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Abstract
The advent of Online Social Networks (OSNs) has offered the opportunity to study the
dynamics of information spread and influence propagation at a huge scale.
Considerable research has focused on the social influence phenomenon and its impact
on OSNs. Social influence plays a crucial role in shaping people behavior and affecting
human decisions in various domains.
In this paper, we study the impact of social influence on offline dynamics to study
human real-life behavior. We introduce Social Influence Deep Learning (SIDL), a
framework that combines deep learning with network science for modeling social
influence and predicting human behavior on real-world activities, such as attending an
event or visiting a location. We propose different approaches at varying degree of
network connectivity with the objective of facing two typical challenges of deep
learning: interpretability and scalability.
We validate and evaluate our approaches using data from Plancast, an Event-Based
Social Network, and Foursquare, a Location-Based Social Network. Finally, we explore
the usage of different deep learning architectures, and we discuss the correlation
between social influence and users privacy presenting results and some notes of
caution about the risks of sharing sensitive data.
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Introduction
Information diffusion in techno-social systems has received tremendous interest in the
last decade. The advent of Online Social Networks (OSNs), and their intrinsic multi-
relational data, has offered the opportunity to study the dynamics of information spread
and influence propagation at a huge scale. Considerable research has focused on the dif-
fusion of information in OSNs, which is also referred to as electronic Word of Mouth
(eWOM) (Brown et al. 2007; Goldenberg et al. 2001; Huete-Alcocer 2017). The power-
ful influence of eWOM can shape individuals’ actions, affect their decisions, and also be
exploited tomanipulate their opinions. On one hand, OSNs have been shown to be abused
for nefarious purposes (Ferrara 2015; Bessi et al. 2015; Luceri et al. 2019), such as astro-
turf campaigns (Metaxas and Mustafaraj 2012; Ratkiewicz et al. 2011), antivaccination
movements (Tangherlini et al. 2016; Subrahmanian et al. 2016), and stock market manip-
ulation (Hwang et al. 2012; Ferrara et al. 2016). On the other hand, the understanding of
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how influence propagates in OSNs opens the door to a wide range of applications more
beneficial for users, such as targeted advertising, viral marketing, and recommendation.
This has become possible as OSNs do not only connect people, by providing a medium
for spreading processes (Newman 2003; Albert and Barabási 2002; Castellano et al. 2009),
but also (and most importantly) reveal preferences, activities, and interests of their users
over the time.
For these reasons, influence propagation received huge interest, both in academia and

industry, providing multiple applications in various fields. In particular, many efforts have
been devoted to the comprehension and modeling of the social influence phenomenon.
Social influence is recognized as a key factor that governs human behavior and drives
individual decisions. The main idea behind social influence is that the interaction with
other individuals (or a group) may affect or change subjects’ thoughts, feelings, or behav-
ior. Though social interactions may occur both online (through OSNs) and offline, social
influence underlies real life spreading phenomena, such as the diffusion of opinions and
the adoption of products, with inevitable repercussion on marketing, politics, health, and
business (Domingos and Richardson 2001; Mønsted et al. 2017). A considerable amount
of work has been conducted to investigate social influence and analyze its effects (Aral et
al. 2009; Bakshy et al. 2011; La Fond and Neville 2010). In Singla and Richardson (2008)
and (Anagnostopoulos et al. 2008), the authors propose how to qualitatively measure the
existence of social influence, whereas in Crandall et al. (2008) the correlation between
social similarity and influence is examined. In Luceri et al. (2017); Luceri (2016), we intro-
duce a novel interpretation of physical, homophily, and social community, as sources of
social influence. Along with these qualitative studies, complementary research efforts
have focused on developing predictive models of diffusion processes (Guille et al. 2013).
This broad research area presents two classes of social influence modeling. We can dis-
tinguish macro- and micro-level models according to the outcome granularity. While the
former class (Matsubara et al. 2012; Myers et al. 2012) focuses on predicting the result of
a diffusion process at the network level (e.g., number of adopters, spreaders, or infected
individuals overall the network), the latter aims to study social influence at the user-level,
providing prediction of a given spreading process for each subject (Goyal et al. 2010; Saito
et al. 2008).

Micro-level social influence modeling

In this paper, we focus on social influence at the user-level as we are interested in
measuring whether and to what extent an individual is influenced by other subjects.
More specifically, we leverage on dyadic social interactions between subjects to predict
their behavior. Such micro-level analysis suits several real-life applications, such as tar-
geted advertising, recommendation, and viral marketing. In particular, viral marketing
is a convenient example of how to exploit social influence to maximize the adoption
of a product or, more in general, the information spread. Although influence maxi-
mization (Domingos and Richardson 2001; Richardson and Domingos 2002; Kempe et
al. 2003; Kimura et al. 2007) is not the target of this paper, the seminal models pre-
sented in Kempe et al. (2003) provide the underpinning of multiple existing approaches
to model diffusion processes in social networks. The models proposed by Kempe et
al. (2003), referred to as Independent Cascade (IC) model and Linear Threshold (LT)
model, map a spreading process to every single node of an underlying graph. In the IC
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model, each subject independently influences her friends with given influence proba-
bilities (the power to influence neighbors (Goyal et al. 2010)), while in the LT model,
a subject is influenced by her friends if the combination of their total influence prob-
abilities exceeds a threshold. Both models assume to have as input a social network
whose edges are weighted by a measure of influence probability, as shown in the exam-
ple in Fig. 1. However, these values are not known in practice and, thus, they need to be
estimated.
Many efforts have been made to quantitatively measure the influence probability

between pairs of friends (Gruhl et al. 2004; Saito et al. 2008; Tang et al. 2009; Goyal et al.
2010; Liu et al. 2012; Fang et al. 2013). Existing works explored different forms of social
influence. In Tang et al. (2009), the authors proposed a graphical probabilistic model to
measure influence strength. In their approach, they analyze influence propagation at the
topic-level with the objective of learning influence probabilities with respect to given top-
ics. Similarly, Gruhl et al. (2004) characterize information diffusion by tracking topics and
individuals across different blogs. On the other hand, other approaches (Goyal et al. 2010;
Saito et al. 2008) offer more general models (topic and domain independent) by lever-
aging only the history of the actions performed by each subject. In particular, Goyal et
al. (2010) rely on an instance of the LT model introducing different metrics to estimate
the pairwise influence between two individuals. In Saito et al. (2008), authors focused on
the IC model and employ the Expectation-Maximization (EM) algorithm to estimate the
influence probability associated with each edge. More recently, Zhang et al. (2013, 2015)
studied social influence on Twitter and introduced the concept of social influence local-
ity on users’ retweet behavior. They proposed two approaches, i.e., a logistic regression
classifier and a factor graph model, based on social influence locality and three kinds of
hand-crafted features.

Fig. 1 Ego network of user u5. Each node connected to u5 represents a friend, while the weight on the edge
indicates the influence probability
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Contributions

In this work, we propose a social influence model for forecasting influence propagation in
real-life scenarios. Although our model can be generalized to every kind of human activ-
ity (both online and offline), we focus on real-world (offline) activities, such as attending
an event or visiting a location. To the best of our knowledge, this is the first work that
seeks to provide a social influence model of real-life activities. Similar works focused on
online activities, such as following, grouping, voting, tagging, etc., in OSNs and blogs. For
this purpose, we analyze data from Plancast, an Event-Based Social Network (EBSN), and
Foursquare, a Location-Based Social Network (LBSN). Such platforms provide remark-
able opportunities to analyze users’ real-world behavior and interactions from the lens of
online social media.
Similarly to (Goyal et al. 2010; Saito et al. 2008), the proposed approach does not require

any specific knowledge of the domain under analysis and can be applied to a variety of
contexts. In fact, we aim at learning influence strengths among subjects by leveraging the
actions performed by users in their history and how such actions propagated between
each other. Thereby, our model takes as input only the raw data related to users’ actions
in OSNs (i.e., the action log) and, thus, does not require any hand-crafted features, which
in turn may depend on the specific OSN and on the availability of metadata. Although the
models suggested in Goyal et al. (2010); Saito et al. (2008) can be generalized to various
contexts, they have two main drawbacks: (i) they assume that the probability of friends
influencing a subject are independent of each other, and (ii) they do not consider the
actions not performed by the subject (but performed by her friends) to learn the influence
probabilities.
In our preliminary study (Luceri et al. 2018), we showed that these two limitations can

be overcome by employing a deep learning approach. We proposed the usage of Deep
Neural Networks (DNNs) to model social relationships embedded in OSNs and learn the
interplay among their users. This work represents the natural completion of our previ-
ous intuition. In particular, here we expand our previous approach in a framework, called
Social Influence Deep Learning (SIDL), for modeling and forecasting social influence.
We propose different SIDL approaches at varying degree of network connectivity ranging
from the local ego network of each user to the totality of the social network. Further, we
extend our experiments using data from two different OSNs (an LBSN and an EBSN) to
validate and evaluate the proposed approaches. Moreover, we explore the usage of differ-
ent deep learning architectures, and we discuss the relationship between social influence
and users’ privacy presenting results and some notes of caution about the risks of sharing
sensitive data. Finally, we address two main typical challenges of deep (machine) learning
models: interpretability and scalability.
Although DNNs have reached outstanding performance on different tasks, they pro-

duce an obscure model and, for this reason, they are referred to as black boxes. A black
box is defined as a predictor, whose internals are either unknown to the observer or they
are known but uninterpretable by humans (Guidotti et al. 2018). Contrarily, an inter-
pretable solution is desirable as deep learning is nowadays used in critical areas, such
as justice and medicine, where the understanding of the model logic, functionality, and
results can be necessary. However, according to the analysis provided by Lipton (2016),
interpretability holds no agreed-uponmeaning, despite numerous papers assert the inter-
pretability of their models. In this study, the author claims that interpretability is not a
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monolithic concept, but it reflects several distinct ideas. For this reason, to bemeaningful,
any assertion regarding interpretability should fix a specific definition. Lipton describes
two categories of interpretability. The first is related to the concept of transparency (as
the opposite of blackbox-ness) and focuses on the understanding of the model, its com-
ponents, and training algorithms. The second category, namely post-hoc explanations,
does not aim to explain how a model works but has the objective of extracting informa-
tion from a learned model. In particular, given the output of a black box predictor, the
problem consists in reconstructing an explanation for it, without necessarily elucidate the
logic behind the model. This problem is called outcome explanation problem, and it is the
notion of interpretability we study in this work. One of the most common technique to
solve the outcome explanation problem is to focus on explaining what a neural network
depends on locally, instead of trying to understand the full mapping learned by themodel.
This local explanation aims to predict the response of the predictor in a neighborhood of
a given input. One of the technique generally used to accomplish this purpose is Saliency
Mask (SM). SM aims to explain the DNN outcome by identifying a subset of the input,
which is mainly responsible for the prediction. As an example, in Fong and Vedaldi (2017),
SM is used to highlight the salient part of the images that causes a certain outcome.
While interpretability is a more rational problem, scalability represents a practical issue

related to DNN implementation. The idea is that the social influence model should be
able to adapt and scale to previously unseen users. In this sense, scalability issues may
occur when new users register to a social network. A new user can perform activities,
create social connections with other OSN users, and influence them. In such a case, the
social influence model should be adjusted in order to consider new users in the social
network. Our objective is to mitigate this issue in the most efficient way, in terms of time
and resource consumption, while preserving performance.
Towards meeting these challenges, in this paper, we propose to combine network sci-

ence with deep learning. We consider different models by varying the network structure
in which the user in embedded. We first describe the Global-SIDL approach, which con-
siders the whole social network in a unique model. We then narrow our approach to the
ego network of each individual and build a local model (Local-SIDL) for each user in
the dataset. The idea is to follow the previously described principle of local explanation
by considering the neighborhood (friends) of a given input (user) to explain the output
(user behavior). Finally, we propose to decompose the social network in mesoscale level
structures, here identified through a community detection algorithm, so as to consider a
larger social structure within each user is embedded, while maintaining a good trade-off
between performance, interpretability, and scalability.

Problem definition
Let G = (V ,E) be an undirected graph representing the social network, where V =
{u1,u2, . . . ,uN } is the set of users, and E is the set of edges that connect them. The edge
(ui,uj) ∈ E indicates a social tie between ui and uj, which in turn are referred to as
friends. We denote with Al the action log: a record of the actions performed by every
user in the social network. Each entry of the action log Al is a tuple (ti,ui, a) represent-
ing the action a performed by user ui ∈ V at time ti. Let A be the set of the actions
performed in Al, for each action a ∈ A, each user is either active (if she performed the
action) or inactive (otherwise). In accordance with (Goyal et al. 2010; Saito et al. 2008),
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we say that an action a ∈ A propagates from ui to uj if the two following conditions
are met:

• (ui,uj) ∈ E,
• (ti,ui, a), (tj,uj, a) ∈ Al with ti ≤ tj.

We consider the scenario where ti = tj to take into account the mutual influence between
users in performing an activity at a fixed time t = ti = tj, e.g., attending an event. Finally,
we indicate with Aui the set of actions performed by ui and with Sa,ui the set of active
friends of ui for the action a.
In this paper, we keep track of user activities over time to model complex social rela-

tionships among them. In particular, we focus on the comprehension and modeling of
the social influence phenomenon, with the final objective of forecasting influence prop-
agation in real-world scenarios. The idea behind our social influence modeling is to
learn influence strengths among subjects by leveraging the actions performed by users
in their history and how such actions propagated between each other. Once the model
is trained, we target to exploit it to predict users’ real-life behavior as a consequence of
other users’ actions. More specifically, our objective is to infer whether users will per-
form action a based on their active friends Sa,ui ,∀a ∈ A. The rationale of this approach
is based on the concept of social influence itself. A subject may perform an action, e.g.,
to buy a new product or to watch a TV show, when her friends have performed the
same action.
To this aim, we introduce Social Influence Deep Learning (SIDL), a deep learning

framework for both modeling and forecasting social influence. SIDL is based on Deep
Neural Networks (DNNs), a class of machine learning algorithms inspired by biological
nervous systems. The rationale of SIDL is the capability of a DNN to automatically extract
complex relationships embedded in the input data bymeans of its multi-layer architecture
(He et al. 2017). Thereby, if we represent each user in the social network as an input node
of the DNN we can model the interplay among users through the DNN layers. For each
user, we consider the history of the actions propagated from her friends to train the DNN
and tune the model parameters. Once the DNN is trained, we utilize the influence model
to predict new (not performed yet) activities based only on the activities performed by
the user’s friends.
SIDL includes different approaches at varying degree of network connectivity with the

purpose of finding both a scalable and interpretable solution. Thereby, we distinguish: (i)
a network-basedmodel, called Global-SIDL (G-SIDL), which takes into account the whole
social network; (ii) a user-based model, called Local-SIDL (L-SIDL), which considers only
the ego network of the user; and finally (iii) a community-based model, referred to as
Community-SIDL (C-SIDL), which decomposes G-SIDL in smaller sub-models based on
social network partitions.

Data
For validating and evaluating the SIDL framework, we consider different datasets from
two OSNs. In particular, we focus on scenarios of real-life activities, such as attending
an event or visiting a location. The idea is that a subject might participate in an event
because she sees her friends taking that decision, or she may visit a location (e.g., a bar
or a restaurant) because some friends have been there before and suggested her that
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venue. For this reason, we analyze data from Plancast, an Event-Based Social Network
(EBSN), and Foursquare, a Location-Based Social Network (LBSN). EBSN and LBSN pro-
vide remarkable opportunities to analyze users’ real-world behavior through OSNs. In
these scenarios, the set of actions A is defined by the event participation and location
visits in the EBSN and LBSN, respectively. Both of these actions reveal the interactions
between users and the real world (Esfandyari et al. 2016), which is widely different from
the virtual world and its online activities (following, grouping, voting, tagging, etc.) (Gao
et al. 2012). Thereby, Aui ⊆ A represents the set of events (locations) attended (visited)
by subject ui ∈ V , while a subject is considered active for the action a if she decided to
participate in (visit) the event (location) a ∈ A.
Table 1 and Fig. 2 summarize properties and statistics of both the OSNs analyzed in

this study. It should be noticed that we do not model users across the two OSNs as their
IDs have been anonymized before the data release. Thus, it is not possible to match users
from different datasets.

Foursquare

In recent years, LBSNs have become popular services that allow users to register (check-
in) at named places and share their location with their friends. Check-in information
includes latitude, longitude, category, the ID of the location, and time of the check-in. His-
torical check-ins provide useful hints about user interests and preferences, and represent
a promising source of activity data to study human behavior and social dynamics (Noulas
et al. 2011).
In this study, we analyze data from Foursquare, one of the most popular LBSN. We

explore a dataset collected in Bao et al. (2012), which gathers Foursquare check-ins
from the cities of New York and Los Angeles. The first dataset (New York) was col-
lected for 30 months from May 5, 2008, while the second dataset (Los Angeles) gathered
check-ins for 36 months from February 5, 2009. In Foursquare, users can check-in
their location through a mobile application, give recommendations (tips), connect with
their friends, and share with them their experiences. In such a scenario, users have the
chance to discover new venues, look for trend places, and read friends’ reviews. This
bundle of information can produce a social contagion effect, which may affect user
activities.

Table 1 Basic statistics of the OSNs used in this study

Foursquare Plancast

NYC LA

n 47240 30207 75598

m 596379 246560 1501618

z 25.25 16.32 39.7

l 10 12 11

C 0.14 0.15 0.23

D 0.0005 0.0005 0.0005

p 425692 268102 869200

v 206098 144348 401634

The properties measured are: total number of nodes n = |V|; total number of edgesm = |E|; average degree z; diameter l;
average clustering coefficient C; network density D; total number of performed actions p = |Al|, i.e., attending an event or
visiting a location; total number of venues v, i.e., events or locations
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Fig. 2 Aggregate Statistics for the Foursquare (on the left) and Plancast (on the right) dataset: (a) and (b)
depict the number of users that visited (attended) a venue (event)

Plancast

An EBSN is a web platform where users can create events, promote them, and invite
friends to participate. Events range from small get-together activities, e.g., Sunday brunch
or movie night, to bigger events, e.g., concerts or conferences (Liu et al. 2012). The
rationale behind the choice of utilizing an EBSN is the intrinsic agglomerative power of
the events. In fact, participation in an event represents a direct and explicit form of social
interaction, other than a personal interest. An EBSN provides a social network service
to connect friends and users with common interests. In the event main page, a user can
see the information related to the event, e.g., date, location, and description, along with
the confirmed participants. This information may activate processes of social influence,
which can drive user participation in the events (Georgiev et al. 2014; Luceri et al. 2017).
In this study, we use a dataset collected by Liu et al. (2012) from the EBSN Plancast

for three months (from September to November 2011). Plancast allows users to sub-
scribe to each other providing direct connections among them. Subscription is similar
to the concept of following on Twitter. Users can directly follow friends’ event calendars:
this mechanism allows a subject to be aware of friends’ interests, event creation, and
participation.

Methodology
In this Section, we first provide a short introduction to DNNs to motivate and intro-
duce the SIDL framework. We then present the SIDL approaches and corresponding
implementations.

Deep neural networks

Deep Learning is a fancymarketing name for artificial neural networks, a class of machine
learning algorithms inspired by biological nervous systems. In recent years, neural net-
works (LeCun et al. 2015; Schmidhuber 2015) have found successful applications in a
growing number of areas ranging from speech and image recognition to natural language
processing and computer vision. This is confirmed by the intensive research and develop-
ment that has been carried out during the last years in numerous fields, not only directly
related to Artificial Intelligence (AI) applications.
An artificial neural network is defined by a combination of three layers: input layer (x),

hidden layers (h), and output layer (y). A Deep Neural Network (DNN) is an artificial
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neural network with multiple hidden layers (h = h1,h2, . . . ,hL) between the input and
output layers. Each layer is composed of multiple processing units (neurons), which use
the output from the previous layer as input. The cascade of multiple layers is connected as

hj =
{

φj(xWxhj) if j = 1
φj(hj−1Whj−1hj) if 1 < j ≤ L

y = φo(hLWhLy) ,

where Wkl indicates the weights of the connections between layer k and l, while φj is a
non-linear activation function (e.g., sigmoid, ReLU, tanh, softmax) of each hidden node
at layer j, and φo is a non-linear activation function of each output node.
The cascade of multiple layers consisting of non-linear neurons allows a DNN to

approximate any continuous function. Moreover, DNN replaces the manual feature
extraction procedure by building up a complex hierarchy of concepts (abstractive fea-
tures) through the multiple layers to automatically extract relationships embedded in
the input data (He et al. 2017). The predictive model of a DNN can be formulated as
ŷ = f (x|�), where ŷ denotes the predicted output, � represents the model parameters
(i.e., the inter-layers weights), and f indicates the function that maps the input x to the
output ŷ based on the DNN architecture, i.e., f (x) = φo(φL(. . . φ2(φ1(x)) . . . )).

Social Influence Deep Learning (SIDL)

SIDL is a DNN-based framework for both modeling social influence and predict-
ing user behavior. SIDL has the capability to accomplish these two goals in one shot
(Luceri et al. 2018). The rationale of this solution is based on the capability of a DNN
to extract relationships embedded in the input data. Thereby, if we represent each user
in the social network as an input node of the DNN, we can model the interplay and
dependencies among users by leveraging their activity history.
To learn social influence among users, we make use of a training set extracted from

the action log Al. For each user ui (from now on target-user), we consider the history of
the actions propagated from her friends to the target-user to train the DNN and tune the
model parameters �. Once the DNN is trained, we utilize the influence model to predict
the target-user’s new (not performed yet) activities according to her friends’ activities.
This task can be formulated as the problem of predicting whether subject ui will perform
action a as a function of her active friends Sa,ui . We consider this task as a binary classifi-
cation problem, where the DNN output yui,a is a Boolean variable that is equal to 1 if the
target-user ui performed a, and is 0 otherwise.

Global-SIDL (G-SIDL)

The first SIDL approach we present is based on the idea of modeling the entire social
network in a unique neural network, thus, we name this solution Global-SIDL (G-SIDL).
The rationale of G-SIDL is to have a unique model that includes every user in the social
network to learn the interplay among individuals and model their inter-dependencies.
To accomplish this purpose, we employ a DNN structured as follows: The input layer
is composed of two concatenated vectors referred to as target-user ID vector

(
vIDui

)
and

social network vector
(
vSNui

)
, respectively. Both of them have length N = |V |. The former

is a one-hot vector that uniquely identifies each target-user ui ∈ V . One-hot encoding
is widely used in machine learning to distinguish the elements of a set. The target-user
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ID vector consists of all zeros with the exception of a single one that identifies the target-
user, e.g., ui is represented by the vector vIDui , whose i

th element is the only element equal
to one. The latter gives a representation both of the social network connections and of
the users’ activity. In particular, each element represents a user in the social network and
its value indicates the state (active/inactive) of the user for a given action a. Thereby, the
social network vector vSNui of the target-user ui represents the social network of ui and
the state of her active friends. The j-th element of vSNui corresponds to user uj and the
corresponding input value is computed as follows:

vFaui (j) =
{
1 if (uj,ui) ∈ E and uj is active
0 otherwise

These two vectors are first concatenated and then fed into a multi-layer architecture,
as depicted in Fig. 3, where, for the sake of simplicity, a DNN with only one hidden
layer is depicted. In our experiments, we design a network with a tower structure, where
the bottom layer is the largest and the number of nodes of each successive layer is
half of its precedent. In such a way, according to He et al. (2016, 2017), higher layers
with few nodes can learn more abstractive features from the input data. Details about
the implementation will be given in “Data processing and implementation” section. The
output of the DNN yui,a corresponds to the target-user ui and is equal to 1 if she per-
formed a, and is 0 otherwise. The predictive model of the G-SIDL can be formulated
as ŷui,a = f

(
vIDui , v

SN
ui |�)

, and the training is performed by minimizing the cost function

Fig. 3 Global-SIDL (G-SIDL). The input layer is composed of two concatenated vectors referred to as
target-user ID vector (vIDui ) and social network vector (vSNui ), respectively. The output yui ,a corresponds to
target-user ui , and is equal to 1 if she performed a, and is 0 otherwise
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L = −yui,a log(ŷui,a)−(1−yui,a) log(1− ŷui,a), which is referred to as binary cross-entropy
loss.
Although the global approach achieves promising results (Luceri et al. 2018), this archi-

tecture may present two issues: interpretability and scalability. Note that, as we clarified
in the introduction, the notion of interpretability used throughout the paper is related to
a post-hoc explanation of the results. More specifically, we aim at understanding which
subset of the input data is mainly responsible for the prediction outcome (Guidotti et al.
2018). As each input of G-SIDL represents a social network user, the global model does
not provide a comprehensible explanation of the results. In fact, G-SIDL maps the inter-
play between all the users and does not allow to identify the subset of input responsible for
the prediction related to a given target-user, i.e., we cannot identify a subset of individuals
that mainly influence the target-user.
Towards meeting this challenge, we exploit the notion of local explanations and, more

specifically, the principle behind the Saliency Mask (SM) technique. SM is defined as a
summarized explanation of where the classifier “looks" to make its prediction (Dabkowski
and Gal 2017). A suitable example is provided by the image classification scenario, where
SM is used to find the part of an image most responsible for the classifier decision (Fong
and Vedaldi 2017). The idea behind SM is to understand what a neural network depends
on locally, i.e., to identify a subset of the input used by the model to produce the output.
In this paper, we reinterpret the usage of such a technique in the context of social net-

works. According to the concept of local explanation, here we narrow the input space
by deleting regions of the social network that may not be relevant to infer the activity of
a given target-user. We follow the Smallest Sufficient Region (SSR) approach (Fong and
Vedaldi 2017; Dabkowski and Gal 2017), which aims to identify the smallest set of the
input that achieves a classification accuracy in line with the general (complete) model.
We provide two different solutions by varying the network connectivity of each user and
adapting the DNN architecture accordingly.
On the other hand, scalability issues may occur when new users register to the social

network. In such a case, G-SIDL requires to be retrained to include the new users in
the model. This process is computationally expensive, both in time and resources. Our
objective here is to mitigate this issue in the most efficient way while preserving the per-
formance of the G-SIDL approach. We next present the solutions proposed to overcome
both these issues.

Local-SIDL (L-SIDL)

Inspired by the SSR approach, we consider the smallest social network within each indi-
vidual is embedded into. Thereby, we take into account only the set of one-hop neighbors
that each user is connected to. The resulting ego network is used as the input of each user-
based model. We refer to this solution as Local-SIDL (L-SIDL), as we create a localmodel
for each target-user by employing a DNN for each one of them.
Such a solution can represent a more interpretable and scalable solution if compared

to G-SIDL. While in the general approach the post-hoc explanation of the results was
blurred by the huge amount of inputs, we here restrict our analysis to the nodes directly
connected to the target-user. In such a way, we can better understand whether and to
what extent this subset of nodes influence the target user. In terms of scalability, the user-
based model offers a more agile solution in terms of time and resource consumption. In
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fact, a new user in the OSN requires only (i) to create a new instance of L-SIDL to model
the new user, and (ii) to retrain only the L-SIDLs related to the individuals linked to the
new user to include her in their model, which both represent operations computationally
less expensive (in terms of computational time and resource) than the retraining of the
whole G-SIDL. This assessment will be detailed and discussed in “Evaluation” section.
As an example, Fig. 4 shows the L-SIDL related to the test-user u5, whose ego net-

work is shown in Fig. 11. Each input of the DNN represents a friend of target-user
u5. For each action a, input nodes can assume value 1 if the corresponding friend per-
formed action a before u5, and 0 otherwise. The output of the DNN yu5,a corresponds
to target-user u5, and is equal to 1 if she performed a, and is 0 otherwise. The training
is performed by minimizing the binary cross-entropy loss between ŷu5,a and yu5,a, where
ŷu5,a = f ((u1,u2,u3,u4))|�) is the predicted output of the L-SIDL framework. Finally, we
utilized the trained model to predict whether the target-user will perform new activities
based only on her active friends Sa,u5 for those activities.

Community-SIDL (C-SIDL)

While L-SIDL can offer a more interpretable and scalable solution, the prediction perfor-
mance may be affected by the reduced amount of information that each DNN utilizes. In
fact, by splitting the social network into different and isolated ego networks, we break the
G-SIDL intoN L-SIDLmodels, and in turn, we do not exploit and model the interconnec-
tions between the ego-networks. Also, the L-SIDL approach does not take into account
nodes distant more than one hop (e.g., friends of a friend) from the target-user. Thus, it
assumes that the possible influencer nodes are only in the ego network of the target-user.
In this section, we propose Community-SIDL (C-SIDL), an approach that aims to solve

the trade-off between performance, interpretability, and scalability by embedding users

Fig. 4 Local SIDL (L-SIDL) of user u5, where each input node represents u5’s friend, while the output yu5,a
corresponds to target-user u5, and is equal to 1 if she performed a, and is 0 otherwise
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in mesoscale level structures, such as communities, and employing a DNN architecture
for each group of individuals. Such an approach, which can be viewed as a combination of
deep learning with network science, offers a solution in-between G-SIDL and L-SIDL.We
move from the totality of the nodes (in G-SIDL) to a smaller subset (but larger than a ego-
network) by splitting the social network into 1 ≤ M ≤ N communities and by employing
a DNN for each of them. We refer to this solution as C-SIDL since each community is
mapped into a distinct DNN. The rationale of this approach is to preserve the social net-
work structure at a lower resolution, as a community can be considered as a partition of
a graph (Fortunato 2010), while enhancing the interpretability and scalability issues. In
fact, by deploying M DNNs, instead of one (G-SIDL), we contain the inefficiency of the
G-SIDL in case of new users. In such a scenario, a new user in the OSN requires only to
retrain the C-SIDL she belongs to. We aim to partition the network by maximizing the
modularity, i.e., the density of intra-community edges with respect to inter-community
edges. As this is a NP-hard problem, we make use of a heuristic algorithm. We employ
the Louvain method (Blondel et al. 2008) for its computational efficiency 2.
The C-SIDL approach opens the way to multiple solutions at varying inter-community

connectivity. Figure 5a shows an example of three connected communities, referred to
as C1,C2, and C3. Each community can be considered as an independent component of

Fig. 5 Example of communities and inter-community connectivity: (a) three connected communities; (b)
IC-SIDL scenario for community C3; (c) CC-SIDL scenario for community C3; (d) IFC-SIDL scenario for
community C3
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the graph or as a unit connected with other (linked) communities. In Fig. 5, we show the
varying inter-community connectivity of C3 according to the following approaches:

1. Isolated Communities-SIDL (IC-SIDL) : each community is analyzed separately. As
shown in Fig. 5b, IC-SIDL does not consider inter-community edges of community
C3. The resulting IC-SIDL architecture is similar to G-SIDL, but the inputs are the
only nodes belonging to C3.

2. Collapsed Communities-SIDL (CC-SIDL) : every connected community is
considered as a super node linked to the community C3, as it is depicted in Fig. 5c.
In this solution, we collapse an entire community into a single input node
(community node) of the DNN. The resulting CC-SIDL follows the IC-SIDL
implementation but includes also the community nodes as input. As an example,
community node C1 (same for C2) acts as an input of the CC-SIDL of C3.

3. Inter-Friendship Communities-SIDL (IFC-SIDL) : only users directly connected to
C3 are considered as inputs of the IFC-SIDL, other than the members within C3 (as
in IC-SIDL). Figure 5d shows an example of two users (f1, f2) connected to C3.

Data processing and implementation

In this section, we describe the data processing, we discuss the training, validation, and
testing phases of SIDL, and we detail the implementation used for every DNN framework
previously described.
Each dataset includes information about users activity over time and social connections

among subjects in the OSN, while no additional information or metadata are provided.
These data allow us to build the action log Al and the graph G, which represent the only
two inputs required by our framework. In fact, the former is used to keep track of users
activity over time and, in combination with the latter, to understand how the actions prop-
agated between the users. To reduce noise in the dataset and to build, for each user, a
reasonable training and test set, we remove users with less than 10 actions. For Plancast,
we restrict our analysis to the U.S. as the majority of the users attended events organized
in this country.
For each subject ui, we consider the set of actions the user performed (Aui ⊆ A) and we

randomly select nui actions not performed in order to consider negative samples, where
nui = |Aui |. It should be noted that, for each user, we consider only the actions that

Fig. 6 Average number of friends that visited a given venue (a), and that attended a certain event (b)
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have been performed by at least one of her friends, according to (Goyal et al. 2010). In
Fig. 6, we display the average number of friends that visited (attended) a given venue
(event). As we expected, events involve more friends, and in turn represent a more direct
and expansive form of social interaction, if compared to the visit of a certain location,
which may represent mainly individual behaviors (Liu et al. 2012). However, the number
of friends that visited a given venue is not negligible and, thus, we consider this scenario
in our study.
To limit overfitting and to reduce variability, we utilize a 10-fold cross validation. We

built the folds to preserve the percentage of positive and negative samples for each subject
in the dataset. Each sample (both for training and test) represents an action performed
(or not) by a given target-user. For each action in the training set, we provide informa-
tion about the target-user’s friends activity along with the ground truth related to the
target-user activity. On the other hand, for the actions in the test set, we employ only
the information related to the target-user’s friends activity with the purpose of inferring
whether the target-user performed the action. Each friend is mapped into an input node
of the DNN, which in turn is a binary value representing the friend activity for a given
action. Inputs are fed into the DNN architecture according to the different SIDL approach,
as explained in “Methodology” section.
While the input preparation for G-SIDL and L-SIDL is similar, some additional clarifi-

cations are needed for the C-SIDL approaches. In C-SIDL every community is mapped
into a different DNN. The different C-SIDL approaches differ from each other in the
way the inter-community links are considered. As an example, Fig. 5 shows the three
different scenarios for community C3. IC-SIDL, which does not take into account the
inter-community links, follows exactly the G-SIDL implementation but its inputs are
the only nodes belonging to the community under exam (C3 in the example in Fig. 5b).
On the other side, CC-SIDL and IFC-SIDL consider the inter-community links in two
different ways.
In CC-SIDL, each connected community to C3 is collapsed into a single input node,

named community node. The resulting DNN complies with the IC-SIDL implementation
for the nodes belonging to C3, but also includes the community nodes C1 and C2. Each
community node is employed as an additional member of C3 and is considered as a friend
of the users directly connected (the top right users in the example in Fig. 5c) to the com-
munity node itself. To represent the community node’s activity for a given action we tested
different strategies.We set the community node to (i) a binary value, which assumes value
1 if at least one user within the collapsed community performed the action, (ii) a binary
value, which assumes value 1 if at least 50% of the users within the collapsed commu-
nity performed the action, or to (iii) a real value representing the fraction of the users
within the collapsed community that performed the action. Among the three strategies,
we used the first approach as it achieved slightly better results (details on the performance
in the next section). Finally, IFC-SIDL considers the inter-community friends as addi-
tional members of the community under examination. In the example in Fig. 5d, users f1
and f2 are included in the DNN related to community C3 and considered as friends of the
connected nodes.
We implemented the DNNs in Keras (Chollet 2017), following a tower pattern com-

posed of L = 3 layers with {128,64,32} nodes, respectively. For the Foursquare dataset,
we used an additional layer of 256 neurons as it improved the performance with respect
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to the three layers architecture used for the Plancast dataset. We tuned hyperparameters
performing a grid search on a validation set (10% of the data). In particular, we examined
the following hyperparameters:

• Batch size defines the number of samples used to update the model at each iteration;
• Initialization of the inter-layer weights;
• Epochs represent the number of times each sample in the dataset is considered

during the training;
• Optimizer indicates the optimization algorithm used to update the network weights;
• Activation function at the hidden layers φj and at the output layer φo are the

non-linear function used to activate the neurons over all the network.

The hyperparameter optimization consists of an exhaustive searching through the fol-
lowing hyperparameters space: batche size = {10,20}, initialization = {normal, uniform,
Glorot}, Epochs = {10,25}, optimizer = {RMSProp, Adam}, activation functions φj =
{sigmoid, ReLU}, and φo = {sigmoid, ReLU}. Table 2 depicts the six best results, in terms
of accuracy, for the combinations of the above hyperparameters. Thereby, we employ a
sigmoid as activation function (both at the hidden layers and at the output layer), and we
use RMSProp (Dauphin et al. 2015) as optimization function. We train the network in
data batches composed of 20 samples for 25 epochs. We further evaluated the impact of
the number of epochs in the performance by testing the model for 50 and 100 epochs.
Despite the gain of about 0.1% (in the case of 100 epochs), we decided to use 25 epochs
for a time efficiency reason, as a larger number of epochs implies a longer training time.
Finally, we apply a dropout technique (Srivastava et al. 2014), with a dropout equal to 0.1,
to avoid overfitting.

Evaluation
In this Section, we evaluate the results of the SIDL approaches and we compare themwith
two state of the art approaches, namely the LT model proposed by Goyal et al. (2010),
and the IC model of Saito et al. (2008). We use as baseline these two solutions as they
offer general models to learn social influence between users by leveraging only the history
of the actions performed by each subject. In fact, (i) they do not rely either on specific
hand-crafted features or on topic affinity, which in turn may depend on the OSN ana-
lyzed and on the availability of metadata (e.g., personal attributes), and (ii) they both take
as input only the action log Al and the social graph G. In a similar way, we focus on a
model that can be generalized to any kind of OSN and, less specifically, to any real-life
domain. Both these approaches rely on two commonly used models in information dif-
fusion, namely the LT and IC model, which we introduced in “Introduction” section. In

Table 2 Grid search for hyperparameters optimization

Accuracy Batch size Initialization Epochs Optimizer φj φo

88.7 20 Glorot 25 RMSProp sigmoid sigmoid

88.6 10 Glorot 10 RMSProp sigmoid sigmoid

88.3 20 normal 10 RMSProp ReLU sigmoid

87.8 10 Glorot 10 RMSProp ReLU sigmoid

87.7 10 Glorot 10 Adam sigmoid sigmoid

85.7 10 Glorot 10 Adam ReLU sigmoid
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particular, they first aim at learning influence probability between users, and then they
combine the social influence model with the diffusion model. In Goyal et al. (2010), Goyal
et al. introduced different metrics to estimate the pairwise influence between two indi-
viduals and proposed a static and dynamic (time-dependent) version of the LT model.
We evaluated all the metrics and variations of the LT model proposed in (Goyal et al.
2010) and we report the results related to the Discrete Time (DT)-Bernoulli approach as
it achieved better performance if compared to the other metrics. We refer to this solu-
tion as LT-DT indicating the discrete time version of the LT model. On the other hand,
Saito et al. (2008) employed the ICmodel along with the Expectation-Maximization (EM)
algorithm to estimate the influence probability associated with each edge. We developed
this model, here referred to as IC-EM, by minutely following the 2-steps learning and the
experimental setup suggested in their paper (Saito et al. 2008).
In Table 3, we compare the performance of these solutions with our proposed

approaches in terms of prediction accuracy. This metric stands for the number of cor-
rectly classified samples over all the samples classified. Results indicate that the proposed
SIDL approaches, G-SIDL, L-SIDL, and C-SIDL outperform baseline algorithms (LT-DT
and IC-EM) with an average gain of 23.7%, 14.4%, and 21.7%, respectively. As we expected,
G-SIDL outperforms the local approach, while C-SIDL, with its three variations (IC-, CC-,
and IFC-SIDL), offers a valuable alternative to the global solution. Three aspects are worth
noting:

• IC-SIDL performs better than L-SIDL as it considers the community within the user
is socially embedded, and not only the direct social connections. However, this
solution breaks the connectivity between linked communities, thus, performs worse
if compared to CC-SIDL and IFC-SIDL.

• CC-SIDL slightly overcomes the IC-SIDL accuracy but has a small gain with respect
to L-SIDL. Collapsing an entire community in a unique node oversimplifies the
inter-communities social relationships, but provides additional information if
compared to the IC-SIDL solution.

• IFC-SIDL achieves the best performance among the C-SIDL approaches and its
accuracy closely approaches G-SIDL, highlighting the importance of
inter-community edges in modeling social influence.

To better investigate the performance of our approaches, we examine other binary clas-
sification metrics, such as True Positive Rate (TPR) and True Negative Rate (TNR). TPR
measures the percentage of positive samples that are correctly identified as such, while

Table 3Models performance in terms of accuracy: G-SIDL vs. L-SIDL vs. C-SIDL (IC-, CC-, and
IFC-SIDL) vs. baseline models (LT-DT (Goyal et al. 2010) and IC-EM (Saito et al. 2008))

Foursquare Plancast

NYC LA

G-SIDL 89.3% 87.0% 85.1%

L-SIDL 80.1% 78.0% 81.2%

IC-SIDL 84.3% 81.1% 81.8%

CC-SIDL 85.3% 82.2% 82.4%

IFC-SIDL 88.1% 85.3% 83.7%

LT-DT (Goyal et al. 2010) 62.3% 62.0% 77.8%

IC-EM (Saito et al. 2008) 63.2% 62.9% 76.9%
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(a) (b)

Fig. 7 Accuracy, TPR, and TNR in Foursquare (a), and Plancast (b)

TNR is the analog for negative samples, i.e., it measures the percentage of correctly clas-
sified negative instances. In our scenario, these two metrics represent the ability of the
classifier to identify performed action and not performed action, respectively. In Fig. 7,
we compare our approaches using accuracy, TPR, and TNR. Please note that for the
C-SIDL approach we consider IFC-SIDL as it outperforms the other two C-SIDL solu-
tions (IC-SIDL and CC-SIDL). Overall, we observe that TNR is higher than TPR in every
approach, meaning that our system (slightly) better classifies negative samples. The dif-
ference between TPR and TNR is more pronounced in the L-SIDL approach, while in
C-SIDL and, especially, in G-SIDL the two metrics are more balanced. Interestingly, the
difference between TPR and TSR is less noticeable in Plancast than in Foursquare, proba-
bly because the number of friends per visited location is significantly lower if compared to
Plancast events, as we previously showed in Fig. 6, and the model, in turn, is less accurate
to classify this kind of activity.
In Table 4 we summarize the performance of the three SIDL approaches and compare

them in terms of scalability.We sort the table in increasing order of computational time or
decreasing order of number of DNNs employed. Computational time is the time required
to train a single L-SIDL, C-SIDL, and the unique G-SIDL. Although the G-SIDL approach
achieves the best performance, it requires a (unique) DNN with an elevated number of
inputs (two times the number of nodes in the social network), which is not scalable for a
huge graph. In fact, retraining G-SIDL every time a new user register to the OSN is time
and resource consuming. On the other side, L-SIDL offers more flexibility and efficiency
as every user is modeled with a different DNN. Therefore, this approach may easily han-
dle new users in the OSN by creating a DNN for the new user and updating only the
DNNs of the new user’s friends. The input size of each L-SIDL equals the number of
friends of the target-user. Thus, the corresponding DNN is significantly smaller than the
global neural network (G-SIDL). For this reason, the training phase of a single L-SIDL

Table 4 Comparison among the three presented approaches in terms of performance and scalability

L-SIDL C-SIDL G-SIDL

Accuracy 80.1% 85.2% 86.6%

TPR 74.4% 82.4% 84.3%

TNR 85.9% 88.1% 88.7%

Computational time t 7.8t 75.1t

# of DNNs N L 1

Computational time is the time required to train a single L-SIDL, C-SIDL, and the unique G-SIDL. The value t is about 42 s, which
has been computed by averaging the computational time of a single L-SIDL over the datasets
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is, on average, 75 times faster than the G-SIDL. However, the computational efficiency
of the L-SIDL approach is paid in terms of performance. The local solution breaks the
whole social network structure in disconnected ego networks and, thus, performs poorly
(average accuracy of 80.1%) if compared to G-SIDL (average accuracy of 86.6%).
The trade-off is solved by C-SIDL, which achieves performance close to the G-SIDL

with limited issues in scalability: a new user in the OSN requires only to retrain one C-
SIDL, whose computational time is about 10 times faster than G-SIDL and 8 times slower
compared to L-SIDL3. Note that the numberM of communities, and in turn the number
of DNNs in C-SIDL, depends on the connections between users in the social network and
on the detection algorithm utilized to extract the communities. As a consequence, the
input size of a C-SIDL depends on the number of members per each community. Further,
we investigate whether the number of members per community has impacted on the pre-
diction performance. For this purpose, we compute the Pearson correlation coefficient
between the accuracy and the number of members per community. The result shows a
not statistically significant correlation (ρ=0.3, p-value=0.17 > α=0.05). We then explore
whether and to what extent connected communities share their activities. To accomplish
this purpose, for each community, we compare the actions performed by its members,
namely intra-community actions, with those performed by the members of the inter-
connected communities, referred to as inter-community actions. More specifically, for
each community, we compute the fraction of users that performed a given activity consid-
ering (i) only the members of the community, and (ii) considering both the members of
the community and of the inter-connected communities. Figure 8 depicts the results for
both datasets. As we expected intra-community actions present higher fractions of users
if compared to the combined (intra- with inter-community) scenario. However, the con-
tribution provided by the inter-connected communities is not negligible and, according
to the prediction performance, plays a significant role. Interestingly, in Plancast both the
percentage of intra- and inter-community actions is higher with respect to Foursquare,
further highlighting the differences we revealed before. In the Plancast dataset, we can
also note that for some activities every member of the community performed the action.
After further inspection, we recognize that these activities correspond to small clique
events, which involved communities composed of a few members.
Finally, the results of C-SIDL and L-SIDL give us a better understanding in the post-

hoc explanation of the results obtained with G-SIDL. Though the one-hop neighborhood
(ego network) appeared as the straightforward solution to detect the set of input (nodes)

Fig. 8 Intra- and Inter-community activity in Foursquare (a), and Plancast (b)
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that affected the prediction related to a given user, results show that the ego network
alone is not enough to explain the social influence phenomenon. As we discussed in
Luceri et al. (2017), mesolevel structures, such as communities, provide a significant con-
tribution to the understanding of this phenomenon. Results show that C-SIDL closely
approaches the performance of the general model. Therefore, the SSR identified by a
community better explains the results achieved by G-SIDL if compared to the SSR built
with the ego network only. In these terms, C-SIDL provides better interpretability of the
global model if compared to L-SIDL. Overall, we can further explain the gap between
L-SIDL and C-SIDL in terms of influential nodes considered within each social struc-
ture. The rationale of L-SIDL is that the most influential nodes stand in the ego network
of each user, while in C-SIDL we enlarge the social structure within the user is embed-
ded to include (additional) potential influencers not (only) directly connected to the
target-user.

Discussion and future directions
In this Section, we discuss further research questions and potential extensions of this
work along with some preliminary results. In the first place, this paper opens the way to
necessary consideration and discussion on users’ privacy in OSNs, and in particular, on
the relation between social influence and privacy. Results revealed that our approach is
able to estimate an individual’s actions with high accuracy based only on the knowledge
about friends’ activity. User activity and behavior, in turn, can represent sensible informa-
tion, which a subject may not be willing to share in some (or future) instances. However,
recent research showed that the behavior of individuals is predictable using only the infor-
mation provided by their friends in an online social network (Luceri et al. 2019; Bagrow
et al. 2019; Garcia 2019). Interestingly, Bagrow et al. (2019) reported that friends infor-
mation in Twitter can be used as a proxy to predict future behavior of an individual at a
higher degree than the data shared from the subject herself.
To further investigate this argument, we repeat our experiments in a different setting.

We evaluate the prediction accuracy of SIDL by varying the probability p that each indi-
vidual’s friend shares the information about a given activity, i.e., if a friend performed
a certain activity, we exploit that knowledge with probability p. In this analysis, we use
G-SIDL as we are mainly interested in exploring the privacy lack in OSNs rather than

Fig. 9 Prediction Accuracy at varying sharing probability p
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focusing on the interpretability or scalability of the model. In Fig. 9, we depict the accu-
racy of our model at varying p. Diverse aspects are worth of consideration. There is a
noticeable gap between the performance in Plancast and Foursquare. This is likely due to
higher involvement of friends in a social event compared to a visit in a certain location,
as we previously showed. Further, we can observe that our model, on average, is able to
correctly classify about 70% of users’ activities in case of p = 0.5. This result further
highlights the weakness of data privacy in social platforms: with only 50% of available
information from a user’s friends we are able to classify around 70% of her activities.
Such findings suggest that users’ information domain is not only confined to what they
deliberately share. Privacy is not only in users’ hands as friends and acquaintances act as
social signals, which can be powerfully used to estimate users’ sensitive data. The con-
cern about data privacy is tangible and our society is entirely involved with the issue of
privacy leakage in OSNs. As Garcia (2019) claims, we need to stop thinking that the deci-
sion to keep information private is under individual control and realize that information
secrecy may be affected by the decisions of others. In accordance with this discussion, in
our next work, we will expand this analysis following two main directions. First, we have
been carrying out a campaign to raise user awareness of privacy risks when using mobile
phones (Ferrari and Giordano 2018; Luceri et al. 2018). The idea is to examine whether
users reduce the amount of shared information according to an increasing level of pri-
vacy awareness and, at the same time, to observe if the same effect can be observed in an
OSN context. Second, we will focus on developing a model that provides an assessment
of individuals’ privacy, given both the information they voluntarily disclose and the data
provided by their friends over time.
Moreover, we explore the usage of different deep learning architectures across our

framework. In the current version, SIDL uses feedforward neural networks, a class of
DNNs in which the flow of information moves forward from the input to the output neu-
rons through the hidden layers. In such architecture, there are no loops or cycles between
the nodes of the network. However, feedback connections have been extensively used in
Recurrent Neural Networks (RNNs) for modeling the temporal dynamics of sequences
in a wide range of fields, such as machine translation, speech, handwriting, and image
recognition. The feedback loop allows RNNs to have memory of previous instances and
makes them suitable to learn sequential data, such as human activities. For this reason,
we propose to use a RNN architecture in the SIDL approach. We expect that such a solu-
tion might be more beneficial in modeling users actions and dependencies over time with
respect to a feedforward architecture. The most commonly used RNNs are referred to
as Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) and Gated
Recurrent Unit (GRU) (Chung et al. 2014). We do not present further details about these
solutions as it is out of the scope of this paper. However, we here show some preliminary
results obtained using both the RNN approaches in our framework. More specifically, in

Table 5 Architecture performance in terms of accuracy: Feedforward vs. LSTM vs. GRU

Foursquare Plancast

NYC LA

Feedforward 89.3% 87.0% 85.1%

LSTM 91.1% 89.2% 85.6%

GRU 86.7% 85.3% 83.3%
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this test, we consider G-SIDL as it achieves the best prediction performance, but the same
architecture can be extended to the other approaches. In Table 5, we compare the results
of the three DNN architectures on the two datasets. We observe that LSTM outperforms
the GRU solution and achieves a better accuracy of the feedforward architecture. Inter-
estingly, the gap is particularly noticeable in the Foursquare dataset. This may be due to
the different nature of the activity in the two datasets. While an event is a one-shot activ-
ity held on a specific date, the visit of a certain location may occur in distinct days from
one user to another. This hypothesis, with related analysis and a broader exploration of
DNN architectures, will be expanded upon in future work.
Finally, in our next endeavor, we aim to investigate other factors that may affect social

influence to better comprehend this phenomenon and to further enhance the predictive
power of our approach. We can identify two parallel directions. In the first one, we will
focus on the concept of homophily (McPherson et al. 2001) with the objective of consid-
ering the similarity between users in our model. In the second direction, we will evaluate
different solutions to group users in mesolevel structures and employ C-SIDL accord-
ingly. A wide spectrum of possibilities can be explored for this purpose, ranging from
homophily community (Luceri et al. 2017), which groups together similar individuals
with low social distance (Förster et al. 2012), to tensor decomposition techniques (Kolda
and Bader 2009), which extract sub-network modules composed of nodes with correlated
activity.

Conclusion
In this paper, we presented SIDL, a framework that combines deep learning with network
science for modeling and forecasting social influence on real-life activities. To the best
of our knowledge, this is the first work that aims to provide a social influence model of
real-world activities.
SIDL is based on DNNs, a class of machine learning algorithms inspired by biological

nervous systems. We propose different SIDL approaches at varying degree of network
connectivity with the objective of facing two typical challenges of deep neural networks:
interpretability and scalability. For this purpose, we introduce G-SIDL, which takes into
account the whole social network; L-SIDL, which considers the ego network of each user;
and finally C-SIDL, which splits G-SIDL into smaller sub-models based on social network
communities.
We validate and evaluate our approach using datasets from Plancast and Foursquare.

Results reveal that SIDL approaches outperform state of the art baselines with an average
gain of 23.7% (G-SIDL), 14.4% (L-SIDL), and 21.7% (C-SIDL), respectively. We show that
the opportune combination of network science with deep learning can address both the
interpretability and scalability issue. In fact, C-SIDL provides a post-hoc explanation of
the results by identifying a subset of users, which aremainly responsible for the prediction
outcome, using social network mesolevel structures. Further, C-SIDL closely approaches
the performance accuracy of the global approach, also providing a more scalable
model.
Moreover, we explore the possibility of using different deep learning architectures

across our framework by showing some promising results. Finally, we discuss the rela-
tionship between social influence and users’ privacy presenting alarming findings: with
only 50% of available information from a user’s friends SIDL is able to classify around 70%
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of user’s activities. These two directions, along with an analysis on the homophily effect
and on alternative approaches to detect mesolevel structures, will be expanded in our
future work.

Endnotes
1Also in this Figure, for the sake of simplicity, we depict a DNN with only one hid-

den layer (L = 1), while in our implementation (“Data processing and implementation”
section) we employ multiple hidden layers.

2As a sanity check, we repeated the community extraction 10 times and we evaluated
the difference in the partitions utilizing the Normalized Mutual Information (NMI). In
every round, the Louvain method extracted the same number of communities, which in
turn did not vary across the different rounds, i.e., the NMI was equal to one for each pair
of rounds.

3 It should be noticed that computational times are averaged over the different datasets.
We run our experiment on a machine with a NVIDIA Tesla K20 (2496 CUDA cores -
5GB DDR5 RAM), a CPU Intel Xeon E5 2670 with a frequency of 2.3 GHz, and a 128 GB
DDR3 RAM.
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