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Abstract
Let K/Q, be a finite Galois extension and D a (¢, I')-module over the Robba-Ring
BIig  and Ngr(D) its associated p-adic differential equation.

In the first part we give a generalization of the Bloch-Kato exponential map for
D using continuous Galois-cohomology groups H'(Gg, W (D)) for the B-pair W(D)
associated to D. We construct a big exponential map Qp, (h € IN) for cyclotomic
extensions of K for D in the style of Perrin-Riou extending the techniques of Berger,
which interpolates the generalized Bloch-Kato exponential maps on the finite levels.

In the second part we extend two definitions for pairings on D and its dual
D*(1) (resp. on Nggr(D) and its dual Ngr(D*(1))) and prove a generalization of the
reciprocity law, which relates these pairings under the big exponential map.

Finally, we give some results on the determinant associated to 2p ;, and formulate
an integral version of a determinant conjecture in the semistable case. Further, we
define i-Selmer groups and show under certain hypothesis a torsion property.

Zusammenfassung
Sei K/Q), eine endliche Galoissche Erweiterung und D ein (¢, I')-Modul iiber BL& K
sowie Ngr(D) die dazu assoziierte p-adische Differentialgleichung.

Im ersten Abschnitt definieren wir eine Verallgemeinerung der Bloch-Kato Expo-
nentialabbildung fiir D, welche stetige Galois-Kohomologiegruppen H'(G g, W (D)),
die fiir das B-Paar W (D), welches zu D assoziiert ist, verwendet. Wir konstruieren
eine grosse Exponentialabbildung Qp (h € IN) fiir die zyklotomische Erweiterung
von K fiir D im Stil von Perrin-Riou, wobei wir die Techniken von Berger verwenden,
und zeigen, dass diese die verallgemeinerten Bloch-Kato Exponentialabbildungen auf
allen endlichen Leveln interpoliert.

Im zweiten Abschnitt erweitern wir zwei Definitionen fiir Paarungen auf D und
seinem Dual D*(1) (bzw. auf Nggr (D) und seinem Dual Ngg(D*(1))) und zeigen ein
verallgemeinertes Reziprozitatgesetz, welches diese Paarungen mit Hilfe der grossen
Exponentialabbildungen verbindet.

Schliesslich zeigen wir einige Ergebnisse hinsichtlich der Determinante assozi-
iert zu Qpp, und formulieren eine ganze Version einer Determinantenvermutung
im semistabilen Fall. Letzlich definieren wir gewisse i-Selmer-Gruppen und zeigen
under bestimmten Vorraussetzungen eine Torsionseigenschaft.
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Chapter 1

Introduction

In her seminal paper “Théorie d’Iwasawa des représentations p-adiques sur un corps local”
([33]) Perrin-Riou paved the way for a framework which should make it possible, by starting
with a (crystalline) p-adic representation V' and an Euler-system, to produce p-adic L-
functions. We recall some notation. Let K be a finite extension of Q, and denote by F
the biggest subextension of K that is unramified over Q). Let 11,» denote the roots of unity
in a fixed algebraic closure K of K and set K,, = K () and Ko = U, Kn. As usual G
denotes the absolute Galois group of K, and we set Hx = Gal(K /Ky) and ' = Gk /Hp,
so that 'k = Gal(Kw/K) C Z,;. One has 'y = Ak X I, where Iy = Z,,, and Ag is
the torsion subgroup of I'. One defines the Iwasawa algebra A = Z,[[I'x]] which may be
identified with Z,[Ak][[T]] for a variable T Perrin-Riou considers a distribution algebra
H(I'k) that contains A and may be described as a subalgebra of Qp[Ax][[T]] such that
the power series satisfy a certain “growth” condition.

For a representation V', we may of course consider continuous cohomology H*(K, V). It
is customary to set H{ (K, V) = (lim HY(K,,T))®z, Qp, where the transition morphisms
are given by corestriction, and one checks that this is a finitely generated Aq, = A®z, Q,-
module.

By the theory of Fontaine one has certain Qp-algebras Beis, Bst and Bgr that come
equipped with an action of Gx. One may then associate to V finite dimensional F-vector
spaces

Deiis(V) = (Beris ®q, V)¥ € Dgt(V) = (By ®q, V)

resp. a finite dimensional K-vector space Dar(V) = (Bar ®q, V)% with Dg (V) C
Dgr(V) where the first two come equipped with an action of a Frobenius ¢ and a nilpotent
monodromy operator N, and the third one is equipped with a filtration coming from a
filtration Fil'Bqg on Bgg.
Bloch and Kato constructed, starting with the so-called “fundamental exact sequence”
of G g-modules
0—V — B?. ®q, V — Bar/Fil’Bar ®q, V — 0, (1.1)

cris

the exponential map exp : Dgr(V) — H'(K,V), which is nothing but the transition
morphism arising from the long exact sequence of continuous Galois cohomology for (1.1).

9



10 CHAPTER 1. INTRODUCTION

They showed that there exists a deep connection between this map and the special values
of the complex L-function attached to V.

Perrin-Riou set out to adapt this construction to the theory of p-adic L-functions.
Explicitly, for K/Q, unramified and V' crystalline (i.e. dimp Deis(V) = dimg, V') she
constructed a map €y, that fits into the following diagram

H(xc) ©q, Derss(V (7)) 2L H(T ) o HL (K, V(5))/V ()7 (12)
J/Hn'j ) (h—l)!eprnn’Vu) 1 l ’ .
Ky @ Dy(V(5)) HY (K, V()

for h > 0, j > 0 and all n, where =, ; and pr, are certain canonical projections. The
point here is that €y interpolates infinitely many Bloch-Kato exponential maps on the
finite levels.

In [36], Perrin-Riou extended her construction to semi-stable representations over un-
ramified extensions. She gave a definition of a free H(I'x)-module Dy, 4(V) and a map

Qup : Doog(V) — H(Tq,) @a Hiy(K,V)/ VK

that has a similar interpolation property as (1.2) for j > 0 and n > 0.

It was Berger who gave an explicit description of a “big exponential map” for crystalline
representations using these modules not only on the finite level, but on the whole of
H(T k) ®@Deris(V) and H} (K, V). His fundamental insight is the comparison isomorphism

B;rog K[l/t] ®F DSt(V) = BIrog K[l/t] ®BT. Dilg(v)
) ’ rig, K
(cf. Theorem 2.4.5). Let us briefly explain some notation. Basically, if we recall the
definition of H(I'k), one has H(I'x) = Qp[Ax] ® BIg,Q,;? where B:gngp corresponds to
certain power series in Qp[[T]] that satisfy a growth condition. Now one may think of
Byt as By = Bis[log T, where the series log T' is a transcendent element for the fraction
field of certain analytic functions. Since one needs to employ the differential operator

0= 01+ T)%7 one sees that in the semi-stable case denominators 1/T"% should occur

since dlogT = 1+ 1/T. Hence, one may define BLg i also referred to as the Robba
ring, as Laurent-series that satisfy certain growth conditions in both directions. One sets
BlTog’K = BIig’K[log T). Finally, the element t € B;E&Qp is defined as log(1+7') and is often
referred to as the “period”. All these rings come equipped with actions of I'k, a Frobenius
, which induces a left-inverse 1, and a monodromy operator N. We remark that there

exists a bigger ring B! equipped with an action of G such that BLg K= (BT. YK, One

rig rig
sets Dlig(V) = (Biig ®q, V)H%, a so-called (p,T')-module, i.c., a finitely generated free
Biig x-module that comes equipped with commuting actions of a Frobenius ¢ and I'k.

The important part of the above comparison is that if V' is a positive (cf. section 2.2.2)
semi-stable representation then one has an inclusion

V)

Dst(v) = (Bfog,K ®B1ig x DIig(v))FK - Birog,K ®Blrrig % Diig(
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that is compatible with the actions of ¢ and N.
Returning to the crystalline case one obtains an inclusion

(thBLg,K ® Deris(V))¥=" C DIig,K(V)w:1
for h large enough. By the work of Fontaine, Cherbonnier and Colmez one has the natural
identification of H(I'k)-modules

DI

LY = (k) @p Hiy (K, V).

Additionally, one has (under certain assumptions: cf. Proposition 3.3.2)

(¢ = DBy ¢ ® Daris (V(5))Y=" = (B )= © Daris (V()))

and

(p = DD, (V(4)*=" = H(Tq,) @ Hiy (K, V(4))/V(j) 5.

Hence, one may hope to give a description of 2y (;) 5 in terms of these modules. Berger
considered in the crystalline case the element Vj_1 o ... 0 Vg, where V; € H(I'x) is
Perrin-Riou’s differential operator, and showed that one obtains a map

T

Vi10...0 Vo (p— 1)(Bly s & Deris(V(7)*=" — (p — )DL (V(j))*~*

that actually coincides with Perrin-Riou’s Qy(;y;, (see [5], Theorem II.13).

Since one has an embedding of the category of p-adic representations into the category
of all (¢, I')-modules over BL o i Via the functor Dy, (1), one might be inclined to generalize
the framework of exponential maps to this setting. We recall the basic definitions in chap-
ter two. If D is a (p, 'k )-module over BL& x> one also has a notion of Galois cohomology
groups H'(K, D), and one may consider projection maps h' : D¥=! — HY(K, D), so
that once again D¥=! takes the role of the Iwasawa cohomology. Similarly, one may define
finite-dimensional vector spaces D¢yis(D), Dgi (D) and Dgr(D), generalized Bloch-Kato
exponential maps

exp : Dgr(D) — H'(K, D),
and develop the notion of a (¢, I')-module being crystalline, semi-stable or de Rham. We
define a H(I'k)-module Dy 4(D) and show that there exists a map for h > 0
Qpp:=Vih10...0Vg: Dy y(D) — (p — 1)D¥=1.

The main result of the third chapter is then the following interpolation property (see
Theorem 3.2.21 for the precise statement):

Theorem. Let D be a de Rham (¢, 'x)-module over BLgK, g € Dy y(D) and G a
“complete solution” (cf. Definition 3.2.11) for g in L and let A > 0. Then for k > 1 —h
and n > 1 one has

h}("“D(k) (Vh_l o...0 Vo(g) ® ek)

. . 1 _
=D (Kn)(_l)h-i-k 1(h +1— k‘)!mCOI’Ln/Kn eXmeD(k)(.:.mk(G)).
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Now if one is interested in the construction of p-adic L-functions, one needs to construct
a certain “inverse” of the map €2;. This construction depends on the so-called reciprocity
law. The general idea behind a reciprocity law (in our setting) for a (¢,I')-module D is
to construct a pairing

[, Jiw,D : Doog(D) X Do ¢(D*(1)) — Frac(H(I'k))
“coming from convolution of measures” and a pairing
(, Jw,p s (p = DD % (o = 1)D*(1))¥™" — H(Tk)
“coming from cohomology” such that one has a relation of the form

<QD,h(@/)7 QD*(l),l—h(“))Iw,D = [yyv]lw,D

for y € Do ¢(D), v € Do ¢(D*(1)), modulo some conditions.
The main result of the fourth chapter is then (see Theorem 4.5.1):

Theorem. Assume K/Q, is unramified and let D be a (¢, 'k )-module over Biig - As-
sume that D is either semi-stable and étale or crystalline (cf. Definition 2.6.14). Let
Yy € Do g(D), v € Do ¢(D*(1)). Then for every h > 1 one has

h+1[

(Qun(y),o-1 - Quey1-n(V))w,p = (=1)"" [y, L(v) 1w, D-

We remark that it is also possible to give a proof in the 2-dimensional semistable case
withouth the étaleness assumption.

In chapter five we give some applications and examples concerning the exponential
map and the reciprocity law. Namely, we consider the case of a two-dimensional p-adic
representation V' attached to an ordinary semi-stable elliptic curve E. We state a conjec-
ture concerning the determinant of the map €2;, which up until now was only formulated
in the crystalline case, and prove it in the above example.

We mention that it is certainly important to consider the above constructions not
only for (¢,I')-modules coming from p-adic representations: suppose for example that
D = Diig(V) for a representation V. Then, Kedlaya’s slope filtration theorem ensures
that there exists a filtration

0=Dyc...cD,.=D

of (p,I")-submodules such that the quotients D;/D;_; satisfy a certain condition on the
slope. However, the single D; need not come from a p-adic representation. By the method
of dévissage, which we already employ here in proofs, one may then infer statements for
Dlig(V) from the successive steps of the above filtration.

We remark that during this work learned of the results of Kentaro Nakamura, who
gave a similar description of a “big exponential map” for (¢, I')-modules. However our
definitions and proofs are different and use the more general notion of the H(I'x )-modules
Doe(D), Do, f(D) and Dy 4(D) which are especially important if one wants to consider

reciprocity laws and the connection of exponential maps with p-adic L-functions.



Chapter 2

Rings and Modules

2.1 General notations

The general strategy of Fontaine is to study p-adic representations by certain admissibility
conditions. Recall that if V' is a finite dimensional Q,-vectorspace endowed with a con-
tinuous action of a topological group G and if B is a topological Q,-algebra which also
carries an action of G, then Fontaine considers the B“-modules Dp(V) = (B ®q, V).
It inherits actions from B and V. One says that V' is B-admissible if B ®q, V = BY as
G-modules, i.e., B is "big enough” so that it trivializes the action of G.

Let k be a perfect field of characteristic p. We denote by (W (k) the ring of Witt-
vectors for k and set F' = Quot(W (k)). Let K/F be a totally ramified extension of F'. Fix

an algebraic closure F of F and denote by C, = F' the p-adic completion of this closure.
This is then again algebraically closed by Krasners Lemma. Let Gx = Gal(K/K) be
the group of automorphisms of K which fix K. By continuity these are also the K-linear
automorphisms of C,. Let Og¢, be the ring of integers of C, and mg, its maximal ideal.
We have O¢,/m¢, = k.

We denote by fp» the group of roots of unity of p"-order in C, and set K,, = K (pn).
Further we pose Ko = J,, K. We fix once and for all a compatible set of primitive p-th
roots of unity {(y»}n>0 such that ¢; =1, §, # 1, anﬂ = (pn. One has the cyclotomic

character x : Gx — Z, which is defined by the formula g(¢yn) = C;f,gg ) for n > 1 and
g € Gg.We set Hg = ker(y) and I'x = G /H, which is the Galois group of K,/K. We
know that this can also be identified via the cyclotomic character with an open subgroup
of Z,;.

When we start with a finite extension K/Q, we denote by F' = Kj the maximal un-
ramified extension of Q, in K. Further denote by K, the biggest unramified subextension
of Kpin K.

By a p-adic representation we mean a finite dimensional Q,-vectorspace endowed with
a continuous and linear action of Gx. A Z,-representation is a free Z,-module of finite
rank equipped with a linear and continuous action of Gx. It is known that if V' is a p-adic
representation then there exists a Z,-lattice 7' in V' that is stable under the action of Gk.

If C*(—) denotes complex of R-modules for some commutative ring (for example,

13



14 CHAPTER 2. RINGS AND MODULES

C*(Gg,M)) R we denote as usual RI'(—) the complex which we regard as an object in
the derived category of R-modules.

2.2 The rings of Fontaine

We recall certain rings constructed by Fontaine, see for instance [21].

2.2.1 Rings of characteristic p

Let
E= lim C, = (2,20, )] 20 e €, (20D = 2O w3},

=P

Similarly, let

Et = lim O, = {(@©,20,.. )] 20 € Og,, (@) = 20 vi}
x—xP

= {(xn)nG]N‘ Tn € Ocp/pOCp7 fo_l = Tn Vn}

This is the set of elements of E such that z(0) € Oc¢,- One can define multiplication and

addition on these sets in the following way. If z = (z(?) and y = (y) are in E then we
define

(4 y)@ = lim (20 + y(i+j))pj
J]—00
(- y)® = 2Dy@,

E* is a valuation ring with valuation

and maximal ideal
mg, ={z € E¥| vp(z) > 0}.

One can show that E is the fraction field of ET.
With the choices of the primitive p™-th roots of unity one defines the element

e=(1,¢,...) € ET.

Weset T=¢c—1¢€ ET. One has the following commuting actions on f], which restrict
to actions of ET:

a) A Frobenius ¢, given by o((z(™)) = ((z(™)P),

b) The action of Ggq,, given by g((z™)) = ((g=™)) for g € Gq,-
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For K/Q, finite we set
Ef = {(zn) € Eﬂ xn € Ok, POk, ¥Yn > n(K)},

where n(K) is some constant depending on K which arises in the fields of norm theory
of Fontaine-Wintenberger (cf. [20]). We put Ex = E}[1/7]. One can show that that

Er = #((7)) and one defines E as the seperable closure of Ep in E. Let E = ENE* and
mg = ENmg. One can show that Ex = E% and one knows that Gal(E/Eg) = H.
We need another description of Ex. From [12], Proposition I.1.1 we know that we

have an isomorphism t¢x : @10Kn >~ E;. (here the limit is taken with respect to the
(n)

norms). Let m € N and w,, € K, be a uniformizer and set wy’ = Nk, /K, (wm) if

n < mand w{ = 0if n >m+ 1. One sees that the sequence ((w,(,?))nem)mem has a limit
w= (w(”))nem in @OKn such that w( is a uniformizer in K, if n is big enough. Hence,

1 _
(kg (w)) = mvE(ﬂ), (2.1)

which shows that E is a finite extension of Ek, of degree [Ex : Ex,] = [K« : Ko, ] and
that the element Tx = tx(w) is a uniformizer of Ff.
2.2.2 Rings of characteristic 0
Let W be the Witt functor. We set
At =W(E"), A=W(E)=WFrac(E")), B*=A"1/p.

Every z € BT can be written as

o0

v= > P,

k>—o00

where zj, € Et and [x] is its Teichmiiller representative. The commuting actions of ¢
and Gq, on E* extend to an action of Bt (and A, B, ...):

a) ‘P(Zk»—oop [z]) = Zk>>—oop [ka
b) (RS oo P¥lak]) = 0% oo PFlg(a)] for g € G,

We have a ring homomorphism

0:BT — C,
> sl Y o)
k>—o0 k>—o00

Weset 7 =[7] =[e] -1, 7, = [e? "] =1, w = 7/m and q = p(w) = ¢(7)/7. Then ker(f)
is a principal ideal generated by w.
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The ring B is defined by completing B with the ker(#)-adic topology, i.e.,

B = lim B /(ker(6)").

n>0

This gives a complete discrete valuation ring with maximal ideal ker(f). One can show
that log([g]) converges in By, and we denote this element by ¢. It is a generator of the
maximal ideal, hence we can form the field Bqr = B[1/t]. This field is equipped with
an action of Ggq, and a canonical filtration defined by Fil'(Bqr) = t'By, i € Z.

We say that a p-adic representation V of Gg is de Rham if it is Bgr-admissible. We
put
Dar(V) = (Bar ©q, V), Fil'Dar(V)(Fil' Ba ©q, V)"

From Fontaines theory it is known that Dgg (V') is finite dimensional K-vectorspace which
we endow with the above (exhaustive, seperated and decreasing) filtration.

We say that a p-adic representation V is Hodge-Tate with Hodge-Tate weights
hi,...,hq if one has a decomposition C,®q, V = @?:1 Cp(h;). We say that V is positive
if its Hodge-Tate weights are negative. It is known that every de Rham representation
is Hodge-Tate and that the Hodge-Tate weights are those integers h such that there is a
jump in the filtration at —h, i.e. Fil7"Dgr(V) # Fil 7" 'Dyr (V). With this convention
the representation Q(1) is of weight 1.

Let A&p = Zy[[7]] = A*, where the second arrow is an inclusion since A is complete,
which is stable under ¢ and Ggq,. Let

Aq, = Z[[]|[1/] = {Z aj"

ap € Zp, lim wvy(ag) = +oo} A,
k——o0
keZ

and set Bq, = AQp[l /p]. Then Bq, is a field, complete for the p-adic valuation with
ring of integers Aq, and residue field Eq,. Let now B = UK/Qﬁnite Bg in B, which is a

separable closure of Bg,. We define A = BN K, At = ANAT. These rings still have the
commuting action of ¢ and Gq,. We put Ay = AMK and Bg = Ag[1/p]. By Hensel’s
Lemma, there exists a unique lift 75 € A such that the reduction mod p is equal to T,
viewed as an element in A.

It is known that one may write

3
L

A= ' (1+7)'p(A), (2.2)

@
Il
=)

see for instance [15], Lemma 5.3.1. A similar decomposition holds for Ax,Ex, Ex (with
possibly 7 in place of 7), so that one may define the (continuous) operator ¢ by

p—1
thK—>AK, x:Z(1+7T)ig0(a:i)»—>xg
1=0
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which satisfies ¢ o ¢ = id such that 1 is surjective and commutes with the action of G
An equivalent definition of ¥ on B is given by the formula

lx) = ; o (Trp(m) (@)

for x € B.

Definition 2.2.1. a) A (¢,I'x)-module D over A is a free, finitely generated A k-
module with a semi-linear continuous map ¢p (i.e. pp(Ax) = o(N)ep(z) for A €
K,z € D) and a continuous action of I'x which commutes with ¢p.

b) A (¢,I')-module D over B is a finite dimensional B g-vectorspace with a semi-
linear map ¢p and commuting continuous action of I'k.

¢) (p,I')-module D over Ak is étale (or of slope 0) if pp(D) generates D as an
A g-module. Analoguously, a (¢, 'k )-module over By is étale if it has a A g-lattice
which is étale.

wp will henceforth simply be denoted by .

Remark 2.2.2. If D is an étale (¢, ' )-module over A i the operator ¢ extends uniquely
to an operator ¢ : D — D such that ¥ (ap(d)) = ¥(a)d, ¥(e(a)d) = ap(d) for all
a € Ak, d € D and such that v commutes with the action of I'k.

The following theorem is due to Fontaine, cf. [18]:

Theorem 2.2.3. The functor V +— Dg (V) is an equivalence of tensor categories from the
category of Z,- (resp. Q,-)representations of Gk to the category of étale (p, 'k )-modules
over Ak (resp. Bg). The inverse functor is given by D +— V(D) = (A ®a, D)?=! (resp.
D~ V(D) = (B®gs, D).

2.3 The rings of Cherbonnier and Colmez

Colmez has defined the ring

w™ ~
Bl = {Z an—| an € B*, a, — 0 for n — oo}
n>0 p
which is "very close” to B . We set Byax = B, [1/t] . There is a canonical injection of
Biax into Bgr and it is therefore equipped with a canonical filtration. There are actions
of ¢ and Gq, on Byax, which extend the actions on A* — AT. Colmez puts

o0
n=0
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and ﬁrig =BT

1rig[l /t]. We remark that one has

ﬁrig = ﬂ (Pn(Bcris)
n=0

and hence in particular

B! — B¥=l — ¥l

rig max cris

We say that a representation is crystalline if it is Byax-admissible, which is the same as
asking that it be B;Eg[l /t]-admissible. We put

Deris (V) = (Buax ®q, V)% = (B [1/t] ®q, V)°¥.

This is a Ky-vectorspace of dimension d, equipped with a filtration induced by B4qgr and an
action of Frobenius induced by Bpax. If V' is crystalline we have Dgr (V) = K ® gy Deris(V)
which shows that a crystalline representation is also de Rham.

Following Berger the series log(7(?)) + log(7/7()), after a choice of log p, converges in

B:{R, and we denote the limit by log[w]. This element is transcendent over Frac(Bi . ),
and we set By = Bpax[log[7]] and Bfgg = B;qg[log[ﬁ]]. We say that a representation is

semistable if it is Bg-admissible, which is the same as asking it being ]A?;l'gg[l /t]-admissible.
Similarly, as in the crystalline case we put

Dy (V) = (By ®q, V)% = (B

1/t ®q, V)X,

Again this is a Ky-vectorspace of dimension d, equipped with a filtration and an action

of Frobenius induced by Bg. As before we have in this case Dggr(V) = K ®k, Dy (V).
Additionally one can define the monodromy operator N = —d/dlog[7] on Bg which
induces a nilpotent endomorphism on D (V) and satisfies the relation Ny = ppN. We
also make use of the finite dimensional Ko-vectorrspace D (V) = (B}, ®q, V)°X.

log
Recall that elements € B may be written in the form z = >, p"[z}] with
i € E. For r > 0 we set

B = {:v cB ’ lim vg(zk)+ - +oo} .
k—+o0 p—1

(0)

We note that z as above converges in Bgr if and only if ), pkxk converges in C,.
For n > 0 we set once and for all

T'n = (p - 1)pn—1‘

Colmez and Cherbonnier showed that for n big enough such that r,, > r there is an
injection
=@ "B — B, Y Pl — Y Pl ]
k>—o00 k>—oc0
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We put B = Bl Let Bt" = BNBI, Bt =, B!, Bf = (J,5, B"". Let AT be
the elements of BT N A such that vg(z) + pzflk‘ >0 for all k> 0. Let AT" = ATrn A,
At = AT N A, At = BTN A. Let B}(’" = (BT:T)HK’ AJ}’{T = (AT,T)HK, ]A_D;}v{r = (]~3Jrﬂ’)1‘hr<7

A} = (At

Proposition 2.3.1. Let r > ), p = p~VexT and

A[Ig’l[(:n) = {Z anz"| an € OKé’nEIEloo‘a”’pn = O} ,

nez
By = AL(@)[1/p) € Kp[[x,1/a]).

Then maps A[I'?’l[(x) — AJ}’{, B%’l[(a:) — B}’(T, induced by z + 7, are isomorphisms of
topological rings.

Proof. See [4], Proposition 1.4. O

Proposition 2.3.2. If L/K be a finite extension then BTL is a finite field extension of BJ}(
of degree [Loo : Koo = [Hi : Hz], and if L/K is Galois, then the same holds for B]LL/B]L ,
which then has galois group Gal(Loo/K o).

Proof. See [12], Proposition 11.4.1. O

Definition 2.3.3. a) A (¢,I'x)-module D over BTK is a free, finitely generated B];(—
module with a semi-linear (i.e. p(Az) = o(N)p(x) for A € K, x € D) continuous map
 and a continuous action of 'k which commutes with ¢.

b) (¢,I'k)-module D over B;( is étale (or of slope 0) if there exists a free AE(-
submodule T" of D which is stable under the actions of ¢ and ' such that B}( Q@ pt
K

T=D.

For a p-adic representation let us set DJ}((V) = (BT®q, V)#x and DI"(V) = (BI"®q,
V)H&  We say that a p-adic representation is overconvergent if Dy (V) has a basis over
By consisting of elements in DJ}((V) = (B ®q, V)#x. The main result of [12] is then:

Theorem 2.3.4. Every p-adic representation V' of G is overconvergent, i.e., there exists
an r = r(V) such that D(V) = Bg Opir D}’{(V). Hence, the functor V D}{(V) is
an equivalence from the category of p-adic representations of Gx to the category of étale
(¢, Tk )-modules.

2.4 The rings of Berger

If A is a ring which is complete for the p-adic topology and X,Y are indeterminantes we
let
A{X,Y} = lim A[X, Y] /p" A[X, Y],
n
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that is, A{X,Y} is the p-adic completion of A[X,Y]. Every element of A{X,Y} can
be written as ), >0 ij X 'YJ where a;; is a sequence in A tending to 0 in the p-adic
topology. We let 7, s € IN[1/p] U {+00} such that r < s. By definition one has (in Fr(B))
p/[7]"°° = 1/[x] and [7]">°/p = 0. Let

K[r;s] = A+{[£)]T7 [728}
—A+{X Yi/(['X —p,pY — [7°, XY — [7]°7")
ﬁ[r;s} = ['r;s}[l/p]'

If I is any interval of R U {+oc} we let

It is clear that if I C .J are two closed intervals then B g C B 7. One has a p-adic valuation
Vi on B 1 defined by the condition Vi(x) = 0 if and only if = € ;‘;1 \ p.&l and such that
the image of V7 is Z. With this valuation B 1 becomes a p-adic Banach space.

The action of Gp on AT extends to AT[p/[7]", [7]*/p] and by continunity further
extends to A 7 and B 1- The Frobenius ¢ extends to a morphism

p W”s]

~ [ﬁ]s ~
o A S A

@ p
and finally to a map ¢ : A 7= ;&p] for every I. We recall some rings with this notation,
see [4].

Example 2.4.1. a) Bf_ = ﬁ[o,ro],

b) BIg = ]§[0,+oo[a

¢) AT = A poe)s AT = App i),

d) A= A[-i—oo,—‘roo}) A= A[+oo,+oo]7
e) Abr = A[r,—koo]a B = ]N3[r,+oo}~

Berger defines

BIl’g - B["',—l-oo[’

By, = UBl

r>0

Bilg is endowed with the Frechet topology defined by the family of valuations V7 for closed

subsets I C [r,+oo[. One can define AL’g as the ring of integers of Bil’g with respect to
the valuation Vf,.,;. We put A =U,>o AL;

One defines BJr o i 1O be the completion of B with respect to the Fréchet topology
induced by the V7. A more hands-on description is given by the next Proposition:



2.4. THE RINGS OF BERGER 21

Proposition 2.4.2. Let 7 > 7,(k) and p = ptexr

8[1?1[(1') = {Z an®"| an € K()’ngliloo lanp|r™ =0, ¥r € [p, 1[} ,

neZ

Then the map B (x) — B! . induced by x — 7g, is an isomorphism of topological

rig, K’
rings.
Proof. See [4], Proposition 2.31. O

Let f € Brng be represented by an element f(mz) = > .z anmk and Ix, =
[p~1/ex7 1. We define
1f1lp = sup [an|p".
n

From the above discussions it is clear that a sequence (fy,)new converges to an element
fe B;rl’g 5 if and only if lim, o || fn — f||, = 0 for all p € Ig,.

If we put BLg = BLg,F ®B} B' then

Lemma 2.4.3. a) Bing Biig,F ®B} B];(

b) BIlg = BIlg K ®B;< BT

T VHx _ Rt
) (Brlg) K Brlg,

Proof. See [4], section 3.4. O

Berger has shown the existence of unique map log : At — ﬁiig [X] such that log([z]) =
log[z], log(p) = 0 and log(zy) = log( ) + log(y). Hence one defines logm := log(7) and

sets Bfog Bng[log 7, Bfog = Bng[log 7] and Bfog K = Biig xlogm]. One defines a
monodromy operator N on BITOg by extending N log 7 := —1 in the usual way.

As before, for a p-adic representation V' we set DL&K(V) (B:rrlg x ®q, V)7K. Fur-
thermore, let us define

Df

log, K (V) (BT

H H
log ®Qp V) K’ D+ = (B?i_g,K ®QP V) "

rlg:

Most of the time we shall simply drop the K from the notation. We collect some more
facts from [4], [6], which cover the étale case. Later we shall generalize these to arbitrary
(¢, T' g )-modules.

Lemma 2.4.4. The following maps are surjective with kernel Q,:

1—¢:Bl. 5 BL 1-—¢:Bl" BT

_ ,-RT Rt _»v:-BT +
1 SOB —>B 5 1 SOB _>B rig rig’ rig rg

rig rig’

Theorem 2.4.5. Let V be a p-adic representation.
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a) If V is positive then Dy (V) = (B]

he ©Q, V)9 and Des(V) = (B!

G
rig ®Qp V) e

b) If V is semistable then Bf . [1/t] @5 DN(V) =B  [1/f] ©F Dat(V).
b} K b

c) If V' is crystalline then BiigK[l/t] Dpi. DI(V) = BLgK[l/t] ®F Deris(V).
All morphisms are compatible with the actions of Gg, N, .
Proposition 2.4.6. Let h > 1 be such that Fil™"Dg (V) = Dg (V).

a) If V is semistable and y € B;rog # @ Dg(V), then thy € DlTog(V)-

b) If V is crystalline and y € BL&F ®F Deris(V), then thy € Diig(v)'

c) If V is crystalline and y € Bjig’F ®F Dais(V), then thy € Djig(V).
Proof. The proof is the same as [6], II.3. We shall sketch it in the semistable case. Since
D¢ (V(—h)) has negative Hodge-Tate weights, we have

D (V(~h)) C Bl @1 DIV (=h)).

Since Dg;(V(—h)) = t"Dg (V) ® e_j, we have t"Dg (V) C BITOg K Opt D'(V), whence the
’ K
claim. O

2.5 The ring B!

rig
Let us collect some facts about p-modules over ]NBIig.
Definition 2.5.1. Let h > 1 and a € Z. The elementary ¢-module M, ), is the ¢-
module over Biig with basis eg,...,ep—1 and (eg) = e1,...,p(ep—2) = ep_1,p(ep—1) =

pep.

Proposition 2.5.2. If M is a ¢-module over ]A?;Lg then there exist integers a;, h; such that
M = ; Mo, n,-

Proof. See [24], Theorem 4.5.7. O

Definition 2.5.3. Let M be a p-module over ﬁiig' If M = M, j is elementary one defines
the slope of M as u(M) = a/h and one says that M is pure of this slope. In general if
M = @ M,, , one define u(M) = (Mg, p,), so that p is compatible with short exact
sequences.

Let D now be a (¢,I')-module over BLg,K' One sets B, := (]~3Lg[1/t])9":1. From [7],
Proposition 2.2.6, we know that
a) W,(D) := (B [1/t] ®gt  D)#=!is a free Be-module of rank d which inherits an

ne rig, K
action of G,
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b) Wii(D) :=Bj®

of rank d which inherits an action of G.

. Bl D™ does not depend on n > 0 and is a free B(J{R—module
nHPrig, K

With this in mind, Berger defined:

Definition 2.5.4. A tuple W = (W, W;R), where W, is a free B.-module of finite rank
equipped with an semi-linear action of G and W(;LR is a BIR—lattice in Bgr ®B, We that
is stable under the action of G, is called a B-pair.

From [7], Proposition 2.2.6 it follows that the tuple W(D) = (W,(D), Wi, (D)) ac-

tually is a B-pair. Furthermore, Berger proved:

Theorem 2.5.5. The functor D — W(D) gives rise to an equivalence of categories
between the category of (¢, I'k)-modules over BLg i and the category of B-pairs.

One knows (cf. [8], section 2.2.) how to construct a functor D from the category

. =+ . .
of B-pairs to the category of (¢, Gx)-modules over Brig such that there exists a unique

(¢,I'k)-module D(W) over BIig,K with ]§Lg ®B1J[igK D(W) = D(W). Hence, one has,

similarly as in the preceding theorem:

Theorem 2.5.6. The functor D — D := ﬁLg ®gt D gives rise to an equivalence
rig, K

of categories between the category of (¢, 'k )-modules over Biig x and the category of

(¢, Gk )-modules over BIig,

We shall also abbreviate ﬁlog - B/

bg ©pt D and War(D) := Bar ®, pir D™,

rig, K rig, K

which is independent of the choice of n for n > 0.
It is known that the canonical map

Bl @5, W.(D) » Bl ® DM,

)T
rig rig BIig:}(

induced by a®z — az, is an isomorphism of G g-modules for every n > n(D). One defines
the following map of Gx-modules:

. ~ ~T7"'n ~
B:We(D) = Bgr @B, We(D) ZBar ®, gt (Bl)" ®B, We(D)) = Wer(D). (2.3)

tn, rig, K l"ig
We use the same symbol for the map 3 : W (D) — Bqr/Bl; ®B, We(D). Set WS (D) =
(Bl, @t D)#=L.

rig rig, K

Let now W be a B-pair and set X°(W) = WeﬁWJR C War and XY (W) = Wer/(We+
Wd+R)7 which are nothing but the kernel and cokernel respectively of the natural map
We — War/Wjg. Hence, one has ([9], Theorem 3.1):

Theorem 2.5.7. If W is a B-pair and D = D(W), there are natural identifications

2) XO(W) = W7 (D) and X'(W) = D/(1 - ¢),
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b) XO(~W) = 0 if and only if all slopes of D are > 0; X1(W) = 0 if and only if all slopes
of D are <0.

We recall the following definition, introduced by Fontaine (see [19]):

Definition 2.5.8. An almost C,-representation is a p-adic Banach space X equipped
with a linear and continuous action of Gi such that there exists a d > 0 and two (finite-
dimensional) p-adic representations Vi C X, V5 C (Dg such that X/V; = (Dg /Va.

Berger has shown that X°(W) and X!(W) are almost Cp-representations, cf. [9].

2.6 (p,'x)-modules over BLgK

)

2.6.1 Basic definitions

We describe how to extend certain results of [4] to (in general non-étale) (¢, I'x)-modules,
cf. also [8].

We make use of the following notation: Suppose R is a commutative ring equipped
with an endomorphism f : R — R, and M is a R-module. We may then consider the
R-module R ®¢ r M, where R is considered as an R-module via 7 - s := f(r)s (r,s € R).

a) A (p,I'x)-module D over Biig i is a free, finitely generated BLg -module with a
semi-linear continuous map ¢p (i.e. pp(Ax) = p(N)pp(x) for A € BLgK,x € D)
and a continuous action of I'xr which commutes with ¢p, such that the map

o* - BIig,K ®,pt D—D, a®@w— ap(z)
Urig, K

is an isomorphism of Biig ,-modules.

b) (¢,'kx)-module D over BE( is étale (or of slope 0) if there exists an étale B}{—
submodule D’ of D which is stable under the actions of ¢ and I'x such that
Blig,K “pt. D'=D.

©p will henceforth simply be denoted by . Let D be a (¢, ' )-module over BIig K-
For the ring BIig,K we have, analogously as in (2.2), a decomposition BL&K = @f:_ol (14
Tr)igo(BLg ) 5o that one may define an operator 1 (by the same formula) on Biig 5 that

extends the operator ¥ on B}(. More generally, if D is a (¢, 'k )-module over BIig K We
have thanks to condition a) in the definition that there exists a unique operator ¥ on D
that satisfies analogous properties as in Remark 2.2.2 and commutes with the action of

k.

Proposition 2.6.1. If 0 - D' — D — D" — 0 is an exact sequence of (¢, 'k )-modules
over Biig 5 then 0 — D=0 — D¥=0 —, D=0 _; ( is an exact sequence of I g-modules.
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Proof. For the proof of the right-exactness one just uses the fact that if z € D¥=0 then
(uniquely) x = f;ll (14 m)"p(x;) with z; € D. The compatibility with the action of I'x
is clear since it commutes with . O

If L/K is a finite extension, we denote the restriction D|; by

D|L = B:[lg L ®BT D7

rig, K

with actions of ¢ and I'y, defined diagonally. Hence, D|r, is a (¢, ' )-module over Bl
The dual D* of a (¢, ' )-module D over BIig,K is defined by

rig,L*

D* := Homgt (D, Brlg %)

rig, K

where for f € D* the actions of I'x and ¢ are defined via
V() (@) =v(f(v'x), y€Tk,z €D, @(f)(x):=> ap(f(z:)), z= asp(x;) €D

If Dy, Dy are two (p,I'k)-modules over B!
Dy is defined by

rig, KK then the tensor product of D; and

D1 ® Dy := D1 ®gi Da,
rlg K
where ¢ and ', act diagonally. Note that this does not imply that ¢ acts diagonally.
Let D be a (¢,I'k)-module over BiigK of rank d. By [8], Theorem 1.3.3 there exists

an n(D) and a unique finite free BI{;}((D)—module D™P)) c D of rank d with

rig, K

b) Let D™ =Bl ® traco) D®D) for each n > n(D). Then ¢(D™) c D™+ and
rig, K

the map N
Tn+4+1
Brlg E ®

is an isomorphism.

2.6.2 Cohomology of (¢, 'x)-modules

Liu (cf. [29]) has worked out reasonable definitions for cohomology of (in general non-étale)
(¢, 'k )-modules over By, B}( and Biig’K.

Let D be a (¢,I'k)-module over one of these rings and let Ag be a torsion subgroup
of I'. 'k is an open subgroup of Z,; and Ak is a finite group of order dividing p — 1
(or 2 if p = 2). Define the idempotent operator pa, by pa, = (1/|Ak|) > sca, 9, so that
PAy is the projection from D to D' := DAK. If T, := T'xc /A is procyclic with generator
~vk define the exact sequence

. d d
Conx (D) 0—=D ——=Da&D —>D —=0 (2.4)
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with
di(z) = ((¢ — Dz, (vk — D), do(z,y) = (v — Dz — (¢ — Dy.
Define for i € Z A
H'(K,D):= H'(C} (D)),

which is, up to canonical isomorphism, independent of the choice of vx (cf. [29], section
2), so that we shall now fix a choice of Ag and .
For applications in Iwasawa-theory one also considers the following complex:

° d d
Cl@): 0—=D'—=D'&D' —>D' —=0 (2.5)

with
di(z) = (¢ = Dz, (vg — D), do(,y) = (vk — Dz — (¥ — L)y.

If Dy and D are two (¢, 'k )-modules over BTlg 5 one may, following Herr ([22]), define
the following cup products (we always mean classes where appropriate):

H°(K,Dy) x H*(K,Dy) — H°(K,D1 ® D3), (z,y) (z®y),

HO(Kle) x H' (K D2) — H' (K7D1 ®D2>7 (a;,( 72)) = (x®y,x®z),

HO(K,Dy) x H*(K,Dy) — H*(K,D1 ® D3), (z,y)+ (z®y),

HY(K,Dy) x HY(K, Dy) — H*(K,D1® D3), ((z,y),(w,v)) = y®yx(w) —x @ ¢(v).

(2.6)
We note that some authors swap the maps of the sequence C¢ W((D) so that of course
one has to adjust the definition of the cup-product. We adhere to the conventions made
n [22].

Liu’s result is then ([29], Theorem 0.1 and Theorem 0.2):

Theorem 2.6.2. Let D be a (¢,I'k)-module over BLgK.

1

a) If D= Dilg(V) is étale one has canonical functorial isomorphisms H*(K, DLg(V))

H (G, V) for all i € Z that are compatible with cup-products.
b) H'(K, D) is a finite dimensional Q,-vectorspace and vanishes for i # 0, 1, 2.
c¢) For ¢ = 0,1, 2 the pairing
HY(K,D) x H* (K, D*(1)) — H*(K,D ® D*(1)) = H*(K, Brng( )
H*(K,Qp(1)) = Qp
where D ® D*(1) — Biig’K(l) is the map x ® f — f(x), is perfect.

Similarly, if one is interested in Iwasawa-theoretic applications one has the following
setting, as developed in [37]: Let as usual denote A = Ag = Z,[[T'k]] and A" = Z,[[I"]]
so that A = Zy[Ak] ®z, A, the Iwasawa algebra for I'c and I';. It is a complete
noetherian semi-local ring, and we denote by m the Jacobson radical of of I';.. Then one
may consider A'[m"/p] for every n, which is the A’-submodule of A’[1/p] generated by
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elements m/p, where m € m™. Denote by A, = A'[m"/p]" = Hm, A'm™ /p] /pE A [m™ /p]
the p-adic completion of A'[m™/p] and write A,, = A}, [Ak]. One has an identification of
A}, with Z,[T,T"/p]"* via v — 1+ T. The natural maps of A’-modules m" < m™ for
n = m induce inclusions Ay, < A, so that one may form A = lim (An[1/p]).

On the other hand, for ' as above, Perrin-Riou defined the algebra H(F k) in the
following way. First consider H(I'y), which is defined as the image of Brng by the
substitution 7+ yx — 1. Let H(T'x) = Qp[Ax] ®q, H(I'yx). Analogously as in 2.4.1, a),
one has

Bl q, = [ Zoll=ll[="/p)"[1/p] C Qp[[7]],

n>0

so that the identification Zy[[I"]] = Zy[[r]] extends to an identification Ao, = H(Tk).

In the same vein for m > 0 and [ > m one may define A’[mJ] = Z,|T,p/T™, T"/p]" which
one may consider as a continuous A’-algebra via v — T + 1. We set Ay = A’[m 1 [Ak].
Then for m’ < m <1 <1’ one has canonical maps Ap, ] — App ) 50 that one may form
Ao = hﬂmzo T&HIZO A[m,l] [1/]7]

Again, for 'k as above, Perrin-Riou defined the algebra B(I'x) in the following way.
Consider B(I"y ), which is defined as the image of BLg Q by the substitution m — g — 1.
Let B(I'x) = Qu[Ak] ®q, B(I'y). As before one has

Bl o, = U [ Zollwlllp/=™ 7' /p]"[1/p] € Qllr, 1/7]),

m>01>m
so that the identification Zy[[I"]] = Zp[[r]] extends to an identification At = B(T'x).

Definition 2.6.3. (Cf. [38], §3) A As-module M is called coadmissible if the following
holds: there exists a family (M), of modules M,, such that M, is a finitely generated

Ap[1/p]-module with the property A, [1/p] ®4, ., (1/p Mn+1 = M, and M == 1£1 M,

n+1

We recall some structure theory for As = H(I'x)-modules (see also [30], sections
3.1, 34). Let AK be the character group of A and for any n € AK denote by e77
the corresonding idempotent. Then one has a canonical ring-isomorphism Qp[Ag| =
@neﬁx Qpey. This extends to an isomorphism H(I'x) = @neﬁx H(I')ey. From this
it follows that for the total ring of fractions K(I'x) := Frac(H(I'x)) of H(I'x) one has
K(Tg) = @ne&{ Frac(H(I')ey). Now if M is any H(I'kx)-module one obtains a de-
composition (we follow the usual convention and write M, = Me,) M = oA g M,
where each M, is a H(Iy)e,-module (which is as a ring isomorphic to B, Hig,Q,> Dence a
Bézout-domain, cf. [27]). We call a H(I'x)-module M torsion if each M, is torsion as
a H(I'yx)ey-module. By the above decomposition this is equivalent to the property that
K(Tx) @3y M = 0. Of course, analogous considerations hold for B(I - )-modules, where
again each factor B(I')e, is a Bézout domain (cf. [27], [24]).

One has the following (see [37], Proposition 6.1):

Proposition 2.6.4. Let M be a coadmissible H(I'k)-module. Then M, is also coad-
missible and M /M, restricts to a finitely generated free module over each integral factor
H(I)ey of H(Tk).
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Let now D be a (¢, 'k )-module over BL&K. Define Ay [l x]-modules A,, (resp. A%) by
An =AY = A, as Ap-modules and v (A) = [y]A (where [] : T — A% is the natural group
homomorphism) for A € A, (resp. vx(\) = [y 1]\ for A € A,). Observe that A4 [1/p] and

BL K are complete Q,-Banach vector spaces, so that the completed tensor product in the
followmg definition makes sense:

Definition 2.6.5. If D is a (¢,I'x)-module over BLgK and n € IN one defines the cy-
clotomic deformation D,, of D as

D, = D&q,AL[1/p),

which is a BT rig, @A, [1/p]-module, such that ¢, act via the first factor and T acts
diagonally.

With this definition one may consider complexes C? ., (Dy), (Gl (D,,) defined ex-

actly as in (2.4) and (2.5), and cohomology groups H!(K, D,,), resp. cup-products as in
(2.6), with D,, in place of D. One checks that one has a canonical morphism of com-
plexes C3 . (Dny1) = C¢ . (Dy) which inducess a map HY(K,Dpy1) — H(K,D,) of
Ap+1-modules, so that we define the H(I'x)-module

Hi, (K, D) :=lim H'(K, Dy)

One of the main theorems of [37] is the following (see loc.cit., Theorem 6.8):
Theorem 2.6.6. Let D be a (¢, 'k )-module over BLgK.

a) The map H (K, Dy 11) ®a,., Ap = H(K, D,,) of A,-modules is an isomorphism.

n—+1

b) The H{ (K, D) are coadmissible H(I" i )-modules, zero for i # 1,2, torsion for i = 2
and of rank equal to rank(D) - [K : Qp] for ¢ = 1.

¢) vk — 1 acts invertibly on D'¥=0 = DAx¥=0 and D,/ p=0 , and the morphism of com-

plexes
Co (D) :0—=p s prgp -2 pr—>0
‘/id i—lﬁ@id i—@b
s (D):0—>p- s pop-—E-p—s0
and

— — d — — d: —
Ce.i(Dy):0—=D, —D, &D,—=D, —=0

VK
lm lw@m lw

. — d o —y dy —
C8 i (Dn) :0—=D —=D, ¢ D, —=D, —=0

are quasi-isomorphisms.
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d) One has canonical isomorphisms of H(I'k)-modules
D=l = Hy, (K, D), (D/(¢ = 1)D) = H, (K, D).

Let Iy = Gal(Ks/Kyn). When p # 2 and n > 1 (or p = 2 and n > 2), I, is

torsion free. We put logy(a) = ]% € Z for a € Z). Consider now D¥=! for some

(¢, I'k)-module D over Biig - For every n > 0 such that 'k, is torsion free we have
a canonical map h%{,L,D : D¥=! - HY(K,, D) (by taking into account that D is also a
(¢, 'k, )-module over Biig K, = Biig, %), given by the following construction: if y € D¥=!
then pa((p — 1)y) € D=0 so that by Theorem 2.6.6 there exists an € D'¥=C with
(Yr, — Dz = (¢ — 1)y. We may then put hy p(y) = [Ax|logy(x(vx))(x, y).

In the same way we have for n > 0 a canonical map hlﬁn . D¥=! - HY(K,D,)

given by the following construction: consider pa(y®1) € ﬁ; so that by Theorem 2.6.6
there exists a unique x, € ﬁ; such that (¢ — 1)y®1 = (yk, — 1)z, so that we may
put hlﬁn (y) = |Ax|logy(x (7)) (2n, y®1). One checks that for m > n these elements are
compatibel with canonical projections H' (K, D,,,) — H'(K, D,,), so that the isomorphism
D¥=! — H} (K, D) is explicitly described via y — (|Ag| logy(X(7&))(@n,y @ 1))n.
Analogously to the étale case one may define induced modules of (¢, I'k)-modules,
restriction and corestriction for the cohomology of (¢, 'k )-modules as follows: Let L/K

be a finite extension and D a (p,I'r)-module over B Let

rig,L"
Indp XD = {f : T — D| f(hg) = hf(g) for h € T},

IndIFfL{D has the structure of a BT-&K—module via (af)(g) = g(a)f(a) for f € IndEfD,

Il
CLGBT

rig,i0 9 €Tk Additionally, ¢ and I'k-actions may be defined via

(ef)(g) =¢(f(9), (af)(g)= f(go).

Note that since BIig,L/BLg,K is an extension of degree [Hi : Hr] and [L : K] = [I'k :
k] [Hk : Hp] the rank of Indll:fD is equal to [L : K] - rankD and IndEfD is called the
induced module. In the case L = K, for n > 0 one may identify the induced module with
the following one: consider D®q, Qp[I'x /T'k, ], where Q, [I/‘;//I‘Kn] = QpI'x/Tk,] asa Q-

vectorspace and y(\) = [J]A for y € T, A\ € Qp[mKn], where [ | : T'x = Qp[I'x/T'k, ]
is defined similarly as before. Then

Indp*D — D @q, QTk/Tk,), fr— > fl)ey!
Y€l K /Tky,

gives an isomorphism that is compatible with all the given actions. Recall that one can
define the Qy-linear involution ¢ : H(I'x) — H(I'k), which is defined by the property that
it sends o € ' to o~!. Similarly, we denote by the same letter the analogous map on A,
QpI'x /T'k,], etc. Shapiro’s Lemma implies an identification

H'(Kn, D) = H'(K,D ®q, Q[x/T'x,]")
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via the map on representatives induced by the map

P P

D& D — D®q, Ql'k/Tk,]' ® D ®q, Qpl'k/Tk,]"

(2,9) — Y (cThzwo)yel],
O'GFK/FKn

where we have fixed a system of representatives I' /T, (see [29], Theorem 2.2).

We defined D] = BiigL ®gt  D. Let m = [Ak : Ar] and n be such that v5 = ~y.

’ rig, K
n_1 .

Define TL/K = fzo V}( and OL/K = derK/FL Y '

We define the restriction maps Res : H'(K, D) — H'(L, D|1,) via the map induced by
the following map on complexes (where *” means the invariants with respect to the “right”
A):

d1 d2

0 D' D& D D' 0
lid iid@(m'TL/K) lid
d d
0 D|}, =D} @ D|};, —= DI 0

Similarly, we define the corestriction map Cor : H(K,D) — H*(L,D|;) via the map
induced by the following map on complexes:

d d
0 D|;, = Dl @ DI}, —= DI}, 0
l"L/K iUL/K@id J{id
! / )42 /
0 D D'&eD D 0

Proposition 2.6.7. The map Cor o Res on H*(K, D) is nothing but multiplication by
L : K].

Proof. Tt is clear that on H°(K, D) = D¥=17x=1 (thus vk acts trivially) the map CoroRes
is just the trace map and equal to multiplication by [L : K|. Since the H'(K, D) are
cohomological o-functors (see [26], Theorem 8.1) we get the claim. O

2.6.3 (p,N,Gal(L/K))-modules associated to (¢, 'x)-modules
We begin with a series of definitions (see [4], section 5, and [§]).

Definition 2.6.8. Let D be (¢, 'k )-module and n > n(D). Set
D$f,n(D) = K[[t]] ®, gt D™ Dgiga(D) := Kn((t) ® Btrn

rig, K tn, rig, K

D™

and, via the transition maps D (D) < D3, 1, f(t) @z — f(t)®¢(z) (and similarly
for Daitn (D) < Daitnt1)

D (D) :=lim D (D), Dait(D) := lim Dyt (D).
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Note that D}.(D) (resp. Daie(D)) is a free Koo[[t]] := (US| Kn[[t]]- (resp. Koo((t)) =
Ko[[t][1/t]-)module of rank d with a semi-linear action of I'x. One defines a I'k-
equivariant injection

tn s D Dji_if,n(D)’ 1R,

Definition 2.6.9. Let D be a (¢, 'k )-module. Set

D§15<D) = (Biig,K[l/t] ®Blig K D)FK7
D3 (D) = By x[1/] ©g1, D)™,

D/(D) := (Dair(D))"*,
and
Fil'D5; (D) := DIR (D) Nt'DE(D) C Da(D), i € Z.
We set DI3T(D) := Fil°’(DX, (D)) = DL(D)Ix.
One has canonical maps which we will denote by . for x € {cris, st,dR}, induced by

a®dr— ad:

B, ;[1/t] ® DX (D) — D[1/1]

cris
Bl «[1/1] @ DX (D) - B, ([1/] @ D,

Koo((t)) ® Di (D) — Dait(D).

Note that
DE.(D) = (Bl [1/t] @y D)°x,
11g, K
DX (D) = (B} ,[1/t] ®g:1  D)°x,
11g, K
D/i(D) := (Bar ®gi D)%%,

rig, K

where the first two equalities are due to Proposition 2.6.18, and the last one will be proved
in Proposition 3.1.18, so that one may also consider maps a for B! [1/t] ® DE. (D) —

~ rig cris
DI1/t], etc.
Proposition 2.6.10. All maps «, above are injective. Hence, one always has inequalities

dim, DX

Cris(

D) < dimg, DE (D) < dimg D (D) < rankg: D,

rig, K
and equalities dim DX (D) = rankgi D for * € {cris, st,dR} if and only if the corre-
rig, K

sponding « is an isomorphism.

Proof. Standard proof. O
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The filtration Filinl{R(D) is decreasing, separated and exhaustive, i.e.,
a) Fil'"'DL (D) C Fi'DE, (D),
b) N Fil'DIG (D) = 0

) U; FiliDng(D) = Dfi(R(D)-

Definition 2.6.11. The Hodge-Tate weights of a (y, 'k )-module are those integers h
such that Fil™"DX, (D) # Fil”""' DK (D). We say that D is positive if & < 0 for all
weights h, and that D is negative if h > 0 for all weights h.

Proposition 2.6.12. Let D be a de Rham (¢, ' )-module over BLgK. If D is positive
then D§ﬁ+(D> = DI.(D). More generally, let i > 0 be such that Fil™"DX, (D) =
DX, (D). Then t"DK, (D) = D137 (D(—h)) (in Dgig(D)).

Proof. The first part is obvious from the definitions and can be shown the same way as in
the étale case. The second follows similarly from Lemma 2.6.13. O

One can define the Tate-twist for a (p,'x)-module D: if k& € Z, then D(k) is the
(¢, 'k )-module with D as BLg -module, but with

el = ¢lp.  v& =x"(y)yz, z € D.

Analoguously one define a Tate-twist for a filtered (¢, N)-module D over Ky. If k € Z,
then D[k] is the filtered (¢, N)-module with D as K(-vectorspace and filtration Fil" (D[k]) g =
Fil"*Dg and

Nlpw = Nlp, @lpp =p"¢lp.

Lemma 2.6.13. One has DX (D(k)) = DX (D)[—k].

Proof. One has D(k) = D ®z, Z,(k), and if e}, is a generator of Z,(k), the isomorphism

(B, x[1/ ®gi  D)Y'¥[—k] = (Bl c[1/t] @pi  D(k))'"

rig, K rg, K
is given by
d= Z an @ dp — Zane_k ® (dy, ® er) = (e ® ex)d.
]

Definition 2.6.14. A (p,I'x)-module D is defined to be crystalline (resp. semi-stable,
resp. de Rham) if dimy, DX, (D) = rankg: D (resp. dimg, DX (D) = rankg: D,

cris .
rig, K rig, K

resp. dimg D (D) = rankge D).
rig, K
Similarly, we define D to be potentially crystalline (resp. potentially semi-

stable) if there exists a finite extension L/K such that D]y, is cristalline (resp. semistable).
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Definition 2.6.15. Let D be a de Rham (¢, 'k )-module of rank d. If n > n(D), set
NG (D) = {z € DW[1/1]| tm(2) € Kullt]] ®x DE;(D) for any m > n}

and Ngr (D) = lim N{(D).

Definition 2.6.16. a) For a torsion free element yx of I'x Perrin-Riou’s differential
operator V is defined as

_log(y) 1 (1 = i)
log,,(x(7x)) B log, (x(7x)) ; n € H(T k).

b) The operator d (on B,

rig c[1/1]) is defined as 0 := 1/t - V.

We remark that V is independent of the choice of v, which may be checked with the
series properties of log. The module Ngg(D) is denoted by D in [10], Theorem III.2.3.
This theorem also implies:

Theorem 2.6.17. Let D be a de Rham (¢, 'k )-module of rank d. Then Nggr(D) is a
(¢, 'k )-module of rank d with the following properties:

a) Nar(D)[1/t] = D[1/1],
b) Vo(Nar(D)) C tNar(D).
The following proposition is analoguous to [4], Theorem 3.6.

Proposition 2.6.18. Let D be a semistable (¢, 'k )-module. Then one has

(Bl ®g1 D)9 =D'x,

rig, K
1/t ® D Bl . [1/1 D',
( rlg[ /] BI‘ig,K ) ( rig, K[ /] BJI[ig,K )
t r
( ]og[]‘/t] BI‘lg,K D) (Blog K[l/t] ®B1J[1g,K D) K'

Proof. We only treat the first case, as the proof of the others is similar.
One has (B, ®p D)%x C (BJr ® D)Hx = BIng ®gt D since H acts

rig rig BT
gK rig, K rng
trivially on D (it is a free BLg -module). Let {e;}i1<i<q be a Brng basis of D and
{di}1<i<r be a Ky-basis for (B:[lg D)%k and M € MTXd(Brlg i) defined by the
rng

relation (d;) = M(e;). M has rang r (that is, the image of a basis of D under M form a
free B:[ig -module of rank r) and satisfies v (M )G = M (since the elements d; are fixed
under g ), where G € GLd(BLg ) is the matrix of yx with respect to the basis {e;}.
The operator R, of Colmez/Berger (cf. loc.cit., §2.6) give v (Rm(M))G — Rp(M) =0

for every m € IN. Further R,,(M) ™= M and N = ¢"(Rpn(M)) € B!

rig )¢ Since R,
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is a section of go_m(B;ri’g;?) C ]NBLQK Hence, v(N)¢™(G) = N and since the actions
of ¢ and I'x commute on D one has ¢(G)P = v (P)G, where P € Md(BL&K) is the
matrix of ¢ with respect to the basis {e;}. If one sets @ = @™ }(P)...¢(P)P then
©"(G)Q = vk (Q)G and hence v (NQ)G = NQ, so that NQ determines r elements in
D that are fixed under I'. But since for m big enough the matrix M has rank r and P
has full rank, since it is an injection and BL& i - p(D) = D, one sees that these elements

give a rank r-submodule of D. Hence, the Ky-vectorspace generated by these elements is
also of dimension r, whence the claim. O

Before stating the next result we recall the notion of a p-adic differential equation. If
D is any (¢, I'k)-module over BL& x it is known that the same definition as for V gives
rise to differential operator Vp : D — D that commutes with the action of ¢ and I'k
such that Vp(Ax) = V(A\)x + AVp(z) (see [8], Proposition II1.1.1). With this one may
also consider the operator dp = 1/t- Vp on D[1/t]. A p-adic differential equation is
a (¢, 'k )-module D over BLg’K that is stable under the operator dp.

If there is no confusion we will drop the index D of the operators Vp and 0p.

Theorem 2.6.19. Let M be a p-adic differential equation equipped with a Frobenius.
Then there exists a finite extension L/K such that the natural map

Bf

f =0 1
log, L ®L6 (Blog,L ®BT, D) — Blog,L ®BT. D.

rig, K rig, K

is an isomorphism.
Proof. [1]. O

Recall that a V-crystal over BIig K is a free Biig

of a Frobenius and a connection (also denoted by V), compatible with ¥V on B:[ig K> that
commutes with the Frobenius. A V-crystal over Biig 5 is called unipotent if it admits
a filtration of sub-crystals such that each successive quotient has a basis consisting of
elements in the kernel of V. More generally, a V-crystal M is called quasi-unipotent if

there exists a finite extension L/K such that B:[ig 1 ®gt. M (which is a V-crystal over

rig, K

x-module equipped with an action

B;'ig , in a natural way) is unipotent.
We note the following result, which is known by the experts and may be proved as in
the étale case ([4], Proposition 5.6):

Proposition 2.6.20. Every de Rham (¢, 'k )-module is potentially semi-stable.

Proof. One defines the (faithful, exact, ...) functor D — Nggr(D) from the category of de
Rham (¢, 'k )-modules into the category of p-adic differential equations equipped with a
Frobenius. Since by André’s theorem 2.6.19 one knows that any such equation is quasi-
unipotent, it suffices to show that D is potentially semistable if and only if Nggr(D) is
quasi-unipotent.
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Now D is potentially semistable if and only if there exists a finite extension L/K such
that
dimp, (Bl [1/t] g1 D)'F =ranky; D =:d.
rig, K rig, K
This gives via [4], Proposition 5.5 a unipotent V-subcrystal of D|z[1/t], which is nothing
else but Nur(D|) = Bl , 8l Nar (D).

Conversely if D|r/[1/t] contains a unipotent V-subcrystal of rank d for some finite
extension L'/K then the again by loc.cit. there exist elements e, ..., eq_1 which generate
an L{-vectorspace of dimension d on which log(v) acts trivially. Hence, there exists a
finite extension L/L’ such that T'y acts trivially on this basis, so that we obtain a basis of
(Bfog,L[l/t] Rpt . D)''z of the right dimension, i.e. D is potentially semistable. O

rig,

We briefly review the slope theory of p-modules over BLg K Or B}(.

Definition 2.6.21. Let M is a p-module over one of these rings. If M is of rank 1 and
v a generator, then ¢(v) = Av for some A\ € (BIig %) = (B}{)X (cf. [24]; see also [25],
Hypothesis 1.4.1. resp. Example 1.4.2). We define the degree deg(M) of M to be w(A),
where w is the p-adic valuation of Bg. If M is of rank n then A" M has rank 1. We
define the slope p(M) of M as u(M) = deg(M)/rkM.

We remark that the definition of the degree (hence the slope) is independent of the
choice of the generator. Under the equivalence of Theorem 2.5.6 we have the following

correspondence of the slope theory: If D is a (¢, 'k )-module over Biig » one may consider

the p-module D over ]~3Lg. Then the two definitions of the slope for D coincide. Hence,
we have the notion of a (¢, ' )-module that is pure of some slope. The fundamental
theorem is the following result by Kedlaya:

Theorem 2.6.22. (Slope filtration theorem) Let M be a ¢p-module over BIigK' Then
there exists a unique filtration 0 = My C My C ... C M; = M by saturated go—sui)modules
whose successive quotients are pure with u(M;/My) < ... < p(Mi—1/M;). If M is a
(¢, Tk )-module all M; are (¢, 'k )-submodules.

Proof. See [25]. O

We recall that Berger has constructed an exact ®-functor M from the category of
filtered (¢, N, G )-modules to the category of (p, 'k )-modules such that the associated
connection is locally trivial (see [8]). This functor allows for the following construction.
Assume D is a semi-stable (¢, I'x)-module over Biig - Then one has a sequence of filtered
(¢, N)-modules (since ppN = N)

0= N'DE(D)c NN"'DE(D)c... c NDE (D) c DX (D)

determined by the monodromy operator N such that each quotient N'DX (D)/N+1DX (D)
is also a filtered (¢, N)-module. Hence, we often reduce to the case of an exact sequence

0 — NDX(D) — DX (D) — DX (D)/NDE (D) — 0 (2.7)



36 CHAPTER 2. RINGS AND MODULES

which induces an exact sequence
0 — M(NDE (D)) — D — M(DE(D)/NDE (D)) — o.

We want to consider the slope filtration on Ngr(D). If D is crystalline then this comes
from a filtration of vector spaces on DX, (D). If D is semi-stable we can actually show
that Kedlaya’s slope filtration is compatible with (2.7), i.e., one may assume that one has
a filtraton on (B[, ,» ® NDX(D))¥=0 and (B}, , ® DX (D)/NDX (D))N=0 such that the
slopes of the former are all strictly smaller than the slopes of the latter (since Ny = ppN).
This induces then the slope filtration on Nggr (D). However, we shall not make use of this
fact.

One has the following result (cf. [7], Theorem 3.1.5):

Theorem 2.6.23. Let D be a p-module over BL&K. Then there exists an étale p-module
D’ c D[1/t] such that D'[1/t] = DI[1/t].

The proof uses the technique of a modification of a (¢,I')-module, cf. loc.cit., section
3.1, for the definition and notation. We note that if M is any modification of D one has an
inclusion of p-modules tD = D[0] C D[M] C D and hence D[M][1/t] = D[1/t]. Similarly,
we can prove the following:

Theorem 2.6.24. Let D be a de Rham (¢, I')-module over Blig 5 that is pure of some
weight s. Then there exists a finite extension L/K and an étale (p,T")-module D’ over

B, , with D' C D[.[1/1] such that D'[1/t] = D|[1/4].

Proof. We may assume that D is semistable and further that D = Ngr(D) = (B;rog’ Kk ®K,
DX (D))N=0. Then D is pure of slope s = a/h.

We may modify D by an M of codimension 1 which gives a module D[M]| C D of
degree deg D + 1. Further we may choose this M in such a way that it is stable by
the action of 'k, noting that the action of ' occurs on the BlTOng—part of D. Since
(D) = deg D/rk D after a finite number of these modifications we obtain that the slope
of D[M'] is an integer, so we may modify it by a power of ¢ to obtain an étale (¢, I')-module
which gives us the solution. O

Remark 2.6.25. Note that the statement for general (p,T')-modules is false, see for
instance [7], Remark 3.1.7. This is even true in the case of a de Rham (¢, Ik )-module as
the example in loc.cit. shows.
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Exponential maps

3.1 Bloch-Kato exponential maps for (¢, ['x)-modules

In this section we define short exact sequences associated to (p, 'k )-modules, generalizing
the “classical” Bloch-Kato sequence (see [11]) which one may use to study cohomological
questions relating to p-adic representations (i.e. the slope zero case). One interesting
phenomenon that occurs in this more general setting is that, in order to get the general
versions of the exponential maps, it is necessary to distinguish between the slope < 0-case
and the slope > 0-case.

We are interested in the long exact sequences for continuous Galois-cohomology in-
duced by these sequences. Let us briefly recall the machinery. Let M be continuous
G g-module and define the continuous imhomogeneous cochains in the usual way (¢ > 0):

ol

cont

(Gg, M) :=CZ

cont

(K,M) :={z: G" — M| z continuous}

with differential 69 : C¥

cont

(K, M) — C%L (K, M) defined by

cont
6q($)(gl7 cee ,gq-i-l) = glx(927 cee ’gq-i-l) + (_1)q+1x(gla e agq)

q
+ Z<_1)Zx(gla vy 9i-1,9i9i+1, §i+25 - - - >gq+1)-
i=1

By convention C~¢(G g, M) = 0 for i > 1. The continuous cochain complex is then defined
via

o (KM = [C&,m(K, TS JKANCLING o Vo S

and one defines continuous cohomology via

H‘I

cont

(K, M) := HI(C®,,,(K, M)).

cont

37
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Lemma 3.1.1. If0 — M’ —s M 5 M” — 0is an exact sequence of G g-modules such
that f admits a continuous (but not necessarily G g-equivariant) splitting, then continuous
cohomology induces a long exact sequence

cee T Hgont(K7 M/) — H(Z;ont(K7 M) — Hgont(K7 M”) - Héjnlt(Kv M/) ..
Proof. This is standard, see for example [40], §2. O

If there is no possibility of confusion we will drop the subscript “cont”. The splitting
property in our setting will be granted by the following

Proposition 3.1.2. If f : By — Bs be a linear continuous surjective map of p-adic
Banach spaces, there exists a continuous splitting s : Bo — Bj of f, i.e. fos=1idp,.

Proof. See [14], Proposition 1.1.5, (iii). O

We define the following set X, which will be used in the next few statements:
X :={(2,y,2) € Diog[1/] & Diog[1/t] & W(D)/W (D) N(y) = (pe — 1)(2)}.

Lemma 3.1.3. Let D be a (¢,I')-module over BIigK' We assume D is pure of slope
(D) < 0. Then one has the following exact sequences of Gx-modules (cf. (2.3) for the
definition of 3):

0 — WH(D) -1 W (D) -L War(D)/W i (D) — 0

T

0 — W (D) -1 D[1/1] < D[1/] ® War(D)/Wix(D) — 0
r— ((¢ — 1)(z), B(x))

0 — WI(D) -5 Dig[1/1] 4 X — 0
z— (N(z), (¢ — 1)(z), B(z))

Additionally, each g above admits a continuous (not necessarily G g-equivariant) splitting.

Proof. The exactness of the first sequence is tautological, see Theorem 2.5.7. For the
second recall that for a p-module M over ﬁiig the map ¢ — 1 : M[1/t] — MJ[1/t] is
surjective. This implies the exactness of the second sequence. For the exactness of the
last sequence first observe that the map ¢ is well-defined. Recall that NV : ﬁlog — lNDIOg is

extended linearly from the operator N on ]§1T og? SO that

N(Z dilog' ) = — Zz ~dilog"™t (3.1)

i>0 i>1
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for S .oodilog' 7 € ﬁlog. The exactness at ﬁlog[l /t] is clear since from (3.1) one has
(f)log[l /t])N=0 = D[1/1], so we only have to check the exactness at X. The surjectivity
of N : Bf [1/1] — B[,
check that if (0,y,2) € X then there exists 2/ € D[1/t] such that g(z') = (0,y, z), which
is nothing but exactness of the second sequence.

The splitting property follows from Proposition 3.1.2, where we remark that X is a
complete space since by definition it is a closed subspace of the complete Banach space

Diog[1/t] @ Diog[1/1] ® W (D) /W (D). O

[1/t], which again follows from (3.1), implies that it is enough to

Lemma 3.1.4. Let D be a (¢,I')-module over BL&K. We assume D is pure of slope
u(D) > 0. Then one has the following exact sequences of Gx-modules (cf. (2.3) for the
definition of 3):

0 — W (D) - War(D)/ Wik (D) % War(D)/(W.(D) + Wik (D)) — 0
rT+—T

0 —s D[1/t] -5 D[1/&W4r(D)/Wig(D) < War(D)/(W.(D) + Wi (D)) — 0
fro— (1—¢)(@),7)
g: (2,9) — 7

0 — Diog(1/] 55 X <% Wan(D)/(We(D) + Wi (D) — 0
frx— (N(2), (g —1)(2),Z)
g:(2,y,2)—7%
Additionally, each g above admits a continuous (not necessarily G g-equivariant) splitting.

Proof. The exactness of the first sequence is again tautological by Theorem 2.5.7. The
rest of the proof follows analoguously to the previous proposition. ]

Putting everything together, we also see:

Corollary 3.1.5. Let D be a (p,I'k)-module over BLgK. Then one has the following
exact sequence of G g-modules:

0 — XO(D) -5 Diog[1/1] L X 25 X1(D) — 0
11T +— X
fra— (N(2), (¢ — 1)(2),7)

p:(2,9,2)—7Z

Following Nakamura, we now define for a B-pair W = (W, WCTR) the following com-
plex:
C*(Gr, W) = cone(C* (G, We) — C* (G, War/WiR)),
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which is induced by the canonical inclusion W, N War.- That is, we have
CY(Gg, W) = C(Gk,We) ® C"HGx, War/Wik)
with differentials
3¢+ CU (G, W) 3 (a,b) = (Opi (e ) (@), 1(a) = 0gi i wy (b))

More generally, one may define the following complexes:

C* (G, W') = cone(C* (G, D[1/t]) =22 €*(G, DI1/t] & Wan /W),
C* (G, W") := cone(C*(Gr, Diog[1/t]) WL72) oo (G, X)),

We recall:

Lemma 3.1.6. Let 0 — A i> B % C = 0 be a short exact sequence of continuous G k-
modules such that g admits a continuous, but not necessarely G g-equivariant, splitting.
We write (by abuse of notation)

cone(g) := cone(C*(Gg, B) L5 C*(Gk, C))
cone(f) := cone(C*(Gx, A) L= C*(Gx, B)).

a) The natural map of complexes

C*(Gk,A): CYGg, A) Cl1(Gk, A)

T o

cone(g) : C%Gk,B) —= C'(Gk,B) & C°(Gg,C) — - -

is a quasi-isomorphism that is compatible with the long exact sequence, i.e. the
following diagram is commutative:

"4>HZ(GK 1‘1)4>1'—‘IZ GK B 4>HZ GK C 4>H7’+1(GK,A)4>"'

l |

. HHi(Cone(g)) HH’L GK B *>HZ GK C *6>HZ+1(COHG(Q)) _ ..

b) The natural map of complexes

C*(Gk,C)[~1] : 0=C"YGg,O) CO(Gg, C)

| ] o

cone(f) : C%Gxk, A) CY Gk, A) o C'(Gyg,B) — -




3.1. BLOCH-KATO EXPONENTIAL MAPS FOR (¢,T'x)-MODULES 41

is a quasi-isomorphism that is compatible with the long exact sequence, i.e. the
following diagram is commutative:

. ——> H(Gg, A) —> H(Gg, B Hi(Gg,O) H+ N (G, A) — - -

T

o —— Hi(Gg, A) — Hi(Gx, B) —> H"!(cone(f)) —>—= HI+' (G, A) — - --

Proof. This is left as an exercise, see for example [41], 1.5.8. O

I

Lemma 3.1.7. We have canonical quasi-isomorphisms C*(Gx,W) = C*(Gg,W’)
C*(Gg,W").

Proof. Let W = W(D). Observe that the inclusions W (D) c D[1/t] C ﬁlog[l/t] and
W4r(D) induce canonical maps on these complexes. If W = W(D) with D pure of some
slope the statement then follows from Lemmas 3.1.3, 3.1.4 and 3.1.6.

For general D we are by Kedlaya’s slope filtration theorem reduced to the case of an
exact sequence 0 — Dy — D — Dy — 0 such that the statement is true for D1, Do, hence
the claim follows by considering the long exact sequences associated to this. O

With this statement and the properties of the cone we obtain a long exact sequence of
cohomology groups:

o H'(Gg, W) = H (G, Diogl1/t]) = H (G, X) > HHY (G, W) —
With these exact sequences in mind we suggest the following
Definition 3.1.8. Let D be a (¢, 'k)-module over BIigK. The transition map
expg p : H(K,X) — H' (K, W(D))
from the exact sequence above is called generalized Bloch-Kato exponential map
for D.

Remark 3.1.9. Let D be an étale (¢, ' )-module, so that D = Diig 5 (V) for some p-adic
representation V' of I'ir. Then since the slope of D is equal to zero, the first exact sequence
in Lemma 3.1.3 computes to

00—V —=B.®q,V — Bar/Blg ®q, V —0

This is nothing but the usual Bloch-Kato short exact sequence associated to the p-adic
representation V.
Recall that if D is any (¢, 'k )-module over BL&K the map ¢ — 1 : D[1/t] — D[1/1] is

surjective. If 2 € D we write (o — 1)~ (z) for a choice of an element y € D[1/] such that
(¢ —1)(y) = z. We want to consider the following maps:

5 , p(r) =2
@:D— WD), zr { 0, otherwise.

B:D — War(D)/Wir(D), @ (o —1)""(2)),



42 CHAPTER 3. EXPONENTIAL MAPS

where the second map is well-defined due to the discussion in [9], Remark 3.4. « and 8
are continuous and fit into the following commutative diagram of G'g-modules:

~ ~ -1 ~ ~ ~
00— De=1 D - D D/(¢—-1)D—=>0

| g ]
X'(D)

0— X%(D) — W¢(D) — Wgr(D)/Wjz (D)

0,

where we use the identifications for X9 and X! from Theorem 2.5.7.

Proposition 3.1.10. One has a quasi-isomorphism
cone(C* (G, D) £=3 C* (G, D)) = C* (G, W(D))
that is functorial in D.

Proof. We denote by A® the complex on the left hand side of the statement. One checks
that the commutativity of the preceeding diagram and the cohomological version of [41],
Exercise 1.5.9 show that one has a commutative diagram

c-— H"(Gg, D¥=") H™(A*) ——= H"" UG, -E55) — H™ (G, D¥=1) —

. GK,XO )) 9H”(GK,W(D)) 9Hn—l(GK’Xl(ﬁ)) — pntl GK,XO ))

which gives the proof. O

Recall the following property of continuous cohomology: If f : M®* — N*® is map of
complexes of continuous G-modules for some profinite group G one has an identification
of complexes

Ce

cont (

G, cone(M*® ER N*)) = cone (Ccont(G M*®) = £t oot (G N')) (3.2)

(cf. the discussion in [31], 3.4.1.3, 3.4.1.4; it holds in this general setting).
We recall that in the derived category of Biig r-modules, the complex C¢ , is also
represented by

RI(K, D) = RTcont(Tc, cone | D =3 D|) 2 cone | RTeont(Tic, D) = Rleont(Tic, D)
cf. [37], section 3.3, where the last identification is due to (3.2).
The following is then a generalization of Proposition 2.6.18:
Proposition 3.1.11. One has an isomorphism

RI(K, D)2 RU(K,Bl, @y D)

rlg K

that is functorial in D.
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Proof. The proof is similar to [37], Proposition 3.8. It suffices to show that that the
natural map
RT cont (FKa D) — Rl cont (FKa B;rlg K ®B1‘ D)

rig, K

. . . . . -1 . . .
is an isomorphism, since applying cone [o LA o} induces the morphism in the statement

again due to (3. 2) We apply the techniques of [2], Appendix I and use the notation there,

as follows: Let A := BL; G = Gk, H = Hk so that d = 0. Further, H' = H, Am)H’ =
(@)

go_m(BL’g &) (since ¢ = 0 is the only possible choice) and the maps T correspond to

the maps R, Bllg P (BLgKT) (cf. [4], Proposition 2.32). As in [2], section 7.6, the
maps R, 1nduce maps (by the usual process of taking the direct limit over all sufficiently
rig, K BT

big ) Ry, . Bl
rig, K rlg K

a decomposition of I'g-modules

D — Brlg x ®p D for m > 0, and as in loc.cit. one obtains

Brig,K ®Biig X D= (1 - R )(Bng K ®B1];1g K D) @ (Brig,K ®Bilg K D) :
By construction of the map R,, it is clear that (Bilg K Opt D)fo=l = D. Furthermore,

as in the proof of loc.cit., Proposition 7.7, one may infer that vk — 1 acts 1nvert1b1y on

rlg Trig, K
gives the clalm. O

Putting everything together, we see:
Corollary 3.1.12. One has an isomorphism
RT'(K,D) = RI'(Gg,W(D)).
that is functorial in D.

Proof. We observe that the natural map

BIlg,K - chont(HKa BT

f) (3.3)

is a quasi-isomorphism. This, together with the preceeding isomorphisms implies
RT(K, D) 2 R ot (Tsc, cone(D =3 D))
~ -1 ~
= Rl cont (T, cone(BY,, - ® D 2= B, - ® D))

= RTont (T, Rl cont (Hic, cone(D 2= D)))

® RT cont (G, cone(f) ¢—>_1 ﬁ))

= RT(Gx, W(D)).

where (%) holds since the natural map H(Gx/Hg, Dx) — H'(Gg, D) is an isomor-
phism, since again H"(Hg,D) = 0 for n > 0 due to (3.3): for i = 1 this follows from
the five term exact sequence in low degree, which extends in this case for continuous
cohomology similarly as in e.g. [32], §6, to higher degrees by induction. O
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Corollary 3.1.13. H'(Gg,W(D)) = 0 for i # 0,1,2 and H(Gg, W(D)) is a finite-
dimensional Q,-vectorspace.

Proof. This follows from the preceeding Corollary and [26], Theorem 8.1. O

We wish to give a more explicit description of the isomorphisms on cohomology which
we will need in the characterizing property of the big exponential map, where actually
only the map for the H'’s will be important for us. Hence, we may only sketch certain
steps for the higher cohomology groups (that is, H?).

We briefly describe how one may interpret, in the slope < 0O-case, the cohomology
group HY (G, W (D)) as extensions of Q, by W} (D). So let c € H(Gx, WI (D)) and
consider the exact sequence of G g-modules

0— W/ (D)—E.—Q,—0
where E. = Q, ® W} (D) as Q,-vectorspace and Gk acts on E. via
o(a,m) = (a,om + acy).
Since ¢ is a 1-cocycle one has
o(t(a,x)) =o(a, 7z + ac;) = (a,017x + acc; + ¢5) = o7(a, x),

so that one has a well-defined map Z!(K, D) — Ext(Qp, WS (D)). E. is trivial if and only
if there exists an element 1 € E, such that g1 =1 for all g, i.e.

1=(1,z), gl—-1=(0,9z —x+¢4) =0,

so that ¢y = (1 — g)z is a coboundary, which implies that the above map factors through
BY'(K,D). The fact that this map is an isomorphism can be checked as in the p-adic
representation case.

Proposition 3.1.14. Suppose we are in the situation of Lemma 3.1.3. Then the complex
C* . (K, D) (functorially) computes the cohomology of C2. . (Gx, X°(D)).

PVK cont

Proof. We may assume that ' is pro-cyclic with generator vg. First we have
H'(K, D) = D'#=! = pOr¢=1 — XO(DYox = HO(Gk, X°(D)).

thanks to Proposition 2.6.18.
For H' we apply the construction of Cherbonnier/Colmez ([13]). To wit, let (z,y) €
HY(K, D) and pick b € D such that (¢ — 1)b = 2. Then

c—1

o) = 06x(0) - (7= 22y = (o = 1)

defines a 1-cocycle with values in D but one easily checks that (¢ — DAk 5((x,y)) =0 so0
that we actually have a cocycle in H (G, X°(D)). Injectivity and surjectivity now follow
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in the same way as in loc.cit. if one uses the description of extensions of Q, by X°(D)
given above, so that we obtain the isomorphism in the H'-case.

For H? one can show that since X%(D) is an almost Cp-representation that one has a
Hochschild-Serre spectral sequence H' (T, H' (Hg, X°(D))) = H (G, X°(D)) associ-
ated to the exact sequence 1 - Hx — G — 'k — 1. Since the cohomology on the left
vanishes for j or i greater or equal to 2 one has with the fact that H3(G g, X°(D)) =0

H*(Gg, X (D))= H' Tk, H (Hg, X°(D))).

Now the exact sequence 0 — XY(D) — DD 5 0of Gr-modules gives rise to a
sequence

... — Dx 225 DHx — g (Hye, XO(D)) — 0,
since H'(Hg, D) = H'(Hg, ]§Iig ® D) = H'(Hg, ]A?;Lg)d = 0. Hence, by Iwasawa theory
H*(Gr, X"(D)) = D" /(p — 1,7k — 1).

Looking at the quasi-isomorphisms in Corollary 3.1.12 one sees that using Lemma 3.1.6,
since we are in the X!(D) = 0-case, the map H?(K,D) — H?(G,X°(D)) is given by
the canonical inclusion of finite-dimensional Q,-vectorspaces

H*(K,D) = D/(p ~ 1,7 — 1) € D% /(p — 1k = 1) = H*(Gk, X°(D)),
that are of the same dimension. This gives the description of the map for H?2. O

Lemma 3.1.15. Let D be a (¢, 'k )-module over Bzig x and assume that I'k is pro-cyclic
with generator vx. Then one has an exact sequence

_ I
0 — 2= I puk py 4 (%) L0
—

o2
(0,9)
(z,y) T

Proof. Recall that by definition

HY(K,D) = {(z,y) € D& D| (vg — Dz = (¢ — y}/{((¢ — 1)z, (vk —1)2)| z € D},

so that the first map is well-defined an injective. One checks that the map g is well-defined
and if z € D/(¢ — 1) such that (yx — 1)x € (p — 1)D then there exists an y € D such
that (x,y) € H'(K,D) and g(x,y) = z. Obviously go f = 0. Let g(z,y) = 0 so that
r = (¢ — 1)z for some z € D, so that (z,y) ~ (0,y — (yx — 1)z) in H'(K, D). Hence,
(x,y) is in the image of f. O

We remark that this sequence is nothing but the short exact sequence associated to
the inflation-restriction sequence if D is étale, i.e.,

0 — HY Ik, VHK) — HY G, V) — HY(Hg,VIE) — 0,

see for example [15], section 5.2.
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Proposition 3.1.16. Suppose we are in the situation of Lemma 3.1.4. Then the complex

CA,YK(K, D) computes the cohomology of C}, := Cg,: (G, Xl(D))[l}

Proof. We may assume that ' is procyclic with generator yg. Since the slope of D is
> 0 one has X9(D) = 0, so that D?=! = 0 since D¥=! ¢ D¥=! =0, so that H(K, D) = 0.
The same holds tautologically for H°(C®)).

For the case of the H'’s observe that since X°(D) = 0 Lemma 3.1.15 implies that
the canonical map H'(K,D) — (D/(¢ — 1))'%), (z,y) — T, is an isomorphism. From

Theorem 2.5.7 we also know that X!(D) = D/(¢ — 1). Hence, from Corollary 3.1.12 and
Lemma 3.1.6 we have that the map

~ Gx Iy
H°(Gy, X'(D)) = (;31) = (@?J ~ HYK,D).

gives the identification.

For H? one has similarly as in the slope < 0-case a Hochschild-Serre spectral sequence
H' Tk, HI(Hg, XY(D))) = H"(Gg, X (D)). From the exact sequence in low degree
terms one then has

0— H (T, H'(Hg,D/(¢ — 1)) = H'(Gg,D/(p — 1)) = H' (T, H' (Hg, D/ (¢ — 1)).

From the sequence 0 — D #3D - X1(D) — 0 one infers the vanishing of H'(Hp,
X1(D)) since H'(Hg, D) = H*(Hg,TD) = H?(H, BLg)d = 0. Hence, we see
H'(G, X'(D)) = H (Ui, H(Hi, D/ (¢ = 1)) = D" /(p = 1, 7i — 1).

so that again by Corollary 3.1.12 and Lemma 3.1.6 the canonical inclusion of finite-
dimensional Q,-vectorspaces

H*(K,D) =D/(¢ — Ly —1) C D% J(p — 1,7k — 1) = H' (G, X' (D)),

gives the description of the map for H2. O

Finally we describe how one may piece together the isomorphisms H'(K, D) h—1>
H{(K,W(D)) in the general case (where we only make the case H'! explicit, which is
all we need for the application to Perrin-Riou’s exponential map): If (z,y) € H'(K, D)
write = (¢ — 1)(0') + s(b"), where s : D/(p — 1)D — D is a continuous splitting of the
natural projection (which exists thanks to Proposition 3.1.2), ¥' € D and " € D/(¢—1)D.
Putting the two constructions together, we may consider the tuple

AL (@,y) = (logh(x(1) - (¢ — 2=y — (0 = DY) (0,0, ((p = )71 (s(6"))
S Cl(GK,ﬁlog) D CO(GK,X),
(3.4)

and one sees that actually hi((z,y)) € H'(K, W(D)), which gives the description of the
isomorphism in the general case by the properties of the mapping cone.
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We will briefly describe, similarly as in the slope < 0-case before, how one may interpret
the cohomology group H'(Gx, We(D)) as extensions of B, by W (D) (note however that
we do not make any assumptions about the slopes of D). So let ¢ € H (G, W,(D)) and
consider the exact sequence of Gx-modules

0— WD) — E.— B, — 0,

where E, = B, & W,(D) as a B.-module with Gg-action o(a,z) = (ca,o0z + oa - ¢,).
One has

o(t(a,x)) =o(ra,Tx + 1a-¢;) = (oTa,0tx + ota-oc; + ora - ¢,) = or(a, ),

so that one has a well-defined map Z'(K,W.(D)) — Ext(Q,, WS (D)). E, is trivial if
and only if there exists an element 1 € E, such that g1 =1 for all g, i.e.

1=(1,z), gl—-1=(0,9z—x+¢4) =0,

so that ¢, = (1 — g)x is a coboundary, which implies that the above map factors through
Bl(K,W_.(D)). The fact that this map is an isomorphism can be checked as before.

Proposition 3.1.17. Let D be a (¢, 'k )-module over Biig i Then the complex C¢ | (K,
DI1/t]) computes the cohomology of C2 . (Gr, We(D)).

cont

Proof. The proof is similar to the ones before; in fact, one may reduce to the case of
Corollary 3.1.5 by taking direct limits (see also [30], Theorem 4.5). We are interested in
the explicit description of the maps. From Proposition 2.6.18 again we have:

HO(K,D[1/t]) = D[1/t]#='c = D[1/t]*=1¢x = HY(Gg, W (D)).

For H' we apply the same construction as in Proposition 3.1.14. Solet (z,y) € H'(K, D[1/t])
and pick b € D[1/t] such that (¢ —1)b = z. Then

1
ol ) = Toghlx) - (0 2=y~ (o~ 1)
defines a 1-cocycle with values in D[1/¢] which lies actually in W(D). Injectivity and sur-
jectivity now follow in the same way as in loc.cit. if one uses the description of extensions
of B, by W(D) given above, so that we obtain the isomorphism in the H!-case.
The case of the H?’s follows in the same way as in Proposition 3.1.14. O

Proposition 3.1.18. One has an identification H(K, Wqr(D)) = DX, (D)

Proof. From [13], Proposition IV.1.1 (i) we know that K[[t]] is dense in (B )%, and the
inclusion is compatible the action of I'c. Also one has (B1z)9% = K o[[t]|'* = K. Since D
is free as a Biig’K-module with trivial Hg-action, we see that (Bl ® D)¢x = ((Biz) % ®
D)'x = D(D)'%. Since Bqr = lim _ 1/t" - Blg and Koo((t)) = lim _ 1/t" - Kog[t]]
the claim follows, since taking invariants is compatible with direct limits.

Alternatively, the claim also follows from [19], Theorem 2.14, B) i). O
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We shall make use of the following considerations. Let D be a semi-stable (¢, ' )-

module over BLg 5 and consider the following complex € (K, D) (concentrated in degrees
0, 1, 2):

DX (D) — DE(D)e DE (D) D, (D)/FiI'Di, (D) — DA (D)
T > (N(z), (¢ = 1)(x), B(x))
(z,y,2) = N(z) = (pp — 1)(y)-

(3.5)
Then an element in H!(€x (K, D)) can be considered as an element in H°(K, X) and
hence be mapped via the exponential map to H'(K, W(D)).

We shall give two maps which will be important in the construction of the dual expo-
nential map for de Rham (¢, Ik )-modules.

First we remark that the canonical inclusion D — Wyg(D) factors via D — D[1/t].
This allows us to describe a map H(K, D) — H'(Gx, Wqr(D)) explicitly via the compo-
sition of the canonical map H'(K, D) — H'(K, D[1/t]), the identification H*(K, D[1/t]) =
HY(Gg,W(D)) (cf. Proposition 3.1.17) and the canonical map H'(K,W.(D)) —
H' (K, War(D)).

Secondly, we show that the map

DX (D) — HY(Gg, Wer(D)), x+— [g— log(x(7))z] (3.6)

which generalizes Kato’s formula of [23], §II.1, is an isomorphism, which may be proved
as follows. First observe that

HY(Grg,Bar ® D) = H' (Gk,Bar @k D5 (D)) = H (Gk,Bar) ®x DER (D).

From [21], Proposition 5.25, one knows that K = H°(G,Bgr) — H'(Gk,Bar), v
x - log x is an isomorphism. This gives the claim.

Definition 3.1.19. The generalized Bloch-Kato dual exponential map expj, D*(1)

is the composition of the above maps H'(K, D) — H'(Gx, War(D)) with the inverse of
the isomorphism DX (D) = HY(G g, War(D)).

Of course, in the étale case this is nothing but the dual exponential map considered by
Kato in [23]. But even in this more general case this map has the desired property with
respect to adjunction via pairings. First recall that one may define the K-bilinear perfect
pairing [ , |k, p by the natural map

[, Jx,p : DER(D) x DI (D*(1)) =5 DL (B, (1)) — K.

For the next proposition we note that Nakamura uses a different definition of the dual
exponential map (see [30], section 2.4), which we briefly recall (we refer to loc.cit for the
proofs): one may define the cohomology groups H'(K,Dgit(D)) by H:...(Tx,Dai(D)),
which is computed by the complex

C2 A(Daie(D)) : Dair(D) 1= Die(D).



3.1. BLOCH-KATO EXPONENTIAL MAPS FOR (¢,T'x)-MODULES 49

Since the natural map Ko ((t)) @k Dfl{R(D) — Dygi¢(D) is an isomorphism one has an
identification

9p : DI (D) < H'(K, Dgie(D)), @+ (logx(7))1 @ .

The second definition of expj ;, is then given by the composition of the map H YK,D) —
HY(K,Dgi(D)), [(z,y)] = tn(y) (for n big enough) and the inverse of gp. Since H'(Hp,
Bgr) = 0 for i > 0 the five term exact sequence gives H' (G, Wyr(D)) = H' (T, Bﬁf
D). Using the same argument as in Proposition 3.1.18 one sees that the natural map
HY(K,Dgt(D)) — HY(Gg,Wgqr(D)) is an isomorphism. Further, the natural map
HY(K,D) - HY(Gg, Wgr(D)) defined before is also given by [(x,y)] — tn(y). Hence,
using all these identifications one obtains a commutative diagram

H'(K,D) H'(K,Dgit(D)) = DX, (D)
HYK,D)—— HYGg,Wqr(D)) <—— H°(Gx, Wqr(D)),

which shows that the two definitions of exp* coincide.
Proposition 3.1.20. Let D be a de Rham (¢, 'x)-module over BL&K and let = €
DX, (D) and y € H'(K, D*(1)). Then
<eXpK,D(5E)7 Y) KD = TrK/Qp [z, eXPF{,D(y)]K,D
Proof. See [30], Proposition 2.16. O

Proposition 3.1.21. Let D be a semi-stable (¢, 'k )-module over BiigK. Let y € D¥=1

and consider y as y € (BfogK[l/t] ®r DE(D))N=0%=! via the comparison isomorphism.
Then for n > 0

eXp*V*(l)(h}:),Kn (¥)) =p "¢ "(y)(0).
Proof. As before we have

B oc—1
Vi, —1

hp k., ()(0) y— (o —1)b,

with (vk, — 1)(¢ — 1)b = (¢ — 1)y for some b € D[1/t]. Further Let n be big enough so
that we may embed this cocycle into Bqr ® D, hence ¢ "(y) € K,((t)) ® DE (D) and
we may consider ¢~ "(b) as an element in Bqg ® D. Since vg,,t = x(7k,, )t the action of
vk, — 1 is invertible on t* K,, ® DX (D) for every k # 0. Putting this together we see that
h}),Kn is equivalent in H'(K,, Bqr ® D) to

o—1
VK, — 1

(™" ())(0).

o+
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o acts via its image o € I}, (trivially) on K. Furthermore, if n; € Z is a sequence such
that 7 = lim;_, 'y;?'n one checks by going to the limit that

o—1 log,x(xk,)
Yk, — 1 log, x(7)

acts trivially on K,,. Hence, the above cycle is equivalent to

o —p "log(x(@))(¢ " (y))(0)

The claim follows now from formula (3.6). O

3.2 Perrin-Riou exponential maps for (p,['x)-modules

We make the following definitions:

Definition 3.2.1. Let M be a (¢, N)-module over F. Define Ngr(M) = (BjogK R

M)N=0, where N =1® N+ N®@1on Bl @p M.
If D is a semi-stable (¢, 'x)-module over BLgK then Ngr(DX (D)) = Ngr(D) (see
Definition 2.6.15).

Definition 3.2.2. Let D be a de Rham (¢, I'k)-module over BIigK.

a) Let Do 4(D) be the submodule of elements g € Ngg (D)%~ such that there exists an
r € Z such that the equation (1—p"p)G = 0" (g) has a solution in G € Nggr(D)¥="".

b) Let Do ¢(D) be the submodule of elements g € Ngqr(D)¥=C such that there exists
a family (Gj)rez of elements Gy € Ngr(D) with 0(Gg) = Gi+1 and an r € Z such
that (1 —p"p)G = 0"(9)

¢) Let Do (D) be the submodule of elements g € NdR(D)wzo such that the equation
(1—-p"¢)G = 0"(g) has a solution in G € NdR(D)w:pT for every r € Z.

We first note that if D — D’ is a morphism of two de Rham (¢, 'k )-modules over

B! ;¢ then this induces a map of I'g-modules Dy (D) — Do «(D’). Also, one clearly

rig,
has

Do (D) C Do (D) C Do y(D) € Ngr (D)=,

By the above definition one may also define the modules D .( ) by starting with a
(¢, N)-module.

We note that we shall define another module Dy __ (D) in Definition 5.1.1 which is “very
close” to Do ¢(D) (and in certain cases coincides with it) of which we think that it is the
“right” generalization of Do, ¢(D) in the crystalline case.

Definition 3.2.3. Let D be a de Rham (¢, ' )-module over Biig - We say that D is of
Perrin-Riou-type (or of PR-type) if D is semistable and Ky = Kj.
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Lemma 3.2.4. The map 0 : B! K= B! ) 18 surjective.

log, log,

Proof. This amounts to an integration of power-series, cf. [4], Proposition 4.4. O

Lemma 3.2.5. Suppose Ky = K{. Then the kernel of 9 on Bfog i 1s equal to Kj.

Proof. Let f € BngK Due to Proposition 2.3.2 and Lemma 2.4.3 there is a polynomial
P in B, ; such that P(f) = 0 and P'(f) # 0. Then d(f) = —(dP)(f)/P'(f), so that
a(f) = O if and only if f € K.

Now suppose f = >, fi logi 7 € B;rogK and O(f) = 0. Since log7 is a transcendent

element over any B! i this gives rise to relations O( f;)+(j +1)7TTJrl fir1 = 0 with f.4 1 =0.

ri
For ¢ = r this 1mpl1is fr = XA € Ky, hence O(f,—1) = —)\r”TH. Suppose there exists an
fe BngK with 9(f) = H'T” Then d(logm — f) =0, so that logm = f 4+ a with a € Ky, a
contradiction to the transcendency property of log 7. Hence, LH is not an element in the
image of d on Brlg x> and we obtain A = 0. By recurrence this shows that the kernel of 0
on Blo&K is contained in K. ]

Let again D be a de Rham (¢, I')-module over BLgK.

x @ Ngr(D) — B

Lemma 3.2.6. Let D be of PR-type. Then the map 0 : B! log, K

Ngr(D) is surjective.

log,

Proof. We have
i _pt K
Blog,K ®B1tlg x NdR(D) - Blog,K QKo Dst (D)a

whence the claim follows from the Lemma above. O

Proposition 3.2.7. Let D be of PR-type. The map
0: NdR(D)wZO — NdR(D[l])wzo(l)
is an isomorphism of I'"g-modules.

Proof. With our preparations, namely, Lemma 3.2.4 and Lemma 3.2.5, this proof works
the same as in [35], Proposition 2.2.3. O

Obviously the operator 9 induces a map of I'g-modules
0: NdR(D)wzl — NdR(D[l])w:1(1>

which however is in general neither injective nor surjective. This should be contrasted
with the étale case where D¥=1 = DT (V)w = HY(K,V ®q, H(I'k)) and the fact that
0 in this setting corresponds to the Tate twist isomorphism.

For a semistable (¢, ' )-module consider the following complex:

¢x(D): 0— DX (D)% DX (D) x DE(D) 2% DE(D) — 0
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with

do(v) = (Nv, (1 = @)v),
61(A ) = N — (1 = pp)A.
Hence,
H°(€x(D)) = DG (D)*~= "=,
H'(€x(D)) = {(\,p) € DG(D) x D (D)| Nu = (1~ p)A}/60(Dg; (D)),
H*(€x(D)) = DG (D)/(N,1 —pp)Dg (D).

One also checks that

DE(D)N=0 1 DX (D)
0 — WStDSW — H (Q:K(D)) — W — 0 .
I — (0,n) (3.7)

(A 1) — A

furnishes an exact sequence for H!(€(D)).

We see that H(€(D(k))) = 0 for k> 0 resp. k < 0 since the groups Dg(D(k))#="
and (¢ — 1)Dg(D(k)) vanish for those k. Similarly, H*(€(D(k))) = 0 for k > 0 resp.
k <0.

Now let D be a de Rham (¢, Ik )-module and fix a finite extension L/K such that Dy,
is semistable with Ly = Lj,.

Lemma 3.2.8. Let £ € IN. Then one has an exact sequence of I' x-modules

0= @ HD|L(~)))(i) N Nar(D (k)= (—k)) = Nar(D(k))¥=' (k)
—k<i<0

L Na(D)P=1 28 @ HNE(D]L (1))
—k<i<0

Proof. The proof may be done in an analogous way as in [35], Lemma 2.2.5. We give a
description of the map Rp following the definition of a map Rp (cf. equation (3.10))
since the constructions which give rise to it will be important later on. We just briefly
mention that this map depends on the inclusion Ngg(D) C Ngg(D|z) which is induced
by the inclusion D C D|r. O

From the lemma we see that, by considering the possible eigenvalues for (¢,

Dece(D) = 0"(1 = p~")Nar(D(h))"~,
Docg(D) = (1 = p"¢)Nar(D(~h))"~!

for h > 0 since the H(&€(D)), @ = 0,1, vanish in this case. More precisely, for étale
(¢, 'k )-module one has the following:
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Lemma 3.2.9. Let D = DLg(V) for a p-adic representation V' that is de Rham. Let h > 1

be such that Fil "D, (D) = DX, (D). Then Do (D) = 9~ "D (1—ph+t1o)Nyr (D(—(h+
1))¥=".

Proof. We may reduce to the case that D is semi-stable with Ky = K|, and further by
twisting that A = 1. We have to check that 0 : Nqr(D(—2))¥=! — Ngr(D(-3))¥=1(1) is
an isomorphism, i.e., we have to check the vanishing of H(€(D(—2))) and H'(¢(D(-2))).
For the first this is obvious since for an admissible filtered (p, N)-module that is positive
the eigenvalues of the Frobenius are positive. Similarly, thanks to the exact sequence (3.7),
we see that the H!-part vanishes. ]

Remark 3.2.10. We suspect that in the cases where V is as above and does not contain
the subrepresentation Q,(h) one actually has Do 4(D) = 07"(1 — php)Ngr(D(—h))¥=1.
This would fit in with the characterizing description of the big exponential map in the
étale case; cf. also the discussion in [34], section 5.1.

We recall the application Rp. For our purposes (since we may restrict/corestrict) it
will be enough for this part to assume that D of PR-type over Biig K-

Definition 3.2.11. Let g € Dy, 4(D) and r be big enough such that Dy 4(D) admits the

description in (3.9). A family of elements (Gk)iez in Bfog x @gt.  Nar(D) is called a
’ rig, K

complete solution for (1—¢)G = g if (Gy) = Gi41 (cf. 3.2.6) and J"(g) = (1—-p"9)G,
for r big enough.

If G = (Gy) is a complete solution of g € D 4(D) we also write 97 ¥(G) = Gy by
abuse of notation. Let s > 0 such that (1 — p°¢)Gs = 0°(g). Then one sees inductively
thanks to Lemma 3.2.8 that

itk K
Jj=—k
itk

(J +k)!

Wel-p*ee)(G=p"> =: (p® 1)(My), p; € DE(D),

j=—k

where for almost all j one has A; = u; = 0. On Bfog x @K, DE(D), as one checks easily,
we have the identity of operators

(PN@1+1N)(p@1—p F@p) = (W@1—p o) (N®1+18N) = (po1—p " 1op)N,

hence

N((p @ 1)(My)) = (p @1 —p "' @ p)(Ly),
since N®1 vanishes on elements of 3~ #-DX (D), hence the relation (by applying (v "'®1 =
¢ ® 1, which we may since 1 acts invertibly on > t . Dg (D))

N (M) = (1 —p Fo)(Ly).
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On the coefficients this implies the relation
Nuj = (1=p 7T o)A,

IfA=73 v/(G+ k! /7% and if one changes Gy to G}, = Gy + A so that still
Ok(G}) = 9%(Gj), then \; is changed to \j + N (v;) and y; is changed to uj + (1 —pip)v;.
Hence, Ly, is changed to L+ N (A) and My, is changed to My +(1—¢)(A), so that the class
of (A, pi) is well-defined in H'(€(D|L(—1))). The tupel (A;, 11;) may be considered as an
element of H'(&(D|.(—i)))(i), and we denote the collection of these elements element by
Rp(g), i.e. one has a I'g-equivariant map

Rp: D) — @ H(€(D[1(~1)))(i). (3.10)
1€EZ

We note that the map Rp in Lemma 3.2.8 is the composition of (1 — ) with Rp and the
natural projection to the sum @_, ., o H*(€(D|L(—1)))(i).
Define for all k € Z -

N(Gy) = Ly, = 97F(L)
W O1-10¢)(Gy) =9 @ L(My) = ¢ © 1(9*(M)).

These definitions imply that (calculating again in BLg Kk ®Ko DX (D))
V(1= @) (Gr) — My) = (v @ 1)((1 = )(Gk) — My)) =0,

hence, since 0 acts invertibly on (BfOg x ®K, DE(D))¥=0,

9 (9) = (1 — p*p)Gy, — M.

Of course, My, = L, = 0 for k big enough. We will also refer to the system H =
(1]

(LLI],M;C, G}) as a complete solution for g € Dy, 4(D), where by L, we mean that the
action of ¢ is multiplied by p. This extra factor is introduced so that the interpolation
property holds.

Following Perrin-Riou, we set
= @t" "Dy (D
1EZ
and
Dgo,g<D) = U(D>/(1 - p¥, N)U(D)

Proposition 3.2.12. One has the following exact sequences of I'g-modules:
R . .
0 — Doo,e(D) — Doog(D) =2 @ H' (€ (D] (~1)))(i)
1€Z

BB (U(D|1)/NU(D|L))#="

UDIL)N0/(1 = o)D)V

0 — Dq (D) — Do y(D) —

R
0 — Dooe(D) — Do f(D) =5
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Proof. See [35], Proposition 2.3.4. O

We remark that in the case where K/Q,, is unramified one can show all the right-most
maps in the preceeding Proposition are actually surjective. This can be deduced as in [35],
Proposition 4.1.1.

The following Lemma will show in an example that Do ¢( ) need not be exact:

Lemma 3.2.13. Assume K/Q,, is unramified. Let 0 — Dy — Dy — D3 — 0 be an exact
sequence of (¢, N)-modules over K. Then one has a commutative diagram of I' x-modules
with exact rows and columns

0 0 0 ,
0 BZ ;Eng D.. ;(Ds) — M 0
0 Dty Do (D) N —0
g
U(D2)/NU(D )= h
0 EUEDj%NuEDi;;%:p* (U(Ds)/NU(D3))?=P  —=P

0 0
where N = ker(Diqg(Dl) — Dgo’g(Dg)), P = coker(h), M = ker(g).

Proof. The diagram may be constructed from Proposition 3.2.12 and [36], Proposition
4.3.2. The surjectivity of f follows from the snake lemma. O

Definition 3.2.14. a) For a torsion free element v of I'x and i € Z Perrin-Riou’s
differential operator V; = [; is defined as

b) The operator Vo/(y, — 1) for n such that I, is cyclic is defined as

Vo — log(7n) : i (- 7” -
Yo — 1 logp(X(’Y))(’Yn - 1) Ing z:l

First, we remark that the second operator is not a quotient of two operators, although
it behaves as one would like. To clarify we observe that the first definition is independent
of the choice of v since log(y™)/log,(x(v™)) = m/m - log(v)/log,(x(7)). Hence, if Vo(y)



56 CHAPTER 3. EXPONENTIAL MAPS

for some y € D (for instance, y € D¥=Y) is such that ~y, — 1 acts invertibly on it we see that
(Yo — 1)"Vo(y) = %721(3/)' From this it also follows that (v, — 1)%721 = V. Secondly
we observe that )
1 . , 1
v, = 08 ") ( 0g(7) >
log,,(x(7)) log,(x(7))

where Tw' is the operator on B(T'g) which sends v to x(7)*7.

Definition 3.2.15. If h > 1 we define Q :=V}_1-...- Vo € H(Tk).

Lemma 3.2.16. Let D be a de Rham (¢, 'k )-module over BiigK and let h € IN such
that Fil~"DX, (D) = D5 (D). Then Q,(Ngr (D)) C D.

Proof. Since Qj, = Vj_10Vj,_g0...0Vy = t"9" it suffices to show that t"Ngg(D) C D.
First assume that D is semi-stable. We know from Proposition 2.6.12 that if D is positive,
then D (D) = (Bf, x[1/t|@ D)'* C B], ; Bl D, so that Nag (D) = (Bf_ .
DX (D))N=0 c D. For general D if h > 1 is as in the statement then D(—h) is positive, so
that t"Ngr(D) C D. Now if D is de Rham and L/K a finite extension such that D]y, is
semi-stable, then we have that "Nggr (D) C t"Ngr(D|z) C D|r and t"Ngr(D) C D[1/t],

so that t"Ngr(D) C D as required. O

Definition 3.2.17. Let D be a de Rham (¢, ' )-module over BLgK and h > 1 be such
that Fil~"DX, (D) = DX (D). We define Perrin-Riou’s big exponential map by

Qp.p : Do y(D) — D¥=Y
g—Vp_10...0V(g)

Lemma 3.2.18. One has the following commutative diagram:

Do y(D) —2% Do 4(D(K))

J{Qh iQhM
tk

DY=0 D(k)¥=0

Proof. This is clear from the fact that €, = t"9". O

Lemma 3.2.19. Let D be as before and assume that K is such that I'x is torsion free.
Then one has a canonical map h}(,D :(p —1)D¥=! — HY(K,D)/(D¥='/(yx — 1)) such
that the diagram

p—1

(p - 1D pi=t

ﬁ}wl ih}w

HY(K,D)/(D?=Y (v — 1)) HY(K,D)

is commutative.



3.2. PERRIN-RIOU EXPONENTIAL MAPS FOR (¢,I'x)-MODULES 57

Proof. Obviously D¥=!/D%=! = (¢ — 1)D¥=!. It is clear that the map h}(mD factorizes

over D?;l. The claim follows. O

Remark 3.2.20. If D is of PR-type and let h be such that (3.9) is satisfied. If g € Do (V')
and k > 1 — h we actually have Q,(g) ®@ e, € (1 — p)D(k)¥=1.

Proof. Let 97%(g) = (1 — ¢)0~*(G) — 9~ %(M). Then

h4k—1 j
M) = > pjor—; € HOD(V(k)).
§20 I
Since Vjyx_10...0 Vg = thkgh+F the 9=F(M)-part of 97%(g) is killed by Q. O

Hence, we see that if i is such that (3.9) is satisfied and h — r > 0 the diagram

(Bl,, x @ DE(D(—r)N=00=1 2 p_ =t
ll—pﬂo 1-p"p
(1 - p9)(B,, s ©r DE(D(—r))N=00=1 22 (1 _ proy p(pye=t
Do 4(D) & (1—¢)Dv=!

commutes.
Let D be of PR-type, g € Do 4(D) and G = (Ly, My, Gi) be a complete solution for
g. Then for each k£ and n > 0 one has that the element

En k(@) = p" Dm0 H(H)(0) = p" D (p7 0T (L)(0), 7" H(M)(0), 7 "07H(G)(0))
may be viewed as an element in H!(€x (K, D(k))) (see (3.5)).

Theorem 3.2.21. Let D be a de Rham (¢, 'k )-module over BiigK, g € Du ¢(D) and
G a complete solution for g in L. Let h be such that (3.9) is satisfied. Then for £k > 1—h
and n > 1 one has

h}@,D(k)(Vh—l o...oVo(g) ®eg)

= p—n(Kn)<_1)h+k—1(h +1-— k)' ]Coan/Kn €XPx,,,D(k) (En,k(G))y

_
[L, : Ky
where we consider the elements on both sides in H(K,, D)/(D¥=/(vk, —1)).

Proof. The proof is divided into several parts. The first general assumption is that D is
of PR-type.

Let D be pure of slope < 0. Then the exponential map has the description given in
Proposition 3.1.14. We may assume n big enough so that I'; is torsion free. Recall the
relation

Q) ark(0(G)) = Qo p(G) @ ey,



58 CHAPTER 3. EXPONENTIAL MAPS

Hence, for the k > 1 — h we have
h}(mD(k)(vh,1 0...0Vo(G)®ep) = h}(mD(k)(Vthk,l o...0oVo(07F@))).

Let yp = Vhaqg—10... Vo(a_k(G)) and wy,p = Vipqyp—10... 'yYEl (8_k(G)) Then in this
case

oc—1
hic.0 (90)(@) = ——79n = (0 = Dba € H' (Ku, DR)),

n

where b, € D is such that (v, — 1)(p — Db = (p — 1)yn. Recall that 07%(g) =
(1= )0 "(G) = 9"(M) and Qp),n+k(0"(9)) = (1 = ©)Qp () h11(07F(G)), hence

\% _ \% \%
Vhtk-10.. o _0 1(‘9 "(9)) = Visr—10.. o _0 1 (1=9)G ) =Vhyg-10-. o _0 1 (M_y).
With this we may choose
RNAY k Qp(k ~
b= (p = 171 (F2BER (1 )Gy - PO ) ) € B

Now for n > 0 we have g € BL;;K ® DE(D), hence the cocycle h}(mv(k)(yh)(o) =
(0 — 1) (wy,p, — by p) is cohomologuous to

hic, v o W) (@) = (0 = 1) (¢ (wnn) = ¢ (bun))

since (¢ — 1)(wnp — bnp) € DE(D(K)) so that Gk acts trivially (and ¢ acts as usual
invertibly on DX (D(k))). We use the exact sequences from the generalized Bloch-Kato
map from Proposition 3.1.14. By the general properties of the connecting homomorphism
for continuous cohomology we have the following: if (z,y,2) € H'(€x(K,D(k))) and
T e l~?bg[1/t] is such that g(%) = (z,y,2) then expg, pr)((z,y,2))(0) = (0 — 1)Z. First
one has
¢ " (y) — ¢ "()(0) € tKo[[t] ®K, D& (D),
hence
Vo
Tn — 1SO

The same recursion as in [4], Theorem II.3 shows that

o "(wnp) — (—1)h*1(h —Dlp e ™(y)(0) € Bjer ® D.

“My) =p " "(y)(0) 4tz

Next we have

Vo
T — 1

N7 (wnn) =@ "(bap)) =p "¢ "(Vhyr—10... (NO (@))).

Again we see by recursion with our choice of h that since NO~%(G) = L_; and

h—1
Lop=) X-t/i,
=0



3.2. PERRIN-RIOU EXPONENTIAL MAPS FOR (¢,I'x)-MODULES 59

that we obtain an equality

p "o "(Vhyk-10... S (L-i)) = (=1)" 1 (h = 1)lp~2"™™(L_)(0).

Finally one has

Vo
n— 1

(p =Dl (wnp) = ¢ " (bnp)) = ¢ " (Vhrr-10... (M_)).

Similarly, as before we have
h—1
M_j = Z,Ui St /il
i=0

so that the recursion shows

Vo
T — 1

¢ "(Vhyr-10... (L_1)) = ()" (h = 1)lp~"p " (M_)(0).

Altogether this shows that

(=) (k= Dl expi, py (Eak(G))(0) = (0 = 1)(¢ " (wn) = " (bap)),

which is the claim in this case.
Next assume D is pure of slope > 0. Then the exponential map has the description
given in Proposition 3.1.16. First we note that h}(n D(k)(QD,h(g) ® er) = (z,y) with

Vo
v — 1

Y=Qpm)hik(G-k); T =Vpygp_10...0 ((p = )(G—k))-

The exponential map sends =, x(G) to ¢ "(G_)(0) € X'(D)°%. The identification
D/(¢ —1) 5 XY(D) is given by the following construction (see [7], Remark 3.4): If
€ D/(¢—1) and y € D[1/t] is chosen so that (¢ — 1)y = x then for n > 0 the
image of x is ¢ "(y). With this we see that under these identifications the class of
h}{mD(k)(QD,h(g) ® ex) is send to

Vo

1) = (=D (b= Dlp " "(G-4)(0) mod Bj ® D

(Pin(V}kHC,l 0...0

where we use the same recursion as before, hence the claim in this case.

In the general case of semistable a D of PR-type one may use the exact 0 — D<o —
D — D~y — 0, where D<g is the biggest submodule of D with slopes < 0, and D~ =
D/D<p, which is a (¢, 'x)-module with slopes > 0. By using the description of the
isomorphism (3.4) and the explicit description of the transition morphism for the cone one
is reduced, since all maps are compatible with exact sequences, to the case of a module
with all slopes < 0 or all slopes > 0. But in these cases we have just verified that the
statement holds.
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Now assume D is de Rham and let L/ K be a finite extension such that D is of PR-type
over L. Then for y € Dy, 4(D) one has, if we consider y € Do 4(D|1)

Rest, /i, (Mic, poy(20n(®)) = B1, pi, (200 (1)),
so that the claim follows from Proposition 2.6.7. O

For the record we state the next proposition in case D is semi-stable. As before, let
h > 1 be such that (3.9) is satisfied for D, and dually let A* > 1 be such that (3.9) is
satisfied for D*(1)

Proposition 3.2.22. a) If k> 1—h and n > 1 then
i, oy (Vh-10...0Vo(g)®ex) = p " F) (=) (- 1—E)l expye, pory (Bnk(G))

b) If K < —h* and n > 1 then
* 1 —n(Kn) 1 —n(a—k —J
expy, p-1) (P, py (Vi—10- . .0Vo(g)®ex)) = p T (0" gt 7e;)(0)
Proof. The first part is just the preceding theorem. For the second observe that due to

Proposition 3.1.21 one has

expic. p-1) (M, oy (Vh-10 .0 Vo(g) @ ex)) = p " HWp (V)1 0... 0 Vo(g) @ ) (0).
A computation with the Taylor series shows that

1

mgofn(@’kg ®t Fep)(0),

p M E) o (7, 0. 0 Vo(g) @ er)(0) = pEn)

hence the claim. O

In [35], Perrin-Riou shows how to construct an “inverse” to Qp, in the case where D
is étale. First, let us define the following;:

Definition 3.2.23. If 2* > 1 we define Ly« =V _p-10...0V_1 € H(Ig,).

Returning to Perrin-Riou’s setting, let V' be semistable (over an unramified extension)
and let h,h* > 1 be so that Fil "Dy (V) = Dg (V) and Fil ™" Dy (V*(1)) = Dg(V*(1)).
For x € H} (K,V) = DI(V)¥=! she shows that (using properties of the determinant of
Qyp) there exists an y € Do r(V') such that

H V_i(lg = 1z) = Qun(y).

With our description of the map €2y, this implies that, by calculating by extending scalars
to the total ring of fractions of H(I'x), that Lp-((¢ — 1)x) € D ¢(V), and Perrin-Riou
denotes this map by Ly . More generally, we have
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Proposition 3.2.24. Let D be a de Rham (¢, ' )-module over BIigK and h* > 1 such
that (3.9) is satisfied for D*(1). If x € D¥=! then Lp«((p — 1)z) € Doo (D).

Proof. We first assume that D is semi-stable so that D C D[1/t] = Ngr(D)[1/t] =
(Bfog,K Rpgt DX (D))N=°[1/t]. Recall that on BL&K[l/t] one has V;(t'z) = t'Vo(x) for
rig, K
all i € Z. Hgnce, if v =t"1a’ € t7INgr(D) then V_;(z) = 9(z') € Ngr(D). A recursion
argument then shows that if n > 1, x = ¢t™"2’ and V_, 11 0...0V_q(x) = 9" (¢t~ 2)
then V_,0...0V_;(x) = 0"(z’). This shows that a base for D lies in Dy 4(D) for h* big
enough under L, hence Ly« ((¢ — 1)x) € Dy 4(D) since (¢ — 1)D¥=L, hence the claim in
this case. The general case may be deduced as in the proof of Lemma 3.2.16. O

Hence, we may define:

Definition 3.2.25. Let D be a de Rham (p, 'k )-module over Biig 5 and choose L/K so

that D] is semi-stable over BLgL. Let h* > 1 such that (3.9) is satisfied for D*(1). We

define Perrin-Riou’s Logarithm map by

ED*(I),h* . p¥=l — Doo,g(D)

Dual to the statement of Lemma 3.2.9 we have:

Remark 3.2.26. If D = DLg’K(V) is étale then one may choose h* greater or equal to
B such that Fil™" DX (D*(1)) = DA, (D*(1)).

3.3 The crystalline case

Let D be a crystalline (¢,T')-module over BIigK, that is, DX, (D) is a Ko-vectorspace
of dimension d = rank(D), equipped with an action of a Frobenius ¢. We want to
give a short description of the module Dy, (D). Recall that one may define the ring

B . =B nBl

rig, K rig rig K- If one fixes a choice of an element wx as before the identification

in Proposition 2.4.2 for BLg 5 gives then rise to an identification of the set of power-series

{Z ant"| a, € K{, lim |a,|p" =0V0<p< 1}

with Br+ig,K via the map f — f(mg). It is clear that one has an identification BI&K =

+
Brig,
4.0.3) one sees that (Bjig )V @k, DE, (D) is a free module over this ring.

F OBt B}, and since (B})¥= has a structure of a H(I'x)-module (cf. Proposition

Proposition 3.3.1. With the assumptions above one has (B;EgK ® DE. (D))¥=0 c
Do (D).
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cris cris

Proof. Let g € (B;th®D (D))¥=%. We may assume that DX

(D) is “positive enough”
so that ) -, ¢"(g) converges and gives an element in (B;gg x @DE. (D))¥=L. Then from
the computations of the surjectivity for 0 it is clear that there exists a family (Gy) with

G € BngK ® DX, (D) such that 0(Gy,) = Gg1, i.e. g € Deo #(D). O

Cris

In fact, we conjecture that equality holds in the above proposition We sketch a proof
in the case that there exists an r such that (BLgK ® Deis(D))¥=1 C Bxg & @ Deris(D)
(which holds for example in the unramified case). Choose f € Doo, f(D) such that f &
(B ® Deis(D))¥=0. Again by twisting D to be positive enough we may assume that
there exists a G € (Bing ® Deis(D))¥=! such that (1 — )G = f. Then obviously G
has only finitely many terms a, 7% in its development as a Laurent-series for n < 0, and

let m be the smallest such that a,, # 0. Now, g € B;g and V( leaves BI K stable,

so that d(mk) € B;’;&K. Further, by looking at the development of (7)) = (51)317()})) we
may choose 7 in the beginning in such a way such that O(ngx) & 7x - Bjig’K Hence, the
development of G/0(mk) has a smallest term a},,. The lift under partial hence has a term
ay, 1 # 0. Repeating thls step a finite number of times, we see that eventually there exists
a smallest term b_ 17rK in the development, which contradicts the choice f € Dy (D),
hence the claim.
For the rest of this section we assume that K/Q, is unramified. We show that one has
the desired equality in Proposition 3.3.1 and collect some facts and notation from [35],
section 2.4.

For every i € Z let
Ai s (B )" @k Deyis(D) — (Dyis(D)/ (1 — p'0)Diis (D)) (0)

f = A8i(f) = 9'(£)(0)  mod (1 - p'e)Deys(D),
where ¢(0) for g € BLg’ ¢ means m — 0, which is well-defined since 0 is an isomorphism
on (B;JIg K)w:O.

Proposition 3.3.2. One has exact sequences

0 — (¢ = (B, x @ Deris(D))" " — (BIg & ® Deais (D))~ —

crls D) .
—>@ 1_ (D))(z)—>0

CI’lS

and

_ 1 @)
0 — (¢ = (B}, x ® Deris(D))*=" — (9 = 1)(B, ;¢ @ Dewis (D))= =5

(95) i1,
D Deria(D)F7 7 () — 0,
7<0
for some map 9;, j < 0 (cf. [35], section 2.4). If Deyis(D) is “positive enough” the map
0; coincides with Rp j, so that

DOO,f(D) (¢ )(B:g K® DcriS(D)w (B:g K® DcriS(D))wzo-
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Proof. In the unramified case this may be done exactly as in loc.cit., Proposition 2.4.1.,
cf. also (2.4.1), (2.4.3) there. O
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Chapter 4

Reciprocity laws

If Dis a (¢,I'x)-module over BLgK we denote by C(D) the finitely generated H(T'k)-
module (¢ — 1)D¥=! (see Theorem 2.6.6). Further we use the notation Crior(D) =
DY=1/(D¥=1)4,, . Similarly, if T'is a Z,-representation of G we set

C(T) = (g — )D(T)*=", ¢l (T) = (¢ — D] (1),
so that C(T) is a finitely generated A-module and H(I'x) @A C(T) = Cjig(T).
Let us first recall some facts about the interpolation properties of elements of (B;Eg prp:o‘
Proposition 4.0.3. The continuous map
T =0
B(lg,) — (Bjyq,)"
fre=f ()
is an isomorphism of B(I'g, )-modules. It restricts to an isomorphism H(I'g,) — (BIg Qp)wzo_
Proof. See [35], Corollary B.2.8. O

Proposition 4.0.4. Let f,g € (B:E&QPWZO and suppose that 0% (f)(0) = 9*(g)(0) for all
k> 0. Then f =g.

Proof. Recall that x(v) = 1 + pu with some u € Z,. By the preceeding proposition

proposition we may assume f = A\(y—1)-(1+7) and g = pu(y—1)-(14m) with A\, u € B;Eg Q>

where A =3 ~gapm" and p =3 <4 b,7". Then " (£)(0) = Y n>0 an(x('y)pk —1)". By
assuming ag, by € Z,, (by multiplying with an appropriate power of p) and by noticing that

X(’y)pk =1 mod p* one shows via mod p’ considerations that ag = by, then a; = by, and
SO on. O

65
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4.1 The pairing ( , )iwp in the étale case

For this section let V' be a p-adic representation of G'x. Choose a G g-stable Z,-lattice T’
of V. Perrin-Riou defined a pairing of A-modules

(, v Hyy (K, T) x Hy, (K, T*(1)) — A(Gg) = A
that is induced by the local Tate-pairings
inv
(s Viwv  HU (K, T) x H' (K, T*(1)) — H*(Kn, Zp(1)) = Z,

and the isomorphism Homgz, (Mr,,Z,) = Homy(M,Z,[I'/T;]), which holds for any A-
module M of finite type. In the same vein Colmez defined a pairing

(, iw:C(T) xC(T*(1)) — A

via the formula (cf. [17], Proposition VI.1.2)

(2, 9) = lim Y v (7:_ ST ® y) o (4.1)
O’EFK/FKn
for x € C(T) and y € C(T*(1)).
To be able to further relate to Colmez’ work, we recall the following

Definition 4.1.1. Assume that I'x = 7Z,,. If i € Z,, we write o; for the element o; € I'q,
such that xcyc(0;) = 1.

We remark that Colmez considers the case 'y = Z,, but his definition extends to the
general case. We note that we have switched in (4.1) the o to o~! in Colmez’ definition
in loc.cit. to be consistent with the “classical” definition given by Perrin-Riou. Also,
we have dropped the additional operator o_; in the az-component (cf. [17], 1.2, section
4) which is needed only later when one formulates reciprocity laws. Additionally, if we
assume log,(x(v»)) = p" we may drop the factor 7, (vn).

For T' as above one has an exact sequence

0 — DI(T)¥=! — DI(T)¥=! £33 ¢(T) — 0
(see for instance [15], Proposition 6.3.2). Hence, one has an identification
o —1: Hiy (K, T)/Hiy (K, T)ior = C(T)

and an identification of pairings ( , )y = (, )1w on D(T)¥=! x D(T*(1))¥=!. Further, the
pairing ( , )1y has the following properties:

Proposition 4.1.2. (See [33], Lemma 3.6.1)
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a) For all A € A one has

<)‘ . x7y>IW =\ <.’L’,y, >IW = <.T, L()‘) . y>IW7
where ¢ is defined as in section 2.6.2.

b) For every j € Z ,
(z®ej,y®ej)w = 0" ((z, Y)w)-

We recall that the maps

hl

Ko DI(T) : DI (T)¥=! - HY(K,,DV(T)) = HY(K,,T)

give rise to an isomorphism DT(T)¥=! = H} (K,T) of I'x-modules. This implies the
following equalities,

DI(7)Y=" @p (k) = H, (K, T) @p H(Tk) = Hiy (K, T @x (') = Dl (o (V)¥,

where for the two last identities we refer to the discussion in [37], section 6.2. Hence,
by the A-bi-semilinearity of ( , )1y one may extend this pairing to Cjig(V) X C;rig(V*(l)).
With the description of H(I'k) as in section 2.6.2 one also has a natural extension of ¢ to

H(T k).
If we now assume K/Q, to be unramified then Colmez proved the following ([17],
Proposition VI.1.2):

Proposition 4.1.3. (, )1y is a perfect pairing, i.e., it induces a A-equivariant isomorphism
C(T) = Homy (C(T*(1)),A)".

Hence:

Proposition 4.1.4. If K/Q,, is unramified, the pairing ( , )1y extends to a perfect pairing
of H(T i )-modules on Cf (V) x C(V*(1)).

rig

4.2 The pairing ( , )1w.p in the general case

Recall (cf. (2.6)) that we have cup product pairings for BLg K®Qp A4 [1/p]-modules. We
are especially interested in the following case:
inv
(VD o H'(Ka, D) x H' (K, D¥(1)) — H2 (K, B, (1)) = HA (K0, Q) = Q,
(4.2)
resp.
(. )p, s H'(K.Dn) x H'(K,D*(1),) — H*(K, (Bl (1)) (43)

n

which are induced by the map (using representatives as in (2.6))

((2,9), (w,v)) — (v (w))(y) = (p(v))(x).
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resp.

(@ Ay ), (wea,veB)) — (vr(w))(y) @ pa — (pv))(z) @ AB.

By abuse of notation we also denote by

—_—~— —_—

(, V&0 : HY(K, D®q, Qp[Tx /Tk,]" ) x H' (K, D*(1)®q, Qp[T'x /Tk,]")" — Qu[T'x/Tk,]

the pairing induced by (4.2) and use the identification

Homgq, (M, Qp) = Homg,r /1y, (M, Qp[T'x /T'k,])*

which holds for any Q,[I'x /I'k,, ]-module M.
With these preparations one is tempted to define a pairing (, )rw,p on DY=1x D*(1)¥=
via the formula

1

@ = Im Y (o7l Bh(@). By (1) ko o
O'EFK/FKn

but it is a priori not clear whether this element will appear in H(I'x) (it will however
converge to an element in Q,[[I'x]] = Jim QpI'x/Tk,]). It is possible to show the con-
vergence with a version of [33], Lemma 1.2.2. We will however give an alternate definition
and show that this definition has the right “interpolation property”.

Recall that we have projection maps hkmD : D¥=! — HY(K,, D) and hlﬁn . DY=1

H'(K,D,). We observe the following

Lemma 4.2.1. Lety € D andv € D*(1)¥=!. The elements <h}(n’D(y), h}{n,D*(l)(v»KmD €
H2(Kyp, B, (1) and (b} (y), h;TI)n (v))p, € H*(K,Dy) are computed via (yx, —
D7 He =Dy ® (¢ — 1)(v).

Proof. For notational purposes we only treat the first case. Let (x,y) (resp. (w,v)) be the
tuples obtained by the projection h}(mD (resp. h}(mD*(l)) so that (h}(mD(y), h}(mD*(l) (V) K,..D

is the class of y ® v, (w) — x ® p(v) in Biig’K(l)/(cp — 1,7k — 1). Since z € D¥=Y one
easily checks that ¥ (p(v))(x) = 0, so that this class is equivalent under the isomorphism
in Theorem 2.6.6 to the class of (yx(w))(y). Similarly, one sees that ¢(y) ® yi(w) is the
trivial class, so that we may compute

(hic, pW)s Wi, o) () KD = (1= 9)(y) © 7K, (W) = (1=K, (2) @ i, (w)
=2 @K, (w) —r@w = (yr, — 1) e~ D) @ (¢~ 1)(v)
in H?(K,, BL&K(l)), which concludes the proof. O

With this we make the following definition: first assume that I'x is torsion free. If
y € DY=1 then (p—1)y € E:f:o and (yx — 1) acts invertibly on ﬁizo so that there exists
a unique element z = (yx — 1) (¢ — 1)y € Ezzo' We define for every n the pairing

(, Mw.p : DYTE x (D*(1)Y=H) — A,[1/p]
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via the projections D¥=! — D,,, y + x, D*(1)¥=! — D*(1),,, t — t ® 1 with the compo-
sition with the natural map

inv

D, x D*(1),, — (D@ D*(1)), % B, (1) = Q, ®q, An[1/p).
Here, inv is the invariant map
BIig,K(l) - HQ(Kv BIig,K(l)) = Qp.
That is, we obtain a compatible family of maps of A, [1/p]-modules
DYt @a An[1/p] — Homy, 11, (D*(1)"~! @4, An[1/p))", An[1/p]).
Taking the limit over n one obtains the desired bi-linear pairing of H(I'x)-modules
{, Vw.p : DY= x (D*(1)¥=1 — Ay = H(Tk).

Now if ' decomposes as Ag x I'- with I, torsion-free we know that there exists an n
P K K

such that ', C ' is torsion free. Since one has Biig K, = Biig x one may consider D
and D*(1) as (¢,I'k, )-modules and one obtains the above pairing (, )1w,p|_, whose

rig, Kn,
image lies in H(I'k, ) C H(I'k). Define
W wp= Y <U*1y,t>lw,1:)|]3T o€ H(I'k).

O'GFK/FKn rig, Kn

for a choice of representatives o.
Now we can prove:
Proposition 4.2.2. If y € D¥=! and t € D*(1)¥=! then
0" ((y, t)iw,p) = Z (0 ' y®er),(t®et))knp o mod (v —1)

UGFK/FKn
for every k > 0,n > 0.

Proof. We first look at the case of K = 0 and assume ' to be torsion-free. Recall that
D¥=l > [l (K,D) and Ay = lim (An[1/p]) may be considered as an intersection of all
An[1/p]. The projection maps h}{n p and p,, are compatible in the following way:

_ Pn —9=0
D¥=1 D,
h b
pr —_
ZYKp, D) —— (D ® Q,[Tx /T'x,])*=°
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where p,(y) = (yx — 1) 71 ((¢ — 1)(y) ® 1) and the vertical arrow on the right is induced
by the projection (via division with remainder) H(I'x) = Q,[[I'k]] = Qp[l'x /T'k, | which
factors over A,[1/p|. Similarly, we have for D*(1)

*

D*(1)»= D*(1),,
lh}(n,D*(l) \L
(¢—1)opr —

2" (Ky, D*(1)) - (D*(1) ® Q[T /T, ])¥="

where p’(t) = (¢ — 1)(t) ® 1. Hence, we see thanks to Lemma 4.2.1 and the following
commutative diagram

D, x Dr(1),
L |

D®Q,Tk/Tk,] % D'(1)®Q[k/Tx,] = WK/Tx,]

An[1/p]

where the vertical maps are all the canonical projections that the claim follows in this case.

If 'k has torsion then the claim follows by considering the single (o~ 'y, ) 1w,D| : . The
Bri  Kn

claim for general k£ can then be derived from the £ = 0 case by the properties 01§ the cup-

product pairing for D and D*(1) by using the analogue of Proposition 4.1.2, b). O

Lemma 4.2.3. Let f : M — N be a map of (p,I'x)-modules which induces a map
f*: N*(1) - M*(1). One has a commutative diagram of A,[1/p]-modules

f®1l Tf*@)l

MUY= @n,, Mnl/p] X M (1)Y= @a, An[1/p] = Au[1/p]
NY=' @, Anll/p] - x N*(1)Y7' @a, An[l/p] = An[1/p]

where the horizontal arrows are induced by the pairing ( , )iw,b-

Proof. This may be derived directly from the definition of the pairing resp. the definition
of f*. O

Corollary 4.2.4. Let f : M — N with induced f* be as above. The diagrams

M=l —— HOH]H(FK)(M*(l)w:l, H(FK))

|

N=1 —— HomH(pK)(N*(1)¢:1, H(FK))
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and

KT k) @ury) MY~ — Homg o) (K(T k) @) M* (1)Y= K(Tk))

| |

KT k) @ury) NV=F —— Hompr o) (K(T k) @) N* (1)Y= K(Tk))
are commutative.

Proof. The first is a direct consequence of the preceeding lemma by taking the limit over
n The commutativity of the last diagram is clear after tensoring with C(I'x). O

We note that since the pairing ( , )1w,p by definition factors over C o (D) X C jyor (D*(1))

for a (¢,I'kx)-module D over BL&K, so that one may replace the ( )¥=!-part for all the
modules in the preceding Lemma and Corollary by C o ( ).
We want to show that the pairing (, )1w,p is perfect. For this we need to extend it to

a bigger module and assume that K/Q, is unramified for the rest of this section.

Proposition 4.2.5. Let D be a (¢, I'x)-module over B! Then there exists a finite

rig, K*
extension L/K such that (L ®q, D)¥=" is a finite free L ®q, B(I'x)-module. As a conse-

quence, D¥=0 is torsion-free as a H(I'x)-module.
Proof. See [16], V.1.19. O

Proposition 4.2.6. If 0 -+ D’ — D — D" — 0 is an exact sequence of (p,'x)-modules
then

0 = K(Tk) @3rg) Crror(D') = K(Tk) @nry) Crror(D) = K(Tk) @nrye) Crtor(D”) — 0
is an exact sequence of K(I'k)-modules.

Proof. Since (D'Y=1)ior = (D¥Y=N)ior N D¥=1 and since taking ¢ = l-invariants is left
exact, the exact sequence 0 — D’ — D — D” — 0 furnishes an exact sequence 0 —
Cltor(D") = Crror(D) — Cjior(D") of torsion-free H(I' i )-modules. Hence, one obtains an
injection Cjior(D)/Cror(D') = Cior(D") of H(T'i)-modules of the same rank equal to

rkgi D" [K : Qp] (cf. Theorem 2.6.6). By Proposition 2.6.4 one also sees that Bjig Q
rig, K )

has a!theory of elementary divisors (cf. also [4], Proposition 4.2). Hence, the quotient
of the last injection is torsion and is killed by tensoring with the total ring of fractions
K(k) of H(T'k). O

For the next theorem we remark that if D is an étale (¢, 'k )-module then p—1 induces
an isomorphism Cop (D) = C(D) (see e.g. [15], Proposition 6.3.2).

Theorem 4.2.7. Let D be a (¢, 'k )-module over BIig,K‘ Then the pairing ( , )1w, D iS
perfect on K(I'x) @31y Crror(D) X (K(Ck) @91y Crror(D*(1)))" as a pairing of K(I'k)-
modules.
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Proof. We first prove the theorem in the case of a pure module. Let d = rkD, deg(D) = s
so that u(D) = s/d. Since deg(D*) = —deg(D) we may assume that deg(D) > 0. If D
is étale (i.e. pure of slope 0) then the statement holds thanks to Proposition 4.1.4. So
let D be such that s > 0 and assume that the statement is true for all pure modules of
degree > 0 and < s. As in the proof of [29], Theorem 4.7, one has an exact sequence
0—-D—FE — t_lBLg’K — 0 with E a (¢,'x)-module of rank d + 1. E posesses a
unique slope-filtration 0 = Ey C Ey C ... C E; = E such that E;/E;_; pure of positive
slope with degree < s, cf. loc.cit.. Hence, one is reduced to the case of an exact sequence
0 - FE — E — E” — 0 such that the statement holds for E/, E”. Due to Proposition

4.2.6 and Corollary 4.2.4 we obtain a commutative diagram

0 0
K(Tk) @3(r) Crior( E') —— Hompg 1oy (K(Tk) @ ey Crron(E*(1))" K(Tk))
K(Tr) @) Crror(E) —— Homp(p, ) (K(T' i) @3r ) Crror(E* (1)), K(Lk))

K(Tx) @31 ) Crror(E") — Homg 10y (K(T i) @prye) Crron(E™ (1)), K(Tk))

0 0

which shows that ( , ), p is perfect for E. Now, using the same diagram with D, E,
t_lBLg 5 in place of E', E, E"” we know that the middle horizontal arrow is an isomor-

phism. An easy calculation shows that

C/tor((t_lBIigJ()) - HomH(FK) (C/tor(tBLg,K)(l))a H(T'k))

is injective: both are free H(I' i )-modules of rank one, so it is enough to show that a basis
for C /tor(t_lBIig i) is sent to a non-trivial homomorphism, which may be checked with

Proposition 4.2.2 and the result that the Tate pairing is perfect on t_lBLgK X tBIigK(l)
(see [29], Lemma 4.5). Hence, the corresponding map for IC(I'x)-modules is injective, so
that the pairing is also perfect on D.

For general D one is reduced by using Kedlaya’s slope filtration theorem to the case
of an exact sequence 0 — D' — D — D" — 0 of (¢, 'k )-modules such that the statement
holds for D', D”. By the same argument as before we obtain that it must also hold for

D. O
We shall also simply write that the above pairing is perfect on D.

Corollary 4.2.8. Let D be a (p,I'x)-module over BiigK. Then (as H(I'k)-modules)

DUT! = De=l,

tor
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Proof. Looking at description of the pairing ( , >5n in Proposition 4.2.2 we see that an ele-
ment y € D¥=!is send to the trivial homomorphism in Homy, (1] (HY(K,D*(1),), An[1/p]).
Hence, the isomorphism in the previous theorem shows that KC(I'x) @y (r,) D#=! =0, so
that D¥=! is torsion. Since D¥=1/D¥=! = (¢ — 1)D¥=! C D¥=C and the latter is torsion-
free as a H(I'k)-module, we get the claim. O

4.3 The pairing |, |iwp

For this whole section we assume that K /Q, is unramified, hence I'xr = I'q,. The following

is inspired by Colmez’ approach to build the “correct” convolution on (BI og K)d’:O which
gives rise to reciprocity laws. Let us recall the construction (cf. [17], V.4).
If 41 is a measure on Z,* then the Mahler transform is defined as 4, = fZ§ o(z)p(x).

If p1, po are two measures on Z,; and A, , Ay, the respective Mahler-transforms, one has
the convolution p * ue, which is a measure defined via

/X P * iy = / L ey (@)p2(y)-
VA VASYAS

The Mahler-transform hence takes the form

Apprip = /Z o IF D m@na(y)
p XZLp

S RD S (1 + T)pu1 (2)pia ).

i,j€Z; mod pn (P Zp)x (4" Zp)

If one puts zy = ij+i(x—j)+j(y—i)+ (z —j)(y — ) and uses the fact that (x —j)(y —1)
is small in (j + p"Z,) x (i + p"Z,) one obtains

Az = Jim > (14 T)Y / (14 T) D=0y (@) o (y)
i.jE€Z mod pn (G+P"Zp) % (i+p" Zp)
= lim > A+ T)0i((1+ T) I Resjypnz, A )i (1 +T) "Resiprz, Ay, ).
i,jEZf; mod p”
One has

(1+T) "Respipnz, Ay = Respnz, (L+T)7FA) = "y (L+T)%4,,), 1=1,2,
and thus finally

Apyspy = ngrfoo Z (1+ T>ij@n((0i¢n((1 + T)_jAul))(Uj¢n((1 + T)_iAm)))'
i,jGZ;< mod p"

Colmez proved:
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Proposition 4.3.1. Let Dy, Dy, D3 be étale (¢, 'x) over Bi and let M : D1 x Dy — D3
be a Bg-bilinear form that commutes with the action of ¢ and I'i. Let y € D}bzo and
v E D;/;:o_ Then the sequence (uy)nen defined via

un= Y (L) Trgq,¢" (M(oi- " (1+m) y),05- 0" (1 +m) ")) (44)

2,J€'k mod p™

converges to a limit M (y,v) € D;)p:o‘ The limit does not depend on the choice of repre-
sentatives mod p”, and the resulting pairing

M(,): D=0 x D=0 — py=°
is A(I'k )q,-bilinear.

Proof. See [17], Proposition V.4.1 where the proof is done in the case K = Q,. Observe
that the trace is continous (coefficient-wise), and one may deduce the convergence in an
analogous manner. O

Recall that if D is a (p,I'x)-module we have the canonical pairing D x D*(1) —
D ® D*(1) = BL& (1) (also refered to as the Tate pairing) which we simply denote by
“@p” or “®". If D is an étale (p, 'k )-module over B we denote the resulting pairing

D¥=% x D*(1)¥=" — By, (1)¥="

by [ ’ ]/IW D-
One may now proceed as in the (, )1y p-case to extend the above pairing for an étale

(¢, 'k )-module D over BLg i by B(I'k)-linearity to a pairing

[+ T : DV=0 % D*(1)Y=" — B, o (1)
We now want to define a related pairing [ , ]iw,p, specifically for the (in general) non-

étale B(I'x)-module Ngg (D)%~ and its dual. First observe that the Tate-pairing (up to
a twist) induces a pairing of (p, 'k )-modules

[ INar(p)  Nar(D) x @5+ Ngr(D*(1)) = Nar(D)®gt  Nar(D)*[-1] = BIigJ{[_l]‘

rig, K rig, K

We first point out the following relation:

Lemma 4.3.2. One has the following commutative diagram:

[+ INgge(
Ngr(D) ® Nar (D*(1)) &)Dﬁiig,l([_l]

I }

ONgR (D) t

Ngr(D) ® Nar(D)*(1) — By, (1)
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Proof. Since both pairings are Biig s-bilinear and Nggr(D*(1)) = Ngr(D)*[—1], this is
clear from the definitions. O

If D is semi-stable the following method of induction by the degree of nilpotence
of N is crucial, which we describe next.

So assume first that D is crystalline so that Ngr(D) = BL& x @r DX (D) and
Nar(D*(1)) = BIig,K ®p DK, (D*(1)). One has the perfect pairing [, ]x,p : DX, (D) x
DX, (D*(1)) — F, such that if f ® d € Nqr(D) and g ® d* € Nggr(D*(1)) then

[f®d,g®d|Ngpm =f 9 1d,d" ]k D

In general, one may then assume N # 0 on DX (D) and use dévissage on the F-dimension
of D and the exact sequences

0 — NDX(D) - DX (D)) — DEX(D)/NDE (D) — 0

0 D (D*(1))N=0 = D (D*(1)) - DE(D*(1)) /D (D*(1)¥=0 0. 15

One checks that the functor Ngg(—) on (¢, N)-modules leaves these sequences exact, for
example by fixing a basis of DX (D) adapted to the nilpotency operator N and using the
operator £ (cf. (4.8)). Hence, one obtains exact sequences

0 — Ngr(NDE (D)) = Ngr(DX (D)) — Nar(D£ (D)/NDE (D)) — 0
0 = Nar(DE (D*(1))V=%) = Nar(DE (D*(1))) = Nqr(DE (D*(1))/DE (D*(1))V=°) = 0
(4.6)

In fact, Ngr(—) is an exact ®-functor. This may be checked by using these exact sequences
and a 9-term diagram as in the proof of [35], Proposition 4.3.2. Similarly, one obtains exact
sequences

0 - M(NDE (D)) - M(DX (D)) — M(D (D)/ND (D)) 0
0 - M(DE(D*(1))¥=0) — M(D (D" (1)) — M(DE (D*(1))/DX (D*(1))N=*) = 0
(4.7)

of semi-stable (¢, 'k )-modules (note that M(DX (D)) = D and M(DE (D*(1))) = D*(1)).
Hence, if D is semi-stable and f ® d € Ngr(NDX (D)) and g ® d* € Ngr(DX (D*(1))))
then

[f®d,g®dNng(p) = [f ©d, g ® d*Ny(NDy (D)5

where [, ]NdR(NDst(D)) is the pairing on Nggr (NDg; (D)) xNggr (Dst (D*(1))/Dgt (D*(1)))V=0.
Similarly the pairing [, |n,,(p) factorizes if one starts with g ® d* € Ngr(D*(1)N=9),

Recall that if D is a (¢, 'k )-module over BIig,K we know that D¥=0 is a free B(I')-
module (cf. [16], Proposition V.1.19). More precisely for étale modules have the following
explicit description of a basis:

Proposition 4.3.3. Let D be an étale (¢, 'k )-module over BLg  of rank d. Then D¥=0
is a free B(I')-module of rank [K : Qp] -tkg:  D.

rig, K
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Proof. Let s > 0 be such that 'y, C 'y C I'q,. We know that D is a free BLg Qp—module

of rank [Hq, : Hg] - rkBiing’ and we may choose a BL&QP—basis (di) of D. Colmez
has shown (cf. [16], section V.1.4) that (1+me*(D) = @B(Ts) - (1+m)p*(d;). Using
the fact that D = @F—; (1 + 7)'p(D), hence D¥=0 = @F~(1 + 7)'p(D) and inductively
D¥=0 = ?;Il(l + m)'¢*(D), one obtains the claim from the fact that [K : Q] = [Hg, :
HK] . [FQP : FK] O

Corollary 4.3.4. Let K/Q, be unramified with basis f1,..., f,. Then (BL&K)Q”:O is a
B(T i )-module with basis f;(1 + ).

Proof. Since I'k = I'q,, and B! x = F ®q, BLg’Qp the claim may be deduced from the

rig,
proof of the previous proposition. O

Let o be an element of BfogK such that Na = 1 and « € go(BIOg ). For example,
with our conventions one may choose —1/p-¢(log 7). Perrin-Riou considered the following
map (see [35], 2.2):

o =& : Bl ®r DE(D) — B[ @r DE(D) (4.8)
f®d+— exp(—a)(f ®@d)
Nk
k=0 ’

A simple calculation shows that for d € DX (D) one actually has £(f ® d) € Ngr(D)¥=0.

Lemma 4.3.5. Suppose K/Q,, is unramified. Let d1, ..., d, be a basis for DX (D) adapted
to the monodromy operator N and fi,..., f,, be a basis for F//Qp. Then the E(f; - (1 +
7) @ d;) form a basis of the B(I'x)-module Ngg (D)¥=0.

Proof. We prove the statement for a basis (d;); adapted to the nilpotent operator N. For
a crystalline (¢,I'k)-module the statement follows from Corollary 4.3.4. If N # 0 on
DX (D) one obtains the result by considering the exact sequence

0 — (Bl x®NDE (D)N=0=0 — Nyr(D)*=" — (B} , ,®DL(D)/NDE (D))N=04=0 o

of B(I' i )-modules, where by assumption the left and the right module are free with basis
vectors given by fi,... fr resp. fr41,..., fm, so that the claim follows. O

Having established the pairings ®p and [, |p and an explicit basis for Ngg(D)¥=? we
make (for not necessarely étale, but semi-stable (¢, 'r)-modules D) the following

Assumption 4.3.6. Let D be (¢, I'x)-module. If y € Ngr(D)¥=% and v € Ngg(D*(1))¥=0,

the formula in (4.4) with M = [, |n,,(p) defines a sequence (up)nen which converges in
(BLg Qp[—l])wzo which does not depend on the choices of the representative mod p”.
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Definition 4.3.7. Let D be such that Assumption 4.3.6 holds for Ngr (D). Then the
formula (4.4) defines a pairing

[ JtwNaw(0) : Nar(D)?=" x Nag(D*(1))¥=" — (B;Eg,Qp)wzo = H(I'k).

Of course, we suspect that the assumption should hold for (at least) all de Rham
(¢, I')-modules.
If the assumption holds, since

0a-un =Y (L+m) " ([(00i - " (1 +m)7y), 05 - 9" (1+ 1) 00 - 0)Ngp(D)> (4:9)
1,jEZy
one has, by going to the limit,

Oa - [y7 U]IW,NdR(D) = [Ua Y, v]IW,NdR(D) = [y7 Oq * U]IW,NdR(D)'

Hence, the pairing is also B(I')-bilinear since [y, V|1 Ny (D) € (BIig pr:o_

Proposition 4.3.8. Assumption 4.3.6 holds in the following cases:
a) D is étale.
b) D is crystalline.
c¢) D is semi-stable and two-dimensional.

Proof. We first consider the étale case. Since we extended the pairing in Proposition
4.3.1 to D:[ig(\/')lﬁ:0 X Diig(V*(l))d’:O by bilinearity one sees that w, in loc.cit. actually

converges over BIig i (with respect to the Fréchet topology). We may choose h > 1 such
that for ) = Vj_q0...0Vg € H(I'x) we have Q(y) € D, Qu(v) € D*(1). Since
DI[1/t] = Ngr(D)[1/t], it follows from Lemma 4.3.2 that for r € Ngr(D), s € Ngr(D*(1))
such that additionally r € D, s € D*(1),

[T7 S]D - [’rﬂ S]NdR(D)'
Hence, using (4.9) we infer that by going to the limit

Qp - Qp - limuy (y,v) = Um -uy, (Qp -y, Qp - v),

where on the left hand side we mean u,, with respect to [, |n,;(p), and on the right hand
side with respect to [, |p. Since Qj, is a product of non-zero divisors of H(I'k ), un(y,v)
converges by Proposition 4.3.1.

Let now D be crystalline. Fix a basis {d;} of D¢s(D) with corresponding dual basis

{d}} under [, |k p-

[oi - " (L+m) (14 7)) @di, 05 - " ((L+ 7)1+ 7)) ® d)Nur (D)
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for i,j € Z,;. If i = j = 1, then this equals 1. If one of i or j does not equal 1 then
one checks easily that 1" anihilates the term (1 + 7)~7*! (resp. for i). Hence, by the
B(T f )-bilinearity:

lim up(A- (1+7) @di,p- (1+7)@d;) =55 - A p- (L+7),

n—oo

so that the pairing converges everywhere and has the required properties.

In the two-dimensional semi-stable case, we may fix a basis dy, ds such that Nd; = ds,
and dually a basis dj, d5 (which is dual to di, d2) such that Nd5 = —dj. Since E((1+7) ®
d1),E((1+7) ®da) resp. E(1+7)@d}),E((1+7) ®d;) form a basis for Nggr (D)%~ resp.
Ngr(D*(1))¥=0, it suffices to check (by B(T'k)-bilinearity) that wu,(E((1+7)®dy), E((1+
7) ®d5) converges (the other cases are handled in the same way as in the crystalline case).
Since again 1™ ((1 + 7) ") vanishes for i # 1 we need to consider the terms (recall that

a=1/p-¢(logm))
l®d —yY"(a®ds),l®d;+ Y™ (a®d])|p

which by the definition of [, |p vanishes, so that u,(E((1+7)® dy),E((1+7m) ®d5) =0
for all n, which shows the claim. O

Further one may show:

Proposition 4.3.9. Assume D is semi-stable and Assumption 4.3.6 holds. Then [, ], N ar(D)
is a perfect pairing of B(I'k)-modules.

Proof. In the crystalline case this follows from the proof of Proposition 4.3.8: basically, if
dy,...,d, is a basis of D¢is(D) with dual basis d, ..., d} € Deis(D*(1)) with respect to
the pairing [, |k,p, then [A-di, p - df]1w Ng(D) = 0 - - A+ (1 + 7).

By dévissage we obtain, similarly as in the case for the cohomology pairing ( , )iw,p,
a commutative diagram of B(T g )-modules

0 0

Nag (N D)¥=0 —=— Hompp ) (Ngr (D*(1)/D*(1)¥=0), B(T'k))

NdR(D)wZO HomB(FK)(NdR(D*(l))ﬂ B(FK))
Ngr(D/ND)¥=0 — = Hompp.) (Nar (D*(1)N=0), B(T'x))
0 0

where the isomorphisms in the top and bottom row are by assumption. Hence, the claim.
O
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Now one may define the pairing on Ngg (D) also as follows. Consider the sequences
(4.5) and assume that the pairing is already defined on

Nar(NDE (D))¥=° x Nar (D4 (D) /D& (D)V=0)=° (4.10)
and

Nar(Dg; (D)/NDE (D))"= x Nar (Dg; (D)V=")¥=0. (4.11)
After a choice of a B(I'k)-basis one has isomorphisms of B(I'k )-modules

Nar(D)?= = Ngr(ND (D))¥=" @ Nar(Dg (D)/NDZ (D))=
and
Nar(D*(1))*=° 2= Ngr(D{ (D*(1))V=°)"=" @& Nar (Dg; (D*(1))/DE (D*(1))¥=0)*=°

so that the B(I'k)-bilinear pairing by defining it on the corresponding factors.

Remark 4.3.10. Assume we are in the situation of Proposition 4.3.9 such that D is étale.
Let y € Ngr(D)¥=Y and v € Ngr(D*(1))¥=° and assume that y € D¥=C and v € D*(1).
Then

v, UHW,NdR(D) = [y, U]iw,D-

4.4 Reciprocity for étale (¢, ['x)-modules a la Colmez

We keep the assumption that K/Q, is unramified. To formulate reciprocity laws we first
need to recall some more notation introduced by Colmez. Firstly (see [17], section III.1.2),
if D is an étale (o, I'x )-module over By or B! for a € Z, and k € IN, we denote by

rig, K
Resgyprz, the operator
Res, i prz, : D — D, z+— (1+ )¢ * (PF((1 + 7)"%).
Of course, this is a natural generalization of the concept of a “restriction of a measure”.
Now if D is étale over B and z € D consider the general term

up(x) = Z 1+ W)i_la_rz(Resanp (1 +m)"'z)). (4.12)
iEZ;f mod p"

Colmez has shown (see loc.cit., Lemma V.1.2) that the limit lim,, o un () exists in D, so
that one obtains a Bg-linear map w, : D — D. Further:

1

Lemma 4.4.1. If 0 € ' then wy (o - z) = 0wy (z).

Proof. Say o = o for j € Z,. Then on the level of the u,’s one has
o Z (1+ W)iila_ifz (Respnz, (1 +7) ‘ojz))
iGZ; mod p”
= Z (1 + W)i71j071—2j2 (ReSanp ((1 + W)_ijilx))
iEZ; mod p”

so that the substitution ¢ — ji gives the claim. O
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Thanks to the previous lemma it is possible to extend w, uniquely to Diig K(V)wzO

in the following way. Recall that H(['x) @y D(T)¥=! = D:[ig’K(V)‘ﬁ:1 and further

B(T'k) @y )C(V) = DLgK(V)w:O. Ifze DLg’K(V)w:O we may write it asx = ), \i®uz;
with ; € (¢ — 1)D(T)¥=! and \; € B(I'k), so that one may define w,(z) = >, t(\;) ®
wy(z;). We note that since

Dec, (V) © KAT'k) n(r ) Docs (V) = K(Lke) @1y (9 = D] (V)
one also has a natural extension of w, to Du ¢(V).

Colmez proved the following reciprocity law:

Theorem 4.4.2. Let D = D(V) be an étale (¢,I'r)-module over B and y € D, v €
D*(1). Then

O((y, 01 V)1w.p = = [y, W+ (V)1 p-
Proof. The only thing to check is that the proof of [17], section VI.2 extends to the case

K/Q, unramified. With our definition one has (with the notation of loc.cit., Lemma
VI.2.3, VL.2.4, V1.2.5)

Y, 0-10)1w,p = lim Z Trr/q,res (W;J_lum(y,v)> (1+ 7).

n—-+o0o
jGZ;,< mod p"

and
v w.Wwp = D (L+m) Trgq,@" (uni(y,v))
]'GZ;,< mod p"
so that thanks to the properties of the trace the very last equation in loc.cit. still holds
(up to a trace) and shows the desired equality. O

Corollary 4.4.3. Let D = DLgK(V) be an étale (¢, 'k )-module over BL&K andy € D,
v € D*(1). Then

(Y, 0-1 - V)1w,p = — [ W (V)1 -

In the following theorem the equality is meant to be understood via the natural map
Biig’K[—l]‘b:O — BIigyK(l)wzo, since the pairing [, |iw,N,q(p) lands in former and the
pairing [, |1, p lands in the latter, cf. also Lemma 4.3.2. Since assumption 4.3.6 holds in

the étale case, we may prove:

Theorem 4.4.4. Let V be a semi-stable representation of Gx, y € Ngr(V)¥=°, v €
Ngr(V*(1)). Then for every h > 1 one has

h+1[

(Qun(y),o-1- Quey1—n(©))w,y = (1" [y, wa(v)]1w,v-

Proof. Let h, h* > 1 be such that Fil "Dy (V) = Dg (V) and Fil =" Dy (V*(1)) = Dg (V*(1)).
Formally, the expression on the left is defined via
-1

<Qv,h(y), o1 H V; Qv (1)1 (3/)> 7

—h<j<h* Tw,V



4.5. RECIPROCITY FOR CRYSTALLINE AND SEMI-STABLE (¢,T x )-MODULES81

where we work in K(T').
We add a Vo-V in the first argument and pull out the Vo = td to obtain by Colmez’
theorem resp. Corollary 4.4.3 an equality
(Qv,h(y% -1 QV*(l),l—h(U»IW’DLg(V)
= t0(Vy ' Qun(y), o1 - QV*(l),l—h(U»IW’DLg(V)
= —t[Vy ' Qualy), w*(Qv*(1),17h(U))]iw,DLg(V)-
We explicitely calculate for general a € Ngr(V)¥=? and b € Ngr(V*(1))¥=Y, such that

additionally a € DI, (V) and b € D (V*(1)), that t[a, b]iw,njig W

Tm Y (T T, e o (L T) ) @t 0y (L T) "))
i,jGZ;f mod p"

= lim Z (1—|—T)ijTI‘K/QpQOn([0'i -1/}“((1—}—T)_jy),0'j ¢n((1 +T)_iv)]DT

n—0o0 rig
i,j€Zy mod p™

is equal to

(V))
thanks to Lemma 4.3.2. Applying this to the previous equation and recalling that 2y, =
Vh-1-...-Voand w,(V;(x)) = (=1) - V_jw,(z) for j € Z we obtain
(Qvn(y), o-1- QV*(l),l—h(U)>1w7Diig(V)
= —[V519V,h(y)a W (QV*(l),lfh(v))]IW,DTA (V)

= (—1)h+1[y,w*<v)]lw,D

which gives the claim. O

+
rig(V)?

4.5 Reciprocity for crystalline and semi-stable (¢, I'x)-modules

We now concern ourselves with the general case of semi-stable (¢, 'k )-modules over BL& K
and prove a reciprocity law following Berger’s proof for the crystalline étale case. So assume
D is such a module that is semi-stable over an unramified extension K/Q,.

We first describe briefly how to extend the operator ¢ to Ngr (D). Of course, one should
expect that the formula (4.12) which defined the map w, makes sense in the general case
of a (¢, 'k )-module and use this in place of t. We do not give a proof here, but we believe
that the two definitions should actually coincide.

Recall that if D is crystalline then

)= @r DE(D) C (B]

Doo,f(D) = (B+ rig,Qp

rig, F )1/1:0 ®Qp Dg(D)>

and (Biig@p)wzo is a free H(I'k)-module of rank 1 via the isomorphism A — X - (1 + 7).

Hence, ¢ is defined naturally as

O X (+m@d) =) () (1+7) &d;.
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Theorem 4.5.1. Let K/Q, be unramified and D be a crystalline (¢,I'x)-module over
BIig,K' Let y € Do g(D), v € Do ¢(D*(1)). Then for every h > 1 one has

"y, o(0)] 1w, -

(Qpn);0-1-Qp+1),1-1(V))1w,0 = (1)
Proof. Thanks to Proposition 3.2.12 we may assume y € Dy (D), v € Do o(D*(1)) since
K(Tr) ®1rg) Doce(D) = K(T'x) @30y) Doo,g(D) By p-adic interpolation (cf. 4.0.4) it
suffices to show that

& (v (y), o1 - Qo) 10 (0)1w,0) (0) = & (1) [y, 1(0)]1w,0)(0).

for j > 0. This is equivalent to

(=) (hk.p(jy i (0 Tyt Vey), hllx,Du_j)Qlfhfj(ajv ®te_;)) k.n@) (4.13)
= (=DM [0 Ty @t e;)(0), (v @te_;)(0)kpry). (4.14)

Let 3 and v’ such that (p — 1)y’ = y and (¢ — 1)v' = v. Then by Proposition 3.2.22 we
see that

hie, () Qi (0 yt 7V eg) = (=) (i 1) expg pg) (L—p~ o™ )07y @t 7 e;)(0))

and

. . . 1 L ,
eXpK,D(j)(h}(,D(l—j)Qlfhfj(ajv ®te_;)) = m(l —p e )@V @ e ;)(0).

Using Proposition 3.1.20 we see that (4.13) is equal to
(D" A =p e )0y @ t77e)(0), (1= p ™) (0 @ te—)(0)] k. pj)-

Since (1 — ¢) is the adjoint of (1 — p~'¢™!) under the pairing [ , |k pg;) and (1 — ¢)
commutes with taking 9%(—)(0), we get the claim in this case. O

In the general semistable case one possible idea is to use dévissage ((4.5) and (4.7)),
although we currently we can only give a complete proof in the 2-dimensional case:

Let D; = M(NDE(D)) and Dy = M(DE(D)/NDE(D)) so that we have an ex-
act sequence 0 — Dy — D — Dy — 0 of semi-stable (¢,I'x)-modules. Then for the
dual exact sequence we have Di(1) = M(DX(D*(1))/ DE(D*(1))¥=%) and D3(1) =
M(DE(D*(1))¥=0) and an exact sequence 0 — D3(1) — D*(1) — D3}(1) — 0 of (¢, 'x)-
modules. Hence, one has corresponding pairings ( , )iw,p, and (, )iw,p,. We may assume
that the statement of the theorem holds for D; and Ds.

Suppose a € K(T' i) @1,y (9 — 1)DY=" and b € K(I'k) R(rg) (9 —1)D*(1)¥=!. Then
the pairing (, )1w,p factorizes as

{a,b)1w.p = {(a,b)1w.D,
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where b is the image of b in the canonical projection
K(Tk) @urye) (¢ — 1)D* (1)Y= = K(Tk) @3y (0 — DD (1)1

(cf. Proposition 4.2.6 for the exactness of K(I'x) ®yr ) (¢ — 1)(—)¥=") Otherwise there
would exist a b’ € K(I'x) @1 ) (9—1)D3(1)¥=! such that (a, b’ )1w,p # 0. Hence, for some
k> 0 one has 0 # 0%(a, )1y p(0) which is not possible since the pairing ® factorizes in the
same way we want ( , )rw,p to factorize. Analogously if b € K(T'g) @1 (o —1)D3(1)¥=
and a € K(T'g) @31y (¢ — 1)D¥=L. Then the pairing ( , )1,p factorizes as

(a,b)1w,p = (@, b)1w,Ds -

Hence, suppose y = y1 + y2 with 1 € Do ¢(NDgi(D)),y2 € Doo ¢(Dst(D)/NDgi (D))
and v = vy + vz with v; € Dy f(D*(1)/D*(1)V=0),v5 € Do (D*(1 )N 0). Since the
pairings ( , )rw,— are perfect (cf. Theorem 4.2.7) and w, is compatible with the above
decomposition for any such choice in the 2-dimensional case in this case one computes

(Qun(y),o-1 - Que),1=n(V))1w,D

= (Qua(1),0-1 - Qu=1),1-(01)) 1w, 0 + (Qvn (Y1), -1 - Quey,1-n(v2))1w,D
+ (Qvn(y2),0-1 Qv* ,1-h (V1)) 1w, D + (Qun(y2), 01 - Que1),1-1(v2))1w,D
= (Qun(y1), 01 Que1)1-0(01))1w,01 + (Qvp(B2); -1 - Qv+ (1),1-1(v2)) 1w, D,
= (1) yy, (o1 )]IwD1 (=" 72, t(v2) 1w,
= (=1)""'y, 1(v)]1w.p;

since one easily checks in a similar fashion that a factorization similar as for the pairing
(', )iw,p holds for the pairing [, Jiw,p, which finishes the proof.
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Chapter 5

Applications and Prospects

5.1 Determinant of {1p

In this section we assume that K/Q, is unramified. In [33], Perrin-Riou formulated con-
jectures “éq, (V)" and “dz,(V)” for a crystalline p-adic representation V' of Gq,, which
are closely connected with Tamagawa numbers and e-factors associated to V. Benois and
Berger ([3]) proved these conjectures (in fact, dg, (V) is known to be a consequence of the
reciprocity law, and hence already known) using the theory of Wach-modules.

In the more general semi-stable case, since for example Do, (V') somehow lies “diag-

onally” in (B;rog’
work with B:i_g,K'

In the de Rham case Nakamura ([30], Theorem 3.14) proved a version of a 6(D)-
conjecture over H(I' ) using the modules Ngg(D)¥=! and Ngr(D)/(¢) — 1). One already
has (by twisting appropriately) D 4(D) = (¢ — 1)Ngr(D)¥=!, and exact sequences (aris-
ing from an 0 — D’ — D — D" — 0 of semistable (¢, I')-modules)

x ®F Dg(V))V=0%=0 and there are denominators, it is not sufficient to

0 — Doog(D') = Deo y(D) — Do y(D") — Diojg(D’) — Dzovg(D’) — Dgovg(D’) -0
(cf. [35], 4.3) resp.
0— D¥=' - p¥=! - D"=! - D'/(y —1)D' = D/(¢p — 1)D — D" /() —1)D" — 0.

We believe that it should similarly be possible to relate the DZQ ,(—) in a functorial way to
the Nqr(—)/(¢ — 1)Ngr(—) (which are both finite-dimensional Q-vector spaces), which
would relate [30], Theorem 3.14 to [35], Theorem 5.4.4.

Next, we want to formulate a version of a §(D)-conjecture (and in certain cases even
an integral one) which is closer to the one originally proposed by Perrin-Riou and proved
by Benois/Berger.

Suppose that D is a crystalline (¢, T'sc)-module. We define D) (D) := Do (D). If
D is semistable we apply as usual the induction by the degree of the nilpotence. Hence
we may suppose that we are given an exact sequence of semistable (¢, 'k )-modules 0 —
D" — D — D" — 0 such that there are free H(I'x )-submodules D}y () C Nyg (%)¥=0 for

85
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x € {D',D"}. One has the following diagram,

00— D (D) D, (D) —=— D, ;(D")

— — pr —
0 — Ngr (D")¥=0 — Ngr(D)¥=" — Ngr(D")¥=0 —0

with exact lines. Also we know that the quotient Do r(D")/pr(Doo,r(D)) is Aq,-torsion
(cf. [35], 4.3). Hence, if one chooses a H(I'k)-basis of D) (D") there exist lifts in
Ngr(D)¥=0.

Inductively, together with a H(T'k)-basis for D) (D), this defines a free H(I'k)-
submodule D) (D) of Ngg(D)¥=? that contains Dy ¢(D) and

fits into an exact sequence 0 — D) _(D') — D) _ (D) — D}_(D") — 0.

Since we have not found a more canonical construction of such a module we try to
give a first step of a definition of a related H(I'x)-module Dy_ (D) below (resp. a A-
module Dy (D) C Dy (D)) with explicit basis which also occurs when producing p-adic
L-functions and which in certain cases coincides with Dj\m (D).

We recall Perrin-Riou’s construction of a free H(I'k)-basis contained in Dy 4(D) (see
[35], Theorem 4.2.1). Since the modules Do (D) are isomorphic under twisting by 0, one
may assume ||| < 1 on Dg (D). As usual we choose a basis {dy,...d,} adapted to the
operator N. Let S be the finite set of integers such that De=r" # 0 for k € S. Then [33],
Proposition 2.2.1 shows that for

R(d;) = H(X(’Y)k'}’ -1)-(1+med € (Biigj{ ® Dst(D))¢:0
keS
there exists a R(d;) € (BIig,K ® Dg(D))¥=" such that (1 — ¢)R(d;) = R(d;). Perrin-

Riou’s operator Np (see [36], Theorem 3.2.1) allows to produce elements Np(R(d;)) €
Ngygr(D)¥=!, and one shows by a recurrence argument that

(1 - @)(Np(R(d;))) € Nar(D)*~°

are actually contained in Do 4(D) and form a free (as H(I'x)-modules) system of rank
dimq, Dst(D). By twising back with 0 one obtains a basis { f;} for a free H(I'k)-module
for our original D.

Since Frac(Z,[[I'k]]) C B(I'k) we may define:

Definition 5.1.1. Let D be semi-stable and { f;} as above. Let S be a finite set of integers
that contains those integers k such that Dy (D)?=P"" # 0. We define

gi = [[(x(0)* = 1)7" fi € Nar (D)=,
kesS

so that {g;} form a free H(I'x)-module Dy __ (D) contained in Ngg(D)¥=".
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Of course, the above construction highly depends on the choices of S and d; (and the
twist by 0) which we implicitly suppress. Also, one may define Dy__ (D) for any (¢, N)-
module D module and a choice of K.

One checks that if D is crystalline, then

Do (D) = Doo, (D) = (B, i ® Deris (D))"=, (5.1)

so that the definition is independent of the choices.

For certain “compatible choices”! of S, d; and so on one can state the following: Let
0— D' — D — D" — 0 be an exact sequence of semistable (p, ' )-modules. Then the
sequence

0 — Dp_(D") — Dy (D) — Dy (D") — 0 (5.2)

is exact. To prove this, we may assume by twisting that [[¢)|| < 1 on each Dg(—). Also
note that by the assumption on the modules one has an exact sequence 0 — Dy (D’) —
Dyt (D) — Dy (D”) — 0. We choose a compatible basis for Dg (D) and S big enough and
obtain a basis g; of Dy__ (D). By a dévissage argument analoguous as in Lemma 4.3.5,
since (5.1) holds for any crystalline (¢, I' k' )-module, this basis shows the exactness of (5.2).
We give a formulation of the conjectures of [3], section 4.1., in our setting. One sets

APR(KOO/K, D) = detH(pK)RFIW(K, ﬁ) &® detH(FK)DAoo (D)

2
= ®(detH(FK)HIZw(Ka ﬁ))(_l)l ® detH(FK)DAQp (D)a
i=1

so that the big exponential map Qp for each suitable h induces a map d', KooK
Aw(Koo/K,T) — H(I' k). Hence, if one sets

I = vitovyte vl ifi >0
VO-V_1~...VZ-+1, ifi<0

and I'(D) =T'(hy) - ... - T'(hg), one may consider the map

/D,KOO/K =I(D)- b,KOC/K,h
which one checks (as is done in [33], 3.3.2) is independent of the choice of h.
Proposition 5.1.2. One has ¢}, KOO/K(APR(KOO/K, D)) =H(Tk).

Proof. If D is crystalline, the claim follows from [30], Theorem 3.21. For general semistable
D the claim follows from the compatibility with exact sequences for Dy__ (D) (5.2), RI'w (K,
D) and the map Qp p. O

To proceed further, we assume for the rest of the section that D is étale. We expect
that one can extend certain results to general (¢, i )-modules. So let D = DLg(V) for
some representation V' of Gk with K/Q, unramified.

!i.e., if one is given a choice for D’ and D" there exists a choice for D such that (5.2) holds
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Next, we define the following Op-lattice M(D) of Dg (V) for D = D!

rig(V), where V
is a positive semistable representation with lattice T, as

M(D) = {z € (Bfog’K ®A1< DT(T))FK| ¢ "(z)(0) € Ok, ®A}<,w" DT(T) Vn > 0}.
Define the following subset Dp(D) of Dp_ (D):

DA(D) = {z € Dp_(D)| ¢ "(2)(0) € Ok, ®0, M(D) Vn > 0}

The injection ¢~ ™ : BL’Q"K — K,[[t]] is compatible with I'g, i.e. yat™ = vy(a)x(7)t". We
see that Dp(D) is a free A-submodule of Dy (D) of the same rank, by looking at the
H(T g )-basis of Dy (D).

We immediatly have:

Lemma 5.1.3. If V is a positive crystalline representation then M(D) coincides with the
lattice M of [3], section 3.2. As a consequence, one has Dy(T') = A ®z, M.

We also set
DAQp (D) = AQp XA DA(D)

which is then a free Ag,-module. It is clear that then Dy (D) = H(I'x) ®a,, Dag, (D).
Similarly as before, one sets

Apr(Koo/ K, V) = detpg, RI'w (K, V) @ detpg Dag, (D)

2
= Q) (detag, Hiy, (K, V)™V @ detag, Dag, (D),
=1

Conjecture 5.1.4. (dq,(D)) One has ¢}, KOO/K(APR(KOO/K,D)) = Aq,-

If D=D!

rig(V) is étale with lattice T C V' one sets for the integral version

Ary(Koo/K,T) = detpARl'1w (K, T) ® detA(IndKoo/QpT)
2
= Q) (deta Hiy, (K, 7)) @ deta(Indg_q,T)
=1

We note that we have not yet found a good description of a conjecture in the style of
conjecture 4.1.3. in [3] for semistable V. However, the conjecture in loc.cit. implies an inte-
gral version of dq, (see also [33], section 3.4.8, specifically equation 6(25, (A (T, M) 1) =
A), which we may state in our setting as follows:

Conjecture 5.1.5. (6z,(T)) One has

D,KOO/K(AIW(KOO/K, T)) =A.

We shall establish these conjectures in the example of an ordinary semistable elliptic
curve defined over Q,, after the next section.
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5.2 Coleman maps

Let D be a (¢,I'x)-module over BLg k- For y € Ngr(D) Perrin-Riou considers the
following map:
Lhy: D* (1)Y= — H(Tk)
v (Qp,h(Y), V)1w,D
If h is big enough we know that Lp ,(v) € Ngr(D*(1)), hence in the cases where the

reciprocity law (cf. Theorem 4.4.4 and Theorem 4.5.1) holds this may be rewritten as
follows:

Ly-(y) = (Qpn(2), 21y 1-n(LDpH)))tw,0 = (=1)" [z, (Lo p(0-19)]tw,p- (5.3)

Also we know that Eh((go—l)DT. (V*(1))¥=1) is contained in Dog 4(V*(1)). The general

rig
process of how one would like to be able to produce p-adic L-functions in the case of a

p-adic representation then may be summed up as follows:
a) Find a “good” Euler-system y € H{ (K,T*(1)),
b) Fix a H (T k)-basis (y;) of Da_(V),

c) Project the element Lp p(v) in Dp_(V*(1)) along the basis z; to produce p-adic
L-functions (up to the operators ¢ and o_1).

Recall that (¢ — 1)D(7)¥=! is a free A-module of rank [K : Q,] - dim V. Suppose we
have fixed a finitely generated free A-module D C Dy (V*(1)) with basis (z;); such that
Li((p — 1)D(T*(1))¥=1) C D. Define the projection

Col, : D(T* (1)~ X5 D= PA- 5 25 A

We use the same notation for the corresponding map D(V*(1))¥=! — Aq,, which is
obtained by base-change.

5.3 Musings in dimension 2

5.3.1 The setup

We shall give some illustrations in the dimension 2 case, which is the smallest case where
it is possible to have something semi-stable that is not crystalline. So assume K = Q,
and let D be a (p,I'k)-module over BiigK of rank two. Then DX (D) = M is a filtered

(¢, N)-module of dimension two over F. We assume N # 0 on DX (D) and fix a basis
d1, do of DX (D) that is adapted to the operator N, i.e.

N(d1> = dg, N(dg) =0 = gO(dl) = Oédl,go(dg) :p_lOédg, [ RS Q;;
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The dual basis df, d} for DX (D*(1)) therefore has the properties (recall that N logm = —1)
N(d3) = =di, N(dj) =0 = ¢(di) = a™'dj, ¢(d3) = pa”'d3.
With this one has canonical Bii o -bases
1®d —logm ®da, 1®do

for Ngr (D) resp.
l®d;+logr®d], 1®d}

for Ngr(D*(1)). Similarly, one has canonical B(I'k)-bases
E(+med)=01+m)®@d —(1+7m)p tplogn @da, E(1+7)@d2)=(1+7)Rds
for Ngr(D)¥=? resp.

E(l+med)=>0+n)edi+ (1 +n)p tplograd, E(1+me@d)=1+nr)od

for Ngr(D*(1))¥=0.

The setting where we shall look at explicit examples comes from an ordinary semi-
stable elliptic curve E with bad reduction. Hence, we are to consider the cases of split
resp. non-split multiplicative reduction. It is known that in this case that for the Z,
representation 1" associated to E one already has an exact sequence

0—T1T1 —T —1T0—0
with T; one-dimensional Z, representations. The dual sequence is written as follows:
0—T5(1) — T*(1) — 17 (1) — 0. (5.4)

As usual if T" is a p-adic representation over Z, we write V' = T" ®z, Q,, for the associated
p-adic representation. One has a decomposition C,®q, V' = C,®C,(1) as representations,
so that V' has Hodge-Tate weights 0, 1. The same holds for the dual representation V*(1).
For the (¢, N)-modules this implies the following exact sequence:

0—Qp-do —Dy(V) —Q,-di — 0, (5.5)

such that o = 1 in the split-case, and o = —1 in the non-split case. For the Agq, -modules
this induces an exact sequence

0— Aq,(1) — D(T) — Aq, — 0

and by the property that Aq, is a discrete valuation ring we see that a basis of D(Z(1))
lifts to a basis of D(T"). Thus there exists a basis (d;)i=1,2 of D(T") such that the following
is satisfied:

a) di is a Aq,-basis for D(Z,(1)),
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b) ((1+m)p(d;)) is a A-basis for (o — 1)D(T)¥=1,
c) (1+m)p(dy) is a A-basis for (o — 1)D(Ty)¥=".

We shall illustrate that Do s is not exact in general. Assume that we are in the case
of a representation arising from a split-multiplicative semi-stable elliptic curve, so that
a =1 and the sequence (5.5) translates to

0 — Dt (Qp(1)) — Dyt (V) — D (Q,) — 0.

We apply Lemma 3.2.13 and use the notation there: one easily checks that N = th_l,
P =0 so that M is a one-dimensional Q,-vectorspace. This implies that in this case one
has an exact sequence

0— Doo,f(Qp(l)) — Doo,f(v) — Doo,f(Qp) — Qp — 0,

(cf. also [36]), and we see that D ¢ is not exact.
Let us describe an explicit H(I'q,)-basis (following [35]) for Dy (V') in the cases
a = 1 which we shall use in the example of an ordinary elliptic curve. Let f = (v —1) -

(1+m)e B:qngp and consider f ® d; € Dy £(Qp - d1). Then there exists an Fy € Bﬁi'ngp

such that (1 — ¢)F, = f. Further, Perrin-Rious operator Ny (see [35], Theorem 3.2.1)
shows that there exists an Fy € Bzrog@p such that ¢(Fy) = p~'F, and NF, = F;. Hence,
the element

(1—(,0)(F1‘d1—F2-d2):(’y—l)'(l-i-ﬂ')'dl—G-dQ

is a lifting of f ® dy in Dog (V). With this, the elements (14 7) ®da, (14+7)®dy — (v —
1)~1 - G ®dy form a H(T g )-basis for Dy (V).

Returning to the properties of the determinant for V', we see that Conjectures 5.1.4 and
5.1.5 are by the properties of the determinant compatible with exact sequences of semi-
stable representations, since our module D(T') is defined precisely with such compatibility
in mind. Since these are known to be true for 77 and T, by the work of Benois and Berger
([3]) (since these representations are crystalline), the conjectures are also true for T and

V.
5.3.2 i-Selmer groups and torsion property

Let I, p be prime numbers and suppose K/Q; is finite. Let V be p-adic representation of
Gk and fix a Z,-lattice T that is stable under this action. One defines Q,-subspaces

HYK,V) C H}(K, V) C H;(K, V)c HYK,V)

and Z,-modules
H)(K,T)C H}(K,T) C Hy(K,T) C H'(K,T)

depending on whether | # p or | = p, cf. [11], section 3, (3.7.1), (3.7.2), (3.7.3). Note that
then H!(K,T) always contains the torsion subgroup of H'(K,T).



92 CHAPTER 5. APPLICATIONS AND PROSPECTS

We now switch to a different notation. Let K be a number field and let V' be a p-adic
representation of Gg = Gal(Q/Q). Suppose T is a Z,-lattice stable under Gg. One has
the usual definitions for the (continuous) Galois cohomology for Gx and G, for every
place v of K.

Consider the perfect pairing

U: HY(Kyn, T) x HY(Kypn, V*/T*(1)) = Qp/Zp,

where T is the set of elements f € V* such that f(7') C Z,. By going to the projective
limit one obtains a perfect duality

Utw : Hi (K, T) x HY Ky 00, V*/T*(1)) = Qp/Zp. (5.6)
With U one defines
Hj(Kyp, V¥ /T*(1)) == {2 € H' Ky, V*/T*(1))| 2 Uy =0 Vy € H{(K,n,T)}.

The p-Selmer group of V' over K is defined via

1 * %
- 1~ [LALA)

v

where v runs over all places of K. One defines the p>-Selmer group as Sel, (K, V) =
lim Sel, (Kp, V).

Following [28], we now define the i-th Selmer groups corresponding to the projection
Col,. Similarly as before one defines

H}(Kn,V*/T*(l))i = {zx € HY(K,,V*/T*(1))| z Uy = 0 Vy € ker(pr, (Col;))}

and we set

Selj,(Kn,V) := Ker <Selp(Kn,V) N HY(K,,V*/T*(1)) > |

HY(K,, V*/T*(1))

so that one may form Sel;')(Koo, V)= hgln Sel;(Kn, V). By using the pairing Uy, of (5.6)
one sees that if one forms

Hj (Koo, V¥/T*(1))" = {z € H' (Koo, V*/T*(1))| & Uty y = 0 Vy € ker(Col;)},

then

Sel}, (Koo, V) = <se1p(Koo,V) R Hl(Koo,V*/T*u)))

HY (Koo, V¥/T*(1))*

We wish to apply this to the example of an ordinary semi-stable elliptic curve. So
let V be as in section 5.2.1 and consider the representation T = T*(1), and write T =
T7(1), To =T5(1) (cf. (5.4)).

For T3 one has Dg(T2(—1)) = (BL&K ® DT(T2(—1)))"'5, hence, thanks to the iden-

tification t"Dg (W) = Dg (W (—h))(h), which holds for any semi-stable representation
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W, and the fact that T5(—1) is a Cp-admissible representation, an injection DLg(Vg) -

BI.& x ®@Dais(V2) = Ngr(V2). The second exact sequence of Proposition 3.3.2 shows that

1

(¢ — 1)Ngr(V2)¥=! c (B}

rig Qp)wzo ® Deyis(V2). Hence, one may choose d in such a way
that there exists an f; € (B}

1qg’Qp)d’ZO such that (¢ — 1)D(T2)¥=! is contained in the free
rank one A-module A - f®@d} C H(T'k) - (1 +7) @ dj.
As for T4, a similar argument as above shows that (¢ — 1)D(T7)¥=! is contained in

D 4(V1). Hence, one may choose dj in such a way that there exists an fo € (B;Eg Qp)wzo

and A € Frac(A) such that (¢ — 1)D(T1)¥=! is contained in the free rank-one A-module
AN f2) ®dy C Do g(V1).
The 5-lemma and the commutative diagram

0— (¢ = )D(T2)*~' — (¢ = YD(T)"=" —= (¢ — 1)D(T)"~

| | 1

A fLod D)\ (T) A-(\-fo) @dy —0,

0

where D) (T) is the free A-submodule of K(T'x) @1 ) (¢ — 1)Ngr(T)¥=" determined by
the above exact sequence, show that (¢ — 1)D(T7)¥=" injects into D := D) (T'). Thus we
may consider the Coleman-map Col; for a lift of the basis vector X - fo ® dig Let us relate
this map to the map Ly, (14r)d,- By (5.3), since h = 1, Coly equals L}, (14r)g4, Up to a
—1, and an application of o_1 - f’ for some non-zero f’ € Frac(A) and the involution ¢+ on

A.
Lemma 5.3.1. If y € D(T)%=! then (Q,((1+ 7) ® d2), y)1w.v € A.

Proof. One has Q1 ((14+7)®dz2) = t(1+7)®de. With our choice of dy this implies, similarly
as in the discussion for T, that Q1((1+ 7) ® d2) € (¢ — 1)D(T1)¥=L. Since { , )y is
induced as a pairing on the A-modules C(T") x C(17%(1)), the claim follows. O

Lemma 5.3.2. One has the inclusion pr,,(ker(Col,)) C H}(van, T).

Proof. Since T’ is the biggest subrepresentation of T such that the Hodge-Tate weights of
it are greater or equal to 1 (it is in fact a one-dimensional representation with Hodge-Tate
weight 1), one has Fil'T = T.

It then follows from the definition that ker(Col,) = D(T)¥=! 4+ D(Fil'T)¥='. The
torsion part D(T")#=! is mapped to the trivial cocycle in H'(Q,n,T). Thus we need to
concern ourselves with the D(Fil'T)¥=!-part. [6], Theorem A shows that H} (K,Fil'V) C
HIlw’ (K, V). The commutativity of the diagram

H}, (K, T) ="~ H'(K,,T)
i@Qy l@@p
pr’ll

Hl (K, V) —>HY\K,,V).

implies that one has H{, (K,Fil'T) Hllwyf(K, T), hence the claim. O
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Lemma 5.3.3. One has H}(Qp,n, V*/T*(1)) C H}(me, V*/T*(1))? for every n.
Proof. One sees that

H(Qpn, V*/T*(1)) = ker(H' (Qpn, V*/T*(1)) = Hom(H}(Qpn, T), Qp/Zy))
y— (—Uy)

and similarly for H}(prn, V*/T*(1))? with pr,, (ker(Col,)) in place of H}(prn, T). Hence,
the claim follows from the previous lemma. O

Putting it all together we have shown that Self,(Koo,V) = Sel, (K, V), the usual
Selmer group associated to V.

Proposition 5.3.4. Assume we are in the above setting. Let z be Kato’s zeta element
and assume further that Col,(z)" # 0 for every character n of A. Then Sel,(K, V) is
A-cotorsion.

Proof. As in [28], section 6.1. (60), we have an exact sequence
HY(T) — A — Sely (Koo, V)Y — HA(T) — 0

Since Col,(z)" # 0 for n of A the cokernel of the first map in the above sequence is
A-torsion. Since H?(T) is also A-torsion, the same holds for Sel, (K, V). O

5.4 p-adic Lie-group case

In the last section we wish to give a short description of generalizations of the algebras
H(T'x) and B(I' k) inspired by the work of Schneider/Venjakob ([39]). We recently learned
that Zabradi ([42]) has defined (¢, I')-modules over non-commutative Robba rings.

Let G be a compact p-adic Lie group, O the ring of integers of any finite extension of
Q, with residue field x. Write

AG) = 1&1 O[G/U]
UCG open
for the completed group algebra of G with coefficients in O. We assume that G has a
closed normal subgroup H such that G/H =:T' = Z,,. We fix once and for all a topological
generator v of I'. It is then known that the group algebra R = A(H) is compact, and we
set X =v—1,0(r):=~ry~! forr € R and § = 0 —id. The o-derivation § is topologically
nilpotent and hence o-nilpotent. Hence, for any k& > 1 there exists an m > ¢ such that
6™(R) C Jac(R)*. The topological ring

B = R« X;0,0]]

exists (for all this, confer [39]).
We can fix a norm on R by setting

la| :=p~ " if a € Jac(R)" \ Jac(R)* '

which defines the pseudocompact topology, i.e. it is a function | | : R — R>o which
satisfies the axioms
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i) |a — b| < max(|al, |b]),

i) la| =0 <= a =0,
iv

1] =

v

i)
)
iii) |ab| <fallb],
)
) la

for a,b € R. Additionally we assume our norm satisfies

vi) |o(a)| =a for a € R,

vii) there exists a 0 < D < 1 such that |§(a)| < Dla| for a € R.
With this the ring B can explicitely be described as

—{ZanX

nez

an € R, lim |a,| = O}
n——oo

We shall also extend the above norm to R[1/p] via |1/p| = |p|~!. This gives a ring equipped
with a norm that still satisfies the above axioms except v).

Schneider and Venjakob define a left R-submodule of BY(| |) = Bf of B (we usually
supress the dependency on the norm in the notation since all norms defined via ”ideal-
norms” are equivalent), defined as follows. First for any D < u < 1 let

= {ZaiXi € B| lim |a;|u’ = 0}.
1—— 00

1€EZ
On the rings B"* one can define a norm | - |, for f =Y a,X" € BT

|f|u ‘= sup |an‘un
n

Next, let BT = Jp_,; B
Definition 5.4.1. a) For D <u <1, let

u,l tu n
B"1(G) = Bl = {ZanX

nez

an € R[1/p], nli)riloo|an|7"” =0Vu<r< 1}.

Further we define
B(G) =Bl = |J B

rig *
D<u<l1

b) Similarly, define

H(G) := {Z anX"

nelN

an € R[1/p], li)rfoo|an|r":0VO§T<1}.
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On the rings B“![(G) one can define a family of norms | - |, for 7 € [u,1[ and f =
S, an X" € B(Q) via
| f]r == sup |an|r".

We equip BI*'l(G) with the Fréchet topology with respect to these norms.

As in the paper of Schneider and Venjakob one can work out the following formulas:
For this let My ;(Y, Z) be the sum of all noncommutative monomials in two variables Y, Z
with k factors Y and [ factors Z. Then

D a; X7 - (Z le1> =) X" (5.7)

jeZ = meZ,
with
Cm 1= Ch 4 Cps (5.8)
ch = Z a;jMi_p 5 (0,0)(bm—n) (5.9)
j=n=>0
C;z = Z ajO'/Mjfn,flfj(élaU,)(bmfn)- (510)
n<j<0

Lemma 5.4.2. Letz =}, » a; X7,y =3z X in Bw1(G) and put zy = Y mez CmX™
with ¢, = ¢, + ¢, as in (5.7) - (5.10). Then zy € B(G).

Proof. Let w < r < 1 and suppose ¢ > 0. We have to check that |c,,|r™ < e for m > 0
and m < 0. We have

, D\’
I < sl bl ()
§>n>0 r

, D\’
[emlr™ < sup a7 - [bpp|r™ " <)
n<j<0 r

a) The case ¢, m — —oo. One has

|c;;|rm < sup |aj|rj Nom—n ™™ <sup |zl - |bp_n|r™ "
7>n>0 n>0

From this it is clear that lim,, o | |r™ = 0.

b) The case c,,,m — —oco. There exist Ny, N1, Ny > 0 such that for j <n

. D\’ ™"
‘aj|7aj"bm—n’7’min : (T) <

|‘T|T‘y|r(D/T)j_n <e¢ for ] -—n > Nl since D/T‘ < ]_7
‘aj‘uj . ’y‘r <e fOI’j < —Ny since hmj—>—oo ’a,j’ﬂ =0
||y - [b—pn|u™™™ <e  form—n < —Ny since limj,_ |bj|r7 =0

Now j—n < Ny, j < —Np, m—n < —N imply m < —Ng— Nq — Na, hence || < e.
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c¢) The case ¢, m — 400. One has

et |r™ < sup \aj\rj Nop—p|r™ .
j=>n=>0

Now if m is big enough and n small enough we can estimate |a;|r7 - |bp—p|r™ ™" < e

since lim;_s 4 oo |bj|77 = 0. Analoguously if n is big enough since this forces j big and
since lim;_, o |a;|r? = 0.

d) The case c;,, m — +00. One has

leg | 7™ < sup x|y - |bp—n|r™ "
n<0

It is clear that lim,, o |ch|r™ = 0.
O]

We have defined a ring structure on B(G). We now check that the topology behaves
as one would hope. First note that the inclusions B“'[(G) c B*(G) for u < v are
compatible with the Fréchet topology, hence B(G) is equipped with the natural inductive
limit topology, which we shall also refer to as the Fréchet topology.

We remark that it is possible to prove that BT“[1/p] as a subring of B;ri’g is dense
with respect to the Fréchet topology. One can also show that B[“’l[(G) is complete for the
Fréchet topology.

Finally we mention that with these definitions in mind the goal is to define comple-
tions A, for G as in section 2.6.2 and cohomology groups H'(K, D@QpAn[l /p]) following
Definition 2.6.5 so that one may form H.! (K, D) = lim H(K, D@QpAn[l/p]) and an
exponential map

H(G) ®Qp Dst(D) — H;H(K7 D)/Halm(Ka D)tor

that interpolates Bloch-Kato exponential maps in the finite levels.
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