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Abstract
We study how the community structure of bipartite mutualistic networks changes in a
dynamic context. First, we consider a real mutualistic network and introduce extinction
events according to several scenarios. We model extinctions as node or interaction
removals. For node removal, we consider random, directed and sequential extinctions;
for interaction removal, we consider random extinctions. The bipartite network
reorganizes showing an increase of the effective modularity and a fast decrease of the
persistence of the species in the original communities with increasing number of
extinction events. Second, we compare extinctions in a real mutualistic network with
the growth of a bipartite network model. The modularity reaches a stationary value and
nodes remain in the same community after joining the network. Our results show that
perturbations and disruptive events affect the connectivity pattern of mutualistic
networks at the mesoscale level. The increase of the effective modularity observed in
some scenarios could provide some protection to the remaining ecosystem.

Keywords: Dynamical nature of community, Community ecology, Time-evolution of
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Introduction
Mutualistic interactions between species are often represented as bipartite networks,
where the interactions occur between two groups of species (generically resources and
consumers), but not within the groups. Empirical mutualistic networks exhibit a number
of macro-scale structural features such as nestedness (Bascompte et al. 2003a; Gracia-
Lázaro et al. 2018), where specialists interact with proper subsets of the species that
generalists interact with; modular organization, that captures the block structure (Bas-
compte 2010; Vázquez et al. 2005); and stability, which can be measured as the largest
eigenvalue of the appropriate matrix (May 1972). Biological systems, and in general any
complex system, are expected to withstand the loss of elements, either by random fail-
ure or driven by a directed perturbation (e.g., environmental change or a targeted attack)
(Burgos et al. 2007; Staniczenko et al. 2010). In the context of ecology, loss of biodiversity
as a consequence of environmental perturbations disrupts ecosystems and their function-
ing significantly. The emergence of modularity is crucial for community ecology because
such a compartmentalized structure can greatly influence dynamics, as the compartments
buffer the spread of perturbation across the network (Gardner and Ashby 1970; Gilarranz
et al. 2017).
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Here, we analyze how species extinction affects the structure of mutualistic networks.
Our study focuses on consumer removals, as pollinators have a higher immediate extinc-
tion risk than plants and also loss of a pollinator species may cause the co-extinction
of plants that depend on them (Memmott et al. 2004; Potts et al. 2010; Jordano et al.
2006). We present a detailed analysis of the community structure in response to the loss
of pollinator species, using an empirical mutualistic network.
The study of the changes in community structure under different extinction scenario

sheds light on the fragility of ecological communities to species extinctions. We fur-
ther emphasize our results by showing how in a model of mutualistic network growth
(Valverde et al. 2018) modularity and nestedness remain basically unchanged, in contrast
to our results when extinction mechanisms are at play in a real bipartite network.

Species extinction in empirical bipartite Networks
We analyzed a plant-pollinator interaction network, sampled in Mallorca (Balearic
Islands). The dataset was collected from a dune marshland located at sea level in the
northeast of the island (Son Bosc; SB hereafter). The authors of (Traveset et al. 2017) sam-
pled insect-flower visitation events during the consecutive flowering season, from April
to July on randomly selected flowering plants. A total of 696 flower visits between 80
plants and 162 pollinators were recorded (Fig. 1).
The interactions found in general in mutualistic ecological communities are naturally

represented with bipartite networks. These are composed of two different kinds of nodes:
resources, here the n plants, and consumers, the m insect pollinators. The interactions
between resources and consumers are represented by the incidence matrix A(n × m),
whose entries Aij are equal to 1 if there is a mutualistic relation between nodes i and j, and
Aij = 0 otherwise. In this work, we only consider the existence of an interaction but not
its weight.

Fig. 1 Bipartite incidence matrix depicting the community structure of a real plant-pollinator mutualistic
network sampled in Mallorca (Balearic Islands). Plants are represented in the rows and the pollinator species
in the columns. Mutualistic interactions inside a community are colored with the same color; black color was
used for interaction across communities
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At each time step, an extinction event is modeled by removing a pollinator for node
removal scenarios or an interaction for the interaction removal scenario. If a node loses
all of its links, it becomes extinct. We simulate the loss of nodes and links with four dif-
ferent scenarios: (1) uniformly at random (Albert et al. 2000); (2) directed extinction, in
which the removed pollinator is chosen with a probability proportional to her number of
links (degree) (Memmott et al. 2004; Evans et al. 2013; Gao et al. 2016); (3) generalist sce-
nario, in which pollinators are sequentially removed from the most to the least connected
pollinator (in case of a draw one of them is chosen at random); (4) specialist scenario,
in which nodes were sequentially removed from the least-degree pollinator to the most-
degree (Vázquez and Aizen 2003); and (5) random interaction extinctions, in which links
were removed randomly to model the disappearance of an interaction. To balance for the
different number of nodes and interactions, we measure time as the fraction of nodes
removed or the fraction of links removed. That is, for scenarios where nodes are removed,
each event represents a time step of 1/m, while for interaction removal, a time step cor-
responds to 1/l, where l is the number of interactions. When all the nodes or all the links
are removed, the time is equal to 1.
In order to compare visually the different extinction scenarios, we plot in Fig. 2 alluvial

maps showing the community structure for a single realization of the different extinction
dynamics. We have used the open-source library BiMat (Flores et al. 2015) to compute
modularity and community structure in bipartite networks. We show the resulting com-
munity structure for the same fraction of time as described above for all the scenarios.
For random extinction and especially for specialist extinctions, the communities remain

a b

c d

Fig. 2 Time evolution of community structure after extinctions. Alluvial plots of SB data set under (a)
Random pollinator species removal. (b) Generalist pollinator species removal (c) Specialist pollinator species
extinction. (d) Random pollination interaction removal. Boxes show the communities at times 0.01, 0.1, 0.2,
0.3, 0.4 and 0.5.
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similar during the initial steps. This is in contrast with directed extinction and ran-
dom interaction extinction, where the communities change much more from the initial
condition. The dynamics of the community structure in the scenario of directed extinc-
tions behaves similarly as in the generalist extinction scenario (not shown). As expected,
networks also lost more nodes in every level of directed extinction.
Note also that for a low fraction of extinction events directed extinction and interac-

tions extinction perform very similarly. This is related to the fact that choosing an edge at
random is similar to selecting nodes proportional to their degree.
We quantify these observations by measuring the modularity (Q) of detected commu-

nities, that is, densely connected non-overlapping subsets of nodes. The modularity of a
bipartite network given a partition is defined as (Barber 2007):

Q = 1
|E|

n∑

i=1

m∑

j=1

(
Aij − pij

)
δ(gi, hj) = 1

|E|
n∑

i=1

m∑

j=1

(
Aij − kidj

|E|
)

δ(gi, hj) (1)

where Aij is the incidence matrix of the network, pij is the null model matrix describing
the expected probability of interactions between two types of nodes given their degrees,
ki is the degree of resource node i and dj the degree of consumer node j; gi and hi are
the community indices of nodes i and j and |E| is the number of links in the network.
After a certain number of extinctions, eventually, bipartite networks break in a set of
disconnected components. Thus, to consider the breakup of the network, we introduce
the effective modularity Qe, which is calculated as the product of the relative size of the
largest connected component S and the modularity Q: Qe = SQ.
In Fig. 3 we show the effectivemodularity for the different extinction scenarios averaged

over 500 independent realizations of the dynamics. We observe two behaviors: On the

Fig. 3 Time evolution of the effective modularity Qe . For each realization of the extinction events and for
each extinction event, we identify the communities and calculate the measures. Mean values and standard
deviations (shaded areas) are obtained after 500 independent realizations for each scenario
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one hand a transition-like behavior, where there exists a critical fraction of extinction
events for which the effective modularity sharply decreases, as happens for the gen-
eralist, directed and interaction scenarios, with critical fractions of extinction events
approximately 0.35, 0.6 and 0.9 respectively. For the generalist scenario, the effective
modularity even increases initially. On the other hand, in the random and specialist
scenarios, the effective modularity decreases smoothly until the bipartite network is
extinct.
In order to gain more insight into the structural reorganization of the network we

measure several other quantities as a function of time, including the size of the largest
component, the number of communities, the nestedness and the community persistence
(Fig. 4).
Regarding the size of the largest component (Fig. 4a), which monitors the fragmenta-

tion of the network, we observe that the network is more sensitive to generalist species
extinctions and collapses faster than the other scenarios, followed closely by the directed
extinctions scenario, in line with previous knowledge on robustness under targeted
attacks in networks (Albert et al. 2000; Callaway et al. 2000; Cohen et al. 2001; Gallos et
al. 2005; Annibale et al. 2010; Huang et al. 2011). Random node extinctions and specialist
extinctions behave very similarly, with a smooth decay of the largest connected compo-
nent. Last, random interaction extinctions keep the largest connected component larger
than in any other scenario until a fraction of extinctions equal to 0.8, where the system
rapidly collapses.

a b

c d

Fig. 4 Time evolution of (a) the size of the largest connected component S, (b) the number of
communities, (c) nestedness and (d) persistence PM . For each realization of the extinction events and for
each extinction event, we identify the communities and calculate the measures. Mean values and standard
deviations (shaded areas) are obtained after 500 independent realizations for each scenario
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The number of communities (Fig. 4b) is increased initially in all the scenarios, but
then remains constant around 10 communities for random node extinctions and spe-
cialist extinctions, decaying fast when the fraction of extinction events is almost 1 due
to network decomposition. For random interaction extinctions, it behaves similarly in
the beginning but toward a fraction of extinctions of 0.6, the number of communities
increases rapidly to up to 20 before dropping fast again because of network decomposi-
tion. Finally directed and generalist extinctions behave similarly, with a steady increase in
the number of communities until a certain fraction of extinction events, where the num-
ber of communities decays. This certain fraction is 0.55 and 0.7 for the generalist and
directed scenarios respectively and they reach 33 and 21 communities respectively.
The next architectural pattern that we consider here is nestedness, which can be

described as the tendency of specialists to interact with proper subsets of the nodes
interacting with generalists (Bascompte et al. 2003b; Jordano et al. 2003). There are
several indices for quantifying nestedness depending on whether binary or weighted
interaction data are provided. The most commonly used methods are: NTC (Nestedness
temperature calculator) (Atmar and Patterson 1993), SR (spectral radius of the adjacency
matrix) (Staniczenko et al. 2013) and NODF (Nestedness metric based on overlap and
decreasing fill) (Almeida-Neto et al. 2008). Here we use the NODF metric to estimate
nestedness.
In all the extinction scenarios, nestedness values decrease with extinction events

from the very beginning (Fig. 4c), due to the decrease of the largest degree of the
bipartite network, which is positively correlated with NODF (Borge-Holthoefer et al.
2017). Therefore, the fastest decrease is found for generalist extinctions, followed
by directed extinctions. Random node and interaction extinctions behave similarly,
decaying more smoothly, almost in a linear fashion, to reach 0 nestedness when
t = 1. Last, the specialist extinctions scenario is the one keeping the network more
nested, related to the fact that this scenario is the one diminishing the largest degree
the less.
The structural changes in the community structure of the bipartite network can be

quantified with the community persistence, i.e., the probability that two nodes remain in
the same community if they were initially in the same community, Pi,j(Mi = Mj, t|Mi =
Mj, t0). We then compute the averages over all node pairs to get the mean persistence
PM = 〈P(Mi = Mj, t|Mi = Mj, t0)〉. As illustrated in Fig. 4d, community persistence
decays initially fast and as more nodes (or links) are extinct for any scenario. In the ran-
dom extinction scenario, the persistence decays at a slower rate. In random interaction
extinctions, the persistence decays quickly after the extinction of a small fraction of inter-
actions and then still decreases at a lower rate until the extinction of around 90% of the
interactions. We observe an increase of the persistence in the directed and generalist
scenarios. This increase is due to the breakup of the bipartite networks where the few
interactions remaining corresponds to interactions that originally were identified in the
same community.
The variability of community structure is captured with the versatility, V. Versatility

is a metric of nodal affiliation which describes how closely each node is assigned with
a community: V = 0 indicates that a node is always assigned to the same community;
while V � 0 determines that it is assigned to different communities depending on the
realization (Shinn et al. 2017). The versatility of a node j is defined as:
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V (j) =
∑

i sin(π〈a(i, j)〉)∑
i〈a(i, j)〉

, (2)

with

a(i, j) =
⎧
⎨

⎩
1 if i and j are in the same community.

0 otherwise.

where 〈a(i, j)〉 is the expected value of a(i, j) averaged over different realizations evolved
to the same fraction of extinction events. A high value of versatility reflects thus a loose
community structure, as nodes might be assigned to one or other community, while a low
versatility value stands for a robust community structure with well-defined communities.
For versatility (Fig. 5) the results show that random node and interaction extinctions

behave similarly, with a decreasingly less defined community structure up to 75-80% of
extinction events (growing versatility), followed by a decrease in versatility, associated
with a more solid community structure. For directed extinctions, the structure evolves
rapidly to a not well-defined community structure (high versatility) and around 25% of
extinction events starts to build a more solid community structure, as versatility decays.
For the generalist and specialist extinction scenarios, the picture is a bit more complex.
Due to the semi-deterministic nature of the extinction sequences in these scenarios, at
some points all of the realizations reach the same configuration, and thus the same com-
munity structure, giving rise to 0 versatility. These points are reversed in both scenarios as
the sequences are basically reversed. Between these points, the versatility grows because
the community structure is less defined as realizations reach different configurations.

Structures in growing bipartite Networks

Additionally, we generate bipartite networks using an evolutionary model of mutualis-
tic webs, through speciation and divergence of weights (Valverde et al. 2018) and then
perform numerical simulations to detect the community evolutions (Fig. 6).
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Fig. 5 Versatility for the different extinction scenarios. (Top) The versatility defined in Eq. 2 averaged over 500
realizations is represented in a color scale from V = 0 (red) to V = 3 (blue), the x-axis is the fraction of
extinction events, and the y-axis represents each species. Each column corresponds to the five extinction
scenarios: (from left to right) random extinction, directed extinction, generalist extinction, specialist
extinctions, and random interaction extinction. (Bottom) versatility averaged over all species and 500
realizations of the extinction sequences for the different scenarios
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Fig. 6 Growth of a bipartite network model. A realization of the growth of the bipartite network model at
iteration time t = 20, 40, 80 (Valverde et al. 2018). Parameters values are: pace of evolutionary change,
(β = 10−5), probability of weight change (P = 0.1 ) and link removal threshold (θ = 10−6)

In this model, nodes are considered to be either present or absent, with no role to be
played by population size. Some properties such as the heterogeneity in degree distribu-
tion or the nestedness of ecological mutualistic networks are captured at the same time
by the model.
The community structure is stationary during network growth, with the nodes in each

communitymost probably remaining in the same community (Fig. 7). Themodularity and
the nestedness remain low and constant during the network evolution (Fig. 8), in contrast
with their response when the nodes are removed in any of the scenarios presented above.

Fig. 7 Time evolution of the community structure of a growing network after every 10 time steps for one
realization and the same parameters used in Fig. 6
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Fig. 8 Time evolution of modularity and nestedness. Results are averaged over 1000 independent
realizations of the growing sequences as a function of time. Here we show the mean and standard
deviations. The evolutionary growth process keeps the modularity value low whereas nestedness is high.
Both remain approximately constant after a very small initial transient

Conclusions
We have studied the evolution of the community structure of an empirical ecological
bipartite network in the context of extinction of consumer nodes (in this case pollina-
tors). To do so we have introduced 5 different extinction scenarios to account for different
extinction dynamics: 1) random node extinction, 2) directed extinctions, 3) generalist
extinctions, 4) specialist extinctions and 5) random interaction extinctions. First, we qual-
itatively observe that during the initial steps the community structure is not affected
too much under random node extinctions and specialist extinctions, in contrast to what
happens under generalist, directed and random link extinction mechanisms. We next
quantify the changes in the organization of the network and its community structure
under the different extinction scenarios with a battery of measures. We show that the
community structure is reorganized as a function of the fraction of extinction events,
signaled for example by the high versatility values at certain moments of the dynamics.
Besides that, andmost importantly, our result for the effective modularity shows potential
for evaluation of risks of ecosystems, if we know under which kind of extinction dynamics
the network is suffering. Considering that modularity is a desirable characteristic in eco-
logical ecosystems, as it can buffer the spread of perturbations (Gardner and Ashby 1970;
Gilarranz et al. 2017), we can conclude that random node and specialist extinctions are
always detrimental for the system, and the response of the system is approximately pro-
portional (in terms of loss of modularity) to the percentage of loss of species. For random
interaction extinctions modularity remains basically unchanged until 90% of interactions
are removed, where the network collapses and modularity suddenly decays. This, there-
fore, is not such a detrimental extinction dynamics. For directed extinctions, we have
also a mostly constant modularity until a drop towards 0 appears when the network frag-
ments. This happens for a fraction of around 0.6 species gone extinct. The problem here
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is that the response is strongly non-linear and we can go from a relatively high value of
the effective modularity to a very low one with just a few species going extinct. This is the
same in the case of generalist extinctions, but even more dangerous, as the drop comes at
around 35% of species going extinct. Nevertheless, below that critical value for general-
ist extinctions the effective modularity actually increases, which may be an effective, but
dangerous, way of endowing the network with higher modularity – just removing a few
of the most generalist nodes, without taking too many, as we may totally dismantle the
network and end up with low modularity.
We postulate, based on our results, that the disappearance of a few generalist species

in mutualistic ecosystems might be a way of protecting the system against the spread of
perturbations, but that this is a dangerous game, given that if too many are gone extinct,
the modularity suddenly drops. Ecosystems are typically robust to the removal of a small
fraction of the species, extinction of only a single species positioned at the core of the
community cause significant to total network collapse (Campbell et al. 2012).
For a growing bipartite network model, in contrast, the community structure is more

stationary than in the extinction scenarios of the real mutualistic networks in the sense
that the modularity slightly changes as the network grows in comparison to the variation
of the modularity with extinctions.
It rests a challenge to widen the results to the weighted case. The results would depend

on whether the weights are distributed homogeneously or heterogeneously. Typically, the
weight in mutualistic networks captures the fraction of visits of a pollinator to a plant
normalized with the total number of visits. As such, the total weight per plant always
adds up to one. If the distribution of weights is homogeneous, our expectation is that the
communities would behave similarly. A different case would be for weights distributed
mostly along a subset of pollinators. In this case, the results can be greatly affected.
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