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Abstract—This work covers deployment of contextual process-
ing of measurement data in application to temporal modeling of
pneumatic conveying industrial process. Electrical capacitance
tomography (ECT) used as a non-invasive process monitoring
tool is supported by data mining for regularization of non-
linear inverse problem solution. Processing of a larger number
of archived experimental datasets enables extracting additional
constraints for inference. Contextual data processing model
(CDPM) extracts demanded information from the data in order
to incorporate it as an expert knowledge about the process
temporal behavior. Then it is incorporated into the Bayesian
inference framework. Comparative analysis with previous work
and domain expert prepared baseline to the proposed approach is
demonstrated. Additionally, simplified parameterization is tested
and verified by the quantitative experimental analysis.

I. INTRODUCTION AND RELATED WORK

A. Pneumatic conveying and ECT

Bulk solids, powders and particulates cover about 2/3 of all

solid materials used in industry at various stages of manufac-

turing. However, proper monitoring of processes that involve

bulk solids is difficult because of their volumetric and opaque

nature. The most promising techniques involve non-invasive

and non-intrusive tools such process tomography methods,

while electric capacitance tomography is one of the most

popular modalities [1] [2]. However, there are some issues

related to nonlinear nature of electrical field associated with

extracting required process-related information from ECT data

[3] [4] [5]. Therefore some methods aiming at improving the

inverse problem conditions were developed over last 20 years

[6] [7] [8] [9] [10] [11] [12] [13] [14]. Here a contextual

tomography-based measurement data processing approach is

proposed. It is based on the same contextual data processing

model (CDPM) as described in [15] that was valided for big

data driven aspects there. In contrast, current work validates

CDPM within the scope of inverse problem regularization

support. The main contribution of this work is therefore the

proposed theoretical model for contextual data processing

applied to temporal inference about the process behaviour. It is

validated here with binary classification technique comparing

to the baseline Bayesian inference framework.

B. Contextual Model for Measurement Data Processing

Contextual methods are derived from a concept of context-

aware services or context-awareness in general. These con-

cepts are extensively used in human computer interaction

(HCI) discipline. Here it is postulated to outspread these no-

tions to the field of measurement data processing for industrial

processes monitoring [16] [17] [18]. Though some modifica-

tion is required but the core of the concept remains to be based

on a simple idea of using the additionally available information

describing the object of interest in order to broaden the set of

data to be incorporated as the input to the system.

I propose to expand this typical understanding of context

Fig. 1: General diagram of contextual data processing model

(CDPM). EK, BD AGI, PS refer to as Expert Knowledge,

Big Data, Artificially Generated Input, Peripheral Sensors

accordingly.

related to the information coming from peripheral sensors (PS)

to the four inter-related categories that form the CDPM model

as shown on Fig.1. While PS still stays as substantial pillar

of the model, the extension goes towards incorporating the

following factors: Expert knowledge (EK), Big Data analysis

(BD) and Artificially generated inputs (AGI) into the model.

EK refers to any prior knowledge that can be defined inde-

pendently to the current situation (experiment). BD stands

for a broader base of previously conducted experiments or

measurement datasets that can be analyzed in order to search

for similarities, patterns or knowledge that can be extracted
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out of it. AGI works as a complementary tool to supplement

knowledge base, especially in case of sporadic phenomena

for events that are rarely captured. While AGI can be either

a distinct pillar of the CDPM it can also contribute to BD

component. While exploring the BD analysis for CDPM is

postulated in [15] [19] [20], this paper focuses at showing

the method for incorporating EK into the process of inverse

problem solving for ECT application to the monitoring of

pneumatic conveying flow of bulk solids.

Fig. 2: CDPM for temporal modeling of pneumatic conveying.

EK, BD, PS, FSC, ECT, C refer to as Expert Knowledge,

Big Data, Artificially Generated Input, Peripheral Sensors,

Flow State Classifiers, Electrical Capacitance Tomography,

Capacitance data accordingly.

C. Pneumatic Conveying Experimental Setup

Experimental part of this research was conducted at the

Tom Dyakowski Process Tomography Laboratory at the Lodz

University of Technology. The ECT dual plane, 8-electrode

sensors were fixed on a 65mm horizontal section of pneumatic

conveying test rig as shown on Fig. 2. More details about the

equipment can be found here [18]. Measurement campaign

spanned over a range of settings preserving regular slug

flow for different combinations of material feed rate, and air

pressure (10.0 - 16 Hz inverter, 60 - 100 Hz of the rotary

valve) for approx. 3 cubic mm polyamide pellets.

II. INVESTIGATION PROCEDURE

A. Baseline requirements

This work aims at proving that using available previous

experimental data one can derive information useful for cur-

rent measurement-related computational problem [10]. Spatio-

temporal modeling of pneumatic conveying based on Bayesian

inference and statistical methods demonstrated possibility of

Fig. 3: Experimental setup: ECT sensor equipped measurement

section at horizontal pneumatic conveying rig and a corre-

sponding ECT data acquisition device.

omitting the image reconstruction stage on the way to estimate

characteristic flow parameters [8]. Current step is to simplify

parametric modeling within the temporal modeling concur-

rently preserving or increasing the accuracy with the aid of

CDPM. Computational environment with use of Hadoop is

similar to desribed in [21]. The investigation is based upon

the following postulations:

1) Mean concentration of bulk solid is taken as a main

parameter describing flow state at any time point. ECT is

the main measurement tool to supply estimated electric

permittivity distribution (related to bulk concentration)

based on capacitance measurement vectors.

2) There is additional information available in form of

archived experimental datasets coupled with supplemen-

tary information such as estimated flow rate and weighed

quantity of total material being transported, material

geometry, properties, valves states, other metadata. Fig.

2 illustrates the basic workflow for the inverse problem

using CPDM support.

3) Fragments of archive datasets are taken especially for

slug rise (ECT recorded slug build up) and fall (ECT

recorded slug tail) in order to regularize inverse problem

for temporal analysis. Previously geometrical modeling

was proposed for temporal smoothing varied in time that

resulted in high uncertainty [22].

4) CPDM takes fragments, full-lenght experimental

datasets and optional classifiers built on top of BD

employment as well as any other general knowledge

in order to incorporate it into the EK inverse problem

solution as described in [8].

5) Correspondence to baseline, expert-annotated datasets in

terms of mean electrical permittivity change in time was

proposed as a principal measure to assess the proposed

approach accuracy.

6) Calculated total transported material weight (relevant to

flow rate) was chosen as an extra measure to verify if

the simplification relying on substitution of geometrical

modeling with mean concentration change is reasonable.
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B. Inference Framework

Eq. (1) shows the approximation of the posterior probability

density function related to the unknown distribution of the

electric permittivity of the transported bulk solids mixture

within the ECT sensor space. The critical factor from the

CDPM is the kE which stands for the prior knowledge with

relation to the expected constraints on the electric permittiv-

ity ǫ distribution in relation to obtained electric capacitance

records C and in fact kE(ǫ) is EK equivalent.

where p(ǫ) is the inverse problem for ECT and bulk solids

flow and the p(C—ǫ) is the forward problem that can be

numerically approximated using FEM method. Hence the EK

can be defined here as the regularization prior, and for an

electric permittivity case can be denoted as kE(ǫ) Eq (2):

Such stated kE(ǫ) leads to Laplacian distribution with a

1 (l=1) norm and leads to Gaussian distribution for norm 2

(l=2). Now extending this approach to a temporal dependence

analysis the following relation expresses how consecutive

frames dependence can be described (Eq. 3):

where Kt is a set of estimated parameters at a given time

point t, and βt decides on the level of correlation between these

values in consecutive time points (in contrast to βs in a spatial

distribution case in Eq. 2). The procedure of tackling the is

shown on right hand-side of Fig. 1. There are several possible

options for solving the Bayesian-based approach for ECT

inverse problem solving. Related work referred to here is based

on highly iterative MCMC scheme that is both computationally

and time demanding [8] [10]. Current work was decided to use

the same option yet thanks to GPU computing and reduced

number of parameters the calculations are far less demanding

and time consuming as shown in [11].

III. RESULTS

A. Comparative Analysis

The results are given for the modeling of the pneumatic

conveying slug flow for several different flow configurations

as discussed in experimental setup section. Results are divided

into 3 classes with respect to flow rate, i.e. average transported

medium rate over time. Table 1 provides the comparison

between the compliance of estimated mean concentration of

solids (corresponding to amount of medium transported) on

the basis of comparison between the raw data, reconstructed

images analysis, previous approach [18] and the CDPM model.

The datasets are cut to the 100 frames series that always

include both the slug and stationary layer portion (i.e. consecu-

tive periods of frames with lower or higher mean concentration

values). Each of the 3 categories: low flow rate (Table 1,

row 1), medium flow rate (Table 1, row 2) and high flow

rate (Table 1, row 3) are arbitrarily divided into 3 consec-

utively rising classes based on the results and parameters

of the performed experiments. Results in rows 1-3 indicate

percentage compliance averaged over 10 different calculations

and standard deviation both rounded to first decimal digit.

Percentage is calculated based on binary classification of a

consecutive measurement frame as either belonging or not

belonging to a slug as shown in [9]. Row 4 reveals average

error. Row 5 shows supplementary measure of total material

transported weight comparing to the scale-recorded values for

whole experimental datasets.

B. Discussion and directions for future work

The proposed CDPM model using temporal information as

an input for expert knowledge (EK) extension to the normal

prior knowledge applied in Bayesian inference framework

performs well comparing to the baseline, i.e. to the expert

provided ground truth in form of marked test datasets. CDPM

results for all three classes reached 90%+ accuracy. CDPM

performs better than other methods especially for medium and

high flow rates for which both reconstructed images post-

processing as well as previous work based on geometrical

parameterization for temporal modeling obtained the weakest

scores. Interesting feature is that the reconstructed images

based analysis outperform both compared methods for low

flow rates while is giving worse results for more dynamic flow

regimes while the other two gain more accuracy for higher

flow rates. It will be interesting to verify performance of the

proposed model for a truly large data sample, especially of

mixed origins of different experimental installations [23] [24].

On the other hand, it is noticeable that CDPM beats direct

estimation based on raw data records by a small difference

yet with much lower variance as well.

Total weight of material transported by the pneumatic con-

veying flow rig shown in row 5 of Tab. 1 showed superior
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performance of CDPM model over the others however accu-

racy on 91.2% is not yet sufficient to treat ECT-based systems

as a reliable, stand-alone, online monitoring tool for pneumatic

conveying process. Nevertheless as stated in the beginning this

measure proved that simplification of modeling process meant

by the reducing the parameters number is feasible. Model

that assumed mean material concentration value related to

mean electric permittivity performed better than geometrical

modeling of assumed cross-sectional areas of homogeneous

material distribution.

More extensive computational study is required to derive more

definitive conclusion about the performance of the CDPM

model. Especially, further research work on the larger number

of datasets in order to verify the range of applicability of

this method to more general classes of applications for ECT

monitoring of powder flows in vertical and inclined sections is

needed. Next step is to construct a distributed computational

environment for big experimental measurement data employ-

ing map-reduced paradigm in order to cope and test CDPM

performance extensively. It would be interesting to see the AR-

based study and track users what and how these professionals

perceive the industrial environments to obtain a baseline for

further development [15][25][26].

IV. SUMMARY

This work illustrates experimental verification of the pro-

posed CDPM model for temporal modeling of industrial

pneumatic conveying process. The method is based on the

incorporation of the extra expert knowledge as the regular-

ization factor into the inverse problem solving for electri-

cal capacitance tomography. As the initial results show, the

methodology is suitable for temporal modeling of ECT-based

monitored pneumatic conveying of bulk solids flow since it

helps to identify the flow states (regimes) with similar or

better accuracy than the state of the art methods. Calculated

total quantity of material transported based on the proposed

approach is of approximately 5-10% more accurate than the

previous research shown. Hence the proposed simplified model

based on mean material concentration value seems to be

sufficient and in at least some aspects superior over previously

reported geometrical parameterization for temporal bulk solid

flow modeling.
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