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Abstract
A plethora of centrality measures or rankings have been proposed to account for the
importance of the nodes of a network. In the seminal study of Boldi and Vigna (2014),
the comparative evaluation of centrality measures was termed a difficult, arduous task.
In networks with fast dynamics, such as the Twitter mention or retweet graphs,
predicting emerging centrality is even more challenging.
Our main result is a new, temporal walk based dynamic centrality measure that models
temporal information propagation by considering the order of edge creation. Dynamic
centrality measures have already started to emerge in publications; however, their
empirical evaluation is limited. One of our main contributions is creating a quantitative
experiment to assess temporal centrality metrics. In this experiment, our new measure
outperforms graph snapshot based static and other recently proposed dynamic
centrality measures in assigning the highest time-aware centrality to the actually
relevant nodes of the network. Additional experiments over different data sets show
that our method perform well for detecting concept drift in the process that generates
the graphs.

Keywords: Temporal graphs, Centrality, Twitter measurement, Dynamics of social
networks, Social media analysis: blogs and friendship networks

Introduction
There is a wide range of commercial and research applications devoted to identifying
important, popular, and influential users on social media platforms (Diakopoulos et al.
2012). Since popularity and importance are social phenomena and judged in a social con-
text, a way to quantify them is through a complex combination of social and behavioral
factors. These often include graph characteristics like degree, PageRank, and other cen-
trality metrics (Bakshy et al. 2011; Chang et al. 2013; Pal and Counts 2011; Weng et al.
2010) measured over the social network. The definitions of centrality can vary greatly and
can incorporate both global and local factors of a user’s location within the social network
(Boldi and Vigna 2014).
In this work we present temporal Katz centrality, an online updateable graph central-

ity metric for tracking and measuring user importance over time. We consider temporal
networks where the edges of the network arrive continuously in time. In other words
the graph is represented as a sequence of time-stamped edges (Rozenshtein and Gionis
2016). Our proposed metric is based on the concept of time-respecting walks containing
a sequence of adjacent edges with timestamps ordered in time. As seen in Fig. 1, for node
u temporal Katz centrality aggregates each temporal walk ending before time t at u.
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Fig. 1 Temporal walks ending at node u before time t

Online updateability poses computational restrictions and challenges to most central-
ity measures and graph algorithms in general. In this paper we consider the data stream
model (Babcock et al. 2002). The rationale of the streaming model lies in the size and
complexity of real-world networks: If we collect data for the range of hours to process as a
graph snapshot, we impose additional delay on the prediction, since processing the entire
graph snapshot will be time-consuming. In this sense, our newmethod can be considered
a graph algorithm for online machine learning (Bifet et al. 2010).
Although many studies tried to identify the best estimates for the importance of a social

media user, to the best of our knowledge, there are only two previous studies (Rozenshtein
and Gionis 2016; Ghanem et al. 2017) that propose data stream updateable central-
ity measures. The algorithm of (Rozenshtein and Gionis 2016), which we analyze in
Section Temporal PageRank, cannot incorporate the actual edge arrival times in its calcu-
lations. We believe our method is superior in using the exact time of interaction between
two social media users, resulting in better performance in our prediction task. The algo-
rithm of (Ghanem et al. 2017) can be best described as a heuristic version of betweenness
centrality to “ego-graphs”, which have paths of length two only. They applied their algo-
rithms for small graphs of less than 250 nodes only. Based on the comparative evaluation
of centrality measures in (Boldi and Vigna 2014), we chose not to include experiments
with betweenness centrality in our experiments.
Another key issue that we address is the difficulty of the timely evaluation of fast

changes in social media. In order to evaluate a static centrality measure, static ground
truth labeling is required, which itself often requires tedious human effort. In (Boldi
and Vigna 2014), for example, the Text Retrieval Conference (TREC) topics are used
(Clarke et al. 2004). In a dynamic graph, depending on time granularity, the same
human data curation may be required in each time step. For example, in the study most
similar to ours (Rozenshtein and Gionis 2016), only small temporal social network snap-
shots are collected, and evaluation is mostly based on convergence to static centrality
measures.
In our best effort to provide quantitative evaluation for dynamic centrality, we con-

sider daily granularity and compile ground truth based on an external source. We collect
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tweets about Roland-Garros 2017, the French Open Tennis Tournament (RG17), and
US Open 2017, the United States Open Tennis Tournament (UO17). We compute both
static and dynamic centrality metrics over the time-aware mention graph that we extract
from the tweets. We define the mention graph by adding a time-stamped edge (u, v, t)
whenever user umentions v in a tweet at time t. For ground truth, we consider the Twit-
ter accounts of players participating in daily rounds as relevant. We then hour by hour
investigate how mentions of players for the coming day take over the importance of past
participants.
In this paper, we design and evaluate an online updateable, dynamic graph centrality

measure. Our main contribution is threefold:

• We propose a new, online updateable path count based centrality measure as a
temporal variant of the successful Katz index (Katz 1953). Our measure incorporates
arbitrary time decay functions that can be adapted to the task in question.

• We compile a data set with ground truth labels for the quantitative evaluation of
dynamic centrality. Our evaluation is based on our Twitter collection about tennis
tournaments. For centrality ground truth at a given time, we set the players
participating in rounds on given days.

• We experiment over Twitter tennis tournament data sets and observe that our
method outperforms the temporal PageRank of (Rozenshtein and Gionis 2016).

• For our new method, we give mathematical justification and perform extensive
parameter analysis for properties such as convergence and adaptivity to concept drift.

Related results
Most of the networks in nature, society, and technology change continuously. In graph
theory terminology, nodes and edges get additional temporal characteristics and form a
temporal network. We refer to (Holme and Saramäki 2012) for a recent review on vari-
ous models and measures for temporal networks. The key approach is to use temporal
information to create a series of snapshots and static graphs, and track dynamics for var-
ious parameters in these static graphs (Kumar et al. 2010; Rosvall and Bergstrom 2010;
Sun et al. 2007). For example, one can collect all retweets on Twitter with corresponding
hashtags every day to track popularity of a political party during the election period and
then analyze daily changes in retweet patterns to estimate online and offline popularity of
this party (Aragón et al. 2013; Gayo-Avello 2013).
To quantify the popularity of a node, several graph centrality measures have been

proposed (Boldi and Vigna 2014). The definitions of centrality vary greatly and incor-
porate both global and local factors of a node’s location within the network. The high
variability of centrality scores reflects the nature of popularity observed in real-world
(Mitzenmacher 2004) and online social networks (Backstrom et al. 2012). Several mod-
els have been suggested to explain the emergence of high variability, habitually involving
some variation of the preferential attachment mechanism, also extended to the dynamic
setting (Hill and Braha 2010).
For temporal networks, a few generalizations of static centrality measures to dynamic

settings have been suggested recently (Tang et al. 2010; Taylor et al. 2017; Kim and
Anderson 2012; Grindrod and Higham 2014; Alsayed and Higham 2015). In these works,
tracking centrality of a single node and determining its variability play a major role
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(Taylor et al. 2017), as it has been observed in the literature that centrality of nodes can
change drastically from one time period to another (Braha and Bar-Yam 2006).
The above results (Taylor et al. 2017; Kim and Anderson 2012; Grindrod and Higham

2014; Alsayed and Higham 2015; Tang et al. 2010), however, cannot be used for
computing and updating centrality online. The following results devise methods that
are variants of our snapshot baselines: In (Taylor et al. 2017), the spectrum of a
set of discrete graph snapshots is analyzed in time; however, the spectrum cannot
be dynamically updated with fine time granularity, as required by our application.
Similarly, in (Grindrod and Higham 2014), sequences of snapshots are considered.
Finally, in (Tang et al. 2010; Kim and Anderson 2012; Alsayed and Higham 2015),
degree, closeness, and betweenness are considered in dynamic graphs, bu these mea-
sures, with the exception of the degree, cannot be efficiently updated online. Note
that online degree, also with time decay, is compared as a baseline method in our
experiments.
In this paper we address a practically important variant of dynamic centrality: Our goal

is to compute online updateable measures that can be computed from a data stream of
time-stamped edges. To the best of our knowledge, the only previous such algorithms
are temporal PageRank (Rozenshtein and Gionis 2016) and degree (Kim and Anderson
2012)—other measures are inefficient to update online. In our experiments, our algo-
rithm performs well for assessing centrality in a dynamic graph, which we explain in
Section Centrality in static and dynamic graphs by showing that we can incorporate tem-
poral information while keeping dynamic update computational costs very low. In fact,
temporal PageRank is based on PageRank (Page et al. 1999), while our method is based
on the Katz index (Katz 1953), both of which are shown to have very similar theoretical
and practical properties by (Boldi and Vigna 2014).
To our knowledge, temporal PageRank (Rozenshtein and Gionis 2016) is the only pub-

lished work about temporal generalizations of PageRank. Other results focus on coarse,
static snapshots such as Bonacich’s centrality (Lerman et al. 2010), or use temporal infor-
mation to calculate edges of a static graph (Hu et al. 2015; Manaskasemsak et al. 2013).
Finally, another line of research considers updating PageRank in dynamic or online sce-
narios (Bahmani et al. 2010; Bahmani et al. 2012; Kim and Choi 2015; Ohsaka et al.
2015; Sarma et al. 2011); however, in these results PageRank is considered a stationary
distribution over the current, static graph. In our experiments, we will show that our
temporal Katz centrality outperforms snapshot-based static measures for assessing node
importance in a temporally changing environment.

Centrality in static and dynamic graphs
Three axioms of centrality are defined in (Boldi and Vigna 2014). There is a single
measure, harmonic centrality, that satisfies all three of them. Since the computation of
harmonic centrality for a given node u involves all the distances from the node u in
question, the measure is computationally challenging even in a static graph.
The starting point of our temporal Katz centrality measure is PageRank (Page et al.

1999), which along with the Katz index satisfies the last two axioms defined in (Boldi
and Vigna 2014). PageRank is considered a success story in link analysis and listed as one
of the ten most influential data mining algorithms (Wu et al. 2008). The importance of
PageRank in our work has multiple reasons. On the one hand, it is widely used and has
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favorable properties by the axioms of (Boldi and Vigna 2014). On the other hand, temporal
PageRank (Rozenshtein and Gionis 2016) is a modification of PageRank, which to the best
of our knowledge is the only temporal ranking metric proposed in the literature prior to
our work.
PageRank, Katz index, and temporal PageRank are all based on counting paths in

the underlying networks. Next, we review the general properties of the path count-
ing centrality metrics and temporal PageRank (Rozenshtein and Gionis 2016). Then in
Section Temporal Katz centrality: our method, we describe our temporal Katz centrality
measure.

Path counting centrality metrics

As perhaps the first centrality metric based on path counting, Katz introduced his index
(Katz 1953) as the summation of all paths coming into a node, but with an exponentially
decaying weight based on the length of the path:

�Katz = 1 ·
∞∑

k=0
βkAk , (1)

where �Katz is the Katz index vector, A is the directed adjacency matrix, and β < 1 is a
constant. Hence the Katz index of a node is the weighted sum of the number of paths of
different lengths k terminating in u, where the weight is βk :

�Katz(u) :=
∑

v

∞∑

k=0
βk|{paths of length k from v to u}|, (2)

The Katz index is finite only if β < 1/|λ1|, where λ1 is the eigenvalue of A with largest
absolute value (Katz 1953). Since 1/|λ1| is often very small, around 0.05 in our graphs, the
relative weight of a length two path stays very small compared to a single edge. In order
to be able to use larger values of β , we introduce the truncated Katz index as

�Katz[K ] = 1 ·
K∑

k=0
βkAk . (3)

Note that �Katz[∞] = �Katz.
By the basic definition, PageRank is normally considered to be the static distribution

of a random walk with damping (Page et al. 1999). In order to compare PageRank and
the Katz index, and to motivate online update rules, we use the result of (Fogaras et al.
2005), who show—and use as an efficient algorithm—that PageRank is equal to the path
counting formula

�PageRank = 1 · c
N

·
∞∑

k=0
(1 − c)kMk , (4)

where c is the damping constant and M is the random walk transition matrix. In other
words, M is the outdegree normalized adjacency matrix: M = (K−1A)T where K is a
diagonal matrix with the outdegrees in the diagonal.
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Temporal PageRank

In (Rozenshtein and Gionis 2016), temporal PageRank, a dynamic variant of PageRank, is
defined as follows. In a dynamic graph, edges are time-stamped and can appear multiple
times. The main idea is to aggregate time respecting temporal walks

z = (u0,u1, t1) , (u1,u2, t2) , · · · ,
(
uj−1,uj, tj

)
; ti−1 ≤ ti. (5)

ending in a certain node, as illustrated in Fig. 1, to compute its temporal centrality. In
such a walk, they model an information flow from the start node u0 to the destination uj
by passing along edges that arrive subsequently in time.
For each edge (ui−1,ui, ti) in walk z, they assign the transition weight as βk , where

β < 1 is a decay constant and k is the number of edges (ui−1, y, t′) that appear after the
previous edge but not later than the present edge in the walk, that is, ti−1 < t′ < ti. They
incorporate this weight assignment in formula (4); for full details, see (Rozenshtein and
Gionis 2016).
Intuitively, their notion of edge transition weight decays exponentially with the num-

ber of possible continuations of the temporal walk at node ui−1. The more edges appear
before (ui−1,ui, ti), in their model it is exponentially less likely that the information is sent
along the given edge—and not another edge that appears earlier.
The main problem with the above path counting algorithm is that it overvalues nodes

with low activity. Consider a node that communicates to ten contacts in a few minutes.
The tenth contact will only receive a propagated score proportional to β−10. By contrast,
if another node sends only one message per day, the neighbor receives the full score even
though the information may already be highly outdated.
One key motivation of the above definition for temporal PageRank is that it possesses

a computationally low cost update algorithm. While it is tempting to modify the weight
formula to incorporate the actual time elapsed, the stream-based computation of such a
modified temporal PageRank becomes unclear.

Temporal Katz centrality: our method
We define our temporal Katz centrality measure over the stream of edges arriving in time
from a dynamic network. Our goal is to specify a metric that is based on the weighted
sum of time respecting walks, updateable by the edge stream, and that can incorporate
the actual elapsed time in the weights of the walks.
To motivate our new method, we reconsider the temporal PageRank (Rozenshtein and

Gionis 2016) edge transition weight rule: Weight βk is assigned to an edge uv in a path
where k is the number of edges that appear after the previous edge entering u but not
later than the appearance of edge uv. The definition involves time decay in an indirect
way through a combination with the activity of the nodes. As an advantage, the definition
guarantees that the weight will incur the degree normalization required in the PageRank
Eq. (4), and hence temporal PageRank will converge to static PageRank if edges are played
several times in random order. As a disadvantage, the notion of time is difficult to directly
capture in the temporal PageRank algorithm. The more time elapses before the next edge
appears, themore other edges have the chance to appear in between. However, this notion
also depends on the activity of the node in question, and longer delays are penalized less
at inactive nodes compared to active nodes.
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We define temporal Katz centrality by introducing a natural, purely time-dependent
edge transition weight ϕ(τ), which is an arbitrary function of the time elapsed since the
previous edge in a path. Intuitively, we define a time dependent decay for each edge, as
shown in Fig. 2. We will use the edge decay values to compute an aggregated freshness
of the information flow along a given path, which we will in turn aggregate for the final
nodes of the paths.

1. Temporal Katz centrality is the weighted sum of all time respecting walks that end
in node u,

ru(t) :=
∑

v

∑

temporal paths z
from v to u

�(z, t) (6)

where �(z, t) is the weight of walk z at time t. Truncated temporal Katz centrality
is defined similar to Eq. (3) by restricting to walks of length at most K.

2. For a temporal walk as in Eq. (5) where edges appeared at (t1, t2, . . . , tj), we define
weight �(z, t) as

�(z, t) :=
j∏

i=1
ϕ(ti+1 − ti), (7)

where ϕ is a time-aware weighting function, and for i = j we let tj+1 := t.
3. Hence �(z, t) is the product of individual edge transition weights ϕ(ti+1 − ti) as

seen in Fig. 2. The last term of the product ϕ(t − tj) captures the delay between
present time t and the appearance of the last edge in the path.

By combining Eqs. (6)–(7) temporal Katz centrality can be considered a variant of the
Katz index Eq. (2), in which time respecting paths are weighted by �(z, t):

ru(t) :=
∑

v

∑

temporal paths z
from v to u

j∏

i=1
ϕ(ti+1 − ti). (8)

By using different edge weight functions, we cover two important special cases for
temporal Katz centrality:

• If ϕ(τ) := β is constant, we obtain a variant of the Katz Eq. (2) with summation for
temporal paths instead of all paths irrespective of time.

• In another special case, ϕ(τ) := β · exp(−cτ). Since ϕ is an exponential function,
ϕ(a) · ϕ(b) = ϕ(a + b). Hence the path weight in (7) becomes

�(z, t) = β exp
(−c

[
t − tj

])
. . . β exp (−c [t2 − t1]) = β |z| exp (−c [t − t1]) , (9)

that is, it involves a Katz-style decay proportional to the length of the path,
combined with an exponential decay depending on the time elapsed since the first
interaction t1 over the path occurred. This weight is capable of capturing the
temporal decay of information spreading and propagation.

Fig. 2 Edge weights along a temporal walk at time t
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Update formula

In this section, we show how we can maintain temporal Katz centrality ru for each node
u, which is the sum of temporal paths z as in Eq. (5) with weight �(z, t) as in (7). We base
our analysis below on the fact that the sum of all temporal paths to u can be derived by
using the number of temporal paths ending at the in-edges of u. As seen in Fig. 3, if edge
vu appears at time tvu, the future centrality of node u at time t increases as

1. a new time respecting walk appears that starts from v and has weight ϕ(t − tvu),
2. for each time respecting walk that ended in v at tvu, a new walk with the new edge

vu appears. The total weight of paths that ended in v is rv(tvu), hence the weight of
the new walks is rv(tvu) · ϕ(t − tvu).

Adding up the weight of the two types of new walks, we get

ru(t) =
∑

vu∈E(t)
(1 + rv(tvu)) ϕ(t − tvu), (10)

where E(t) is themulti-set of edges appearing no later than t. Based on the above recursive
formula, if edge vu appears at time tvu, it increases the future centrality of node u by
(1 + rv(tvu)) ϕ(t−tvu). The increase of the centrality of u can be computed bymaintaining
the values tvu and wvu := 1+ rv(tvu). The algorithm for updating temporal Katz centrality
is hence the following:

• For each node u, we initialize temporal Katz centrality ru as constant 0. For each edge
vu, we maintain the edge weight wvu and the time of appearance tvu, initially all set to
0 and −∞, respectively. We let E(t) denote the multi-set of edges that appeared
before time t.

• Next, we consume the stream of edges vu and we update r and w as follows. First we
calculate the current value of rv as

rv :=
∑

zv∈E(t)
wzv · ϕ(t − tzv). (11)

Here E(t) is a multi-set, and each past occurrence of edge zv is counted separately,
with different tzv and hence different decay. Note that when edge vu appears, t = tvu.

• Then we add a new edge vu to the multi-set of edges with wvu := rv + 1 to propagate
the centrality score along edge vu, and set tvu := t.

• The above algorithm can also be applied to update truncated temporal Katz
centrality by the following modification: We maintain an array w[k]

vu for k = 1, . . . ,K

Fig. 3 At time t when edge vu becomes active, (1) a new walk appears starting from v, and (2) each time
respecting walk that ended in v continues to u
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for each edge in the multi-set E(t), and set

w[1]
vu := 1

w[k]
vu := 1 +

∑

zv∈E(t)
w[k−1]
zv · ϕ(t − tzv) for 1 < k ≤ K . (12)

r[k]u :=
∑

vu∈E(t)
w[k]
vu · ϕ(t − tvu) (13)

Time ordering is consistent with information propagation: For a path of three nodes
u, v, and z, we can propagate a certain share of the ru score along edge vz only by first
propagating along uv; hence uvmust appear before vz.
To relate temporal Katz centrality to (online) PageRank, notice the difference of the

Katz and PageRank path counting formulas (1) and (4). In Katz, the exponential decay
is applied to powers of the binary valued adjacency matrix A, while in PageRank, to the
degree normalized random walk matrixM.
Observe the lazy behavior of the algorithm: Ranks are updated only for the tail v of each

new edge vu. We assign based on the centrality of v rv + 1, as the weight wvu. If we query
the rank of u, we propagate rv along edges vu; however, we add a time decay to account for
the freshness of the edges vu: More recent edges propagate scores with higher intensity.

Time complexity

The time complexity of maintaining ru by formula (11) is linear in the degree of u. We can
further improve the online update complexity to constant time per update if ϕ satisfies
ϕ(a+b) = ϕ(a) ·ϕ(b). In this case, it is easy to see that at query time t, we can recompute
ru by the actual time t in formula (11) as

ru := ru · ϕ(t − tu), (14)

where tu is the last time node u was updated.
We can combine formulas (11), (10) and (14) to update ru for each new edge (vu) by

rv := rv · ϕ(t − tv);

ru := ru · ϕ(t − tu) + (rv + 1) · β ;

tu := t, tv := t, (15)

Querying the centrality score of a single node can be served in constant time by for-
mula (14). Hence computing a centrality top list can be done in time linear in the number
of vertices. For the special case when ϕ(t) = 1, the scores change only when formula 15
is applied, hence the scores can be stored, for example, in a heap to quickly access the
maximum score. In other cases, we can deploy heuristics such as (Teflioudi et al. 2015) to
quickly find u that maximizes the product (14); however, such an optimization is out of
scope in this paper.
Overall, for the decay functions ϕ used in our experiments, the time complexity of our

method is identical to that of time decayed degree. In the special case of ϕ = 1, our time
complexity is equal to that of static degree, while for other decay functions, we can bring
the running time very close to static degree by applying heuristics to find the maximum
of a product (Teflioudi et al. 2015).
We experimentally compared the running time of our method with static indegree,

static PageRank, temporal PageRank, and harmonic centrality in Fig. 4. We generated
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Fig. 4 The running time of temporal PageRank, static PageRank, static indegree, harmonic centrality, and
temporal Katz centrality with and witout synchronizing with time decay as in Eq. (14), measured over random
Barabási–Albert graphs with sizes as in Table 1. All static centrality measures are considered to be
synchronized

random Barabási–Albert graphs (Barabási 2009) by the barabasi_albert_graph

method of the networkx Python package1 and constructed temporal graphs by using
a 10% sample of the edges in random order. We split the temporal graph into ten equal
sized slices and computed all node centrality values at the end of each of the ten slices.
The size of the graphs are found in Table 1.
As seen in Fig. 4, except for harmonic centrality, all algorithms scale linear with the

number of edges. For our temporal Katz centrality algorithm, more than half of the run-
ning time is consumed by multiplying the centrality values by the time decay as in Eq. (14)
at the time of reading the observations. Hence we also report the running times of our
method without time decay synchronization at the end of the time frames. Overall, we
observed that the running time of these methods show implementational rather than
algorithmic differences.

Normalization for numeric stability

Next we describe how to normalize the temporal Katz centrality scores throughout
the computations for numeric stability. The main reason is that in our experiments,

Table 1 The size of the random Barabási–Albert graphs generated for the scalability experiments

Nodes Edges Edge sample size

10 000 59 982 5 998

50 000 299 982 29 998

100 000 599 982 59 998

1 000 000 5 999 982 599 998

2 000 000 11 999 982 1 199 998

3 000 000 17 999 982 1 799 998

4 000 000 23 999 982 2 399 998

5 000 000 29 999 982 2 999 998
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the values often resulted in numeric overflow for the best performing values of β .
Since for a ranking method, the actual values of the score are indifferent, and only
the rank order matters, we can apply any method to normalize temporal Katz cen-
trality. The main challenge is that the normalization method must also be online
updateable.
First, we discuss the numerical importance of normalizing temporal Katz centrality.

Katz index (1) converges only if β is less than the inverse of the largest eigenvalue of A
(Katz 1953). Typical maximal values of β for real graphs are in the range of 0.01–0.05,
which gives small weight for longer paths. By contrast, temporal Katz centrality per-
formed best in our experiments for detecting important nodes of the network for much
larger values β . For the high values of β , the centrality scores quickly grow to infinity, as it
happened in our experiments. For this reason, next we propose a method for normalizing
temporal Katz centrality.
To normalize the centrality scores, it is sufficient to maintain the sum of the raw scores.

Given the sum, we can always divide raw scores by the sum to obtain the normalized
values. In order to ensure that the raw values and the sum do not grow unbounded, we
have to periodically apply the normalization to all values. Unfortunately, synchronized
normalization of all values is not possible in the data streaming model. Instead, we apply
lazy normalization and maintain the time-stamped history of the multipliers. Whenever
we touch a centrality value, we first check its time stamp to see if pending normalization
steps need to be taken first before using the value.
Finally, we describe the algorithm to maintain the sum of the centrality scores. Instead

of the lazy algorithm in Section Update formula, which updates centrality ru only when a
new edge uv appears that will later propagate the value of ru to node v, we theoretically
maintain the actual score at every time instance. First, for every clock tick of time τ , we
multiply each ru, and hence also the sum, by e−τ as in Eq. (14). Second, we consider an
event when edge uv appears. At this time, the value of ru is computed by the update
Eq. (11). This new edge propagates the score ru to v and thus increases rv by ru. Hence
for all new edges, the increase of the sum at the time edge uv appears is ru measured at
that time. To maintain the total sum of the centrality scores, all is required is to add up ru
in Eq. (14) whenever it is applied by the update algorithm, and multiply by e−�t at every
clock tick of time �t.

Convergence properties

Let us assume that we sample a sequence of T edges from a graph with edge set of size
E. We intend to compute the expected value of temporal Katz centrality over the sampled
edge stream, under the assumption that the activation of the links of the underlying graph
is random.We give estimates on the number of times a given path is expected to appear in
time respective order, which yields in convergence theorems for temporal Katz centrality
to an expression similar to the Katz index. Note that we assume that sampling is done
in a uniform way over time, hence in what follows, time t corresponds to the number of
sampled edges in the process.

Theorem 1 Let us compute (truncated or normal) temporal Katz centrality with
�(z, t) = β |z| (no decay). If we sample a sequence of T edges from an edge set of size E, the
expected value of temporal Katz centrality is
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�TemporalKatz = 1 ·
K∑

k=0
βkAk

(
T
k

)
· E−k � 1 ·

K∑

k=0
βkAk(T/E)k/k! . (16)

Proof The expected number of times the edges of a given path of length k appear in a
given order, in an edge sample of size T can be computed as

sT ,k =
(
T
k

)
· E−k , (17)

since a given edge has a probability of 1/E to appear at a given position in the sequence of
T edges. To complete the proof, observe that by Eq. (8), temporal Katz centrality is

�TemporalKatz = 1 ·
∞∑

k=0
βkAk · sT ,k = 1 ·

K∑

k=0
βkAk

(
T
k

)
· E−k (18)

Theorem 2 Let us sample a sequence of T edges from an edge set of size E. Let us com-
pute (truncated or normal) temporal Katz centrality with exponential weighting, ϕ(τ) :=
β exp(−cτ). Then as T �→ ∞, the limit of the expected value of temporal Katz centrality is

�TemporalKatz = 1 ·
K∑

k=0
Ak

(
β

E

)k (
1

ec − 1

)k
. (19)

In particular, if c = c′/E with c′ 
 E, then the expected value of temporal Katz centrality
is approximately

�TemporalKatz = 1 ·
K∑

k=0
Ak

(
β

c′

)k
. (20)

Proof We intend to compute

�TemporalKatz = lim
T→∞

1 ·
K∑

k=0
AksT ,k = 1 ·

K∑

k=0
Ak lim

T→∞
sT ,k , (21)

where sT ,k denotes the expected total weight of a given path of length k in an edge sample
of size T.
Let us consider a given path of length k starting at time t1 = T − j as seen in Fig. 5.

Each possible occurrence of the path starting at the same time t1 = T − j has the same
weight �(z,T) = βke−cj (see (7) and (9)). Since we fix the first edge of these occurrences,
by Eq. (17), the expected number of the occurrences is 1

Ek
( j−1
k−1

)
. As a result, the expected

total weight of a given path of length k is

sT ,k = βk 1
Ek

T∑

j=k

(
j − 1
k − 1

)
e−cj. (22)
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Fig. 5 Explanation of Theorem 2. Each occurrence of a given path of length k that starts at time T − j has the
same weight βk exp (−cj)

Since
∞∑

n=m

(n
m
)
xn = xm/(1 − x)m+1,

lim
T→∞

sT ,k = lim
T→∞

(
β

E

)k T∑

j=k

(
j − 1
k − 1

)
e−cj

=
(

β

E

)k
e−c

∞∑

j=k

(
j − 1
k − 1

)
e−c(j−1) (23)

=
(

β

E

)k e−ck

(1 − e−c)k
=

(
β

E

)k 1
(ec − 1)k

. (24)

Hence

�TemporalKatz = 1 ·
K∑

k=0
Ak lim

T→∞
sT ,k = 1 ·

K∑

k=0
Ak

(
β

E

)k (
1

ec − 1

)k
. (25)

If c = c′/E with c′ 
 E, then c′/E << 1 and ec′/E ≈ 1 + c′/E; hence

�TemporalKatz = 1 ·
K∑

k=0
Ak

(
β

E

)k (
1

1 + c′/E − 1

)k
= 1 ·

K∑

k=0
Ak

(
β

c′

)k
. (26)

There is always a certain amount of fluctuation in temporal centrality as the effect of
the most recently selected edges. We can compute the expected increase for the weight of
paths that end with the most recently selected edge.
For the case with no decay, the additional count is the number of times the length k − 1

prefix appears, which is sT−1,k−1. The increase is approximately a multiplicative (1+k/E)

factor, which may be large for a large k; however, the weight of long paths is diminishing
exponentially as βk .
For the case with decay, the increase is given by Eq. (24) applied with k − 1 instead of

k, which approximately gives an expected multiplicative increase (1+ 1/(Ee−c)), which is
approximately 1 + c′ for the special case of Theorem 2.

Twitter Tennis data sets
We compiled two separate tweet collections, RG17 for Roland-Garros 2017, the French
Open Tennis Tournament, and UO17 for US Open 2017, the United States Open Tennis
Championship. The events took place between May 22 and June 11 as well as August 22
and September 10, respectively. We assessed the temporal relevance of centrality mea-
sures by using the list of players of different days as ground truth. We gathered data with
the Twitter Search API, by using the following two separate sets of keywords:
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{@rolandgarros, #RolandGarros2017,
#rolandgarros2017, #RolandGarros, #rolandgarros,
#FrenchOpen, #frenchopen, #RG17, #rg17}
{#usopen, #Usopen, #UsOpen, #USOPEN,
#usopen17, #UsOpen17, #Usopen2017, @usopen,
#WTA, #wta, #ATP, #atp, @WTA, @ATPWorldTour,
#Tennis, #tennis, #tenis, #Tenis}

The RG17 data covers the events of the championship starting May 24 with 444,328
tweets, 815,086 retweets, and 336,234 time-stamped mentions. The UO17 data consists
of 636,810 tweets, 1,048,786 retweets, and 482,061 mentions. The daily distribution of
mentions is shown for both tennis events in Fig. 6. Note that we imposed no language
restrictions on the text of the tweets during the data collection process.
We measure the performance of centrality measures by means of comparison with the

official schedule of the tournaments. The daily timetables are accessible in HTML file
format and contain the following information for each tennis game:

• Full names of the participating players (two for singles and four for doubles games)
• Approximate time of the game during the day (e.g.: after 11:00, not before 15:00, etc.)

Fig. 6 Number of nodes and edges in the UO17 (top) and RG17 (bottom) mention graphs. During the
qualifiers the number of interactions is low. Then user activity increases as the championship starts from Sept
28 or May 28 respectively. For UO17 the two bursts on September 7 and 9 are related to Women’s Singles
semi-final and final. A similar behavior can be observed for RG17 due to Men’s Singles finals on June 7–9–11
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• Category and round identifier of the game (e.g. Women’s Singles—Round 1, Men’s
Singles—Final)

• Court name, where the game took place (e.g. Grandstand, Arthur Ashe Stadium, etc.)
• Information about whether the game was canceled, resumed from a previous day, or

the final result if completed.

Based on the approximate time of the games, we consider a player active for a given day
if he or she participated in a completed game, a canceled game, or a resumed game on the
same day. All of these events are expected to cause a social media burst.
One of the most time-consuming parts of our measurement was to assign Twitter

accounts to tennis players. The total number of professional participants is 798 for US
Open and 698 for Roland-Garros. Unfortunately, many of the players have no Twitter
accounts.
We assigned players to accounts by the Twitter Search API’s people endpoint; however,

the API was sometimes unable to identify the accounts of the active players.
In case the people API endpoint failed to return the account of a player, we consid-

ered the account name (e.g. @rogerfederer, @RafaelNadal) and name (e.g. “RafaNadal”
for the account @RafaelNadal). Using edit distance, for each player we automatically
selected accounts where the account name or the displayed name is very similar to the
full name. Note that the same player often has multiple Twitter accounts, especially the
popular players, who usually have official sites and distinct accounts for fans with differ-
ent nationalities. As a last step, we excluded fake assignments such as @AndyMurray and
@DominicThiem by manual verification.
In order to match accounts and player names, we first listed the accounts that have

minimum edit distance from a given player’s name. We removed whitespaces and trans-
formed all characters to lower case. Since name matching can lead to false player-account
pairs, we manually searched the lists of different edit distance values to find valid player
account matches. We first considered screen names, and in case there was no match, we
continued with account names.
Using the above semi-automatic procedure, we managed to find Twitter accounts for

58.4% of the US Open players, as seen in Fig. 7. We achieved better player coverage of
64.2% for Roland-Garros.

Unsupervised evaluation
In addition to the data with ground truth of the previous section, we used the data sets of
(Rozenshtein and Gionis 2016) for unsupervised analysis (see Table 2). These small tem-
poral networks (Students, Facebook, Enron, Tumblr) have no more than 10,000 edges2,
as seen in Table 2.

Stability vs. changeability

We assess the amount of variability of temporal Katz centrality in time, depending on the
parameters β and the time decay exponent to exhibit the speed of focus shift in daily inter-
actions. We use the weight function ϕ(τ) = β · 2−cτ ; c can be considered as the half-life
of the information sent over an edge. We update temporal Katz centrality after each edge
arrival, and compute the top 100 nodes with highest centrality scores for each snapshot.
We generate the lists at the beginning of each day for the small data sets of (Rozenshtein
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Fig. 7 The number of players active on a given day and the number of them with identified Twitter accounts.
Top: UO17; bottom: RG17. Days with no tennis game between the qualifiers and the championship (Aug
26-27 and May 27, respectively) are not shown

and Gionis 2016), and each hour for our Twitter collections RG17 and UO17. Spearman
correlation is calculated between lists of adjacent snapshots, for different values of c and
β , as shown in Fig. 8.
Our measurements show that the similarity between adjacent lists depends on two dif-

ferent factors. We can turn temporal Katz centrality more static by using longer half-life
in the decay. If the half-life is short, we even get negative correlations as the number of
nodes present in both lists decreases. Another option is to use larger β . By increasing
β , the contribution of long walks will be more relevant, which cannot be dominated by
recently added edges as easily as for a small β . The two approaches can also be used in
combination. We observed the highest similarity using β = 1.0 with large half-life value.

Adaptation to concept drift

Rozenshtein et al. (2016) showed that temporal PageRank can adapt to the changes in
the edge sampling distribution over semi-temporal networks.We conducted similar mea-
surement for temporal Katz centrality on the same data sets: We created concept drift
by changing the sampling distribution that generates the temporal graphs and measuring

Table 2 Summary of the data sets used

Edges Nodes Days

Students 10,000 1654 121

Facebook 10,000 4752 104

Enron 6251 1944 892

Tumblr 7645 1757 89

UO17 482,061 106,920 21

RG17 336,234 78,095 19
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Fig. 8 Average Spearman correlation between temporal Katz centrality scores of adjacent snapshots. Daily
snapshots are used for Facebook, Students and Tumblr data sets, and hourly snapshots are used for RG17 and
UO17 Twitter collections. The correlation is presented for β values 0.1,0.5,1.0 and several time decay intensity

how quickly the different methods get closer to the static centrality measure of the new
distribution.
We created concept drift by changing the sampling distribution that generates the edge

stream.Wemeasured how quickly different temporal centrality measures converge to the
static centrality measure of the new distribution.
In our experiment for concept drift adaptation, we randomly selected 500 nodes as

a base graph and formed three overlapping subsamples of 400 nodes each. Similar to
the approach in (Rozenshtein and Gionis 2016), we formed a temporal edge stream of
three segments corresponding to the three subsamples, in each segment selecting 10,000
random edges from the corresponding subsample. We compute temporal PageRank and
temporal Katz centrality by assuming that a new edge in the stream appears in each time
unit. In other words, we measure the elapsed time τ by the number of edges in the stream.
We computed weighted Kendall tau (Vigna 2015) rank distance between temporal

Katz centrality and static Katz index restricted to the nodes of the actual subsample.
This results in concept drift with three different versions of the static centrality score
corresponding to the three time periods. By using weighted Kendall tau for measuring
concept drift adaptation, we put more emphasis on nodes with high centrality compared
to (unweighted) Kendall tau. For the same reason, we use the asymmetric version as in
(Vigna 2015, Section 5.1) by using the weight of 1/rank for the static Katz index and zero
for the online methods. By this choice, Kendall tau measures the distance from the Katz
index acting as ground truth.
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In Fig. 9, we evaluated our model for various values of the exponential decay against the
Katz index with β = 0.01. The results show that in case of weak decay c = 1

|E| , tempo-
ral Katz centrality becomes similar to static Katz index as the graphs evolve, which is in
accordance to Theorem 2 stating that temporal Katz centrality converges to an expression
similar to the static Katz index. On the contrary, strong decay shifts the focus of temporal
centrality towards the recently sampled edges, thus correlation decrease for c = 10

|E| and

Fig. 9 Weighted Kendall tau rank distance of static Katz index and online methods by sampling to simulate
concept drift over Students, Enron, Facebook and Tumblr data. Static Katz index has β = 0.01. The Weighted
Kendall tau curves for temporal Katz centrality with c = 1

|E| are green, with c = 10
|E| are red, with c = 100

|E| are
purple, and for temporal PageRank are blue dashed. Noise in temporal Katz centrality is due to the effect of
the most recently selected edges. The two vertical bars mark the time of the concept drift, when a new
sampling distribution is used to generate the temporal edges
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c = 100
|E| . Also note the noise in temporal Katz centrality rank distance curves due to the

effect of themost recently selected edges, as described in Section Convergence properties.
To summarize our experiments in Fig. 9, we considered the behavior of temporal Katz

centrality with different parameters as well as temporal PageRank after the two changes
in sampling distribution marked by vertical bars in the Figure. We observed that tempo-
ral PageRank forgets the old distribution very slow, while temporal Katz centrality very
quickly becomes similar to the new static distribution. The best parameter for temporal
Katz centrality is a weak decay c = 1

|E| , which is still sufficient to forget the old distribution
but gives less fluctuation compared to the very highly adaptive, stronger decay versions
with larger values of c.

Supervised evaluation
In this section, we quantitatively analyze the relevance of temporal centrality measures
over the UO17 and RG17 Twitter collections. We compare the relevance of temporal Katz
centrality to temporal PageRank and other online and static baseline methods described
in Section Baseline metrics.
To evaluate online metrics, we perform continuous update as the new edges arrive, by

considering our data as a time-ordered edge stream. For the static metrics, we consider
different graph snapshots. For each centrality measure, we compute the list of the nodes
with the highest centrality in each hour. We use NDCG (Al-Maskari et al. 2007) for eval-
uation, defined as follows. For a list of length k that contains the top nodes sorted by their
centrality metric, we compute the weighted sum of node relevances:

DCG@k =
k∑

i=1

rel(ni)
log2(i + 1)

, (27)

where ni is the node at position i in the list and rel(ni) is its relevance: An account ni is
relevant if it corresponds to a tennis player that participated in the tournaments of the
current day:

rel(ni) :=
{
1, ni plays on the current day
0, otherwise.

(28)

Finally, NDCG is the normalized version of DCG:

NDCG@K = DCG@K
IDCG@K

, (29)

where IDCG is the “ideal” DCG we get by ordering the nodes according to their true
relevance.

Baseline metrics

We compare temporal Katz centrality to online (or time-aware) and static (or batch) met-
rics. Online metrics are updated after the arrival of each edge. By contrast, static metrics
are only updated once in each hour. At hour t a static metric is computed on the graph
constructed from edges arriving in time window [t − T , t] from the edge stream. For each
baseline, we experimentally select the best value of T.
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We consider four static centrality measures as baseline:

• PageRank (Page et al. 1999): We set α = 0.85, and 50 iterations.
• indegree: We calculate the indegree of each node in time window [t − T , t] by

counting each edge once, that is, without multiplicity.
• negative β-measure (Boldi and Vigna 2014): The normalized version of indegree, for

node u
∑

z∈Nin(u)

1
outdegree(z)

, (30)

where Nin(u) denotes the in-neighbors of u.
• harmonic centrality (Boldi and Vigna 2014): For node u

∑

z �=u

1
d(z,u)

. (31)

Furthermore, we compare temporal Katz centrality with two online metrics, temporal
PageRank (Rozenshtein and Gionis 2016) and decayed indegree.

• temporal PageRank: We set α = 0.85 and β ∈ {0.001, 0.01, 0.05, 0.1, 0.5, 0.9} for
transition weight.

• decayed indegree: Using the notations of Section Update formula, the decayed
indegree of node u at time t is

∑

zu∈E(t)
ϕ(t − tzu), (32)

where ϕ is the time decay function that we set ϕ(t − tzu) := exp(−c(t − tzu))
similarly to temporal Katz centrality.

Results

As the final and main analysis of the relevance of centrality measures, we compute hourly
lists of top centrality nodes and calculate the NDCG@50 against the ground truth. We
show two different ways to aggregate hourly NDCG@50 values:

1. For each hour of the day between 1:00 and 24:00, we show averages over the days
of the tournament.

2. As a single global value, we average NDCG@50 for all days with all hours between
10:00 and 20:00.

The hour of the day has a key effect on performance. In the early hours, activity is low,
and hence information is scarce to identify the players of the coming day. By contrast, in
the late hours after the games are over, we expect that all models easily detect the players
of the day based on the tweets of the results. The effect of the hour of the day can be
seen in Fig. 10, where we plot the average daily performance for temporal Katz centrality
measured over the UO17 data. This observation, along with the fact that daily tennis
games start around 10:00 is the motivation to average NDCG@50 scores only between
10:00 and 20:00.
First, we analyze our baseline models. Each static metric is computed at hour t over the

graph defined by edges arriving in time frame [t − T , t]. Hence the key parameter of these
methods is the length of the time window T. Similarly, online decayed indegree depends
on the half-life parameter τ := ln 2/c. Figure 11 shows the overall performance of the
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Fig. 10 Average daily NDCG@50 performance of temporal Katz centrality on the UO17 data

static baselines as the function of time frame T, and the quality of decayed indegree as
the function of half-life τ . For both data sets, PageRank and harmonic centrality outper-
form degree-related methods. Furthermore, these path-based methods prefer larger time
frames, while degree-based models perform best at smaller values of T.
Next we turn to analyzing temporal Katz centrality with exponential decay. The key

parameters of our method are the parameters of the exponential decay β and τ := ln 2/c,
and truncation k. We then parameterize exponential decay with half-life τ := ln 2/c
instead of c.
First, we examine the effect of k and half-life τ by setting β = 1. Figure 12 shows

the performance of temporal Katz centrality at various parameter settings for UO17 the
RG17. We plot NDCG@50 against parameter τ . Different curves correspond to different
k parameters. The effect of k is significant: Models with k > 1 strongly outperform mod-
els with k = 1, a very simple version of temporal Katz centrality similar to online degree.
The best performance can be achieved on both data sets by setting k = 2 and τ ≈ 3h.
In Fig. 13 we analyze the importance of parameter β . For models with larger k (e.g.

k = 8), the importance of β is to decrease the effect of paths that are too long, with
optimal value around β ≈ 0.1 − 0.2. For methods with lower k (e.g. k = 2), β is nearly
meaningless, and the use of small β in combination with strong exponential decay results
in performance deterioration.
The final conclusion of our experiments is drawn in Fig. 14 where we compare the

hourly performance of each method at their best parameter settings. For temporal Katz

Fig. 11 NDCG@50 performance of the baseline methods as the function of time window T. For online
baseline exponential degree results are shown as the function of half-life τ . Left: UO17, Right: RG17
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Fig. 12 NDCG@50 performance of temporal Katz centrality as the function of half-life parameter τ . Different
curves correspond to the different values of k. We set β = 1. Left: UO17, Right: RG17

centrality we set β = 1, τ = 3h, k = 2. In the case of both data sets, temporal Katz central-
ity can keep upwith the performance of harmonic centrality, the strongest baselinemodel.
The quality of temporal PageRank is significantly lower than the quality of other methods.
We summarize the best NDCG@50 scores for temporal Katz centrality and the baselines
in Table 3. Temporal Katz centrality generally performs better than other baselines. Note
that only harmonic centrality, a measure that is static and not online updateable, delivers
performance comparable to temporal Katz centrality.
We illustrate various centrality measures by showing the 20 accounts with highest score

for the Roland-Garros semifinals. On June 9, more than 70 players participated in several
categories (Men’s singles, Girl’s and Boy’s singles, etc.). In Table 4, we show top accounts
at 12:00 by temporal Katz centrality with k = ∞ and τ = 3h, and in Table 5 for harmonic
centrality and decayed indegree, the latter also at 12:00.
We show the accounts of tennis players playing participating in the June 9 semifinals in

orange and of those who did not play in yellow, for example, women semi-finalists of the
previous day, Simona Halep, Timea Bacsinszky, Caroline Garcia and Gabriela Dabrowski.
All methods listed 4–6 daily players among the most central 20 accounts. All meth-
ods assigned high centrality to Men semi-finalists Rafael Nadal, Andy Murray, Stanislas
Wawrinka and Dominic Thiem. Furthermore, temporal Katz centrality with β = 1.0 and
harmonic centrality could recover two additional young daily players, Whitney Osuigwe
and Nicola Kuhn. Retired tennis legends Ana Ivanovic and Gustavo Kuerten are not
relevant in our experiment as they did not participate in this event.

Fig. 13 NDCG@50 performance of temporal Katz centrality as the function of parameter β . Different curves
correspond to the different values of k. We set τ = 6h for the UO17 data, and τ = 3h for the RG17 data.
Left: UO17, Right: RG17
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Fig. 14 Overall best daily NDCG@50 performance of temporal Katz centrality and the baselines. Left: UO17,
Right: RG17

Notice that decayed indegree and temporal Katz centrality with β = 0.2 rank sports
media accounts (Tennis Channel, WTA, ATP World Tour, Eurosport) higher compared
to harmonic centrality and temporal Katz centrality with β = 1.0. We did not attempt to
curate the relevance to media sources, as the number of such Twitter accounts is abun-
dant. Finally, sponsors ‘yonex.com’ and ‘NikeCourt’, as well as the official Twitter account
of the event ‘@rolandgarros’ also rank high. Most of these accounts are active every day,
with little observable change in time, which justifies why we do not consider them relevant
for the temporal evaluation.

Conclusion
In this paper, we designed an online updateable, dynamic graph centrality measure based
on the Katz index. Our proposed metric can incorporate arbitrary time decay functions
to emphasize the time-related relevance of the edges based on their time of creation. Our
algorithm models information spreading over the stream of edges created subsequently
in time.
We presentedmultiple unsupervised experiments to show that ourmethod can adapt to

changes in the distribution of the edge stream. Furthermore, with time decay parameter c
and β we can properly control the effect of recently added edges. We also proved that our
metric converges to the Katz index in case of static edge distribution.
In order to assess the quality of our centrality measure, we compiled a supervised

evaluation for the mention graphs of Twitter tennis tournament collections along with
temporal importance ground truth information. To the best of our knowledge, these are
the first Twitter collections enhanced with dynamic node importance labels. We made
our data set, as well as our codes publicly available3. In our final experiment, we com-
pared our temporal Katz centrality metric with static graph-based measures as well as

Table 3 Best average NDCG@50 performance of each centrality metric

NDCG@50 UO17 RG17

indegree 0.321 0.342

decayed indegree 0.321 0.346

negative beta 0.319 0.333

PageRank 0.325 0.349

temporal PageRank 0.187 0.195

harmonic centrality 0.353 0.359

temporal Katz centrality 0.370 0.368
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Table 4 Temporal Katz centrality with β = 1.0 (left) and β = 0.2 (right) top list for RG17 semi final
day (June 9) at 12:00

Relevant daily players are highlighted orange. Accounts of players who did not play on this day are highlighted yellow

with other dynamically updateable algorithms. We found that temporal Katz centrality
can identify accurately and quickly the emerging, new important nodes and that it worked
particularly well in the US Open 2017 (UO17) collection.

Endnotes
1 https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/

networkx.generators.random_graphs.barabasi_albert_graph.html
2GitHub repository of the temporal PageRank research: https://github.com/

polinapolina/temporal-pagerank
3GitHub repository of our research: https://github.com/ferencberes/online-centrality

Table 5 Harmonic centrality (left) and decayed indegree (right) top list for RG17 semi final day
(June 9) at 12:00

Relevant daily players are highlighted orange. Accounts of players who did not play on this day are highlighted yellow

https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://github.com/polinapolina/temporal-pagerank
https://github.com/polinapolina/temporal-pagerank
https://github.com/ferencberes/online-centrality
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