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Abstract
Applying closed pattern mining to attributed two-mode networks requires two
conditions. First, as in two-mode networks there are two kinds of vertices, each
described with a proper attribute set, we have to consider patterns made of two
components that we call bi-patterns. The occurrences of a bi-pattern forms an
extensionmade of a pair of vertex subsets. Second, Formal Concept Analysis and Closed
Pattern Mining were recently applied to networks by reducing the extensions of pattern
to their cores, according to some core definition. We need to consider appropriate core
definitions for two-mode networks and define accordingly closed bi-patterns. We
describe in this article a general framework to define closed bi-pattern mining. We also
show that this methodology applies as well to cores of directed and undirected
networks in which each vertex subset is associated with a specific role. We illustrate the
methodology first on a two-mode network of epistemological data, then on a directed
advice network of lawyers and finally on an undirected bibliographical network.

Keywords: Closed pattern mining, Core subgraph, Attributed network, Two-mode
network, Directed network

Introduction
The first motivation of this article is to extend the Closed Pattern Mining (CPM) and
Formal Concept Analysis (FCA) methodologies in order to investigate attributed two-
mode networks. Note that there is no difference between the two methodologies in that
they enumerate the same closed patterns, however FCA is also interested in the structure
of this result as a conceptual structure. The present work follows previous work in which
CPM and FCA were applied to undirected and directed graphs. In what follows we recall
the notions which CPM of attributed networks rely on. Then we also discuss the necessity
of defining bi-patterns in order to mine two-mode networks.
Most of the work in social and complex networks analysis consider unlabelled and undi-

rected networks and is concerned by what may be said about the topological structure of
the network. Various ways have been proposed to extract interesting subgraphs. In par-
ticular in the core-periphery model the network is made of a core subgraph, i.e. a dense
subgraph whose vertices are highly connected, together with its periphery, made of ver-
tices highly connected to the core, but poorly interconnected (Borgatti and Everett 2000).
The first formal core definition was the k-core subgraph which is the greatest subnetwork
whose vertices all have degree at least k in the subnetwork (Seidman 1983). By changing
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the topological property we obtain various core definitions within the generalized cores
framework proposed by V. Batagelj (Batagelj and Zaversnik 2011).
Various recent work on complex networks analysis take into account information pro-

vided as labels about vertices or edges. The network is then called a labelled or attributed
network. Recently an approach has been presented extending CPM and FCA to mine
attributed graphs. For that purpose, the vertex subset in which an attribute pattern occurs
is reduced to its core subset using some interior operator (Soldano and Santini 2014).
Applying interior operators to compute closed patterns make them abstract closed pat-
tern for which enumeration algorithms exists (Soldano and Ventos 2011). They are called
core closed pattern when this methodology rely on core definitions (Soldano and Santini
2014; Soldano et al. 2017a).
Now, two-mode networks are made of two vertex sets representing in general two

kind of entities, for instance actors and movies, together with edge relating entities of
each kind, as for instance "G. Clooney acted in Ocean’s Eleven". Until recently they were
mostly investigated by extracting single mode networks, relating for instance actors to
actors who participated to the same movies. However in (Borgatti and Everett 1997) the
authors advocated the direct investigation of two-mode networks, and a core definition
for two-mode networks have been recently proposed by Cerinsek and Batagelj (Cerinsek
and Batagelj 2015). However applying core closed pattern mining to such two-mode net-
works requires to extend the methodology. The difficulty is that when such a network
is attributed each kind of vertex is described according to a proper attribute set. This
means that we have to consider patterns made of two attribute subsets, we further call bi-
patterns, that each selects two interconnected vertex subsets we call its support set pair.
This allows for instance to require actors to be American and movies to be recent, but
only consider vertices of a subnetwork in which each actor played in at least 2 movies and
eachmovie is linked to at least 3 actors. Interestingly, such bi-patternsmay also be defined
in the directed case when considering subgraphs in which a single pattern is associated
to each of the in or out vertex roles. Finally we will see that the methodology we propose
may also apply to undirected networks as far as we may dynamically define two different
roles in the network, namely here considering in one hand high degree nodes and in the
other hand their neighbours.
Note that in oder to properly define bi-pattern mining we also need to extract cores

from subgraphs induced by vertex subset pairs. This also means defining cores made of
two vertex subsets, which goes beyond generalized cores definition.
On the computational side, we adapt the general core extraction algorithm for our

new core definitions and we propose a closed bi-pattern enumeration algorithm that we
have implemented within the minerLC software1. We have experimented the resulting
program on three networks. The first network is an epistemological two-mode network
relating deep sea exploration campaigns to their participants(Bary 2018). The second net-
work is a lawyers network in which directed links represents lawyers asking for advice
from other lawyers(Lazega 2001) that was previously used to illustrate closed patternmin-
ing of attributed directed networks (Soldano et al. 2017b). The third one is an undirected
co-authoring bibliographical network investigated in (Galbrun et al. 2014).
Finally, there may be a large number of bi-patterns to extract from directed and undi-

rected networks, when compared to single patterns: any pair of core closed single patterns
is a candidate to be a core closed bi-pattern. We will propose to focus on bi-patterns in
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which the two components, which are expressed in the same pattern language, are differ-
ent enough. For that purpose we define a homogeneitymeasure and select inhomogenous
bi-patterns.
This work was presented in a workshop article (Soldano et al. 2018) in which the

bi-pattern methodology were first introduced for two-mode and directed networks.
The present article also introduces the star-satellite core definition for undirected net-
works and discuss the bi-patterns extracted and selected from a bibliographical network,
exhibiting in particular some cooperation and competition examples in the pattern min-
ing research domain. Overall, the main contributions of this work may be summarized as
follows:

– A general definition of closed bi-pattern mining.
– A general algorithm for closed bi-patterns enumeration
– A new definition of the core of a network as a pair of vertex subsets
– A general algorithm to extract such new cores
– A definition of homogeneity for bi-patterns.
– The methodology of core closed bi-pattern mining of attributed networks, including

core definitions designed respectively for two-mode, directed and undirected
networks.

“Related work” section discusses related work. “Preliminaries” section gives preliminary
definitions and results on core Closed PatternMining. In “Bi-concept lattices and abstract
closed bi-patterns” section we introduce abstract closed bi-pattern mining and abstract
bi-concept lattices. In “Cores as subset pairs and core closed bi-pattern mining” section
we extend the definition of cores in order to obtain two-component cores and conse-
quently define core closed bi-pattern mining. In “Core definitions: two-Mode, directed
and undirected networks” section we introduce such two components cores for two-
mode, directed and undirected networks. In “Computing the interior of (X1,X2) and
enumerating abstract closed bi-patterns” section we provide algorithms to compute
two component cores and to enumerate the associated closed bi-patterns. Finally, in
“Experiments” section we present the results obtained on the three networks mentioned
above and discuss the scalability of this pattern mining methodology.

Related work
Analyzing attributed graphs led to various ways of extracting cohesize subgraphs. First,
various patternmining work investigatedmining patterns as pairs of constraints on topol-
ogy and labels, and rank them according to interestingness measures (Mougel et al. 2012;
Silva et al. 2012). This includes abstract closed pattern mining mentioned above as well
as work coming from the subgroup discovery field in which selection and pruning of
interesting patterns is performed during enumeration(Atzmueller et al. 2016). A second
way consists in extending community detection algorithms by taking into account both
topology and attribute information. Various definition of hybrid objective functions and
efficient ways to find optimal solutions have been proposed. In most case the result is a
set of non overlapping communities (Baroni et al. 2017; Sánchez et al. 2015; Combe et
al. 2015). The overlapping case has been addressed by soft clustering schemes (Xu et al.
2012), by hard clustering of the edge set (Galbrun et al. 2014) or by building generative
models in such a way that a node may freely belong to several communities (Yang et al.
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2013). Finally, network embedding algorithms have been proposed to learn an appropriate
representation of nodes as vectors, and then apply standard clustering methods (Gao and
Huang 2018).
In all these approaches, when considering the relationship between attributes and

nodes, the latter have a unique role. This is obviously not appropriate regarding two-mode
networks, while in single mode network allowing nodes to have different roles within a
group may lead to a more flexible way to define cohesive subnetworks. What we propose
here, beyond the extension of the core closed pattern methodology to bi-patterns, is a
first step in revisiting the various methodologies mentioned above.
Regarding core definitions, recent work have proposed definitions designed to investi-

gate directed networks. In particular a core definition has been proposed in Giatsidis et
al. (2013) to investigate collaboration within directed networks. The requirement is then
that both indegrees and outdegrees of vertices have to be higher than thresholds, there-
fore all nodes in the core are required to have both the out and in role. A different kind of
core is related to the Hub-Authority idea which considers that a vertex may be prominent
in a network according to only one or both of its out or in roles (Kleinberg 1999). The
HA-core has been recently defined in order to express this idea (Soldano et al. 2017b).

Preliminaries
Abstract closed pattern mining and concept lattices

The closed pattern mining and Formal Concept Analysis (FCA) frameworks consider the
occurrences of patterns in a set of objects V. The pattern language L is partially ordered
in such a way that if q′ ≥ q, i.e q′ ismore specific than q, then whenever q′ occurs in object
v, q also occurs in v. The set of occurrences ext(q) of a pattern q, i.e. the object subset
in which q occurs, is called its support set or its extension in V. The purpose common
to Closed Pattern Mining and FCA is then to represent, in a condensed way, the set of
definable subsets of V, i.e. subsets which are pattern support sets.
Enumerating the definable subsets of V comes down to enumerate the equivalence

classes of patterns when considering as equivalent two patterns with same support set.
Whenever the pattern language is a finite lattice there is a unique most specific pattern
in each class. Recall that a lattice is such that any pair a, b of elements have both a join
a ∨ b and ameet a ∧ b. The meet a ∧ b is the unique greatest lower bound of a and b, i.e.
a ∧ b ≤ a, a ∧ b ≤ b and there is no c > a ∧ b which is a lower bound of both a and b. In
a dual way the join a∨ b is the least upper bound of a and b. When considering an equiv-
alence class of patterns, the most specific element of the class is then the meet of all its
elements. This most specific pattern represents then what is common to all the patterns
that occur in exactly the same object subset.
In the case of powersets, the order is the inclusion order ⊆ and join and meet respec-

tively are set theoretical union and intersection. In standard FCA the pattern language L
is the powerset 2I of a set I of binary attributes and the extensional space is the powerset
2V of the object set V. However, for our purpose of defining and mining bi-patterns we
need a more general presentation. First, we define below closure operators together with
their dual interior operators.

Definition 1 Let S be an ordered set and f : S → S a self map such that for any x, y ∈ S,
f is monotone, i.e. x ≤ y implies f (x) ≤ f (y) and idempotent, i.e. f (f (x)) = f (x), then if
f (x) ≥ x, f is called a closure operator while if f (x) ≤ x, f is called an interior operator.
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Formal Concept Analysis goes beyond enumeration of closed patterns: FCA considers
knowledge discovery as the process of discovering the ordering structure of the data to
analyse. It relies primarily on the Galois connection2 between the pattern language and
the powerset of objects:

Proposition 1 Let (L,≤) be a lattice called the pattern language, V be a set of objects
and d : V → L be an operator that describes the object x as an element d(x) of L. Let
ext(q) = {x ∈ V | q ≤ d(x)} be the subset of objects in which pattern q occurs. Then

– int(V ′) = ∧
x∈V ′ d(x) is the greatest element of L which occurs in V ′

– (int, ext) define a Galois connection on
(
2V , L

)

In what follows we will use interior operators to define the general framework of
abstract concept lattices. First we recall a general result (Pernelle et al. 2002; Soldano and
Ventos 2011) together with a corollary defining abstract concept lattices:

Proposition 2 Let X and L be two lattices, (int, ext) be a Galois connection on (X, L) and
p be an interior operator on X. Let A = p[X] be the image of X under p, then (int, p ◦ ext)
is a Galois connection on (A, L).

Corollary 1 i) f = int ◦ p ◦ ext is a closure operator on L ii) h = p ◦ ext ◦ int is a closure
operator on A iii) The set of the (e, c) pairs where c = f (c) = int(e) and e = h(e) = p◦ext(c)
form a lattice, ordered following A.

Such a pair (e, c) is called a concept, e is its (abstract) extent while c is its intent i.e. the
abstract closed pattern whose abstract support set p ◦ ext(c) is e. As the new equivalence
relation is coarser, i.e. ext(q) = ext(q′) implies p◦ext(q) = p◦ext(q′), there is less abstract
closed patterns than closed patterns.
Abstract closed pattern mining is illustrated in Example 5 of Appendix 2.

Cores and closed pattern mining of attributed networks

Now, consider the object set as the vertex set V of some graph whose vertices are each
labelled by a description in a pattern language. Defining the essential part of a graph, i.e.
its core subgraph, relies on all vertices satisfying some boolean property. Let G = (V ,E)

be a graph. A core property P is defined as a mapping P : V × 2V → {true, false} where
P(v,X) is true whenever vertex v satisfies some condition within the subgraphGX induced
by the vertex subsetX. The core subgraph of a graph (V ,E) is then defined as the subgraph
GV ′ induced by the largest vertex subset V ′, also called its core, whose vertices v all have
property P(v,V ′).
To define a core, we need P to be such that there does exist such a largest vertex subset

with property P. This is true whenever P ismonotone i.e. for any x ∈ X1 ⊆ X we have that
P(x,X1) and X2 ⊇ X1 implies P(x,X2) (Batagelj and Zaversnik 2011; Soldano and Santini
2014). The following result allows then to apply abstract FCA to graphs:

Proposition 3 The operator that reduces a vertex subset V ′ of a graph G to the core of
the subgraph GV ′ is an interior operator on 2V .
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As a result, abstract concept lattices together with closure operators are defined in such
a way that each extent p ◦ ext(c) is a core while the associated intent c is the most spe-
cific pattern that occurs in this core. Abstract closed pattern mining has been applied to
undirected networks (Soldano et al. 2017a) as well as directed networks (Soldano et al.
2017b).

Example 1 We consider the small attributed graph displayed Fig. 1 and the 2-core prop-
erty that states that in a core subgraph all vertices have degree at least 2. We have then
that the support set ext(a) of pattern a is 123457. The pattern a 2-core is then 123: when
adding to 123 any vertex v among 457, the degree of v in G123v is strictly less than 2. There-
fore, p ◦ ext(a) = 123 is the core support set of a. The corresponding core closed pattern is
then int(123) = ab∩ ab∩ ab i.e. the greatest pattern common to the vertices of this 2-core.

Summary

Wehave briefly presented standard closed patternmining and FCA together with abstract
closed pattern mining in which the support set ext(q) of a pattern q is reduced to its
abstract support set p ◦ ext(q) where p is an interior operator. The abstract closed pattern
c associated to q is then the most specific pattern with the same abstract support set. We
have then c = int◦p◦ext(q)where the intersection operator int intersects the descriptions
of the objects in p ◦ ext(q). Then we have introduced core closed pattern mining in which
p reduces a vertex subset to the core of its induced subgraph. Any such core definition,
including the well-known k-core, relies on a core property P such that P(v, S) holds for all
vertices v of the core S. In order to be a core property, P is required to satisfy a monotony
condition. Core closed pattern mining consists then in enumerating the set of core closed
patterns in an attributed graph.

Bi-concept lattices and abstract closed bi-patterns
This section is motivated by the extension of core closed pattern mining to two-mode
networks, i.e. networks in which each edge relates a vertex from a vertex set V1 to a ver-
tex from a vertex set V2. The vertices may then be described in two different pattern
languages L1 and L2. This requires to extend the closed pattern mining and FCAmethod-
ology to patterns made of two components and that we call bi-patterns. A way to properly
define such bi-patterns it to first extends the concept lattices of FCA. For that purpose,
we need to consider lattice products and will obtain a new Galois connection.

Fig. 1 The pattern a 2-core subgraph of an attributed graph. The vertices 123457 of the pattern a subgraph
are displayed in bold. The vertices 123 of Its 2-core subgraph are colored in blue
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Lattice products are also lattices according to the so-called cartesian ordering:

Proposition 4 Let (X1,≤1,∨1,∧1) and (X2,≤2,∨2,∧2) be two lattices, and consider the
cartesian product X = X1 × X2 together with the binary relation ≤ defined as (x1, x2) ≤
(y1, y2) iff x1 ≤1 y1 and x2 ≤2 y2. Then (X,≤,∨,∧) is a lattice with join and meet defined
as:

– (x1, x2) ∨ (y1, y2) = (x1 ∨1 y1, x2 ∨2 y2)
– (x1, x2) ∧ (y1, y2) = (x1 ∧1 y1, x2 ∧2 y2)

Wemay then build a Galois connection on lattices products (see proof in Appendix 1):

Proposition 5 Let X = X1 × X2 and L = L1 × L2 be two lattices product, and let
(int1, ext1) and (int2, ext2) be Galois connections on respective lattices pairs (X1, L1) and
(X2, L2). Consider the mappings int and ext on X and L such that:

– int(x1, x2) = (int1(x1), int2(x2))
– ext(l1, l2) = (ext1(l1), ext2(l2))

then (int, ext) define a Galois connection on (X, L)

In what follows we consider two Galois connections as defined in Proposition 1 and use
an interior operator to create the dependency between the two components of the extent
which is necessary to represent cores of two-mode networks.
Proposition 2 states that applying an interior operator to a lattice involved in a Galois

connection preserves the connection. The interior operator in the bi-concept case applies
to a pair of object subsets, i.e. has domain X = 2V1 × 2V2 :

Definition 2 Let (int, ext) be the Galois connection on (X, L) as defined in Proposition 5
and let p be an interior operator on X. Then, the lattice of the Galois connection (int, p◦ext)
on (p[X] , L) is called an abstract bi-concept lattice.

The intents of the bi-concepts defined this way are what we call abstract closed bi-
patterns. In a similar way as in abstract closed (single) pattern mining, each such abstract
closed bi-pattern is the most specific bi-pattern c such that p ◦ ext(c) where p is an inte-
rior operator. However, bi-patterns occurrences are gathered in object subset pairs while
closure and interior operator are self-map on lattice products. Abstract closed bi-pattern
mining is illustrated in Example 6 of Appendix 2.
In what follows we apply this methodology to attributed graphs and for that purpose we

define such interior operators with respect to pairs of logical properties and use them to
give a new definition of cores as vertex subset pairs.

Cores as subset pairs and core closed bi-patternmining
In what follows we consider the subnetwork induced by a pair of vertex subsets (W1,W2).
When considering W1 ⊆ V1 and W2 ⊆ V2 we simply write (W1,W2) ≤ (V1,V2) or call
(W1,W2) a subset pair of (V1,V2). The following definitionmay be applied to a two-mode
network (V1,V2,E) as well as to a single mode network by considering V = V1 = V2.
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Definition 3 Let G = (V1,V2,E) be a network, the subnetwork induced by the subset
pair (W1,W2) is the network G(W1,W2) = (W1,W2,E′) where E′ is the edge subset relating
vertices fromW1 to vertices fromW2.

To obtain an interior operator, we need to define monotone properties in this context:

Definition 4 P1 : V1 × 2V1 × 2V2 → {true, false} is said monotone if and only if for any
w ∈ V1 and any subset pairs (W1,W2) and (W ′

1,W ′
2) ≥ (W1,W2),

P1(w,W1,W2) impliesP1
(
w,W ′

1,W ′
2
)

In the same way, P2 defined on V2 × 2V1 × 2V2 is monotone whenever for any w ∈
W2,P2(w,W1,W2) implies P2

(
w,W ′

1,W ′
2
)

Cores will then be defined thanks to the following result (see proof in Appendix 1):

Proposition 6 Let (P1,P2) be a pair of monotone properties, and (W1,W2) be a subset
pair of (V1,V2). Then there exists a greatest subset pair (S1, S2) ≤ (W1,W2) such that
P1(v1, S1, S2) holds for all elements v1 of S1 and P2(v2, S1, S2) holds for all elements v2 of S2.

We will further call this subset pair (S1, S2) the core subset pair of (W1,W2) and define
core subgraphs accordingly:

Definition 5 Let G = (V1,V2,E) be a network, and (P1,P2) be a pair of monotone
properties. The subnetwork G(S1,S2) induced by the core subset pair (S1, S2) is called the
core subnetwork of G.

We benefit then from a result similar to Proposition 3:

Proposition 7 The operator that reduces a subset pair (W1,W2) ≤ (V1,V2) to its core
subset pair (S1, S2) is an interior operator on 2V1 × 2V2 .

Summary

In the same way as in core closed pattern mining, given some bi-pattern q = (q1, q2)
we may compute its core support set pair p ◦ ext(q) where p is an interior operator. This
interior operator relies on a pair of core properties that are each required to satisfy a
monotony property. The associated core closed bi-pattern c = (c1, c2) is obtained by
intersecting componentwise, the vertex descriptions in p◦ext(q). Enumerating these core
closed bi-patterns defines the bi-pattern mining task. In the next section we consider var-
ious core definitions to apply bi-pattern mining to two-mode, directed and undirected
attributed graphs. Note that cores are here vertex subset pairs, which extends the pre-
vious (single) core notion referred to in “Cores and closed pattern mining of attributed
networks” section.

Core definitions: two-Mode, directed and undirected networks
Two-mode network cores

According to this new definitions, we first define the h-a BHA-core of a two-mode
network:
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Definition 6 The h-a BHA-core of the two-mode network G is defined through the
following pair of core properties:

– P1(v,X1,X2) holds if and only if the degree of v ∈ X1 in G(X1,X2) is at least h.
– P2(v,X1,X2) holds if and only if the degree of v ∈ X2 in G(X1,X2) is at least a.

P1 and P2 are clearly monotone and therefore the h-a BHA-core is properly defined.
This core definition is equivalent to the definition presented by Cerinsek and Batagelj
(2015) in which the p-q BHA-core is called the (p, q)-core. We provide hereunder an
example of an attributed two-mode network together with the set of closed bi-patterns
associated to its h-a BHA cores.

Example 2 We consider the two-mode network pictured on the leftmost part of Fig. 2.
The two vertex sets are V1 = {l1, l2, l3} and V2 = {r1, r2, r3}. Vertices of V1 are labelled by
subsets of I1 = {a, b, c, d} while vertices of V2 are labelled by subsets of I2 = {w, x, y, z}.
The most general bi-pattern (∅,∅) occurs in the whole network. Its 2-2 BHA-core is

displayed in the middle of Fig. 2 and is induced by (l1l2, r1r2r3). We have then as the cor-
responding closed bi-pattern int(l1l2, r1r2r3) = (ab,wx). When adding attributes to this
bi-pattern we obtain subnetworks whose 2-2 HA-core is empty, except when adding y to
wx. The corresponding bi-pattern (ab,wxy) occurs in (l1l2l3, r1r3) whose corresponding 2-
2 BHA-core is displayed in the rightmost part of Fig. 2 and has vertex sets pair (l1l2, r1r3).
This bi-pattern is closed as no item can be added without losing some vertex. Furthermore,
adding any item to (ab,wxy) results in an empty 2-2 BHA-core. The corresponding bi-
concept lattice is therefore the total ordering of the 3 bi-concepts ((l1l2, r1r2r3), (ab,wx)),
((l1l2, r1r3), (ab,wxy)) and ((∅,∅), abcd,wxyz). Also see Fig. 4 the search tree developed for
this example by the algorithm we propose in “Bi-pattern enumeration” section.

Now, letG(V ,E) be a single mode network, we may still consider the subgraph induced
by a pair of vertex subsets according to Definition 3. This leads to core definitions for
undirected and directed networks and in which vertices may have two roles.

Directed network cores : the hub and authority roles

In the directed case we reconsider the property pair of Definition 6 as a property on
directed networks and obtain a BHA-core definition that extends the hub-authority core
defined in Soldano et al. (2017b). We begin with a definition of the h-a BHA core for
directed network:

Fig. 2 The two 2-2 BHA-cores in bi-concepts of Example 2. The leftmost part displays the whole network. In
the middle we have its 2-2 BHA-core associated to the closed bi-pattern (ab,wx). The rightmost part of the
figure displays the 2-2 BHA-core associated to the other, more specific, bi-pattern (ab,wxy)
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Definition 7 The h-a BHA-core of the directed network G is defined through the
following pair of core properties:

– P1(v,X1,X2) holds if and only if the outdegree of v ∈ X1 in G(X1,X2) is at least h.
– P2(v,X1,X2) holds if and only if the indegree of v ∈ X2 in G(X1,X2) is at least a.

The BHA-core of directed networks extends the hub authority (HA) core definition:

Proposition 8 Let G = (V ,E) be a directed network, let (SH , SA) be its h-a BHA-core,
and let H ∪ A be its h-a HA core where H and A are its hub and authority vertex subsets.
Let then pBHA and pHA be the core operators respectively associated with the BHA core and
the HA core, we have then:

(SH , SA) = (H ,A) and (1)

∪pBHA(X,X) = pHA(X) (2)

for any vertex subset X.

Undirected network cores : the star and satellite roles

The previous section showed that bi-pattern mining could be applied to directed net-
works as far as each bi-pattern component were associated to one of the in and out roles
of the vertices. In what follows we extend the k-near-star core which was defined on undi-
rected networks, and exploits the two roles it relies on (Soldano and Santini 2014). This
new core is called the k-StSa core referring to the "Star" and “Satellite” roles: a star ver-
tex is required to have degree at least k while its neighbours have the satellite role. The
k-StSa core subgraph is then the subgraph induced by its Star and Satellite vertex subsets
as defined below:

Definition 8 The k StSa-core of the undirected network G is defined through the
following pair of core properties:

– P1(v,X1,X2) holds if and only if the degree of v ∈ X1 in G(X1,X2) is at least k.
– P2(v,X1,X2) holds if and only if there exists some edge xv such that P1(x,X1,X2)

holds

In the corresponding core subset pair (St, Sa), St is called the star vertex subset and Sa the
satellite vertex subset.

Star-satellite bi-pattern mining will be exemplified on an undirected bibliographical
network in “Star-Satellite bi-patterns in a bibliographical network” section.

Computing the interior of (X1,X2) and enumerating abstract closed bi-patterns
Computing interiors

We present now the generic algorithm Interior that computes the interior p(X1,X2) =
(S1, S2) associated to the pair of monotone properties (P1,P2). In the bipartite case, i.e.
when V1 ∩ V2 = ∅, the algorithm is basically a rewriting of the algorithm proposed in
Cerinsek and Batagelj (2015). When considering X1 = X2, Interior is similar to the algo-
rithm proposed in Soldano et al. (2017b) to compute the directed HA-core. Let n be the
number of vertices and m be the number of edges, the algorithm performs at most n
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iterations while the inner loop needs O(m) operations as far as p needs only to access
the neighbourhood of each vertex. The overall complexity is thenO(m ∗ n). A more effi-
cient algorithm inO(m ∗max(�, log n)), where � is the highest degree within the graph,
is obtained by adapting the variant cited in Batagelj and Zaversnik (2011) which uses two
heaps as data structures for the vertex subset associated to each mode.
Interior (X1,X2)

2 S1 ← X1; S2 ← X2
3 repeat
4 Z1 ← S1; Z2 ← S2
6 for x ∈ Z1 do
9 if ¬P1(x,Z1,Z2) then withdraw x from S1 end
14 done
6 for x ∈ S2 do
9 if ¬P2(x,Z1,Z2) then withdraw x from S2 end
14 done
15 until S1 = Z1 and S2 = Z2
16 return S1 and S2
The following example illustrates how Interior computes the St-Sa core of an undirected
network:

Example 3 Let G = (V ,E) be an undirected graph with V = 12345 and E =
{12, 13, 23, 34, 45}. We consider its 3 StSa core. Execution of Interior(V,V) starts with
S1 = S2 = 12345 and results in the following iterations:

1. Z1 = 12345 and Z2 = 12345 and then vertices 1245 are removed from S1 as their
degree in G is less than 3 while 3 and 5 are removed from S2 as in G there is neither
and edge x3 nor an edge x5 such that the degree of x is at least 3.

2. Z1 = 3 and Z2 = 124 and no vertex is removed from S1 = Z1 as degree of vertex 3
in G(3,124) still is 3. In the same way no vertex is removed from S2 = Z2 as
undirected edges 31, 32, 34 are in G(3,124). As a result Z1 = S1 and Z2 = S2 and the
iterations stop.

We note in this example that i) only one iteration is necessary to converge, which is always
the case when computing k St-Sa cores and ii) St = 3 and Sa = 124 are disjoint, but this
is not necessarily the case as, for instance, when adding edges 46 and 47 to G. In the new
graph we obtain St = 34 and Sa = 1234567 as 3 and 4 are both stars and neighbours of
each other (Fig. 3).
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Fig. 3 The 3-StS cores of the two graphs from Example 3. On the left, the first graph followed by its 3-StS core
subgraph whose edges (in plain lines) relate stars (in blue) to satellites (in red). On the right, the second graph
followed by its 3-StS core subgraph
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Bi-pattern enumeration

We focus now on abstract closed bi-pattern enumeration. Building the bi-concept lattice
has therefore to be a post-processing step. The enumeration follows the same process
as abstract closed pattern enumeration, i.e. the efficient divide and conquer scheme
described in Boley et al. (2010) as implemented in the MinerLC software. The adaptation
is straightforward: the closure operator is now fA = int ◦ p ◦ ext where p is the interior
operator as defined above. To perform enumeration of abstract closed bi-patterns we spe-
cialize each abstract closed bi-pattern (q1, q2) by adding either an element of I1 to q1 or
an element of I2 to q2.
The algorithm bi-patterns is described below with the following notations:
Let q = (q1, q2) be a bi-pattern, i) add(i, q) returns either (q1 ∪ i, q2) when i ∈ I1 or

(q1, q2 ∪ i) when i ∈ I2, ii) minus(I, q) returns the set of items which belong neither to the
left part nor to the right part of the bi-pattern q = (q1, q2), i.e. minus(I, q) =I1 \q1∪ I2 \q2.
iii) The exclusion pair list EL is a subset pair of (I1, I2).
Algorithm bi-patterns (V )

S ← p(V )

enum(int(S))
Function enum(q, S,EL)

With: q an abstract closed bi-pattern, EL an exclusion list
Ensures: outputs the frequent abstract closed bi-patterns q′

where q′ ≥ q and q′ contains no items of EL
Output (q, S)
for all x ∈ minus(I, q) do // specialize q
Sx ← p(S ∩ ext(add(x, q))) // compute the core of its support set in S
if | Sx |≥ s then
qx ← int(Sx)
if qx ∩ EL = (∅,∅) then // qx not yet enumerated

enum(qx, Sx,EL)

EL ← add(EL, x)
end if

end if
end for

Example 4 We follow on from Example 2 and consider s = 1 as the minimum support.
The algorithm starts by computing the 2-2 HA-core Gc of the whole graph G. G and Gc are
displayed respectively on the left and on the middle of Fig. 2. Function enum is then called
with the core closed pattern q = int(vs(Gc)) = int(l1l2, r1r2r3) = (ab,wx) and first outputs
the pair ((ab,wx), (l1l2, r1r2r3), and then adds to q in turn each item in minus(I, q) =
(cd, yz):

– add(c, q)) = (abc,wx) selects a subgraph whose core is empty. As a result the branch
is pruned as smaller subgraphs would also result in an empty core.

– add(d, q)) = (abd,wx) selects also a subgraph whose core is empty.
– add(y, q)) = (ab,wxy) selects (l1l2l3, r1r3) whose core displayed on the right of Fig. 2

has vertex set (l1l2, r1r3). The core closed bi-pattern qx = (ab,wxy) is computed and
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having null intersection with the empty list EL leads to another recursive call of
enum. This call will output the pair (qx, (l1l2, r1r3)) but there will be no deeper
recursive calls as 2-2 HA structure with strictly less than four nodes are excluded. We
have then EL set to ={y} prior to the next iteration.

– add(z, q)) = (ab,wxz) selects a subgraph whose core is empty.

As enum ends bi-patterns also ends. The two closed bi- patterns that have been output
are the most specific bi-patterns that occur respectively in the 2-2 BHA-cores, displayed on
the middle and the right of Fig. 2. The search tree is represented Fig. 4.

Experiments
The first experiment concerns an original two-mode network, the second concerns a
well-known directed social network available on the minerLC web page while the third
one is an attributed undirected bibliographical network. The actual implementation, as
part of the minerLC suite, relies on a pre-processing of the dataset that transforms the
original network into a new network. Closed bi-patterns are then represented as single
patterns whose items are prefixed by a role. Note that in this section there is no compari-
son with other programs or methods, as the task of bi-pattern mining is new as far as we
know. However regarding the second dataset, we display a single pattern core subgraph,
obtained in a previous work, together with a bi-pattern core subgraph sharing some nodes
with the former.

h-a BHA bi-patterns in a two-mode network of epistemological data

We are currently investigating a two-mode network concerning data related to a MNHN-
IRD program (called MUSORSTOM then Tropical Deep-Sea Benthos) of expeditions
exploring the deep-sea in the Indo-West Pacific region, since 1976 (Bary 2018). In this
network 596 edges relate 74 campaigns (V1) to 268 participants (V2). Campaigns are
described following their date and location, the type of fishing gear (dredge, trawl), the
objectives of the campaign as well as species described during the campaign. Regarding

Fig. 4 The search tree developed by minerLC during the bi-pattern enumeration of Example 4. Each box
represents on the first line a bi-pattern q together with its support set pair e in the current vertex set, and on
the second line the core p(e) of the subgraph induced by this support set pair, preceded by the associated
abstract closed bi-pattern int ◦ p(e). In the top box q is the empty bi-pattern, and its successors are obtained
by adding an item to the abstract bi-pattern of the top box. In all leaves the core p(e) is empty
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participants, the attributes concern the location of the institution they belong to, their
scientific domain as well as bibliometrics. We have in particular searched bi-concepts
associated to 3-4 HA cores (subnetworks with participants to at least 3 campaigns with
at least 4 participants to these campaigns). As an illustration Fig. 5 displays the respective
3-4 HBA-cores S = (S1, S2) and S′ = (

S′
1, S′

2
)
of two bi-patterns q and q′. The corre-

sponding core subgraphs contains respectively S1 + S2 = 80 vertices and S′
1 + S′

2 = 76
vertices. Vertices are displayed at their original position in the whole network according
to a standard force directed drawing (Kobourov 2013). The difference between the extents
are mainly in the left part of the network, i.e. the part that corresponds to campaigns
before 2000 which means that differences concern campaigns and participants which are
strongly related within the original network.

h-a BHA bi-patterns in a Lawyer Advice directed network

This dataset concerns a network study of corporate law partnership that was carried out
from 1988 to 1991 in New England (Lazega 2001). It concerns 71 attorneys (partners
and associates). The vertices 1 to 36 represent partners while vertices 37 to 71 represents
associates, i.e. attorneys with a lower position in the firm. In the Advice network3, each
attorney is described using various attributes, and 892 directed edges xy relate attorney
x who goes to attorney y for basic professional advice. This network was investigated in
Soldano et al. (2017b) applying the abstract closed pattern methodology using the HA-
core definition. We use here the same attributed network as found in the minerLC web
page (see above).
There may be many bi-patterns when considering a single mode network as their num-

ber is quadratic in the number of single patterns in the same network. We will focus on
bi-patterns associated to cores which are unlikely to appear as cores of single patterns. In
this way, bi-pattern analysis is complementary to single pattern analysis. For that purpose
we define the homogeneity of a bi-pattern as the Jaccard similarity of its components sup-
port sets. Homogeneity is then 1 when q1 = q2 and 0 when q1 and q2 never both occur in
the same vertex. We will then select bi-patterns with low homogeneity.

Fig. 5 Two 3-4 HA bi-concept extents from the experiments on the Participant-Campaign two-mode
network. On the left the first bi-pattern select campaigns (prefixed with ’c’ and red-colored) whose main
objective is the faunistic inventory while on the right the second bi-pattern select campaigns that satisfy
various constraints in particular about the species described during the campaign
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Definition 9 (Homogeneity of a bi-pattern q = (q1, q2))

h(q) = |ext1(q1) ∩ ext2(q2)|
|ext1(q1) ∪ ext2(q2)|

We apply our bi-pattern methodology using the 9-9 BHA-core which corresponds to
a 9-9 HA-core as far as we have equal input vertex subsets W1 = W2 = W (see
Proposition 8). As an example, we consider the following closed bi-pattern q = (q1, q2)
where
q1={25 < Age ≤ 50, Seniority ≤25} and
q2={30 < Age ≤ 65, 5 <Seniority}.
This bi-pattern is the abstract closed bi-pattern with least homogeneity among the 82

abstract closed bi-patterns. It represents a group of young lawyers seeking advices from
older lawyers who are in the firm for more than five years. We observe that 68 vertices
over the 71 vertices of the whole advice network satisfy what is common to q1 and q2 i.e.
satisfy q1 ∩ q2 ={25 < Age ≤ 65}. Only 24 vertices among these 68 satisfy both patterns
q1 and q2 resulting in homogeneity h(q) = 0.368. The 9-9 BHA-core subgraph of q is
displayed Fig. 6. It is made of 33 vertices 13 of which are both in H and A vertex subsets.
Note that the 9-9 HA core associated to the single abstract closed pattern {25 < Age ≤ 65}
is much larger: it contains 50 vertices with |H ∩ A| = 23 and also is the 9-9 HA-core of
the whole graph.
We also experimented with a weaker 6-6 BHA-core abstraction, then resulting in 32010

abstract closed bi-patterns among which 262 have homogeneity less than 0.1. There were

Fig. 6 The 9-9 BHA-core of the lawyers advice subnetwork associated to the bi-pattern ({25 < Age ≤ 50,
Seniority ≤25}, {30 < Age ≤ 65, 5 <Seniority}). Vertices from 1 to 36 are partners, the other are associates.
Vertices both red and blue have both the hub and authority roles
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in particular 7 bi-patterns with null homogeneity, one among which represents lawyers
from Boston whose law domain is litigation. In this bi-pattern 7 associate lawyers with
age between 26 and 45 and seniority no more than 5 years go for advice to 7 older lawyers
(both partners and associates) with age between 31 and 60 and seniority more than 6. The
associated core subgraph is displayed on the right part of Fig. 7. This bi-pattern reflects
the composition and cohesion of one of the relatively stable teams of lawyers on the liti-
gation side in this Boston office. It shows the very special proximity in this team between,
on the one hand, Partners 13, 21, 24 and 26 as well as senior Associates 38, 39 and 40 (in
red) and on the other hand the more junior Associates (in blue) who seek advice from the
former. A single Pattern 4-4 BHA-core, previously discussed in Soldano et al. (2017b), is
displayed on the left of Fig. 7 and identifies an even stronger tie between these Partners
and senior Associate 40 who, in 1991, was sought out for advice by the Partners them-
selves in breach of the unspoken status rule related to advice seeking (’You do not seek
advice from others lower in the social pecking order’). In [13, page 107], blockmodelling
clustered Associates 38 and 40 in these Partners’ position (Position One) as structurally
equivalent to them, an exceptional status heterogeneity. A year later, still as exceptionally,
Associate 40 (male) was made partner. More senior Associates 38 and 39 (both female)
had to wait for longer (Associate 38 made it to partnership two years later). Based on the
up or out rule, Associate 39 (who was not part of Position One to begin with) had to leave
the firm. Inspection of these pattern and bi-pattern thus captures a very real process.
Finally we conduct experiments involving 4-4 BHA-cores resulting in 293 490 bi-

patterns, found in few minutes4, to be compared to the 930 single patterns observed in
Soldano et al. (2017b).

Star-Satellite bi-patterns in a bibliographical network

We also investigated the co-authoring network DBLP.E extracted from the DBLP
database. DBLP.E is part of a family of networks used in various experiments on graph
mining (Galbrun et al. 2014). To build the vertices description, first the terms in the titles
of the author’s articles were gathered and stemmed. Stop-words as well as terms that
occur with more than 60% of the authors were then removed. Finally, each researcher is
labelled by the terms whose occurrence count si higher than one percent of the total vol-
ume of terms for that researcher. The network is the ego-network of radius 2 of co-authors
of George Karypis and has 721 authors connected by 1427 undirected co-authoring links.
The maximum vertex degree is 68 and the average vertex degree is 3.95. Each vertex is
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Fig. 7 Two related single pattern and bi-pattern core subgraphs of the lawyers advice network. On the left,
the 4-4 HA-core subgraph associated with the single pattern {30 < Age ≤ 50, 5 < Seniority ≤ 20, Gender-
Man, Office-Boston}. On the right, the 6-6 BHA-core subgraph associated with the bi-pattern ({25< Age ≤45,
Office-Boston, Litigation, Seniority≤ 5, Associate}, {30< Age ≤60, Office-Boston, Litigation, 5< Seniority ≤25})
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described by a subset of labels among a set of 2782 labels and the average vertex descrip-
tion size is 23.9. We experimented bi-pattern mining with 20-Star-Satellites cores. The
core of the whole network is made of 17 stars among a total of 589 nodes in the core. We
display Fig. 8 this core subgraph in which blue nodes represent stars and red nodes repre-
sent satellites. Note that all blue nodes are also red nodes. This means that any star, i.e. an
author with at least 20 co-authors, is also a satellite of, i.e. is connected to, another star.
We obtained 214 bi-patterns among which we found in particular bi-patterns represent-

ing single stars with all their satellites. Most of such bi-patterns have the form (d(s),∅)

where d(s) is the description of the star s and in which the satellites have no common
label. When considering homogeneity as defined above, these single star bi-patterns have
low homogeneity. We also found bi-patterns made of a single star with null homogeneity,
meaning the co-authors of this single star in the core subgraph have at least one common
label they do not share with the star. We display Fig. 9 two such bi-patterns sharing the
same single star.
With low homogeneity we also have a bi-pattern representing a pair of co-

authors, namely Jianyong Wang and Lizhu Zhou), who are both stars and satel-
lites (since an edge relate them). Such a bi-pattern represents a close cooperation
between two senior researchers. Conversely, we have a bi-pattern with two uncon-
nected stars, namely Mohammed J. Zaki and Jianyong Wang, who share labels {clus-
ter,data,databas,efficy,frequ,graph,mine,pattern} but no satellites, thus suggesting some
competition on close subjects. The corresponding core subgraphs are displayed Fig. 10.

Scalability

First note that we did not use any constraint on the cores size, i.e. we considered s = 1
as a minimum size threshold. This is a rather general situation: the topological constraint
associated with the core definition allows a better exploration of patterns occurrences
since strengthening the constraint, i.e. increasing h or a, decreases the number of closed

Fig. 8 The 20-Star-Sat core subgraph of the DBLP.E co-authoring Network. The 2D coordinates are computed
on the whole DBLP.E network using a spring-electric display. Nodes in red are satellites surrounding 17 stars
(in blue). Dashed edges relate satellites
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Fig. 9 Two bi-patterns with null homogeneity and sharing the same single star. The star represents Vipin
Kumar who is labeled as d={algorithm,analysy,assocy,data,graph,mine,parallel,partit,pattern,scalabl,search}.
The bi-pattern q =(d, {Model}) is displayed on the left while the bi-pattern q′ =(d, {Network}) is displayed on
the right. Some co-authors belong to both bi-patterns, i.e. have both labels, while Vipin Kuma has none of
them. See Table 3 the authors associated to these vertices

patterns, therefore allowing to find unfrequent patterns. Now, the first two networks
in our experiments are rather small and dense networks whose vertices have a detailed
description. Scalability of the enumeration depends on the cost of core computation as
well as the number of bi-patterns to output. Core computation is efficient as far as the
logical property P only depends on neighbours of the considered vertex (Batagelj and

Fig. 10 Two bi-patterns q = (q1, ∅) and q′ = (q′
1, ∅) with homogeneity less than 0.003. On the left the core

subgraph represents the two cooperating stars Jianyong Wang and Lizhu Zhou who share labels q1 =
{data,databas,efficy,graph,keyword,mine,query,search,web,xml}. The core subgraph on the right represents
the two stars Jianyong Wang and Mohammed Zaki sharing labels
q′
1 ={cluster,data,efficy,frequ,graph,mine,pattern,query} in a competitive configuration. See Table 4 the

authors associated to these vertices
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Table 1 Two components core definitions for various kind of networks

Two-mode X1 ⊆ V1, X2 ⊆ V2 BHA-core subgraph G′ = GW1,W2 of GX1,X2 s.t.

in G′

degrees inW1 at least h and

degrees inW2 at least a

Directed X1 ⊆ V , X2 ⊆ V BHA-core subgraph G′ = GW1,W2 of GX1,X2 s.t.

in G′

outdegrees inW1 at least h and

indegrees inW2 at least a

Undirected X1 ⊆ V , X2 ⊆ V StSa-core subgraph G′ = GSt,Sa of GX1,X2 s.t.

in G′

degrees in St at least k and

degrees in Sa at least 1

Zaversnik 2011), and has been performed on very large networks. Regarding the closed
pattern enumeration, our algorithm is based on an efficient top-down general algorithm
(Boley et al. 2010) and the implementation uses data reduction techniques borrowed from
(Negrevergne et al. 2013). However the scalability, as mentioned above, depends on the
number of bi-patterns to generate. This number depends on the size of the pattern lan-
guage and bi-pattern mining means a pattern space which size is the product of the single
pattern spaces. Note that though the vertices of the undirected network ICDM_E are
described in a large language, each vertex is described with a small number of terms. As a
consequence the number of bi-patterns with different cores is limited and the enumera-
tion stops after fewminutes (namely 470 s). We still have to experiment bi-pattern mining
on large attributed networks of hundred thousands of nodes and edges. The ICDM_E
case shows that, as far as we consider strong enough core definitions, wemay investigate a
large network in a reasonable time. In the general case there may be a large number of bi-
patterns to investigate (see, for instance, the 4-4 BHA experiments at the end of “h-a BHA
bi-patterns in a Lawyer Advice directed network” section). Only considering, as a post-
processing, bi-patterns with low homogeneity allows to reduce the number of patterns
to examine, while selecting unexpected patterns, adapting the method from (Soldano et
al. 2017b), should also be efficient. Finally, in order to present to domain experts a lim-
ited number of interesting patterns, we still need some way, as the Minimum Description
Length pattern selection scheme (see for instance Spyropoulou et al. (2014)), to sample
among bi-patterns associated with similar cores.

Summary

Table 1 summarizes the various two component cores used in the bi-pattern mining
problems we have investigated. The definitions are very close but concern different types
of networks. More core definitions are obviously possible as far as monotony of prop-
erties pair, as defined in Definition 4, is satisfied. For sake of simplicity the BHA and
StSa cores have been defined using subgraphs induced by vertex subset pairs, accord-
ing to Definition 3. However, this is not mandatory and could preclude some interesting
core definitions. For instance, core definitions designed to constrain some core-periphery
structure should take also into account edges relating nodes within one of the vertex
subset pair.
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Conclusion
In this article we have extended the core closed pattern methodology in order to address
two-mode attributed networks. For such networks there were nomethodology, to the best
of our knowledge, to extract subnetworks according to constraints on both topology and
attributes. For that purpose, we have first extended the core notion: a core subgraph is
now induced from a pair of vertex subsets. In each vertex subset the nodes have to satisfy
an associated topological property. We may then start from any vertex subset pair and
reduce this subset pair to its core, according to this new definition. We have then defined
a bi-pattern as a pattern pair each component of which selects a vertex subset. This leads
to define core closed bi-pattern mining which is a new and natural way to investigate
attributed two-mode networks: each component of a bi-pattern select the nodes associ-
ated to amode.We have also provided efficient algorithms to extract cores and enumerate
core closed bi-patterns.
Closed bi-pattern mining as defined here may be applied to single mode networks when

considering nodes separately according to two different roles. In directed networks we
may then straightforwardly consider the in and out roles of nodes. In undirected net-
works we may still apply bi-pattern mining as far as the core definition relies on two
different roles, as exemplified when introducing the star-satellite core. In these single
mode networks bi-pattern mining allows to extract information which is not accessible
using standard pattern mining: we may rank or select bi-patterns with low homogeneity
i.e. whose components select vertex subsets with a limited or null overlap. This allows
for instance to extract bi-patterns representing young lawyers asking for advice to older
lawyers or representing a group of coauthors made of senior researchers sharing a large
list of keywords together with a set of junior co-authors who share few or no keywords.
It should be emphasized i) that the results and definitions presented in this article

may be extended to multiple patterns i.e. tuples rather than pairs, and therefore to the
analysis of multi mode or multi role networks, and ii) that by using appropriate core
and multi-pattern definitions, the methodology may also be extended to multiplex net-
works i.e. basically to address general linked data. For instance, the core of a multiplex
network may be obtained in the same way as the BHA core of a directed network: as
edges have a type we may associate a node degree with each edge type, associate a role
to each edge type and require nodes to have a sufficient degree to belong to the cor-
responding role component in the core. We could then investigate, for instance, gene
regulation networks by considering two different types of regulation: a regulator may
either increase or decrease the gene expression. Note that in this case edges have both
a direction and a type. There is no technical difficulty in defining appropriate cores
in such situations, but of course core definitions as well as multi-pattern definitions,
should be accurately designed according to the questions we intend to investigate: we
may or not be interested in the direction according to the specific biological question we
consider.

Endnotes
1 https://lipn.univ-paris13.fr/MinerLC/
2Galois connections are defined in Appendix 1
3Available at: https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
4 673 s on a 4-core 2,2 GHz Intel Core i7 computer

https://lipn.univ-paris13.fr/MinerLC/
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
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Appendix 1: Notations, Definitions and Proofs
Table 2 summarizes the main notations regarding bi-pattern mining on attributed graphs.
Closed bi-patterns are ordered in a bi-concept lattice whose definition relies, as the

concept lattice definition, on the Galois connection between an extensional and an
intensional space. We denote both order relations by the set theory inclusion symbols.

Definition 10 (Galois connection) Let(L,⊆) and (X, ⊆) be two lattices. Let int and ext
be two maps defined on X and L by
int: X→ L
ext: L →X
and such that:
C1- ∀e, e′ ∈ X, e ⊆ e′ implies int(e) ⊇ int(e′)
C2- ∀c, c′ ∈ L, c ⊆ c′ implies ext(c) ⊇ ext(c′)
C3- ∀c ∈ L, c ⊆ int(ext(c)), and ∀ e ∈ E, e ⊆ ext(int(e))
Then (int, ext) define a Galois connection on (X, L)

Proposition 5 is then straightforward according to the componentwise defintion of the
orders on pairs X = (X1,X2) and L = (L1, L2).
Note that in closed pattern mining the Galois Connection definition is not always men-

tioned as such since results focus on the closure operator on the pattern language. Still, it
is a simple way using Propositions 5 and 2 to obtain abstract closed bi-patterns as well as
their partial ordering.
The proof of Proposition 6 is also straightforward:

Proof Let (P1,P2) be a pair of monotone properties, and (W1,W2) be a subset pair
of (V1,V2). Then there exists a greatest subset pair (S1, S2) ≤ (W1,W2) such that
P1(v1, S1, S2) holds for all elements v1 of S1 and P2(v2, S1, S2) holds for all elements v2 of
S2.
As we consider the finite case, there are maximal subset pairs such that the required

condition (referred to as C) is satisfied. We will assume that there are two maximal pairs
(S1, S2) and

(
S′
1, S′

2
)
that satisfy C. i) This means that for any element v of S1 we have

that P1(v, S1, S2) holds, and as P1 is monotone we also have that P1
(
v, S1 ∪ S′

1, S2 ∪ S′
2
)

holds. In the same way, for any element v of S′
1 we have that P1

(
v, S1 ∪ S′

1, S2 ∪ S′
2
)

also holds. This means for any element v of S1 ∪ S′
1 we have that P1

(
v, S1 ∪ S′

1, S2 ∪ S′
2
)

holds. ii) The same reasoning regarding S2, S′
2 and P2 shows that for any element v

of S2 ∪ S′
2 we have that P2

(
v, S2 ∪ S′

1, S2 ∪ S′
2
)
holds. From i) and ii) we conclude that

(
S1 ∪ S′

1, S2 ∪ S′
2
)
satisfy condition C, and is therefore greatest than both (S1, S2) and

(
S′
1, S′

2
)
. As both pairs are maximal subset pairs satisfying C, this means that S1 = S′

1
and S2 = S′

2.

Table 2 Notations

G(W1,W2) Subgraph induced by vertex subsetsW1,W2

(P1, P2) Monotone core property pair

(S1, S2) = p(W1,W2) Core subset pair of (W1,W2)

G(S1,S2) Core subnetwork of G(W1,W2)

q = (q1, q2) Closed bi-pattern shared by G(S1,S2) vertices
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Appendix 2: Examples of abstract closed pattern and bi-patternmining
In this section, we exemplify abstract closed pattern mining discussed in “Abstract closed
pattern mining and concept lattices” section and abstract closed bi-pattern mining pre-
sented in “Bi-concept lattices and abstract closed bi-patterns” section. we first note an
useful one to one correspondance between interiors operators on a lattice and their range
(see (Blyth 2005) for the dual result on closure operators):

Proposition 9 Let X be a complete lattice. A subset A of X is the range of an interior
operator on X if and only if A is closed under join. The interior operator f : X → X is then
unique and defined as f (x) = ∨{a∈A|a≤x}a.

We further call A an abstraction of X, hence we may define abstract concept lattices
through interior operators as well as abstractions. By A is closed under join means we
intend that the join of any subset {W1, . . . ,Wn} ofA, including the empty subset ∅, belongs
to A. In the bi-pattern case, X is a pair

(
2V1 , 2V2

)
of powersets and an elementW of A is a

pair of object subsets.
We give now a simple example of abstract closed pattern mining.

Example 5 We exemplify the closure operator f = int ◦ ext returning closed patterns in
the standard closed itemset mining case. We further write subsets as strings, i.e. 12 stands
for {1, 2}. Patterns are subsets of I = {a, b, c, d}, objects in V = {1, 2, 3} are described as
d[V ]= {a, ab, abc}. We have then ext(b) = 23 and as a consequence, f (b) = d(2)∩d(3) =
ab ∩ abc = ab, f (abc) = d(3) = abc and f (d) = abcd. The latter closure means that d is
in the set of patterns with empty support set whose greatest element is abcd.
Now, to exemplify abstract closed patterns, we consider the operator p on 2V such that

p(e) = e except for singletons whose images are the empty set: p(1) = p(2) = p(3) = ∅. It is
straightforward following Definition 1 that p is an interior operator and as a consequence
of Proposition 2, f = p◦ int◦ext is a closure operator. As we have p◦ext(ab) = p(23) = 23,
we obtain that f (ab) = abc as in the non-abstract case. However p ◦ ext(abc) = p(3) = ∅
and now f (abc) = abcd is the greatest element with empty abstract support set.
The corresponding abstraction A = p

[
2123

]
is generated by union closure of size 2 subsets

{12, 23, 13} and it is straightforward that for any e, p[e] is the greatest subset of A smaller
than or equal to e. For instance, p[12]= 12 as 12 belongs to A while p[1]= ∅ as no element
of A except ∅ is included in subset 1.

We provide hereunder an example of closed bi-pattern mining that makes use of
Proposition 9 to represent the interior operator.

Example 6 Let V1 = {1, 2} and V2 = {3, 4} be two object sets and X1 = 2V1 =
{∅, 1, 2, 12} while X2 = 2V2 = {∅, 3, 4, 34}. Objects of V1 are labelled by subsets of
I1 = {a, b, c} while objects of V2 are labelled by subsets of I2 = {w, x}. The descriptions of
the objects from V1 and V2 respectively as subsets of I1 and I2 are as follows:

– d1(1) = ab, d1(2) = b, d2(3) = wx, d2(4) = x

Consider the abstraction {(∅,∅), (1, 4), (2, 3), (12, 34)} and the associated interior opera-
tor p. Now, we have that
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Fig. 11 The abstract bi-concept lattice of Example 6. Each node represents a closed bi-pattern (on the left)
together with the associated extent (on the right)

– p(12, 34) = (12, 34),
– p(1, 34) = (1, 4) and int(1, 4) = (ab, x)
– p(12, 3) = (2, 3) and int(2, 3) = (b,wx)
– p(1, 3) = p(∅, 3) = (∅,∅) and int(∅,∅) = (abc,wx)

We obtain then the abstract bi-concept lattice displayed Fig. 11. The set of abstract closed-
bi-patterns with extent different from (∅,∅) is then {(b, x), (ab, x), (b,wx)}.

Appendix 3: Supplementary details on experimental results

Table 3 Authors from the DBLPE dataset and their index as it appears on the core subgraphs of the
bi-patterns q and q′ depicted en left and right parts of Fig. 9

core(q) \ core(q′) core(q) ∩ core(q′) core(q′) \ core(q)
11- Ahmed_H._Sameh 1- Anurag_Srivastava 25- Ananth_Grama

12- Aleksandar_Lazarevic 2- Clement_H._C._Leung 26- Aysel_Ozgur

13- Aparajita_Ojha 3- Jaideep_Srivastava 27- Chad_L._Myers

14- Arindam_Banerjee 4- K._Ramesh 28- Gaurav_Pandey

15- Christopher_Potter 5- Nishith_Pathak 29- Gowtham_Atluri

16- Dana_S._Nau 6- Sanjay_Ranka 30- Karsten_Steinhaeuser

17- Eui-Hong_Han 7- Shashi_Shekhar 31- Levent_Ertöz

18- Gul_Agha 8- Vipin_Kumar 32- Minesh_B._Amin

19- György_J._Simon 9- Yongdae_Kim 33- Pang-Ning_Tan

20- Hui_Xiong 10- Yow-Jian_Lin 34- Rajat_Aggarwal

21- Kirk_Schloegel 35- Rohit_Gupta

22- Maria_L._Gini 36- Yan_Huang

23- Peter_W._Li 37- Zhi-Li_Zhang

The two associated cores share the same unique star Vipin Kumar (in bold) but have different satellite subsets. By core(q) we
intend the set of vertices of the q core subgraph, i.e. the union of its stars and its satellites. The left column displays authors that
belong only to the q core subgraph, the centre column displays authors that belong to both cores, and the right column displays
authors that belong only to the q′ core subgraph
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Table 4 Authors from the DBLPE dataset and their index as it appears on the core subgraphs of the
bi-patterns q and q′ depicted on the left and right part of Fig. 10

ext(q) \ ext(q′) ext(q) ∩ ext(q′) ext(q′) \ ext(q)
37- Ali_Daud 1- Bing_Lv 68- Adriano_Veloso

38- Chao_Li 2- Charu_C._Aggarwal 69- Arlei_Silva

39- Chen_Li 3- Chuancong_Gao 70- Benjarath_Phoophakdee

40- Chun-Xiao_Xing 4- Chun_Li 71- Boleslaw_K._Szymanski

41- Chunxiao_Xing 5- Guoliang_Li 72- Chris_Bystroff

42- Fangzhen_Lin 6- Guozhu_Dong 73- Christopher_Bystroff

43- Faqir_Muhammad 7- Hongfei_Yan 74- Christopher_D._Carothers

44- Fengrong_Gao 8- Huafeng_Chen 75- Dorgival_Olavo_Guedes_Neto

45- Gang_Li 9- Jianhua_Feng 76- Geng_Li

46- Hang_Guo 10- Jian_Pei 77- Hélio_Almeida

47- Hao_Wu 11- Jianyong_Wang 78- Hilmi_Yildirim

48- Jie_Tang 12- Jiawei_Han 79- Jierui_Xie

49- Juan_Liu 13- Jun_Zhang 80- Jiong_Yang

50- Juanzi_Li 14- Krishna_Gade 81- Karam_Gouda

51- Ju_Fan 15- Lili_Jiang 82- Lizhuang_Zhao

52- Jun_Han 16- Lin_Guo 83- Medha_Atre

53- Kewen_Wang 17- Lizhu_Zhou 84- Mohammad_Al_Hasan

54- Ling_Feng 18- Min_Wang 85- Mohammed_J._Zaki

55- Ling_Lin 19- Ning_An 86- Mosab_Hassaan

56- Lin_Qiao 20- Petre_Tzvetkov 87- Naren_Ramakrishnan

57- Na_Ta 21- Philip_S._Yu 88- Saeed_Salem

58- Qi_Guo 22- Ping_Luo 89- Vineet_Chaoji

59- Qinke_Wang 23- Qian_Qian 90- Wagner_Meira_Jr.

60- Xiang_Li 24- Qingyan_Yang 91- Yongqiang_Zhang

61- Xuhui_Liu 25- Wei_Feng

62- Xutao_Du 26- Wei_Shen

63- Yaoqiang_Xu 27- Xiaofang_Zhou

64- Yi_Wang 28- Xiaoming_Fan

65- Yong_Zhang 29- Xiaoming_Li

66- Yuguo_Liao 30- Ying_Lu

67- Zhiqiang_Zhang 31- Yukai_He

32- Yu_Wang_0011

33- Yuzhong_Sun

34- Yuzhou_Zhang

35- Zhiping_Zeng

36- Zhiwei_Xu

The left column displays authors that belong only to the q core subgraph, the centre column displays authors that belong to
both cores, and the right column displays authors that belong only to the q′ core subgraph
Authors in bold are stars in the core subgraphs depicted in Fig. 10
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