages in accordance with the hydrodynamic quantities,

〈ρν (x)〉 fν =
∫

d 3v mν fν (x
i , v j ) = mν n̄ν (1+δν ), (6.2)

〈vν (x)〉 fν =
1

nν (x)

∫
d 3v v fν (x

i , v j ) = vpec,ν . (6.3)

The number Npart(x) of effective N -body particles with masses Mν (we will use a capital
letter when we emphasize that we consider the mass of an N -body particle rather than
of a fundamental neutrino) located in a cell x of physical size a3∆V should then be
chosen such that the expectation value just gives the right energy in the cell,

Mν 〈Npart〉= mν n̄ν (1+δν )a
3∆V . (6.4)

Since the number of particles is discrete (the average number of particles per cell is,
typically, of order one), a random fluctuation is inevitable. In order to minimize it, we
distribute the largest number Nmin ≤ 〈Npart〉 for sure; Nmin is just the number obtained
by rounding down the expectation value. We then merely have to decide whether to
add one additional particle or not. This is done by respecting the expectation value.
Once the number of particles in a cell x is known, we randomly distribute the particles
within the cell; this means that the three coordinates are just drawn from a uniform
random distribution defined in the cell volume. This reduces the amount of artificial
power that would be obtained by a completely regular distribution of particles. The
result is illustrated in Fig. 6.2 (b).

As a next step, the peculiar velocities vpec are attributed to the particles. This means
that all particles located in one cell get, at first, the same peculiar velocity correspond-
ing to the field value vpec = vpec,ν (x) at the cell position x . To this hydrodynamic
peculiar velocity, we add the thermal velocity — or, equivalently, we draw the full ve-
locity v according to fth(|v−vpec|). Afterwards, the initial conditions for the N -body
particles are complete, cf. Fig. 6.2 (d). If we look at only a few cells, the thermal veloc-
ity seems to have destroyed the peculiar velocity field. This changes if we average over
a sufficiently large number of cells; then, the coherent motion given by the peculiar
velocity field is retained. We optionally refine this by splitting N -body particles in two
with opposite thermal velocities. Quantitatively, the effect of this refinement is small.

Matter N -body particles can be distributed in complete analogy, with the only dif-
ference that the thermal velocity can be neglected. In this limit, the phase-space distri-
bution function reads

fm(x
i , v j ) = n̄m δ

3(v − vpec,m(x)) (1+δm(x)). (6.5)

It remains to describe how we obtain the random realizations of the hydrodynamic
fields δν , δm , vpec,ν , and vpec,m . The peculiar velocity fields are related to scalar pertur-
bation variables vs ,ν , vs ,m . The statistics of the scalar fields are encoded in the two-point
correlator, the power spectrum, under the assumption of Gaussianity. We obtain the
power spectra from the linear evolution. We discussed the necessary details of random
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fields and spectra in Sec. 2.2.1. There, we introduced the vector ya
k
(τ) including as its

components (labeled by a ) the different linear scalar perturbation quantities. If we
denote by τ2 the conformal time related to the start of the N -body method and by τ1

the time where the perturbations were described by the primordial spectrum Pprim(k),
we may write, according to Sec. 2.2.1,

ya
k
(τ2) = F ab

k
(τ1→ τ2) y

b
k
(τ1) =

�
F ab

k
(τ1→ τ2)η

b
�
αk . (6.6)

Here, F ab denotes the time evolution operator, and ηa is a vector encoding the relations
between the different scalar perturbations for adiabatic initial conditions. The bracket
in the last equation is obtained from the linear evolution equations together with the
adiabatic condition, and the random realization is then encoded in the scalar-valued
coefficients αk , whose power spectrum is just the primordial perturbation spectrum

Pprim =
2π2

k3
As

 
k

kpivot

!ns−1

(6.7)

with the scalar perturbation amplitude As , the spectral index ns , and the pivot scale
kpivot. In the N -body code, we need realizations of the scalar perturbations in position
space and on a discrete grid of equidistant points xn = (n1, n2, n3)∆x . On the discrete
grid, we use a discrete Fourier transform to the reciprocal grid kn = (n1, n2, n3)∆k
instead of a continuous Fourier transform. The relation between the two transforms
fk (continuous) and f̃n (discrete) can be obtained by approximating the Fourier integral
by a sum,

fkn
=

∫
d 3x e−ikn ·x f (x) (6.8)

≈
V

N 3

∑
m

e−2πi n·m/N f (xm) (6.9)

=
V

N 3
f̃n (6.10)

with the number N = 3
p

Nc of cells in each dimension. The statistics of the discrete
realization α̃n are then obtained by

〈α̃nα̃
∗
m
〉 ≈
 

N 3

V

!2

〈αkn
α∗

km
〉 (6.11)

≈
 

N 3

V

!2

(2π)3Pprim(kn)δ
3(kn − km) (6.12)

≈
N 6

V
Pprim(kn)δnm (6.13)
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with the discretization of the Dirac delta,

δ3(kn − km)≈
δnm

∆k3
, (6.14)

and the relation between the wave number difference ∆k and the one-dimensional
spatial size L=

3
p

V of the grid, ∆k = 2π/L.
With the help of this result, it is straightforward to generate a random realization α̃n

under the Gaussian assumption, as described in Sec. 2.2.1. This can be used, together
with the result from linear perturbation theory, to generate the vector of scalar linear
perturbations ỹa

n
, which can be transformed to real space by a discrete Fourier trans-

form to give the hydrodynamic initial fields δν (x), vpec,ν , δm(x), vpec,m . A minor
technical subtlety lies in the fact that the position space fields have to take real values.
To ensure this, one has to implement symmetry between mirrored wave modes. In
terms of continuous variables, this reads α∗

k
= α−k. The correct correlation between

the initial perturbations for matter and for neutrinos is ensured by employing the same
coefficients αk for both (although the vector ya

k
is calculated at different times aini,m and

aini,ν respectively).

6.3 Particle motion

The motion of effective neutrino particles differs from that of matter in two respects.
First, we have to take into account the cosmon-mediated attractive force, which, in the
Newtonian limit, is a factor of 2β2 stronger than the gravitational interaction between
the neutrinos. Second, as a consequence of this enormous accelerating force, we have
to switch to a fully relativistic treatment. In a Newtonian approach, a large fraction of
the effective particles quickly reaches the speed of light (Baldi et al., 2011). Including
only, e. g., first-order relativistic corrections is not sufficient either. Even in the fully
relativistic treatment, we have to choose our numerical strategy with care in order to
robustly enforce the speed of light limit. In particular, it is inadequate to formulate the
equation of motion for the effective particles as a differential equation in the coordinate
velocity v = d x/dτ. Such a differential equation, even if fully relativistic, could —
due to finite numerical steps — lead to superluminal velocities and pathological effects
when, e. g., trying to calculate the Lorentz factor γ .

In this section, we will show how to derive the fully relativistic equation of mo-
tion, discuss the terms it contains in more detail, and explain how to implement it
numerically. A more detailed presentation can be found in Weber (2012).

If T µν denotes the one-particle energy-momentum tensor, cf. Eq. (5.39), we have
already mentioned in Sec. 5.3 that the equation of motion can be obtained directly
from the one-particle action

S =

∫
d 4 x

p
−g T λ

λ =−
∫

dηmν (ϕ(x)), (6.15)
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with the proper time η and the cosmon-dependent neutrino mass, evaluated at the par-
ticle trajectory xµ(η); this means that the condition δS/δx = 0, in a straightforward
manner, yields the equation of motion (Weber, 2012). Another approach proposed in
the appendix of Baldi et al. (2011) makes use of a conformal transformation. In order
to explain the relation between the two approaches, let us first write the proper time
element as

dη=
q
−gµνd xµd xν (6.16)

and use — in the constantβmodel — the explicit mass function mν(ϕ) = m̄ exp(−βϕ).
Inserting this, the action reads

S =−
∫ q

−gµνd xµd xν m̄ e−βϕ (6.17)

=−
∫ q

−
�

e−2βϕ gµν
�

d xµd xν m̄ =−
∫

d η̂ m̄. (6.18)

This is of the same form as the standard action of a particle with constant mass and
moving only under the gravitational force; yet, we have performed the conformal trans-
formation

gµν 7→ ĝµν = e−2βϕ gµν . (6.19)

The equation of motion then simply is the standard geodesic equation in the trans-
formed frame,

d ûµ

d η̂
+ Γ̂µρσ ûρ ûσ = 0, (6.20)

and it can be transformed back by using the identities

ûµ =
d xµ

d η̂
=

dη

d η̂

d xµ

dη
= eβϕuµ, (6.21)

Γ̂µρσ =Γ
µ
ρσ −β

�
∂σϕδ

µ
ρ + ∂ρϕδ

µ
σ − ∂

µϕ ĝρσ

�
. (6.22)

A third way of arriving at the equation of motion is to use the one-particle energy-
momentum tensor, Eq. (5.39), together with the energy-momentum exchange equation
(5.4). One can show (Ayaita et al., 2012b; Weber, 2012) for the left-hand side of this
equation evaluated at x and with the particle trajectory ξ :

∇νT µν =
1
p−g

∫
dηmν (ϕ)δ

4(x − ξ )
�

d uµ

dη
+Γµρσ uρuσ −βuλ∂λϕuµ

�
. (6.23)

For the exchange term on the right-hand side, one obtains, by inserting the one-particle
energy-momentum tensor:

−βtrT ∂ µϕ =
1
p−g

∫
dηmν (ϕ)β∂

µϕδ4(x − ξ ). (6.24)
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Together, these equations also give the equation of motion that we have already seen
in Sec. 5.3; we repeat it here, since we will go on discussing it in more detail,

d uµ

dη
+Γµρσ uρuσ =β∂ µϕ+βuλ∂λϕ uµ. (6.25)

The left-hand side describes the motion under gravity, which, since the particles can be
relativistic, differs from the usual Newtonian relation. With the help of the Christof-
fel symbols from Eqs. (2.58) and (2.59) for the linearly perturbed FLRW metric, the
gravitational part of the equation of motion of the spatial components u is

u ′
G
=−2

a′

a
u −

γ

a
∇Ψ−

au2

γ
∇Φ+

2a

γ
(u ·∇Φ) u . (6.26)

The first term on the right-hand side describes the usual Hubble damping; the factor
of two originates from the fact that an additional scale factor occurs in the relation
between the four-velocity uµ = d xµ/dη and the coordinate velocity v = d x/dτ,

u i =
d x i

dη
=

dτ

dη

d x i

dτ
=
(1−Ψ)

a
γ v i (6.27)

with the Lorentz factor defined according to Eq. (5.41).
The relation between the Lorentz factor γ and u can, e. g., be derived from the

normalization uλuλ =−1 and reads

γ = (1−Ψ)
Æ

1+ (1− 2Φ)a2u2. (6.28)

Calculating γ this way is numerically robust even in the highly relativistic limit of very
large u2. This is strongly preferred over the calculation via the coordinate velocity v,
which approaches a pole for relativistic velocities. Obviously, for large |u |, γ ∼ a|u |.
This means that γ scales linearly, for relativistic particles, with the spatial components
of the four-velocity. As a consequence, all terms in Eq. (6.26) scale equally, which
means that they all remain relevant for relativistic particles. For nonrelativistic par-
ticles, γ ≈ 1 and |u |2 ≪ |u| to a good approximation. In this case, only the Hubble
damping term and the Newtonian force term −∇Ψ remain important. This is the
usual case known for cold dark matter.

Let us include the cosmon-mediated fifth force. The total equation of motion can be
written as

u ′ = u ′
G
+βϕ̄′ u +

β

aγ
(1+ 2Φ)∇δϕ+

aβ

γ
(u ·∇δϕ) u . (6.29)

Here, the first additional term leads to a modified Hubble damping. Due to the typi-
cally large values of β, it is expected to dominate over the gravitational damping term,
cf. Fig. 5.9. The second term ∝ ∇δϕ is analogous to Newtonian gravity. However,
as compared to the other terms, it is suppressed by a net factor γ−1 for relativistic
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6.4 Fields and background

particles. In the relativistic limit, this part of the cosmon-mediated coupling becomes
irrelevant, even against gravity. Only the modified Hubble damping term and the
term ∝ (u ·∇δϕ)u remain important. These contributions accelerate or decelerate
particles only parallel to their motion. Although the cosmon-mediated attraction is
very important for nonrelativistic particles, this effect is essentially switched off in the
relativistic regime.

In order to move the particles in the simulation volume, we still need their coordi-
nate velocities v. These are obtained by Eq. (6.27).

We use the equation of motion implemented according to Eq. (6.29) for evolving the
effective neutrino particles in our simulation. Note that the derivation relies on the
description via the one-particle energy momentum tensor. Regarding our discussion
of whether cosmon-neutrino lumps can be treated as particles, cf. Sec. 5.4.1, we have to
keep in mind a limitation: particles have no internal pressure. Since effective particles
in the N -body simulation are thought of as collections of large numbers of fundamental
neutrinos, it is not obvious whether the condition is met. If the thermal velocities
of the neutrinos are large, we expect a residual internal pressure attributed to each
effective particle. The energy-momentum tensor of effective particles would not be of
the one-particle form, and the equations of motion derived from it would not be valid.
This is one of the reasons why it is preferred to add the neutrinos to the simulation
only once they are well within the nonrelativistic regime. The residual equation of
state at a ≈ 0.2 is of order wν ∼ 10−2, and potential corrections that follow from it are
small. In the course of the evolution, the effective particles are accelerated again, but
this acceleration is spatially smooth — it is given by gradients on the grid — so that it
does not induce thermal velocities below the effective size of the N -body particles.

Matter particles are evolved as usual in Newtonian N -body simulations. Their equa-
tion of motion can, e. g., be obtained by the above equations with γ ≈ 1, |u |2 ≪ |u |,
and β= 0. The result is the well-known force law

v ′ =−
a′

a
v −∇Ψ. (6.30)

6.4 Fields and background

While the neutrino and matter components are modeled by effective particles, the
perturbation fields Ψ, Φ, and δϕ are calculated on a fixed spatial comoving lattice, and
the corresponding background quantities H and ϕ̄ are evaluated via homogeneous, i. e.
averaged equations. The field equation for Φ is just the usual Poisson equation; Ψ is
obtained by including the anisotropic shear perturbation, cf. Sec. 2.2.1, i. e.

k2 �Φk −Ψk

�
=−

a2

2

 
3

ki k j

k2
−δ j

i

!
Σi

k j
, (6.31)

Σi
k j
= T i

(ν) j
−

1

3
δ i

j
T k
(ν)k

, (6.32)
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in Fourier space and with the fact that only the neutrinos contribute to this relativistic
perturbation.

The cosmon perturbation δϕ is determined by the linearly perturbed part of the
modified Klein-Gordon equation under suitable approximations, Eq. (5.47). Finally,
the Hubble parameter is given by the flatness condition

3H 2 = ρtot, (6.33)

and the averaged cosmon ϕ̄ obeys Eq. (5.11).
The right-hand sides of all these equations are given by components of energy-

momentum tensors. In the gravitational Poisson equation, this is the total density
perturbation

δρtot =−δT 0
(m)0
−δT 0

(ν)0−δT 0
(ϕ)0; (6.34)

in the field equation for Φ−Ψ, the pressure components T i
(ν) j

; in the field equation for

δϕ, the trace perturbation δtrT(ν); for the Hubble parameter, the total density−T 0
tot0

;

and, finally, in the background equation for ϕ̄, the averaged trace trT̄(ν). In order to
implement the equations numerically, we have to write the quantities in terms of the ef-
fective particles. This is even true for the right-hand sides of the background equations.
As explained in Secs. 5.2 and 5.3, the background equations cannot be solved indepen-
dently of the perturbation equations due to the backreaction effect. The calculation
of the energy-momentum tensors is straightforward if we go back to the one-particle
form of the energy-momentum tensor (5.43). It can be used for every individual effec-
tive particle. The energy density ρν (and, analogously, ρm ) is then

ρν (x) =−T 0
(ν)0(x) =

∑
p

1
Æ
(3) g

γp M p (ϕ)δ
3(x − x p ) (6.35)

as a sum over particles p with Lorentz factors γp and ϕ-dependent masses M p (ϕ) eval-
uated at the particle positions x p . The density perturbation is simply δρν = ρν − ρ̄ν ,
where ρ̄ν is obtained by averaging ρν (x) in the simulation volume V ; of course, this
volume has to be large enough such that the average has converged. Similarly, the trace
trT(ν) is obtained as

trT(ν) = T λ
(ν)λ =−

∑
p

1
Æ
(3) g

M p (ϕ)

γp

δ3(x − x p ), (6.36)

and the remaining components T i
(ν) j

are evaluated analogously.

Linear field equations are solved in Fourier space where derivatives are transformed
to simple multiplications. This can be used for the gravitational potentials Ψ and Φ.
Moreover, once the field equation is solved in Fourier space, we obtain the gradients
for free using the transformation

ikΨk 7→∇Ψ. (6.37)
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The price to pay for a fixed grid is the limitation it imposes on the resolution. As we
have already argued, this is not as crucial for modeling the neutrinos as it is for mat-
ter. Cosmon-neutrino lumps form on relatively large scales. A moderate improvement
can be obtained by linearly interpolating the force between the grid points and by at-
tributing each particle, in the field calculation, to its neighboring grid points weighted
by distance; this cloud-in-cell method has been explained in Sec. 2.2.3. Although this
is implemented in our simulation technique as a numerical option, we have not seen
significant quantitative effects.

The field equation for δϕ is of a different kind; the left-hand side has been linearized
in δϕ, but the right-hand side includes, via trT(ν), mass terms, cf. Eq. (5.47). In the

constant β model, they are proportional to exp(−βδϕ). And although δϕ ≪ 1,
the rescaled quantity βδϕ by the large coupling constant β can be of order one, cf.
Sec. 5.3. The field equation remains nonlinear, and a robust solution is not obtained
in a straightforward manner. We will discuss this problem in Sec. 6.6.1 but already
note here that the numerical complications due to this equation hindered Ayaita et al.
(2012b) from evolving the growing neutrino quintessence model beyond a = 0.5. The
problem has been solved recently, and we show preliminary results beyond a = 0.5 in
Sec. 6.6.

Let us now turn to the evolution of the background cosmon ϕ̄. Usually, studies of
perturbations, and in particular N -body simulations, first solve the purely homoge-
neous equations and then evolve the perturbations on the precomputed background.
This would be exact if the time evolution commuted with the averaging procedure.
Since the averaging is linear, this is the case for linear perturbation theory. In the
standard ΛCDM scenario, the corrections due to nonlinearities are small. This is, es-
sentially, a consequence of the metric perturbations Ψ and Φ being small even when
the matter density perturbations are nonlinear. Accordingly, the corrections to the
averaged gravitational field equations, i. e. to the Friedmann equations, are generally
estimated to be negligible, cf. our discussion in Sec. 2.2.2.

In the growing neutrino quintessence model, this remains true for gravity. Still,
for the cosmon-mediated force, the quantity βδϕ is decisive, and it does reach order
unity. As a consequence, the backreaction is neither negligible nor a mere correction.
It is a decisive effect, even if we are not interested in precision calculations. As we have
already mentioned, the nonlinearity in δϕ arises in the homogeneous equation for ϕ̄,
Eq. (5.11). The right-hand side is — in the constant β model — proportional to trT̄(ν).
The correct averaging of this quantity, based on the effective particles p , reads

trT̄(ν) =

∫
d 3 x

Æ
(3) g trT(ν)

∫
d 3 x

Æ
(3) g

≈−
1

a3V

∑
p

M p

γp

, (6.38)

neglecting the metric perturbations for a simple discussion. If, instead, the purely

homogeneous evolution equations were used, one would obtain an estimate trT̄ est
(ν)

;

since the background equations predict nonrelativistic neutrinos for a ¦ 0.2, cf. Sec. 5.1,

we have trT̄ est
(ν)
≈ −ρ̄estν . The neutrino mass entering this estimate is the background
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value depending only on ϕ̄. If we assume (which, dynamically, becomes inaccurate
quickly) that ϕ̄ from the estimation still quite well corresponds to the true averaged
value, we may write for the quotient between the true right-hand side, Eq. (6.38), and
the estimate:

trT̄(ν)

trT̄ est
(ν)

∼
∑

p

e−βδϕ(x p )

γp

. (6.39)

This quantifies the error in the right-hand side when the background equations are
used independently of the perturbations. We identify two effects:

1. Most neutrinos are located in overdensities and, eventually, in lumps. There, δϕ
is negative and exp(−βδϕ) is substantially smaller than one.

2. The relativistic velocities reached during the nonlinear structure formation pro-
cess lead to substantially enhanced Lorentz factors γp > 1 for many particles.

Both of these effects lead to a suppression of the right-hand side as compared to the
homogeneous estimate. We quantify the effects in the full simulation run until a = 0.5
in Fig. 6.3. All three quantities agree well until a ¦ 0.35 where nonlinear effects become
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Figure 6.3: The importance of the backreaction effect in the calculation of the right-hand side of Eq. (5.11).
The homogeneous evolution not taking into account the perturbations strongly deviates from
the correct average. Also the effect of relativistic velocities is important. An equivalent plot
can be found in Ayaita et al. (2012b).

important. The actual average trT̄(ν) is substantially suppressed as compared to the

pure background calculation. The difference between the actual average trT̄(ν) and the

quantity obtained by neglecting the relativistic effect (this would assume trT̄(ν) ≈−ρ̄ν ),
is also significant. Both effects, the mass suppression and the relativistic velocities,
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have to be included in the computation of the background quantities. Our simulation
method thus evolves the coupled system of the perturbations and the background.

The mechanism by which growing neutrino quintessence realizes the onset of dark
energy domination and, consequently, initiates the phase of accelerated expansion re-
lies on the cosmon-neutrino coupling constituting an effective potential barrier. By the
backreaction effect, this barrier is severely reduced. As a consequence, we will see that
the backreaction shifts the onset of accelerated expansion to much later times. The
choice of adequate model parameters β and α then has to take into account the non-
linear evolution. This means that the parameter space of the model has to be explored
in the full simulations.

6.5 Results until a = 0.5

After having reviewed the most important technical aspects of the simulation method,
we can have a look at the quantitative results. In this section, we present the results
obtained by Ayaita et al. (2012b) based on, essentially, a single simulation run with
specific, exemplary model parameters. These are the same parameters we have used
in Sec. 5.4 when quantifying the properties of cosmon-neutrino lumps. The model
parameters and numerical choices are listed in Table 6.1. These parameters are only
exemplary. First, we emphasize that we use a constant coupling parameter β = −52.
In Sec. 6.6, we will see that this implies a particular regime of the growing neutrino
quintessence model, where the picture of cosmon-neutrino lumps is valid; whereas, for
varying β models, this regime can be left, and the evolution of perturbations is very
different both quantitatively and qualitatively. In a sense, the constant β model is an
extreme case where cosmon-neutrino lumps dominate the cosmological evolution and
the backreaction effect is very large.

Second, the constant coupling is relatively small such that a large average neutrino
mass mest

ν,0 = 2.3 eV is needed in order for the cosmon-neutrino coupling to be strong

enough for initiating a phase of accelerated expansion. This is, as well, a rather extreme
choice, and it essentially coincides with the laboratory constraints on the neutrino
mass, cf. Sec. 5.5.1. As a consequence, the homogeneous estimate of the present-day
neutrino fraction is large, Ωest

ν,0 ≈ 0.15. This means that the energy density concentrated

within cosmon-neutrino lumps is significant, and correspondingly, their gravitational
potentials and their effects on potential observables will be very large.

We conclude that the parameters used here correspond to a choice where the partic-
ular effects of growing neutrino quintessence, i. e. the formation of cosmon-neutrino
lumps and the backreaction effect, are very pronounced. In addition, the cosmological
parameters have been chosen such that the homogeneous estimates provide a realistic
expansion history. The deviations induced by the backreaction effect will lead to an
unrealistic expansion history as compared to observational constraints. The results we
will obtain are thus essentially illustrative. We emphasize again that, in order to obtain
more realistic results, an exploration of the parameter space has to be performed.
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Parameter Value

Cosmon-neutrino coupling β=−52
Scalar potential parameter α= 10
Present-day neutrino mass mest

ν,0 = 2.3 eV

Dark energy fraction Ωest
ϕ,0
= 0.6

Hubble parameter H est
0
= 70 km

sec
Mpc−1

Scalar perturbation amplitude As = 2.3× 10−9

Pivot scale kpivot = 0.05 Mpc−1

Spectral index ns = 0.96

Comoving simulation box size V = L3 =
�
600h−1Mpc

�3

Number of grid cells Nc = 2563

Number of effective neutrino particles Nν = 2× 107

Number of effective matter particles Nm = 2× 107

Initial scale factor aini,m = 0.02
Adding the neutrinos aini,ν = 0.2
Final scale factor afin = 0.5

Table 6.1: Basic growing neutrino quintessence model parameters, cosmological parameters, and numeri-
cal parameters of the simulation. The superscript ‘est’ indicates that the corresponding param-
eter is obtained by a purely homogeneous evolution of the model; it will differ from the true
value due to the backreaction effect, cf. Sec. 6.4.
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6.5.1 Formation of cosmon-neutrino lumps

We start our presentation of the simulation results with the most striking finding. This
is the formation of large cosmon-neutrino lumps. Their occurrence was first predicted
by Mota et al. (2008) on the grounds of linear perturbation theory, tentative studies of
their properties followed (Brouzakis et al., 2008; Wintergerst et al., 2010; Nunes et al.,
2011) and were applied to first estimates for their influence on the cosmological evo-
lution (Pettorino et al., 2010). The first clear numerical evidence for their formation
was shown by Baldi et al. (2011), but due to the neglect of local mass variations and
the backreaction effect, the lumps in those simulations did not stabilize, cf. Sec. 5.2
for more details. The clear verification of the formation of cosmon-neutrino lumps
and the first numerically reliable results regarding their properties is a key result of
the simulation method presented in this chapter. It served as a starting point for the
development of a comprehensive physical picture of the cosmon-neutrino lump fluid,
which we explained in Sec. 5.4.

The visual impression of the lump formation process within our simulation box
is shown in Fig. 6.4. Regarding the size of our simulation box (L = 600h−1Mpc
side length), it becomes clear that the cosmon-neutrino lumps are a large-scale phe-
nomenon. Let us go through the figures. In the beginning, after the neutrinos are
added to the simulation at aini,ν , the neutrino perturbations are still linear to a good
approximation as suggested by the results from linear perturbation theory, cf. Sec. 5.2.
The neutrinos are nonrelativistic, and the cosmon-mediated attractive force leads to a
rapid growth of the inhomogeneities. Between a = 0.25 and a = 0.30, the neutrino
density perturbations have grown by a substantial factor. The results not only qual-
itatively, but also quantitatively agree with the linear calculation. The nonlinearities
have then clearly emerged at a = 0.35, and they are seen on relatively large scales. This
is also in accordance with linear theory, where we have seen in Fig. 5.7 that neutrino
perturbations pass the nonlinear boundary first for a ¦ 0.35 and on scales of about
∼ 100h−1Mpc. After this period, the linear approximation breaks down, and we rely
on a nonlinear method. We find very large filaments at a = 0.40. At this time, where
the nonlinearities have become essential, the acceleration due to the cosmon-mediated
attraction already causes many effective neutrino particles to leave the nonrelativistic
regime. The average equation of state wν grows to ∼ 10−1. Not only linear theory, but
also Newtonian N -body methods can no longer describe the cosmological evolution.
At the same time, the cosmon perturbation grows, and the quantity βδϕ approaches
order one in the overdense regions. The mass suppression ∝ exp(−βδϕ) becomes im-
portant and can no longer be linearized; the backreaction effect explained in Sec. 6.4
starts to affect the cosmological evolution. Already at a = 0.45, we clearly identify a
collection of lumps. The large lumps remain stable and are again seen at a = 0.5 at
essentially unaltered positions. Many of the smaller lumps have merged, and the total
number of lumps is reduced. Now, the picture of a cosmon-neutrino lump fluid as
developed in Sec. 5.4 can be applied.

Many properties of the lumps, like their distribution, their masses, and their effec-
tive couplings (which determine their dynamics), have been studied in Sec. 5.4. There,
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Figure 6.4: Snapshots of the neutrino number density field. The first two figures indicate the (still linear)
fluctuations on a two-dimensional surface. The color range goes from nν (x) = 0 (blue color)
to nν (x) ≥ 5n̄ν (red color). The remaining figures indicate regions where nν (x) ≥ 5n̄ν . While
these nonlinearities are still diffuse at a = 0.35, large filaments have formed at a = 0.40, and
a collection of lumps is observed subsequently. The figure has been taken from Ayaita et al.
(2012b).
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we also showed simulation results for single, isolated lumps, filling an entire simulation
volume. The full cosmological simulations are limited by their resolution, so the in-
formation on single lumps is less precise. However, the full simulations allow to study
lumps in a realistic cosmological context. Although we were able to generate lumps
based on a hydrodynamic balance equation, cf. Sec. 5.4.4, it is a priori unclear which
profile and which lump size is to choose realistically. Therefore, it is instructive to ac-
tually measure the profile of a lump in the full simulation. We choose a comparatively
large lump at a = 0.5. A slice through the simulation box at its position (showing the
number density nν (x)/n̄ν ) and the measured radial number density profile around the
center of the lump are shown in Fig. 6.5. We observe a number density contrast in
the neutrino component of order 105 to 106 in the center of the lump. The inner core
extends to about 3h−1Mpc in physical coordinates, and at a distance of ¦ 5h−1Mpc,
the concentration is still two orders of magnitude above the average. If we compare
the size of the inner core with the cell size amounting to ≈ 1h−1Mpc, indicated by the
blue-shaded region, we infer that resolution effects might be important. The measure-
ment of the profile is limited by the resolution, and we do not know quantitatively
how the profile really looks close to the center.

We analyze the effect of the resolution by performing a new simulation run with
identical parameters, except for a lower resolution, Nc = 1283 corresponding to cells
twice as extended in each spatial direction. The simulation uses the same random
seed, i. e. the same initial perturbations such that we can compare the results of both
simulations for the shown neutrino lump. The profile obtained in the low-resolution
simulation is shown as the grey-dashed line in Fig. 6.5. As expected, there is a dis-
agreement in the inner core, which now seems less concentrated; the neutrino number
density contrast is suppressed by one order of magnitude and only reaches 104 to 105.
However, on scales ¦ 5h−1Mpc, a remarkable agreement is reached. This is already a
first hint for the large-scale properties of the simulation being robust against resolution
effects.

In addition to the number density profile, we can have a look at the cosmon pro-
file δϕ(r ) or, equivalently, at the mass profile mν (r ) ∝ exp(−βδϕ(r )). For the same
lump as in Fig. 6.5, we show the mass profile in both simulation runs (normal and low
resolution) in Fig. 6.6. The mass suppression in the inner core amounts, for both reso-
lutions, compared to larger distances, to one order of magnitude. This verifies that the
quantity βδϕ reaches order one, which is the condition for backreaction effects being
important. Since most neutrinos are located in lumps, the cosmologically averaged
neutrino mass is substantially suppressed as compared to the homogeneous estimate
based on the background cosmon field ϕ̄. We will see the influence of this effect on the
evolution of background quantities in the next section. It is an important statement,
here, that the resolution does not seem to play a crucial role. If the resolution was
important for quantifying the mass suppression, this would — by virtue of the back-
reaction effect — have an impact also on the evolution of large scales and even on the
cosmological background, i. e. the dynamics of expansion.

The question whether the resolution of our simulation is sufficient deserves a closer
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Figure 6.5: Profile of a neutrino lump in the simulation volume at a = 0.5. The upper figure shows the
number density nν (x)/n̄ν (normalized to the background value) on a slice through the center
of the lump. We observe that the lump is approximately spherical. The spherical number
density profile is shown in the lower figure (blue solid line). The blue-shaded region indicates
the physical size of a simulation cell. The spatial resolution is comparable to the concentration
of the lump. A low-resolution run is shown for comparison (grey dashed line); the grey-shaded
region shows the larger cell size. The figures are taken from Ayaita et al. (2012b).
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Figure 6.6: The mass profile mν(r ) ∝ exp(−βδϕ(r )) in the neutrino lump of Fig. 6.5. The original
simulation run is indicated by a green color, and the low-resolution run is shown in grey. The
figure is taken from Ayaita et al. (2012b).

look. Rather than only investigating profiles of individual lumps, we should consider
the effect of a resolution change on important cosmological quantities regarding the
neutrinos. For example, we may be interested in the effect of the resolution on the
neutrino energy-density perturbation spectrum Pν (k) or, equivalently, on the dimen-
sionless spectrum ∆ν (k). It is shown, for the two different resolutions, Nc = 2563 and
Nc = 1283, in Fig. 6.7. We observe a good agreement between the two spectra on scales
larger than the lower resolution, indicated by the vertical line (for smaller scales, of
course, the resolution effect is very important, and the power is substantially reduced
in the low resolution run). This supports our argument that the evolution on large
scales is not sensitive to the smallest scales. We have also checked that the evolution of
the FLRW background is not sensitive to the resolution of the simulation. Although
the nonlinear evolution necessarily induces couplings between different modes k, this
effect is not very pronounced for the smallest scales, which again tells us that neutrino
clustering is, in contrast to dark matter clustering, most important on larger scales.

We finish our discussion of cosmon-neutrino lump properties in the realistic cos-
mological context by having a look at the stability. In Sec. 5.4.4, we have shown that
stable lump configurations exist, and we have tested this for isolated neutrino lumps,
taken out of the cosmological context and generated with the help of a hydrodynamic
balance equation. The full simulations clearly lack the resolution to obtain a detailed
picture of the stabilization process. Nonetheless, we wish to check whether the re-
sults roughly confirm the expectation of stabilizing lumps. Visually, this expectation
seems to apply if we have a look at Fig. 6.4. In order to be quantitative, Ayaita et al.
(2012b) identified a lump that does not undergo merging processes between a = 0.45
and a = 0.5. Such a lump is an ideal object for studying the evolution of the inner
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Figure 6.7: The dimensionless neutrino energy-density perturbation spectrum ∆ν (k) at afin = 0.5 for two
simulations, Nc = 2563 and Nc = 1283. The vertical line indicates the cell size of the low

resolution run, k ≡ 1/∆x, where ∆x = 3
p

V /Nc ≈ 4h−1Mpc. The figure is taken from Ayaita
et al. (2012b).

profile. We show the result in Fig. 6.8. Of course, we may only expect a stabilization
in physical coordinates. This is why we show the profile as a function of the physi-
cal radius from the lump’s center. If comoving coordinates were used, we would see
significant deviations from the rather stable picture we see in Fig. 6.8. Although the
stabilization is not precise, we only observe a slow and moderate continuing concentra-
tion of the lump. It is not clear whether the continued shrinking is real or an artefact
of the numerical limitations.

6.5.2 Backreaction effect

We are now in a position to eventually quantify the backreaction effect in growing
neutrino quintessence about which Pettorino et al. (2010) first speculated. We have
discussed this effect already in Secs. 5.2, 5.3, and 6.4. The drastic importance of this
effect will become clearer in Sec. 6.6, where we will be able to follow the cosmological
evolution beyond a = 0.5. Since the nonlinearities only start at a ¦ 0.35, the deviation
of the background evolution from the estimate based on the averaged equations is not
very pronounced until a = 0.5, where the simulation stops. Still, we will see in this
section that the effect is already quantitatively important.

In Sec. 6.4, we identified two reasons for the backreaction effect. These are the local
mass suppression ∝ exp(−βδϕ) and the relativistic neutrino velocities γ > 1. Both ef-
fects lead to a substantial deviation of the averaged neutrino energy-momentum tensor

T̄
µλ
(ν)

from the estimate obtained by solving the purely homogeneous equations. The

averaged energy-momentum tensor enters the calculations of the background cosmon
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Figure 6.8: The evolution of the number density profile nν (r )/n̄ν of a lump between a = 0.45 and a = 0.50
that does not undergo merging processes. Each profile is taken around the (moving) center of
the lump. The figure is taken from Ayaita et al. (2012b).

ϕ̄ and of the Hubble parameter H , cf. Sec. 6.4. The effect on the background cosmon
in the background modified Klein-Gordon equation (5.11) is most pronounced. Here,
both effects, the mass suppression and the relativistic velocities lead to a suppression

of the source term ∝ trT̄(ν). The strength of the coupling is reduced, and the cosmon
is less effectively stopped. As a consequence, the onset of dark energy domination is
shifted to later times and with it the accelerated expansion.

The effect on the expansion history can be quantified by the deceleration parameter
q already introduced in Sec. 2.1.1, which we rewrite here in conformal time,

q =−
a′′a

a′2
+ 1. (6.40)

The expansion of the Universe accelerates, i. e. ä > 0, in the case q < 0. In the purely
homogeneous evolution, the crossing of q = 0 happens shortly after a = 0.5. The com-
parison to the actually measured value in the full simulation run is plotted in Fig. 6.9.
Until a ≈ 0.35, the backreaction effect is irrelevant since the mass suppression can be
described in linear approximation and since the neutrinos are still in the nonrelativistic
regime. Thereafter, the effect becomes important, and due to the less effective stopping
of the cosmon, the Universe continues to significantly decelerate until a = 0.5. Yet,
in the homogeneous estimate, the expansion has almost switched to the accelerating
phase. The effect on the expansion is drastic, and we may not expect agreement with
observational constraints on the accelerated expansion. Of course, this does not im-
ply that fitting observational constraints is impossible in general, but it does tell us that
the model parameters have to be changed quite substantially. The purely homogeneous
estimate — on which the parameter choices here are based — is clearly inaccurate.
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Figure 6.9: The evolution of the deceleration parameter q in the full simulation run as compared to the
estimate based on evolving the pure background equations. An equivalent figure can be found
in Ayaita et al. (2012b).

The deceleration is directly related to the evolution of the background cosmon ϕ̄.
Using the Friedmann equations, we can generally write

q =
a4

6a′2
�
ρ̄tot+ 3 p̄tot

�
, (6.41)

and the background cosmon contributes to the sum by

a4

6a′2
(ρ̄ϕ + 3 p̄ϕ)∝ ϕ̄′2− a2V (ϕ̄). (6.42)

Although we may not linearize the mass function mν (ϕ) in the perturbation δϕ, we
can linearize the potential V (ϕ) since the perturbation in the exponent αδϕ is below

order one. The relative difference between V (ϕ) and V (ϕ̄) is only of order 10−2.
This shows that the backreaction effect is really due to the mass function and not
important for the potential. The cosmon contribution to the deceleration parameter
again expresses what we have seen a couple of times for the expansion history in the
presence of a canonical scalar field. The comparison between the kinetic energy and
the potential energy is decisive. Only if the evolution of ϕ̄ is effectively stopped, the
potential dominates and we get a contribution that can accelerate the expansion of the
Universe.

The comparison between the kinetic term and the potential is encoded in the equa-
tion of state wϕ , and we obtain wϕ ≈ −1 if the potential term dominates. The evolu-
tion of the equation of state for the full simulation as compared to the homogeneous
estimate is quantified in Fig. 6.10. Although still close to the cosmological constant
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Figure 6.10: The evolution of the equation of state wϕ of the background cosmon field. An equivalent
figure can be found in Ayaita et al. (2012b).

value −1, the equation of state wϕ is further away when the backreaction effect is
taken into account. This is a consequence of the effective potential barrier provided by
the cosmon-neutrino coupling being suppressed. Without the backreaction effect, the
equation of state oscillates with values very close to −1 for a ¦ 0.4.

We can have an even closer look at the evolution of the background cosmon by look-
ing at the evolution of ϕ̄ and its time derivative ϕ̄′ directly. This is done in Fig. 6.11.
Of course, the absolute value of the field ϕ̄ is a matter of convention. Any shift can
be compensated by adjusting the normalization of the potential and of the neutrino
mass accordingly. We have chosen a value such that ϕ̄ is close to zero at the present
cosmic time; the prefactor of the potential is, consequently, comparable to the cosmo-
logical constant value in ΛCDM, V0 = V (ϕ = 0) ≈ 10−120 in reduced Planck units.
Without the backreaction effect, the background cosmon is clearly stopped at a ¦ 0.4.
This means that the dynamical potential barrier induced by the cosmon-neutrino cou-
pling has produced a minimum in an effective potential where the cosmon is caught. It
merely oscillates around this minimum, and the oscillations are continuously reduced
due to the damping term in the background equation (5.11). This does not happen if
the backreaction effect is included. The potential barrier is suppressed, the minimum
in the effective potential is shifted to larger field values. Rather than a stopping, we
observe that the field continues to roll down its potential towards larger field values.
This also means that the background neutrino mass mν (ϕ̄) grows although the mass
within the lumps is approximately frozen. The same can also be seen in more detail in
the plot of the time derivative ϕ̄′.
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Figure 6.11: The evolution of the background cosmon ϕ̄ and its time derivative ϕ̄′ with and without taking
the backreaction effect into account. Equivalent figures can be found in Ayaita et al. (2012b).
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6.5.3 Gravitational potential

Although the parameters chosen for the growing neutrino quintessence model, here,
are just exemplary, it is tempting to investigate the consequences of our results for
observations. Of course, this investigation is preliminary and mainly illustrative. As
we have explained in the beginning of Sec. 6.5, the chosen constant coupling parameter
β = −52 corresponds to an extreme case where the effects of the model are most
pronounced. The results that we will show here can thus be interpreted as upper limits
for the deviations from the standard ΛCDM model that are induced by the cosmon-
neutrino coupling. In Sec. 6.6, we will see hints for the existence of an opposite regime
where the deviations from the ΛCDM scenario are expected to be very small.

We have discussed possible observable consequences of the growing neutrino quin-
tessence model in Sec. 5.5. Next to direct probes like measurements of the neutrino
mass, we argued that cosmological probes linked to the gravitational potential induced
by cosmon-neutrino lumps are promising tools to constrain the model. The gravi-
tational potential is observable directly via the integrated Sachs-Wolfe (ISW) effect,
visible both in the CMB and in the cross-correlation between the CMB and large-scale
structure and weak gravitational lensing. Indirect probes of the gravitational poten-
tial are related to the evolution of matter perturbations. An additional gravitational
potential induced by cosmon-neutrino lumps is felt by matter perturbations which, as
a consequence, exhibit enhanced growth. This is first visible in the large-scale pecu-
liar velocities, as we have argued in Sec. 5.5. The effect on the matter density power
spectrum is delayed.

The evolution of the large-scale gravitational potential, as measured in the simula-
tion run, is quantified in Fig. 6.12. Note that we choose the cosmological redshift
z = 1/a − 1 as the time variable in this section since it is a common choice made by
observers. The simulation ends at zfin = 1, and the neutrinos are added at zini,ν = 4.
The gravitational potential shown here is, more precisely, the dimensionless spectrum
defined via

Ψ2(k; z) =
k3

2π2
PΨ(k; z), (6.43)

as usual. We followAyaita et al. (2012b) showing the potential normalized to a ‘ΛCDM
case’. Here, we do not really employ the ΛCDM model but merely use it as a label
indicating that the cosmon-neutrino coupling has been switched off in the perturba-
tions. This means that the perturbation evolution is equivalent to the ΛCDM case
although the background evolution is not. In order for a clear quantification of the
effect of the cosmon-neutrino coupling, we evolved the ‘ΛCDM run’ on the same
FLRW background. This means that we have used the background obtained by the
full simulation run as an input for a standard Newtonian N -body simulation which
only evolves cold dark matter on a precomputed background. So, the enhancement
of the potential shown in Fig. 6.12 is exclusively due to the extra potential induced
by cosmon-neutrino lumps and, to a small amount, due to the consequently enhanced
matter densities. We also exclude possible numerical effects by using the same numer-
ical parameters in both simulations. The obtained result is, consequently, robust. In
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Figure 6.12: The enhancement of the gravitational potential as compared to the ΛCDM scenario (corre-
sponding to switching off the cosmon-neutrino coupling in the perturbations) for two dif-
ferent modes, k = 0.05h/Mpc and k = 0.02h/Mpc. The figure is taken from Ayaita et al.
(2012b).

the presence of relativistic neutrinos, one has, in principle, to discriminate between
the two gravitational potentials Ψ and Φ. The difference between the two is, however,
only significant on small scales (at the size of the neutrino concentration in a lump and
below) so that the effect on the large-scale result here is negligible. Quantitative results
concerning the difference between the two potentials are discussed by Weber (2012);
Ayaita et al. (2012b).

While, in the ΛCDM scenario, the large-scale gravitational potentials are constant
duringmatter domination and very slowly decaywhen dark energy is becoming impor-
tant, the formation of cosmon-neutrino lumps on large scales in the growing neutrino
quintessence model (for the constantβ parameter used here) leads to a different behav-
ior. Large-scale gravitational potentials grow significantly at z ® 2.5 (corresponding to
a ¦ 0.3). This precedes the nonlinear evolution. The growth of the potential is a result
already clear from linear perturbation theory. Nonlinear theory leads to a flattening
of this growth once stable cosmon-neutrino lumps have formed. In the case of individ-
ually static neutrino lumps, we would still expect a residual growth of the gravitational
potential due to two effects. First, the mutual attractive interaction between the lumps
and their influence on the surrounding matter perturbations leads to further growth
in the perturbations on large scales. Second, if the background cosmon is not yet fully
stopped and still rolls down its potential (which happens for the parameters chosen
here, cf. Fig. 6.11), this will lead, by virtue of the effective lump coupling, to a (slow)
increase of the lump masses again enhancing the potentials. These two points may be
regarded as the reason why the potentialΨ is still growing at z = 1, cf. Fig. 6.12, despite
the fact that a collection of stable cosmon-neutrino lumps has formed. Nonetheless,
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the growth has clearly flattened. Although the growth of the potentials is significant,
the absolute scale of Ψ(k) is still between 10−5 and 10−4 on large scales. So, the metric
perturbations are still small.

Depending on the scale k, the gravitational potential is enhanced by a substantial
factor reaching almost one order of magnitude at very large scales. This is a very
strong effect, and if the potentials do not decay after z = 1, this would leave a substan-
tial imprint on the CMB spectrum Cℓ for low multipoles ℓ. Whether it would also
be significant in large-scale structure cross-correlation measurements of the ISW effect
depends on the correlation between the galaxy density and the distribution of cosmon-
neutrino lumps. If the two distributions were statistically independent, the effect of
cosmon-neutrino lumps would not be visible in the galaxy-temperature correlation
spectrum — it would drop out statistically just as the primordial CMB signal. A full
analysis requires to actually measure the cross-correlation between the matter density
(which is traced by the galaxies) and the time derivative of the gravitational potential
(which corresponds to the ISW-induced CMB temperature fluctuation). Although our
simulation contains all the necessary ingredients to actually perform this analysis, we
postpone it to future work with higher numerical precision. This is because the esti-
mation of the time derivatives Ψ′ and Φ′ is very sensitive to numerical noise. Another
possibility to directly probe gravitational potentials is gravitational lensing. Since we
expect effects on large scales, we will have to wait until gravitational lensing can be
used, e. g. via weak lensing tomography or 3d weak lensing, on large scales.

In Sec. 5.5, we have emphasized that the impact of the gravitational potentials in-
duced by cosmon-neutrino lumps on the matter perturbations will be most visible in
the large-scale peculiar velocities. Although, for the time being, the observational sta-
tus is somewhat unclear, and we certainly have to wait for more reliable and precise
constraints regarding the large-scale peculiar velocity field, it is an interesting observ-
able to consider from the perspective of the growing neutrino quintessence model. We
show the expectations Uλ for matter bulk flows, i. e. averages of peculiar velocities on
large scales λ as a function of cosmological redshift z in Fig. 6.13. More precisely, Uλ
is the root mean square value of the matter peculiar velocity field 〈v m〉Vi

averaged in

the Nλ = L3/λ3 cubes Vi of comoving volume λ3,

Uλ ≡

√√√√ 1

Nλ

Nλ∑
i=1

〈v m〉2Vi
, (6.44)

where 〈v m〉Vi
is just the usual spatial average

〈v m〉Vi
=

∫
Vi

d 3 x
Æ
(3) g v m

∫
Vi

d 3 x
Æ
(3) g

. (6.45)

The root mean square bulk flow is comparable to the value of the dimensionless matter
peculiar velocity power spectrum ∆v,m(k) = k3Pv,m(k)/(2π

2), cf. Sec. 5.5, on scales
k ∼ 1/λ.

189



6 Cosmological simulation

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1  1.5  2  2.5  3  3.5  4

37.5 Mpc/h
75 Mpc/h

redshift z

U
λ
/U
Λ
C
D
M

λ

Figure 6.13: Root mean square matter bulk flows Uλ in boxes of side lengths λ, λ = 37.5h−1Mpc and
λ = 75h−1Mpc, as compared to the ‘ΛCDM run’. The figure is taken from Ayaita et al.
(2012b).

We see, in Fig. 6.13, a clear delay of the enhancement of the large-scale matter pe-
culiar velocities as compared to the gravitational potentials. Whereas the latter grow,
compared to the ΛCDM case, significantly after z ≈ 2.5, the peculiar velocities follow
only after z ® 2. This is simply due to (the gradients of) the gravitational potentials
being the acceleration of the matter particles. The large-scale peculiar velocities are,
subsequently, enhanced by a substantial amount, in particular on very large scales,
where the enhancement reaches a factor of about two. This certainly continues for
z < 1 since the gravitational potentials that have built up until z = 1 will exert their
influence on the bulk flows with a certain delay. We conclude that the large-scale pe-
culiar velocity field is a very interesting observable to constrain the growing neutrino
quintessence model in the case of a cosmon-neutrino lump fluid.

An observable that is accessible with much more precision is the matter power spec-
trum, for example in its dimensionless form ∆m(k). It reacts, however, only slowly to
the gravitational potential induced by cosmon-neutrino lumps. Its second time deriva-
tive is related to the potential, its first derivative being linked to the peculiar velocity
by virtue of the continuity equation. We show the effect of the additional gravitational
potentials in growing neutrino quintessence on ∆m(k) in Fig. 6.14. Compared to the
effect of the cosmon-neutrino lumps on the gravitational potential itself and on the
large-scale peculiar velocity field of matter, the effect on the density perturbations is
mild. It is at the percent level at z = 1.5 where the large-scale potentials have already
grown by a factor of more than two and the large-scale peculiar velocities have in-
creased by almost 20%. On large scales, the effect becomes more pronounced at z = 1
with a deviation from the ΛCDM case of about 10%. At small scales, the additional
gravitational potentials are smaller (due to the large size and distances of the lumps),
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Figure 6.14: Enhancement of the matter density power spectrum for three redshifts z = 1, z = 1.5, and
z = 2 as a function of scale. The figure is taken from Ayaita et al. (2012b).

but also the normalization given by the ΛCDM spectrum is large since matter clusters
on these scales. In relative terms, the effect is thus weak.

With the growing neutrino model parameters used here, cf. Table 6.1, the enhance-
ment of the matter power spectrum — which will increase until z = 0 — would cer-
tainly be observable. Yet, for more realistic parameters, the present-day neutrino mass
would be much smaller and with it the large-scale gravitational potentials of cosmon-
neutrino lumps. In this case, the effect on the matter power spectrum might be too
small to be detected in current observations. Although this argument is still imprecise,
we emphasize that observations of merely the matter power spectrum are not the ideal
tool to constrain growing neutrino quintessence, at least for parameters predicting a
small present-day neutrino mass. Direct probes of the gravitational potential possess
more constraining power, as do observations of large-scale peculiar velocities. So, the
results presented in this section support the general arguments we developed in Sec. 5.5.

6.6 Beyond a = 0.5

The crucial limitation of the results presented so far is the boundary a ≈ 0.5 beyond
which the cosmological evolution is not known. Although these results have enabled
us to learn a lot about the growing neutrino quintessence model and, in particular,
about the physics of cosmon-neutrino lumps, they are insufficient for our final goal
of confronting the model quantitatively with observational constraints, for which an
evolution until the present cosmic time a = 1 is required. Only a simulation scheme
that is stable and reliable until a = 1 allows to eventually explore the growing neutrino
quintessence parameter space in the light of observational constraints.
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We have already proposed one possibility to partially achieve this, namely the sim-
plified simulation scheme based on the cosmon-neutrino lump fluid, cf. Sec. 5.4.5. Such
a simplified scheme suffers, however, from several drawbacks. First, it only works in
the regime where stable cosmon-neutrino lumps form, which constitutes a rather ex-
treme case of the model. This more or less corresponds to a restriction to the constant
βmodel since the assumption of stable lump properties cannot be maintained if β has
a strong dependence of ϕ. Second, even in the constant β model, the assumption of
completely virialized lumps with stable, i. e. time-independent, properties may be well
motivated, but — in the absence of a full simulation beyond a = 0.5 — the error cannot
be quantified. Third, although we may expect a qualitatively robust cosmological evo-
lution, the simplified description will not allow to make contact with precision results
provided by current and future observational probes.

In this section, we overcome the limitation of a ≤ 0.5 and thereby provide all the
necessary tools to start with a comprehensive study of the parameter space. With
several preliminary results, we already sketch two main regimes of this parameter space
and thereby set the stage for a detailed exploration. The completion of the simulation
scheme also serves as a proof of concept. The simulation method has matured, and it
becomes possible to implement everything we have learned in a state-of-the-art N -body
code with high spatial resolution and well-established precision. This is a promising
task for future work. Quantitatively reliable and accurate results will then be compared
with precision data.

At first, we will explain why numerical problems have forced us to stop at a = 0.5;
they are related to our solution of the field equation for the cosmon perturbation δϕ,
which becomes severely nonlinear in the case of strong neutrino mass suppressions,
Sec. 6.6.1. We will also present a tentative solution based on a locally spherical approx-
imation around individual cosmon-neutrino lumps, allowing to track the cosmologi-
cal evolution until a ≈ 0.8. The final solution to the problem lies in an appropriate
Newton-Gauß-Seidel relaxation method.

With the help of this method, the simulation with the parameters of Sec. 6.5 can be
performed until a = 1 and beyond; we present and discuss this in Sec. 6.6.2. As we
shall see, the backreaction effect will lead to an unrealistic expansion history, and we
will discuss how the expansion history depends on the parameter choice.

In Sec. 6.6.3, we will switch to the varying β model, which has the advantage of
enforcing the stop of the background cosmon by a diverging effective potential barrier.
We will see that the resulting oscillations of the coupling parameter can be so violent
that they do not allow for stable cosmon-neutrino lumps to form. The cosmology will
be close to ΛCDM both at the background and at the perturbation level.

6.6.1 Evaluating the cosmon perturbation

Fourier-based fixed-point iteration

The simulation runs investigated in the preceding sections relied on a Fourier-based
solution scheme for the field equation of the cosmon perturbation δϕ. This solu-
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tion method works in the mildly nonlinear regime |βδϕ| ∼ 1. Since the masses
∝ exp(−β(ϕ̄+δϕ)) approximately freeze within the lumps although the background
cosmon ϕ̄ continues to roll down its potential towards larger values, cf. Fig. 6.11, the
cosmon perturbation δϕ compensates the growth of ϕ̄. Consequently, the quantity
|βδϕ| continuously grows. Once |βδϕ| is substantially larger than one, the field
equation for δϕ is highly nonlinear and an alternative solution method must be used.
In our simulations, this happens at a ¦ 0.5, why we had to stop. We will explore this
now in more detail.

Let us first assume |βδϕ| ≪ 1, in which case the mass function may be linearized,

mν (ϕ) = m̄ e−β(ϕ̄+δϕ) ≈ mν(ϕ̄) (1−βδϕ) (6.46)

in the constant β model. In the nonrelativistic regime, we may write

trT(ν) ≈−ρν ≈−mν (ϕ)nν (6.47)

with the number density nν . As a consequence, the field equation for δϕ, Eq. (5.47),
becomes linear in δϕ; neglecting the metric perturbations for the sake of simplicity, it
reads

∆δϕ− a2V,ϕϕ(ϕ̄)δϕ ≈ a2βδtrT(ν) ≈−mν (ϕ̄)δnν −βδϕmν (ϕ̄)nν . (6.48)

It is straightforward to solve this linear differential equation in Fourier space. This sim-
ple method, completely analogous to the computation of the gravitational potentials,
works until a ≈ 0.4. Thereafter, |βδϕ| ∼ 1 and the linearization is no longer possible.
Nonetheless, as long as the nonlinearities are mild, we may still build upon the Fourier
scheme. Formally, we may write the nonlinear field equation as

∆δϕ(x) = f (δϕ(x); x), (6.49)

where f is a nonlinear function of δϕ by virtue of the cosmon-dependent mass ∝
exp(−βδϕ). If the right-hand side was known, the equation would be solved easily
on the reciprocal lattice. If the right-hand side is only known with some uncertainty
(e. g., we may take the value of the last time step as a first guess), we may still hope to
improve the result by solving for the left-hand side. If this is repeated, it results in the
following iterative scheme:

∆δϕn+1(x) = f (δϕn(x); x). (6.50)

If it converges to a fixed point δϕ∞, this would be the solution for which the field
equation is satisfied. In our simulations, we have used this scheme and we observe the
convergence until a ≈ 0.5. Thereafter, the iteration becomes divergent.

We can illustrate this divergence with the help of a very simple, idealized example.
We consider a single neutrino overdensity with a size λ, located at position x = 0. The
iteration δϕn corresponds to a mass estimate Mn obtained by evaluating the field δϕn

at x = 0. We further assume nonrelativistic neutrinos so that

trT(ν) ≈−ρν (x) =−
Mn

a3
Wλ(x) (6.51)
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with a normalized window Wλ of size λ. In the Fourier description, we may then
write approximately (replacing the window by a Dirac delta):

k2δϕn+1,k ∼βa2Mn . (6.52)

Transformed back to position space with an ultraviolet cutoff at the scale k ∼π/λ, this
yields

δϕn+1(0)∼
β

2πa

Mn

λ
. (6.53)

Assuming that our guess Mn is close to the true value M , Mn =M (1+ǫn ) with ǫn≪ 1,
the error of the next iteration would be

ǫn+1 ≈−
β2

2πa

M

λ
ǫn . (6.54)

Convergence would require shrinking errors. We observe here that the decisive factor
is proportional to β2M/λ. In particular, the more concentrated the lumps are, the
more likely is the iterative scheme to fail.

Locally spherical approximation

As almost all neutrinos are, at a ¦ 0.5, bound in lumps, we do not need to know the
field valuesδϕ(x) everywhere but just within the lumps. Since the lumps are, to a good
approximation, spherical, we may exploit this symmetry. More precisely, the solution
ofδϕ in a lump is expected to approximately only depend on the radial distance r from
the lump’s center. The field equation for δϕ becomes a one-dimensional differential
equation:

1

r 2

∂

∂ r

�
r 2
∂ δϕ

∂ r
(r )

�
− a2V,ϕϕ(ϕ̄)δϕ(r )≈ a2δ

�
βtrT(ν)

�
(δϕ(r ); r ). (6.55)

This holds as long as the field δϕ is dominated by the considered lump. So, this will be
a good approximation for r ® Rν , where Rν is the scale of the neutrino concentration
of the lump.

The field equation then reduces to a collection of ordinary differential equations, i. e.
boundary value problems, that can be solved accurately with well-known numerical
techniques if the boundary conditions are known. This motivated the implementation
of the method in the full simulation scheme. Once the lumps have formed, they are
— in every time step — identified as local maxima in the neutrino number density.
Around each lump, the source δtrT(ν) is measured in spherical shells providing a radial

profile. Then, within the lump volume, the radial equation for δϕ(r ) is solved (with
appropriate boundary values discussed later), and the resulting masses are attributed to
the effective neutrino particles.

In the numerical test runs, the method typically worked until a ≈ 0.8. We show an
exemplary result in Fig. 6.15 for the evolution of the average neutrino mass. The plot
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Figure 6.15: The average neutrino mass (particle average) obtained by the locally spherical method com-
pared to the homogeneous estimate based on pure background equations. This plot can be
compared approximately with Fig. 5.19.

is in reasonable agreement with the Fourier-based method until a = 0.5 but estimates
somewhat smaller masses; this expresses the fact that the radial equation is solved with-
out restriction to the lattice resolution. The solution for δϕ can be steeper and lead to
a slightly stronger mass suppression.

The plot allows for a remarkable cosmological interpretation. The approximate
mass freezing indeed extends to a > 0.5; an average mass mν ∼ 1 eV is, however, needed
to effectively stop the evolution of the cosmon in this model with the relatively small
coupling parameter β = −52. Consequently, the onset of the accelerated expansion
will be shifted to much later times as compared to the result obtained from a homo-
geneous computation. We will discuss this in much more detail when we evolve the
simulation beyond a = 1 in Sec. 6.6.2.

Since we will not use the locally spherical method for further results, we do not
present its details. We just mention the most important aspects. One has to decide
up to which radius R the spherical solution is obtained; this is, to some extent, related
to the allowed minimal distance between two neighboring lumps. Another decision
regards the treatment of neutrinos between lumps. Both issues are important in merg-
ing processes where the spherical symmetry is violated and the notion of single lumps
becomes ill-defined. Once two large lumps merge, the method becomes inherently dis-
continuous leading to shocks in the background evolution. One would prefer initial
conditions that, by chance, do not provoke this complication. The most important
drawback is the restriction to a ® 0.8.

The instability of the locally spherical method for a ¦ 0.8 is due to the estimation of
boundary values for the spherical equation. The spherical method is incomplete with-
out the boundary values δϕb . The conditions used in conjunction with the spherical
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field equation read

∂ δϕ

∂ r

�����
r=0

= 0 and δϕ(R) = δϕb (6.56)

for each lump. The evaluation of δϕb still requires the solution of a three-dimensional
field equation for δϕ. This equation is linear in δϕ if we assume that the right-hand
side — i. e. the neutrino masses — are known from the locally spherical method of
the previous time step. Yet, in complete analogy to the Fourier-based method, this is
not self-consistent. Once the implicit dependence of the right-hand side on δϕb be-
comes strongly nonlinear, the scheme fails due to the same reason as the fixed-point
Fourier-based method. In our simulations, we have obtained δϕb also by a fixed-point
iteration. The relation between δϕb and the neutrino masses within the lump are
quantified by the lump’s effective coupling parameter βl , cf. Sec. 5.4.3. The reason
that the locally spherical method is stable for a longer time than the direct Fourier-
based method is related to the fact that the effective coupling βl is weaker than the
fundamental coupling β and that the boundary value δϕb (corresponding to the out-
side value of the cosmon perturbation) is less negative than the local field δϕ within
the lump. This means, the moment when |βlδϕb | exceeds order one is delayed as
compared to |βδϕ|. However, once this point is reached, the nonlinearities in the
three-dimensional field equation cause this method to break down.

Newton-Gauß-Seidel multigrid relaxation

The final solution to the numerical difficulty of solving the field equation for δϕ has
been reached with the help of a Newton-Gauß-Seidelmultigrid relaxationmethod orig-
inally developed for the simulation of modified gravity models within gadget (Puch-
wein, Baldi, Springel, work in progress). As the details of the implementation are,
at the time of writing, not yet published by the authors, we will not anticipate them
here. Rather, we will content ourselves with explaining the very basic idea and with
clarifying the main equations used for our model.

The field equation for δϕ can formally be written as

L [δϕ]≡∆δϕ− f (δϕ; x ) = 0, (6.57)

where f is a nonlinear function as in Eq. (6.49), which does not contain derivatives of
δϕ. A solution for the field equation then corresponds to a root of the nonlinear func-
tionalL . Inspired by Newton’s method, a root can be found iteratively by linearizing
L and finding, in each step, the zero of the linearly approximated function. If such a
linear approximation is done at each point x individually, the resulting scheme can be
described as

δϕn+1(x) = δϕn(x)−
L [δϕn](x)

∂L [δϕ]/∂ δϕ(x)
. (6.58)

Note that we do not use a functional derivative but rather differentiate, at each point
x , just with respect to the value δϕ(x). In a discretization, the Laplacian will be
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a function of δϕ(x) and of the values at neighboring points. We use a seven-point
stencil

∆δϕ(x)≈
∑3

i=1

�
δϕ(x −∆x e i )+δϕ(x +∆x e i )

�
− 6δϕ(x)

∆x2
, (6.59)

and thus
∂ (∆δϕ(x ))

∂ δϕ(x)
=−

6

∆x2
. (6.60)

In the iteration prescription, Eq. (6.58), it remains to find the derivative of f with
respect to δϕ. Therefore, we have to isolate on the right-hand side of the field equation,
cf. Eq. (5.47), the part that depends on δϕ. We obtain this by defining a field ñν (x),
which specializes to the neutrino number density in the nonrelativistic limit, by

ñν (x)≡
−trT(ν)(x)

mν (ϕ(x))
=
∑

p

1
Æ
(3) g

1

γp

δ3(x − x p ), (6.61)

where we have already described how to calculate it with the help of the effective
particles p in the N -body simulation. With this quantity, the function f becomes

f = a2V,ϕϕ(ϕ̄)δϕ−2

�
ϕ̄′′+ 2

a′

a
ϕ̄′
�
Ψ−a2β(ϕ̄+δϕ)mν (ϕ̄+δϕ)ñν−a2βtrT(ν), (6.62)

allowing for a cosmon-dependent coupling β = β(ϕ). Since ñν does not depend on
δϕ, the derivative of f with respect to δϕ only requires

∂ [β(ϕ̄+δϕ)mν (ϕ̄+δϕ)]

∂ δϕ
=β,ϕ(ϕ)mν (ϕ)−β(ϕ)2 mν(ϕ). (6.63)

We have now collected all inputs for the numerical method. The method realizes the
basic iteration scheme (6.58) in a multigrid approach. This means that the simulation
lattice is complemented by a number of coarse grained lattices, and the solver cleverly
switches between different levels to obtain a robust and efficient calculation.

6.6.2 The constant coupling model

Equipped with a robust and reliable solver for the field equation for δϕ, we can return
to the cosmological simulation for which we showed the results until a = 0.5 in Sec. 6.5.
We have already seen a number of hints leading to the expectation that the onset of
dark energy domination will be — as compared to the homogeneous computation
reviewed in Sec. 5.1 — substantially delayed due to the backreaction effect.

This expectation is drastically confirmed by a full simulation run using the Newton-
Gauß-Seidel multigrid relaxation scheme. We show the most important quantities
characterizing the evolution of the dark energy component in Fig. 6.16. Only as late
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Figure 6.16: The evolution of dark energy in the constant β model until a = 3 as compared to the ho-
mogeneous computation which leads to an accelerated expansion at a < 1 similarly to the
ΛCDM scenario. We show the equation of state parameter wϕ and the dark energy fraction
Ωϕ . The full simulation shows a substantial delay in the onset of dark energy domination.
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6.6 Beyond a = 0.5

as a ≈ 3, the energy fraction Ωϕ reaches values of about 2/3. The homogeneous com-
putation neglecting the backreaction effect has reached this already at a ≈ 1. A related
quantity is the equation of state wϕ , which deviates more significantly from the cos-
mological constant value if the backreaction is taken into account. With the parameter
choices for the growing neutrino quintessence model used here and summarized in
Table 6.1, the expansion dynamics is clearly spoiled. Still, the fact that dark energy
eventually dominates tells us that it should be possible to shift this transition to more
realistic, i. e. earlier, times, by choosing different parameter values.

The backreaction effect responsible for postponing the onset of dark energy domina-
tion has its origin in the neutrino mass suppression within the lumps together with the
effect of relativistic neutrinos, as we have explained in Sec. 6.4. Due to the approximate
mass freezing within lumps, the effective coupling at the background level,

β̄(ϕ̄)≡−
d log m̄ν

d ϕ̄
(6.64)

quantifying the reaction of some suitably averaged neutrinomass m̄ν to the background

cosmon, is substantially suppressed, |β̄(ϕ̄)| ≪ |β|. The mass m̄ν used here can be
defined to include the relativistic effects and also the contribution of the local cos-
mon perturbations, similarly to our definition of the mass Ml of the cosmon-neutrino
lumps, cf. Sec. 5.4.1. This means, the mass m̄ν should properly be defined via the trace
of the average energy-momentum tensor

T̄ µλ ≡ T̄
µλ
(ν)
+
�

T̄
µλ
(ϕ)
−T

µλ
(ϕ̄)

�
(6.65)

containing both the neutrino and the local cosmon contributions (we subtracted the

background cosmon). The suppressed effective background coupling β̄(ϕ̄) will occur
on the right-hand side of the averaged background equation for ϕ̄, Eq. (5.11). Its sup-
pression as compared to the fundamental coupling β translates into a corresponding
suppression of the effective potential barrier needed to stop the slow roll of the cos-
mon.

For a qualitative discussion, we may ignore the details of the definition of β̄(ϕ̄) and
just consider the evolution of the neutrino mass averaged over the effective particles in
the simulation. It is shown in Fig. 6.17, compared to the homogeneous computation
(obtained by evolving the background equations) as well as to the background value
mν (ϕ̄) (obtained in the full simulation). The actual average nicely connects to the result
from the locally spherical method until a ≈ 0.8, shown in Fig. 6.15, and continues with
a slow but stable increase. At a ≈ 3, it reaches similar values as the homogeneous
computation at a = 1. We thus have to wait much longer for the average neutrino
mass — dominated by the neutrinos bound in lumps — to follow the background
cosmon. The reduced stopping power is reflected in the evolution of the background
mass mν (ϕ̄)∝ exp(−βϕ̄). Since ϕ̄ continues to grow, the background mass also grows
drastically. At a = 1, it is a factor of about 104 above the particle average, thereby
being in the 1 keV range, and the factor grows to about 107 at a = 3. The neutrino
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Figure 6.17: The evolution of the average neutrino mass (obtained as a particle average) as compared to
the homogeneous computation and to the background value mν (ϕ̄), which corresponds to
the neutrino mass outside lumps. We show the evolution until a = 3. The mass suppression
within neutrino lumps corresponds to the comparison between the actual average and the
background value. The backreaction effect is quantified by the comparison of the actual
average with the homogeneous computation.

mass outside lumps is enhanced by a large amount; we note that laboratory constraints
would only be reconciled with this scenario if the Solar System was located within a
cosmon-neutrino lump.

The results shown in Fig. 6.17 can also be used to illustrate the nonlinearity of
the cosmon field equation; they underline the extraordinary strength of the Newton-
Gauß-Seidel solver. In our previous results until a = 0.5, the mass suppression within
lumps reached one order of magnitude, cf. Fig. 6.6. Since the mass suppression is
given by the factor exp(−βδϕ), this implied |βδϕ| ≈ log10 ≈ 2; this means, the
field equation was mildly nonlinear, and the Fourier-based fixed-point iteration still
worked. At a = 3, we see an average mass suppression (local mass compared to back-
ground value) of seven orders of magnitude, whence |βδϕ| ≈ 20. The field equation
has become strongly nonlinear, and a fully nonlinear solution method is needed. The
Newton-Gauß-Seidel method passes this test. In this extreme case, also the potential
V (ϕ) becomes nonlinear in δϕ, and the corresponding approximations in the field
equations become inaccurate. Since the cosmological evolution remains well-behaved
and is in accordance with our qualitative expectations, this is, presumably, not a deci-
sive problem. For a quantitatively reliable analysis, the numerically implemented field
equations should be adapted if this strongly nonlinear regime is to be investigated more
closely.

The unrealistic expansion history implied by Fig. 6.16 tells us that a quantitative
comparison of the constant β model with further observational probes must wait.
Before that, a model should be found that reproduces the observed accelerated expan-
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sion of the Universe at the right time. Since the exploration of the parameter space is
beyond the scope of this thesis, we have to leave this task open for future work.

Still, we can contribute to facilitating the task by clarifying analytically how different
parameter choices will, to some approximation, affect the expansion dynamics. For
first results, this can be done in the linear regime where the background equations
decouple from the perturbations, i. e. where the backreaction is negligible. The idea is
to motivate parameter choices where the homogeneous computation predicts a much
earlier onset of dark energy domination. This onset will then be delayed due to the

suppression of the effective background coupling β̄(ϕ̄) as compared to the fundamental
coupling.

We again turn to the homogeneous equations which we have already discussed in
some detail in Sec. 5.1. The onset of dark energy domination in growing neutrino quin-
tessence can be described in two steps. First, the cosmon-neutrino coupling becomes
significant once the neutrinos are nonrelativistic. The energy density in the neutrinos
grows relative to the other components due to the growing mass. Eventually, the cou-
pling term on the right-hand side of the cosmon background equation (5.11) becomes
comparable to the force term ∝ V,ϕ. This stops the slow roll of the cosmon and ap-
proximately fixes the value of the potential. We label this moment of stopping by ast.
Second, the energy density ρϕ is, subsequently, approximately constant and overtakes
the other decaying components. A characteristic moment is the onset of dark energy
domination after equality aeq where ρϕ = ρm .

We shall now estimate the time of stopping ast and the cosmon-matter equality aeq in
the homogeneous approximation as functions of the model parameters. These model
parameters are the (constant) fundamental coupling β, the parameter α in the expo-
nential potential, and the normalization m̄ of the neutrino mass m̄ = mν(ϕ = 0).
According to Eq. (5.14), the effect of the coupling in the equation of the background
cosmon overtakes the potential gradient once

V,ϕ(ϕ̄) =β(ρ̄ν − 3 p̄ν ). (6.66)

We use this as an estimate for the stopping condition. Hence, the equation will give
us ast. Assuming nonrelativistic neutrinos with an average number density n̄ν (known
from the early Universe), we may rewrite the stopping condition to

−αV (ϕ̄)≈βm̄e−βϕ̄ n̄ν . (6.67)

The quantities in this equation have characteristic dependences on the scale factor,
e. g. due to the tracker solution of the cosmon. The energy density of the cosmon
follows that of matter, ρ̄ϕ ∝ a−3 whereby wϕ = 0 and hence ρ̄ϕ = 2V (ϕ̄). This tells

us V (ϕ̄) ∝ a−3. Moreover, the factor of proportionality is determined by the amount
of early dark energy, Ωϕ = ρ̄ϕ/(3H 2) ≈ 3/α2 where the Hubble parameter can be

estimated by the amount of matter, 3H 2 ≈ ρ̄m,0a−3. The mass function on the right-
hand side of the stopping condition can also be related to the cosmon potential, cf.
Eq. (5.16). Finally, the neutrino number density decays as n̄ν = n̄ν,0a−3. Plugging
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everything together, the stopping condition is equivalent to

a
3
β
α

st ≈−
β

α
m̄n̄ν,0

�
3ρ̄m,0

2α2

�β
α−1

V
−β
α

0
. (6.68)

Here, ρ̄m,0 and n̄ν,0 are essentially fixed. The constant V0, i. e. the prefactor of the
potential, is not a true model parameter either. A change would simply correspond to
a shift in the field value ϕ̄ and, therefore, to a change of m̄.

Starting at ast, we may approximate V (ϕ̄)≈ const. and neglect the kinetic energy of
the cosmon. This constant is determined by

V (ϕ̄st)

ρ̄m,0a−3
st

≈Ωϕ ≈
3

α2
(6.69)

obtained by matching to the tracker solution. The moment of equality where ρ̄ϕ ≈
V (ϕ̄st) = ρ̄m , is thus simply

aeq =
3

s
α2

3
ast. (6.70)

These relations will be useful when trying to find regions in the parameter space with
a more realistic expansion history. Of course, the equations rely on the homogeneous
approximation. One would try to obtain a time aeq substantially earlier than the true
onset of dark energy domination in order to compensate the delay due to the backre-
action effect. Alternatively, the above derivation can be refined to include a transition

from the fundamental coupling β to a later effective background coupling β̄(ϕ̄) with
smaller values. The resulting ϕ-dependent coupling will complicate the equations to
some extent and motivate the switch to a semi-analytical approach.

We conclude that the constant β model shows a very strong backreaction effect de-
laying the onset of dark energy domination substantially. This might be compensated
by adequate modifications of the model parameters. Apart from the expansion history,
the constant β model leads to a strong mass suppression within lumps by several or-
ders of magnitude. As a consequence, the neutrino mass outside lumps is large and will
be above laboratory constraints. This would be reconciled if our location was assumed
to lie within a cosmon-neutrino lump.

6.6.3 The varying coupling

The strong impact of the backreaction effect on the expansion of the FLRW back-
ground motivates to consider another class of growing neutrino quintessence models.
When introducing the growing neutrino scenario in Sec. 5.1, we have allowed for both
the case of a constant coupling parameter and for a general ϕ dependence β = β(ϕ).
We identified a conceptually attractive feature of this possibility since it allows for a
natural explanation of large values for β within the mechanism of neutrino mass gen-
eration. Large values of β are a natural consequence of the neutrino mass approaching
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a pole when the cosmon becomes close to a critical value ϕcrit. The coupling parame-
ter β, which is the (negative) logarithmic derivative of the mass, will also increase in
absolute terms. Close to the pole, an approximationβ(ϕ)≈ 1/(ϕ−ϕcrit)may be used.

The conceptual benefit is accompanied by a technical advantage. Since the coupling
becomes arbitrarily strong when ϕ comes very close to ϕcrit, the effective potential felt
by the background cosmon approaches an infinite potential barrier. The stop of the
cosmon’s evolution is guaranteed, and the value of ϕ at which this happens is essentially
fixed: it will be close to ϕcrit. This means that, in principle, we do not need to worry
about the backreaction effect — the varying βmodel will necessarily enter the stage of
accelerated expansion just at the right time.

This comes at a price. When ϕ̄ approaches the critical value, the coupling will
become very strong and accelerate the neutrinos, which — as a consequence — can
become much more relativistic than in the constant β model. The dynamical time
scale shrinks, and the numerical precision, in particular regarding the time steps, has to
be increased substantially. The field equation for δϕ is not only potentially nonlinear
due to the mass suppression; even the function β(ϕ̄+δϕ) alone is strongly nonlinear
in δϕ when ϕ̄ is close to critical. The backreaction effect, although not capable of
spoiling the expansion dynamics, adds to the numerical complications. It suppresses
the effect of the coupling such that the fundamental coupling has to grow to even larger
values in order to compensate the weaker effective coupling. This last effect is the
reason why we cannot show conclusive results in this section. The numerical accuracy
and the number of time steps have still to be increased. Nonetheless, we show a new
physical regime of the growing neutrino quintessence model and results until a ≈ 0.8
obtained by a simulation that remained largely stable and had to be stopped due to
the enormous numerical effort; it will be resumed on larger computational resources.
Although clearly preliminary, we will not hold back the intriguing results here.

In Fig. 6.18, we show the evolution of the coupling parameter β(ϕ̄) in this case,
together with the average neutrino mass. Apart from the altered coupling parameter
and an accordingly changed mass function,

mν(ϕ) =
m̄

ϕcrit−ϕ
, with m̄ = 5× 10−4 eV, (6.71)

we use the parameters listed in Table 6.1, with reduced resolution Nc = 1283 and num-
ber of effective particles, to cope with the increased numerical effort, and with a slightly
earlier initial scale factor aini,ν = 0.15 for the neutrinos. The coupling parameter β(ϕ̄)
shows a violent behavior. Already from the homogeneous computation, we expect
very large values indicating that ϕ̄ comes very close to the critical value. The average
mass exactly mirrors the behavior of β which tells us that there is no mass freezing
and no significant mass suppression in this model. The absence of a significant mass
suppression is not a general consequence of the varying β model. By increasing the
parameter m̄, the oscillations in β are less violent (since then, a smaller β suffices for
an effective potential barrier), and the model becomes more similar to the constant β
case. Still, a mass freezing cannot occur since, even if the effective background coupling
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Figure 6.18: The evolution of the coupling parameter β(ϕ̄) and of the average neutrino mass in the vary-
ing βmodel until a ≈ 0.8 measured in the full simulation and compared to the homogeneous
computation. The oscillations reflect the bouncing of the cosmon against the potential bar-
rier at its critical value. The cosmon comes, accordingly, closer to critical in the nonlinear
code than in the background computation.
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Figure 6.19: The average neutrino equation of state wν in the varying β model as compared to the ho-
mogeneous estimate in which wν quickly approaches the nonrelativistic limit. In the full
simulation, the neutrinos are accelerated at the perturbation level.

β̄(ϕ̄) is suppressed as compared to β, ϕ̄ will come so close to the critical value that,
eventually, the masses within the lumps will follow.

As a striking feature of the results shown in Fig. 6.18, we observe that the simulation
predicts stronger oscillations inβ and in the mass than the homogeneous computation.
This is equivalent to saying that the background cosmon ϕ̄ comes closer to the crit-
ical value. We can explain this by the backreaction effect, which — in this case — is
dominated by the relativistic contribution. We show the equation of state wν of the
neutrinos in Fig. 6.19. The large values of β induce strong accelerations in the neu-
trino perturbations that are not visible in the homogeneous computation. So, this is
a nonlinear effect. The neutrinos reach an equation of state wν ≈ 0.3, close to the
ultrarelativistic limit. At the maxima of this curve, the trace trT(ν) = −ρν (1− 3wν ) is
severely suppressed. This exerts a backreaction onto the background cosmon by virtue
of Eq. (5.11). The impact of the cosmon-neutrino coupling on the background cosmon
ϕ̄ is reduced, and the cosmon is accelerated to larger values by the potential gradi-
ent V,ϕ. As a consequence, it approaches the critical value with a larger ‘momentum’

ϕ̄′ and subsequently comes closer to it, implying even larger values β. This explains
the discrepancy between the homogeneous computation and the full simulation in
Fig. 6.18.

The violent oscillatory behavior of β has a remarkable effect on the neutrino per-
turbations. In fact, it does not allow for the formation of stable lumps. Rather, an
oscillatory structure formation is seen, visualized in Fig. 6.20. For this figure, we
have used a somewhat larger mass parameter m̄ = 10−3 eV where the oscillations are
a bit milder and the short-lived structures can be identified more clearly. We observe
that the mildly nonlinear neutrino structures visible at a = 0.45 are dissipated away
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6 Cosmological simulation

Figure 6.20: Overdensities in the neutrino number density exceeding a threshold of nν ≥ 5n̄ν in the sim-
ulation box around a = 0.5. The side length of the box measures L = 600h−1Mpc. The
structures are only mildly nonlinear with moderate densities. An oscillatory behavior is
observed.
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6.6 Beyond a = 0.5

at a = 0.475 due to the enormous acceleration in the modified Hubble damping term
induced by the large values of β. At a ¦ 0.5, the structures appear again, at roughly
the same locations; this last point reveals that the structures do not entirely disappear
in the intermediate period but have become mere linear overdensities not visible in the
figure. These linear overdensities then grow again quickly once the neutrinos are less
relativistic and again feel the attractive cosmon gradient. We recall that the attractive
cosmon-mediated force is suppressed by powers of the Lorentz factor in the relativistic
regime. As a side remark, we note that the structures in Fig. 6.20 are rather extended as
compared to the simulation volume. There will be numerical artefacts of the imposed
periodic boundary conditions. A more precise analysis should use an increased box
size.

We have found a new physical regime of growing neutrino quintessence where the
picture of a cosmon-neutrino lump fluid does not apply. Although the dynamics of
the cosmon and the cosmological neutrinos is drastic, the absence of large stable lumps
means that the influence on matter perturbations and, in general, on the gravitational
potentials will be small. Even during the short periods in which neutrino structures
appear, their gravitational potentials are weak. This is due to the overdensities being
only at the edge of the nonlinear regime. The density contrasts remain very small
compared to the case of cosmon-neutrino lumps. The effect on observables will thus
remain small.

One can interpolate between the two extreme cases of growing neutrino quintes-
sence, the formation of stable and very massive cosmon-neutrino lumps on the one
side and the violent oscillatory behavior on the other. For example, increasing the
mass parameter m̄ reduces the amplitude of the oscillations in β; when they are mild
enough, stable lumps form again. Alternatively, one can consider less steep functions
β(ϕ). We leave the quantitative analysis to future work.

We conclude our analysis of the varying β model by verifying that the expansion
dynamics is, as expected, realistic. We show the equation of state wϕ and the energy
fraction Ωϕ of dark energy in comparison with the cosmological constant in Fig. 6.21.
Here, the value of ΩΛ was chosen in accordance with the WMAP recommended pa-
rameters (Bennett et al., 2012). We observe a tight agreement between quintessence
and the cosmological constant at the background level.

The varying β model with a small mass parameter m̄ and, consequently, violent os-
cillations in the coupling provides cosmological dynamics very similar to the ΛCDM
scenario, both in the metric perturbations (and consequently also in the matter per-
turbations) and in the FLRW background. Our preliminary results indicate that the
growing neutrino quintessence model can lead to a realistic cosmology. Also the con-
stant β model should be analyzed with different parameters, which might yield a real-
istic expansion as well. The resulting cosmon-neutrino lumps in the constantβmodel
are then expected to provide characteristic observational signatures.
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Figure 6.21: The evolution of dark energy, namely its equation of state parameter wϕ and its energy

fraction Ωϕ , in the varying βmodel until a ≈ 0.8 next to the cosmological constant scenario.
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7 Conclusion

At the end of our journey, it is time to recapitulate what we have learned. The di-
rect and heavily traveled road towards a description of the accelerated expansion of
the Universe is the cosmological constant. It seems technically remarkably simple, but
we have looked behind the scenes. The cosmological constant problem is, indeed, a
hard problem, and the most popular tentative explanation, based upon the anthropic
principle, is by no means simple. It relies on multiverse scenarios such as eternal infla-
tion; and even then, some open issues remain (Chapter 3). This does not invalidate the
cosmological constant as a viable candidate for explaining the onset of an accelerated
expansion. It does, however, provide some strong motivation to look around and to
seriously consider alternatives.

The alternatives are many, and their number is increasing. In an admirable ef-
fort, the variety of models is categorized and a selection is made in review articles
and books (Peebles and Ratra, 2003; Copeland et al., 2006; Amendola and Tsujikawa,
2010). Quite understandably, the confusing situation has provoked a gain in popu-
larity of purely phenomenological, generic parametrizations of dark energy like the
wCDM parametrization. Although convenient, the usefulness of such parametriza-
tions for learning something about better motivated, dynamical models of dark energy
is somewhat doubtful (Sec. 4.1). How can we escape this situation with the cosmolog-
ical constant as the standard scenario on one side and a vast jungle of models on the
other?

As long as observations cannot clearly single out a small number of scenarios, it is
up to us theorists to concentrate on the best motivated ideas and to subordinate others.
The amount of unnatural fine-tuning required to obtain a realistic expansion history
with a recent onset of the accelerated expansion can serve as a clear criterion. Promis-
ing solutions with a conceptual advantage over the cosmological constant scenario are
those that do not require an enormous tuning of dimensionless quantities, which is
often of order ∼ 10−120 (comparable to the fine-tuning of the energy density of the
cosmological constant in natural units). If this is taken seriously, a very large number
of models drop out.

From quintessence models for the accelerated expansion, we would then demand a
physical mechanism by which the coincidence problem is addressed. We have encoun-
tered such a mechanism in the growing neutrino quintessence model (Chapter 5). This
model is not only a proof of concept showing that coupled quintessence models can
address both the cosmological constant and the coincidence problems. It can be for-
mulated consistently within fundamental theories, in particular within the neutrino
mass generation mechanism (Wetterich, 2007). We have taken the point of view, in
this thesis, that the model deserves a careful investigation.
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7 Conclusion

This investigation is more involved than early works expected (Sec. 5.2), and a com-
prehensive approach combining a thorough analysis of highly nonlinear structure for-
mation with the calculation of the expansion of the Universe, linked to one another
by a significant backreaction effect, is necessary (Sec. 5.3). We have taken on this task
and presented a full simulation method in Chapter 6 accounting for nonlinear struc-
ture formation due to gravity and the cosmon-mediated attractive force, relativistic
neutrino velocities, local neutrino mass variations, and the backreaction effect. This
simulation method, as developed by Ayaita et al. (2012b), is a central achievement of
this work. In Sec. 6.6, we have described how to reliably compute the local cosmon
perturbations and thereby the local mass variations in the case of strong mass sup-
pressions within very concentrated cosmon-neutrino lumps whose local cosmon fields
have approximately decoupled from the background. This improvement has enabled
us to show the first quantitative results for growing neutrino quintessence beyond scale
factors a ≈ 0.5 ( i. e. for cosmological redshifts below z ≈ 1).

The most striking feature of the cosmological evolution in the constant coupling
model is the formation of large, stable cosmon-neutrino lumps, cf. Fig. 6.4. We have
established a detailed physical understanding of the resulting effective fluid of interact-
ing, nonrelativistic lumps. It bases upon several crucial insights. We have collected
analytical arguments leading to the expectation that these lumps are, in fact, stabilized
due to the local velocity dispersion of the neutrinos. For spherically symmetric lumps,
there is an angular momentum conservation in analogy to gravitationally bound struc-
tures (Sec. 5.4.4). This replaces earlier ideas of a lump stabilization by virtue of the
degeneracy pressure (Brouzakis et al., 2008). A general argument then predicts that the
cosmon-neutrino lumps are, at sufficiently large distances, pressureless objects and can
be described as effective particles (Sec. 5.4.2). This result is remarkable as the motion of
the neutrinos implies a considerable pressure contribution. Yet, a corresponding nega-
tive pressure contribution from the local cosmon gradients cancels this pressure. This
has led to the notion of cosmon-neutrino lumps that cannot be reduced to their neu-
trino concentrations. The physical situation is similar to a gas of nonrelativistic atoms
where the local pressure induced by the electrons is canceled by an exactly opposite
pressure due to the electromagnetic field around the atoms (Sec. 5.4.1). The derivation
of the equation of motion of cosmon-neutrino lumps motivated the concept of an ef-
fective coupling βl describing how the mass of the lump reacts to the external cosmon
field (Sec. 5.4.3). The effective coupling parameters βl are substantially suppressed as
compared to the fundamental coupling parameter β. This is more pronounced for
larger lumps. The effective couplings also quantify the influence of the lumps on the
external cosmon field. Thereby, both the evolution of the large-scale cosmon pertur-
bations and of the background cosmon can be expressed in terms of cosmon-neutrino
lumps. A simplified but complete description of the cosmological dynamics can be
given (Sec. 5.4.5). For the exemplary fundamental coupling parameter β = −52, a to-
tal number of 103 to 104 stable lumps have formed in the Hubble volume at a ≈ 0.5
reaching 1015 to 1017 solar masses. The quotient βl/β quantifying the suppression of
the effective coupling amounts to about 1/3 for large lumps and approaches 1 for small
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lumps. A more harmless situation is expected for larger couplings where the neutrino
masses and also the resulting lump masses will be smaller.

The cosmon-neutrino lumps are expected to leave clear observational signatures. A
full quantitative analysis in the light of actual observational constraints has to wait
for a systematic exploration of the growing neutrino quintessence parameter space.
Nonetheless, we have had a first look at observable consequences (Sec. 5.5). The possi-
bilities to probe growing neutrino quintessence, in addition to the expansion dynam-
ics, fall into two categories. First, there are direct probes related to the neutrino masses
and their motion on astrophysical and cosmological distances (Sec. 5.5.1). Second,
the cosmon-neutrino lumps are observable via their gravitational potentials. Let us
turn to the first point. For example, a strong hint for varying neutrino masses would
be given by a laboratory detection of a neutrino mass above the cosmological upper
bounds. Currently, the cosmological upper limit for the sum of the neutrino masses is
at 0.23 eV (Ade et al., 2013c), while the laboratory constraints, for a relevant combina-
tion of the mass eigenvalues, is ten times larger, around 2 eV (Beringer et al., 2012). In
the growing neutrino quintessence model, the neutrino masses are small in the early
Universe (e. g. around 10−3 eV), and the cosmological constraints are easily passed.
In the late Universe, however, the neutrino masses grow and typically reach, depend-
ing on the model parameters, values of order 0.1 eV or 1 eV today. Moreover, in the
constant coupling model, there is a strong discrepancy between the neutrino masses
inside cosmon-neutrino lumps and outside. Another possibility to directly probe the
cosmon-neutrino coupling is related to its influence on the neutrino motion. The
cosmon-mediated force implies a deviation from the geodesic path. This could be in-
teresting, in principle, when high-energy neutrinos are detected from, e. g., supernovae
as it was the case for SN1987A. We have estimated the expected delays in the arrival
time of neutrinos within growing neutrino quintessence as compared to uncoupled
neutrinos and found that the delays are suppressed by powers of the Lorentz factor.
For SN1987A and typical values estimated on the grounds of the β =−52 model, the
delay amounts to ∆t ∼ 10−6 sec. It will be even smaller for larger couplings.

The gravitational potentials induced by cosmon-neutrino lumps can be detected in
three different ways (Sec. 5.5.2). First, their growth leaves an imprint on the cosmic
microwave background radiation via the integrated Sachs-Wolfe effect. Second, the
potentials can be observed directly by weak gravitational lensing. Third, they lead to an
enhanced growth of matter perturbations. This growth is first visible in the large-scale
peculiar velocity field and is much less pronounced in the matter density perturbations
(cf. also Sec. 6.5). Currently, weak gravitational lensing is restricted to relatively small
scales, and reasonably accurate and reliable results on large-scale peculiar velocities
have, seemingly, not yet emerged (Sec. 5.5.2). The most favorable way to probe large-
scale potentials would be weak gravitational lensing on large scales. We have had a
detailed look at the proposed 3d weak lensing method (Heavens, 2003) in Chapter 4,
where we have developed appropriate numerical techniques to calculate the 3d weak
lensing Fisher matrix. Weak lensing provides an unbiased and direct estimate of the
gravitational potentials. We have shown the remarkable sensitivity of 3d weak lensing
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7 Conclusion

to slightly enhanced large-scale potentials when applied to data from the future Euclid
survey. In order to allow for a comparison with other studies in the literature, we
have considered the standard wCDM parametrization together with a free sound speed
parameter c2

s
(Sec. 4.1). In the case c2

s
® 1+w, the perturbations in the parametrized

dark energy component lie within the horizon and can be probed by 3d weak lensing
to a remarkable accuracy. The question whether stable cosmon-neutrino lumps exist
is likely to find an ultimate answer with Euclid data.

In the cosmological simulations of growing neutrino quintessence, we have iden-
tified two regimes with qualitatively very different behaviors (Sec. 6.6). First, in the
constant coupling model, stable cosmon-neutrino lumps form. The approximate freez-
ing of neutrino masses within the lumps renders the stopping mechanism less effective.
This means the background cosmon has to grow by a large amount in order to signif-
icantly enhance the masses of the neutrinos, which are — predominantly — located in
lumps. As a consequence, the evolution of the cosmon is less effectively stopped, and
the onset of dark energy domination and of the accelerated expansion is delayed. In
the β = −52 model, it occurs at a scale factor a ≈ 3 (Sec. 6.6.2). The same model pa-
rameters lead, if only the homogeneous evolution equations are used, to an expansion
very similar to the ΛCDM case. Taking account for the backreaction effect is thus a
basic requirement for quantitative investigations of the expansion. It will be a task for
future work to identify parameters in the constant coupling model with an onset of
dark energy domination at the right time.

A second, very different regime of the cosmological evolution has been found for the
varying coupling model (Sec. 6.6.3). There, the oscillations in the coupling parameter
can be so violent that no stable lumps form. Instead, we have observed mildly non-
linear short-lived structures that are repeatedly formed and disrupted in an oscillatory
pattern, cf. Fig. 6.20. In such a case, the large-scale gravitational potentials will remain
small and the evolution of matter perturbations will be very similar to the ΛCDM
case. Also the expansion is quantitatively very close to the cosmological constant sce-
nario. Although the large values of the coupling, which occur during the oscillations,
remain a numerical challenge, the results indicate that the growing neutrino quintes-
sence model allows for a very realistic cosmological evolution with a fair chance of
proving compatible with observational constraints. A definite answer, however, re-
quires further studies. In particular, a systematic exploration of the growing neutrino
quintessence parameter space is in order.

Let us return to the beginning of this chapter: What have we learned? Undoubtedly
a lot about unexpected and remarkable effects that can occur in strongly coupled quin-
tessence models. It has paid off that we have started from a full-fledged theory, which
we formulated in terms of action principles. As a result, we could draw a compre-
hensive, consistent physical picture, and we encountered well-behaved and intriguing
physical phenomena, e. g. the cosmon-neutrino lump fluid. The methods we devel-
oped, both numerically and analytically, are not necessarily restricted to the grow-
ing neutrino quintessence model. And the remarkable effects that we have seen so
clearly in this model can be regarded as rather extreme cases of what is, in principle,
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also included in less strongly coupled theories of quintessence and in modified gravity
theories. As far as observational cosmology is concerned, we are used to shrinking
error bars apparently converging towards the ΛCDM predictions. The possibility of
cosmon-neutrino lumps is an example showing that surprises — not only small devi-
ations — can occur if the accelerated expansion is, indeed, not due to a cosmological
constant. This thesis marks the end of the time when growing neutrino quintessence,
a theoretically well-motivated alternative to the cosmological constant, could not be
understood quantitatively. In other words, it marks the beginning of a new endeavor
that will bring long-awaited answers regarding the compatibility of the model with
observational constraints.
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