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Summary 

Hybrid dynamical systems (HDS) are systems generating a mixture of discrete-event and continuous- 
valued signals. Common examples of such systems arise when various continuous systems are inter- 
connected over a computer network. HDS provide a convenient modeling framework for a variety 
of complex engineering systems; communication networks, manufacturing systems, and distributed 
battlefield management systems. A pressing need exists for systematic and computationally effi- 
cient procedures for the analysis and synthesis of such systems. Between August 1995 and August 
1997, the Department of Electrical Engineering at the University of Notre Dame developed compu- 
tationally efficient methods for the modeling, analysis, and synthesis of hybrid systems under the 
sponsorship of Army Research Office grant DAAH04-95-1-0600. This project had three significant 
accomplishments. The first accomplishment developed an interior point method for the identifica- 
tion of multiple models. The second accomplishment developed computationally efficient methods 
for the synthesis of monitor-type Petri net supervisors. The final accomplishment of this project 
was the successful application of robust control methods to the synthesis and analysis of switched 
hybrid systems satisfying uniform ultimate performance bounds. 

Research Objectives and Motivation 

Hybrid dynamical systems (HDS) [27] are systems generating a mixture of continuous-valued and 
discrete-event signals. Such systems provide a convenient modeling framework for a variety of 
complex engineering systems; communication networks, manufacturing systems, power distribution 
systems, air traffic control networks, and battlefield management networks. While formal modeling 
frameworks for discrete event or continuous-valued systems have long existed, a combined framework 
which encompasses both discrete and continuous aspects of such systems has only recently begun to 
be seriously studied. 
Hybrid systems arise frequently in the supervision of complex dynamical processes. In this case, 
process supervision involves switching the system's structure between various operational modes. 
When several subsystems can be operated concurrently, then the number of various operational 
modes grows in an exponential manner with the number of concurrent processes. The resulting 
system can therefore exhibit a highly complex behaviour which cannot be effectively analyzed using 
conventional methods. For this reason, computationally effective methods for modeling, analysis, 



and synthesis of hybrid systems must be developed. The objective of this project was to develop 
computationally efficient methods for hybrid system design and analysis. 

Technical Approach 

The computational algorithms developed in this project work within the context of the Antsaklis- 
Stiver-Lemmon (ASL) [28] framework for HDS modeling. This framework reconfigures general HDS 
into a discrete-event and continuous-state system which communicate through an interface. HDS 
synthesis is then viewed as a two step process. The first step constructs a high-level discrete- 
event system (DES) supervisor. The second step synthesizes an interface executing the supervisor's 
commands in a "safe" and "optimal" manner. 
The value of this two-step appraoch is that the required synthesis problems can now be formulated 
as a generalization of well understood analog and DES controller design problems. On a theoretical 
level, this approach makes it easier to understand the fundamental properties which are characteristic 
of HDS. On the practical side, this strategy allows us to draw on a variety of mature and stable 
numerical procedures in solving these problems. In this project, we have focused on the numerical 
implementation of various HDS design methods. Our work has focused on three specific subproblems 
encountered in HDS design; 

1. multiple-model identification, 

2. supervisor synthesis, 

3. and the design of safe and optimal HDS interfaces. 

The technical approach being pursued in each of these subproblems is briefly summarized below. 

Multiple-Model Identification: The objective is to extract a set of linear dynamical models from 
the observed input/outputs of an unknown system. The identification problem involves determining 
what the linear dynamical models are and over what range of inputs the model should be used. This 
identification problem is framed as a constrained optimization problem that is equivalent to coding 
problems possessing a "fidelity" criterion. Expectation-Maximization (EM) procedures provide one 
popular method for solving this type of problem. This is the approach followed by some of the neural 
network groups (Jordan/Jacob) in which an ad hoc class of algorithms known as "alternating mini- 
mization" (AM) have been employed. Our work has used interior-point (IP) optimization methods 
to implement an incremental version of the EM-algorithm. This class of procedures is mathemat- 
ically well understood and we've shown that EM-procedures based on IP methods can exhibit the 
same computational efficiency enjoyed by IP methods used for linear programming. 

HDS Interface Synthesis: HDS synthesis requires the determination of an interface that exe- 
cutes the supervisor's commands in a "safe" and "optimal" manner. Safety refers to the invariance 
of discrete event traces to small variations in HDS state. Optimality refers to how well the executed 
commands are carried out. We've been able to solve this problem for switched systems of linear 
parameter varying plants using linear robust control methods. Due to the safety constraint, it is 
important that synthesized controllers satisfy a uniform ultimate bound (bounded amplitude) on 
their performance variables. We've developed methods based on popular linear matrix inequality 
techniques to synthesize and analyze switched output feedback control systems satisfying an induced 
£oo performance criterion. 



Petri Net Supervsior Synthesis: Our earlier work synthesized DES supervisors under the as- 
sumption that the plant's symbolic behaviour could be represented by a non-deterministic finite state 
machine (FSM). In many cases, a vector FSM or Petri net (PN) representation of the plant's sym- 
bolic behaviour is more appropriate. We have developed a matrix-based approach to the synthesis 
of Petri-net supervisors similar to controllers used by Giua and Lewis. Our method involves de- 
termining additional controller places so the controlled network possesses specified place invariants. 
The synthesis procedure is computationally efficient and well-suited to on-line controller reconfigu- 
ration. We've been able to characterize the class of feasible controls for Petri nets with unobservable 
transitions and have applied this methods to deadlock avoidance problems. 

Significant Accomplishments and Activity 

This project was a single year project which originally expired in August of 1996. At that time a 
no-cost extension of the project was requested to follow up on some of the signficant results which 
were generated by the grant. 
Major accomplishments for this project are; 

• the development of the hybrid interior point (HIP) algoirthm for multi-model identification, 

• the development of robust approaches to the design of hybrid control system interfaces, 

• and extending our Petri net synthesis work to plants with uncontrollable and unobservable 
transitions. 

The significant accomplishments in each of these areas is summarized in the following subsections. 

HIP Algorithm: Our work [1] [2] with the HIP algorithm has yielded rigorous proofs characteriz- 
ing the algorithm's asymptotic behaviour and complexity properties have been completed. The use 
of this algorithm in the efficient training of radial basis function (RBF) neural networks was demon- 
strated. Under this grant a "large-step" version of the algorithm was developed. This algorithm 
exhibited a computational cost, scaling, and accuracy which significantly outperformed existing im- 
plementations of EM-algorithms. The technical report on this work will be found in the attached 
preprint of a journal article that was accepted by the journal "Neural Networks" for publication. 
Under this part of the project a graduate student (Dr. P. Szymanski) completed his doctoral dis- 
sertation. 

HDS Interface Design: Important progress was made in the design of safe interfaces for hybrid 
dynamical systems. The formulation of this problem has been developed over a series of papers 
[3]-[13]. The prinicpal results of these studies will be found in [6], [7], [8], and [10]. Reference [6] 
characterizes linear parameter varying state feedback control systems which satisfy a uniform ulti- 
mate boundedness specification. Reference [7] shows how the results in [6] can be used to design 
hybrid system interfaces that are "safe" in the sense that they do not violate guard conditions. 
Reference [8] extends the results of [6] and [7] to show how these methods can be used to extract 
timed automata models for switched linear systems. Reference [10] generalizes the results in ref- 
erence [6] to output feedback and self-scheduled bounded amplitude control. These results, taken 
as a whole provided a systematic and computationally efficient basis upon which to design families 
of controllers for switched dynamical systems. Some important extensions to these results have 
recently been obtained. Motivated by our earlier work in invariant based design of hybrid systems 
[14] [30], we examined hybrid automata and Petri net models of hybrid systems [15]. These studies 
showed that the methods in [7] and [8] could be used to assess the bounded amplitude performance 



of hybrid systems represented by hybrid automata [16] or hybrid Petri net [17]. Our future work will 
continue along this line of inquiry. This component of the project has supported the doctoral work 
of a graduate student (C.J. Bett) who will be completing his dissertation in Spring 1998. This work 
also partially supported the work of a Masters level student (K.X. He) who will also be defending his 
master's thesis in Spring 1998. Copies of references [6],[7], [8], [10], [16], and [17] have been attached 
in the appendix. 

Petri Net Controller Synthesis: Significant progress was made in extending our matrix-based 
PN-synthesis methods [29] to process nets with uncontrollable and unobservable transitions. These 
results expand the class of problems which can be addressed to those involving controllable and 
unobservable transitions. Early work in this area [29] provided a computationally efficient method 
for designing feedback Petri net controllers. Extensions of this work have been reported in [18]-[26]. 
A summary of this work will be found in [24] which has been attached in the appendix. Important 
applications of this method to the problem of deadlock avoidance will be found in [25] which is 
also attached in the appendix. This part of the project supported the Ph.D. work of one graduate 
student (J. Moody) whose completed his dissertation in December 1997. 
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Hybrid Interior Point Training of 

Modular Neural Networks 

Peter T. Szymanski, Michael Lemmon, and Christopher J. Bett* 

Dept. of Electrical Engineering 

University of Notre Dame 

Notre Dame, IN 46556 

August 9, 1997 

Abstract 

Modular neural networks use a single gating neuron to select the outputs of a collection 

of agent neurons. Expectation-maximization (EM) algorithms provide one way of training 

modular neural networks to approximate nonlinear functionals. This paper introduces a hybrid 

interior-point (HIP) algorithm for training modular networks. The HIP algorithm combines 

an interior-point linear programming (LP) agorithm with a Newton-Raphson iteration in such 

a way that the computational efficiency of the interior-point LP methods is preserved. The 

algorithm is formally proven to converge asypmtotically to locally optimal networks with a 

total computational cost that scales in a polynomial manner with problem size. Simulation 

experiments show that the HIP algorithm produces networks whose average approximation 

error is better than that of EM-trained networks. These results also demonstrate that the 

computational cost of the HIP algorithm scales at a slower rate than the EM-procedure; and 

that for small-size networks, the total computational costs of both methods are comparable. 

Keyworks: modular neural networks, training, algorithms, interior-point methods, expectation- 

maximization methods 
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1    Introduction 

An artificial neural network is a distributed computing paradigm consisting of a set of self-similar 

processing units called neurons. In many neural network architectures, the network's output, y, 

has the form 

y(z) = £/($>) (1) 
i , 

where 0m and z are vectors in RÄ and / is a mapping from 1R into R. Given a target mapping, 

y : HR -¥ i?, we are interested in designing a network whose outputs form an approximation, y, 

of the target mapping. Neural networks are well-known to form good approximations of complex 

input-output mappings. This universal approximation [7] [2] [12] ability of neural networks is 

probably one of the most important reasons for their use. In the networks represented by equation 

(1), each neuron contributes to the network's output. In certain cases, however, it is reasonable 

to expect that the structure of the target mapping will be different in disjoint regions of the input 

space. In such cases, there is little benefit to be gained by additively mixing the outputs of the 

neurons. It might be better to use the output of a single neuron to exclusively compute the network 

approximation. Such networks can be viewed as a collection of experts where each neuron is an 

expert at approximating the target function over a region in RR. These mixture of expert or 

modular networks were first introduced in [8]. 

The training of modular networks can be carried out using Expectation-Maximization (EM) pro- 

cedures [3] [9]. Results in [14] raised concerns about the applicability of EM algorithms due to their 

linear convergence rate. That work called for the use of more sophisticated optimization methods 

whose computational costs are well understood. This paper presents just such an algorithm for the 

training of modular networks using Gaussian activation functions to form piecewise linear approx- 

imations. The algorithm is based on a modification of a primal interior point linear programming 

(LP) algorithm [5] [10]. The resulting algorithm combines an interior-point LP algorithm with a 

Newton-Raphson (NR) iteration in a way that preserves the computational efficiency of the original 

interior-point LP algorithm. The resulting algorithm is referred to as the hybrid interior point or 

HIP algorithm. A small-step version of the HIP procedure was first presented in [11]. One principal 

contribution of this paper is a formal analysis of the HIP procedure's asymptotic behaviour and 

computational complexity. The second principal contribution of this paper is a detailed simulation 

which compares the performance of the HIP algorithm and Expectation-Maximization procedure. 

The remainder of this paper is organized as follows. Modular neural networks are introduced in 



section 2. THe HIP algorithm is presented in section 3. Theoretical results on the HIP algorithm's 

asymptotic behaviour and computational costs are summarized in section 4. Formal proofs for 

the results in section 4 will be found in appendix A. Detailed simulation experiments comparing 

the HIP and EM algorithms will be found in section 5. This section also examines the use of the 

HIP algorithm in training a modular network to model the input/output behaviour of a fossil fuel 

electric power generating plant. A final discussion will be found in section 6. 



2    Modular Neural Networks 

This paper adopts a viewpoint in which neural network training is treated as a function approxi- 

mation problem [13]. Let y : RÄ -* 1R be a continuous function from RÄ into R which we call the 

target mapping. It is assumed that y is unknown, except at a finite set of input/output pairs. The 

set of N input/output pairs is denoted as 

r={(z1)y(zi)),(z2,y(z2))I...,(zjV,t/(ziV))}  , (2) 

where z; G RÄ (i = 1,... ,N) is the input and y(zj) G R is the associated output The set, T, 

will usually be referred to as the training set. The objective of the training problem is to find a 

functional, y : RÄ -+ R from a known parameterized set of functionals, y, which minimizes the 

approximation error's size over the training set. In this paper, the approximation will be realized 

by a special class of modular neural network. 

The structure of a modular network is shown in Figure 1. The network uses a gating neuron 

or gate to select between the approximations generated by a collection of agent neurons or agents. 

Let z G RÄ be the input to the network. In response to this input, each agent produces an ordered 

pair of outputs, (am(z),ym(z)). am : RÄ -> R is a functional from the input space, RÄ, into the 

non-negative Reals. The functional measures the activity level of the mth agent in response to an 

input z G RÄ. ym : RÄ -»■ R is a functional from the input space into the Reals representing 

the mth agent's approximation of the target mapping at z. The gate chooses that agent with the 

largest activity level and the selected agent's approximation is then used as the network's output. 

Mathematically, the network's output in response to z is written as 

y(z)   =   ym(z) (3) 

m   =   arg   max   am(z) (4) 
°l<m<M      v 

Linear Gaussian (LG) modular networks arise when the approximation function is linear and 

the activation functions are Gaussian. In particular, we assume that the mth agent's activation 

function has the form, 

am(z) = g(m)e^-ö™H2 (5) 

where q(m) G R, ü>m G RÄ, s is a negative real number, and £m 9("i) = 1- The activation function 

is parameterized by the scalar q(m) and the Ä-vector G>m. The mth agent's approximation function 

has the form 

2/m(z) = ^z (6) 



a-l(z). Yi(z) 

y(z) 
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agents 

Figure 1: Modular Neural Network 

where <j)m G RÄ. This approximation is parameterized by the 12-vector <f>m. We therefore see that 

the mth agent is parameterized by the scalar q(m) and the two Ä-vectors Qm and (j>m. In our 

later discussion, it will be convenient to aggregate these parameter vectors G)m and 4>m into a single 

parameter vector 6m € ]R   . In particular, we will let 9m = IT     -T 
Ym    wn The vectors, 

6   = 

Q   = 

*7 *! ••• Hi 
iT 

M 

iT 

q(l)    q(2)    ...   q(M) 

(7) 

(8) 

provide a parametrization (q, 6) of the entire network. 

The squared output, approximation error over training set T = {(zj>y(zj)},-=i    N is denoted as 

N 

N    M 

= EE«Hi)(^)-fe) 
j=l m=l 

s \2 

(9) 

(10) 

The second equation arises by expanding y(zj) and letting 

Q{m\j) = < 

The vector 

Q = 

1     if am(zj) > an(zj) for all 1 < n < M 

0   otherwise 
(11) 

(12) Q(l|l)   Q(l|2)   •■•   Q(m\j)   ■■■   Q(M\N) 

of Q{m\j) introduced in equation 11 will be called the network's selection strategy since it denotes 

which agent is associated with which input vector. Note that for a given network parameterization, 



(q, Ö), that there will be a unique selection strategy, Q. This means that the network can also be 

described by the ordered pair, (Q, 0). 

A naive approach to the training problem would involve minimizing d^ut(?, Ö) with respect q 

and 6. This problem, however, is ill-posed [6] in the sense that solutions may not be continuous 

with respect to the data given in the training set. To obtain a well-posed training problem, it is 

essential that the original output-error criterion be augmented with a regularization term. One 

common regularization term presents the error of the mth agent on the jth. input as 

<&(;') = (vißj) - fe)2 + Ha*» - *jt (13) 

The total network error then has the form, 

1    N   M 
d2(q,e) = ±J2j:Q(m\j)dl(j) (14) 

j=\ m=l 

where Q{m\j) is as defined in equation 11. 

The training problem involves minimizing d2(q, 0) with respect to q and 0. This is a nonlinear 

optimization problem which can be very difficult to solve. An alternative (heuristic) approach 

to solve this problem involves optimizing with respect to the selection strategy. Since a network 

parametrization (q, 0) has an associated selection strategy, Q, we can attempt to optimize a network 

with regard to 0 and the selection strategy, Q. This optimization problem is easier to solve since 

it is linear in Q and quadratic in 0. Note, however, that for a given selection strategy, Q, there 

may not be a set of q that realizes this strategy. We therefore need to introduce a heuristic way of 

relating q to Q. One useful heuristic is to view q(m) as the marginal probability of the mth neuron 

being activated. One estimate of this probability is given by 

9M = ^£«Mi) (15) 
i 

With the preceding discussion, we can now state the training problem as follows. It is first assumed 

that there exists a design set consisting of N training points, T = {(yj, Zj) G IIx RÄ, j — 1,..., N} 

where yj represents a desired output in response to an input, zy. The training problem is 

Problem 1 

minimize:   ££=i ££f=1 ±Q(m\j) [\\zj - öm||2 + (Vj - ,fe)2] 

with respect to:   Q(m\j), üm, 4>m(m = 1,..., M; j = 1,...,N) 

subject to:   Q(m\j) > 0 

£*=iQ(m|j) = l,0- = l,...JJ\0 



where Q{m\j) 6 R, um G JRÄ, and <f>m e HR (m = l,...,M;j = l,...,iV). The problem is to 

determine the set of parameters, | QT, 0r     € HMN x R2AfÄ, which minimize the objective where 

Q
T
 = [Q(1|1),Q(1|2)1...,QHJ),...]' (16) 

and 

eT=\eJ,el...,eT
M] (17) 

with 9m = 1^,0)^ G RÄ x RÄ. This procedure directly estimates the network parameters 0. 

The network parameters q are then obtained from Q using equation 15. Note that this problem is 

convex with respect to Q and 0, separately. The special structure of this problem means that it 

can be solved by using Expectation-Maximization (EM) algorithms or by using the HIP algorithm 

presented in the next section. 

This section has introduced a set of approximations that can be realized as modular linear 

Gaussian neural networks. The modular LG networks were characterized by the parameters, (g, 0). 

The regularized training problem was stated with respect to this parameterization. It was noted 

that solving this problem is more easily accomplished if we optimize the network with respect to the 

selection strategies, Q. This observation led to a training problem statement whose performance 

measure is linear with respect to the selection strategies Q and is quadratic with respect to the 

other network parameters 0. Problems of this form can be solved using expectation-maximization 

(EM) or hybrid interior-point (HIP) algorithms. The next section introduces the HIP algorithm. 



3    Hybrid Interior Point (HIP) Training Algorithm 

The training problems under consideration consist of those which may be decomposed into linear 

and quadratic subproblems. These problems can be written in an alternate form which emphasizes 

their dependence upon disjoint subsets of their parameters. Letting x = Q and letting 

5(0) = ldx(l)   £dx(2)   ...   £<MJ) 
■\T 

N (18) 

with dm(j) = ||zj — wm||2 4- (yj — <j^Zj)2, Problem 1 can be rewritten as 

Problem 2 

minimize:   c(Ö)rx 

with respect to:   x, 0 

subject to:   Ax = b, x > 0 

where A = [INxN.. .INXN] G HNxMN and b = [1,... ,l]r £ HN. The rewritten objective in 

Problem 2 is linear in the parameters, x, and is quadratic in the parameters, 0. 

The dependence upon the two distinct parameter sets suggests that an alternating minimization 

(AM) strategy can be employed to solve Problem 1. In an AM procedure, the original optimiza- 

tion problem is decomposed into several subproblems which are iteratively solved by component 

minimizers for each subproblem. Subsection 3.1 briefly describes the notion of an alternating min- 

imization algorithm. This subsection introduces the hybrid interior-point (HIP) algorithm as an 

example of an AM procedure. Subsection 3.2 discusses the component minimizers that are used 

in the HIP algorithm. Subsection 3.3 shows how the two component minimizers can be efficiently 

combined to produce a computationally efficient algorithm. 

3.1    Alternating Minimization 

Let h : RÄ -> 1R be a positive semi-definite functional over RÄ. Consider the problem of minimizing 

this functional /i($) with respect to the parameter vector, $. It is assumed that the parameter 

vector can be decomposed as 

& (19) $f   §r   •••   *£ 

where $* G R^ (i = 1,...,K) and $ € RÄ where R = Y^iRi- An alternating minimization (AM) 

procedure attempts to solve this problem by iteratively minimizing the functional with respect to 

$t for i — 1,... ,K while holding the other subvectors, $, (j ^ i), constant. AM procedures can 

be implemented by two nested loops. The inner loop performs the K component minimizations of 

8 



/i($) with respect to $i (i = l,...,K) while holding $y constant for j ^ i. The outer loop encloses 

the inner loop and controls the algorithm's iterations until some stopping criterion is satisfied. 

Algorithm 3.1 gives a pseudo-code description of a general AM algorithm. 

Algorithm 3.1 (General AM algorithm) 

Initialize 
i = o. 
Choose initial feasible f(°) = ($[0), $^0),... ,*?>>. 

repeat 
for i = 1 to K 

minimize /($«') 

with respect to #^ 

subject to $^    held constant for k £ i 
end 

3=3 + 1 
until(stopping criterion is satisfied) 

Expectation-Maxmization (EM) algorithms [14] provide well-known examples of AM procedure. 

The HIP procedure described below and first introduced in [11] provides another example of an AM 

procedure. The HIP algorithm consists of a parameterized outer loop, whose iteration produces 

a sequence that converges to a local optimum of the training problem. Each element within that 

sequence is generated by the inner loop. This inner loop consists of a component linear and 

quadratic minimizer. A pseudo-code listing for the HIP algorithm is shown in algorithm 3.2 . The 

behaviour of this algorithm is controlled by parameters ß and 7. 

The outer loop in the HIP algorithm generates a sequence of solutions {x^.O^}. Associated 

with the fcth iteration in the loop is a parameter cfik) > 0 which is a term in a monotone increasing 

sequence of the form 

a(*+i) = ßa(k) (20) 

where ß > 1. a^ is a barrier coefficient used by the component linear minimizer. The parameter 

ß is a free parameter of the algorithm controlling the number of iterations in the outer loop of the 

HIP algorithm. 

The inner loops of the HIP algorithm consist of the component linear and quadratic minimizers. 

The linear minimizer solves the linear programming (LP) problem associated with minimizing the 

network error with respect to the selection strategies, Q, subject to 0 being constant. The quadratic 

minimizer uses a Newton-Raphson (NR) descent method to minimize the network error with respect 

to 0 subject to the selection strategies, Q, being constant.  This minimizer is controlled by the 



parameter 7. The combination of linear IP solvers with Newton-Raphson (NR) descent methods 

forms the hybrid interior point or HIP algorithm. Detailed discussion of each component rrurnmizer 

will be found in subsection 3.2. Subsection 3.3 shows how to efficienctly combine both minimizers. 

Algorithm 3.2 (Hybrid IP AM algorithm) 

Initialize 
k = 0. 
Choose a(i) >0,  0(i), and initial x<fc). 

repeat 
Q(fc+i) _ ßa(k) f ß>lm 

Linear update: 
xo = *<*> 

'   i = 0 
while(||J>tx<.ari(a<t+1>c(Ö) - xj"1)!! > 0.2401) 

xi+1 = x, - ^P^,^(a<*+1)e(ÖW) - xr1) 
i = i + 1 

end 
SC+1) = Xi 

Quadratic update: 
For m = 1,..., M 

0(*+l) _ (! _7(*))0(*) +7(*)0(*+i).* 

end 
fc = A: + l 

untUdKxW, ©W) - (x*,0*)|| < e) 

3.2    Component Minimizers 

The HIP algorithm combines an interior-point linear programming algorithm with a quadratic 

minimization procedure. Both of these component minimizers are discussed in detail below. 

Linear Minimizer 

The interior-point (IP) method for solving the LP subproblems is a barrier method that uses 

logarithmic barriers to keep solutions inside the feasible set. The method generates a sequence of 

points that follow a path in the interior of the polyhedral set of feasible solutions. The resulting 

central path guides the approximate solutions to the optimal solution on the feasible set's boundary. 

The path following algorithm is fast, taking 0{y/riL) iterations to converge with a computational 

cost of 0(n3-5L) floating point operations, n is the dimension of the LP problem; and L denotes 

the "size" of the LP problem, being the number of bits required to represent the coefficients of A, 

b, and c. (Note: in our applications the LP problems will be of size n = NM). 

10 
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Figure 2: Interior Point concepts 

The IP method is a path following algorithm [5] which solves the following sequence of opti- 

mization problems. Each problem is based upon a primal parameterization of Problem 2 when 

minimized solely with respect to x. Let the kth. solution to this problem be denoted as x^ with 

ith component x\ K The fcth problem has the form, 

minimize:   a^cTx.^ — X^logxj ' 

with respect to:   x^ (21) 

subject to:   Ax.^ = b,xW > 0 

where oP^ > 0 (k = 1, • • •, K) is a monotone increasing sequence of real numbers generated by the 

iteration Q(
A;+1

) = ßa^ where ß > 1. x*(aW) denotes the optimal solution for the kth optimization 

problem in the sequence and is referred to as a central point. The locus of all points, x*(a^) where 

aW > 0, is called the central path. The augmented problem takes the original LP cost function and 

adds a logarithmic barrier which keeps the central points away from the boundaries of the feasible 

set. As a increases, the effect of the barrier is decreased, thereby allowing the kth central point to 

approach the LP problem's optimal solution in a controlled manner. Figure 2 depicts the feasible 

set for a sample LP problem along with the central path, central points, and a set of level curves 

corresponding to contours of the barrier function. 

Interior point algorithms solve the LP problem by approximately solving the sequence of aug- 

mented problems shown in (21). The approximate central points are computed using one or more 

scaling steepest descent (SSD) updates of the form 

■Ak+i) = x (k) XPAXX{a^+1>>c - (xW)"1) (22) 

11 
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Figure 3: Path Following Example 

where X = diagfo, x2,..., x„) £ IT*" is a scaling transformation, PA = I-AT{AAT)~1A e Bnxn 

is an orthogonal projection, and x-1 = sjj"1,^1,... ,x~ 1J . Figure 3 illustrates this sequence of 

approximate central points. 

The interior-point algorithm can be proven to converge to an e-neighborhood of the optimal 

solution to the LP problem provided these approximate solutions are close to the central path. The 

following proximity measure is essential for characterizing this notion of "nearness" to the central 

path, 

*(x« a<*>) = \\PAxWxW(aWc - (x«)-1)!! (23) 

6(5^k\a^) < 1 places x^ in the region of quadratic convergence for the SSD algorithm. Once a 

point is near the central path and satisfies the proximity condition, 

*(xW a<*>)<0.5, (24) 

the IP algorithm must maintains the proximity of successive points to the central path. This is 

generally done by selecting a ß and then using a sufficient number of SSD steps to enforce the 

proximity condition. If ß is chosen so that only a single SSD step is required, then the IP algorithm 

is said to be a small-step procedure. Small-step algorithms have been shown to converge in 0{y/nL) 

iterations with an associated computational cost of 0(nz-5L) [5]. If a larger value of ß is used, then 

several SSD steps may be required to enforce the proximity condition. Such algorithms are often 

referred to as large-step IP algorithms. In general, large-step algorithms can exhibit considerably 

lower total computational cost than their small-step counterparts. 

Quadratic Minimizer 

12 



The quadratic minimizer minimizes c(0)Tx with respect to 0. The determination of successive 

quadratic parameters is accomplished using standard descent techniques to optimize c(0)rx with 

respect to 6. The determination of successive quadratic parameter estimates is termed the 0- 

update. 

The 0-update uses a Newton-Raphson (NR) approach to solve the quadratic optimization with 

respect to 0. The basic form of an NR update is 

i-i 0(*+D = QW _ [#($<*))]    Ve(0<fc>) 

where H(Q) is the Hessian of the objective functional with respect to 0 and Vg(0) is the gradient 

with respect to 0 evaluated at point Q^. Typically, the update is performed iteratively for general 

problems. The optimization is quadratic, however, so the following closed form solution results: 

0* = [9t,e*2,.. .,9*M] where e*m = [fo, fi&], 

-1 

and 

N   1 

i=i 

N 1 
]T-Q(m|j)ziyi (25) 
i=i 

wm =   ~N    Xn(   ...  • (26) 

These minimizing solutions assume that Y,f=i jfQ{m\J) # 0 and that [Z)^i jfQ(m\J)^j^j\ is 

nonsingular. The first condition will always be satisfied as at least one sample point will always 

be assigned to a model (Vm, 3j such that Q(m\j) > 0). The second condition can be violated for 

insufficient amounts of data or when the data is linearly dependent. The problem can be corrected 

in such a case by reducing the number of models or increasing the number of samples to ensure the 

linear independence of the data. 

3.3    Combining Component Minimizers 

The behaviour of the HIP algorithm is controlled by the parameters, ß and 7. Choices for ß 

are dictated by the desired number of iterations in the outer loop of the HIP algorithm. If a 

small enough ß is used, then we have a small-step HIP algorithm. For larger ß, a large-step 

HIP procedure results. The primary difference between these methods lies in the number of SSD 

iterations required in the linear component minimzer. ß is therefore chosen to control the total 

number of iterations in the outer loop of the HIP algorithm. The effect of specific ß choices on the 

algorithm's total computational cost is discussed in section 4. These results suggest that choices 

13 
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for ß resulting in large-step HIP algorithms should be fastest. The simulation results in section 5 

supports this assertion. Choices for 7 are important for ensuring that the component minimzers 

work well together. The following subsection summarizes the desirable choices for 7. Formal proofs 

of justifying the desirability of these choices will be found in section 4 and appendix A. 

A key concern in the HIP algorithm is the proximity of intermediate solutions in the sequence, 

{x(fc),0W}, to the central path. The proximity of successive solutions to the central path (see eq. 

(24)) results in the attractive convergence properties for the basic IP algorithm. This condition must 

be maintained by the HIP algorithm if the attractive computational properties of the interior-point 

method is to be preserved. Note, however, that performing the quadratic minimization changes 

the parameter vector, 0, and hence changes the cost vector, c(6) (See Figure 4). It is possible 

that changes to the cost vector will rotate the cost vector about the current solution x^ in such a 

way that x^ no longer satisfies the proximity condition in (24). To make sure that the proximity 

condition is not violated, it is necessary to constrain the step size of the 6-update by choosing the 

7 parameter appropriately. In section 4 and appendix A it is shown that the appropriate choice is 

For this choice of 7, the HIP algorithm preserves the computational efficiency of the underyling 

interior-point linear programming algorithm. 

14 



4    Theoretical results 

The utility of HIP algorithms rests in their convergence and computational properties. This section 

summarizes the key technical results supporting the algorithm's asserted computational efficiency. 

The results pertain to small-step versions of the HIP algorithm, but related results to the large-step 

version can be obtained using similar arguments. Proofs for the following results appear in [15], [5], 

and in appendix A. The results deal with proximity, convergence, and computational properties. 

4.1    Proximity 

As discussed earlier, the HIP algorithm must maintain the proximity condition (24). This proximity 

condition is enforced by using the appropriate number of SSD iterations for a given ß. The following 

classical results [5] reparameterize ß with respect to u using the following equation, 

ß = 1 + v/yfti (28) 

When v e (0,0.1], then we say the algorithm is a small-step procedure. Theorem 1 and Corollary 2 

specify how SSD steps affect proximity for a small-step HIP algorithm. Theorem 1 indicates that 

only a single SSD step is required to maintain proximity in moving from x^ to 5^k+1\ while 

Corollary 2 details the "extra" proximity which is gained by taking multiple SSD steps. Theorem 3 

specifies the effect of SSD steps on proximity for large-step HIP algorithms. It states that a linear 

number of steps (0(n/i2/(l + /J?)) steps with /z = v/y/n) is required to find x(fc+1) satisfying (24) 

given an initial x^ which satisfies (24). 

Theorem 1 ([5]) Let 5(5c, a, G) = \\PAxX(ac(Q) -x-1)|| be the proximity measure where x-1 = 

(xi\x21,...,x-1)T and a > 0. If 5{x^,a^,e^) < 0.5 and a(*+1> = a^{l + u/y/n~) where 

v e (0,0.1], then one SSD step finds (x^.e«), such that i(#+1),a(w),P) < 0.5. 

Corollary 2 (Appendix A) Assuming the same conditions as in Theorem 1, then J SSD steps 

produce a point {5cf+1),e^) such that 5{5tf+1),a^k+l\e^) <Si = (0.7)2J. 

Theorem 3 ([5]) Let 6(x,a,Q) be the proximity measure where a > 0. J/J(#,aw,ew) < 0.5 

and a(*+1) = a^(l 4- y) where p. > 0.1/y/n, then 0(n^2/(l + /r2)) SSD updates find a new point, 

(x(*+1),e(fc)), such that 6{x(k+1\a(k+V,eW) < 0.5. 

The preceding results are used in determining the choice of 7 introduced in section 3, equation 

(27). Theorem 4 describes a bound on 7^ that maintains the proximity condition. Note that this 

bound applies to either the small-step or large-step HIP algorithms. 
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Theorem 4 (Appendix A) Let ©^ and ©(*)>* be the current and minimizing parameter vectors 

at time k. Let c^ = c(©(*)) and c^'* = 0(0^'*) and assume c(0) is a non-negative, convex 

function of 0. Let <J(x, a, 0) be the proximity measure. Assume 5(5^k+1\a^k+1\Q^) = 5\ < 0.5 

and let 0(fc+1) = (1 -7(*))©(fc) + 7« ©(*+!)>*. J/7(*) i5 cftosen as 

where 5X<52 = 0.5, then <J(x(*+1),a(fc+1),©(*+1)) <82 = 0.5. 

The component minimizers together form an iteration that computes (x(fc+1), ©(*+1)) in proxim- 

ity to x*(a(fc+1),0(fe+1)) given (xM,6(*)) which is aheady in proximity to x*(a^,0^). Theorem5 

quantifies the result for both the small-step and large-step cases that is found in equation (27). 

Theorem 5 (Appendix A) Let 5(x(fc),aW,©W) < 0.5 and let a(fc+1) = a<fc)(l + p) where p < 

0.1/s/n for the small-step algorithm and p > 0.1/\/n for the large-step case. Let ©(fc+1) = (1 — 

7(fc))eW+7(fc)0(fc+1)'* where 

7W< 
0.12995 

n||e(*+i).*-e(*)|r 
Then, one iteration of the small-step variant of Algorithm 3.2 with two SSD steps or one iteration 

of the large-step variant with 0(np2/{l+p2)) SSD steps produces (x^k+1\ 0<*+1)) from (x<*)( ©W) 

such that 6(5i(k+1\a(k+l\G(k+V) < 0.5. 

4.2    Asymptotic convergence 

The component minimizers' combination as an hybrid IP algorithm is only useful if it converges 

to an optimum for Problem 1. The preceding theorems only imply that the HIP algorithm will 

converge to a fixed point, (x*, ©*), as a^ increases. This point corresponds to an optimum of the 

LP subproblem and an optimum for the quadratic subproblem. Proximity and central paths do 

not, however, guarantee that (x*,0*) is a local optimum for Problem 1. This section summarizes 

results establishing the aymptotic convergence of the small-step HIP algorithm to a local optimum. 

These results first quantify the changes in the linear and quadratic solutions as functions of the 

LP subproblem's duality gap. Those results then imply that the solution sequence is Cauchy 

and converges to a fixed point. It is then shown that this fixed point is a local optimum for the 

regularized training problem. • 

Convergence results for the HIP algorithm depend heavily on the LP subproblem's duality gap, 

as do similar results for the LP solvers.  The duality gap, A^k\ is a non-negative quantity that 
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denotes an upper bound on the distance to an optimal solution to the LP subproblem in terms of 

problem cost. An expression for the bound on the duality gap ,S(x,a), will be found in [5]. This 

expression extends to the HIP algorithm where 5{x,a) becomes 8(5t,a,0). With this extension, a 

bound on the duality gap at the kth iteration for the HIP procedure is 

A(fc) < n + f(xW,qW,6W)V5 

AW is a function of a^ since 5(x.W, a^, ©^) can be bounded by 0.5 from the previous proximity 

conditions. Thus, as a^ increases, the distance to an optimal LP solution decreases. This property 

is used in the succeeding results where A^ takes on a role similar to that of a descent function. 

The component linear and quadratic minimizers make incremental changes to x>k> (or Q) and 

0(fc) where the changes can be bounded by a function of the duality gap. These changes rely on 

satisfaction of proximity conditions and on the forms of the updates, themselves. The changes in 

x.W can be related directly to the duality gap. Theorem 6 describes the change in x and provides 

a bound on ||x(fc+1) — xW|| in terms of the duality gap. The changes in 0 depend directly on the 

changes in x due to the updates in (25) and (26). Theorem 7 details the changes in 6* and provides 

a bound on ||©(fc+1)'* — 0(fc)'*|| in terms of ||x(fc+1) — x^||. Both norms have upper bounds which 

are functions of the duality gap. Both are therefore strictly decreasing as the duality gap is strictly 

decreasing, implying that ||x(*+1) - x<fc>|| -» 0 and ||0(fc+1).* - ©(*>•• || ^ 0 as A<fc) -»• 0. 

Theorem 6 (Appendix A) Let QW and A^ be the set of linear parameters (probabilities) and 

the duality gap at iteration k, respectively. Let c^ = c(0^) and 5(x, a, 0) be the proximity 

measure where x = Q. Let a(fc+1) = a^(l + v/y/n) where v G (0,0.1]. Assume that x.^ satisfies 

the proximity condition 5{x.^k\a^k\Q^) < 0.5. For two SSD updates, the change in Q, ||AQ|| = 

||Q(*+i)_Q(*)|| is 

||AQ||<2((5(1 + Z/) + I/)AW. (31) 

where S = <5(xW,a(fc),0«). 

Theorem 7 (Appendix A) Let Q(m\j) = Q^k)(m\j) and AQ(m\j) = Q(fc+1)(HJ) - Q(fc)MJ)- 

Define 9m = [{4>*m)
T, {üm)T]T S H2R where 4>*m and üm are defined as in (25) and (26). Let QCp 

be the set of all Q 's on or near the central path. Define 

Am    =   Ef^QHJ^zJ 

Em   =   EjLi ^AQHJJZJ-ZJ 
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where Am,Em e H
RxR. Assume bounded inputs and outputs for the design set T, ||z|| < £, |y| < 

Ymax- Assume that Am is of full rank for Q S QCP- Let fimax = snpQ&QCp \\A^\\, \\Em\\ < l/nmax, 

and ßmax = supQ6Qcp(E^i j;Q(m\j))-1. Then, 

||0(*+i).* _ 0W.*|| < MK\\LQ\\ (32) 

Where K = JWÄaz(l + MmaxC2/(l ~ n)) + AnaxCU + ßmax/{l ~ r2)), TX = \\A^\\ \\Em\\ < 1, 

and r2 = (£f=1 j?AQ(m|j))/(EjLi iOHl) < 1- 

The significance of Theorems 6 and 7 is that the norms of the changes in the parameters 

have bounds which are functions of the duality gap. The results indicate that the changes in 

the parameters are guaranteed to decrease as the duality gap decreases. It is initially surprising 

that both parameter changes can be bounded by the duality gap. However, considering that the 

problem is expressed as a linear subproblem, it is not surprising that the linear parameters' changes 

are functions of A^, which is intrinsic to LP problems. It is also not surprising that the quadratic 

parameters' changes depend upon A^ as the closed form solutions for the minimizing parameter 

vectors depend directly upon the linear parameters which themselves depend upon Aw. 

Asymptotic convergence of the small-step variant requires that {(x(fc),6(fc))} -» (x*,6*) as k 

increases. The preceding two results do not imply this condition. Rather, they imply that the linear 

parameters converge and the optimal estimates of the quadratic parameters converge. In order to 

prove convergence, both the linear and quadratic parameters must converge simultaneously. For 

this to occur, the convex combination coefficient, 7^, must tend to and remain fixed at unity as k 

increases. This implies that the quadratic parameters are always updated exactly as their optimal 

estimates and that ||9(*+1) - 0(fc)|| = ||6(*+1>'* - ©<*>»• ||. When this condition holds, then both 

||x<fc+1) - x^H ->■ 0 and ||0^+1) - Q^\\ -> 0. Theorem 8 states that there is an iteration number, 

K, for which all iterations greater than K satisfy the condition on 7W. Theorem 9 provides the 

result that {(#),§W)} -*■ (x*,6*). The proof of Theorem 9 shows that the sequence is Cauchy 

and converges to a fixed point. 

Theorem 8 (see Appendix A) For the HIP algorithm described above, there exists a K > 0 

such that 7W = 1 /or allk>K. 

Theorem 9 (Appendix A) For the HIP algorithm described above, t/7^ = lforallk>K> 0, 

then the sequence of solutions, {(xW,9(*')}, converges to a fixed point, (x*,0*). 
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The optimality of the fixed point determined by the HIP algorithm is established in the following 

theorem 10. 

endix A) Let w* = [(x*)J ,(©*)'lT 

nlT. 

Theorem 10 (Appendix A) Let w* = [(x*)T, (0*)Tj    be the limit of the sequence, {w^} = 

{ (xW)T, (0(*))T    }, produced by the HIP algorithm. Let the minimization problem be 

minimize:        c(0)rx 

with respect to: x, 0 (33) 

subject to:   Ax — b, x > 0. 

w* =   (x*)r, (0*)T     is a locally minimum solution to (33). 

4.3    Computational properties 

The final two results refer to the small-step variant's computational properties. Small-step HIP 

variants are direct extensions of small-step interior point LP solvers. The latter algorithms enjoy ex- 

cellent computational properties, 0(y/n log2(l/e)) iterations convergence rate and 0(n3-5 log2(l/e)) 

flops cost, to converge to an e-neighborhood of an optimal solution. Under appropriate problem scal- 

ing assumptions, the HIP procedure inherits the computational efficiency of its linear counterpart. 

The extension requires 0{y/nlog2(y/n/e)) iterations to converge with an associated computational 

cost of 0({n35 + nl^R2 + y/nMR?) log2(\/n/e)) flops to converge to an e-neighborhood of locally 

optimal solutions. In this case n = NM. The two results are summarized below. Together, they 

indicate that the small-step variant is computationally efficient and that it will scale well as problem 

size increases. 

Theorem 11 (Appendix A) Letw^ = [(xM)T, (©W)T1 be the kth approximate solution gen- 

erated by the HIP algorithm. Assume that A^ < 1/e. Assume that the cost vector is scaled by 

S such that 7W = 1 for all k > K and that 2(5(1 + v) + v)(l + M£)AW > e. Given these 

assumptions, the HIP algorithm will converge to an e-neighborhood of a locally optimal solution 

(||w(*) — w*|| < e) in 0(v/nlog2(\/n/e)) iterations. 

The HIP algorithm's overall computational cost is computed by determining the computational 

complexity of the individual steps and then multiplying by the algorithm's convergence rate. The 

linear update executes two SSD steps each employing a matrix inversion with a worst case com- 

plexity of 0(n3) where n = MN. The quadratic update requires NR2 multiplications resulting 

from the vector outer product and employs a matrix inversion with a computational complexity of 
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0(R3). Also, the quadratic update is done on M models so the quadratic update has a computa- 

tional complexity of 0{nR2) or 0(MR3). These complexity estimates multiplied by the estimate 

of the number of iterations establish the following theorem: 

Theorem 12 (Appendix A)  The computational cost of the small-step, HIP algorithm is 

0({n35 + nL5Ä2 4- ^faMR?)log2(VH/e)) 
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5    Examples 

Two collections of experiments examine the hybrid IP algorithms' computational properties and use. 

The first set performs comparisons between the two hybrid IP algorithms and the EM algorithm. 

Comparisons in Section 5.1 address the relative computational costs and error characteristics of 

the three algorithms. The second set of experiments demonstrates the two IP algorithms' use 

in training networks to determine multiple, linear, set point models of a nonlinear plant. Those 

experiments use data from a fossil fuel burning, electric power generating plant. 

5.1    Mixture density parameter estimation 

The first collection of experiments compares the IP algorithms with the EM algorithm when used 

on mixture density parameter estimation problems. The three algorithms identify the means of a 

set of normal densities using sample vectors generated from the densities. The densities have means 

which correspond to the vertices of a simplex in an R dimensional space. Similar to experiments 

in [14], the means are equispaced. These experiments assume M = 2 to 15 candidate densities. 

Samples.sets ranging in size from N = 300 to TV = 750 vectors are the training sets used. All the 

experiments assume known and equal covariances, S = I. 

The specific EM algorithm used in these experiments is a two step procedure modeled after 

the EM algorithms described in [14] for solving mixture problems. It consists of implementing 

equations (4.0) and (4.8) from [14]. These equations are 

and 

^Zj   •   p(z;|ew) 
vg(m)(fc+1>P(zjlm,9W) 
£ P(z,|0M) (35) 

for m = 1,..., M, where 

M 

P&0k)) = E ?(ffl)fcl eXP ("KlPi - "mil2) 
m=l 

with hi normalizing constant and q(m) being the marginal probability of observing a sample from 

the mth class. The following experiments assume a value of unity for K\ in the exponential in 

the preceding equation. Different distances between the mixtures' means in the experiments help 

demonstrate the algorithms' convergence rates and costs for different, relative variances. 
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The experiments use the EM algorithm above for comparison with the HIP algorithms. The EM 

algorithm solves a soft clustering problem, while the HIP algorithms solve a hard clustering problem, 

fc-means clustering, a hard version of EM, may be used to solve the problem. The comparisons use 

the EM algorithm, however, since its implementation resembles the HIP algorithms. 

The first set of experiments makes a qualitative analysis of the three methods. This set assumed 

problem parameter values of R = 9, N = 300, M = 2 to 9, and a spacing of four units between 

the means. This spacing between the means corresponds to a well separated set of densities whose 

parameters should be easy to identify. The algorithms were initialized with random initial con- 

ditions. In the runs, the algorithms executed until the solutions were within 10~5 of an optimal 

solution. Results from this set examine the convergence rate in iterations and the computational 

cost in flops. 

Results for the first set of experiments appear in Figures 5 and 6. These results serve as a means 

to rank the algorithms' performance relative to one another. Mean empirical iteration results, along 

with a "best-fit" characteristic, in Figure 5 exhibit 0(n}-53), O(n045), and constant iteration rates 

for the EM, small-step, and large-step algorithms, respectively, where n is the dimension of the 

linear subproblem. Mean computational cost results in Figure 6 exhibit 0(n2-42), (^(n1-78), and 

0(n1-53) flops cost rate for the EM, small-step, and large-step algorithms, respectively. While the 

IP variants exhibit lower convergence rates and cost rates than does EM, the plots demonstrate that 

the EM algorithm incurs lower cost for these well separated problems. As the number of models 

increases, however, EM performance begins to approach the large-step algorithm's performance 

in terms of cost. The same cannot be said with respect to the small-step IP variant, which still 

has a much greater cost. These results allow us to eliminate the small-step variant from further 

consideration in our comparisons, as it always has much greater cost. 

The next sets of experiments perform a more quantitative analysis of the large-step IP variant 

and the EM algorithm. These experiments assume R - 19, N = 300,500,750 samples, M = 2 to 

15 mixtures, and a spacing of two units between the densities' means. This spacing corresponds to 

more closely spaced, harder to identify means. The algorithms terminate in these runs when the 

solutions are within 5 x 10-5 of an optimal solution. 

Computational cost results for the three cases appear in Figures 7-9. These graphs display 

the mean computational costs for the two algorithms along with bounds indicating the maximum 

and minimum costs incurred for the various sized mixtures. The cost rates for the EM and large- 

step algorithms are 0{nlJ) and 0(n1A5) flops, respectively. The two algorithms are comparable, 
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Table 1: Cost standard deviation results 

Algorithm N % of costs > mean % of costs within one standard deviation 

EM 300 0.367 0.767 

Large-step IP 300 0.417 0.717 

EM 500 0.433 0.742 

Large-step IP 500 0.467 0.700 

EM 750 0.425 0.750 

Large-step IP 750 0.400 0.700 

exhibiting very similar mean costs for all three cases. The EM algorithm generally exhibits slightly 

better cost, but the IP algorithm outperforms the EM algorithm at some points. 

Analysis of the costs' standard deviations reveals two observations. First, Table 1 tabulates 

the percentages for the two algorithms of the number of runs resulting in costs greater than the 

mean cost and the number of runs with costs within a standard deviation of the mean. The EM 

algorithm again performs slightly better in both accounts, but the results are comparable. Thus, 

the algorithms' statistical performances are comparable. 

The second observation deals with the standard deviations, themselves. Figures 10-12 plot 

the standard deviations of the costs normalized by the mean cost for each number of mixtures 

for the three experiments. The results show that the IP algorithm consistently exhibits a smaller, 

normalized standard deviation than does EM. This implies that the IP algorithm requires a number 

of computations that vary less from run to run than does EM. In terms of algorithm operation, it 

appears that the IP algorithm is less susceptible to the effects of initial conditions in the number 

of required computations than is EM. 

Final cost results examine the worst case costs incurred by the two algorithms. Figures 13- 

15 plot the maximum costs incurred by the two algorithms for the three test cases. In all three 

cases, the IP algorithm's worst case cost is generally better than the EM algorithm's worst case 

performance. Considering that EM has a cost with greater standard deviation than does the large- 

step method, this suggests that for these closely spaced problems the IP algorithm may be better 

in terms of cost incurred. 

Error analysis, similar to the preceding cost analysis, follows here. Mean square parameter error 

results appear in Figures 16-18.  The plots depict the mean square parameter error between the 
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Table 2: Error standard deviation results 

Algorithm N % errors > mean % costs within one standard deviation 

EM 300 0.392 0.658 

Large-step IP 300 0.517 0.667 

EM 500 0.383 0.725 

Large-step IP 500 0.483 0.667 

EM 750 0.467 0.692 

Large-step IP 750 0.467 0.683 

computed estimates and the actual values for each number of models. The errors are averaged over 

the number of runs at each point. The plots demonstrate that the EM algorithm always results in 

worse error than does the IP algorithm. 

Examination of the errors' standard deviation yields additional observations. Table 2 contains 

information similar to that contained in Table 1. It lists the percentages for the two algorithms of 

the number of runs resulting in errors greater than the mean error and the number of runs with 

errors that fall within a standard deviation of the mean error. This table suggests that the error 

distributions are comparable between both methods 

Additional results in Figures 19-21 plot the standard deviations of the errors normalized by the 

mean error for each case. The plots demonstrate that the EM algorithm has a greater variance in 

the errors it incurs in producing its estimates for all three trials. The larger errors occur because 

the EM algorithm has more difficulty in separating the samples from run to run. The IP method, 

however, separates the samples with a much smaller variance in its estimates. 

Final error results examine the worst case errors incurred by the two algorithms. Figures 22-24 

plot the maximum errors incurred by the two algorithms. In all the cases, the IP algorithm's worst 

case error is significantly better than the EM algorithm's worst case error. This again supports the 

observation that the IP algorithm generalizes better than the EM algorithm on the test cases. 

5.2    Model parameter identification 

A final experiment examines the small-step HIP algorithm's use on a multiple model system identi- 

fication problem. Here, a modular network is trained to identify multiple linear, set point models of 

a nonlinear system. The problems uses input/output data for the fuel flow process from a fossil fuel 

29 



10 101 

Number of models 

Figure 15: Worst case computational cost (N = 750) 

4 6 8 10       12       14 
Number of models (M) 

Figure 16: Parameter error(iV = 300) 

30 



4 6 8 10       12       14       16 
Number of models (M) 
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Figure 19: Normalized error standard deviation (N = 300) 
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Figure 22: Worst case error (N = 300) 
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burning electric power generating plant (see Figure 25). Two sets of data consisting of input/output 

pairs of the fuel flow process are available to train the network: an N = 300 sample design set and 

an N = 1438 sample validation set. The experiment used the small-step HIP algorithm to train 

modular network and recorded the computational properties of the HIP algorithm for M = 2 to 9 

model units. Also recorded was the network's performance in approximating the fuel flow process. 

100 100 

2        4 6 
Time (sec) 

8 xlO 2        4        6        8 x 10 
Time (sec) 

Figure 25: Fuel flow input/output data 

The experiment's results follow here. Figure 26(a) shows that the empirical iteration rate 

is 0(n0-68) iterations and is slightly worse than the 0(y/n) predicted rate. Figure 26(b) shows 

that the 0(n}^) flop empirical cost (open circles/solid line) exceeds the 0(n35) flop theoretical 

cost rate (dashed line). The difference between the theoretical and empirical rates in this and 

the previous experiments is attributed to the fact that sparse matrix techniques were used to 

implement the IP algorithms. Finally, figure 27 gives an indication of the resulting network's 

performance in approximating the fuel flow process. Figure 27(a) plots the mean square error of 

the approximation for hard and soft switching between models. The results show a decreasing and 

then slightly increasing trend with an optimum at M = 4 models. Figure 27 display the networks' 

performance for an M = 4 model approximation. The figure demonstrates that the resulting 

network approximates the fuel flow process well. 
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Figure 27: Fuel flow results 
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6    Discussion 

This paper used the hybrid interior point (HIP) algorithm to train modular neural networks. The 

HIP procedure combines an interior-point linear programming algorithm with a Newton-Raphson 

iteration to produce an algorithm whose computational cost scales in a polynomial manner with 

problem size. In particular, this paper formally proves that the HIP algorithm converges to a fixed 

point that is a local optimum of the regularized training problem. This paper also shows how to 

configure the algorithm so that the number of iterations and total computational cost scale at the 

same rate as fast interior-point linear programming algorithms. The formal results obtained in 

this paper were validated through simulation experiments which compared large-step and small- 

step versions of the HIP algorithm against Expectation-Maxmimization (EM) procedures. These 

results showed that for the test suite of problems large-step HIP algorithms exhibited a total 

computational cost that was comparable to that of the EM procedures, but that the resulting 

solutions obtained by the HIP algorithm had lower errors than the EM procedure's solutions. The 

results also showed that the HIP algorithm's total computational costs were relatively insensitive to 

a problem's initial conditions; something which was definitely not the case with the EM methods. 

Further experiments demonstrated the use of the HIP algorithm in identifying multiple predictors 

for nonlinear dynamical plants. 

37 



A    Appendix 

A.l    Proximity proofs 

Proof of Corollary 2: Prom [5], if *(*(*>,a<fc>,©<*>) < 0.5 and a<fc+1) = a<*)(l + v/y/n) with 

v e (0,0.1], then «(xW.a^.Ö^) < 0.7. If i(#,a,eW) < 1, then one SSD step produces 

5q +1' from x^ where (Lemma 5.4 in [5]), 

<Kxf+V*+1),e«) < J(x(fc),a(*+1),e(fc))2 < (0.7)2. 

Application of another SSD step produces x2 
+ ' from x[       with 

*(x2
fc+Vfc+1),0W) < 5(x{k+1\a^k+1\e^)2 < (0.7)2*. 

Proceeding inductively, assuming that <5(x5r
fc+1),a(*+1\0W) < (0.7)2', then 

5(5$£\a<k+1\&W) < <J(4fc+1),a(fc+1),eW)2 < ((0.7)2')2 = (0.7)2J+1 

D 

Proof of Theorem 4: The proof must demonstrate that using 7^) in (27) maintains the nearness 

of x(*+i) t0 the centrai path after updating ©W. Let h(x, a, 0) = PAxX (ac(0) - x_1) and define 

hi and h2 as hi = h^+D.a^.eW) and h2 = h(x(*+1),a(fc+1),0(A:+i))- Using the triangle 

inequality, hi and h2 are related as 

I|h2|| < ||£L2 - £x|| -H !|&i||- 

Substituting h = PAXX (c*c(0) - X"
1
) and 8\ for ||hi|| produces 

||h2|| < \\a^)PAX^X^\c^) -6«)|| + *.' 

Applying the quadratic update and using the non-negativity and convexity of c(0) (c^+1) < 

(l_7W)cW+7Wc(*+i).') results in 

||h2|| < \\^k+1^PAX{k+l)X^+1Hc^k+1)'* - cW)|| + 8L 

Using \\PAXWXW\\ < A(fc) from [15] and A« < (n + 0.5^/n)/a^ < 2n/a^k\ then 

||h2||    <   7(fc)"(fc+1)l|PAX(*+i)^(fc+1)ll l|c(fc+1)'* - c(fc)|| + SL 

<   7(fc)2n||c(fc+1)>*-c<*>|| + <Ji. 
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Plugging in the value of 7 from (27) yields 

INH < (*2-*l) 
L2n||c(fc+1)-*-cW||J 

2n\\c^+1^-c^\\+Sl = 62. 

D 

Proof of Theorem 5: By assumption, J(xW,a^,6(fc^) < 0.5. For the small-step algorithm, 

Corollary 2 states that two SSD steps produce x<*+1) where 5{^k+l\a^k+1\e^) < (0.7)22 = 

0.2401. For the large-step algorithm, Theorem 3 states that 0(n/j2/(l + /x2)) steps produce 

x(fc+i) such that ^x^+^a^"1"1),©^) < 0.5. Taking a constant two additional steps reduces 

<5(x(A:+i))Q,(fc+i))@(A:)) below Q.2401. Thus, 0(nju2/(l + fi2)) SSD steps produce x(fc+1) such that 

6(x.(k+1\ a(k+l\ 0(fc)) < 0.2401. A valid 7W for the quadratic update can be computed using (27) 

where 5\ = 0.2401 and <52 = 0.5, and the 0-update results in ©(*+1) such that 

5(x(*+1),a(fe+1\0(fc+1))<O.5. 

D 

A.2    Asymptotic convergence proofs 

The convergence analysis begins with a set of definitions. Let Ü = (Q, 0) be the set of solutions 

produced by the algorithm. Let il(Q) C ti be the set of all Q's which are solutions to the LP 

problem. Let fi(0) C ft be the set of all solutions to the quadratic problem. Define co(fi) to be 

the convex hull of the set of points in SI. Let 7 be defined as 

7 = mm 
/        0.12995 \ 
U||c(0i)-c(02)||' )' 

Lemma 13 Let 0(fc),0M'* e co(fi(0)) be the current and minimizing parameter vectors at itera- 

tion k. Let 7W G (0,1] be defined as in (27) and let the parameter vectors be updated as 

6(fc+1> = (1 - 7(*))©W + 7(fc)0(*+1)>*. (36) 

If 
lie(*+2),* _ e(fc+i),*u < 7(*)||©(fc+i).* _ e«!!, (37) 

then 

||0(fc+2),* _ §(*+i) || < ||e(*+i),» _ 0(*) ||. (38) 
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Proof: Begin by adding and subtracting 0(fc+1)>* to ||Ö(fc+2)»* - e<*+1)|| and then using the triangle 

inequality to break apart the norm 

||Q(fc+2),* _ Q(*+I)|| < ||0(fc+2),* _ 0(fc+i).*|| + ||@(*+i).* _ etfc+1J||. 

Using the expression for €>(fc+1) in (36) and then substituting (37) into the result produces the 

desired result 

||0(fc+2),* _ 0(*+l)||     <     ||0(*+2),* _ 0(fc+l).*|| + (1 _7<*))||0(*+1).* _ ©(*)|| 

< -y(*)||©(*+i).* _ e<*)|| + (i—-y(*))||©(*+1)'*   e^H 

<     ||0(*+1),*_0(*)|| 

D 

Proof of Theorem 6: Starting with (x(^,a^), updating a^, and performing two SSD steps as 

xi   =   x« - xWPAxWxW(aV<+VcW - (xW)"1) 

x(fc+1)   =   Xi-XxP^^i^+^cW-xr1) 

where X^ = diag(xM) <= Rnxn and Xx = diag(xi) e Rnxn results in x(fc+1). Let 

IIAQH   =   ||x(fc+1)-xW|| 

<   ||x(*+1> - xiH + ||x! - x(*)||. 

Examine the distance moved in the first update, ||xi-x^||. Use the facts that a^k+1>) = a(l+i>/y/n) 

and that PAX is an orthogonal projection (PAX = PAX)- 

||Xl-xW||   =   \\xWPAxwX(kHa(k+VcW-(xW)-l)\ 

=   \\XMP2
AXWXW [(aWcW - (xW)"1) + aWx/cW/^/n] || 

<   \\xik)PAX«o I \\PAxwX(k) [(aW*> - (xW)-1) + oWi/eW/VH] | 

But XPAX = PAXX and ||PAxWX«|| < A« [15] so 

||*i " *(fc)|| < \\PAxwX{k) [(«(fc)c(fc) - (x(fc))"X) + a<*W*>/Vn] I AW 

Using (23), aW^\\PAxWxWcW\\ < v(8 + 1) [5], and letting <J = <5(xW,aW,0W), the result 

becomes 
||xi-xW ||    <   [5 + V{6 + 1)]AW 

<   (5{1 + U)+V)AW 
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Now examine the distance moved in the second update, ||x(fc+1) - xj.|| 

||x(^)-Xl||   =   |XiPxx1Xi(°(*+1,8(*)-*r1) 

However, WPAXiX^a^+^c^-x.^l)\\ = 6(xu a(fc+1), 6^). Using Lemma 5.4 in [5], it can be shown 

that <5(w(*+1),a(*+1),0(fc)) < «(#,a(fc+1), 6«)2. Since5(xW,a<*+1), 8<*>) = ||P^wX«(a(fc+1>c(fc>- 

(xW)-1)!! = (6(1 + v) + u) from above, then *(xi,a<*+1>, Ö<*>) < (*(1 + v) +1/)2. Thus, 

||x(fc+i)_Xl||   <   Ä(xlia(*+1),P)A(k) 

<   (J(l + i/) + i/)2AW 

But (<5(1 + v) + v) < 1 and (<5(1 +1/) + i/)2 < (<5(1 + u) + u), therefore 

IIAQII    <   llx^+^-Xill + lIxi-x^H 

< (6(1 + v)+ I/)2AW + (6(1 + u) + i/)A<*> 

< 2(6(1+ V) + U)AW 

a 

Proof of Theorem 7: Let 0 = (flf ,&#,... ,ÖaXf)T and let 0am = (^,Ö>£)T, then 

||©<*+i).-_©(*).'||   <   Em=ill4"+1)'*-4fc),*|| 

Let 

Aw   =   Ef=i Jr&QimWvjZj 

where w, Aw e RÄ. Using the definitions for Q^(m\j), Q(fc+1)Mi)> <&,, and w^, one finds that 

$£+1)'* - W'm = (An + E^-1^ + Aw) - A^wm 

Q ,(*+!).* _ ,7,(fe).* 
Ef=1 fr(QMJ) + AQ(m\j))zj     Ejii FQMJ>J 

Ef=i TKQMJ) + AQ(m|j))        Ef=i *Q(m|j) 
Grouping like terms, taking the norms of the differences, and using the triangle inequality 

IJ^N-i),. _ $j*>,.|| < ||(Am + Em)-1 - A"1! ||wm|| + ||(An + Sm)"1!! IIAwm|| 

||^+1)'*-ö;«,*| 

+ £*    ^AQ(m|i)«i 

E?=i ^«(mW+AQHi)) 
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The triangle inequality and the properties of norms can be used to show that || Awm|| < <Ymaa:|| AQ||, 

IN < C^max, and || Ef=i jjQ(m\j)zj\\ < C- Thus 

ll^+1)'* " ÄP'l < <Ymax\\(Am + Em)-1 - itfn + C^maxllAQIHK^ + Em)-l\\ 

CIIAQH  

IIE^FWMJ'H^MJ))!! 

[Am + Em) = EyLi j?Q{k+l) {m\j)zjzj is fuU rank by assumption and ||{Am + Em)~l \\ < nmax and 

(Ef=i^Q(fc+1)Hi))_1<iömQx,so 

Ä+1)'* ~ &*\\ < C^moxIKAn + Em)-1 - J#|l + /XmaÄ«x||AQ|| 

+AnaxCI|AQ|| 

Using Theorem 2.3.4 from [4], 

\\(Am + i?™)-1 - Am'W < H^IIMLX/CI - ri) 

and 

Ef=1 *(Q(m|j) + AQ(m|j))     EJLi *QMJ) 

where ||-Em|| < £2|| AQ|| the bound becomes 

<ßiax\\AQ\\/(l-r2) 

ll^+1)'* - &*\\ < vLxfYrnxW AQ||/(1 - rO + /WÄaxll AQ|| 

||^+1)>* - fi>(*)^|| < /3LxCII AQ||/(1 - r2) + AnaxCHAQU 

Substituting these results into the expression for ||9(fc+1)'* - Ö(^'*|| produces 

||0(fc+D.* _ e(*),*|| < Af/C||AQ|| 

Proof of Theorem 8: Let A be the set 

( - - 0129951 
A = |co(fi(Ö)) x co(fi(0)) : 110(90 ~ c(G2)|| > —^—} • 

A corresponds to all pairs of 0's in co(fi(6)) x co(fi(0)) that result in 7 being less than or exactly 

equal to unity. Further define e© as 

ee= **WB ,71101-0211- 
(©i,e2)6>i 

(39) 
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eg corresponds to the minimum value of 7||0i - Ö2II for all pairs of 0's which result in 7 being 

less than or exactly equal to unity. If the set, A, is empty, then eg is defined to be 00 as all values 

of (61,62) € co(6) x co(0) for the problem are such that 7W = 1. eg is bounded away from 

zero as co(0) is a bounded, convex set which means that there is a maximum ||6i - 62II and 

||c(6i) - c(62)|| for the set. Let Ki be the smallest k for which 

||0(*+2),* _ §(*+!),• || < 2(5(1 + v) + i/)M£AW < eg. (40) 

K\ exists as eg > 0 and A^ -* 0 with increasing k. The inequality with k = K\ signifies the 

iteration, Ki, at which ||0(A:+2)'*-0(A:+1)'*|| is smaller than the minimum possible term, 7||6i-62||. 

It is at Kx that the sequence, ||0(fc+1)>* - 0(fc)|| becomes strictly decreasing. 

Examine 7^ for the following two cases where k > K\. 

7(*0 < i: Equation (40) implies that 

2(^(1 + „) + „)M/CA<*> < 7(fc)||e(fc+1)'* - €>W|| 

as 2(<5(1 + v) + u)MJCA^ < eg and eg < 7(fc>||e<*+1>'* - ©<*)|| by its definition. Since 

||0(fc+2),*_0(fc+i),.|| <7W||0(fc+i).*_©W||and7(fc) < 1, then by Lemma 13, ||0(*+1)-*-©W|| 

is a strictly decreasing sequence. Let 

( 0 129951 
Ä = |co(O(0)) x co(ft(0)) : 110(60 - c(02)|| = —^—} • 

be the set of all pairs of 0's in co(fi(0)) x co(ft(0)) that result in 7(fc) Deing exactly equal 

to unity. Define the term, a, as 

0=     min    ||0i-02|| 
(öi,ö2)e-2t 

a is the minimum separation between parameter vectors in co(f2(0)) that results in 7(fc) 

being exactly equal to one. a is greater than or equal to eg. Since ||©(fc+1)'* - ©(*)|| is strictly 

decreasing to zero as it is bounded above by A^ which decreases to zero, it eventually 

decreases past a at which point 7W = 1. Let the iteration at which ||0(fc+1)'* - 0(fc)|| < a be 

k = K2. 

^{k) _ 1: Tlie firgt case glowed that 7(fc) -¥ 1 for k > K\. This second case demonstrates that 

7(fc) _ 1 for aii k>K2>Ki. Letk>K2 and 7W = 1. Assume that 7<fc+1) < 1. Now, 

7W = 1 implies that 0(fc+1) = (l-7W)0(fc)+7(fc)0(fc+1)1* = 0(fc+1).*. 7(*+D < 1 implies that 
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||0(fc+2),* _ 0(*+i)|| _ ||0(fc+2),* _ 0(fc+i),*|| > a. But by assumption, ||0(fc+2)>* - ©(*+i),*|| < 

e@ and eg < a by definition. This is a contradiction, so the assumption is incorrect and 

7(*+i) = 1. 

Thus, for A; > K = K2 > Kx > 0, 7W = 1. D 

Proof of Theorem 9: Let the kth solution be # = ((xW)T, (e^)T)T and define the term, 

w* = ((x*)r, (G*)T)T. Begin by examining ||w(fc+1) - w<*> || for A; > if. 

Ilw(*+i)-w<*>|| < iix^+^-x^ii + iie^+^-eWii 
< ||x(*+1).-x(fc>|| + ||©(*+1).* - ©(*).*|| 

< 2(5(1 + v) + 1/) A<*> + M/C2(5(l + v) + i/)A<fc) 

< 2(8(1+ v) + v)(l +MIC) A^ 

Examine the following sum for all j > k > K 
00 °° 
£ ||w^'+1) - wC>|| < J2 2(5(1 + u) + v)(l + MK)A^ (41) 
j=k j=k 

The duality gap, A^, can be expressed as A^ = ßkA^ where ß = 1/(1 + v/y/n) [5]. Using this 

fact, (41) can be simplified as 

ZjLk IIw(i+1) - wÜ)||    <   E^jk 2(5(1 + v) + v)(l + MJC)AW 

< ZT=k 2(8(1+ v) + v)(l + MK)ßi A(°) 

< 2(8(1+ u) + u)(l + MK)^ 

This result corresponds to a constant, 2(5(1 + v) + v)(l + M/C)/(l - /?), multiplied by the strictly 

decreasing duality gap, A^. Let k be chosen so that ££Lfc ||wü+1) - w^|| < e for e > 0 (i.e. let 

the duality gap be small enough so that the condition holds). If k is so chosen, then Vi, j > k, 

||vir(0 - w(J')|| < e for arbitrary e. Thus, {w^} is a Cauchy sequence; and it converges to a fixed 

point, w* = ((x*)T, (9*)T)T. ° 

Proof of Theorem 10: Begin by assuming that w* = ((x*)T,(e*)T)T is not a local minimum. 

Then, there exists a feasible direction Aw = (AxT, A0T)T from w* in the solution space such 

that 

/(w* + AAw) < /(w*) (42) 

for some A € (0, oc) and 

/(w* + aAw)</(w*) (43) 
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for some a G [0, A) where /(w) is the cost function. Let W be the set of all feasible directions at w*. 

Let Aw 6 W where Aw = (AxT, A9T)T and let Wl = w* + AAw = (xf,0f)T. Two mutually 

exclusive cases can occur: x* can be a unique optimal solution to (33) when 9 is held constant, or 

x* can be a non-unique optimal solution. The first case occurs when c(9) supports the polyhedral 

set of feasible solutions only at the vertex, x*. The second occurs when c(9) supports the set at 

vertex, x, and is also parallel to one of the faces of the polyhedral set which also contains x*. 

1. x* is a unique optimal solution. 

x* being optimal implies that for all feasible directions, Ax, from x* [1] 

c(9*)TAx > 0. 

Moving in direction Aw = (AxT, A9T)T changes 9* as 9i = 9* 4- AA9. This rotates the 

cost vector as c(9i) = c(9*) + Ac(A9) where c(A9) is a term that denotes the change 

in the cost vector due to A9. If A is small, enough, then Ac(A9)TAx < c(9*)TAx and 

c(9i)TAx > 0 for all feasible Ax from x*. Thus, x* is still the optimal solution to the LP 

problem associated with (33). If x* is the optimal solution, then 

c(9!)Tx* < c(9i)T
Xl. 

The minimizing solution to the quadratic optimization of c(9)Tx* with respect to 9 is 9*. 

Thus, 

c(9*)Tx* < c(9x)
Tx* < c(90rxi 

For feasible direction Aw = (AxT, A9T)T, the cost of the solution w* = ((x*)T, (9*)T)r 

is less than the cost of the solution wx = (xf, 9f )T. Since Aw was any arbitrary feasible 

direction from w*, there is no feasible direction that satisfies (42) and (43), which is a con- 

tradiction. Thus, the assumption is incorrect and w* = <(x*)r, (9*)T)T is a local minimum. 

2. x* is a non-unique optimal solution to the LP problem. 

x* being non-unique implies that for all feasible directions Ax from x* 

c(9*)TAx > 0 

This can be broken down into two cases, those for which c(9*)TAx > 0 and those for which 

c(9*)rAx = 0. The first considers those directions in which movement causes a strict increase 

in the cost function, while the second considers those directions in which movement causes 

no change in the cost function. 
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(a) Directions for which c(0*)TAx > 0. 

For movement in these directions, A can be chosen small enough that Ac(A0)TAx < 

c(0*)TAx and the reasoning of case 1 applies, which generates the contradiction. 

(b) Directions for which c(0*)TAx = 0. 

Here, the cost hyperplane c(0*) is parallel to one of the constraint planes aj where a, is 

a row of A. This implies a set of optimal solutions {x : x = ßx* + (1 - ß)x.\,ß € [0,1]} 

where x* and x* are extreme points of the polyhedral set of feasible solutions and 

Axt = (5cJ - x*)/||xj - x*||. Thus, Axi is a feasible direction from x* to xj and -Axi 

is a feasible direction from x\ to x*. Since x{ is also an optimal solution, c(0*)TAx > 0 

for all feasible directions from xj and c(0*)T(-Axi) = 0 for the feasible direction - Axi 

leading from xj to x*. Without loss of generality, assume Axi is such that 

Ac(A0)rAxi > 0 

which implies that 

ctQifAx! = c(0*)TAxi + Ac(A0)TAxi > 0 

With this small rotation of the cost plane, x* is the unique optimal solution to the LP 

problem. Thus, c(0i)Tx* < c(©i)Txi. Since 0* is the optimal quadratic minimizer for 

(33) subject to constant x = x*, then c(0*)Tx* < c(0!)Tx* < c(©i)Txi. This again 

leads to a contradiction which implies that the solution, w* is a local minimum. 

D 

A.3    Computational property proofs 

Proof of Theorem 11:  First, the assumption that S is chosen as indicated guarantees that 

||w(fc+1) - wM|| will be a Cauchy sequence for k > K. Since ||w(*+1) -w^|| is Cauchy, the norm 

of the difference between the current and optimal solutions can be expressed in closed form as 

A(*0 
||wW - w*|| < 2(5(1 + v) + v)(l + MK) j—Q (44) 

Using (44), examine how long it will take for ||wW — w*|| < e. The goal is to find the smallest k 

that violates 

e<2(<5(l + i/) + i/)(l + M/C) 
l-ß 
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By definition of the duality gap, A<*> = 0*A<°> < /3fc(l/e). So 

0k(l/e) 
e < 2(5(1 + u) + i/)(l + MK)^-^-. 

Taking the base 2 logarithm, 

log2 e < log2 2(5(1 + v) + v)(1 + M£) + log21/e + log2 —^ + * log2 0 

After some arithmetic, one finds that 

k < (2 log2 1/e + log2 2(5(1 + u) + u) (1 + MtC) + log2 j±-^ / log2 i 

But log2(l + fj.) > n/{l + p) [5], and using this expression for log2(l//3) results in 

k < (2log21/e + log2 2(5(1 + u) + u){l+ MIC) + log2 ^-~) (y/H/u +1) 

Also, log2(l/(l - ß)) = log2(VH/i/ + 1), so 

* < (21og2 1/e + log2 2(5(1 + u)+ v){l + MfC) + log2(\/n/i/ + \)){y/n/v + 1) 

Since 2(5(1 + v) + i/)(l + MK) and y are constants, k = 0(-v/«log2(Vn/e)) iterations. D 
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Abstract 

This paper considers the problem of controlling continuous-time linear parameter varying (LPV) 

systems when performance is measured in terms of prespecified bounds on plant signal amplitude and 

transient decay rate. Such problems arise in tasks where signal amplitude is more important than signal 

energy and in switched controller problems where quantifying transient decay is essential. Sufficient con- 

ditions for the synthesis of constant gain state feedback controllers for bounded amplitude and transient 

performance of LPV systems are proven. These conditions are useful in that they can be reformulated 

as linear matrix inequality (LMI) conditions amenable to efficient numerical techniques. An illustrative 

numerical example is included. 
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1    Introduction 

In any control system design problem, there is a performance objective which is to be achieved by the 

design. In the continuous-time %<» design paradigm, for example, performance is measured with respect to 

the induced £2 norm of the closed loop system which corresponds to the gain that the system applies to 

the energy of an input signal. Another measure of system performance is the peak value of an output signal, 

especially in the presence of input signals which have bounded peak value but unbounded energy. Such 

control problems are prevalent in the literature: motor control problems with electrical (voltage or current) 

or mechanical (motion) restrictions and process control problems with chemical concentration restrictions are 

two examples. In each of these examples, violation of the restrictions could lead to performance degradation 

and possibly catastrophic failure of the system. In these problems, therefore, it is more important to control 

the peak value of the plant signals than the energy contained in the signals. In recent years, significant effort 

has been directed towards the problem of designing control systems which guarantee such prescribed bounds 

on peak signal values. 

For discrete-time systems, the problem of controlling signal amplitudes is known as the ^-optimal control 

problem. First stated in [24], this problem is to design a controller which minimizes the effects of persistent 

(bounded amplitude) disturbances as measured by the induced ^-norm (the peak-to-peak gain). A solution 

to the linear MIMO ^-optimal control problem appeared in [12], where optimal controllers are synthesized 

by solving a linear programming problem. Results for the discrete-time case have been extended to handle 

system uncertainty [10] [22] [19]. As with the solution to the deterministic case, controller synthesis amounts 

to solving linear programming problems. 

While there have been significant advances in the discrete-time problem, the continuous-time problem 

has not enjoyed the same success. For continuous-time systems, the problem of controlling signal amplitude 

is denoted the A or induced-^«, optimal control problem. In [11], it is shown that optimal solutions to 

this problem are irrational or infinite-dimensional, even for rational and finite-dimensional plants. Further- 

more, solving the problem exactly involves solving a nonlinear programming problem and while approximate 

solutions, which are rational and finite dimensional, may be found via linear programming problems, the 

solutions are still of arbitrarily high order. 

An alternative approach for the C\ optimal control problem was recently proposed in [16]. There, instead 

of synthesizing a controller to explicitly minimize the induced-/:» norm of the system, an upper bound on 

the induced-£co norm is minimized. Although the solution is suboptimal and may be conservative [23], the 



solution method involves only the solution of a Riccati matrix inequality. This, in turn, may be expressed 

as a linear matrix inequality (LMI) problem [8], for which computationally efficient algorithms are available. 

Furthermore, the synthesized controller is guaranteed to have order no higher than the plant order. The 

results in [16] concern linear, time-invariant systems only. 

In this paper, the constant gain state feedback results presented in [16] are extended to deal with linear 

parameter varying (LPV) systems [20]. LPV systems are linear dynamical systems whose coefficient ma- 

trices depend on a time-varying parameter in a piecewise-continuous fashion. The parameter varies over 

some known compact subset of Euclidean space, called the parameter set. LPV systems have been studied 

extensively for £2 performance problems especially in the context of gain scheduling ([21],[17],(2],[1]). Under 

appropriate conditions, a self-scheduled (LPV) controller may be synthesized for the LPV system. These 

controllers have the advantage of increasing both performance and the allowable size of the parameter set 

relative to LTI controllers. The bounded-amplitude self-scheduled controller problem is addressed in [7]. 

While a parameter-dependent controller may exist, the problem of constructing LTI controllers for LPV 

systems is still important because it is not always possible to implement a self-scheduled controller due 

to hardware constraints. In other words, it may only be possible to implement a small bank of controller 

gains. If the controller gains are switched according to some scheduling rule, then transient behavior becomes 

critical to bounded amplitude performance. These ideas are seen in [14] and in the the early works [5] [4], 

where one is concerned with ensuring that the state trajectory enter a target set within a prescribed time 

interval. 

The remainder of this paper is organized as follows. Section 2 formally defines the notion of LPV systems, 

parameter variations and associated performance measures used in this paper. (Section 2 also presents the 

notation used throughout the paper.) Section 3 presents the bounded amplitude performance results related 

to a class of LPV systems. This section contains the main results of the paper (theorem 3.1) which states 

sufficient conditions for bounded amplitude performance of LPV systems. This result is proven and discussed 

with respect to practical implementation of the conditions. The section concludes with a reformulation of 

the condition as an LMI (theorem 3.2). Section 4 presents a numerical example to illustrate the theoretical 

results. 

Many of the definitions for LPV systems presented in this section are generalized from [3]; the induced-^«, 

norm results are generalizations of the LTI results reported in [16]. 



2    Mathematical Preliminaries 

The section begins by formally defining a linear parameter varying (LPV) system and discussing various 

notions of parameter variation, specifically the notion of finite horizon behavior. The performance measure 

considered in this section, the induced^«, norm, is defined for a LPV system with a special emphasis on 

finite horizon behavior. Many of the definitions for LPV systems presented in this section are generalized 

from [3]. 

Definition 2.1 establishes the notation for £«, signal norms used throughout the paper. 

Definition 2.1 For a finite constant T > 0, the finite-horizon infinity norm of a signal f : B+ ->• Hn is 

defined as 

ll/IUflvn := ess sup ||/(r)|| 
tS[0,T] 

where \\ • \\ denotes the Euclidean l2 vector norm. The linear space £%[Q,T] is defined by 

C(0,T] := {/ : B+ -» Bn |||/||oo,[o,n < oo } 

The subset {/ : H+ -+ Hn |||/||oo,[o,r] < 1} C £^[0,T\ is denoted #C[0,T]. 

The infinite-horizon infinity norm of a signal f : R+ -*■ Rn is defined as 

||/lloo,[o,oo) := ess   sup   ||/(i)|| 
t€[0,oo) 

where \\ ■ \\ denotes the Euclidean l2 vector norm. The linear space ££,[(), oo) is defined by 

OO.oo) := {/ : R+ -> Bn |||/||o=,(o,oo) < oo} 

The subset {/ : H+ -)• Bn |||/i|oo,[o,oo) < 1} C £So[0,oo) is denoted JBJCS,[0,oo). The spaces £So[0,oo) and 

ß£^,[0,oo) will often be denoted, respectively, P^ and BC^. 

Definitions 2.2-2.3 formally establish the notion of a linear parameter varying system used in this section. 

Definition 2.2 (Parameter Variation Set) Given a compact subset 0 C B.', the parameter variation 

set TQ denotes the set of all piecewise continuous functions mapping H+ into 0. 

The notation 9 € Te denotes a function in the parameter variation set; 6 € 0 denotes a vector in a 

compact subset of H*. 

Note that both 7Q and, for instance, ££, represent signal spaces. Technically, it can easily be argued that 

TQ C ££O since TQ consists of supremum bounded s-dimensional vectors which vary continuously in time. 



In this paper, the following convention is followed: 7Q will always refer to parameter signals or parameter 

variations; ££, will refer to signals in the plant input, output or state space. 

Definition 2.3 (Linear Parameter Varying (LPV) System) Given a compact set 0 C JR.", and con- 

tinuous functions A : Rs -» Rnxn, B : R5 -> Rnxn", C : Rs -> Rn*xn, and £> :-R' -> Rn*Xn», on n1" 

orrfer linear parameter varying (LPV) system is a dynamical system whose dynamics evolve as 

x(t) 

z{t) 

A(9(t))   B{6{t)) 

C(0(t))   D(6(t)) 

x(t) 

w(t) 
(1) 

where 9 € TQ ■ 

3    Bounded Amplitude Performance Conditions 

3.1    Theoretical Results 

In many applications, it is necessary to consider performance of a system under amplitude constraints when 

the initial state of the system violates these constraints. In these cases, we must consider transient system 

behavior as well as performance after transients have decayed. 

In this section, LPV systems are considered which take the form 

m 
z(t) 

A(9(t)) Bw(e(t))    Bu(9(t)) 

m cMt)) 0         Dzu(6{t)) _ 

x(t) 

w(t) 

«(*) 

(2) 

where 9 € Te- Here, A : R* -> Rnxn, Bu : Rs ->• Rnxn", Bw : R* H- RnXn», C2 : Rs -* Rn'xn and 

Dzu : Rs -*■ Rn*xn" are continuous mappings. 

Lemma 3.1 Given constant 7 > 0, a positive definite matrix Q € Rnxn, a matrix mapping C : B.3 -¥ 

Rn'xn and a parameter set 0 C RJ, then x'C(9)'C{9)x < 72 for all x such that x'Q^x < 1 and all 9 6 0 

if and only if^Q'1 > C{9)'C(9) for all 9 G 0. 

Lemma 3.1 relates the performance level, 7, to the size of a parameter varying (output) matrix, C{9), 

through a positive definite matrix Q. The following theorem applies this result to specify conditions for 

finite-horizon bounded amplitude performance of the class of LPV systems characterized by (2). 



Theorem 3.1 (Finite Horizon Performance) Given scalar 7 > 0 and the LPVsystem, E(0, A, B, C, D) 

with 

B{9) = BW{B)   Bu(9) 0   Dzu{6) ,  Cz{9) andD{6) = 

where Bu : H° -4 Rnxn«, Bw : M4 -> Bnxn"', Cz : It* -»• Bn*xn and Dzu : Bf -> Rn'xn» are continuous 

mappings. Let Q be a compact subset 0/R5. // there exist constants a > 0 and ß > 0, a positive definite 

matrix Q € MnXn and a real matrix V 6 ITuXn satisfying 

Q QC'M + V'D'zu(e) 

u Cz{ß)Q + DZU(6)V i*I 

and 

>0 (3) 

QA'[0) + A(6)Q + (a + ß)Q + ^BW(6)B'W(9) + BU{9)V + V'ffjß) < 0 (4) 

for all 6 € 0, then the closed loop system under control u = Kx, where K = VQ~X, will satisfy the following 

forOeFe: 

1. the conditions w € BC£ and x'(0)Q-1a;(0) < 1 imply that 

x'{t)Q-lx{t) < 1 and z'{t)z{t) < */2 for all t > 0, (5) 

2. ifß > 0, w € B££ and x'{0)Q-1x{0) = r0 > 1 then 

x'WQ^xit) < 1 for all t > td 

where 

~W£) td: 

The first part of the theorem is proven by demonstrating the invariance of an ellipsoid, {£ | £,'Q~l$ < 1} 

to all allowable input disturbances and under all possible parameter variations. This is accomplished by 

establishing that a function V(f) := S'Q-1f is non-increasing outside of the ellipsoid. Lemma 3.1 is used to 

show that all system states contained in the ellipsoid map to performance satisfying outputs. The second 

part of the theorem is proven by bounding the decay rate of V(0 when ß > 0. A formal proof is located in 

the appendix. 

Theorem 3.1 and its proof are a special case of a more general results on uniform ultimate boundedness 

for the control of uncertain systems [9] .  The usefulness of this result, versus the more general one, is 



that theorem 3.1 is more amenable to computational methods which allow for the automated synthesis of 

controllers. This is accomplished by exploiting the underlying linear structure of the system. 

Theorem 3.1 demonstrates that sufficient conditions for bounded amplitude performance of a class of 

LPV systems may be characterized by a Riccati matrix inequality (equation 4) coupled with a constraint on 

the size of the output matrix (equation 3). The theorem indicates that the initial state of the LPV system 

is an important condition for bounded amplitude performance. In previous work [16], the initial state of the 

system is assumed to be zero, so that transient effects are neglected. In part 2 of the theorem, it is seen that 

under appropriate conditions, the system state can be guaranteed to decay at a specific rate, ß. The bound, 

td, on the decay time will be called the dwell-time. This definition is consistent with notions established in 

the switching control literature (e.g., [15][18][6]) where a controller is required to "dwell" in the feedback 

loop long enough for switching transients to decay. 

The constants a and ß which appear in the conditions of the theorem have a physical interpretation as 

well; they provide an indication of the speed, of the system and the ability of the system to reject disturbances 

which enter through the matrix Bw{9). Consider, for a fixed 9 G 0 inequality 4, rewritten as 

QV\Acl{6) + ZMl)'Q-V* + Q-^(Acl(e) + ^/)Q1/2 + IQ-WBVWB^WQ-
1
'* < 0     (6) 

where Acl(6) := A{9) + BU{9)K. It is clear from eigenvalue perturbation theory that if 

a + ß > -2 maxRe(eig(Acf (0))). (?) 

then Aci{9) + \{a + ß)I will have at least one eigenvalue in the open right half-plane. This implies that the 

matrix 

Ql,2{Acl{9) + ^I)'Q-l>* + Q-^(Aem + ^W1'2 

will be indefinite for any positive definite matrix Q. Since ±Q-xl2Bw{9)B'w{9)Q-ll2 > 0 for any a > 0, the 

inequality in equation 6 can have no positive definite solution Q if equation 7 is satisfied. The constants a 

and ß are thus related to the slowest eigenvalue of the matrix Acl{9). (This observation is similar to that 

made in [16].) Since this must be true for any 9 6 0, a and ß provide an indication of the speed of the 

LPV system. Note that the notion of eigenvalues for time-varying systems is not well-defined, so this . 

argument only makes sense for slow parameter variations. However, the argument lends intuition and agrees 

with the final part of theorem 3.1 where ß > 0 yields an exponential bounding function on the trajectory of 

the system. 



The statement of the theorem implies that for some values of a > 0, a controller may not exist which 

satisfies the performance conditions. This may be seen by interpreting a as a reflection of the sensitivity 

of the system to exogenous disturbances. Note that as a decreases, the term ^Q~1/2Bw(9)B'w(ß)Q-1/2 

becomes larger, making inequality 6 more difficult to solve. On the other hand, a larger a diminishes the 

influence of this term. Combining this observation with the above argument is consistent with the usual 

notion that a faster system possesses better disturbance rejection properties. 

Remark: Note that characterizing the performance of open loop systems (u = 0) is a special case of theorem 

3.1. In this instance, the conditions are rewritten with V = 0. 

3.2    Finding Solutions 

Theorem 3.1 presents a set of simple conditions for LPV system performance, but two important computa- 

tional issues must be addressed. 

First, consider the matrix inequalities of (3) and (4) and note that the matrix inequality constraints 

are linear in V and 72, but bilinear in a, ß and Q. (The 1/a term in (4) may be transformed using 

Schur complements.) However, if one fixes a and ß (which are scalars), then (3) and (4) become affine 

matrix inequality constraints in 72, V and Q, and hence amenable to efficient and commercially available 

optimization tools. Since a and ß are related to the response of the closed loop system, it stands to reason 

that (3) and (4) might be solved to minimize 72 for a family of pairs (a,ß), each time generating a new 

controller. For {a,ß) pairs with a fixed ß, this procedure generates a set of controllers which minimize an 

upper bound on amplitude performance, 7, with a guaranteed transient decay rate, ß. A design engineer 

could generate a set of level curves from such data and choose a controller which best represents the desired 

performance objectives. An example of this idea is provided in section 4. We point out that a and ß are 

scalars for problems of any dimension, so that number of optimization problems which must be solved to 

generate the level curves does not grow with the dimension of the system or the dimension of the parameter 

space. 

Because the conditions of theorem 3.1 are sufficient for controller synthesis, a controller generated for a 

fixed pair (a, ß) using the above procedure is guaranteed to achieve the designed amplitude and transient 

decay performance characteristics. However, because the conditions are not necessary, the controller may 

actually achieve higher performance than intended. To help quantify the difference between designed and 

achieved performance for a fixed controller, K, one may apply the above procedure on the closed-loop LPV 



System dynamics with V = 0. This procedure could be used to generate an additional set of level curves which 

the design engineer could use to predict transient and amplitude performance of the closed-loop system. An 

example of this is provided in section 4. 

A similar approach is outlined in [16] for the LTI problem with ,3 = 0. In that paper, it is shown that for 

the closed-loop system, the minimum 72, subject to the matrix inequality constraints, is a convex function of 

a. While this property is not proven here for the more general case, experimental results imply convexity for 

constant values of ß under parameter variations. Additional experimental results also indicate such a convex 

relationship for the controller synthesis problem, suggesting that an "optimal" controller can be found from 

the level curves. 

The second issue is due to that fact that the matrix inequalities (3) and (4) depend continuously on the 

parameters 9 6 0. This implies an infinite number of constraints which must be satisfied in order to apply 

the conditions of the theorem. Typically, one must resort to gridding the set 0 and solving a set of matrix 

inequalities simultaneously at all of the grid points, refining the grid until a satisfactory approximation is 

found. While applied in practice, such an approach becomes rapidly inefficient as the dimension of 0 grows. 

By placing (practical) restrictions on the problem, the parameter dependence issue becomes more tractable. 

If the elements of the parameter vector are all amplitude bounded, i.e. \9i(t)\ < 1, i = 1,..., s, then 0 is 

a polytope. If, in addition, the parameter dependence in the state-space matrices is assumed to be linear 

fractional, then one may find a parameter independent sufficient condition for a solution to (3) and (4). This 

condition is stated in the following theorem. 

Theorem 3.2 Given a compact set 

e~\9   sup |öi| < ll CH* 

Let A(0) := diag(9iln,..., 9,Ir,) where Iri denotes the n x r» identity matrix with r := £ r{ for i = 1,..., s. 

Suppose that the elements of the state-space matrices in (2) are rational functions of the elements of 6 so 

that 

r A(9(t))    Bw(9{t))    Bu(9(t))        _       A,   Bw    £„ 

CM*)) 0 D3U(9(t)) Cz     0     Dzu 

+ 
B„ 

(I-A{9)Dqp)-
1A(9) \jq       Uqvi       -Uqu (8) 



for constant matrices A, 6 RnXn, Bw € Mn*n", Bu e K
nxn", Cz € lRn**n, Dzu € Hn*xn", Bp € !Rnxr, 

Cp 6 3Rn,xr, C? € Hrxn, 2?„ € Krxr, Dqw € RrXn" and £>,„ e RrXn". 

// there exist constants a > 0 and ß > 0, a positive definite matrix Q € Mnxn, a mairiz V 6 ]Rn»*n and 

diagonal positive semi-definite matrices A, II and \? sucft that 

Q QC': + V'D':u    QC, + Viy„ 

CZQ + DZUV   i2I-Gq-*C'q       -Cq*D'qp 

CqQ + DqnV      -Dqp*C'q 

QC'p + V'Dqu+BvADqp 

* - £„*2JJ «p*-1'«? 

>    0 (9) 

Mil 

.B.u 

Bu 

% 

DqpAD'qp-A 

0 

0 

BP 

0 

D^IIA,*, - a/       D'qviIWqp 

D'qpUDqu>        D'qpTLDqp-Tl 

<    0 (10) 

where 

then for all 6 £ 0, 

Mil = QK + AsQ + (a + j3)Q + V'B^ + BUV + BpAB'p 

Q 

CZ(9)Q + Dzu(e)V 

QC'M + V'D'ZU(6) 

72/ 
>   0 

QÄ(6) + A(6)Q + (a + ß)Q + ^Bw(e)B'w(d)+Bu(6)V + V'B'u(9)   <   0 

The preceding result is derived by applying the <S-procedure[26] in a straightforward manner typical of 

the approaches described in [8]. The theorem handles the case when the parameter variations are further 

restricted to being multi-affine. In this case, however, the 5-procedure can result in matrix inequalities that 

are overly restrictive. For multi-affine parameter dependence, however, it is sufficient to solve (3) and (4) 

simultaneously on the vertices of the polytope 0. 

4    Example 

In this section, the theoretical results of the previous section are used to design a controller for a nonlinear 

process control model. The plant dynamics are given by 

xpi    =    -xpi + Ui 

Xp2     =     -Xp2 + (1 + X^)U2 

(11) 

10 



The variables xpi e R and xp2 € B represent the state of the plant; u\ € 1R and u2 € II are the control 

inputs. The plant is to be cycled through various operating points in the plant state space. For the illustrative 

purposes of this example, the control objective under consideration is to move the plant from an initial state 

near the operating point (xPi,xp2) = (2.5,2) to a point near (xpl,xP2) = (1,3) in 1 second according to the 

reference trajectory generated by the following dynamical reference model by 

imi   =   Xmi ~ 1-63 -xmi/(l + 0.5sin 10(smi - 1.63)) 

±m2     =     1 

This reference model state trajectory is depicted in figure 1. 

(12) 
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Figure 1: Reference trajectory for process control example 

Defining the state error, x := xm - xp, the control objective is to synthesize an affine control 

u = Kx + ü (13) 

so that the performance output variable z = Cix + D^v, satisfies the amplitude bound 

sup ||*(t)||<7 
*€[0,1] 

(14) 

where the performance weights are chosen as C\ — I and Du = 0.11. 

After linearizing the plant at points along the reference trajectory, state and control dependent terms 

11 



can be grouped into parameters 

02(t) 

Xmi - xmi/(2 + sinlO(xmi - 1.63)) 

xm2 + (2xmixi - x\)u2 

4u/3 

By choosing a nominal design point, 9, corresponding to states near the reference trajectory and setting 

§i -1.63 

(15) 

u = 

«3+1 

(16) 

the control synthesis objective may be restated as finding a control u - ü = Kx so that the LPV system 

x 

z 

V 

A{9)   Bw{9)+Bw{8)   Bu(9) + Bu(9) 

Ci   . 0 D12 

10 0 

x 

w 

U — Ü 

(17) 

where 

A(9) = 
-1     0 

0    -1 
, -Bu(0) = and Bw{9) = 

9X -1.63 

02 + 1 
+ BU(9)Ü. (18) 

-1        0 

0     -83-I 

satisfies the required performance criteria. Here, the new parameters 9(t) represent deviations of 9{t) from 

0, i.e. 9{t) := 9(t) - 9, and w = 1 is introduced as a fictitious disturbance. We assume that parameter 

variations are restricted to the polytope 

Q:=\9   sup |0i|<l)c]Rs 

The derived state space data was used in the LMI of theorem 3.2 to study the achievable performance of 

state feedback controllers. In accordance with the analysis procedure outlines at the beginning of section 3.2, 

ß was fixed and the matrices Q, V, A and II were found which corresponded to the minimum feasible value 

of 7 subject to the LMI constraints of theorem 3.2 for various values of a. Figure 2 shows the guaranteed 

performance level for values of a and ß. The LMI problems were solved using the MATLAB with LMI 

Control Toolbox. 

For the purposes of this example, the ß = 0 curve was used to choose a controller.   For a desired 

performance level of 7 = 0.4, the minimum value of a which guaranteed performance was read from figure 

2 to be a = 19. This choice is indicated on the plot. The corresponding controller was determined, from 

K = VQ-1 to be 

26.99      0 

0      18.42 
K = 

12 
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Figure 2: Guaranteed performance curves for open loop system. 

As noted in section 3.2, while this controller is optimal with respect to the LMI synthesis constraints for 

the particular choice of a = 19 and ß = 0, the achieved performance may be tighter than indicated by 

the synthesis curves in figure 2. Figure 3 depicts the performance curves generated by solving the matrix 

inequalities with the closed-loop system data (V = 0). We remark that K found above is diagonal; this is a 

consequence of the plant modes of the problem being essentially decoupled. This has no significance for the 

nature of the results presented in the paper. 

Two important quantities may be determined from the level curves of figure 3. The first is that the 

actual achieved amplitude bound is 7 = 0.364; this is the bound which will be observed whenever the initial 

state satisfies the performance bounds. The second observation concerns initial states which violate the 

performance constraint 7 = 0.4; in such cases, the norm of the performance variable will be bounded by 

a decaying exponential with rate ß > 5. This second observation is made by noting that the performance 

curves for ß < 5 dip below the 7 = 0.4 level, while the curves for higher levels of ß do not. Experiments 

with other designs show similar results. Note that the level curves are convex. Also note that the point 

corresponding to (a, ß) = (19,0) corresponds to 7 = 0.3950 in both figures 2 and 3, as expected. 

Finally, the controller was simulated in the closed loop system with performance violating initial con- 

ditions. The resulting performance variable norm, ||r(t)||i is shown in figure 4 along with the bounding 

functions specified by theorem 3.1. The exponential decay rate used for the bounding exponential corre- 

sponded to ß = 5. Note that once the performance level of 7 = 0.4 is achieved, it is maintained for the 
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Figure 3: Achieved performance curves for closed loop system, 

remainder of the trajectory. 

5    Conclusions 

This paper has presented an approach for synthesizing constant gain state feedback controllers for LPV 

systems which meet amplitude and transient decay performance constraints. Because the controllers are 

linear, time-invariant, the results pertain directly to scheduling problems where fixed gain controllers are 

switched into feedback with the plant according to some decision strategy. This is useful in problems where 

the structure of the controller is constrained, perhaps by physical limitations. 

The approach presented in this paper is a generalization of the approach used for LTI systems in [16] 

where bounded amplitude controllers are synthesized by minimizing an upper bound on the induced-^» of 

the closed-loop system. In [23] it was demonstrated that such an approach can be arbitrarily conservative 

with respect to the £x-induced norm. It should be possible to prevent this by placing additional (practical) 

linear which bound the condition number of the matrix Q of theorem 3.1. 

The central theoretical result is theorem 3.1 which states sufficient conditions for the synthesis of bounded 

amplitude controllers guaranteeing a prescribed rate of transient decay as a matrix inequality feasibility 

problem. In many practical situations, this is extremely useful because there are now commercially available 

tools for solving linear matrix inequality problems. In these cases, the results provide a means for synthesis 

14 
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Figure 4: Simulated closed loop performance 

of state feedback controllers and analysis of a general class of LPV systems. 

The usefulness of theorem 3.1 is limited by the fact that it provides sufficient conditions only. Thus, if 

the matrix inequalities do not have a feasible point, no conclusion can be drawn regarding the existence of a 

robust controller. The conservativeness of the result might be alienated by the introduction of a parameter- 

dependent Q(9) [13][25]. in theorem 3.1. The tradeoff is that one must now make assumptions on the rate 

of parameter variation and to solve the matrix inequalities, one must resort to gridding the parameter set 

0. The results are also somewhat limited since the matrix inequalities are not linear in all of the design 

variables. However, this does not appear to present a problem from a computational standpoint. These 

limitations are alleviated by the systematic design and analysis approach presented in the paper. 

Continued work along these lines involves extensions to output feedback controllers, self-scheduled con- 

trollers [7] and application of these results to switched agent control probIems[14][6]. 

A    Proofs of Results 

Proof of Lemma 3.1: Let 7, Q, C{9) and 0 be as defined in the lemma and suppose that 

C'{e)C{6)<YQ-1   V0G0 (19) 
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Since Q > 0, (19) is true if and only if 

Q1/2C'(9)C{9)Q1^<j2I Wee (20) 

By the definition of an induced matrix norm, (20) is equivalent to 

|c(0)Q1/2|2<72 wee 

or 

(,'Qll2C'{9)C{9)Qll2t, < 72   V£ € {? | ft < 1} and W € 0 (21) 

Defining x = Q1/2£, (21) is equivalent to 

x'C'{e)C(6)x < 72   Vx 6 {x | x'Q"1* < 1} and W € 0 

completing the proof. E 

Proof of theorem 3.1: Let 7 > 0. Suppose that constants a > 0 and ß > 0, a positive definite matrix 

Q £ Rnxn and a real matrix V € K"1*Xn are given which satisfy inequalities 3 and 4. Define K = VQ'1. (K 

must exist since Q is positive definite.) First note from the theory of Schur complements that since Q > 0, 

inequality 3 is true if and only if 

Q - \Q(CZ(9) + DZ„(9)K)'(CZ(9) + DZU(6)K)Q > 0 
72 

or, equivalently, 

Q-1 > \CdV)Cd(6) (22) 
7 

for all 9 G 0 where Ccl{9) := (7,(0) + DZU{9)K. Now, defining 4C<(0) := A{9) + BU{8)K, inequality 4 may 

be rewritten as 

QA'cl(9) + Acl(9)Q + (a + 0)Q + ^„(0)^(0) < 0 (23) 

Defining P = <2-1, the positive definiteness of Q implies that inequality 23 is true if and only if 

A'cl(9)P + PAei(9) + (a + ß)P + ±PBw(9)B'w(9)P<0 (24) 

Clearly, for any 9 € 0, 

h>Bv{ff)KWP > 0 

so that if equation 4 holds for all 9 G 0, then 

A'cl{9)P + PAcl(9) + {a + ß)P< -±PBW(9)B'W(9)P < 0 
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< 0     for all 9 e 0. 

for all 9 € 0. Thus, from the theory of Schur complements, equation 4 is true for all 9 € 0 if and only if 

A'cl(9)P + PAci(9) + {a + ß)P   PBW{9) 

B'J9)P -al 

But equation 25 is satisfied if and only if for all 9 € 0 and all f G Rn, v 6 Etn 

(25) 

A'cl{9)P + PAci(9) + (a + ß)P   PBW{9) 

B'W(9)P -al 

Equation 26 is true if and only if 

<0 (26) 

?(A'cl(9)P + PAcl(9) + ßP)S + v'B'w(9)PS + ?PBW(9> + a(?PS -1) + a(l - v'u) < 0        (27) 

for all 0 G 0 and all £ 6 Bn, u € K""'. Equation 27, in turn, implies 

?(A'ct(9)P + PAel(9))Z + v'B'w(9)PS + (;'PBw(9)v<-ßS'Pt;<0 (28) 

for all 9 € 0 and all £ € JRn and v 6 Kn" such that 

£'Pf > 1 and v'u < 1 

To prove the first part of the theorem, consider any time t > 0 and any parameter variation 9 € ^e- 

Now, define the function 7 : K" -)• K by V(0 := £'.Pf. Along the trajectories of the closed loop LPV 

system, Sj', the time derivative of V(x(t)) is given by 

4-V(x(t)) = i(i)'(4i(0W)-P + -P4rf(0(t)))*(*) + w'(*)B;(ff(t))Px(*) + x'(t)PBwm)Mt) (29) 

From the above argument, equation 4 and equation 28 imply 

d 
dt 

V{x{t)) < -ßV(x(t)) < 0 (30) 

for any x{t) and w{t) satisfying x{t)'Px(t) > 1 and w(t)'w(t) < 1. 

Now, suppose that for some w € BC£ that there is a trajectory of Ztf with initial state x(0) satisfying 

V(x{0)) = x'(0)Pi(0) < 1 and V{x{ts)) = x'(tf)Px{tf) > 1 for some finite tf > 0. Since V(x[t)) is 

differentiable in f, the Mean Value Theorem can be used to imply the existence of a time r 6 (0, tf) for 

which V{X(T)) = X'(T)PX(T) > 1 and V(X(T)) > 0. This is a contradiction of equation 30, so x'{t)Px(t) = 

x(t)Q-xx(t) < 1 for all t > 0. By lemma 3.1 and equation 22, this is true if and only if 

x'(t)C'cl(9)Cci(0)x(t) = z'(t)z(t) < 7
2 
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for all t > 0, proving the first part of the theorem. 

To prove the second part of the theorem, assume that ß > 0. For 6 6 TQ and w 6 BC£, equation 30 

then implies that along any trajectory of E« for t > 0, 

JO 

so that from the Bellman-Gronwall Lemma, 

V(x{t)) < V{x{0)) + / -ßV(x(r))dr 
Jo 

V(x(t))<V(x(0))exp(-ßt) „ (31) 

Suppose that V(x{0)) = x'(0)Pi(0) = r0 > 1 and let 

Then for all* > td, from equation 31 

V(x(t)) < r0exP(-/3 (—log (^))) = 1 

Equivalently, x'{t)Px{t) < 1 for all t > td. Substituting Q_1 = P yields the final form of the result. O 
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Abstract 

This paper compares two different types of control strategies used to safely 
implement supervisory commands of hybrid dynamical systems. Both approaches 
considered in this paper switch between members of a family of control agents to 
ensure that constraints on the plant state are not violated at any time. The first 
approach is motivated by a hybrid system architecture outlined in [Kohn 1993] 
and uses a Fliess functional series of the plant's output to form a system of linear 
inequalities characterizing safe control inputs. Control signals are determined by 
solving a sequence of linear programs. The second approach is a model reference 
control approach to hybrid systems introduced in [Lemmon 1996] and uses a known 
safe dynamical reference model to characterize the desired plant behavior. The 
controller is determined by representing the resulting error dynamics as a linear 
parameter varying system and applying linear robust control techniques to enforce 
a bounded amplitude performance level. The fundamental «results underlying each 
of the methods are derived; both approaches are compared with regard to their 
complexity, performance, and sensitivity to modeling uncertainty. A numerical 
example is included for illustration. 

1    Introduction 

This paper considers the high level supervision of continuous time dynamical control 

systems evolving over a state set which is dense in 5ftn. It is assumed that a supervisory 

command is characterized by a set of guard conditions and a goal condition. These guard 

and goal conditions are inequality conditions on the plant's state.   A control system 

*The authors gratefully acknowledge the partial financial support of the Army Research Office 
(DAAH04-95-1-0600, DAAH04-96-1-0134). 



is used to implement the supervisory command. This controller is said to be "safe" 

when the controlled plant's state trajectory triggers the goal condition in finite time 

without triggering any of the guard conditions. This paper compares two different types 

of controllers used to safely implement supervisory commands. 

Both approaches considered in this paper switch between members of a family of 

control agents to ensure the guard conditions are not triggered. The first approach is 

motivated by a hybrid system architecture outlined in [Kohn 1993]. This approach uses 

a Fliess functional series of the plant's output to form a system of linear inequalities 

characterizing safe control inputs. In this method, control signals can be determined by 

solving a sequence of linear programs (LP). The second approach is a model reference 

control approach to hybrid systems introduced in [Lemmon 1996]. In this approach, the 

controlled plant follows a reference model which is known to be safe. The error dynamics 

of this system are represented as a linear parameter varying (LPV) system whose con- 

trollers enforce a bounded amplitude performance level. This paper formally derives the 

fundamental results behind both of these methods and compares both approaches with 

regard to their complexity, performance, and sensitivity to modeling uncertainty. 

This paper is concerned with switched control systems as they appear in the design 

of hybrid dynamical systems. The primary contribution of this work concerns the formal 

development of two methods for the "safe" control of such systems. Safety is a bounded 

amplitude performance measure which seeks to ensure that the amplitude, max{ ||x(t)||, 

of a signal is appropriately bounded. For continuous-time systems there is very little 

work concerned with the control (switched or otherwise) of systems satisfying bounded 

amplitude performance measures. In particular, most of the prior work on switched 

dynamical systems has dealt with the assurance of induced £2 performance norms. In 

this regard, the results and methods of this paper provide a perspective on bounded 



amplitude control which has not been well addressed in the academic community. 

A formal definition of "safe" controllers is given in section 2. The remainder of the 

paper discusses the two methods for characterizing safe controllers which were outlined 

above. The first method will be referred to as the LP-method since it solves a sequence of 

linear programs to determine safe control signals. The LP-method is discussed in section 

3. The fundamental result in section 3 is a set of inequality constraints characterizing 

locally safe piecewise constant control signals. The second method is referred to as 

the MRC-method since it uses a model reference control (MRC) approach to formulate 

the controller synthesis problem. The MRC method is discussed in section 4. The 

fundamental results in this section are sufficient conditions characterizing controllers 

ensuring bounded-amplitude performance for the switched control system. Section 5 

compares both methods and draws some general conclusions about their relative strengths 

and weaknesses. 

2    Safe Supervisory Controllers 

Hybrid dynamical systems arise when the time and/or the state space have mixed con- 

tinuous and discrete natures. Such systems frequently arise when computers are used 

to control continuous state systems. In recent years, specific attention has been focused 

on hybrid systems in which a discrete-event system is used to supervise the behavior of 

plants whose state spaces are dense in 5Rn. In this class of hybrid control systems, com- 

mands are issued by a discrete-event system to direct the behavior of the plant. These 

commands are high-level directives to the plant which require that the supervised plant 

satisfy logical conditions on the plant's state. The simplest set of conditions are inequality 

conditions on the plant's state. 



Assume that the plant's dynamics are generated by the differential equation 

x = f(x,u) (1) 

where x € 5Rn is the state, u € 5Rm is the control input, and / : 5Rn x 5Rm -> 5Rn is a 

Lipschitz continuous mapping. A supervisory directive to this system is characterized by 

a set of functionals, hj : Kn -> 5R for j = 0,..., N, that separate the state space. The 

functionals, hj, are said to separate the state space if and only if for all x,y € 5Rn such 

that hj(x) > 0 and hj(y) < 0, there exists 0 < A < 1 such that hj(\x+(l-X)y) = 0. The 

functional, hQ, is said to be the goal trigger and the other functionals, hj for j = 1,..., N, 

are called the guard triggers. Consider a state feedback controller, 

u = fc(x) (2) 

Such a controller is said to be safe if and only if there exist finite times Tx and T2 (Tx < T2) 

such that 

• hj{x(t)) < 0 for all t0 <t <T2 {j = l,...,N), 

• J»o(ar(*)) < 0 for all tQ<t< Tu 

• and h0(x(t)) > 0 for all Tx < t < T2. 

Essentially, these Conditions state that the goal condition is triggered in finite time with- 

out any of the guard triggers being violated. Assume that we have a monotone increasing 

function r(t) such that r(0) = h0(x(0)) and r(Ti) = 0. We can use this "reference" func- 

tion to rewrite the preceding list of conditions as a set of inequality constraints such 

that the guard triggers (; = 1,..., N) satisfy hj(x(t)) < 0 and the goal trigger satisfies 

h0(x(t)) - r(t) > 0 for all t € [0,T2]. However, note that with this setting, the switching 

time for h0 is less than Ti. 



3    LP-Method 

The LP-method is motivated by a hybrid system architecture outlined in [Kohn 1993]. 

This method characterizes safe control signals as a set of linear inequality constraints. 

The LP-method assumes that the plant's differential equation has the form 

m 

i = Mx) + Y,fi(x)ui(t) (3) 

where fc : 5Rn -*■ Jftn are analytic functions forming a nonsingular distribution of vector 

fields in 5ftn. It is also assumed that the set of trigger functions {hj}^ is analytic. 

Assume that the trigger functions, hj(x(t)), are known at time, t. Under appropriate 

conditions, it is possible to represent the trigger functions at time t + 6 as a Fliess 

functional series. To formally state these results, some notationaf conventions need to be 

introduced. Let / : 5ft" -> 5Rn be a vector of analytic functions, /' = fx f2 ••• fn 

where fc : 5ft" -*■ 5ftn (i = 1,..., n). The Lie derivative of an analytic function h : 5Rn -* 5ft 

with respect to vector field / is 

LfHx) = t^f&) (4) 
i=l oxi 

Let i € {1,...,m} be an index and let i\,...,ik be a sequence of indices of length k 

called a multi-index. The set of all multi-indices will be denoted as /*. Associated with 

the multi-index ix,... ,ik is the iterated integral, 

^,...,ü(*)= jf^-.fe (5) 
Jo 

where for i = 1,..., m, 

m = fui^dT (6) 
JO 

The following theorem which is proven in [Isidori 1989] will be used in our following 

development. 



Proposition 1 [Isidori 1989](pp 114-119) Consider the system given by equations 3. If 

there exist K > 0 and M > 0 such that 

LJtl...LJlkhJ{x(t))\<Kk\Mk (8) 

for all k, j, and all multi-indices in I*', then there exists a real A > 0 such that for all 

5 € [0, A] and piecewise continuous control functions Ui(t) defined over [t,t + A] subject 

to the constraint 

max \ui{t + 5)\ < 1 (9) 

then the series 

W)) + EE^-^W))( dfc-d&i (10) 

is uniformly and absolutely convergent to hj(x(t + 8)). 

If we can find a control signal, u, so that the safety conditions are satisfied over 

[t, t + S], for all t then we say the control is locally safe. The Fliess series is a formal series 

over the control symbols, Wj. It provides a means of expressing the values of the trigger 

functions, hj, over a finite interval, [t,t + 6}. It therefore makes sense to use the Fliess 

series in characterizing control inputs, ui} ensuring local safety of the control system. The 

following proposition provides just such a characterization. 

Proposition 2 Consider the system given by equation 3 and let r(t) be a known reference 

trigger such that r(t) = R > 0 and r(0) = h0(x(0)). Assume that proposition 1 holds and 

that x(0) is safe. If there exist 7 > 0, 71 > 0, and A > 0 such that the constant vector 

u* € 5Rm satisfies 

m 

-7 > M*(0)) + E [LfM*m <A (j = 1,..., N) (11) 

and 

K|<1 i = l,...,m (12) 
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and 
m 

Ä-7i<£[£/,M*(o))K (is) 
t=i 

then the constant control u(t) = u* generates a safe state trajectory in [0, A). 

Proof: Assuming that proposition 1 holds,then there exists K > 0 and M > 0 such 

that the growth constraint 8 is satisfied. Given inequality 12, we know that the Fliess 

series is uniformly convergent in an interval, [0, A], and that for any Ö € [0, A], we can 

expand hj(x(5)) as 

00 

hj(x(S)) = Ä,(s(0)) + EE Lfh • ■■Lfikhjm*,-,h(6) (14) 
k=lii,...,ik 

Assuming a constant u* over this interval, we see that 

oo r* 

WS)) = ä,(S(O)) + £ E Lfh---Lfikhj(x(Q)K---<k^ 
k=\iu-,ik K- 
m 

= M*(o)) + E£/«M*(o)K* + oj(*) (is) 
1=1 

The tail term is 

oo rfc 

Oi(*) = E E ^•••^^iWo)K---<TT (16) 
fc=2ü ik 

K- 

The magnitude of the tail is bounded as 

\oM<KiMmS)'(T-L^) (17) 

for 5 < 1/Mm. 

We now take A = p/Mm where p < 1, then 

|oi(5)|<irI^ = 7 (18) 

We take the right-hand side of this inequality to be the 7 of our theorem and immediately 

conclude that inequality 15 can be written as 

M*{S)) < hjW)) + E £/,/*(*(0)KA + 7 (19) 
»=1 

8 



For j = 1,..., JV, this implies that the state is safe at time A. It is also safe at time zero. 

Since our bound is linear this must also hold for all 8 between 0 and A. So for all time 

in [0, A), the desired inequality constraints ensure the guard triggers are not violated. 

We now turn to the terminating trigger, hQ(x(t)). In this case, we require that 

h0(x(8)) > r(8) for all 8 € [0,A]. By assumption, hQ(x(0)) > r(0) and we know by 

that r(8) = r(0) + RS. To ensure our other constraint is satisfied, we require 

r(0) + RS.< h0(x{0)) + f)LfMz(P)K8 + K{Mm8)2 (—L-J) (20) 
i=i \l — MmoJ 

Assuming that r(0) = ho(x(0)), we see that the condition reduces to 

RK^LfM^X + KMm-^- (21) 
i=l * ~ P 

We treat this last quantity as 71, and our result follows. QED 

Proposition 2 characterizes the set of locally safe control signals. In practice, a specific 

control signal will need to be chosen from this set. This selection is made with respect 

to an assumed cost functional, J(u). The "optimal" locally safe control is determined 

by finding the control signal that minimizes this given cost subject to the local safety 

conditions represented by the inequality constraints in proposition 2. A particularly 

simple choice for the cost is a linear function of u. If we restrict 0 < Ui < 1 for all 

i = 1,..., m, then our cost functional becomes 

m 
J{u) = w'u = YJ ^iUi (22) 

where to is an m-vector of positive weights. The control signal minimizing this cost is 

obtained by solving the following linear programming problem 

minimize: w'u 

with respect to:   u 
(23) 

subject to: A(t)u < b 

0 < Ui < 1 



where 

A(t) = 

-L/j/io   —Lf2h0   •••   -Lfmh0 

LftK     Lf2hn 
LfmK 

(24) 

and 

b = (25) 

-7 - hn{x{0)) 

Note that the constraint matrix A(t) is a function of time. 

The preceding discussion solved an LP problem to find a constant control, u*, for a 

time t e [0, T) which was locally safe. A safe control trajectory, u*(t), for all t G [0, T), can 

be determined by solving a sequence of linear programs at the time instants t0+nA, where 

n is the set of positive integers and A is given by the growth constants in proposition 

2. The constraint matrices A(t) are obtained from our knowledge of the distribution, 

{/o, /i, • • •, fh} as well as the current state vector. This essentially means that an LP 

problem must be solved at the sampling instant i0 + nA to determine the piecewise 

constant control u* that is used over the interval [t0 + nA,t0 + (n + 1)A]. 

The solution u* will ensure the safety of the trajectory over the interval [t0 + nA, t + 

0 + (n+1) A]. Will the concatenation of these u* yield a safe system? The answer is "yes" 

provided A(t) does not change "too quickly" over the generated state-space trajectory. 

Recall from the proof of proposition 2 that A < 1/Mm where m is the number of applied 

inputs and M is the bounding constant given in the growth condition of equation 8. 

Assume that the growth condition is uniformly satisfied for all points along the state 

trajectory, then there exists a single M bounding all Lie derivatives in equation 8 and we 

10 



see that A is fixed. In this case we can clearly ensure the safety of the concatenated set 

of controls. 

Example: A simple example is used to illustrate the approach. .The following ex- 

ample has been modified from [Deshpande 1995] to yield a plant which is affine in the 

control. The modified plant equations are 

&i   =   -xx + (u1-u2) 

i2   -   -X2 + (1 + xl){uz - U4) 

(26) 

(27) 

where Ui is constrained to be non-negative for i = 1,...,4. This vector field clearly 

satisfies the growth conditions of equation 8, so we can apply our method to safely 

control this system. We can rewrite this as a linear combination of vector fields, 

±1 
  

-Xi 

+ 
1 

Ui + 
-1 

u2 + 
0 

u3 + 
i2 . ~x%. 0 0 1 + rrf 

0 

-(l + *2)
2 

u4    (28) 

The control objective is to move the plant from an initial state near the operating point 

(0,0) to a point near (2.5,2). Note that the control inputs have been paired so there is a 

"positive" input (ut and u3) and a "negative" input (u2 and u4) which work in opposition 

to each other. 

The guard triggers are 

hi(x)   =   x2 — 1.25xx — .5 

h2(x)   —   x2 - 1.25xi + .5 

(29) 

(30) 

with a goal trigger, 

ho(x,t) =X!(0)-i2i (31) 

where R is the desired rate at which we want to achieve the desired goal set.  In this 

example R = 0.1. These regions are illustrated in figure 1. 

11 
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Figure 1: Guard and goal triggers for example. 

A simple Matlab script was written to simulate this system. Figure 1 illustrates the 

state trajectory that was generated by this approach. In this case, the LP-problems 

determining safe controls were computed at a rate A = 0.1. The weighting vector w was 

chosen to be a vector of ones. As can be seen, the selected controls basically select one 

control strategy that drives the system in the direction of the h2 guard trigger. Once 

within a distance 7 of that guard trigger, the control strategy changes to a chattering 

policy which drives the system state along the boundary until the terminal condition is 

satisfied. The chattering nature of the control policy is seen in figure 2. 

This example illustrates some fundamental characteristics of the LP-approach to safe 

controller generation. In the first place, this is an on-line procedure which requires the 

solution of an LP problem at each sampling instant. The computation of the control 

requires significant information about the underlying vector fields generating the system's 

dynamics. Finally, this approach tends to produce a chattering control strategy, as shown 

in figure 2. 
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Figure 2: Chattering control policy 

4    MRC-Method 

A model reference control (MRC) approach for implementing safe controllers was in- 

troduced in [Lemmon 1996]. In this approach, the plant is forced to follow a reference 

trajectory, xm(t), which is known to be safe with a worst case tracking error of 7. Provided 

there exists a time T such that h0(xm(T)) > 7 and for all 0 < t < T and j = 1,..., N 

that hj(xm(t)) > -7, the plant trajectory, xp(t),is guaranteed to be safe. 

In this framework, synthesis of safe switched controllers is accomplished by examining 

the error between the plant and reference trajectories. Suppose that the plant state 

dynamics are generated by 

xp = fp(xp,u) (32) 

and let the reference trajectory be generated by 

%m — Jm\pm) (33) 

Defining the state error signal, x = xm - xp, yields the differential equation 

* = f(xm, x, u) = fm{xm) - }p{xp, u) (34) 

13 



The control input is generated by a controller u = k(xm,x) which is dependent on the 

reference model state and the reference error. 

One control strategy is to choose a collection of setpoints along the reference tra- 

jectory, xm(t), and design linear control agents at each of the setpoints using the plant 

model obtained from linearizing about the corresponding setpoint. This is the basic idea 

behind the switched linear control agent approach introduced in [Lemmon 1996]. Note 

that, as in a classical gain scheduling approach (see, e.g. [Shamma 1990]), each of the 

control agents designed using this approach is designed for local performance near an as- 

sociated setpoint. As with classical gain scheduling, performance of the switched system 

will be difficult to guarantee, in general, due to the approximations made in the setpoint 

linearizations (as'well as other modeling uncertainties). Thus, the linear setpoint con- 

trollers should, at the least, demonstrate robustness to the system nonlinearities lost in 

the setpoint linearizations. One way of incorporating this robustness requirement into 

the design is to use linear parameter varying (LPV) plant models at each of the setpoints. 

An LPV model of the error dynamics may be obtained by rewriting the dynamics of 

equation 34 as 

x   =   A{8)x + Bu(8)u + Bw{8)w (35) 

z   =   Cx + Du (36) 

where w = 1 is introduced as a fictitious disturbance. The s-dimensional parameter 

vector, 8, is a function S(xm,x,u). The vector 8 is assumed to vary continuously over 

a compact subset 6 C 3ftÄ; this assumption is denoted 9ef§. For each of the local 

plant models, 8 is assumed to vary continuously over a compact subset O C 6 for a time 

interval [r^r/]; this assumption is denoted 8 G F&[rs,Tf\. This notation distinguishes a 

parameter variation over 0 from a point in 9 which will be denoted 9 € 0. The vector 

z will be called the objective signal and is chosen (via C and D) to reflect not only the 
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the trigger constraints, but also control energy constraints. The entire LPV system will 

be denoted as E(0, A, B, C, D) where B' = [B'u B'J. 

Let 77 = [U, ti+i) denote the time interval over which the ith setpoint controller is used. 

Note that if each individual setpoint controller satisfies the performance requirement, 

sup||*(t)||<7 (37) 
teTi 

then local safety of the control directive will be preserved. Local setpoint controllers are 

therefore obtained by solving what is called a finite horizon C\, or bounded-amplitude, 

optimal control problem for LPV systems. 

There are, unfortunately, relatively few results for the solution of C\ optimal con- 

trol problems. In [Dahleh 1987], it was shown that optimal solutions to this problem 

are irrational or infinite dimensional, even for rational and finite-dimensional plants. 

For deterministic linear time-invariant systems [Nagpal 1994] an approach to L\ optimal 

control synthesized a sub-optimal controller minimizing an upper bound on the bounded- 

amplitude gain by solving a set of linear matrix inequalities. To use this prior work in 

our synthesis problems, however, existing synthesis methods must be extended to LPV 

systems. We remark here that previous results on gain scheduling for LPV systems (e.g. 

[Shamma 1991]) do not directly apply to the performance problem introduced here be- 

cause those results apply to an £2 performance measure. The following theorem provides 

a characterization of systems whose C\ gains are bounded. 

Note: The remainder of the paper will use the following notation: the infinite- 

horizon co-norm of a signal x(t) is defined as ||z(i)||oo := supt ||x(i)|| where || • || is the 

Euclidean norm. ££, is the space of n-dimensional vector signals with finite co-norm; 

BC1^ is the space of n-dimensional vector signals with co-norm bounded by 1. For 

constants T < T, finite-horizon co-norm of a signal x(t) defined on the interval [r, T] 

* llx(i)lloo)[r,T] := supt6[TiT] ||ar(t)||. C^[T,T) and BC^[T,T] are defined in an analogous 
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manner. Recall that 9 €. FQ[T,T] is an s-dimensional signal 9(t) which takes values on a 

compact subset 6 C £5 for t € [T,T]. This implies that 9 € Cfjr,!] Finally, throughout 

the remainder of the paper, the matrix inequality M > N (M > N) where M and N 

are symmetric matrices, indicates that the matrix M — N is positive definite (positive 

semi-definite). 

Proposition 3 

Given constants r > 0, 7 > 0 and T > 0 and the LPV system E(0, A, B, C, D) with 

u = 0. Lei 0 be a compact subset of 0 and suppose there exists a > 0 and /3 > 0 and a 

positive definite matrix P G 3?nxn satisfying 

P>^C'C      . (38) 

and 

A'(0)P + PA(0) + (2/? + ") P + ^PBW(6)BW{6)'P < 0 (39) 

for all 9eO. If Be T&[0, T] and w e B££ [0, T], then 

• if x'(0)Px(0) < r then x'(t)Px(t) < r and z'(t)z(t) < -f for all t € [0, T] 

• if ß>0 and x'(0)Px(0) = rQ>r, then x'(t)Px(t) < r for all t 6 [td,T] where 

*"—&**&) m 

(assuming td<T). 

Proof: Let r > 0, 7 > 0 and T > 0 and assume there are constants a > 0 and ß > 0 

and a positive definite matrix P so that the conditions of the theorem are satisfied. For 

any 9 e 0, 

-PB{9)B'{9)P > 0 (41) 
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If equation 39 holds for all 9 € 0, then 

A'(9)P + PA(9)+(^ + 2ß\p<--PB{9)B'(9)P<0 

Using Schur complements, this inequality is true if and only if 

(42) 

A'(6)P + PA{9)+pP  PB(6) 

B'(9)P -al 

where p = 2ß + ot/r. This inequality is true if and only if 

A'(9)P + PA{9) + pP   PB(9) 

B'{9)P -al 

for all £ G 3£n and v e 5Rn"\ Expanding, it is apparent that 

<0 (43) 

_ / 

v v 
<0 (44) 

a 
? [A'{9)P + PA{9) + 2ßP] Z+v'B'(9)P(+?PB{9)v+- [£'P£ - r]+a [1 - u'u) < 0 (45) 

This last equation implies that 

£' [A'{9)P + PA{9)] e + u'B'(9)P( + ?PB(9)v < -2ß£'PZ < 0 (46) 

for all f and v such that £'Pf > r and i/v < 1. 

Now consider a function, V : 5Rn ->■ 5R, such that V(f) = £'Pf. Along trajectories of 

the LPV system with u = 0, the time derivative of V(x(t)) is 

dV 
—(x(t)) = x'(t) [A'(9(t))P + PA(9(t))} x(t) + w'(t)B'(9(t))Px(t) + x'(t)PB(9(t))w(t) 

(47) 

and from equation 46, it is immediately evident that 

dV 
—(x(t)) < -2ßV(x(t)) < 0 (48) 

for any x(t) and w(t) such that x'(t)Px(t) > r and w'{t)w{t) < 1 with t € [0,T]. 

Assume, for some w 6 B££[0,T], that there is a trajectory with initial state x{0) 

satisfying V(x(0)) = s'(0)Px(0) < r and V{x{T)) > r. Since V(x(t)) is differentiable in 
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t, the mean value theorem may be used to imply the existence of a time r € [0, T] such 

that V(X(T)) > r and V(X(T)) > 0. This is a contradiction of equation 48, so one must 

conclude that x'(t)Px(t) < r, hence z'(t)z(t) < 72, for all t € [0,T]. 

If V(x(0)) > r, then the differential inequality implies that 

V(x(t) < V{x{0)) - jf* 2ßV(x(r))dT (49) 

and the Bellman-Gronwall inequality may be used to conclude that 

V(x(t)) < V{x{0))e-2ßt 
(50) 

Now suppose that V(x(0)) = r0 > r, ß > 0 and let td be the dwell time given in equation 

40. If td < T, then 

V(x(t))<r0e-2^=r (51) 

forallte [td,T]. • 

Proposition 3 characterizes a class of uncontrolled (u = 0) LPV systems where 

lk||oo,[o,T] < 7 and where the parameter variation is confined to the set 0. The next 

result helps characterize a class of controlled LPV systems using linear state feedback, 

u = Kx. 

Proposition 4 

Given 7 > 0 and an LPV system E(0, A, B, C, D) with state space realization 

x(t) 

z(t) 

' A(9) BM   Bu(6) 

C 0         D 

X 

w 

u 

(52) 

Let 6 C 0 be a compact subset and consider a state feedback control law u = Kx where 

K e 5Rn»Xn. Define A{9) = A{9) + BU(6)K. Then, there exist constants a1>a2>0, a 

positive definite matrix P 6 3f£nXn and a controller K satisfying 

P>—(C + DK)'(C + DK) (53) 
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and 

Ä'{9)P + PÄ(6) + aiP + —PBW{B)BW(9)'P < 0 
0C2 

(54) 

for all 9 6 6 if and only if there exists a positive definite matrix Q € Knxn and a matrix 

V e 5Rn»xn such that for allOeQ 

Q QC' + V'D' 

CQ + DV T
2
/ 

>0 (55) 

and 

QA'{9) + A{B)Q + otxQ + —Bw(9)B'w(e) + BU(9)V + V'B'U(9) < 0 (56) 
Gt-2, 

Proof: Assume that there exists a positive definite matrix Q and a matrix V such that 

Q QC' + V'D' 

CQ + DV 72/ 

Using Schur complements, this holds if and only if 

>0 (57) 

Q - -{QC + V'D'){CQ + DV) > 0 

If we let P = Q~l and K = VQ~\ then this holds if and only if 

P>^(C + DK)'{C + DK) 

which establishes the first condition in the proposition. 

Now assume that there also exist constants Oi\ > a2 > 0 such that 

Ä'(9)P + PÄ{ß) + axP + —PBW(9)BW(9)'P < 0 
<*2 

for all 9 e 0. Substituting P = Q~l and K = VQ~l as above, 

(58) 

(59) 

=   Q 

[A(9) + BU(9)K]' P + P [A(9) + BU{9)K] + aiP + —PBW(9)B'W(9)P       (60) 

QA'(9) + A(9)Q + axQ + —BW(9)B'W(9) + BU{9)V + V'B'U(9)} Q~l (61) 
C*2 J 

-1 

Since Q * > 0, the conclusion of the theorem immediately follows. 

The following remarks summarize the importance of propositions 3 and 4. 
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• Under the assumptions of proposition 3 and 4, it should be apparent that if the 

inequalities 55 and 56 hold, then under control u = Kx, the objective function 

z = (C + DK)x will have a finite horizon sup-norm less than 7 provided that the 

parameter variation is bounded according to 8 € jFe[0,T]. 

• From the proof of proposition 4 it should be apparent that the matrices Q and V 

satisfying inequalities 55 and 56 parameterize a set of locally safe controllers. In 

particular, for any such Q and V, the controller is K = VQ~l. 

• The importance of inequalities 55 and 56 is that these can be used to form matrix 

inequalities which are linear in Q and V. These inequalities need only be satis- 

fied pointwise over 0 without regard to parameter variation rate, as long as the 

parameter variation is bounded according to 8 G T&[0,T]. 

• Note that the 8 dependence of inequality 56 limits its usefulness: verifying the • 

condition for all 8 € G may be unreasonable or infeasible. In certain cases, however, 

the computational burden can be significantly reduced. For instance, if A(8), Bu{6) 

and Bw(8) can be written as linear fractional transformations in 8, and if the 

parameter set 0 is a polytope, then it is possible to express inequality 56 as a matrix 

inequality which is independent of 8 and linear in the variables Q and V. Derivation 

of such LMIs is a straightforward application of the results in [Boyd 1994]; a detailed 

proof is beyond the scope of this paper but can be found in [Bett 1997]. 

The results in proposition 3 are extremely important in determining whether or not a 

given set of linear setpoint controllers will safely execute a supervisory directive. Let % be 

the time interval when the ith setpoint controller is used. This controller is characterized 

by the matrices Ph the radius rh and constants, a{ and /%. The results in this proposition 

state that the controlled system will be locally safe if the error satisfies sd(ti)Pix{ti) < rf. 
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To ensure that the plant behavior is safe under the next (i + 1st) setpoint controller, 

one must ensure that x'(U+i)Pi+ix(ti+i) < rf+1. The problem here is that the second 

condition is not guaranteed if the switch occurs too quickly. This is where the second part 

of proposition 3 has something to add. Specifically, if the state at time it- starts outside 

of the invariant set for the i + 1st setpoint controller, then there is a minimum time called 

the dwell time, after which the state is guaranteed of being within the required distance. 

In particular, let rjPt+i < fj+iPj and assume that Pi and Pi+x both satisfy the conditions 

for setpoint controllers in proposition 3. It is readily apparent that if tj+i — U > tj, where 

*a = -^-log^L, (62) 

then 

IWIco,feA+2] < 7 (63) 

The satisfaction of the inequality constraints, of course, also requires that 6{t) lie in 0i 

for ti < t < tj+i (i.e. 6 G JFei[ti,ii+1]) and in 02 for £,-+1 < t < £j+2- Satisfaction of this 

parameter variation condition is non-trivial to verify. 

The preceding discussion has outlined how the conditions determined in proposition 

3 can be used to ensure safe behavior between the switch of two different setpoint con- 

trollers. These conditions are summarized in the following proposition. 

Proposition 5 (LPV Switching Lemma) 

Given LPV systems T,(Ö,Ai,Bi,Ci,Di), and Y,(G,A2,B2,C2,D2) with associated con- 

trollers K\ and K<i, let the ith controller (i = 1,2) be characterized by matrix Pi, and 

positive constants, Ti, di, and /% so that the conditions of propositions 3 and 4 are sat- 

isfied for compact parameter sets 9jC8. Assume that controller K\ is used over time 

interval t € [to,ts) and that controller K2 is used for time interval t € [ts,T] for any 
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T > ts. IfrxP-z < r-2,P\ and the switch time ts satisfies 

t,-*o>-^log^ (64) 

and if9e {FeAtoMiFeAts,?}} then p||co,[o,T] < 7- 

The LPV switching lemma suggests a means of testing to see whether or not a given 

collection of linear setpoint controllers will generate a safe trajectory. Essentially, this 

involves verifying the dwell-time condition for all possible switching times and verifying 

the conditions on the parameter variation. The required dwell-times may be computed 

from the synthesis LMIs and the coupling condition rxP2 < r2P\- Switching times and 

parameter variation bounds are more difficult to verify, but a nominal parameter trajec- 

tory, S(xm(t),0,0), may be used to estimate these quantities off-line. These estimates 

may then be compared to the dwell-time results as a sufficient condition for safeness. 

Example: As an illustration of some of the important aspects of the MRC-approach, 

the methods described above were applied to the process control example described in 

section 3. The reference model 

imi   =   xml - 1.63 -xml/{l + 0.5 sin 10(a:mi - 1.63)) 
(65) 

£m2     =     1 

is specified to move the plant from an initial state near the operating point {xvi,xp2) = 

(2.5,2) to a point near (xpUxp2) - (1,3) in 1 second. The performance weights for 

the objective function were chosen as C = / and D = 0.17; the desired bound on the 

objective function was 7 = 0.5. 

The LPV error system is derived as 

x   =   A(0)x + Bu(9)u + BJQ)w 
(66) 

z  =   Cx + Du 
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with 

ES* 

A(9) = 
-1    0 

, Bw(0) = 
0i -1.63 

and Bu{9) = 
-1         0 

0    -1 02 + 1 0      -Ö3-1 

and parameter mapping 

0i 2zmi - W(l + 0.5sinl0(xml - 1.63)) 

02 — b{Xm,X, U) — Zm2 + (2rcml2i - x\)u2 • 

03 T2 

,    (67) 

(68) 

Linear state feedback control agents, u = Kx, were designed by choosing setpoints, 

0nom'= S{xr^m, 0,0) and solving the appropriate synthesis LMIs for parameter sets 

0 := Id sup  \e{ - of07"! < d 

'.-..-■-•'! 

for a design parameter i9 > 0. Switching control was achieved by switching a new feedback 

controller into the loop whenever the parameter variation evolved onto the boundary of 

the current agent's parameter set. The new control agent was chosen to minimize a 

distance measure in the parameter space. 

A Matlab program was written to solve the appropriate synthesis LMIs, as indicated 

above, and simulate the closed loop system. Simulations were performed for various 

values of tf, resulting in experiments requiring varying numbers of models. The resulting 

state trajectory for twenty models is depicted in figure 3. Figure 3 also depicts the 

reference trajectory and forbidden (shaded) regions of the state space. Note that the 

resulting trajectory is safe and non-chattering, as seen in figure 4. Similar results were 

observed for different numbers of models. Figure 5 depicts the resulting trend observed 

for increasing numbers of models. Note the monotonic improvement in performance with 

increasing numbers of models. The quantity ||0err|| represents a mismatch between the 

reference model dynamics and the multiple agent controlled system; the result in the 
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Figure 3: Simulation for 20 agents with 7 = 0.08. Reference trajectory (dashed) and 

controlled plant state (solid) with forbidden regions (shaded) are shown. 

figure indicates that an increase in the number of agents (via a reduction in ■d) results in 

improved dynamical model matching. The other performance curves are self-explanatory. 

As with the previous example of the LP-approach, this example depicts some of the 

fundamental characteristics of the MRC-approach. The approach is an off-line procedure 

which requires the solution of LMI problems. In the present form, the computation of 

the control requires explicit knowledge of the plant dynamics and direct measurement 

of the plant state. However, because the approach is based primarily on Lyapunov 

and structured uncertainty methods for robust control design, the approach should be 

extendable to uncertain systems. The computational burden is large, but it is off-line 

and the payoff is a non-chattering control which satisfies amplitude constraints. 

The MRC approach is a new application of classical gain scheduling and robust con- 

trol techniques in the following respects. First, classical gain scheduling offers no system- 

atic checks for stability and performance in a bounded amplitude performance problem; 

those results which appear in the literature (e.g., [Shamma 1990][Shamma 1991]) concern 
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Figure 4: Simulation for 20 agents with 7 = 0.08. Error states Xi and x2 with performance 

||;z(£)|| are shown. 

bounded energy (£2) performance problems. A similar claim is true for robust control 

techniques which almost exclusively apply to £2 problems. In addition, robust control 

techniques do not apply in a direct manner to switched-agent control problems such as the 

one considered here. The MRC method represents a combination of the two techniques 

for bounded-amplitude problems which arise naturally in hybrid system applications. 

1 

5    Conclusions 

This paper has compared two methods for safe implementation of supervisory commands 

in hybrid dynamical control systems, called the LP method and the MRC method. Both 

methods appear to be able to guarantee the bounded amplitude performance requirements 

dictated by the hybrid design problem, assuming knowledge of the plant dynamics. The 

LP method produces a chattering control policy versus the non-chattering control policy 

generated by the MRC method. Both methods require that the plant dynamics do not 

vary too rapidly. 

As presented, both methods require knowledge of the plant dynamics and full state 
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Figure 5: Average performance versus number of agents 

availability. This is required in order to compare the two approaches. While it is unclear 

if this assumption may be relaxed in the LP method, the MRC method can be extended 

to structurally perturbed systems and output feedback cases in a straightforward fashion 

because it is based primarily on linear robust control and Lyapunov techniques. (This 

is a topic of current research efforts.) While the extension is straightforward, it is not 

trivial and adds considerable complexity to the presentation; it is not included in this 

paper. We note that the underlying structure of the MRC method allows the method 

to be generalized in another direction, as well; namely, more complex control agents 

may be used. The most obvious extension is to bounded amplitude LPV control agents, 

analogous to those discussed in [Packard 1994]. 

To emphasize, while both methods require explicit knowledge of the plant dynamics, 

the MRC method appears to be more amenable to incorporation of modeling uncertainty 

and disturbances into the design, yielding robust control policies. Furthermore, the 

designs may be accomplished using the same tools as for the nominal case since the design 

tools are linear robust control techniques. The LP method may offer such advantages, 

but they are not apparent. 
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In the area of numerical complexity, the LP method requires the solution of simple 

linear programming problems which, of course, can be solved quickly and efficiently. This 

advantage is offset, somewhat, by the fact that the linear programs must be solved on-line 

and often. On the other hand, the MRC method requires the solution of a series of larger 

convex optimization problems. However, while this requires a more computationally 

intensive effort, the procedure is performed off-line and must only be performed once. 
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Figure 3: Simulation for 20 agents with 7 = 0.08.  Reference trajectory (dashed) and 
controlled plant state (solid) with forbidden regions (shaded) are shown. 
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Abstract 

This paper discusses recent results on multiple linear agent control for systems satisfying a bounded 
amplitude performance constraint. The plant is assumed to be a linear parameter varying (LPV) system 
scheduled along a nominal parameter trajectory; in this respect, the control problem represents a plant 
operating between a prespecified set of operating conditions. Linear controllers are designed at setpoints 
along this scheduling trajectory to satisfy bounded amplitude performance constraints. This paper 
discusses an approach to analyze the switched system behavior under practical assumptions on the 
structure of the switching rule. The approach combines the scheduling parameter with LPV system 

. properties to derive bounds on the switching behavior of the system. These estimates are then used to 
construct a logical model of the switched system behavior in the form of a timed automaton. In this 
respect, this paper presents a way of extracting logical models of continuous time system behavior. 

*The authors gratefully acknowledge the partial financial support of the Army Research Office (DAAH04-95-1-0600, 
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1    Introduction 

Linear feedback control assumes that the operating range of the plant is sufficiently small to allow the use of 

linear approximations of the plant dynamics in designing feedback control laws. In cases where the operating 

region is so large that linear controllers are unable to meet performance requirements, it is necessary to use 

nonlinear control techniques. A widely used approach is multiple agent control. This method uses a finite 

collection of feedback controllers (called control agents) to achieve a specified performance level. Outputs of 

the control agents are combined according to some function of the plant state and used to control the plant. 

In typical gain scheduling methods, a weighted sum of control agent outputs is used as the control input. 

If these weights are chosen either 1 or 0 (i.e., either "on" or "off'), then a switched agent control system is 

obtained. 

In this paper, the plant is assumed to be a linear parameter varying (LPV) system. The control objective 

is to maintain an amplitude performance constraint by switching among a set of LTI controllers while the 

LPV system is scheduled along a known reference parameter trajectory. The LPV problem formulation 

is useful for modeling a large class of nonlinear control problems including classical gain scheduling and 

nonlinear model reference control problems. The bounded amplitude performance objective arises naturally 

in many applications, including robotics, high performance drive positioning (e.g., disk drives) and hybrid 

system applications where it is useful to avoid certain regions in the state space. 

Building on prior results characterizing linear controllers of non-switched LPV systems for bounded 

amplitude performance [5], the results of this paper show how Lyapunov and robust control techniques 

for structured perturbations to linear systems may be used to derive sufficient conditions for the switched 

system to meet bounded amplitude performance requirements. These conditions, which are the primary 

contribution of the paper, amount to ensuring that a dwell-time condition be satisfied by each control agent 

which is switched into the feedback loop. These dwell-time conditions are directly related to a uniform 

ultimate boundedness condition (see, e.g. [14]) on the controlled system. 

In the switched system context just described, the concept of dwell-time appears to have been introduced 

in [17]. There, linear control agents are employed and switched into feedback according to a prediction of 

controller performance. The results presented here are distinct form those in [17] and more recent work on 

switched system stability [12] in that those results concern an £2 performance criteria, not the bounded 

amplitude constraint stated above. Nonlinear control agents are used for bounded amplitude performance 

in [18].  In that work, the authors explore the effects of switching transients and derive bounds on these 



transients.  Unlike [18], the results presented here can be used to synthesize agents to meet prespecified 

amplitude constraints. 

The switched agent control systems described in this paper and in [17] [18] [12] all fall into the class of 

switched systems described in [8]. Such systems are often referred to as hybrid systems because they generate 

a mixture of both discrete event and continuous-valued signals. As noted earlier, we describe the performance 

of hybrid systems using a bounded amplitude performance measure. Such measures are well-suited to hybrid 

systems since discrete events are often defined in terms of set boundaries, or guards, in the continuous system 

state space. Avoiding such boundaries is an amplitude control problem. In general, analysis of such systems 

for stability and performance is difficult because of the mix of continuous and discrete behavior. The results 

in [17] [18] [12] all approach the analysis problem in the continuous domain. 

The other obvious approach is to analyze the hybrid system is from the discrete dynamical point of view. 

One extreme example of this approach is found in [22] where a continuous dynamical system is abstracted 

into an untuned finite automata. Another approach, proposed in [2], abstracts the continuous dynamics to 

a simple linear differential inclusion and then a timed-automaton. Such approaches offer enormous com- 

putational advantages over the continuous-time counterparts described above and can be applied, in some 

cases, to systems with a large number of states. However, the abstraction process often ignores the inherent 

structure of the underlying continuous-time dynamical system, often ignoring important questions of stabil- 

ity and performance in the continuous domain. As a result, much additional computation and analysis is 

often required. 

The development of a useful and efficient design methodology for hybrid system design and analysis 

requires the integration of the continuous domain approach and the discrete event approach. While the 

primary results of this paper analyze the switched system in the continuous domain, the analysis tools 

offer a means of obtaining a timed logical model of the system in the form of a timed-automaton model 

of the switched system behavior. This is the second contribution of the paper. The ability to perform 

such an abstraction is useful because it allows one to analyze distinctly different systems exhibiting timed 

logical behavior in the logical domain. In the case of complex systems consisting of smaller subsystems 

which must be coordinated in some fashion, it allows one to extract the timed-logical models for each of 

the subsystems. The logical models may then be used to verify whether or not the supervised system meets 

timing specifications expressed as temporal logic formulae. 

The remainder of this paper is organized as follows. Mathematical background is summarized in section 



2. The problem setup, including assumptions on the plant and control agents are described in section 3. 

Section 4 states sufficient conditions for the bounded amplitude performance of a continuous-time system 

whose dynamics switch between two different LPV realizations. These conditions provide guidelines for 

the analysis presented in section 5. Section 5 contains the conditions for estimating the switching times of 

the scheduled system which can then be compared to a dwell-time condition to check for performance and 

stability of the switched system. Section 6 demonstrates, by example, how the continuous-time results may 

be used to extract timed-automata models of a simple process control system. Both finite-time and periodic 

scheduling examples are provided. All proofs are located in appendix A. 

2    Preliminaries 

This section establishes the mathematical notation used throughout the paper. 

Definition 2.1 For a finite constant T > 0, the finite-horizon infinity norm of a signal f : Et+ ->■ Kn is 

defined as 

D,[O,T] " ess sup ||/(*)|| 
ts[o,T] 

where || • || denotes the Euclidean vector norm. The linear space £2J0,T] is defined by 

£»[0,T] := {/ : R+ -* BT \\\f\U[o,T] < oo } 

The subset {/ : B+ H- Bn |||/||oo,[o,Tj < 1} C ££,[0,T] is denoted BC^[0,T]. 

The infinite-horizon infinity norm of a signal f : R+ -4 Rn is defined as 

||/||oo,[o,co) ~ ess  sup   ||/(*)|| 
*6[0,oo) 

where || • || denotes the Euclidean I2 vector norm. The linear space ££,[0,00) w defined by 

££,[0,00) ~ {/ : R+ -4 ln |||/|L,to,c») < 00 } 

The subset {f : R+ -+ Bn |||/||oo,|p,oo) < 1} C £So[0,oo) is denoted JB£^[0,OO). The spaces £5,[0,oo) and 

#££,[0,oo) ««7/ often be denoted, respectively, £^ and BC^. 

Definition 2.2 (Parameter Variation Set) Given a compact subset Q C B.', the parameter variation 

set ?§ denotes the set of all continuous functions mapping M+ into 0. For a finite T > 0 and a compact 

subset 0 C 0, the set FQ[0,T] denotes the set of all continuous functions 6 € TQ which map [0,T] into 0. 



The notation öefg denotes a function in the parameter variation set; 6 € 0 denotes a vector in 

a compact subset of 1RS. These definitions are extended to functions which map finite time intervals to 

compact subsets of 0. It is clear that TQ C !Fe[0,T} Cfg. 

Note that both TQ and, for instance, ££, represent signal spaces. Technically, it can easily be argued that 

F& c ^oo smce ?e consists °f supremum bounded s-dimensional vectors which vary continuously in time. 

In this paper, the following convention is followed: T§ will always refer to parameter signals or parameter 

variations; ££, will refer to signals in the plant input, output or state space. 

Definition 2.3 (Linear Parameter Varying (LPV) System) Given a compact set 0 C B.', and con- 

tinuous functions A : Bs -» Rnxn, B : B" -» Bnxn-, C : Bs -}• En*xn, and D : B3 ->• Bn-Xn-/ an nth 

order linear parameter varying (LPV) system is a dynamical system whose dynamics evolve as 

i(t) 

z{t) 

A(9(t))   B(6(t)) 

cm) D(e(t)) 

x(t) 

w{t) 
(1) 

where 6 € T&. 

Note that the LPV system is defined over the parameter variation set TQ. Certain properties of the LPV 

system may only be guaranteed while the parameter variations are confined to a subset of FQ. Previous 

results on LPV systems (see, for example, [4], [20], [13]) restrict consideration to properties which can be 

guaranteed over the entire parameter set 0 and the associated parameter variation set. This restricts the 

class of systems for which the linear design techniques may be applied to systems where 0 is small or 

possesses sufficient structure in the parameter dependence. 

Definition 2.4 Let the LPV system of definition 2.3 be denoted by S(0, A, B,C,D). Then for any 6 €FQ, 

• the linear time-varying system described in equation 1 is denoted Ej, 

• $e(i,£o) is the state-transition matrix of of He 

• for x(t0) = 0, the causal linear input/output mapping, He : C£ -J- ££j, of He is defined as 

Hgw(t) = / C(0(r))§9(t, T)B(9(T))w(r)dT + D{6(t))w(t) 

• for a finite T > 0, the finite-horizon induced-Coo norm of He is given by 

\\He\\ioo,[o,T\ :=       sup      \\Hew\\oo,[o,T] 
t»€S££»[0,T] 

(2) 



• the infinite-horizon induced-Loo norm of Hg is given by 

\\HB\Uoo~    sup   llÄHleo 

The set H^ is defined as 

The shorthand \\H^\\ioo < 7 for some 7 >0 means that for all 9 6 FQ, \\He\Uoo < 7- 

Finally, a positive definite matrix P € BnXn which satisfies 

(3) 

A'P + PA + aiP + —PB'BP < 0 
a2 

for A € BnXn, B £ ]Rn"Xn, and scalar ai and a2> will be denoted 

P € FeasRic (A, B, ax, a2) 

(4) 

3    Problem Description 

In this section, the control system architecture is described and the performance objective for the controlled 

system is stated. The components of the system architecture are depicted in figure 1. 
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3.1    Plant Dynamics 

The plant processes considered in this paper are assumed to take the form of an LPV system 

x(t)   =   A1(0(t))x(t) + B1(9(t))w(t)+B2(9(t))v(t) (5) 

z(t)   =   Cix(t) + D12v(t) (6) 

with 9 € TQ where 0 is some compact subset of H*. Here, x € Rn is the plant state, v € ]Rn" is the control 

input, w € Hn" represents bounded, exogenous disturbances and z € Hn* represents plant performance. It 

is assumed that the disturbance vector w 6 B££ • 

The parameter vector 6 is assumed to be defined by a mapping 5 : Rn x Rn x Et"" -»• TR.', called a 

parameter mapping, so that 9(t) = S(xm(t),x(t),v(t)); the argument xm 6 Rn represents an exogenous 

reference or scheduling variable. While the specific form of 5 is not central to results of this paper, it is 

assumed that 5 is continuous, available for measurement and bounded so that there exists a known constant 

kzi > 0 such that for any xm e Rn, x\,x2 € Rn, and vi,v2 € ]Rn" 

\Si(xm,Xi,Vi)-Si(xm,X2,v2)\ <kzi ||z1-z2|| (7) 

where || • || denotes the Euclidean vector norm, Si(-, ■, •) is the z'th element of the parameter vector and 

Zj = CiXj + D\2VJ for j = 1,2. 

Remark: Systems of the form described above arise naturally in many applications. When the parameter 

mapping is purely a function of exogenous parameters, xmt which are available for measurement, then the 

system describes a class of LPV gain scheduling problems (see, e.g. [21][20][3]). Similarly, when 9 depends 

on the system state, the LPV systems which result are sometimes referred to as quasi-LPVsystems. (Such 

systems have been studied extensively in, for example, [19].) LPV (or quasi-LPV) systems arise in nonlinear 

model reference control problems where ideal performance is measured in terms of a dynamical reference 

model with state, xm, and state error, x. A parameter mapping arises from grouping state and control 

dependent terms in the coefficient matrices of the system. • 

The evolution of 9(t) in 0 C R1 will be called the parameter trajectory. We will assume the existence 

of a known parameter trajectory representing ideal performance; this special parameter trajectory will be 

called the nominal parameter trajectory defined as 

9nom{t) := S(xm(t),0,vm(t)) (8) 

The argument vm(t) represents a nominal control input to the plant. In some cases, such a function may 



be derived analytically from knowledge of the plant dynamics and the control objectives, e.g. a feedback 

linearizing control. (Implementation of the feedback linearizing control may not be desirable for robustness 

reasons or if hardware constraints do not permit.) In other cases, vm(t) may be found by computing local 

solutions to linearized problems and interpolating the results. 

Remark: The nominal parameter trajectory is said to represent ideal performance because it corresponds to 

the reference or scheduling variable, xm, and a control, vm, which is assumed to work well in the ideal case. 

"Ideal" performance can be interpreted in another way. Note that freezing 9 at a point and evaluation the 

LPV plant results in an LTI system. One may think of such a process along points of the nominal parameter 

trajectory as generating a family of nominal LTI plants. Deviations of the parameter trajectory, 9(t), from 

the nominal parameter trajectory may thus be treated as perturbations to the nominal system. • 

Finally, without loss of generality, assume that for any points 9 € 0 that 

rank [B-2{9)\Al{9)B7{9)\A\{9)B2{9)\ ■ • • \A^X {9)B2{9)) = n (9) 

This assumption implies that LTI plant models for all frozen values of 9 € 0 yield a controllable linear 

system. 

3.2    Performance Objective 

As noted earlier, attention in this paper is restricted to bounded amplitude performance problems. Let 7 be a 

fixed positive constant representing a performance level and let || • || indicates the vector 2-norm. Two types 

of performance problems will be considered in this paper 

Finite-time scheduling Consider the LPV system described in (5-6). The finite-time bounded amplitude 

performance objective is to ensure that, given ||z(0) || < 7, 

sup       ||z(t)||<7 (10) 
t»S0O[O,T] 

where T is a fixed positive constants. 

Periodic scheduling Consider the LPV system described in (5-6) with a periodic nominal parameter tra- 

jectory, 

9nom(t) = enom(t + T) 

The bounded amplitude performance objective in this case is to ensure that, given ||z(0)|| < 7, 

sup    ||z(t)||<7. (11) 



Both of these objectives represent important classes of performance problems. Specifically, the first 

represents tasks which reach completion in a finite time. The second represents cyclic processes which run 

continually. The purpose of this paper is analyze these performance problems for the class of plant processes 

just described under a control of a class of switched agent controllers, as depicted in figure 1, which are 

described next. 

3.3    Switched Agent Controller Structure 

This subsection describes the components of the switched agent controller assumed for the LPV system 

described above and depicted in figure 1. There are two primary components to the switched agent controller: 

control agents and switching logic. These are now described. 

Control Agents Consider the LPV system described in (5-6). Consider a sequence of times, {U} indexed by 

i € 2jc = {1» ■ ■ • i M). The parameter vectors obtained by sampling the nominal parameter trajectory 

at times U for i € Ijc form a finite collection of design points. In other words, 

Design Points = {6:6 = 0nom(ti),i € IK) (12) 

The ith design point will be denoted as 6hlm- With each i 6 IK, associate a control agent designed for 

the LPV system when the parameter is fixed at the design point 8nlm- The ith control agent will be 

represented by the system 

(13) 

(14) 

where K± and ÜQ äxe constant gain matrices of appropriate dimensions. The collection of control 

agents, for i € IK will be denoted K. 

For analysis and synthesis purposes, the integrator in the control agent will be incorporated into the 

plant. The modified LPV plant is given by 

x(t)   =   A(6(t))x(t) + Bw(d(t))w(t) + Buu(t) (15) 

*(*)    =   Cx(t) (16) 

v   =   u 

ti   =   K^x+K^v 

where 

A(6(t)) = 
A1(6(t))   B2(6(t)) 

0 0 
,Bw(9(t)) = 

Bi(6(t)) 0 
,BU — ,c = 

0 I 
Ci   D 12 (17) 



and x = 

so that u = K^i. 

The modified plant is now seen to have a control agent K^ = K®   K® 

Switching Logic: The switching logic is the set of rules which define how the control agents are switched 

into feedback with the plant process. In this paper, the switching logic is assumed to have two 

components called the switching sets and the nearest neighbor switching rule. These components 

are now described. 

Switching Sets: Switching between the different control agents in K. will be controlled by the param- 

eter vector, 9. In particular, associate with each element of K. a compact subset of the parameter 

set 0. This set will be called the switching set, the ith switching set associated with control agent 

KW will be denoted as ©i C 0. While this set can be chosen in many ways, attention in this 

paper is confined to switching sets of the form 

Qi-{e    max\9j-8^n<j\<fl0^ (18) 

where 6j and 0J*]m • denote the jth components of the parameter vectors 9 and 9%lm, respectively, 

and flout is a parameter quantifying the size of the switching set. i?01it will also be referred to as 

the switching parameter. 

Nearest-Neighbor Switching Rule: For a given collection of control agents K. with associated 

switching sets, there are a variety of switching rules which can be invoked. In this paper at- 

tention is focused on a nearest neighbor switching rule. Given the switching parameter i?0„t, a 

collection of control agents K, and a collection of parameter sets C = {©*} as defined in equation 

18, suppose that control agent K® is in the feedback loop at time t0 and assume that 9(t0) € 0;. 

Then the control agent K® will remain in the feedback loop until the earliest time t3 when the 

parameter trajectory 8{t) satisfies 

mzX\9j(t3)-9
(?om>j\=-dout (19) 

At time t3, the control agent K^ is then switched into the feedback loop where 

m = arg mm 8Qt.)-eyL (20) 

where || • || denotes the Euclidean 2-norm. 
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As described, the switched agent controller switches state feedback controllers into and out of the feedback 

loop on the basis of the LPV system's current parameter vector. In order to have a well-behaved switched 

system, it is necessary that the parameter vector after a switch He in the switching sets associated with 

the control agent which is currently in the feedback loop. The parameter trajectory is called legal if this 

occurs. More precisely, let C be the collection of switching sets. A parameter trajectory 9(t) will be said 

to be legal if and only if it is continuous (except possibly at switching instants) and 9{t) 6 0; for all 

t 6 (r : u(r) = K[^X(T) + K^V(T)\. In particular, a legal parameter trajectory is denoted 9 6 Tc- 

Adequate Sampling Assumption: 

From the preceding discussion it is clear a given control agent, K®, is switched out of the feedback 

loop when the parameter 9(t) leaves the switching set G,-. The nearest neighbor switching rule says that 

the resulting switch will be to the controller, K^, whose associated design point 9z}m is closest (with 

respect to the Euclidean vector norm) to the parameter 9(ts) at switching time ts. In order to guarantee 

performance properties, it would be advantageous if the parameter 6(tf) immediately after the switch were 

in the switching set Qj. To help guarantee this property, it will be assumed that for all t there exists I € IK 

such that 

*»™,i(*)-*£»,<!<*...• (21) 

where 

.*.,< < Vout - kzil (22) 

for s = 1,..., s. This condition ensures that the reference trajectory has a sufficient number of design points 

so that the nominal reference trajectory is contained within U;0,-. In other words, this is an assumption that 

the reference trajectory has been sampled "adequately" and will be called the adequate sampling assumption. 

4    Performance of Switched LPV Systems 

At this point, an LPV model for the plant dynamics has been introduced. The assumption placed on 

this model was the existence of a known, nominal parameter trajectory representing ideal performance 

and/or scheduling objectives for the plant. Linear, state-feedback control agents are designed for LTI plant 

models obtained by fixing the plant parameter at design points taken from the nominal parameter trajectory. 

Associated with each of the control agents is a switching set "centered" at the associated design point; 

switches between control agents take place when the parameter trajectory evolves out of the switching set 
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associated with the control agent currently in feedback with the system. The new control agent is selected 

according to the nearest neighbor switching rule. 

The following proposition is called the LPV switching lemma. By establishing sufficient conditions for 

bounded amplitude performance when the dynamics of a system switch between two LPV realizations, the 

LPV switching lemma provides the basis for the main results of the paper. 

Proposition 4.1 (LPV Switching Lemma) Consider any finite constants r € (0,1] and 7 > 0, compact 

sets 0i,02 C 0, continuous matrix mappings At : R* -» HnXn and B{ : B." -*• Rnxn* for i = 1,2 and 

constant matrices d e Etn'xn for i = 1,2. Let C = {©i, 02}. 

Suppose there exist constants a > 0, ß > 0, and p > 0 and positive definite matrices Pi and P2 such that 

rP-i < Pi 

l2Px > && 

7
2P2 > C'2C2 

Pi € FeasRic(,41(0),B1(0),2/? + -,a)  V0 € ©i 

P2 6 FeasKic(A2(9),B<i(6),p,p) W € 02 

Let w, x, and z be the input, state, and output, respectively, of the dynamical system 

(23) 

(24) 

(25) 

(26) 

(27) 

f 

x(t) 

z(t) 

Am)) Bx{6{t)) 

d 0 

A2(9(t)) B2(9(t)) 

C2 0 

x(t) 

w(t) 

x(t) 

w(t) 

,     *€[0,t.) 

(28) 

,    te(t„T\ 

where t3 > 0, T G (t„oo). //x'(0)P1x(0) < 1 andw e BC£, then for any switching time satisfying 

ts>U:^~\oSr 

with parameter trajectory 9(t) 6 7c satisfying 0(0) 6 ©i and ö(i+) G ©2, 

(29) 

IMIoo,(0,T] < 7- 

The LPV switching lemma states three sufficient conditions for bounded amplitude performance of switch 

LPV error systems. 
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x'P2x = 1 

(a) 

■    x'Pxx = r 

i 

x'(t)Pix{i) = 1 

i 

v/2"' 

x'(t)Pix{t) = r 

I 
i 

* id-*-1 *. t 

(c) 

Figure 2: Illustration of LPV Switching Lemma 

1. The first condition is that the initial error state, x(0), lie in the ellipsoid {x\x'Pix < 1}, as depicted in 

figure 2(b). From theorem 1 of [5], equations 24 and 26 are sufficient to guarantee that this ellipsoid is 

invariant for times prior to ts and that any point x € {x\x'Pxx < 1} will also satisfy ||Cix|| < 7- Thus, 

the first condition guarantees performance on the interval [0, t,] and is sufficient to ensure performance 

over the interval [0,T] if no switch were to occur. 

2. The second condition is that the parameter trajectories must evolve over the switching sets 6i and 02 

so that 0(t) € Tc with the added restriction that 0(0) e Oi and 0(t+) 6 02, This added restriction 

guarantees that while the system dynamics correspond to (Ai, 23», Cj), i = 1,2, the parameter trajectory 

lies in the set 0»; this condition ensures that the Riccati inequalities of the lemma are valid for 
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the system. Figure 2(a) depicts a parameter trajectory 0(4) which satisfies 0(4) € Q\, 4 € [0,t3] 

and 0(4) € 82, 4 6 [4S,T] with a discontinuity at time t,. The condition of the lemma states that 

immediately after the discontinuity, the parameter trajectory must satisfy 0(4+) € 62 as shown. 

3. The final condition is that the switching time must satisfy a dwell-time requirement, 4S > 4<*. This 

guarantees that the state error has had sufficient time to decay so that any transient associated with 

the switch will not violate performance constraints. Figure 2(b) depicts this condition in terms of 

invariant ellipsoids. At the time of the switch, the invariant ellipsoid associated with the system 

dynamics switches to {x\x'P2X < 1}. The dwell-time condition guarantees that at time 4S, the state 

x(ts) lies on the interior of the new invariant by ensuring that the state has had sufficient time to 

decay to the shaded region in the figure which is an ellipsoid {x|ar'PiX < r} C {x\x'PiX < 1}. This 

decay time is characterized by the constant ß which parameterizes a bounding exponential, as shown 

in figure 2(c). The dwell-time is computed by determining when this bounding exponential satisfies 

Remarks: 

• The LPV switching lemma can be generalized to systems with 0-dependent output matrices e.g., C{&) 

and D{6), in a straightforward manner. 

• The initial condition and dwell-time constraints of the lemma are directly related to the concept of 

uniform ultimate boundedness ([14]). In particular, the conditions of the lemma are special cases of 

lemma 5.2 in [14], p213. The LPV switching lemma possesses the parameter variation condition which 

is key to the switching behavior considered in this paper. The parameter variation condition may be 

seen as enforcing the perturbation bound of the results in [14]. 

Of these conditions, only the last two require further discussion. Note that because of the integrator in 

the controller structure, the control input to the plant is continuous. Since the state is also continuous, no 

discontinuities in the parameter trajectory will occur. Thus, under the nearest neighbor switching rule, the 

adequate sampling assumption ensures that the second condition of the lemma is satisfied for the switched 

systems considered in this paper. The only remaining condition which must be verified for the switched 

system is the dwell-time constraint. 
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5    Switched System Performance Analysis 

In this section, results are presented which show that if the parameter variations are "nice" (i.e. if the 

constants kZi in (7) are small enough), then \9(t) - 0nom(*)| is bounded by a known quantity. The result is 

important because, under the assumption of adequate sampling of 9nom(t), it allows one to bound possible 

times of control agent switches using the nominal parameter trajectory. This result is stated in lemma 5.1 

and corollary 5.1. Proposition 5.1 provides bounds on the switching times of the system using the parameter 

variation bounds. By comparing these bounds with the dwell-time requirements of the LPV switching lemma, 

a systematic approach for the extraction of a timed-automaton can be obtained (section 6). 

5.1    Parameter Deviations 

The following result bounds the deviation between the nominal parameter trajectory and actual parameter 

trajectory. This lemma is useful in estimating switching times. 

Lemma 5.1 Given performance level 7 > 0 and the modified LPV system of (15-16), suppose that the 

control input to the system is given by u(t) = Kx(t) where K is a constant gain matrix. Let § be a point 

on the nominal parameter trajectory and let 0 be any compact subset of 0 containing 6. Suppose that there 

exists a positive definite matrix P and constants a > 0, ß > 0, and 0 < r < 1 such that 

P   >    \CC (30) 

P   6   FeasRic (,4(0) + BUK, Bw(9), 2/3 + -, a) W € 0 (31) 

For any T > 0, t/x'(0)Px(0) < 1 and w <= BC£[Q,T], then any parameter trajectory 6 6 7Q[Q,T] must 

also satisfy 

|0i(t) -0nom,i(t)| < &zi7max{V?,e-^}     fori = 1,2,...,* and for allte [0,T] (32) 

The implication of lemma 5.1 is that if the controllers are appropriately designed (so that (30) and (31) 

are satisfied), \\z(t)\\ will be bounded and therefore the parameter trajectory must remain bounded to the 

nominal parameter trajectory from (7). This reinforces the intuitive notion that parameter deviation from 

the nominal parameter trajectory represents modeling error. The bound is illustrated in figure 3 where the 

parameter set 0 is shown as a subset of a larger set 0. According to the bound of the lemma, at any-time 
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t, 6{t) must lie in a box centered at 9nom{t) as denned by equation 32. As time increases, the box shrinks 

according to equation 32, tightening the bound. 

Figure 3: Illustration of parameter trajectory bounds. 

Lemma 5.1 is important because it implies that if the bound on the parameter trajectory is small enough, 

then the nominal parameter trajectory represents a reasonable approximation to the true parameter trajec- 

tory. (Choosing the parameters r and ß required to evaluate the bounds in discussed in appendix B.) This 

further implies that the nominal parameter trajectory may be used to bound switching times in the multiple 

agent control system. Corollary 5.1 indicates how the switching times may be estimated for the class of 

switching sets assumed in this paper. 

Corollary 5.1 Suppose that the conditions of lemma 5.1 are satisfied with adequate sampling and let T € 

[0,oo). Let 0 C 0 be a switching set. If x'(0)Px{0) < 1, t» 6 B££[0,T\ and a parameter trajectory 

6€Fe[0,T] satisfies 

msx\ei{T)-9i\='&0ut (33) 
i<t<»' ' 

at time T, then the nominal parameter trajectory at time T satisfies 

*o«t " Jfcri7nu«{Vr, e~ßT} < |0„om,i(T) - St\ < i?0* + fctfrmax^, e~ßT) (34) 

for i = 1,2,...,s. 

Corollary 5.1 is useful because it implies that events in the parameter space (e.g. the parameter trajectory 

crossing the boundary of a switching set) can be predicted with the nominal parameter trajectory. The time 

at which the parameter trajectory may intersect the boundary of 0 may be approximated by the times at 

which the nominal parameter trajectory evolves over points near the boundary of 0. This is illustrated in 
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figure 4; when the conditions of the corollary axe satisfied and if the true parameter trajectory intersects the 

boundary of 0 at time T, then the nominal parameter trajectory at time T must lie in the shaded region 

representing the bounds of (34). 

A 

0, out 

6nom\T) 

Figure 4: Estimation of switching times using 6nom(t). The shaded region corresponds to the bounds given 

in equation 34. 

5.2    Switching Time Estimation 

When combined with a specific switching rule such as the nearest neighbor rule, the nominal parameter 

trajectory can be used to estimate switching times and the results of possible switches. This is apparent 

from corollary 5.1. The following result provides these estimates. 

Proposition 5.1 Given a -performance level 7 > 0 and the modified LPV system of (15-16), let Kbea set of 

control agents which forms a control policy with the nearest neighbor switching rule under adequate sampling. 

Suppose that at time t0, the control input to the system is given by u(tQ) = K^x(t0) where K® € K is 

a constant gain matrix. Let ©1 be a switching set and suppose there exist positive definite matrix P and 

constant a > 0, ß > 0, and 0 < r < 1 such that 

P >  \cc 

Define the sets 

P   e   FeasRic(A{9) + BuK^,Bw{9)^ + -}a^  W € 0! 

0m := [e I 0 € 0,110-äl < \\9i -9$m\lm,q elz,q?m} 

(35) 

(36) 
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and 

-jii,™.) ._ i 
\Onom,i(t) -§i\< kmaSti(t)      for i = 1,..., s and some 9 S 0m, and 

■&ont - kmax^t) < \9nomii{t) - 9®m^ < i30tlt + kmaXii(t),     for some l<i<s 

where 

kma*M := kzilmax{^, e^'-**} (37) 

Jfx'(to)Px(to) < 1, w 6 BCoo, and a parameter trajectory 9 is generated by the nearest neighbor switching 

rule under adequate sampling, then the switch time, t,, between the Ith andmth systems satisfies ts € T^',m^. 

There axe two primary components to the construction of a set T^'m>>: 

Switching Destinations The set 0m represents the set of all parameter vectors 0 € © which satisfy 

m = arg mm 6 - 9ijL 

if the parameter trajectory at time t, lies in 0m, a switch to control agent m will take place according 

to the nearest neighbor switching rule. The sets 0m may be represented by a set of affine inequality 

constraints on the parameter vector 9, as depicted by the light-shaded regions of figure 5. Note that 

these constraints may be computed in an off-line fashion with knowledge of the nominal parameter 

trajectory and the design points. (See [6] for details.) 

Since the true parameter trajectory can only be estimated by the nominal parameter trajectory (as a 

consequence of lemma 5.1), the times for which 9{t) € Qm can only be estimated. Let the set 

0t := {9 | \9nom,i(i) ~ 01 < kmax,i{t),  for all i = 1,..., s} 

For each time t, the set ©t is a hyper-rectangle centered at 9nom(t) which contains the true parameter 

trajectory 9(t), as depicted in figure 5. The first requirement for a time t to belong to T(',m) is for the 

intersection 0t D ©m to be nonempty, which is a relatively simple convex feasibility problem. In figure 

5, this requirement is satisfied at times t\, ti and t%\ the requirement is not satisfied at time to- 

Switching Times As a consequence of corollary 5.1, the times for which the nominal parameter trajectory 

satisfies 

tUt - fcmas,i(i) < \9nom,i(ts) ~ €lm,i\ < #out + fcmas,t(t) 
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for some i = 1,..., s, bound the times for which the true parameter trajectory may intersect the 

boundary of the parameter set 0j. This condition represents an added restriction for a time t to 

belong to T^,m^. Note that this requirement may also be expressed with a set of affine inequality 

constraints on the parameter vector 9 which may be computed in an off-line fashion. An illustration of 

these sets is indicated by the dark shaded regions in figure 5. In the figure, the requirement is satisfied 

by time t3; times t0, h and t2 do not satisfy the switching requirement. 

(m + l) 

\    ("» + !) 

Figure 5: Illustration of 7"(',m). Light regions represent 0m, dark regions represent switching bounds from 

corollary 5.1, and small box, ©t, represents bounds on parameter variation from lemma 5.1. Time t € T"'m> 

if and only if 0nom(t) lies in the dark shaded region and 0t n 0m is nonempty. Here, t0,ti,t2 $ 7^',m) and 

i3€7~<''m). 

Given the preceding descriptions, the set T*',m) is constructed by finding all times for which the nominal 

parameter trajectory lies near the switching surface (i.e., lies in the dark-shaded region of figure 5) and 

for which the corresponding set 0t has a nonempty intersection with ©m (i.e., times for which the small 

rectangles of figure 5 intersect the light-shaded region). Constructing a set T<''m) amounts, essentially, to 

conducting a line search over the nominal parameter trajectory, evaluating a set of convex constraints at 
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each point. Note that the computation is performed off-line; time and computational resources are not a 

significant issue. 

It is apparent from the construction of the switching-time sets of proposition 5.1 and from the nearest 

neighbor switching rule that certain switches will never take place due to the geometry of the parameter 

space. In fact, given that control agent K® is currently in feedback with the system, under the assumption 

of adequate sampling, then a switch to control agent K^ should take place if and only if m € 2j where 

li :={m|m^/,0/n0m^0}. (38) 

Such a switch from agent K® to agent K^> will be called an admissible switch. 

5.3    Stability and Performance Results 

In this section, properties of the continuous-state system, namely bounded-amplitude performance results for 

LPV systems, are used to derive conditions for switched systems to satisfy performance constraints. These 

conditions amount to verifying that transitions between states of the automaton do not occur too quickly. 

More specifically, the transitions must satisfy the dwell-time constraint of the LPV switching lemma. The 

following result states this condition. 

Proposition 5.2 Given a performance level 7 > 0 and modified LPV system of (15-16), let K be a set of 

control agents which form a control policy with the nearest neighbor switching rule under the assumption of 

adequate sampling. 

Suppose that for each I 6 2jc, there exists a positive definite matrix pW and constants a[} > oc2 > 0 

such that 

'    p(D   >    \c'C (39) 

>W    6    FeasRic (ä{0) + BVK®, Bw (9), a[°, 4°) , V0 € 0i (40) 

Denote the agent initially in the feedback loop by K^°\ If all possible switches are admissible, x'(0)P(o)x(0) < 

1 and if, for all admissible switching sequences k-¥l-¥m, 

T 'm logr</,m>    <   mm7^',m)-maxT<*,') (41) 
oW-oi'M'.-») 

where 

r('."0 := max I r     rP™ < P«, %fc < r < 1 1 (42) 
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then for any T €[0, oo), 

lt,[o,T]<7' (43) 

and for T -*■ co, 

NUo,cc)<7. (44) 

Proposition 5.2 is interpreted as follows. Denote 

rPtm'<p('),^L<r<l (45) 

The set ft.(',m) represents the set of all possible constants r which yield a positive dwell-time, as defined in 

the LPV switching lemma, for a switch between control agents K® and agent K^m\ Similarly, the quantity 

min T^-max T^'0 

represents the niinimum time that can elapse between a switches from k -» I and I -i- jn- Equation (41) 

therefore represents the dwell-time constraint of the LPV switching lemma verified using the switching-time 

estimates obtained from proposition 5.1. Thus, under the adequate sampling assumption and assuming that 

the initial state error is small enough, it is sufficient to check that admissible switching sequences satisfy the 

dwell-time constraint to ensure bounded amplitude performance. 

By applying the results of proposition 5.1 to obtain the switching sets T^l'm\ proposition 5.2 may be 

applied to analyze bounded amplitude performance in the finite-time and periodic scheduling problems stated 

in section 3.2. (Note that proposition 5.2 applies to non-periodic 8nom(t) defined for t € [0,oo) as well.) 

6    Applications to Hybrid Systems 

The switched agent control system is a hybrid system because it generates a mixture of discrete event and 

continuous-valued signals. As noted in section 1, hybrid systems can be studied from two distinct viewpoints; 

as a supervised collection of real-time computer processes or as switched dynamical systems. The integration 

of these two viewpoints is required for the development of useful and efficient methodologies for hybrid system 

design. While performance analysis for a given LPV system may best be carried out in the continuous 

domain, integrating the controlled system with other systems may best be accomplished on the supervisory 

level. In this section, we show how the two viewpoints are related for the class of systems considered in this 
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paper through the bounded amplitude performance analysis described above. Specifically, we show how the 

switched system performance analysis of the preceding sections supplies information sufficient to construct 

a timed logical model, in the form of a timed automaton, of the switched system behavior. 

Finite automata represent a powerful symbolic modeling tool for supervisory controlled systems. Model- 

ing systems in such a way leads to effective procedures for automatically manipulating and analyzing system 

behavior at the supervisory level. However, such a model lacks the power to express real-time behaviors. 

Timed automata [2] arose out of the desire to extend this modeling ability to the verification of real-time 

systems. 

In the remainder of this section, we show how the results of the switched system performance analysis 

conducted using a continuous-time control theoretic approach, may be used to construct a timed-automaton 

model of the controlled system. This automaton extraction provides part of the aforementioned link between 

the two approaches for analysis and design of hybrid systems. We begin with a brief description to timed- 

automata and we illustrate the automaton extraction with a simple example which also serves to illustrate 

the results presented in the previous sections. Finite-time and periodic scheduling objectives are considered 

separately. 

6.1    Timed-Automata 

A finite automaton is characterized by the ordered pair, TV = (V, A) where V is a finite set of Mv vertices 

and A C V x V is a set of directed arcs between vertices. The automaton, H-, is marked by a function 

ß : v -> {0,1}. The marking function, p, is said to be valid if and only if there is at most one p 6 V such 

that n(p) = 1. The vector ß = [n(pi), ■ ■ ■ ,M(PMV)] *
S
 
u?edto represent the state of the automaton. A marked 

automaton is then represented by the ordered triple, (V, A, fio), where ßo is the initial marking vector of the 

automaton. 

The dynamic behavior of the automaton is generated by the firing of arcs. An arc (p, q) € Ais said to 

be enabled if ß(j>) = 1. An enabled arc is free to fire. Let ß and ß' be the marking vectors of the automaton 

before and after the firing of arc (go,9i), respectively. The relationship between these marking vectors is 

given by 

P(P) = < 
1   ifp = ?o ,      „ N 1   ifp = ?i 

and    ß (p) = < 
0   otherwise 0   otherwise 

where ß(p) and ß'(p) represent the pth elements of ß and ß', respectively. 
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A timed automaton arises by introducing a finite set of clocks, X, and by introducing mappings which 

label the arcs and vertices of the automaton M = (V, A) with equations representing constraints on the clock 

state. The tth clock will be characterized by the ordered triple Xt = (c;,x;0,Tio) where xi0 € R", no € B. 

and a € Hn. The local time of the z'th clock, it(r), (r > ri0) generated by clock Xi is the solution to the 

initial value problem 

Xi{t) = Ci] Xi{Tio)=xi0 (46) 

The set of all local times and clock rates at time r will be called the clock state and will be denoted 

x(r) = {(xi(r),ci)}i=1)2 Mv (47) 

Let V be a set of formulae defined over the clock state, x(r). We say that the clock state x(r) satisfies a 

formula p 6 V if the formula is true for the current state assignment at time r. This is denoted as X(T) |= p. 

A simple example of this is the comparison of a clock value to some threshold, e.g. X^T) > TC. In the 

examples which follow, a local clock, t, must he in a closed interval, e.g. t 6 [0.0508,0.0519], or the clock is 

reset to zero, t i- 0. A timed automaton is formally defined by the tuple, (Af,X,lf,ir,^) where 

• ftf = (V, -4, ßo) is a finite automaton with initial marking vector ßo. 

• if : A ->■ V is the firing condition. For an arc (p, q) 6 A, x f= if(p, q) means that the arc (p, q) is free 

to fire provided that it is already enabled. 

. 4 : V ->■ T7 is the vertex constraint. If x t= lv{v) for some v e V, then clock states are forced to satisfy 

an equality constraint while y.{v) = 1. 

• IT : A -4 V is the reset constraint. For an arc (p, q) € A, this mapping represents an equality constraint 

which the clock state is reset to immediately after the firing of arc (p, q). 

The mappings If, lT and lv all represent constraints on the clock states which must be satisfied for transitions 

to occur. In the examples that follow, the vertex constraint is simple because the clocks do not change. In a 

more general setting, clock constraints can change as the system evolves. The clocks themselves can also be 

defined as the solution of a more general set of differential equations; the timed automaton is then referred 

to as a hybrid automaton [1]. In a model reference control problem, one may view the reference model as a 

clock. The vertex constraint then corresponds to changing the reference model. 

The preceding definition of timed automata is essentially the same as that used in [2]. The description 

provided above, however, follows notational conventions found in the Petri net literature and appears to be 
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more closely related to the control theoretic approach described earlier. As noted, finite automata represent 

powerful symbolic modeling tools for supervisory controlled systems. They are useful because efficient 

computational algorithms exist to verify that a finite automaton satisfies behaviour specifications which can 

be posed as formulae in computational tree logic [11]. This verification procedure, known as symbolic model 

checking [16] has provided a powerful tool in the verification of VLSI digital circuits[9]. Timed [2] and hybrid 

automata [1] arose from a desire to extend symbolic model checking to the verification of real-time systems. 

Now consider the application of proposition 5.2 to the multiple agent system. To apply the proposition, 

one needs to construct the switch-time sets, T^'m\ and verify that the dwell-time constraints are satisfied 

(41). If these sets can be constructed, one may next construct a sequential model of the switching behavior 

with a tree structure. The nodes of the tree correspond to a control agent being switched into feedback with 

the plant. The nodes can be collected into levels. Each level, la € {0,..., N}, of the tree contains possible 

states of the system after ls switches have taken place, i.e. each level contains the indices of control agents in 

the loop after la switches have taken place. In turn, a state I in level l3 is connected to a state m in level I, +1 

by an arc labeled with the time interval over which the switch could possibly take place, T^m). Because 

this model is constructed while ensuring that the bounded amplitude performance constraint is satisfied, we 

will call this model a performance validation tree. A simple illustration of a performance validation tree is 

shown in figure 6(a). (This example was presented in [15].) The tree of figure 6(a) is initialized with a node 

labeled 1, indicating that agent K^ is initially in the feedback loop. A switch from controller K^ to K& 

will take place during the time interval t e T*1'2); this is indicated on the tree by the branch from node 

1 to node 2 labeled with T^1,2^. Where more than one branch leaves a node, a nondeterministic switch is 

indicated. In the figure, during the time interval t € [0.3518,0.3525], a switch from K^ to either K^ or 

ÜLT(
4

) is possible. The remaining portions of the tree are interpreted in a similar fashion. 

The performance validation tree is now used to construct a timed-automaton model for the switched 

agent system. Suppose that a control agent, K®, in feedback with the plant is seen as a state of the 

controlled system. Then, assuming that a finite number of switches occurs over a finite interval, [0,T], a 

finite sequence of states will be reached by the controlled plant during [0,T]. The performance validation tree 

described above represents all possible finite sequences of states which can be assumed by the closed-loop 

system over [0,T]. In other words, the performance validation tree represents all possible trajectories of a 

timed-automaton model of the multiple agent controlled system. A graphical representation of the timed- 

automaton corresponding to the performance validation tree of figure 6(a) is the timed-transition table shown 
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7-U.2) 7"(2.3) 

O^KIK^ 
7-C4.5) (3>^<7>^>© 

-5r(3,2) 7-OM) 7(4,5) 

-KÖ—Kf)—Kö 

T(1'2) = [0.2701,0.2705] 

T(2,3) = [0.3006,0.3010] 

T(3,2) = [0.6650,0.6655] 

T(3'4) = [0.3518,0.3525] 

T(2,4) = [0.6650,0.6655] 

r(4,s) = [0.3518,0.3525] 

(a) 

t€ [0.0508,0.0519] 

-KD 
t 6 [0.2701,0.2705] 

1 ) - M 2 
i € [0.0508,0.0519], 

3 ) —— K 4 
f g [0.3640,0.3649] © 

t € [0.1431,0.1478] 

(b) 

Figure 6: Illustration of sequential models of switching behavior: (a) Performance validation tree (b) Timed 

transition table 

in 6(b). The finite automaton M is given by the states 1-5 and the indicated directed arcs connecting the 

states. The automaton is initialized with a marking vector fio = [1,0,0,0,0]. The local clock, t, is reset on 

initialization and on the firing of arc (2,3). The firing conditions are derived from the sets T(',m) with the' 

reset condition taken into account. For example, from figure 6(a), the local clock reset occurs at some point 

in the interval T(2,3). If arc (3,2) is to fire, it must occur in the interval T(3,2). With respect to the local 

clock, this time interval becomes 

[minT(3,2) -maxT<2'3\max7<3'2) -minT*2'35] 

which is indicated in figure 6(b). 
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6.2    Finite-time Scheduling 

We now turn to numerical examples illustrating the results presented above. The plant chosen for the 

purposes of illustration is a second-order nonlinear system representing a typical chemical process control 

problem given by 

Xpi     =    -Xpi + Vi 

Xp2     =     -Sp2 + (1 + Xpi)u2 

(48) 

(49) 

The finite-time scheduling objective considered here is to move the state of the plant from points near 

xp = (2.5,2) to points near xp = (1,3) in one second (T = 1) according to the reference model 

imi   =   -1.5 (50) 

im2   =   1 (51) 

By defining i := xm - xp, a quasi-LPV description of the error system may be obtained from 

x   =   A{9)x + Bw(8)w + Bv{9)v (52) 

where 

-1     0 

0     -1 

The parameter mapping was chosen as 

A(0) = , Bw(6) = 
2^3+ ! 

and Bv(9) = 
-1 0 

n        21 a      37 
0     —ä^i - T 

01 

02 

03 

-S-a:2 29 
~ 21 

3Xml 
7 
3 

2xm2 -5 

(53) 

(54) 

so that the nominal parameters would all vary between -1 and 1. Here, w = 1 is introduced as a fictitious 

disturbance so that the nonlinearities grouped in the Bw{6) term are treated as a bounded disturbance. The 

performance constraint is given by ||2||oo,[o,T] < 7 where z = Cxx + Duv with Cx - I and £>i2 = 0.01L 

Performance is considered for various levels of 7 and various numbers of agents. 

Control agents take the form 

v   =   u 

u   =   KPx + Kl% + vW) W/ 

(55) 

(56) 
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where the index I indicates the design point and v® is a constant bias term internal to each agent. The bias 

term for each design point 6® is chosen as 

t/W = -s.p«)-1*»^) (57) 

Note that the inverse exists in this case for all nominal parameter values. 

Control gains were synthesized for the biased systems using the techniques presented in [5] combined 

with LMI pole placement constraints ([10]). A MATLAB program was written to implement the conditions 

associated with propositions 5.1 and 5.2. First, the switch-time sets T^,m^ were computed according to 

the conditions of proposition 5.1. The nominal parameter trajectory was searched to determine possible 

switching times and the resulting switches. The results of the search were used to form a performance 

validation tree for a fixed performance level 7 and switching parameter ■d0vt- Figure 7 depicts one such tree 

for a multiple agent design with switching parameter i?otlt = 0.4. For this design, 7 control agents were 

required to satisfy the adequate sampling assumption. The performance validation tree shown in the figure 

represents a performance level of 7 = 0.068.  The performance validation tree is initialized with control 

*% 0^0 

—>0—t^i^y-^Q) 

1—HV^-KI) 

T(i.3) .-.res,*) ^ 7-<4.s)^ T(5,s)/-N T1*-*^ 

7-(3,5) 

-J-(l,2 = [0.1260,0.1530] 

7"(1.3 = [0.1320,0.1680] 

•7-(2.3 = [0.2160,0.2640] 

J<2,4 = [0.2490,0.2640] 

7"<3,4 = [0.3450,0.3930] 

J-tt.S = [0.3810,0.3930] 

7-Ks = [0.4860,0.5280] 

7K4.8 = [0.5040, 0.5280] 

7-(5,6 = [0.6420, 0.6660] 

7"<«,T = [0.8130,0.8220] 

Figure 7: Performance validation tree for finite-time example: i?0„t = 0.4, 7 = 0.068 

agent K^ in feedback with the plant. A search of 8nom(t) indicated a possible switch to agent K& for 

t e T^1'2) or to agent K& for t 6 7^1,3). This result is indicated by the two branches leaving node 1 and 
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labeled with T*1'2) and T(1,3). The second level of the tree is constructed by first assuming that agent K^ 

is switched into feedback at time maxT(1,2); 0nom(t) is then searched, resulting in nonempty sets 7^2,3) and 

T(2,4) indicating possible switches to agents K® or K^ from agent K&\ The process is repeated until the 

time interval is exhausted with no further switches. 

The performance validation tree of figure 7 was then used to construct an automaton model which is 

represented by the timed transition table shown in figure 8. For the underlying finite automaton, V consists 

f(.l,3) 7"(3,5) 

J<6,7) 

■0 
7"(2.4) 7-(4.6) 

Figure 8: Timed transition table for finite-time example: i?01lt = 0.4, 7 = 0.068. 

of seven states with connecting directed arcs, A, as indicated in the figure. The initial marking vector 

satisfies p(l) = 1, i.e. the automaton is initialized in state 1. There are no reset conditions on the single 

local clock t. Firing constraints are indicated in the figure, e.g. t € 7^3,4). 

The timed-automaton represented in figure 8 represents an abstraction of of the multiple agent controlled 

system which can be analyzed on the supervisory level. If the switched system described here is one of many 

similar subsystems, this timed-logical model would be useful in the verification of, for example, desired 

synchronous behavior among the subsystems. 

It is useful at this time to remark on the performance improvement observed with increasing the number 

of agents (decreasing ■dout)- The results of several different designs produce the plot in figure 9 which shows 

the minimum level %er for which performance of the switched system could be guaranteed with proposition 

5.2 versus the number of agents used for control. The error bars in the plot indicate the precision of the 

result; performance conditions were satisfied to the top of the error bar, the conditions failed at the bottom 

of the error bar. Figure 9 clearly demonstrates monotonic improvement in performance with increasing 

number of agents. This trend was also observed in simulations of the corresponding closed loop systems. 

One reason for the observed improvement can be seen by comparing the control input to the plant 

generated by the switched agent controller with the model-matching control 

Vrefl    —    Zpl -1.5 (58) 
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Figure 9: Verified performance versus number of agents. 

XP2+1 
u«/2   =   7T3- 1 + x: 

(59) 
pi 

evaluated for the system with zero initial state error. Figure 10 plots the average difference between the 

actual and reference control taken over the time interval [0,1]. The increasing number of agents allows 

new agents to be switched into feedback before the state error, hence the control effort, deviates from the 

reference. 

6.3    Periodic Scheduling 

The periodic scheduling objective considered here is to cycle the state of the plant described by (48-49) 

between points near xP = (0.5,0.5) and points near xp = (1,0.5) and back with a one second (T = 1) period 

according to the reference model 

imi    =    2sin27rii  a;mi(0)=0.5; 

it 
*m2    =   7C0s27rt;  xm2(0) = 0.5; 

(60) 

(61) 

As before, by defining x := xm - xp, a quasi-LPV description of the error system may be obtained from 

i   =   A(9)x + Bw{ff)w + Bv{d)v (62) 
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Figure 10: Deviation in control input, v, from model-matching control, vref, versus number of agents. 

where 

-1     0 

0     -1 

The parameter mapping was chosen as 

A{9) = , Bw(9) = 
' Jfla + i ' 

.   W93 + 2   . 

and Bv(9) = 
-1 

0 

0 

3/)         13 
-gfi - T . 

hosen as 

0i 
i_2    _ 5 
3^1       3 

02 = iT   , 4. *       8,r""3 

03 9   J-ml T   9 
)            ■   15»-10 
*m2 T       18        J 

(63) 

(64) 

so that the nominal parameters would all vary between -1 and 1. Here, we have used the fact that the 

solution to the differential equations for the reference model yields 

cos 2irt = -4xmi + 3 sin 2nt = 8xm2 — 4 

As before, w = 1 is introduced as a fictitious disturbance so that the nonlinearities grouped in the Bw(9) 

term are treated as a bounded disturbance. The performance constraint is given by ||z||oo,[o,T] < 7 where 

z = C-LX + D12V with Ci = I and Du = 0.01 J. 

The control agents used for the periodic scheduling possessed a structure identical to that used for the 

finite-time scheduling. The control synthesis procedure was identical as well. 

Because the reference trajectory is periodic and the nominal parameter trajectory evolves over an infinite 

time horizon, one cannot apply the results of proposition 5.1 to compute the sets T^,m^ in the same manner 
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as for the finite-time case. This difficulty arises because (37) can no longer be evaluated for all times t > t0. 

However, one can use a more conservative bound by setting kmaXti(t) = kzfl in (37). Any predicted switch 

satisfying the dwell-time conditions in this more conservative approach must also satisfy the dwell-time 

constraints if the less conservative bound had been used. 

Using this more conservative approach, we need only evaluate admissible switches for single period 

trajectories, initialized with agents consistent with the established switching rules. The switching time 

estimates represent absolute bounds on when a switch might occur, regardless of the time that the agent 

was switched into the loop. As an example, for #otlt = 0.8, four agents were sufficient to adequately sample 

the nominal parameter trajectory which was searched to determine possible switching times over a single 

period of the trajectory using the modified bounds described above. The resulting performance validation 

tree describing the possible switching behavior for a single period is shown in figure 11. The tree indicates 

7^1,2) = [0.1520,0.1560] 

^-.-wi.2) ^^^2,3) ^-^ r(3,4) —^ r(4,i)/—v T(2,3) = [0.3600,0.3960] 

TCM) = [0.6520,0.6560] 

T(4,1) = [0.9020,0.9120] 

Figure 11: Performance validation tree for periodic scheduling example: i?0„t = 0.8, 7 = 0.09 

that if the controller is initialized with agent K^> in the feedback loop, by the end of a single reference 

trajectory period, agent K^ will have been switched back into the loop. Therefore, in this example, there 

is only a single switching cycle to be analyzed. 

The periodic behavior of the switched system is seen in the timed transition table which can be derived 

from the performance validation tree. This is shown in figure 12. For the timed automaton V consists of 

four states with connecting directed arcs, A, as indicated in the figure. The initial marking vector satisfies 

fi(l) = 1. There are two local clocks, tinit and t. The clock tinit is never reset and controls only a single 

switch. The clock t is reset on every firing. Arcs are labeled with the reset constraints and the firing 

constraints, which are derived from the sets T^l,nC> with the reset condition taken into account (as described 

earlier). 
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(* € [0.2400,0.2540] V tinii € T(1'2)) t 6 [0.2040,0.24401 
t+-0 

t € [0.2460,0.2600] 
i<-0 

t 6 [0.2560,0.2960] 
t<-0 

Figure 12: Timed transition table for periodic scheduling example: i?0„t = 0.8, 7 = 0.09. 

7    Conclusions 

This paper has described an approach for analyzing the performance of switched LPV systems required to 

meet a bounded amplitude performance constraint with respect to a known scheduling trajectory. The LPV 

systems considered in this paper cover a large class of nonlinear systems which are driven or scheduled along 

a predetermined path of operating points which may or may not be states of the system. 

The central theoretical result of the paper is the LPV Switching Lemma which states sufficient conditions 

for a system switched between two LPV realizations to satisfy the amplitude performance constraint over a 

given time interval. Using this result along with knowledge of the scheduling trajectory to compute bounds 

on the switching times, switching sequences can be checked against the LPV switching lemma to establish 

performance over a sequence of intervals which can be pieced together to establish performance over the 

entire reference scheduling trajectory. It was shown by example that the performance constraints can be 

verified computationally for finite-time and periodic scheduling trajectories. 

In addition, this paper has described a method for extracting logical models representing the behavior 

of a class of scheduled 'continuous-time systems controlled by switching between a finite set of continuous- 

time controllers. The results of this paper show that knowledge of the system scheduling can be combined 

with robustness properties of LPV systems to derive logical models of the system behavior in the form of 

timed-automatons. The results in this paper focus on bounded amplitude performance condition, but there 

does not appear to be any reason prohibiting the use of these ideas for other performance problems, e.g. K2, 

Hoo. These results are therefore useful for the study of hybrid systems because they provide link between 

two distinctly different approaches to hybrid system design and analysis. 
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A    Proofs 

Proof of Proposition 4.1: By the assumption of the proposition, one can use arguments analogous to 

those used in the proof of theorem 1 in [7] to define functions Vi : Rn ->■ R and V2: Rn -» R by 

Vi(Q:=ePit   V2(0:=?P2Z (65) 

so that for any 6 £Fc and along any trajectories of the switched system, the time derivatives of Vj, and V2 

must satisfy 

|Vi(*(t))<-2/?VL(s(t))<0 (66) 

for any t G [0,ts] and any x(t) and w(t) satisfying x'(t)Pix(t) > r and w'{t)w(i) < 1 and 

!%(*(*)) < 0 (67) 

for any t G (t„T] and any x(t) and w(i) satisfying x'{t)P2x{t) > 1 and w'{t)w(t) < 1. 

Given that ß > 0, for any 0 e ?c and tu € ß££\ equation 66 implies that along system trajectories for 

t 6 [0, *,], that 

Vi(x{t)) < 7i(x(0)) + f -2ßVx{x{T))dr (68) 
Jo 

so that by the Bellman-Gronwall lemma 

Vi(s(t))<Vi(s(0))exp(-2)8t) (69) 

Supposing that Vx(x{0)) < 1, the last equation implies Vx{x{t)) < exp(-2/ft) < 1 for all t € [0,rs). If 

ts > td, then Vi(x(t)) < r for all t > td. Since z(t) = Cix{t) it can be shown that equations 24 and 69 imply 

z'(i)z(t)<72forallt€[0,ts]. 

The state trajectory is continuous at the switch so that x(t+) = x(ts) which implies that Vi (£+) < r. 

Combining this fact with equation 23 implies that V2(tf) < 1. Since z(t) = C2x(t) for t > t, and since C2 

is a constant matrix, one has z(t+) = C2x(t+) so that equations 25 and 27 imply z'(t+)z{t+) < 72. 

Now suppose that V2(x(t)) > 1 for t G (t„T]. This implies that either K2(a;(t+)) > 1 and VaCafC*?)) > 0 

with w'(tf)w(t+) < 1 or it implies that there exists a r G (ts,T) such that V2(x(f)) > 1 and V2(X(T)) > 0 

with W'(T)W(T) < 1. Since 6(t+) G ©2 and since equation 67 holds for any 9 G ?c then V(x{t+)) < 0 which 

generates a contradiction. The only conclusion is that V2(x(t)) < 1 for all t G (*»,T]. Since z(t) — C2x(t) 

in this time interval, one immediately concludes that z'{t)z{t) < f2 for all t G (ta,T\. The result follows 

immediately. D 
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Proof of Lemma 5.1: Under the assumptions of the lemma and from the proof of theorem 1 in [7], for 

anyOe^e[0,T] 

i|z(i)||<7max{^)e-'31} (70) 

for all t. By assumption, 

\0i(t) - 9nom,M = \Si(xm(t),x{t)Mt)) ~ 5i(»TO(*),0,0)| (71) 

for i = 1,2,..., s. The assumptions on the parameter mapping therefore imply that 

\Si(xm(t),x(t)Xt)) ~ $(xm(t),0,0)| < fcrfrmaxfc/r.e-"} (72) 

Combining these last two equations yields the result. O 

Proof of Corollary 5.1: To prove the right-hand inequality, note that from lemma 5.1 

MT) - enom,i(T)\ < kzamax{V?, e~ßT} (73) 

for i = 1,2,..., s. Adding this to equation 33 yields 

\öi - 6i{T)\ + \9i(T) - 6nom,i(T)\ < d0*t + kzilmax{^,e-ßT} 

for i — 1,2,..., s. Applying the triangle inequality yields 

\§i - Önom,i(T)\ < i?out + kzi-ymax{V?,e-ßT} 

To prove the left-hand inequality, write 

\Si - 9nom,i{T)\ > fr - 9i(T)\ - \9i(T) - 9nom,i(T)\ 

Combining with equations 33 and 73 yields the desired result. D 

Proof of Proposition 5.1: Letr = t,-t0. Under the assumptions of the proposition, if x'(to)Px(tQ) < 1 

and w € B£oo, lemma 5.1 implies that 

\9i(ta) - 9nom,i(ts)\ < kzilmax{v^, e~ßr} (74) 

If the parameter trajectory satisfies the nearest neighbor switching rule, then at ta, 

\\9(t,)-9£l\\<\\9(t,)-9$J\ (75) 

for all q € IK with q not equal to m. This implies that 9(ts) € 0m so that t, must satisfy the first condition 

for 7"(',m). For the second condition, from corollary 5.1, 0nom(t,) must satisfy 

tiout - kzi*tmax{V?,e~0T} < |ö„om,x(ts) - «2mfi| < i?o«t + kzamax{V?,e~ßT) (76) 
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for some i = l,2,...,s. One concludes that t, e T(',m)• O 

Proof of Proposition 5.2: Consider an admissible switching sequence &->/-> m with aj , a4 

and P® satisfying (39-40). Define U as the time that control agent üfW js switched into feedback with 

the system, i € {k,l,m}. Assume, without loss of generality, that x{tk)'PWx(tk) < 1. To apply the LPV 

switching lemma to prove performance over the interval \tk, tm], it must be established that 6{t) is legal and 

that the dwell-time constraint is satisfied. 

To demonstrate the legality of 6{t), note that from the integrator controller structure and continuity 

of the parameter mapping, 8{t) must be continuous. By the nearest neighbor switching rule and adequate 

sampling assumption, 6(t) 6 Tc (i-e. 6{t) is legal). 

To demonstrate the dwell-time constraint, note that from proposition 5.1, minT(',m) - maxT^**^ is a 

lower bound on ti - tk. The dwell-time requirement is satisfied if there exists an r € %^'m^ such that 

f{r) < min T<''m) - max T^l) 

where 

f(r) =   (i) 
r  (0  logr 

a\  —a\'r 

and 7j('-m) is as denned in (45). It is easily shown that f(r) is monotonically decreasing on fc(',m). Thus, 

(41) implies that the dwell-time requirement is satisfied for U - tk. By the LPV switching lemma, 

ll*(t)ll<7,     t€[tk,Tl) 

for any n £ [tlttm). Furthermore, x(ij)'-P(i):rfa) < 1. 

As a consequence of the nearest neighbor switching rule, the adequate sampling assumption and the 

continuity of 6{t), any finite time interval, [0,T], can contain at most a finite number of switching instants. 

Assume, without loss of generality, N + 1 agents switched in order 0,1,2,..., N. Thus, the interval [0, T] 

can be written 
N-l 

[0,T]= \J[ti,n+1) + [tN,T] 

where to = 0 and the interval [ti,Ti+i) denotes the the admissible switching sequence i-M + l-M + 2 with 

n € [U,ti+1] for i = 1,...,N - 1 and TN 6 [ttf.T]. By assumption, £(i0)'-P(0)£(*o) < 1 so that with the 

LPV switching lemma, one concludes that 

l|zWII<7,     i€(io,Ti)      and      f(tO'pWffa) < 1. 

37 



In similar fashion, 

ll*(t)ll<7,     *€[ti,75)      and      x(t2)'pWx(t2) < 1. 

By induction, one concludes that \\z(t)\\ < 7 for subintervals t G [U, Ti+i), i = 1,..., JV-1, and x(tN)'pWx{tN) < 

1. Since (39-40) is satisfied for i = N and since 6{t) 6 Fe\tN,T\ by the fact that there is no other switch 

according to the nearest neighbor switching rule, ||z(0l| <-y ioi t € [*iv,T] as well.  One concludes that 

performance is satisfied over the finite interval, 

l|z|loo,[o,T] < 7- 

For T -* 00, there are two possibilities: switching stops after a finite time, or switching does not stop. 

In the first case, there are a finite number of switches and performance is proven by the above analysis. In 

the second case, an infinite number of switches must be considered. In that case, 

00 

[0,co) = \J[ti,n+1) 
i=0 

Define 

Zi := ess    sup     ||z(i)|| 

and Z := {z\ \\z\\ < 7} as all points z satisfying performance constraints. Clearly, from the preceding 

analysis, Zi € Z. Furthermore, any limit point of the sequence {fj} must lie in the closure of Z. Since Z 

is closed and bounded, z € Z, implying that performance is satisfied in the case of an infinite number of 

switches. Thus,. 

Mloo,[0,oo) ^ 7- 

G 

B    Choosing r and ß in Lemma 5.1 

Lemma 5.1 is important because it implies that if the bound on the parameter trajectory is small enough, then 

the nominal parameter trajectory represents a reasonable approximation to the true parameter trajectory. 

Unfortunately, the parameters r and ß required to evaluate the bounds are not specified precisely and it is 

not immediately clear how these values should be chosen from the feasible solutions of inequalities 30 and 

31. Note that r and ß appear in the term max{v
/r,exp(-/ft)} -m equation 32; to obtain the best bound at 

a given time t, r and ß should be chosen to minimize max{v/f,exp(-i3i)}. 
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Now consider the requirements of lemma 5.1 rewritten to require constants Qi > a2 > 0 and a positive 

definite matrix P such that 

P>^C'C (77) 

and 

P 6 FeasRic {A(9) + BUK,Bw{0),on,as) (78) 

for all 9 6 0 where 

a-i = a and a\ = 2/3 -f . 
r 

It is clear that for any a\ and ai which satisfy inequalities 77 and 78 for some positive definite matrix P, 

any r and ß satisfying 

*-i(--?).     '« r'1 (79) 

are also feasible solutions of inequalities 30 and 31 for the same positive definite matrix P. For fixed a\ and 0:2 

which satisfy the above constraints, substituting the expression for ß in equation 79 into max-f-yi", exp(—ßt)} 

yields the optimization problem 

min   max   \ y/r, exp(--(ai - —)t) \ (80) 
i-6[lf.i] »■ 2 r     J 

which is depicted graphically in figure 13. Figure 13 clearly shows that the optimization problem is solved 

by finding the value of r which satisfies 

r = exp(-(a1-^)t) (81) 

Although there is no analytical solution for r in terms of e*i, 0:2 and t, numerical solutions are easily obtained. 

(For details of one possible approach, see [6].) Note that figure 13 provides guidelines for choosing a\ and 

c*2- Given a collection of feasible points which satisfy the inequalities 77 and 78, the pair a\ and 0:2 should 

be chosen to maximize ct\ — 0:2. Intuitively, this should reduce the optimal cost of the problem in equation 

80 by forcing the intersection point in figure 13 to occur at a lower value of r. 
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exp(-4ajt) 

0 at/ai       0.5 

Figure 13: Choosing r and ß 
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Abstract 

This paper considers the problem of synthesizing a parameter-dependent output feedback controller 
for continuous-time linear parameter varying (LPV) systems so that a prespecified bound on signal 
amplitude is satisfied by the controlled system. The main result of the paper is a sufficient condition 
for the existence of an LPV controller which guarantees an upper bound on the induced-£oo norm of 
the controlled system. The condition takes the form of linear matrix inequalities (LMIs) which must 
be solved pointwise over a parameter set. A set of LPV controllers which satisfy the performance 
constraints are parameterized in terms of feasible solutions to the LMI existence conditions. In the 
event that the parameter variations are removed, the conditions reduce to necessary and sufficient LTI 
synthesis conditions for bounded amplitude performance. The existence conditions are amenable to 
efficient numerical techniques. 

1    Introduction 

A measure of system performance which frequently arises in control problems is the peak value of an appro- 

priately selected plant signal. Control problems in which this performance measure arise are prevalent in the 

literature: motor control problems with electrical (voltage or current) or mechanical (motion) restrictions 

and process control problems with chemical concentration restrictions are two examples. In each of these 

examples, violation of the amplitude restrictions can lead to performance degradation and possibly catas- 

trophic system failure. Furthermore, energy-based design techniques, such as the ft« design paradigm, are 

often inadequate for these types of performance problems. 

In this paper, we consider the problem of synthesizing controllers for finite-dimensional linear parameter 

varying (LPV) plants so that the controlled system satisfied bounded amplitude performance constraints. 

LPV systems are ^linear systems whose state-space matrices depend in a continuous fashion on a time- 

varying parameter vector, B{t) 6 R*. While the trajectory of 9{t) is not known a priori, it is assumed to 

•The authors gratefully acknowledge the partial financial support of the Army Research Office (DAAH04-95-1-0600, 
DAAH04-96-1-0134). e-mail:lemmonCoaddog.a«.nd.edu 



be measurable in real-time, thus providing real-time information on the behavior of the system. Intuition 

alone suggests that incorporating such information into the controller should improve overall performance 

of the controlled system since such information allows the controller to adjust, or schedule to the change 

in operating conditions 6{t). A controller which incorporates real-time parameter measurements in this 

fashion is called a self-scheduled controller. Such controllers are justified empirically by the widely successful 

gain-scheduling technique. 

The relationship between classical gain-scheduling and parameter-dependent systems is seen in [13] and 

[14]. Early work on parameter-dependent controllers is seen in [10]; more recently, parameter-dependent 

synthesis approaches based on Lyapunov and small-gain techniques have appeared [12][5][2] which frame the 

synthesis problem as a convex optimization problem. These approaches generalize %<„ techniques for LTI 

systems to LPV systems. We note that while this list is not exhaustive, current literature on self-scheduled 

control is limited in scope to stability and £2> or 'H00, performance problems. 

In fact, bounded amplitude control is a difficult problem even for systems with no parameter dependence 

(i.e. LTI systems). While bounded amplitude control of discrete-time linear systems is well-understood 

[15][8], bounded amplitude control of continuous-time systems remains a difficult task [9]. A relatively new 

approach to this problem for deterministic, linear time-invariant systems was recently proposed in [11]. At 

the heart of this approach is the identification of an invariant ellipsoid which bounds the reachable states of 

the system under the assumption of an amplitude-bounded exogenous input. The ellipsoid is characterized by 

a positive definite solution to a Riccati matrix inequality coupled with an additional linear matrix inequality 

(LMI) [7]. This approach was extended in [6] to the synthesis of constant gain state-feedback controllers for 

LPV systems. 

In this paper, we generalize the results of [6] and [1] to the synthesis of parameter-dependent controllers 

for the bounded amplitude performance problem. The approach presented in this paper is similar in nature 

to the parameter-dependent controller results presented in [5]. The primary difference between this new 

result is the nature of the performance problem. In [5], results are presented for an £2 ("Woo) performance 

problem; here, we consider a bounded amplitude, or induced-£oo performance problem. As with other self- 

scheduling, LTI synthesis results are recovered when parameter dependence is removed (i.e. the state-space 

matrices are constant). The derivation presented here follows that presented in [11] for bounded amplitude 

LTI performance with notable exceptions. First, and most apparent, the problem considered here deals with 

a more general class of systems, namely, LPV systems. Because of this, the algebraic Riccati equation used 



in the LTI synthesis are no longer useful. The ARE must be relaxed to an appropriate Riccati inequality, 

much as was done in the £2 self-scheduling problem. 

The remainder of this paper is organized as follows. Section 2 presents the mathematical notation used 

throughout the paper. Section 3 presents some preliminary results which characterize bounded amplitude 

performance of LPV systems and states the output feedback synthesis results for LTI systems. The main 

results concerning synthesis of parameter dependent control for LPV systems are located in section 4. Com- 

putation issues are discussed in section 5. 

2    Mathematical Background 

Many of the definitions for LPV systems presented in this section are generalized from [5] and the references 

therein. 

Definition 2.1 The infinity norm of a signal f : ]R+ -+ Rn is defined as 

||/||oo:=esssup||/(t)|| 
t>o 

where || • || denotes the Euclidean vector norm. ££, denotes the normed n-dimensional signal space in the 

usual fashion under the above signal norm definition; BC^, denotes the subset of ££, with signal norms 

bounded above by unity. 

Definition 2.2 (Parameter Variation Set) Given a compact subset Q C Bs, the parameter variation 

set TQ denotes the set of all continuous functions mapping B+ into Q. 

The notation 9 € TQ denotes a function in the parameter variation set; 0 € 0 denotes a vector in a compact 

subset of Bf. Note that both TQ and, for instance, ££, represent signal spaces. Technically, TQ C £^ since 

TQ consists of supremum bounded s-dimensional vectors which vary-continuously in time. In this paper, TQ 

will always refer to parameter signals or parameter variations; £% will refer to signals in the plant input, 

output or state space. 

Definition 2.3 (LPV System) Given a compact set Q C Bf, and continuous functions A : B.3 -}• BnX", 

B : B." -> Rnxn", C : B* -» IT**", and D : Bs ->■ Rn*xn-, an nth order linear parameter varying (LPV) 

system is a dynamical system whose dynamics evolve as 

±(t) 

z{t) 

A(6(t))   B(8(t)) 

C(9(t))   D(6(t)) 

x(t) 

w(t) 
(1) 



where 9 6 TQ. 

The performance measure used in this paper is the induced-^ norm which, as defined below, is related 

to the peak-to-peak gain of the system. 

Definition 2.4 Let the LPV system of definition 2.3 be denoted by Z(Q,A,B,C,D). For any 9 € TQ, 

the linear time-varying system described in equation 1 is denoted E$. The state-transition matrix of £ $ is 

denoted ^g(t,t0). Forx[t0) = 0, the causal linear input/output mapping, Eg : C£ -»■ £»» °f%9 is defined 

as 

Hew(t)   =    [ C(9(r))$9(t,r)B{9(T))w(T)dT + D(9{t))w(t) 
Jto 

The induced-Leo norm of Hg is given by 

pr»l|fao:=    sup    UffHU (2) 

The shorthand ||fi>e||ioo < 7 for some 7 > 0 means that for all 9 € TQ, ||.Hfl||tco < 7 where H?e := {Hg : 

9 € ^e}- 

Finally, consider an LPV plant input/output mapping, Pg, which maps input vectors [w' v.']' to output 

vectors [z' y']' and LPV feedback control mapping, Kg, which maps y to u. The closed loop mapping from 

w to z will be denoted Ti(P$, Kg). 

Remark: When the parameter set 0 is a singleton, parameter variations are fixed at a single point. In this 

case, all of the above definitions reduce to the corresponding notions for LTI systems. 

3    Preliminary Results 

This section contains preliminary results establishing conditions for bounded amplitude performance of 

LPV systems and stating some previously derived results[l] for synthesis of output feedback control which 

maintains a bound on the induced-£oo norm of LTI systems. These results all concern strictly proper systems. 

Some of the notation for this section is borrowed from [1]. 

3.1    Bounded Amplitude Performance 

Consider an LPV system, H, with state-space realization 

H{9)   := 
A{9) Biß) 

C{9) 0 
(3) 



defined for a parameter set 0. The following result is a minor variation of the result proven in [6]; the proof 

is omitted. 

Theorem 3.1 Fix a > 0 and performance level 7 > 0 and consider the LPV system of (3) with (A(9), B{9)) 

controllable for all 9 £0. // there exists a matrix Q > 0 such that 

A(9)Q + QA'(9) + aQ + -B(9)B'{9)    <   0 (4) 
a 

C'{9)C{9)    <   72Q_1 (5) 

for all 9&e, then 

P*>Jlioo<7 

For a fixed a, let the set Va be the set of all 7 such that the matrix inequalities (4)-(5) admit a solution, i.e. 

Va := {7 I 3Q > 0 such that A(9)Q + QA'(9) +aQ + ^B(9)B'(9) < 0, C'(9)C(9) < 7
2<TJ V0 € 0 j (6) 

Va is the set of all upper bounds on ||.H>e||ioo corresponding to a fixed parameter a; the smallest of these 

will be denoted 

.   infK»,     ae(0,(t) 
Na(Hr6):={ (7) 

00 a > K 

where 

K:=-2max max (M\i(A(9)))), 
9€9 i=l,.-.,n 

is the smallest upper bound corresponding to o when Va is nonempty.   Here, Xi[A(9)) denotes the ith 

eigenvalue of A(9) for some 9 G 0. 

Remark: Na(Hr&) := co for a > K for the following reason. (4) can be written as 

{AW) + \<xI)Q + Q(A(9) + \al)' + ±B(9)B'(9) < 0. 

For a > K, there exists a 9 6 0 such that A(9) + \al is no longer Hurwitz, so no Q > 0 can satisfy (4) for 

this 9. 

The following corollary to theorem 3.1 is now apparent. 

Corollary 3.1 Fix a > 0 and performance level 7 > 0 and consider the LPV system of (3) with (A(9),B(9)) 

controllable for all 9 e 0. Then for all 9 e F&, Na(Hre) < 7 if and only if there exists a matrix Q > 0 

such that (4)-(5) admit a solution for all 9 e 0. 



Clearly, from the corollary, 

x(t) A     Bx     Bi x(t) 

z(t) = d     0     D12 w(t) 

y(y) C2   Dn     0 u(y) 

\\HrJioo<MNa(Hre) 

Thus, corollary 3.1 generalizes the LTI results of [11]. 

3.2    LTI System Results 

In the case when Ö is a singleton, the LPV system may be treated as an LTI system. Output feedback 

synthesis results for LTI systems were previously derived in [1]. Some of these results are restated here so 

that they may be applied in the next section. 

Consider an LTI system, P, with state space realization 

(8) 

The system in (8) satisfies the following assumptions. 

(LTI1) (A, Bi, C2) controllable and detectable. This ensures that an appropriately defined Riccati equation 

has a unique positive definite solution. 

(LTI2) BiD'21 = 0.   This means that process noise B\w is entirely decoupled from measurement noise 

D12W. 

(LTI3) £>2i has full row rank. This means that measurement noise can corrupt all measurements. 

The primary result of this section is stated in the following theorem. 

Theorem 3.2 ([1]) Fix any number a > 0 and performance level 7 and consider the system defined in (8) 

under assumptions LTI1-LTI3. The following are equivalent: 

1. There exists a strictly proper, finite-dimensional,LTI controller K which internally stabilizes the system 

and renders NQ{Ft{P,K)) < 7. 

2. The LMI (in Z = 2" and V) 

AZ + ZA' + BiV + V'B^+aZ    Bx 

B[ -al 

(Z-Ya) {Z-Ya)C[+V'D'n 

Ci {Z - Ya) + D12V        727 - KYcCi 

<    0 

>   0 

(9) 

(10) 



admits a solution with Z > 0, where Ya is the stabilizing solution to the algebraic Riccati equation 

(A + iaJ)y. + Ya(A + ia/)' - aYQC2{D2lD'2l)-
1 C2Ya + \B[ = 0 (11) 

Moreover, if either (hence, both) of these statements hold, then one controller that renders iVa(Ji(P, K)) < 7 

is ffiven by 

A + B2J- aYaC2{D2lD'2X)-
lC2 aYQC'2{D21D'21)-

1 

J 0 
K = 

where J := V(Z - Ya)~
x and Z, V and Ya satisfy the conditions of part 2. 

(12) 

Theorem 3.2 may be used to synthesis strictly proper LTI controllers which enforce an amplitude con- 

straint on the controlled plant. The approach is to perform a line search for values of a > 0, evaluating the 

conditions of the theorem at each point until specified performance, 7, is achieved. 

4    Strictly Proper LPV Output Feedback 

The plant description is now generalized to the LPV system, P(0), with state space realization 

±(t) A{9) Bx{ß) B2(9) 

Cx{9) 0 ' Dl7(0) 

C2(9)   D21(9)       0 

x(t) 

w(t) 

«(*) 

(13) 

denned over a parameter set 0, which satisfies the following assumptions. 

(LPV1) (4(0),Pi(0),C2(0)) controllable and detectable for all 9 e 6. 

(LPV2) Pi {9)D'2l(9) = 0 for all 9 € 0. 

(LPV3) Z?2i(0) has full row rank for all 9 € 0. 

To generalize the previous results to self-scheduled controllers for LPV plants, the Riccati equation must 

be relaxed to a matrix inequality. We make the following definition. 

Definition 4.1 Suppose that (A(9),R(9)) is stabilizable for all 9 € 0. Let the mapping Q : KnXn -> ItnXn 

be defined by 

Q(Y) := A(9)Y + YA'{9) + YR(9)Y + M(9). (14) 



Suppose that R(9) < 0 for all 9 6 0. Then a positive definite matrix Ymin satisfying 

Q(Ymin) < 0, W € 0 

is called minimal stabilizing solution if 

Ymin < Y   for all  Y > 0, Q(Y) < 0, W € 0. 

Remark: When © is a singleton, e.g. 0 = 0o> then the minimal stabilizing solution, in the sense defined 

above, is the stabilizing solution to the algebraic Riccati equation 

A(e0)Ymin + YminA'(9o) + YminR(e0)Ymin + M(9o)   =   0 (15) 

To see this, take any positive definite Y such that Q(Y) < 0 for all 9 € 0. Then 

Q(Y) - Q(Ymin) < 0 

Equivalently, 

(A(90) + YminR(90))(Y - 7minj + (7 - Ymin)(A(90) + YminR(90)Y 

a(Y - Ymia) + (Y- Ymia)R(90)(Y - Ymia) < 0 

for all 9 € 0. This implies the existence of a matrix M[9Q) so that 

(A(0o) + YminR(90))(Y - Ymin) + (Y- Ymm)(A(90) + YminR(90))' 

a(X ~ Ymin) + (Y- Ymin)R(9o)(Y - Ymin) + M(90) = 0 (16) 

Since Ymin is a. stabilizing solution to the ARE in (15), A(90) + YminR{9o) is stable. This implies that 

Y - Ymin > 0 (see, e.g.. [17]), or Y > Ymin. 

We are now ready to state the main result of the paper. 

Theorem 4.1 Fix any number a > 0 and performance level f and consider the LPV plant in (13) un- 

der assumptions LPV1-LPV3. Then a sufficient condition for the existence of a strictly proper, finite- 

dimensional, LPV controller K{9) which internally stabilizes the system and for all 9 € TQ, renders 

Na(Ti{P{9),K{9))) < 7 is the existence of matrices Z = Z'>0 andV such that 

A(9)(Z-Ya) + (Z-Ya)A'(9)+B2(9)V + V'B'2(9) + ct(Z-Ya) YaC'2(9) 

C2(9)Ya -lD21(e)D'21(9) 



>   0 (18) 
(z-y.) (z-Ya)C[(e) + v'D'12(9) 

Ci(8)(Z - Ya) + D12(9)V       -?I - C1(9)YaC'1(9) 

for all 9 € 6 where YQ is the minimal stabilizing solution (in the sense of definition 4-1) of the Riccati 

inequality 

{A(9) + ±aI)YQ + Ya(A(9) + \al)' - aYaC^9)(D21(9)D'21(8)r1C2(9)Ya + ^B1(9)B[(9) < 0      (19) 

In addition, if the above matrix inequalities admit a solution, then one controller that renders 

Na(Ti(P(9), K{9))) < 7 for all 9€TQis given by 

K = 
A(8) + B2(9)J - aYvCWWnWDnm-'Citf) aYQC2(9)(D21(9)D21(9)') A-l 

(20) 

where J := V(Z — Ya)'1 and Z, V and Ya satisfy the conditions of part 2. 

Furthermore, if Q is a singleton, then the above conditions are strengthened to necessary and sufficient. 

Proof of Theorem 4.1: Suppose that the LMIs of equation 17 and 18 in variables Z and V admits a 

solution with Z > 0, and suppose the loop is closed with the realization given in equation 20. Let x and £ 

denote the state of the plant and controller, respectively. Define W{9) := (D-zi^D^))'1; by assumption 

LPV3, W{9) is well-defined for all 9 € 0. The closed loop system with states [x' x' - £']' has realization 

Fi(P(9),K(9)) = 
Ä(9) B(9) 

_C{9) 0 

A(9)+B2(8)J                   -B2{9)J 

0               A(9)-aYaC2(8)W(9)C2(9) 

Bi(9) 

■ Bi(9) - aYaC!i(9)W(9)D21(9) 

Cm + D12(9)J                 -D12(9)J 0 

By corollary 3.1, Na{Fi(P(9), K{9))) < j for all 9 e 7& if and only if 

A{9)Q + QA'{9) + aQ + -B(9)B'{9)   <   0 
a 

C'(8)C{9)   <   72Q_1 

Now, suppose that a matrix Q is set to 

Z    Ya 

Ya   Ya 

Since Z > 0 and Ya > 0, Q > 0 if and only if Z > Ya, which must be true since Z - Ya is a principle minor 

of the matrix in (18). 

<3 = 
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Now, consider 

r Eu(6)   E12(6) 

E'n{9)   E22(9) 

Performing the algebra, the terms of the matrix simplify to 

E{9) := = Ä(9)Q + QÄ'{6) + aQ + -B{9)B'{9) 
a 

Eu(d)   =   A{9)Z + ZA'(9) + B2(9)V + V'B'2(9)+aZ+-Bl(9)B[{9) 

E12{9)   =   A(9)Ya + YaA'(9)-aYaC2(9)W(9)C2(9)Ya + aYa + ^B1(9)B'1(9) 

-B1(9)D21(9)W(9)C2(9)Ya 

E22(9)   =   A{9)Ya - aYQC'2(9)W(9)C2{9)YQ + YaA'{9) + aYa 

(21) 

(22) 

+-[B1(9)B[(9) - aB1(9)D'21(9)W(9)C2(9)Ya - aYaC2(9)W(9)D21(9)B'1{9)}       (23) 

Under the assumption Bi{9)D'l2{9) = 0, E12(9) = E22(9), so E{9) < 0 for all 9 e 0 if En(9) < E22(9) < 0. 

That E22{9) < 0 for all 9 € 0 is immediately evident from (19). From (17), for all 9 6 0, 

A{9){Z - Ya) + {Z- YQ)A'{9) + B2(9)V + V'B'2{9) + a(Z - Ya) + aYaC2(9)W(9)C2{9)Ya < 0 

which is equivalent to 

A{9)Z + ZA'{9) + B2(9)V + V'B'2{9) + aZ< A(9)Ya + YaA'{9) + aYa - aYaC'2(9)W(9)C2(9)Ya 

and 

A{9)Z + ZA'{9) + B2{9)V + V'B'2(9) + aZ+ -B^B^)' 

<   A(9)Ya + YQA'{9) + aYa - aYaC2(9)W(9)C2(9)Ya + -B^B^)' 
a 

(24) 

This expression, in turn, simplifies to 

thus implying that E{9) < 0, or 

Eu(9)<E22(9) V0€0 

Ä(9)Q + QÄ'(9) + aQ + -B{9)B'(9) < 0 Vfl 6 © (25) 

Now to demonstrate that i2Q~x > C'{9)C{9). Through an elementary Schur complement argument, it 

is easy to show that 

Q      QC{9) 
72Q_1 > C'(9)C(9) & 

C'(9)Q     7
2i 

>0 
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>0 

>0   V0 6 0 

>0 

Substituting for Q and C(9), and multiplying on both sides by blockdiag(I,Ya 
1,I), this expression is 

equivalent to 

Z I      ZC[(9) + V'D'l2{9) 

I Y-i C[{9) 

d($)z + D12{$)v c^) !2i 

Z ZC{(9) + V'D'12{9)      I 

C1{9)Z + D12(9)V j2I Cm 

i cm       Y-^ 

Since Ya > 0, this last expression is equivalent, via Schur complement arguments, to 

(Z-Ya) (Z-Ya)Cl{9) + V'D'n{8) 

^ Cx(9)(Z - Ya) + D12(9)V        7
2i" - d(9)YaC[ (9) 

which is just (18). 

To show that the equation is necessary and sufficient when 9 is a singleton, 90, note that Ya is now the 

solution to the ARE 

(A(90) + \aI)Ya + Ya(A(80) + \al)' - aYaC'2(9)W(9o)C2(90)Ya + ^B1(90)B'1(90) = 0 

Then, the matrix inequality in (17), which is equivalent to (24), is now equivalent to 

A(90)Z + ZA'(90) + B2(90)V + V'B'2(90) + aZ + ^Bl(90)Bl(90)' < 0 

which, by Schur complements, is equivalent to 

A(90)Z + ZA'(90) + B2{90)V + V'B'2(90) + aZ   Bi(90) 

Bi(90) -al 

By theorem 3.2, (17) and (18) are necessary and sufficient conditions. 

Remark: The restriction that Ya in (19) be a minimal stabilizing solution is overly restrictive for the 

existence of a self-scheduled controller. However, if this restriction is removed, the results do not reduce to 

necessary and sufficient conditions in the LTI case. 

<0 

a 

5    Implementation 

Theorem 4.1 represents the key analytical device for the synthesis of LPV controllers satisfying prespecified 

amplitude performance constraints. The approach is identical in nature to that proposed earlier for LTI 

12 



Systems [1] and for LTI controllers for LPV systems [6]: perform a line search for values of a > 0, evaluating 

(at each a) the conditions of theorem 4.1 to determine if a controller exists satisfying performance constraint, 

7. When values of a are found such that the matrix inequality conditions (17)-(18) admit a solution, then 

the LPV controller with realization given in (20) will achieve closed loop performance goals. 

The matrix inequality conditions (17)-(18) of the theorem must be satisfied pointwise for all 9 6 ©. 

There are several options to tackle this problem which have been proposed in the literature for similar 

matrix inequality conditions. When 0 is a polytope, then it is sufficient to evaluate the matrix inequalities 

simultaneously at the vertices of the polytope. The resulting set of linear matrix inequalities can typically 

be solved quickly when the dimension of the parameter space is small enough, this approach is illustrated in 

[3]. If, in addition, the parameter dependence in the system matrix coefficients is linear fractional, then the 

S-procedure[16] may also be applied as in [6]; however, this approach is known to give conservative results[4]. 

When the parameter set is not polytopic, different approaches must be taken. Perhaps the most obvious 

approach is to form a grid over the parameter set 0 and simultaneously solve a set of ftnear matrix inequalities, 

refining the grid until it is apparent that the solution "will be valid for points not on the grid. This is the 

approach taken in [10]. Another approach is to attempt to satisfy the conditions for a polytopic set which 

contains 0. The problem here is that the results are potentially more conservative since they must account 

for parameter variations which will not occur; worse, controllability or observability may be lost at some 

points in the larger parameter set. 

In summary, there are a variety of methods to handle the parameter variations of the matrix inequal- 

ity conditions (17)-(18). The most attractive require simple parameter set geometry and linear fractional 

parameter dependence. In other cases, more ad hoc approaches must be adopted. 

6    Conclusions 

This paper has presented sufficient conditions for the synthesis of parameter-dependent output feedback 

controllers which guarantee an upper bound on the induced-jCoo norm of the controlled system. These 

conditions reduce to necessary and sufficient conditions when the parameter variation is removed, i.e. when 

plant is LTI. The condition takes the form of linear matrix inequalities (LMIs) which must be solved pointwise 

over a parameter set. A set of LPV controllers which satisfy the performance constraints axe parameterized 

in terms of feasible solutions to the LMI existence conditions. 

The results extend the class of performance problems which may be treated with self-scheduled control 
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techniques; current literature appears to contain results for the £2 performance problem only. Furthermore, 

the results presented here provide a means of bounded amplitude control of class of continuous-time systems 

more general than previously considered, without the problem of controller dimensionality explosion. They 

are intuitively satisfying because they are similar in flavor to the "Hoc results of [5]; parameter-dependent 

controller synthesis requires the feasibility of a 'controller' Riccati inequality (17), an 'observer' Riccati 

inequality (19) and a 'spectral radius' coupling inequality (18). Thus, the approach proposed here for 

bounded amplitude control is no more difficult than similar approaches, e.g. £2 control, though they may 

be more computationally intensive. However, note that the results presented here do not rely on the loop- 

shifting arguments used in, e.g. [12],[2], so that well-posedness issues in the controller implementation are 

not an issue on the results presented here. 

Finally, it is apparent that the conditions presented here might be strengthened to necessary and sufficient 

if the Riccati matrices Ymin, Z and V of the theorem are allowed to be parameter dependent. In that case, 

specific assumptions must be imposed in the rate of parameter variation, as in the £2 case. 
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1    Introduction 

This paper examines the Lyapunov stability of equilibrium points for switched 
control systems [Morse95]. A switched control system is a continuous-valued 
system whose control law is switched in a discontinuous manner as the system 
state evolves over a continuous-valued subset of 3Jn. Of particular interest in 
this paper are switched systems in which the switching logic is generated by a 
discrete-event transition system that can be represented as either a finite au- 
tomaton or bounded Petri net. 

There are a variety of prior results identifying sufficient conditions for such 
systems to be Lyapunov stability. In [Pel91] and [Sav96] a single positive definite 
functional is found which is Lyapunov for all control systems in the collection. 
Multiple Lyapunov function approaches in [Bran94] and [Hou96] have been pre- 
sented which should be applicable to a larger set of systems than the single Lya- 
punov function methods. In certain cases, where the switched systems are linear 
time invariant and the switching regions are defined by conic sectors, it has been 
suggested that candidate Lyapunov functionals can be numerically computed by 
finding feasible points of a linear matrix inequality [Pet96] [Rant97]. 

While these prior results have provided great insight into the Lyapunov sta- 
bility of switched systems, they do not account for the actual switching laws used 
by the system. In the case of the computational methods proposed in [Pet96] 
and [Rant97] this leads to LMI's which are extremely large and hence provide an 
overly restrictive sufficient condition for switched system stability. This paper 
examines the numerical question and asks what sort of information about the 
switching law can be used to significantly reduce the computational complex- 
ity and conservatism associated with finding candidate Lyapunov functions of 
switched systems. The principal result of this paper states that if the switching 
law can be represented as a discrete-event transition system such as a finite au- 
tomaton or Petri net, then it suffices to examine the fundamental cycles of the 
directed graph associated with such structures to assess switched system stabil- 
ity. In particular, the results and viewpoints suggested in this paper provide a 
way in which the traditional control theoretic methods cited above can be com- 
bined with results from computer science [Alur94] [Alur96] concerned with the 
behaviour of timed transition systems. 



The remainder of the paper is organized as follows. In section 2, we first 
introduce a formal model for switched control systems which are supervised by a 
discrete-event transition system. Section 3 states recent results [Bran94] [Pet96] 
providing sufficient conditions for switched system stability using a multiple 
Lyapunov function approach. Section 4 motivates, states, and proves the paper's 
principal result. Section 5 presents an example illustrating the value of using 
fundamental cycles in assessing switched system stability. Section 6 concludes 
with topics and directions for further study. 

2    Problem Statement 

Let X C 3£n be a smooth n-dimensional manifold and let I be a finite set of N 
integers. Let A be a constant dimensional distribution, 

A = {h,...,M (1) 

where fi: X -> X for i = 1,..., N are locally Lipschitz vectorfields over X. We 
consider switched dynamical system to be described by the following set of 
equations. 

*(*) = /«*)(*(*))      " (2) 
i(t) = q(x(t),i(t-)) (3) 

where x : 9t -*• X, i : SR -¥ I, and q:XxI -*■ I. i(t~) refers to the lefthand limit 
of the function i(t) at point *. In the sequel, we refer to each fi as a subsystem 
of the switched system. The preceding model is essentially that used in [Tav87]. 

A trajectory of the switched system is the ordered pair, (x,i), where x : 
9? -4 X and i : 9? -> I which solves the system equation. The value taken by 
the trajectory at time t £ SR is denoted by (x(t),i(t)). We say that (x,i) solves 
the system equation if and only if the equations are satisfied by x(t) and i(t) for 
all t 6 K. This paper does not treat questions concerned with the existence of 
solutions. In general, however, solutions (when they do exist) will not be unique 
due to the nondeterminism in the switching law. 

Let (x, i) be the trajectory generated by a switched dynamical system. The 
set of switching times, Ü, of a trajectory (x, i) will be 

n = It: lim i(r) # lim «(T)} (4) 

The set of switching events, £, of trajectory (x,i) is denoted as 

S = | (i,t) 6 2" x 3? : t G Oti = lim+i(r) j (5) 

We define the timed projection Pt : £ -*• 3? by the equation Pt[(^T)] = T an(i 
the event projection, Pe : £ -t I by the equation Pe[(i,

T)] = 3- 



The switching sequence, is a mapping A : Z -»• £ such that 

Pt[A(n)]<P«[A(n + l)] (6) 

for all n G Z. Suppose A is a switching sequence. Let I* be the set of all strings 
formed from I. We let Ae = Pe[X] € I* and At = Pt[X] denote the event and 
time projections of A, respectively. Let the subsequence of times when system j 
is turned on and off be denoted as Xt,j G I*. In other words, 

A4j = At(m), At(ni +1), • • • At(njfc), Xt(nk +1), • • • (7) 

where nk is a subsequence of Z such that Pe[A(nfc)] = j. Define the interval 
completion I(Xt,j) as the set obtained by taking the union of all open intervals 
in which system j is active. In other words, 

j(\i) = U(A'(n*)>A<(n*+1)) (8) 

Denote E(Xt,j) as a subsequence of Xtj when the subsystem j is turned on. In 
other words, 

E(Xt,j) = Xt(n1),Xt{n2),---,Xt(nk),--- (9) 

The preceding model of a switched system assumes a very general switching 
function, q. To obtain more precise results, however, we need to specify the na- 
ture of the switching function. A common choice is to associate a discrete-event 
transition system such as a finite automaton or Petri net with the switching sys- 
tem. In this paper we limit our scope to finite automata. An automaton is tied 
to the switched system by associating the vertices to the switched system's sub- 
systems and by associating the arcs with switching sets called guards. The timed 
automaton [Alur94] and hybrid automaton [Alur96] provide tangible examples of 
this approach. In this paper we begin by considering a discrete-event transition 
system that is represented by a finite automaton, {V,A). 

A finite automaton associated with the switched system is the directed 
graph (V, .A) where V = J is a set of vertices and A C V x V is a set of directed 
arcs. By definition, the automaton associates a subsystem fi with each vertex of 
the (V, A). We define the guard, /?„• of arc (i,j) € A as 

nij = {xeX:j = q(x,i)} (10) 

The ordered pair (i, j) is an arc of A if and only if J?y ^ 0. The guard therefore 
represents a subset of the switched system's state space in which a switch can 
occur. The guard set /?,-» will sometimes be denoted as /?j and represents the set 
in which subsystem /» remains active. 

The preceding paragraph characterized the switching logic by a finite au- 
tomaton iy,A). It is straightforward to generalize this approach to consider 
more complex switching logics. In particular, let's consider how this might be 
done for a switching logic generated by a Petri net. A Petri net is represented 
by a directed graph (V, A) where the vertex set consists of two types of ver- 
tices, places, P, and transitions, T. The vertex set, therefore, takes the form 



P x T = V. We associate this directed graph structure with the switched system 
by letting P = I. We therefore associate a subsystem with each place of the 
Petri net. The guards, %, are associated with the transition t € T which con- 
nect the ith and j'th places of the network. Petri nets provide natural structures 
for modeling concurrency and synchronization in parallel systems. In general, a 
Petri net can provide a more expressive characterization of a system's switching 
logic than can be provided by a finite automaton. 

Let (x,i) be the trajectory generated by a switched dynamical system. The 
trajectory is said to be deadlock free if the event projection of the switching 
sequence Pe[X] is not finite. We say that the trajectory is live if the event projec- 
tion of the switching sequence Pe[X\ contains an infinite number of each index, 
i € I. In other words any subsystem can be switched an infinite number of times 
in a switching sequence. We say that the trajectory is nonZeno if the timed 
projection of the switching sequence P*[A] satisfies 

f>[A(n)]><x> (11) 
n=l 

We say that the switched system is live, deadlock free, or nonZeno if all of its 
trajectories are live, deadlock free, or nonZeno, respectively. 

An important issue which is not addressed in this paper concerns neces- 
sary and sufficient conditions for a switched system to be live, deadlock free, or 
nonZeno. In this paper, we assume that the switched system is live and nonZeno. 

3    Prior Results 

This section briefly discusses prior results on switched system stablity. Let (x, i) 
be any trajectory generated by the switched dynamical system. Assume that 
/i(0) = 0 for all fi € A. The equilibrium point x = 0 is said to be stable in 
the sense of Lyapunov if and only if for all e > 0 there exists 6 > 0 such that 
||a;(fo)|| < 5 implies ||z(i)|| < e for all t > t0. 

In the following we will denote the open ball of radius r centered at the origin 
as 

B(r) = {x€$tn : \\x\\<r} (12) 

The sphere, S(r), of radius r centered at the origin is the set 

5(r) = {x€3in :  ||x|| = r} (13) 

Let A be a switching sequence for a switched dynamical system where At is its 
time projection, we say that a continuously differentiable function V : 5£n -»• 3i+ 

is Lyapunov-like function over sequence At if and only if V(x(t)) < 0 for all 
t € I(At) and V is monotonically nonincreasing on E(\t). Using this definition of 
a Lyapunov like function, the following sufficient condition for Lyapunov stability 
was proven in [Bran94]. The proof uses standard techniques employed in proving 
Lyapunov stability for nonautonomous systems. A significant generalization of 
this result will be found in [Hou96]. 



Theorem 1. Suppose we have candidate Lyapunov functions Vj ( j € I) and 
suppose that the switched system is nonZeno and satisfies /»(0) = 0 for allj € I. 
IfVj is a Lyapunov like function for switching sequence Xtj for all j 6 /. then 
the equilibrium point x = 0 of the switched system is stable in the sense of 
Lyapunov. 

The preceding theorem provides a sufficient condition for Lyapunov stability 
of switched systems. The condition requires that a set of Lyapunov like functions 
be determined for all possible switching sequences A that can be generated by 
the system. The determination of Lyapunov like functions may not be possible in 
general. For switched systems in which each subsystem is a linear time invariant 
system and the guard sets are represented by conic sectors in 3£n, a method for 
determining the Lyapunov like functions was presented in [Pet96] and [Rant97]. 
Assume that each subsystem can be written as 

±{t) = Ai%{t) (14) 

where Ai G 3Jnxn and i G I. Assume that the guard sets can be bounded by 
conic sectors parameterized by symmetric matrices Qij. In other words, consider 
sets, 

% C{xe $ln\x'QijX < 0} (15) 

Qa represents the set in which the ith subsystem is free to operate and O^ 
(where i ^ j) denotes the guard set for the transition between the ith and 7th 
vertices. If we can find real matrices, Pi = P[ > 0 for all i G I and real constants 
ai > 0 and a*, > 0 such that 

A'iPi + PiAi + ctiQii < 0 (16) 
Pi-Pj + aijQijKO , (17) 

then the functionals, Vj = X'PJX are Lyapunov like functions of the switched 
system. This particular conditions is more restrictive than that formulated in 
[Bran94]. But it can be readily reformulated as a linear matrix inequality (LMI) 
which can be solved using interior-point methods for convex optimization. 

4    Main Result 

The sufficient conditions presented in [Bran94] [Hou96] and used in [Pet96] 
[Rant97] to compute candidate Lyapunov functionals provide a very conserva- 
tive approach for testing switched system stability. In the first place, the stability 
theorems in [Bran94] [Hou96] require that Vj be Lyapunov like for all possible 
switching sequences. These papers place no assumptions on the nature of the 
switching laws used so that when the computational methods of [Pet96] and 
[Rant97] are employed, the worst case switching law has to be considered. The 
worst case switching law is one in which every switch is possible. This assump- 
tion can result in an extremely high dimensional linear matrix inequality which 
may be more restrictive than it needs to be. 



In this section, we present and prove a result which shows that when the 
switching logic can be characterized by a finite automaton, then we only need 
to search for Lyapunov like functions over a restricted set of fundamental 
cycles in the finite automaton. Essentially, the following result shows that rather 
than having to examine whether a set of candidate functions are Lyapunov 
like for all possible switching sequences, we only need consider whether the 
candidate functions are Lyapunov like over a potentially smaller sized set of 
fundamental cycles. In section 5, this result is used to significantly reduce the 
computational complexity and conservatism of the LMI method suggested in 
[Pet96] and [Rant97]. 

Let the directed graph (V, A) have n +1 vertices, io,ii,• • -,in- The sequence 
of arcs 

(io,ii),(H,i2),"-,(*n-i,in) (18) 

is called a path of length n. A cycle of a directed graph is any path such that 
i0 = in. A cycle of length n 

(io,ii), (*i,»2), •■ •, (i'n-i,t'o) (19) 

is said to be fundamental if ij ^ ik for all j, k not equal to zero or n and 
for all j 7^ k. The following results are basic facts from graph theory. In any 
fundamental cycle, any two vertices are connected by one and only one path. 
An arc of a directed graph that is in a cycle is also in a fundamental cycle. 
For any cycle, C, in a directed graph, there exists a set of fundamental cycles 
C\,Ci,•••,CN such that 

jV 

Arcs(C) = |jArcs(Ci) (20) 
i 

Finally, the fundamental cycles of a directed graph can be determined in poly- 
nomial time by constructing a minimal spanning tree for the graph. 

To state and prove the main result of this paper, we first need to establish 
some facts about fundamental cycles generated by live switched systems. The 
first principal lemma is a result saying that any event sequence generated by a 
switched system can be constructed by recursively inserting fundamental cycles 
into a legal switching sequence. We then introduce a sufficient condition for 
a fundamental cycle to be uniformly bounded with respect to time. These 
two results are then combined to establish the Lyapunov stability of the entire 
switched system. 

Lemma 2. In the automaton associated with a live switched system, every arc 
is in at least one fundamental cycle 

Proof: Let (V,A) denote the finite automaton associated with a switched 
system. Assume that there exists an arc (i,j) € A which is not in any cycle 
of (V,A). Therefore, once we go through arc (i,j) then there is no path back 
to vertex i € V. Therefore in any switching sequence A that contains arc (i,j) 



the number of times when vertex i is reached will be reached is finite which 
contradicts the definition of a live transition system. Therefore every arc of a 
live automaton is in a cycle. Furthermore from the fundamental results about 
cycles in directed graphs, we know that every arc is in at least one fundamental 
cycle, so the the lemma is proven. • 

Lemma 3. Any switching sequence A generated by a live switched system can be 
decomposed as 

Ae = o~\o~iOz (21) 

where o\ is a prefix of Xe> a$ is a suffix of Xe, and a-i is a fundamental cycle of 
the switched system's automaton. 

Proof: Assuming there exists a switching sequence A with event projection Ae 

such that the decomposition doesn't exist. This means that there is no substring 
in Ae which is a fundamental cycle. But from the definition of a live switched 
system, we know that every arc must be in a cycle. Let ii be the vertex where 
such a cycle starts. If the cycle is fundamental, then we have a contradiction and 
the proof is finished. But if the cycle is not fundamental, then there is a vertex 
i2 which is crossed more than once in the cycle. Consider the cycle starting 
from i*2. Either this cycle is fundamental, or not. If not, then we can repeat the 
above argument to find a smaller cycle within this one. However, because the 
automaton is finite, this recursion has to terminate in a fundamental cycle. We 
therefore have a contradiction and the lemma is proven. • 

Proposition 4. Given a switching sequence A generated by a live switched sys- 
tem, letA:Z-¥l* be a sequence of sequences in I* constructed by the recursive 
procedure: 

1. yl[0] is a fundamental cycle Co 
2. A[n] = o~\Cno?. where o\Oi = A[n — 1] and Cn is a fundamental cycle. 

Then there exists a set of d such that A[n] is a prefix of A for all n. 

Proof: From lemma 3 we know that any switching sequence can be decom- 
posed to o\OiOz where C2 is a fundamental cycle. Note that if we pull out a-i 
from the switching sequence, then o~\o~z is still a possible switching sequence. 
We can now decompose the resulting sequence c*\Oz using lemma 3 to pull out 
another fundamental cycle of the automaton. Since the switching sequence is 
countable, we can repeat this process to pull out a countable sequence of funda- 
mental cycles. This sequence is the set of d referred to in the above proposition. 
• 

A given sequence of events can be generated in various ways by a switched 
system. What we'd like to do is ensure that the cycle is well-behaved in some ap- 
propriate sense. In particular, we'll require that the continuous-state trajectory 
over the cycle is uniformly bounded with respect to time. The following lemma 
provides sufficient conditions for the system to be uniformly bounded. 



Lemma 5. Let Xe be any cycle generated by the live switched system consisting 
of events 

K=k,---,3K (22) 
where JK+I = Ji with switching times 

to,tu---tK (23) 

So that U is the time when the ith system is switched off and the i + 1st system 
is switched on. 

If there exist a set of continuously differentiable functions Vj : 5t™ -> 9£ for 
j € I such that Vj(x(t)) < 0 for all t € [tj-i,tj), then for any e > 0 there 
6(e) > 0 such that for all \\x{t0)\\ < 6(e), \\x(t)\\ < e for all t € [to,**]- 

Proof: Consider an arbitrary e > 0 and let 

Define the closed set, 

ßK=mmVJK(x) (24) 
x€S(e) 

fiK = {xe B(e): VJK (x) < ßK} (25) 

Choose pK such that for all x 6 -B(PK), we have VjK (x) < PK- We now define 

ßx-i=   riaVj^ix) (26) 

and introduce the closed set, 

ß*-i = {x G B(PK) : ViK_x (x) < PK-I } (27) 

Choose PK-I as was stated above and continue this process to construct a mono- 
tone sequence of sets 

ßicß2c-c nK _! c nK (28) 

Note that flj is invariant with respect to subsystem fj because of the condition 
on Vj. Therefore, we expect that if we start in B(po), we should stay in set B(e), 
which is sufficient to establish the lemma's conclusion. • 

A cycle for which such functionals can be found will be said to be uniformly 
bounded. We now state and prove the main result of this section. This result 
uses the preceding proposition to show by induction that each of the sequences 
in the supersequence of lemma 3 is uniformly bounded if each fundamental cycle 
is uniformly bounded. 

Theorem 6. Consider a live nonZeno switched system where fj(0) = 0 for all 
j E I. Let X be a switching sequence generated by the system. Let p denote a sub- 
sequence of contiguous switches in X such that Pe[p] is a fundamental cycle of the 
system's automaton. Let ß denote the infinite sequence formed by concatenation 
of fi with itself. 

If there exist a set of continuously differentiable functions Vj : 3£n -> 5t which 
are Lyapunov like over sequence ßtj for all j 6 I, then the system is stable in 
the sense of Lyapunov. 



Proof: Prom our earlier lemma, we know that any switching sequence can 
be constructed by inserting fundamental cycles into a legal switching sequence. 
Let 

A = \[0],\[l],---\[n],~- (29) 

By definition A[0] is a fundamental cycle and under the theorem's hypothesis 
this is uniformly bounded. 

Now assume that the sequence A[n] is uniformly bounded. By assumption the 
fundamental cycle inserted into A[n] is uniformly bounded. Note also, however, 
that since Vj is Lyapunov like we require that if x(to) € #i, then it must return 
to that set. Hence the addition of the fundamental cycle does not change the 
boundedness of the original sequence A[n]. We can therefore conclude that A[n+ 
1] is uniformly bounded. 

We now consider the limit as n -»■ oo. Since the 6 determined for uniform 
boundedness is indepedent of time, we can conclude that it holds for sequences 
of arbitrary length and hence the system is stable in the sense of Lyapunov.» 

5    Example 

In this section, we present some examples illustrating the application of the 
result in the preceding section to the computation of Lyapunov-like functionals 
using the LMI methods of [Pet96] and [Rant97]. 

Consider a live switched system whose automaton is shown in figure 1. As- 
sociated with each vertex is an LTI subsystem of the form 

x = AiX (30) 

where i = 1,2,..., 6. In addition to Ai £ 5R2x2, we associate the "self-switching" 
set characterized by the symmetric matrix Qj. Figure 1 shows the given automa- 
ton and the assumed matrices associated with each vertex. Each arc (i,j) in the 
automaton has a matrix Qy associated with it. The arcs are shown in figure 1 
also. 

From the automaton we can identify a set of three fundamental cycles. These 
fundamental cycles are obtained by determining a minimal spanning tree for the 
automaton's directed graph. This directed graph is shown in figure 2 and the 
resulting fundamental cycles are 1 — 2-3,1-4—3 and 5-6 — 2-3, respectively. 

From the theorem proven above, we know that it suffices to find a set of 
continuously differentiable functions, Vj, which are Lyapunov-like for each fun- 
damental cycle in the automaton. Determining such Lyapunov-like functions can 
now be done using the method suggested in [Pet96] and [Rant97]. We establish 
three sets of matrix inequalities corresponding to the three fundamental cycles. 
For cycle 1 - 2 - 3, we have the set of inequalities, 

A'iPi + PiAi + aiQi < 0 i = 1,2,3 

P2-Pi + a12Qi2<0 

P3-P2 + a23Q23<0 



Fig. 1. The automaton of the example live switched system 

3, 

Fig. 2. Spanning Tree Identifying Switched System's Fundamental Cycles 

Pi-P3 + a31Q31<0 

A similar set of inequalities can be formed for the other three cycles. To find the 
Lyapunov like functions, Vj = x'PiX, we want to make sure that all fundamental 
cycles are stable, so we build a large LMI which includes all the matrix inequal- 
ities associated with the three fundamental cycles. For this example, there are a 
total of 14 matrix equations. 

The 14 equation LMI is still a large LMI, but it can be readily solved using 
the LMI toolbox. If we had proceeded using the technique originally proposed in 
[Pet96], then we would need to build an LMI which accounted for all individual 
transitions that could possibly happen. If the automaton had N vertices, then 
we would have N2 equations in our linear matrix inequality. On the otherhand, if 
the automaton had M fundamental cycles, then the total size of the LMI would 
be bounded by (M + 1)JV since each cycle can have no more than N vertices. 



In many cases, this bound is much larger than could be seen. For our particular 
example, we would have a 36 equation LMI to solve. 

The implication of increasing LMI size is that it represents an overly restric- 
tive sufficient condition for system stability. In our case, we can see this quite 
easily by solving the 14 equation LMI obtained by examining the fundamental 
cycles of the system versus the 36 equation LMI obtained by using the methods 
in [Pet96]. The P matrices obtained in both cases for our example are shown in 
figure 3 

Pi 

Pi 

Pz 

P* 

Ps 

Pe 

simplified method        original method 
38.3443 -5.7616 
-5.7616 65.2333 
27.6904 -1.7744 
-1.7744  5.7280 
35.6272 16.0261 
16.0261 21.2592 
31.3473 -1.3288 
-1.3288  4.9189 
40.3580 -3.3383 
-3.3383 46.6225 
36.0113   -14.3852 

-14.3852  87.6743 

0.0869 
-0.0134 
0.0610 

-0.0042 
0.0761 0. 
0.0276 0. 
0.0707 

-0.0032 
0.0799 

-0.0075 
0.0740 

-0.0288 

-0.0134 
0.1470 

-0.0042 
0.0128 

0276 
0436 
-0.0032 
0.0112 

-0.0075 
0.0894 

-0.0288 
0.1771 

(31) 

Fig. 3. P matrices for example 

The existence of these P matrices indicates that the given system is stable. A 
simulation of the example system's trajectory is shown in figure 4. This trajectory 
is clearly stable. 

In computing the first table, the LMI toolbox required 33478 flops to deter- 
mine the P matrices for the original method. The simplified method developed 
in this paper only required a total of 13310 flops. So our method clearly has a 
lower computational complexity than the original method of [Pet96]. More im- 
portant than this, however, is the difference between the matrices. As can be 
clearly seen above, the singular values for the P matrices obtained from the sim- 
plified approach are around 50. For the original approach in [Pet96], however, 
these values are about .1. Since the singular value is a measure of how close 
the matrix is to being singular, this means that the original method was almost 
unable to determine the candidate Lyapunov functions. With minor changes in 
the Q matrices it is quite possible to generate examples in which the original 
method is unable to find the required P matrices, but our method would find 
such matrices. 



SmMonat»» w/vpm wtti io-p.0). cycto l-2-3-s-e-z-3-1-4-3-l 

Fig. 4. The trajectory of the sample system under switching cycle 

6    Future Work 

This paper has presented a sufficient method for switched system stability which 
takes advantage of prior knowledge of the system's switching logic. In particular, 
it was shown that if the switching logic can be shown to be generated by a finite 
discrete-event transitions system such as a finite automaton or Petri net, then it 
suffices to determine Lyapunov-like functions only over the fundamental cycles 
of the state machine. This observation can greatly reduce the computational 
complexity involved in testing for switched system stability as well as providing 
a less conservative set of Lyapunov functions. These conclusions were validated 
by using them to compute the Lyapunov functions for an LTI switched system 
using the LMI method suggested in [Pet96] and [Rant97]. 

The preliminary results presented in this paper are encouraging and sug- 
gest several possible directions for future study. One future direction involves 
extending the concepts introduced here to study switching logics generated by 
Petri nets. The use of unfolding methods should allow the efficient identification 
of fundamental cycles in the Petri net's reachability tree, thereby providing a 
sufficient test for the stability of such systems. Another promising avenue of fu- 
ture study involves developing sufficient tests for uniform ultimate boundedness 
(bounded-amplitude) in switched systems. For important classes of systems, we 
can also formulate these sufficient conditions as matrix inequalities thereby al- 
lowing the efficient testing of switched system performance with respect to a 
specified ultimate bound. 
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Abstract: Hybrid systems are systems which generate a mixture of discrete-event 
and continuous-valued signals. This paper presents an extension of Alur's hybrid 
automaton (Alur 96) in which a timed Petri net is used to model a hybrid system. 
The resulting modeling framework is called a "programmable" timed Petri net 
(PTPN). PTPN's provide a way of modeling concurrency in complex dynamical 
systems. In this paper, the PTPN is used to model hybrid systems obtained by 
switching between collections of linear time-invariant plants whose switching logic is 
generated by a PTPN. We use unfoldings of the PTPN to develop sufficient tests 
for the switched system to have Lyapunov stability and uniform ultimate bounded 
behaviour. The concepts of this method are illustrated on a power system example. 

Resume: Les systemes dynamique hybrides designent des categories de systemes 
de type continu et evenementiel. Cette communication presente les reseaux de Petri 
temporises "programmables" (PTPN) qui constituent une extension des automates 
hybrides d'Alur. Les PTPN sont bien adaptes k la representation des systemes 
hybrides paralleles ä plusiers modes de fonctionnement. Des resultat concernant la 
stabilite de Lyapunov et la "bornitude" uniforme maximale des systemes hybrides 
sont obtenus ä partir d'un depliage des PTPN. 

1. INTRODUCTION 

This paper focuses on switched hybrid systems 
where the individual subsystems are linear time 
invariant plants with bounded additive distur- 
bances and where the switching logic is gener- 
ated by a timed Petri net which we call the 
programmable timed Petri net or PTPN. The 
principal contribution of this paper is a proposed 
method for analyzing the stability and uniform 
ultimate boundedness of switched linear systems 
represented by PTPN. The methods used in this 
paper are extensions of recent results (He 98) 
establishing Lyapunov stability of switched lin- 
ear systems whose switching logics are generated 
by finite hybrid automata (Alur 94). In partic- 
ular, we use unfoldings of the PTPN to identify 
equivalence classes of configurations from which 
fundamental cycles in the PTPN's reachability 
graph can be identified. The identified funda- 
mental cycles are then used to form two different 
types of linear matrix inequalities whose feasibil- 

ity ensure either the Lypaunov stability or the 
switched system's uniform ultimately bounded 
behaviour. 

The remainder of this paper is organized as 
follows. Section 2 introduces the programmable 
timed Petri net. Section 3 uses the PTPN to 
model switched hybrid systems. Section 4 re- 
views prior results on switched system stability 
and uniform ultimate boundedness. In section 
5, the proposed method for analyzing PTPN 
stability and performance is presented. 

2. PROGRAMMABLE TIMED PETRI NETS 

This section introduces an extension of the Alur- 
Dill hybrid system model (Alur 94) (Alur 96) 
in which timed Petri nets (Sifakis 77), rather 
than finite automata, generate the switching 
logic of the system. In particular, we introduce a 
programmable timed Petri net (PTPN) which is 



a timed Petri net whose places, transtions, and 
arcs are all labeled with formulae representing 
constraints and reset conditions on the rates 
and times generated by a set of continuous-time 
systems called clocks. 

An ordinary Petri net is a directed graph in 
which there are two types of nodes; places and 
transitions. Graphically, we represent the places 
by open circles and the transitions by bars. 
Petri nets are often characterized by the 4-tuple, 
(P, T, I, O) where P is the set of places, T is the 
set of transitions, I C P x T is a set of input arcs 
(from places to transitions), and OcTxPis 
a set of output arcs (from transitions to places). 
We denote the preset of a transition t G T as 
•t and define it as the set of places, p G P such 
that (p, t) G I. In a dual manner, we introduce 
the postset of a transition t G T as t • and define 
it as the set of places, p G P such that (t,p) G O. 

The dynamics of ordinary Petri nets are charac- 
terized by the way in which the network mapping 
evolves. The marking p : P -> Z is a mapping 
from the places onto non-negative integers. The 
marking fi(p) of place p denotes the number of 
tokens in that places (represented graphically by 
small filled circles). We say that the transition 
is enabled if p(jp) > 0 for all p G »t. An enabled 
transition may fire. We introduce a firing func- 
tion q : T -¥ {0,1} such that q(t) = Hit is firing 
and is zero otherwise. If (i(p) and ß'(p) denote 
the marking of place p before and after the firing 
of enabled transition t, then 

{n(p) + i if pet»/»t 
p(p)-l if ?€•*/*• 
p(p)       otherwise 

(1) 

In ordinary Petri nets, places and transitions 
represent abstractions of the system "states" and 
"actions", respectively. In practice, however, we 
must remember that transitions (actions) take 
a finite amount of time to fire (complete). It 
is therefore necessary to work with timed Petri 
nets (Sifakis 77). In a timed Petri net the firing 
vector and marking vectors become functions of a 
global time r. We denote the timed firing vector 
as qT. It indicates which transitions are in the 
act of "firing" at time r. The timed marking 
vector is denoted as ßr. Just as in ordinary Petri 
nets, we will say that a transition t is enabled at 
time T if fiT(p) > 0 for all p G »t. An enabled 
transition is free to fire. For the timed Petri 
net, however, the firing of a transition occurs 
over a time interval [T0,T/]. The length of this 
interval is called the transition's holding time. A 
transition t starts to fire at time To is said to 
be committed and its firing function qTo (t) is set 

to unity. During the time that the transition is 
committed, the network's marking vector is not 
changed. It is only when the firing is completed 
at time 17 that the marking vector is changed 
according to equation 1 given above. At the time 
the transition has completed firing, we also reset 
the firing function qTf to zero. 

The duration of the firing interval (holding time) 
can be characterized in a variety of ways. Com- 
mon approaches assume that the holding time 
is either a fixed constant or a random variable. 
In some applications, there is a growing realiza- 
tion that these holding times can be treated as 
control variables. These times can be controlled 
by introducing "local" timers which fire when 
specified conditions programmed by the system 
designer are satisfied. This approach was used 
for concurrent state machines in (Alur 94). Es- 
sentially, this approach characterizes the holding 
times by logical propositions defined over the 
times generated by a set of local clocks. Petri nets 
whose holding times are defined in this way will 
be referred to as programmable timed Petri Nets 
(PTPN). 

Let N = (P, T, I, O) be an ordinary Petri net. We 
introduce a set, X, of N local clocks where the 
ith clock Xi is denoted by the triple (i*, x&, no). 
iio G 3Jn is a real vector representing the clock's 
offset, TJO is an initial time (measured with re- 
spect to the global clock) indicating when the lo- 
cal clock was started. ±i : 3fn ->■ SRn is a Lipschitz 
continuous automorphism over 3tn characterizing 
the local clock's rate. Assume that the clock rate 
±i is denoted by the automorphism /. The local 
time generated by the ith clock will be denoted 
as X{ which is a continuous function over 5ftn that 
is the solution to the initial value problem, 

dxi 
~dt" 

Xi(Ti0) ■■ ■Xio 

(2) 

(3) 

for T > no- We therefore see that the local timers 
are vector dynamical equations. The local time of 
the ith timer at global time r is denoted as Xi(r) 
and the timer's rate is denoted as ij(r). We say 
that the state of the ith timer is the ordered pair 
Zi(r) = (a;j(r),ii(r)). The ensemble of all local 
clock states will simply be denoted as Z{T). 

The interval [TQ, Tf] over which a transition t will 
be firing is going to be characterized by formulae 
in a propositional logic whose atomic formulae 
are equations over the local times or clock rates 
of X. An atomic formula, p, takes one of the 
following forms; 



(1) It can be a time constraint of the form 
f(xi) = 0 which means that the ith clock's 
state %i is a zero for a known function 
/ : ft" -*■ ft. 

(2) The atomic formula p can be a rate con- 
straint of the form i» = / which means that 
the ith clock's rate £,• is equal to the vector 
field / : ft" -> ft". 

(3) Finally, p can be a reset equation of the 
form Xf(r) = xo which says that the ith 
clock's local time at global time r is set to 
the vector XQ. 

We define a well-formed formula or wff as any 
expression where 

• Any atomic formula is a wff, 
• If p and q are wff's, then p A q is a wff. 
• If p is a wff, then ~p is a wff 

The set of all wffs formed in this manner will be 
denoted as V. 

The syntax for well formed formulas is defined 
with respect to an underlying Petri net structure 
of the form N = (P, T, I, O) and a set of local 
clocks X. The local clock state z at time r is 
said to satisfy a formula p e V if p is "true" 
for the given clock state, z(r). The satisfaction 
of p by Z(T) is denoted as z{r) \= p. The truth 
of the atomic formula is understood in the usual 
sense. We say that an atomic formla, p e V is 
satisfied by z(r) if and only if the evaluation of 
that formula is true. We say that z(r) (= ~p if 
and only if z(r) does not satisfy p. We say that 
Z(T) |= pAq if and only if Z{T) \= p and Z(T) \= q. 

Consider an ordinary Petri net, N = (P, T, I, O) 
and a set of logical timers, X. A programmable 
timed Petri net (PTPN) is denoted by the or- 
dered tuple, (N,£P,£T,CI,IO) where; lp : P -t 
V, lT : T -> V, li : I -» V, and to : O -¥ V label 
the places, transition, input arcs, and output arcs 
(respectively) of the Petri net N with a wff. 

3. PTPN MODELING OF SWITCHED 
SYSTEMS 

A hybrid dynamical system is a system which 
generates a mixture of event-driven (discrete- 
event) signals and continuous-valued signals. In 
this paper, we examine hybrid systems that can 
be viewed as a switched dynamical system, in 
which switches are generated when the plant's 
state crosses into specified regions of the state 
space. We can define such a hybrid system in 
a more formal manner as follows. Let XcF 
and Y c ftm be smooth n and m dimensional 

manifold and let 7 be a finite set of N integers. 
Let A be a constant dimensional distribution, 
A = {/I,...,/JV} where /< : X x Y -> X for 
i = 1,...,N are locally Lipschitz vectorfields 
over X. We consider the system to be described 
by the following set of equations 

i(t) = q(x(t),i(t-)) 
(4) 

(5) 

where x : ft -^ X, i : 5R -»• I, ft : X -> X, 
w : ft -» Y, and q : X x I -> I. i(t~) refers to 
the left hand limit of the function i(t) at point t. 
We refer to each /< as a subsystem of the hybrid 
system. The signal, w(t) represents a disturbance 
whose essential supremum satisfies a specified 
bound. In particular, we say that w € BLoo 
if esssup||u>(i)|| < 1. The preceding model is 
essentially that used in (Tavernini 87) with the 
addition of the bounded exogenous disturbance, 
w{t). 

The trajectory of the switched system is the 
ordered pair, (x,i), where x : ft -» X and 
i : ft -4 I which solves the system equation 
assuming that the disturbance w(t) is known. 
The value taken by the trajectory at time t € 
ft is denoted by (x(t),i(i)). We say that (x,i) 
solves the system equation if and only if the 
equations are satisfied by x(t) and i(t) for all 
t G ft and some w 6 #L<x>- This paper does not 
treat questions concerned with the existence of 
solutions. In general, however, solutions (when 
they do exist) will not be unique due to the 
nondeterminism of the switching law. 

The preceding model of a switched system as- 
sumes a very general switching function, q. To 
obtain more precise results, however, we need to 
specify the nature of the switching function. In 
this section we examine the use of the PTPN 
in modeling the switched system. This is ac- 
complished by viewing each subsystem of the 
switched system as a local timer in the PTPN. 
The switching rules are then embedded in the 
PTPN through the labeling functions IP,(.T, li, 
and to- 

We begin by viewing the state of the dynamical 
systems X{ as local times and the vector fields fa 
are viewed as clock rates for these timers. The 
switching logic is represented by the ordinary 
Petri net structure N = (P,T,I,0) and the 
labeling functions are chosen as follows, 

• lp{p) is chosen to be an atomic rate formula 
of the form ±i = /,• where fj is one of the 
vector fields in A. When this place is marked 



then the system changes the ith clock rate 
to fj. 

• £r(£) is chosen to be a tautology. If there 
are constraints on the various subsystems 
during the firing of a transition, this is 
where those constraints would be placed. 
For instance, we could have another timer 
here, which is reset when the transition is 
first committed to firing. 

• ti((p,t)) is chosen to be a wff whose truth 
commits the transition t to firing. 

• £o((t,p)) is chosen as a wff whose truth 
completes the firing of transition t. 

Let (x,i) be the trajectory generated by a 
switched dynamical system. We let the set of 
switching times of (x,i) be those times when 
limr_>4+ i(r) ^ limr_n- i(r). The sequence of 
switching events of (x,i) is the sequence of i'(ijt) 
(for k = 1, • ■ •, oo) where t is a switching time. 
The trajectory is said to be deadlock free if the 
sequence of switching events is not finite. We say 
that the trajectory is live if the event sequence 
contains an infinite number of each index, i € /. 
We say that the trajectory is nonZeno if the 
sequence of switching times is not summable (i.e. 
52n*n > oo where tn are switching times). Note 
that an important issue which is not addressed in 
this paper concerns necessary and sufficient con- 
ditions for a switched system to be live, deadlock 
free, or nonZeno. In this paper, we assume that 
the switched system is live and nonZeno. 

We now present a specific example illustrating 
the use of a PTPN in modeling the switch- 
ing behaviour of a power system. Consider the 
power system shown in figure (1). There are four 
nodes (Generators) in this system. Nodes 1,2,4 
are generator nodes and node 3 is reference node. 
Let 6i, i = 1,2,4 denote the generator rotor angle 
of node 1,2,4. Let 6i,6i,i = 1,2,4 represent the 
state space of the power system. It can be shown 
that the state space of the system evolves accord- 
ing to the following set of differential equations: 

x = f(x(t),w(t)) (6) 

where x = [0i,Ö1,02,62,9i,d4]T is the state 
space, w € 5R3 is the disturbance satisfying ||w|| < 
1, / : 3ft6 x SR3 -» 5ft6 is a continuous and locally 
Lipschitz mapping. 

Linearize equation 6 at the equlibrium point xo, 
to obtain 

x = Ax(t) + Bw{t) (7) 

Fig 1. The example power system 

A = 

0       1       0       0       0 0 
-Bn -Di -Bu    0    -Bu 0 

0       0       0       10 0 
-.B21    0    —B22 —D2 —B24 0 

0       0       0       0       0 1 
-B. 41 0    -B42    0    -Bi4 -D4 

(8) 

B 

[0 0 0] 
100 
000 
0 10 
000 
00 1 

(9) 

where 

where Bij,i,j = 1,2,4, represent the parameter 
of the transmission lines, Di, i = 1,2,4 represent 
the winding ratio of generator attached to node 
i. Let z = [Öi,Ö2,Ö3] 

The control objective is to let ||z(t)||oo < 0.1, 
for all t € [0,oo]. To help achieve this goal 
we introduce the following supervision policy. 
Assumming each generator has two winding ratio 
to choose from. DM and Da,i = 1,2,4, where 
Dio = 1Di\. We say node i is in mode 0 if D, = 
Da , and in mode 1 if Di = Du. Each generator 
node obeys the following local switching rule. 

(1) If a fault is detected in the local neighbour- 
hood of node i and node i is currently in 
mode 1, then switch it to mode 0. This will 
protect the generator from suffering large 
transient oscillation. The fault is detected 
when |0i| > 0.05. 

(2) if a request of changing the load condition 
of node i is generated sad node i is cur- 
rently in mode 0, then switch it to mode 
1. This will ensure the fast-adaptation of 
the generator to new load condition. In this 
system, we assume that the request for load 
change is issued 10 seconds after the fault 
was tripped. We model this by labeling the 
output arcs with a bound on a resetable 
timer, rj. 

The timer, (l,ri,Tio), which is used to reset 
system i after a fault, is assumed to have a rate 
of unity. It is reset when the fault is tripped. 



(le,l>.i)Afc,«°! 

Fig 2. Petri-net model of power system 

Fig 3. The controlled Petri-net for power system 

We model the reset by labeling the output axe of 
the PTPN with the equation n = 0. The PTPN 
of the power system based on the above local 
switching rule is shown in figure (2). 

Simulation of the operation of the power system 
shows if two neighbouring generator nodes, i.e. 
nodes 1,2 or node 2,4 are both in mode 1, the 
rotor angle of the generators will have large vari- 
ation ( > 0.1 )under disturbance w, which vio- 
lates our control objective. To achieve the control 
objective, we thus implement supervisory con- 
trol logic to prohibit the previously-mentioned 
cases from happening. The Petri-net model of 
the controlled system is shown in figure (3). 
This supervision introduces a place between two 
"adjacent" generators which enforces a mutual 
exclusion condition. It is this supervised system 
whose stability will be studied in following sec- 
tions. 

4. HYBRID AUTOMATON STABILITY AND 
PERFORMANCE 

Lyapunov stability and uniform ultimate bound- 
edness are standard concepts in the study of non- 
linear dynamical systems. Consider a disturbed 
system which can be represented by the differen- 
tial equation, x = f(x,w) where w £ BL^.We 

say that xo is an equilibrium point of the undis- 
turbed system if /(a;0,0) = 0. The equilibrium 
point of the undisturbed system is said to be 
stable in the sense of Lyapunov if for all e > 0 
there exists 8 > 0 such that x(t0) < 5 implies 
that x(t) < e for all t > t0- We say that the dis- 
turbed system is uniformly ultimately bounded 
if and only if for all e > 0 there exists a time 
T(e) > 0 such that if z(i0) < e, then x(t) < 6 for 
all t > T(e). 

There are a variety of results providing sufficient 
conditions for the Lyapunov stability of switched 
(undisturbed) systems. In (Peleties 91) a sin- 
gle positive definite functional is found which 
is a Lyapunov function for all subsystems of 
the switched system. Multiple Lyapunov func- 
tionals methods (Branicky 94) (Hou 96) have 
been developed which apply to a larger set of 
systems than the single Lyapunov function meth- 
ods. In certain cases, where the switched sys- 
tem consists of linear time invariant subsystems, 
it has been suggested that multiple candidate 
Lyapunov functions can be determined by find- 
ing feasible points of a linear matrix inequal- 
ity (LMI) (Petterson 96). These last results are 
particularly important because they provide a 
computational method for checking the sufficient 
conditions for switched system stability provided 
in (Branicky 94). 

The sufficient conditions presented in (Branicky 
94) (Hou 96) and used in (Petterson 96) to com- 
pute candidate Lyapunov functionals provide a 
very conservative approach for testing switched 
system stability. In the first place, the stability 
theorems in (Branicky 94) (Hou 96) require that 
Vj be Lyapunov like for all possible switching 
sequences. These papers place no assumptions 
on the nature of the switching laws used so that 
when the computational methods of (Petterson 
96) are employed, the worst case switching law 
has to be considered. The worst case switching 
law is one in which every switch is possible. 
This assumption can result in an extremely high 
dimensional linear matrix inequality which may 
be more restrictive than it needs to be. 

In (He 98), it was shown that the LMI's for- 
mulated in (Petterson 96) could be simplified 
significantly when the system's switching logic is 
generated by a finite automaton. Rather than re- 
quiring Lyapunov-like functions over every pos- 
sible switching sequence, it suffices to consider 
fundamental cycles of the automaton. Recall that 
a cycle is any path accepted by the automaton 
which starts and ends at the same vertex. If 
the cycle does not cross itself, then the cycle 



is fundamental. Before stating this theorem, we 
need to introduce some preliminary definitions. 

Let the subsequence of times when system j is 
turned on and off be denoted as 

A? — 'ni' *nj+l»''' > 'rik) *njb+l >' (10) 

Define the interval completion I{Xj) as the set 
obtained by taking the union of all open intervals 
when system j is active. Denote E(Xj) as the 
subsequence of times when system j is turned 
on. We say that a continuously differentiable 
function V : 5Rn -» St+ is Lyapunov-like function 
over set of switching times, A, if and only if 
V{x(t)) < 0 for all t G 1(X) and V is monoton- 
ically nonincreasing on E(X). We can now state 
the following theorem from (He 98). 

Theorem 1. Consider a live nonZeno switched 
system where fj(0) = 0 for all j G I. Let A be a 
switching sequence generated by the system. Let 
\i denote a subsequence of contiguous switches in 
A such that the event sequence is a fundamental 
cycle of the system's automaton. Let fl denote 
the infinite sequence formed by concatenation of 
H with itself. If there exist a set of continuously 
differentiable functions Vj : 3in ->■ 3? which are 
Lyapunov like over sequence ßj for all j G I, then 
the system is stable in the sense of Lyapunov. 

By combining the preceding theorem with the 
LMI methods in (Petterson 96), we obtain a 
computationally efficient method for determin- 
ing if a switched LTI system is Lyapunov stable. 
A similar set of conditions can also be used to 
establish sufficient conditions for a switched LTI 
system with bounded exogenous disturbances to 
possess uniform ultimate bounded performance. 
The key result here is the switching lemma stated 
in (Bett 97). In this theorem we say that a 
matrix P G FeasRic(A, B, a, ß) if P satisfies the 
following Riccati inequality, 

A'P + PA+(a + ß)P + -PBB'P < 0(11) 
a 

With this definition, we can now state the theo- 
rem proven in (Bett 97) 

Theorem 2. Consider two LTI systems Si = 
(Ai.Bx.Ci.I?!) and S2 = (A2,B2,C2,D2) and 
consider any finite constants r G (0,1] and 7 > 0. 
Suppose there exists positive constants a, ß, and 
p and positive definite matrices P\ and P2 such 
that 

72Pi>C{Ci (13) 

72-P2>C2C2 (14) 

Pi € FeasRic^!,B1,2ß+-,a)     (15) 
T 

P2 G FeasRic(A2,B2,p,p) (16) 

Consider a time ts. > 0 and let w, x, and z be 
the input, state, and output of the dynamical 
system which evolves according to system Si for 
t0 < t < ta and which evolves according to S2 

for t > ts. If 

>--\ogr = td (17) 

rP2 < Pi (12) 

then \\z\\oo < 7 for all t > td- We call t<j the 
switched system's delay time. 

The preceding theorem establishes conditions 
that the LTI system needs to satisfy to ensure 
uniform ultimate bounded behaviour. Note that 
these conditions are also linear matrix inequali- 
ties, similar in structure to those used by (Pet- 
terson 96) The obvious implication here is that 
we should able be to easily state a result similar 
to the fundamental cycle result in (He 98) to test 
for uniform ultimate boundedness. 

5. PTPN STABILITY AND PERFORMANCE 

This section uses the results of section 4 to pro- 
pose a method for analyzing the stability and 
performance of switched LTI systems represented 
by PTPN. The principal observation is that if 
the PTPN is live nonZeno and bounded, then 
the reachability graph of the PTPN is finite. 
In particular, this reachability graph now forms 
an automaton model for the system's switching 
logic. We can then use the results of the preced- 
ing section to provide sufficient tests for hybrid 
system stability and uniform ultimate bounded 
performance. The problem here however, is that 
the construction of the reachability graph for the 
PTPN is not a simple computation. The compu- 
tational complexity associated with constructing 
the reachability graph grows exponentially with 
the number of places and transitions in the Petri 
net. A more appropriate way to identify the fun- 
damental cycles of the PTPN is to use a partial 
order method such as an unfolding (Engelfreit 
91). Constructing a complete finite prefix of a 
PTPN unfolding (McMillan 92) has been shown 
to require a polynomial number of computations. 

Given a Petri net, we say that two places pi and 
p2 are in conflict if there exist distinct transitions 



*i and t2 such that »ii n »t2 # 0 and (*i,pi) 
and (i2,P2) belong to the reflexive and transitive 
closure of the arcs. In other words, px and pi 
are in conflict if two paths terminating at those 
places start at the same place and immediately 
diverge. 

An occurence net is an acyclic conflict free net. A 
branching process of network N is a pair (JV', h) 
such that N' is an occurrence net and h is a net 
homomorphism mapping N' to N in a way that 
preserves the behaviour of the original net (see 
(Englefriet 91) or (Esparza 96) for precise defi- 
nitions). An unfolding is the maximal branching 
process associated with a Petri net N. Consider 
the occurrence net of a Petri net unfolding. A 
configuration C of this net is a set of transitions 
satisfying the following conditions, 

• teC implies for all f < t: t' G C 
• for all transitions in C are conflict free. 

An occurence net may have several different 
configurations. Two configurations which can be 
marked at the same time are said to be "concur- 
rent" . Concurrency can be viewed as an equiva- 
lence relation over the set of all configurations of 
an occurrence net. In particular, this mean that 
the set of configurations can be partitioned into 
equivalence classes. 

The unfolding of a PTPN can be used to study 
the stability and performance of a switched sys- 
tem represented by a PTPN. The result cited 
above from (He 98) asserts that a sufficient con- 
dition for the stability (Lyapunov) and ultimate 
bounded behaviour of a switched LTI system is 
that a set of LMI's associated with the funda- 
mental cycles of the system's reachability graph 
be feasible. These fundamental cycles can be 
found by constructing the reachability tree; an 
inefficient approach, or they can be systemat- 
ically constructed from the network unfolding. 
In the following example, we illustrate how the 
use of unfoldings can dramatically reduce the 
complexity of searching for fundamental cycles 
in the PTPN's reachability graph. 

Now let's go back to the example. The unfold- 
ing of the controlled Petri-net is shown in fig- 
ure (4). We identify 3 configurations in the un- 
folding result. Here we describe them by three 
sets of transitions, namely, (1,2), (3,4), (5,6). We 
label the three configurations as ci, 02,03, re- 
spectively. Concurrency of these configurations 
induces two equivalence classes. Configuration 
C2 is associated with one of these equivalence 
classes and configurations c\ and C3 form the 
other equivalence class. We have been able to 

Fig 4. Occurrence Network of Problem 

Fig 5. Reachability Graph 

develop a systematic algorithm for construct- 
ing the fundamental cycles. In this particular 
example, the second configurational equivalence 
class has 4 fundamental cycles represented by 
the sequence of firing of transitions 1, 2, 5, 6. 
These fundamental cycles are 1-2, 5-6, 1-5-6, 5- 
1-2. For each fundamental cycle, a set of LMI 
is established. Solving the LMI problem shows 
the system satisfies the bounded amplitude ob- 
jective, i.e. IHIoo.fo.oo] < 0-1- Simulation results 
have validated the correctness of this approach. 

In comparison, the reachability tree of this ex- 
ample is also established. The results shows, to 
build the reachability tree, a total number of 
10 nodes has to be created, 33 paths have to 
be traced and 85 calculations have to be made 
in tracing all the paths. While in the unfolding 
process, only 3 configurations are found, 3 paths 
are traced and 20 calculation are made in tracing 
all these paths. This fact clearly demonstrates 
that unfolding provides a more efficient method 
for finding fundamental cycles in PTPN. This 
empirical finding supports the claims made in 
(McMillan 92) where it was asserted that the 
computational complexity of constructing the 
reachability graph is exponential in the number 
of places and transitions. In contrast, the un- 
folding generally has a polynomial complexity. 
This difference is illustrated quite graphically by 
simply comparing the reachability graph for this 
problem (see figure (5)) and comparing it to the 
relatively simple occurrence net for this problem 
(figure (4)). 



6. SUMMARY 

This paper has reported on some preliminary 
findings concerned with the use of Petri nets 
in the analysis of switched hybrid systems. In 
particular, we introduced an extension of the 
Alur-Dill hybrid automaton which we refer to 
as the programmable timed Petri net. We then 
showed how the PTPN can be used to model 
switched hybrid systems. Using earlier results 
from (He 98) and (Bett 97), it was asserted that 
the stability and uniform ultimate boundedness 
for the switched linear systems could be guaran- 
teed provided a set of Linear Matrix Inequalities 
(LMI) was shown to be feasible. This result is 
similar to that found in (Petterson 96). The 
difference between our results and these earlier 
results, is that (He 98) shows that it is sufficient 
to form the LMI's over the fundamental cycles of 
the system's reachability graph. This leads to an 
enormous simplification of the resulting analysis 
effort. This paper applied the results of (He 98) 
to the PTPN by using unfoldings of the PTPN 
to systematically and efficiently search for the 
fundamental cycles of the Petri net. 

There are a variety of directions for future re- 
search. In the first place, the results presented 
here are sufficient conditions. For system veri- 
fication it is important to have necessary and 
sufficient conditions. While pure necessity may 
be difficult to obtain, it should be possible to 
obtain very tight sufficient conditions through 
optimization methods. In addition to this, it is 
important to study necessary and sufficient con- 
ditions for the PTPN to be live and nonZeno. 
Such conditions require an analysis of the sys- 
tem's viability (Deshpande 95). We suspect that 
unfoldings may once again prove to be impor- 
tant in managing the complexity associated with 
finding such viability kernels. 

[4] M. Branicky, Stability of Switched and Hy- 
brid Systems, In 33rd Conference on Deci- 
sion and Control, 1994. 

[5] A. Deshpande and P. Varaiya, Viable Con- 
trol of Hybrid Systems, Hybrid Systems 
II, A. Nerode (ed.), LNCS Volume 999, 
Springer-Verlag, 1995. 

[6] J. Engelfriet, "Branching Processes of Petri 
Nets", Ada Informatica, 28, pp 575-591, 
1991. 

[7] J Esparza, St. Romer, and W. Vogler, "An 
improvement of McMillan's unfolding al- 
gorithm", TACAS'96, Passau, March 1996, 
LNCS Vol 1055, Springer-Verlag, 1996. 

[8] Kevin X He, M.D. Lemmon, "Lyapunov Sta- 
bility of Continuous Valued Systems Under 
the Supervision of Discrete Event Transi- 
tion Systems", Technical Report of the ISIS 
Group, University of Notre Dame, ISIS-97- 
010, October 1997, 

[9] L. Hou, A.N. Michel, and H. Ye, Stability 
Analysis of Switched Systems, In 35th Con- 
ference on Decision and Control, December 
1996. 

[10] K. McMillan. Using unfoldings to avoid the 
state explosion problem in the verification 
of asynchronous circuits, CAV'92, LNCS 663 
Springer-Verlag, 1992. 

[11] P. Peleties and R.  DeCarlo,  Asymptotic 
Stability   of   m-switched   systems   using 
Lyapunov-like functins. American Control 
Conference, June 1991. 

[12] S. Pettersson and B. Lennartson, Stability 
and Robustness for Hybrid Systems, In 35th 
Conference on Decision and Control, 1996. 

[13] J. Sifakis. Use of petri nets for performance 
evaluation.  In  Measuring,   modelling  and 
evaluating computer systems. North Holand, 
1977. 

[14] L. Tavernini, Differential automata and their 
discrete simulators, Nonlinear Analysis, the- 
ory, methods, and applications, 11(6):665- 
683, 1987. 

7. REFERENCES 

[1] R. Alur and D.L. Dill, A Theory of Timed 
Automata, Theoretical Computer Science, 
126:183-235,1994 

[2] R. Alur, T. Henzinger, and P-H Ho., Au- 
tomatic Symbolic Verification of Embedded 
Systems, IEEE Transactions on Soßware 
Engineering, 22:181-201,1996. 

[3] C.J. Bett and M.D. Lemmon, Bounded 
Amplitude Control using Multiple Linear 
Agents, Technical Report ISIS-97-004, Dept. 
of Electrical Eng, University of Notre Dame, 
March 1997 



APPENDIX H 

J.O. Moody and P.J. Antsaklis 
"Supervisory Control Using Computationally Efficient Linear Techniques: A Tutorial Introduction" 
Proc of 5th IEEE Mediterranean Conference on Control and Systems 
Paphos, Cyprus, July 21-23,1997. Also released as ISIS Technical Report isis-97-015, October 1997. 



Supervisory Control Using Computationally Efficient Linear 
Techniques: A Tutorial Introduction 

Technical Report of the ISIS Group 
at the University of Notre Dame 

ISIS-97-015 
October, 1997 

John 0. Moody and Panos J. Antsaklis 
Department of Electrical Engineering 

University of Notre Dame 
Notre Dame, IN 46556 

Interdisciplinary Studies of Intelligent Systems 



Supervisory Control Using Computationally Efficient Linear 
Techniques: A Tutorial Introduction12 

Abstract 

This paper provides an overview of a computationally efficient method for synthe- 
sizing supervisory controllers for discrete event systems (DES). The DES plant and 
controller are described by Petri nets which provide a useful linear algebraic model 
for both control analysis and synthesis. It is shown how a set of linear constraints on 
the plant's behavior can be enforced, accounting for possibly uncontrollable or unob- 
servable transitions in the plant net, using techniques from Petri net theory, integer 
programming, and linear systems. The paper is written as a tutorial introduction 
to the approach. Several results presented here have been reported elsewhere in the 
literature. 

1    Introduction 

A methodology to automatically derive feedback supervisory controllers for discrete event 
systems (DES) described by Petri nets appears in [13]. The control designer is presented 
with a Petri net model of a DES and a set of linear constraints on the state space of the 
DES. The control goal is to insure that the constraints are met during the plant's normal 
operation. In the spirit of supervisory control, this task is accomplished by prohibiting certain 
occurrences in the plant which would cause one or more of the constraints to be violated. 
The method is based on the idea that specifications representing desired plant behaviors can 
be enforced by making them invariants of the controlled Petri net. The resulting controllers 
are themselves Petri nets and are identical to the monitors [2] of Giua et a!. The controller's 
size is proportional to the number of constraints. 

The supervisor is used to enforce a set of linear constraints on the state space of the 
plant DES. These constraints are not as general as the languages enforced by Ramadge 
and Wonham [10] in their work on supervisory control using automata, but the solution 
algorithms are simpler, and they can be used to describe a broad variety of problems including 

• A large range of forbidden state problems. 

• Serial, parallel and general mutual exclusion problems. 

• A class of logical predicates on plant behavior [12]. 

1This technical report has also appeared as J. O. Moody and P. J. Antsaklis, "Supervisory control 
using computationally efficient linear techniques: A tutorial introduction", In Proceedings of the 5th IEEE 
Mediterranean Conference on Control and Systems, Session MP1, Paphos, Cyprus, July 1997. 

2This research was partially funded by the National Science Foundation. Grant ECS95-31485. 



• Conditions involving the occurrence of events and particular regions of the state space. 

• Conditions involving the concurrence of events. 

• The modeling of shared resources [6]. 

The approach was extended in [7] to apply to Petri nets which contain uncontrollable 
transitions, the firing of which cannot be inhibited by the controller. This work was par- 
tially motivated by the research of Li and Wonham [3] dealing with the enforcement of linear 
constraints on vector discrete event systems with uncontrollable events. The approach in 
[7] was expanded in [4] to include uncontrollable and unobservable transitions in a unified 
framework. Algorithms were presented for automatically computing new sets of plant con- 
straints which accounted for uncontrollable and unobservable transitions while still enforcing 
the original constraints. Unobservable transitions force a special structure on the Petri net 
controller which can be used to characterize valid controllers and simplify controller de- 
sign. These results appear in [5]. These contributions extend the applicability of the control 
method while maintaining its original emphasis: they also relate to Petri net place invariants 
and are again simple to implement with excellent numerical properties. 

The paper is structured as follows. The controller synthesis method for plants with 
controllable transitions is described in section 2. A methods for dealing with uncontrollable 
and unobservable transitions is covered in section 3. An example is used to illustrate the 
method in section 4, and concluding remarks are given in section 5. 

2    Automatic Controller Synthesis 

The system to be controlled is modeled by a Petri net with n places and m transitions 
and is known as the process or plant net. The incidence matrix of the plant net is Dp. It 
is assumed that all the enabled transitions can fire. It is possible that the process net will 
violate certain constraints placed on its behavior, thus the need for control. The controller 
net is a Petri net with incidence matrix Dc made up of the process net's transitions and a 
separate set of places. The controlled system or controlled net is the Petri net with incidence 
matrix D made up of both the original process net and the added controller. The control 
goal is to force the process to obey constraints of the form 

Lih < h (1) 

where fip is the marking vector of the Petri net modeling the process, L is an nc x n integer 
matrix, b is an nc dimensional integer vector and nc is the number of constraints. Note that 
the inequality is with respect to the individual elements of the two vectors L\ip and b and can 
be thought of as the logical conjunction of the individual "less than or equal to" constraints. 
This definition will be used throughout this paper whenever vectors appear on either side of 
an inequality sign. 



Inequality (1) can be transformed into an equality by introducing an external Petri net 
controller which contains places which represent nonnegative "slack variables" \ic. The con- 
straint then becomes 

LfXp + nc = b (2) 

where fj,c is an nc dimensional integer vector which represents the marking of the controller 
places. Note that \ic > 0 because the number of tokens in a place can not become negative; 
thus equation (2) implies inequality (1). The controller places insure that the weighted sums 
of tokens in the process net's places are always less than or equal to the elements of b. 
The places which maintain the inequality constraints are part of a separate net called the 
controller net. The structure of the controller net will be computed by observing that the 
introduction of the slack variables forces a set of place invariants on the overall controlled 
system defined by equation (2). 

Place invariants are one of the structural properties of Petri nets. See [8,9,11] for more 
information on Petri nets and their properties and analysis. A place invariant is defined as 
every integer vector x which satisfies 

x y. = x /io (a constant) (3) 

where /z0 is the net's initial marking, and fj, represents any subsequent marking. Equation (3) 
means that the weighted sum of the tokens in the places of the invariant remains constant at 
all markings and this sum is determined by the initial marking of the Petri net. The place 
invariants of a net are elements of the kernel of the net's incidence matrix, i.e., they can be 
computed by finding integer solutions to 

xTD = 0 (4) 

where D is an n x m incidence matrix with n being the number of places and m the number 
of transitions. 

The matrix Dc contains the arcs that connect the controller places to the transitions of 
the process net. Let Z be the set of integers. The incidence matrix D € jin+n^xm of the 
closed loop system is given by 

D 

and the marking vector // G Zn+n<! and initial marking /z0 are given by 

n = VP A*o = A*PO 

(5) 

(6) 

Note that equation (2) is in the form of (3), thus the invariants defined by equation (2) 
on the system (5), (6) must satisfy equation (4). 

XTD = [L I] DP 

D, 
=   0 

LDV + DC   =   0 (7) 



where I is an nc x nc identity matrix since the coefficients of the slack variables in equation 
(2) are all equal to 1. The following proposition follows from this discussion. 

Proposition 1. The Petri net controller, Dc G ZrecXm with initial marking (J,^, which 
enforces constraints (1) when included in the closed loop system (5) with marking (6) is 
defined by 

DC = -LDP (8) 

with initial marking 
Hc0=h- L/J,PQ (9) 

assuming that the transitions with arcs from Dc are controllable, observable, and that ^co > 
0. 

The controller defined by proposition 1 is maximally permissive, assuming that all tran- 
sitions are controllable and observable, in that it will never disable a transition that would 
not directly violate the constraints if fired. The proof of this result is given in [13]. 

Proposition 1 creates a controller which will enable and inhibit various transitions in 
the plant. If any of these transitions are uncontrollable or unobservable, then the controller 
defined by this method may be invalid. The next section shows how a transformation of 
the constraints can be performed in order to avoid these transitions while still enforcing the 
original constraints. 

3    Handling Uncontrollable and Unobservable Transitions 

Consider the situation where the controller is not allowed to influence certain transitions 
in the plant Petri net. These transitions are called uncontrollable. It is illegal for the 
Petri net controller to include an arc from one of the controller places to any of these 
uncontrollable plant transitions, since these kinds of connections can lead to the disabling 
of plant transitions. 

Equation (8) in section 2 shows that it is possible to construct the incidence matrix Dc 

of a maximally permissive Petri net controller as a linear combination of the rows of the 
incidence matrix of the plant. Negative elements in Dc correspond to arcs from controller 
places to plant transitions. These arcs act to inhibit plant transitions when the corresponding 
controller places are empty, and thus they can only be applied to plant transitions which 
permit such external control. Group all of the columns of Dp which correspond to transitions 
which can not be controlled into the matrix Duc. The matrix LDUC must contain no positive 
elements3, as these will correspond to controlling arcs when constructing the supervisor 

3Actually £DUC may contain positive elements when the controller is merely observing uncontrollable 
transitions and not inhibiting them, but this situation is not covered here. 



Dc = —LDp. An enforceable set of constraints will satisfy 

LDuc<0 (10) 

It is also possible that transitions within the plant may be unobservable, i.e., they are 
defined on the Petri net graph because they represent the occurrence of real events, but these 
events are either impossible or too expensive to detect directly. It is also possible, in the event 
of a sensor failure, that a transition might suddenly become unobservable, forcing a redesign 
or adaptation of the control law. It is illegal for the controller to change its state based on 
the firing of an unobservable transition, because there is no direct way for the controller to 
be told that such a transition has fired. Both input and output arcs from the controller 
places are used to change the controller state based on the firings of plant transitions. Let 
the matrix Duo represent the incidence matrix of the unobservable portion of the Petri net. 
This matrix is composed of the columns of Dp which correspond to unobservable transitions, 
just as Duc is composed of the uncontrollable columns of Dp. It is illegal for the controller 
Dc — —LDp to contain any arcs in the unobservable portion of the net, thus an enforceable 
set of constraints will satisfy 

LDuo = 0 (11) 

Conditions (10) and (11) indicate that it is possible to observe a transition that we can not 
inhibit, but it is illegal to directly inhibit a transition that we can not observe. 

uo Suppose, given a set of constraints Lfip < b, we construct the matrices LDnc and ££>, 
and observe that there are violations to conditions (10) and/or (11). Since the controller is 
made of a linear combination of the rows of Dp, it is interesting to consider the situation 
where we use the addition of further rows from Dac in order to eliminate the positive elements 
of LDUC and use rows from Duo to eliminate the nonzero elements of LDuo, i.e., if we are going 
to use a place invariant forming Petri net controller, what additions to the constraints would 
we need to make in order to eliminate positive elements from LDUC and nonzero elements 
from LDuo? What constraints, of the form L'\ip < b', that can be enforced by an invariant- 
based controller, will also maintain the original constraint L\ip < b while not interfering with 
the uncontrollable/unobservable portions of the plant? The following lemma appeared in 
[7]- 

Lemma 2. 
Let Ä! G ~Zn°*m satisfy RxnP > 0 V /xp. (12) 

Let R2 e Z"<x"< 
positive definite diagonal matrix ^    ' 

If L'fj,p < b' where 

L'   =   RX + R2L (14) 

b'   =   R2{b +1)-1 (15) 

and 1 is an nc dimensional vector of l's, then Lpp < b. 



Lemma 2 shows a class of constraints, L'fj,p < b', which, if enforced, will imply that 
Lfip < b are also enforced. In [4], Lemma 2 is used to prove a portion of the following 
proposition. 

Proposition 3. Let a plant Petri net with incidence matrix Dp be given with a set of 
uncontrollable transitions described by Dac and a set of unobservable transitions described 
by Aio- A set of linear constraints on the net marking, L\LP < b, are to be imposed. Assume 
Äi and Ä2 meet (12) and (13) with fii + R2L ^ 0 and let 

[Ri R2 LDUI LDuo   -LDuo 

< [ 0   0   0   -1 ] 

Lfi, 
Ppo 

'PO 6-1 (16) 

Then the controller 
Dc = -{Ri + R2L)DP = -L'DP (17) 

/*c = Ri{b + 1) - 1 - [Rx + R2L)fiP0 =b'- L'pn (18) 

exists and causes all subsequent markings of the closed loop system (5),(6) to satisfy the 
constraint Lfip < b without attempting to inhibit uncontrollable transitions and without 
detecting unobservable transitions. 

The usefulness of proposition 3 for specifying controllers to handle plants with uncon- 
trollable and unobservable transitions lies in the ease in which the matrices Ri and R2, with 
the appropriate properties, can be generated. Algorithms for solving this problem includ- 
ing a method involving matrix row operations and by solving a linear integer programming 
problem appear in [4]. The method of using row operations is outlined below, but instead of 
presenting the pseudo code algorithms of [4], the overall motivation and goals of the method 
are described. 

To meet assumption (12), it is sufficient to assume that all of the elements of Ri are non- 
negative, since the elements of fzp are nonnegative by definition. In general, for unbounded 
fj,p, it is necessary that all of the elements of Ri be nonnegative, however if bounds on (j,p are 
known, then it is possible to generate valid Ri vectors which contain some negative elements. 
If Äi and R2 which satisfy (12) and (13) do exist, then they can be found by performing 

row operations on I>uc 
LDVC 

and £>uc 
LDV 

Row operations act as premultiplications of a 

matrix, just as [ Ri R2 J premultiplies these two matrices in inequality (16). Ri and R2 

can be found by finding a set of row operations which do not involve premultiplication of 
any row by a negative number and which force the LDUC portion of the matrix to contain all 
zero or negative elements and the LDuo matrix to be all zeros. Note that assumption (13), 
which requires R2 to be a positive definite matrix, is not restrictive. This matrix simply 
represents the premultiplication coefficients of the rows of the LDUC and LDuo portions of 



the matrices undergoing row operations. We can assume this matrix is diagonal because 
LDUC and LDuo are linearly dependent with Duc and Duo, i.e., we will never need to take 
linear combinations of the rows in LDUC or LDuo. We can also assume that the diagonal 
elements are positive since, if negative numbers are required, they can be accounted for by 
Ri, which still needs to meet assumption (12). This technique is illustrated for a plant with 
uncontrollable transitions in the following section. 

4    Example - The Unreliable Machine 

We now provide a simple example in order to illustrate the concepts that have been 
covered above. The example plant is partially based on the model of an "unreliable machine" 
from [1]. The machine is used to process parts from an input queue, completed parts are 
moved to an output queue. The machine is considered unreliable because it is possible that 
it may break down and damage a part during operation. This behavior is captured in the 
plant model. Damaged parts are moved to a separate queue from the queue for successfully 
completed parts. The Petri net model of the plant is shown in figure 1, and a description of 
the various places and transitions is given in table 1. 

Figure 1: Petri net model of an uncontrolled unreliable machine. 

The plant model has two uncontrollable transitions, t2 and £3. Transition £3 represents 
machine break down and so obviously can not be controlled. Transition t2 is considered 
uncontrollable because the controller can not force the machine to instantly finish a part 
that is not yet completed, nor does it direct the machine to stop working on an unfinished 
part. The transition is labeled uncontrollable in order to prevent a control design from 
attempting either of these two actions. 



Places 

Pi Input queue - Number of parts remaining 
P2 Machine is busy, part is being processed 
P3 Waiting for transfer to completed parts queue 
P4 Waiting for transfer to damaged parts queue 
P5 Machine is waiting to be repaired 
P6 Completed parts queue 
P7 Damaged parts queue 

Transitions 

*i Part moves from input queue to machine 
*2 Uncontrollable: Part processing is complete 
*3 Uncontrollable: Machine fails, part is damaged 
*4 Part moves to completed parts queue 
is Part moves to damaged parts queue 
te Machine is repaired 

Table 1: Place and transition descriptions for the Petri net of figure 1. 

4.1    Controller Synthesis 

The Petri net model of the plant has the following incidence matrix and marking vector. 

D* 

1 0 0 0 0 0 
1 -1 -1 0 0 0 
0 1 0 -1 0 0 
0 0 1 0 -1 0 
0 0 1 0 0 -1 
0 0 0 1 0 0 
0 0 0 0 1 0 

fh = 

/*1 

A*2 

/J.4 

fJ-5 

/*7 

(19) 

The initial conditions are ^Po=3   0   0   0   0   0   0 1   . 

If the machine is broken, we do not want to load a new part until repairs have been 
completed. This means that places p2 and ps should contain at most one token: 

^2 + A*5 < 1 (20) 

Parts waiting to be transferred to a storage queue, whether completed or damaged, wait 
in the same position on the machine.  The Petri net model uses two places, p3 and p4, to 



represent waiting parts, because there are two different destinations.   In order to prevent 
conflict, the second constraint is 

/*3 + /*4<l ■ (21) 

Using the matrix form of constraint (1) we have 

" 0 1 0 0 1 0 o" 
0 0 1 1 0 0 0 tfp< (22) 

First we must check the uncontrollability condition. 

LDUC = 
-1    0 
1    1 

We need all of the elements of LDUC to be less than or equal to zero if we are to avoid using 
uncontrollable transitions. There is no problem with the first row, but a transformation will 
have to be found to eliminate the l's in the second row. This can be done by applying row 
operations from the matrix Duc to eliminate the positive elements in the second row of LDUC. 

0 0 
-1 -1 

1 0 
0 1 
0 1 
0 0 
0 0 
1 

Row 8 = Row 8 + Row 2 

0 0 
-1 -1 

1 0 
0 1 
0 1 
0 0 
0 0 

[0    0] 

Because constraint (20) required no transformation, the first row of Ri will be all zeros. 
A row operation involving the addition of the second row of the £>uc matrix is required to 
transform constraint (21), thus the second row of Ri will be all zeros with a one in the second 
column. It was not necessary to premultiply either constraint, thus Ä2 will be an identity 
matrix. 

Äi = 
0 0 0 0 0 0 0 
0 1 0 0 0 0 0 Ri 

1 
0 

We now apply equations (14) and (15) to find the transformed constraints represented 
by V and b'. 

0 1 0 0 1 0 o" 
0 1 1 1 0 0 0 Vp< 

1 
1 

6' 



The controller is the calculated using equations (17) and (18). 

Dc = -L'DP = 
-1    1    0 0 0    1 
-10    0    110 

- L'lho = 
' 1 ' 
_ 1 

The controlled net is shown in figure 2. The constraint logic is enforced and no input arcs 
are drawn to the uncontrollable transitions. 

Figure 2: The controlled unreliable machine. 

4.2    Discussion 

An extensive look at many of the issues central to this research can be found in the work 
of Li and Wonham [3]. These authors show that optimal, or maximally permissive, control 
actions which account for uncontrollable transitions can be found by repeated applications 
of a linear integer programming problem (LIP), assuming that valid control actions actually 
exist and that the uncontrollable portion of the net contains no loops. They also give 
sufficient conditions under which the solution to the LIP has a closed form expression. These 
conditions place a certain tree structure on the uncontrollable portion of the net. When this 
tree structure is further limited, Li and Wonham are able to prove that the optimal control 
law which insures Lfip < b can be written Cfip < d. This is the case where it is possible to 
represent the action of the optimal control law with ordinary Petri nets. In this situation, 

it is possible to find R\ and Ä2 by performing row operations on     , JJC 

more desirable, computationally, than analytically solving an LIP. However the tree structure 
assumed by Li and Wonham is only sufficient, not necessary, for example, the structure of 
the uncontrollable part of the plant in section 4 does not conform to Li and Wonham's 
"type 2 tree structure," however an optimal solution was found and implemented using an 

which is much 



ordinary Petri net controller. There are also cases where, following the procedures presented 
above, suboptimal Petri net controllers may be derived. These suboptimal controllers may 
be sufficient for many tasks, depending on the application. 

5    Conclusions 

This paper has presented computationally efficient methods for constructing feedback 
controllers for ordinary Petri nets, even in the face of uncontrollable and unobservable plant 
transitions. The method is based on the idea that specifications representing desired plant 
behaviors can be enforced by making them invariants of the controlled net, and that simple 
row operations on a matrix containing the uncontrollable and unobservable columns of the 
plant incidence matrix can be used to eliminate controller use of illegal transitions. 

The significance of this particular approach to Petri net controller design is that the 
control net can be computed very efficiently, thus the method shows promise for controlling 
large, complex systems, or for recomputing the control law online due to some plant failure. 

There are several areas of ongoing research for this work. Necessary and sufficient con- 
ditions for a linear control law to be maximally permissive in the face of uncontrollable and 
unobservable transitions are not known. Time is becoming an increasingly important factor 
in the area of DES control. Ordinary Petri nets are sufficient for modeling sequences in time 
and concurrency, but it may be desirable to extend the method for use with actual timed 
Petri nets. It may also be possible to extend the applicability of the method by expanding 
the kinds of constraints that may be enforced. Methods for transforming logical predicates 
on the plant behavior into linear inequality constraints, and a class of nonlinear constraints, 
are currently being explored. 
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Deadlock Avoidance in Petri Nets with 
Uncontrollable Transitions1 

Abstract 

Recent results in the literature have provided efficient control synthesis techniques 
for the problem of deadlock avoidance in Petri nets. These results are shown to fit 
within an established framework for the enforcement of linear constraints on the mark- 
ing behavior of a net. Framing the problem in this way allows uncontrollable transitions 
to be included in the plant model when deadlock avoidance is performed. This method 
for constructing deadlock avoiding supervisors in the face of uncontrollable transitions 
is described and illustrated with an example. 

1    Introduction 

Deadlock avoidance is an important and difficult problem in the area of supervisory 
control. When the discrete event system (DES) is modeled by a Petri net (PN) [15-17], the 
net is said to be deadlocked if no transition in the net is able to fire. A net is called live 
if every transition can be, eventually, fired again and again. A deadlock-free net may not 
necessarily be completely live. 

An efficient supervisory control technique for deadlock avoidance in Petri nets has been 
proposed in [4]. This method will guarantee deadlock-freedom, and also liveness for a large, 
useful class of Petri nets. The procedure does not account for possibly uncontrollable transi- 
tions within the plant, but uncontrollable events are a standard feature in most supervisory 
control frameworks. 

Techniques for enforcing general linear constraints on Petri nets with uncontrollable tran- 
sitions do exist [8,9,11-13]. These controllers enforce linear inequalities on the reachable 
markings of the plant while avoiding the inhibition of uncontrollable transitions. Unfortu- 
nately these controllers have not, in the past, accounted for the deadlock problem. In fact, 
the supervisors generated by these techniques may actually be the cause of plant deadlocks! 

In this paper, the results for deadlock avoidance are placed within the framework for 
constraint enforcement in the face of uncontrollable transitions. The combined technique 
expands the applicability of both control procedures, adding the ability to handle uncontrol- 
lable transitions to one, and the avoidance of deadlock to the other. 

Section 2 summarizes the Petri net concepts of traps and siphons, which are important to 
the understanding of the deadlock avoidance procedure discussed in the section 3. Section 
4 then shows how this procedure can be placed within an established framework for the 

1This research was partially funded by the National Science Foundation. Grant ECS95-31485. 



supervisory control of Petri nets with uncontrollable transitions. The technique is illustrated 
in section 5 using an unreliable machine serviced by automated guided vehicles. Concluding 
remarks appear in section 6. 

2    Petri Net Siphons and Traps 

Traps and siphons2 (see [5,15,17]) are sets of Petri net places. Once the set of places 
in a trap become marked, the trap will always be marked for all future reachable markings. 
Similarly, once the marking of a siphon becomes empty, the siphon will remain empty. 

Traps and siphons are defined by the nature of the input and output transitions into a 
given set of places. Let »p refer to the set of input transitions into the place p, and let p« 
refer to the set of output transitions from the place p. The "bullet" notation can also be 
used with sets of places. If S is a set of places, then •£ and S» refer to the set of input and 
output arcs into the entire set S. 

Definition 1.   A set of places S is a siphon iff 

S»C«S 

5 is a minimal siphon iff there does not exist another siphon P such that P C S. 

The definition of a trap is similar. 

Definition 2.    A set of places S is a trap iff 

•S C 5« 

S is a minimal siphon iff there does not exist another siphon P such that P C S. 

A place invariant vector with nonnegative elements indicates a set of places that is both 
a trap and siphon. The converse does not hold true. For example, consider a net with 
no source or sink transitions, i.e., all transitions have both input and output places. By 
definition, the set of all the net's places is both a trap and a siphon, however such a net may 
not be covered by a place invariant. 

2 Siphons are sometimes called "deadlocks." 



3    Deadlock Avoidance 

3.1    Structural Conditions for Liveness 

Siphons are of particular interest in the area of deadlock avoidance; once a siphon becomes 
emptied of tokens, it will forever remain empty and all of the transitions that receive input 
arcs from these places will be dead. Barkaoui and Abdallah [4] have introduced the notion 
of a controlled siphon. 

Definition 3. For a Petri net with initial marking /z0, a controlled siphon is a siphon 
that remains marked for all markings reachable from /z0. 

A controlled siphon may be either trap-controlled or invariant-controlled. A trap-controlled 
siphon contains a trap that is initially marked, thus preventing the siphon from ever losing 
all of its tokens. An invariant-controlled siphon's marking is guaranteed by the presence of 
a place invariant. If the constant weighted sum of markings indicated by a place invariant 
insures that a siphon will never lose all of its tokens, then that siphon is invariant-controlled. 
The exact conditions that such a place invariant must meet appear in [4]. An example of an 
invariant-controlled siphon appears in the example below. 

Example. The Petri net of Figure 1 contains two siphons, Si = {p2,P3} and 52 = 
{P2,P3,P4}, where Si is the only minimal siphon since Si C S2. The net contains no traps, so 
clearly the minimal siphon is not trap-controlled, however an analysis of the net's behavior 
reveals that this siphon will never be emptied. 

The net contains a single place invariant: 

A*2 + fJ-3 ~ AM = 1 

where /^ is the marking of place p,-.   Thus ^2+^3 > 1 is always true and the siphon is 
invariant-controlled. 

The following propositions relate controlled siphons to deadlock freedom and liveness. 
The results are well known in the literature, see [5,15,17], however Barkaoui et al. [3,4] are 
responsible for the extension of the results to include the idea of invariant-controlled siphons 
as well as trap-controlled. 

Proposition 4- Deadlock condition. A deadlocked Petri net contains at least one 
empty siphon. 



Figure 1: A Petri net with a controlled siphon but no trap. 

Proposition 5. Deadlock-freedom. A Petri net is deadlock-free if every siphon in the 
net is a controlled siphon. 

Proposition 6. Commoner's Theorem. An extended free choice (EFC) Petri net is 
live if and only if every siphon in the net is trap-controlled. (Invariant-controlled siphons 
are not required to insure the liveness of EFC nets.) 

Proposition 7. Liveness for AC nets. An asymmetric choice (AC) Petri net is live if 
and only if every siphon in the net is a controlled siphon. 

Nonminimal siphons always contain at least one minimal siphon, so it is only necessary 
to examine a net's minimal siphons when applying the propositions above. 

The Petri net of Figure 1 is live. This follows from Proposition 7 since it is an AC net 
and its single minimal siphon is invariant-controlled. 

There are other Petri net classes for which the condition that all siphons are controlled 
is sufficient for demonstrating that the Petri net is live. These include linear manufacturing 
lines [10], and production Petri nets [2]. The presence of controlled siphons is then sufficient 
to insure liveness for a wide variety of Petri nets, and will, at the very least, insure freedom 
from complete deadlock for Petri nets outside this class. 

3.2    Deadlock Avoidance through Supervisory Control 

A supervisory control technique is introduced in [4] for handling the problem when not 
all of the siphons in a given Petri net are controlled. The method involves adding a place for 
each uncontrolled siphon in the net such that they become controlled. These controller places 
act to restrict behaviors in the original plant that would lead to deadlock, thus they play 
the part of a supervisory controller: allowing the plant's state to evolve unrestricted except 
to prevent transition firings that lead to "forbidden states." An outline of this technique is 
described below. 



Given a conservative, well-marked Petri net with uncontrolled siphons, for each uncon- 
trolled siphon S, create a control place c such that 

c« = {*es»:|-»tns|>|t»ns|} 
•c = {te»S':|<»nS'|>|«*n5'|} 

where the notation |x| refers to the number of elements in the set s, and the weights of the 
arc transitions are given by the differences | • t f] S\ — \t • CiS\ and \t • f\S\ — \ • t n S\ for 
the controller place's output and input arcs respectively. The initial marking of the control 
place, fie,,, is given by 

W* = 2 Wo - 1 (2) 
Pi€S 

where //,-„ is the initial marking of place pi in the plant. 

Each control place insures that its siphon will never be emptied of all of its tokens. An 
analysis of the synthesis technique, (1) and (2), shows that this is done by creating place 
invariants in the controlled Petri net. For each control place c, associated with siphon 5", the 
following place invariant is established in the controlled Petri net. 

£ W -fJ.c = l (3) 
Pies 

Thus the synthesis technique causes formerly uncontrolled siphons in the plant net to become 
invariant-controlled siphons in the controlled net. 

Example. The free choice Petri net of Figure 2 is conservative: it contains a covering 
place invariant x = [1 1 1]T. The three places form a trap, and this trap is minimal. The 
net contains three siphons: 

Si = {Pl,P2> 

!>2 = {Pl,P3} 

&    =    {PI,P2IP3} 

Place pi is marked with two tokens, and it is involved in all three of the net's siphons, thus 
the net is well-marked. 

Siphon 53 is both trap and invariant-controlled, however it is not minimal. Neither 
minimal siphon, Si and 52, is controlled. It is easy to see that if the two tokens in p\ were 
to both transfer to p2 or p3, then deadlock would result. 

A deadlock-avoiding controller is constructed according to (1) and (2). Control places 
c\ and c2 are associated with siphons S\ and S2 respectively. The controlled system, shown 
in Figure 3, is live. Note that the resulting net is no longer a free choice net, though it is 
asymmetric choice. 



Figure 2: A free choice Petri net with uncontrolled siphons. 

Controlling all of the formerly uncontrolled siphons in a net is sufficient for insuring 
liveness for a wide variety of Petri nets, as noted above. Liveness is not guaranteed for nets 
outside this class, though they will still be deadlock-free (weakly-live). For these nets, it is 
proved that if the net is not live (at least one transition is "dead"), then the marking of at 
least one control place must be zero. Based on this fact, an algorithm is presented in [4] that 
determines which transitions should fire in order to cause the filling of control places in the 
fewest number of steps. Because this algorithm actively seeks transitions that should fire, 
rather than the simple enabling and disabling of transitions of a supervisory controller, it is 
not discussed here. 

4    Handling Uncontrollable Transitions 

The deadlock avoidance technique of the previous section is extended here to include 
nets that contain uncontrollable transitions. The firing of an uncontrollable transition is 
restricted only by the state of the plant, a supervisor can not disable an otherwise enabled 
uncontrollable transition. Controllers constructed using the technique of the previous section 
may not be valid if a control place draws an arc to an uncontrollable transition, since this is 
the mechanism by which the controller inhibits transition firing. This problem is handled by 
first noting the similarity of the deadlock avoiding controllers of [4] to similar PN supervisory 
controllers. Methods for handling uncontrollable transitions for these techniques will then 
be applied to the deadlock avoidance problem. 

The controllers in section 3.2 enforce the invariant equation (3). This is equivalent to 
enforcing the following inequality 

EW>1 (4) 
p< es 



Figure 3: The controller, shown with bold places and dashed arcs, insures the liveness of the 
FC net of Figure 2. 

where \ic plays the part of a (nonnegative) excess variable. The inequality is intuitively 
appealing, simply stating that the siphon should never be emptied of tokens. A technique 
for creating Petri net supervisors for enforcing general linear inequalities on the markings 
of Petri nets have been in developed in [7,14,18]. Furthermore, methods for modifying the 
inequality such that the resulting controller accounts for uncontrollable transitions have been 
presented in [8,9,11,13]. The methods of [11,13,14,18] (see also [12], for a summary) are 
discussed below. 

The following constraint is to be imposed on the plant state, /zp G Zn, \iv > 0 

lTHP < b 

where I G Zn,6 G Z, and Z is the set of integers. For inequality (4), 

(5) 

k   = 
-1    if Pi G S 

0    else (6) 
b   =   -1 

for i = 1... n, where k is the ith element of I. The definition of (6) shows that both sides of 
inequality (4) were multiplied by -1 to achieve the "less-than-or-equal-to" form of inequality 
(5). 

If all of the transitions within the plant Petri net are controllable and observable, then it 
has been shown that (5) can be enforced with maximal permissivity by a Petri net controller 
that produces a place invariant on the closed loop plant-controller system. 



The incidence matrix of the closed loop system, D, and its marking, /z, are given by 

D /* = (7) 

where Dp e Z
nXm is the incidence matrix of the plant, Dc € Zlxm is the incidence matrix 

of the controller, and \ic G Z, fic > 0 is its marking. The controller and its initial marking 
/ico is calculated using 

Dc = -FD» 

He, = b - Fpn 

where /iPo 6 Zn is the initial marking of the plant. 

(8) 

(9) 

Some sets of constraints can not be enforced and thus appropriate controllers do not 
exist. It is possible to enforce the set of constraints (5) iff 

b - L^ > 0 (10) 

Inspection of the constraint definition given by (6) combined with the controller construc- 
tion of (8) and (9) shows that this controller is identical to the controller constructed using 
(1) and (2) of section 3.2. Both methods assume that the plant transitions to which the 
controller arcs are directed are controllable. However, it is possible to transform the original 
constraint into a new constraint that will result in a controller that does not interfere with 
uncontrollable transitions while still insuring that the original inequality is maintained. 

Negative numbers in the controller incidence matrix Dc correspond to arcs from the 
control place to the plant transitions. These are the arcs that must be restricted if some 
transitions are uncontrollable. If the columns of Dc associated with uncontrollable transi- 
tions all have nonnegative values, then the controller will meet the requirement imposed by 
uncontrollability. 

Let Duc be an incidence matrix composed of the columns of Dp that correspond to 
uncontrollable transitions. An examination of equation (8) reveals that the controller will 
not interfere with the uncontrollable transitions if 

lTDuc < 0 (11) 

where the inequality is read with respect to each element in the vector lTDu 

If the inequality is not met, then it is desirable to obtain a new inequality l^fo < b' such 
that 

1. Flh < V -> lTnP < b 

2. Z^Duc < 0 



That is, we wish to transform the inequality into a form such that enforcement of the 
new inequality will also imply the enforcement of the original, while obeying the constraint 
imposed by the plant's uncontrollable transitions. Analytical and computational techniques 
for obtaining transformations with these two properties appear in [11-13]. One method of 
computing the transformation involves performing positive row operations on the matrix 

,T ~c      in order to eliminate the positive numbers in the lTDuc portion of the matrix. 

^his technique is illustrated in the example of the following section. 

5    Example - The Unreliable Machine 

Input 
Parts 

Unreliable 
Machine 

Track: 
AGV1 

Track: 
AGV2 

Completed 
Parts 

Ö Damaged 
Parts 

Figure 4: Basic operation of the plant. 

The plant of Figure 4 is based around an "unreliable machine" (see [6] and [13]). The 
machine is used to process parts from an input queue, completed parts are moved to an 
output queue by an automated guided vehicle (AGV). The machine is considered unreliable 
because it is possible that it may break down and damage a part during operation. This 
behavior is captured in the plant model. Damaged parts are moved to a separate queue by 
a second AGV. 

The Petri net model of the plant is shown in Figure 5, and a description of the various 
places and transitions is given in table 1. Places Pu,pi2, and pi3 are used for supervisory 
control. They insure the mutual exclusion of certain operations within the plant. There is 
room for only one of the AGV's to pick up a part (either completed or damaged) from the 
machine, the exclusivity of ps and p10 is guaranteed by pn. There is also only room for a 
single part, either damaged or complete, to wait for pickup by an AGV (places Pi,p2 and p6), 
this is guaranteed by p12. Finally, p13 insures that if the machine breaks down, a new part 



will not be loaded until repairs are complete. It will be shown below that the combined action 
of these supervisory mechanisms create the potential for the plant to become deadlocked. 

\p13 p7     \ p6 

o 
no t6 t7 t8 

Figure 5:  Petri net model of the unreliable machine plant, before accounting for possible 
deadlock. 

The plant model has two uncontrollable transitions, i2 and t6. Transition i6 represents 
machine break down and so obviously can not be controlled. Transition t2 is considered 
uncontrollable because the controller can not force the machine to instantly finish a part 
that is not yet completed, nor does it direct the machine to stop working on an unfinished 
part. The transition is labeled uncontrollable to prevent the control design from attempting 
either of these two actions. 



Places 

Pi Machine is "up and busy," part is being processed. 
P2 Part is waiting for transfer to completed-parts queue. 

Vz Part is being carried to completed-parts queue by AGV 1. 
P4 AGV 1 is free, away from part pick-up position. 
Ps AGV 1 is at pick-up position at machine. 
Pe Part is waiting for transfer to damaged-parts queue. 

V7 Machine is waiting to be repaired. 
P8 Part is being carried to damaged-parts queue by AGV 2. 
?9 AGV 2 is free, away from part pick-up position. 
PlO AGV 2 is at pick-up position at machine. 

Pll Control: Only one AGV at machine. 
Pl2 Control: Only one completed/damaged part at machine. 
Pl3 Control: Wait for repairs before starting new part. 

Transitions 
h Part moves from input queue to machine. 

t2 Uncontrollable: Part processing is complete. 
*3 Part is picked up by AGV 1. 
*4 Part is deposited in completed-parts queue by AGV 1. 
is AGV 1 moves into pick-up position at machine. 
*6 Uncontrollable: Machine fails, part is damaged 
*7 Part is picked up by AGV 2. 
<8 Part is deposited in damaged-parts queue by AGV 2. 
i9 AGV 2 moves into pick-up position at machine. 
iio Machine is repaired. 

Table 1: Place and transition descriptions for the Petri net of Figure 5. 

The plant has the following incidence matrix. 

Dp = 

1 -1 0 0 0 -1 0 0 0 0 
0 1 -1 0 0 0 0 0 0 0 
0 0 1 -1 0 0 0 0 0 0 
0 0 0 1 -1 0 0 0 0 0 
0 0 -1 0 1 0 0 0 0 0 
0 0 0 0 0 1 -1 0 0 0 
0 0 0 0 0 1 0 0 0 -1 
0 0 0 0 0 0 1 -1 0 0 
0 0 0 0 0 0 0 1 -1 0 
0 0 0 0 0 0 -1 0 1 0 
0 0 1 0 -1 0 1 0 -1 0 
1 0 1 0 0 0 1 0 0 0 
-1 1 n n . a f\ n f\ r\ 1 

(12) 



There are two uncontrolled siphons in the plant: 

•Si   =   {pitPitPiOiPiuPu} 

S2   =   {Pi,Ps,P6,Pu,Pu} 

Note that both uncontrolled siphons involve places pn and pi2. The interaction of the mutual 
exclusions being enforced by these two places can result in a deadlock condition. Suppose 
that AGV 1 moves into position at the machine while it is working on a part, i.e., i5 fires 
while /zi = 1. Now suppose the machine breaks down (i6 fires). AGV 1 is stuck waiting for 
a completed part, and AGV 2 is stuck waiting for AGV 1 to move out of the way: deadlock 
has occurred. This deadlock condition corresponds to Si, £2 corresponds to the analogous 
situation with the roles of the two machines reversed. 

Further supervisors will be added to cause the two siphons to become controlled and 
thus prevent the possibility of deadlock. For each siphon, a control place will be created that 
insures that sum of the tokens in the siphon remains greater than or equal to one. Using the 
notation ZT/zp < b we have, for Si, 

-1 -1 0 0 0 0 0 0 0 -1 -1 -1 0 T I   = 

b   =   -1 

Before proceeding to create the control structure using equation (8) and (9), we must 
check to see if the constraint meets condition (11). The incidence matrix of the uncontrol- 
lable portion of the plant, Duc, is given by the second and sixth columns of Dp (since the 
uncontrollable transitions are £2 and to)- 

lTDuc=[0   l] 

We need all elements of lTDuc to be nonpositive to meet inequality (11). If the supervisor 
were created using the given value of I, then it would attempt to achieve its goal by inhibit- 
ing transition t6, which corresponds to machine break down. Unfortunately the unreliable 
machine is not impressed by requests from the controller to simply not break, so we will 
construct a transformed constraint that eliminates the influence of the controller on te. 

Following the technique of [11,13], the transformed constraint is constructed by using 



positive row operations on 

-1 -1 
1 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 

[0   1] 

lTDuc 
to eliminate the positive number in lTDv 

Row 14 = Row 1 + Row 14 

1 -1 
1 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 

[-10] 

Adding row 1 of Duc to eliminate the positive number in lTDuc corresponds to adding 1 to 
the first element of I to construct the new constraint vector I'. 

lT 
V  = 

b' = 

0   -1 

-1 

0   0   0   0   0   0   0 -1  -1   -1  o]' 

The new constraint, l17^ < b', represents the following inequality: 

V-2 + A^io + P\i + A*12 > 1 

This inequality will insure that the number of tokens in S\ remains positive and is also 
admissible with respect to the plant's uncontrollable transitions. 

The incidence matrix and initial marking of the control place are now calculated. 

Dc = -Ier Dv   =[-1110-101000] 

Mclo =b'~ Z^/Xp,,    =    1 

The control for siphon Si is shown as Ci in Figure 6. The control, c2, for siphon S2 is calcu- 
lated in a way directly analogous to that of Ci. The supervised plant meets the constraints 
placed on its behavior and is live. 

6    Conclusions 

A practical method for deadlock avoidance has been combined with results for enforcing 
constraints on Petri nets in the presence of uncontrollable transitions. The results expand 



Figure 6: The unreliable machine model is now live. 

the applicability and utility of the linear constraint inequality, or "general mutual exclusion 
constraint", used in [7-9,11,18]. Furthermore, they introduce a useful method for dealing 
with the deadlock problem into the area of PN DES control with its concept of uncontrollable 
plant transitions. 

For some Petri nets, the maintenance of tokens in all of the net's siphons may not be 
sufficient to guarantee general liveness, though it will at least prevent complete deadlock. In 
this case, the deadlock avoidance method presented here may form a first step while another 
control layer actively plans firings to insure that all transitions remain live. This concept 
fits well with the idea of the "hierarchical intelligent controller" [1]. Here supervision is 
performed at one layer of the controller, to insure general system and safety constraints, 
and optimization and planning routines are carried out at another level, working within the 
boundaries established by the supervisor. 

References 

[1] P. J. Antsaklis and K. M. Passino, editors, An Introduction to Intelligent and Au- 
tonomous Control, Kluwer Academic Publishers, 1993. 

[2] Z. A. Banaszak and B. H. Krogh, "Deadlock avoidance in flexible manufacturing sys- 
tems with concurrently competing process flows", IEEE Transactions on Robotics and 
Automation, vol. 6, no. 6, pp. 724-734, June 1990. 



[3] K. Barkaoui, "Liveness of Petri nets and its relations with deadlocks, traps, and invari- 
ants", Report 92-06, Laboratoire CEDRIC-CNAM, Paris, France, 1995. 

[4] K. Barkaoui and I. B. Abdallah, "Deadlock avoidance in FMS based on structural theory 
of petri nets", In IEEE Symposium on Emerging Technologies and Factory Automation, 
volume 2, pp. 499-510, Piscataway, NJ, 1995. IEEE. 

[5] J. Desel and J. Esparza, Free Choice Petri Nets, Cambridge University Press, 1995. 

[6] A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in Manufacturing 
Systems, IEEE Press, Piscataway, NJ, 1995. 

[7] A. Giua, F. DiCesare, and M. Silva, "Generalized mutual exclusion constraints on 
nets with uncontrollable transitions", In Proceedings of the 1992 IEEE International 
Conference on Systems, Man, and Cybernetics, pp. 974-979, Chicago, IL, October 1992. 

[8] Y. Li and W. M. Wonham, "Control of vector discrete event systems I - the base model", 
IEEE Transactions on Automatic Control, vol. 38, no. 8, pp. 1214-1227, August 1993, 
Correction in IEEE TAC v. 39 no. 8, pg. 1771, Aug. 1994. 

[9] Y. Li and W. M. Wonham, "Control of vector discrete event systems II - controller 
synthesis", IEEE Transactions on Automatic Control, vol. 39, no. 3, pp. 512-530, March 
1994. 

[10] T. Minoura and C. Ding, "A deadlock prevention method for a sequence controller 
for manufacturing control", International Journal of Robotics and Automation, vol. 6, 
no. 3, March 1991. 

[11] J. 0. Moody and P. J. Antsaklis, "Supervisory control of Petri nets with uncontrol- 
lable/unobservable transitions", In Proceedings of the 35th IEEE Conference on Deci- 
sion and Control, pp. 4433-4438, Kobe, Japan, December 1996. 

[12] J. 0. Moody and P. J. Antsaklis, "Supervisory control using computationally efficient 
linear techniques: A tutorial introduction", In Proceedings of 5th IEEE Mediterranean 
Conference on Control and Systems, volume Session MP1, Paphos, Cyprus, July 1997. 

[13] J. 0. Moody, P. J. Antsaklis, and M. D. Lemmon, "Feedback Petri net control design in 
the presence of uncontrollable transitions", In Proceedings of the 34th IEEE Conference 
on Decision and Control, volume 1, pp. 905-906, New Orleans, LA, December 1995. 

[14] J. O. Moody, K. Yamalidou, M. D. Lemmon, and P. J. Antsaklis, "Feedback control 
of Petri nets based on place invariants", In Proceedings of the 33rd IEEE Conference 
on Decision and Control, volume 3, pp. 3104-3109, Lake Buena Vista, FL, December 
1994. 

[15] T. Murata, "Petri nets: Properties, analysis, and applications", Proceedings of the 
IEEE, vol. 77, no. 4, pp. 541-580, 1989. 



[16] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall, Engelwpod 
Cliffs, NJ, 1981. 

[17] W. Reisig, Petri Nets, Springer-Verlag, Berlin; New York, 1985. 

[18] K. Yamalidou, J. 0. Moody, M. D. Lemmon, and P. J. Antsaklis, "Feedback control of 
Petri nets based on place invariants", Automatica, vol. 32, no. 1, pp. 15-28, January 
1996. 


