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Surfel-Based Incremental Reconstruction of the
Boundary between Known and Unknown Space

Riccardo Monica Member, IEEE, and Jacopo Aleotti Senior Member, IEEE

Abstract—This work presents the first surfel-based method for multi-view 3D reconstruction of the boundary between known and
unknown space. The proposed approach integrates multiple views from a moving depth camera and it generates a set of surfels that
encloses observed empty space, i.e. it models both the boundary between empty and occupied space, and the boundary between
empty and unknown space. One novelty of the method is that it does not require a persistent voxel map of the environment to
distinguish between unknown and empty space. The problem is solved thanks to an incremental algorithm that computes the Boolean
union of two surfel bounded volumes: the known volume from previous frames and the space observed from the current depth image. A
number of strategies were developed to cope with errors in surfel position and orientation. The method, implemented on CPU and
GPU, was evaluated on real data acquired in indoor scenarios, and it was compared against state of the art approaches. Results show
that the proposed method has a low number of false positive and false negatives, it is faster than a standard volumetric algorithm, it has
a lower memory consumption, and it scales better in large environments.

Index Terms—Surfel based mapping, dense multi-view 3D reconstruction, range sensing

✦

1 INTRODUCTION

THE goal of dense 3D reconstruction using a moving
depth camera is to recover the geometrical structure

of a scene from multiple views. Many approaches have
been proposed to achieve a real-time reconstruction that
iteratively merge views into a global representation [1].
In various applications, however, reconstruction of visible
surfaces alone is not enough and it is necessary to encode
occupied, empty and unknown space. For example, un-
known (unseen) regions of a reconstructed 3D model can
be visualized to assess completeness and quality, or they
can serve as input for a hole filling algorithm. Moreover, in
3D scanning, unseen regions of a 3D model may be used to
instruct the user, or an automated system, where new scans
should be obtained. In particular, Next Best View algorithms
find the optimal sensor pose that maximizes an information
gain, which is usually computed as the expected visible
amount of unknown space.

By definition, empty space is the space that has been
traversed by a sensor viewing ray, and it is therefore known
to be empty. Occupied space is the surface where sensor
observations occurred. Unknown space is the space that the
sensor could not observe either because occluded by the
occupied surface, or because the sensor was not oriented
towards it. Known space is the union of empty and occupied
space. Volumetric data structures, like regular voxel grids,
do encode both known and unknown space and, therefore,
they are widely adopted by most existing methods for plan-
ning robot tasks [2]. In a voxel grid a voxel is either empty,
occupied, or unknown, and occupied space is encoded as
a thin layer of voxels approximating object surfaces. The

• R. Monica and J. Aleotti are with the Robotics and Intelligent Machines
Laboratory (RIMLab), Department of Engineering and Architecture,
University of Parma, 43124 Parma (PR), Italy. E-mail: {riccardo.
monica, jacopo.aleotti}@unipr.it

Manuscript received April 19, 2005; revised August 26, 2015.

main disadvantages of volumetric representations are high
storage requirements and long rendering times.

A different approach to represent a 3D scene is using
point-based data structures called surfels. Surfels (surface
elements) are oriented circular disks, without explicit con-
nectivity, with attributes like center, normal, radius, and
color [3]. The surfel-based representation allows a more effi-
cient update of the 3D reconstruction. Indeed, surfels can be
efficiently managed through point-based rendering, thanks
to GPU acceleration. Moreover, surfels enable modeling of
large environments without any loss in terms of resolution.
Among surfel-based techniques ElasticFusion [4] is a well
known approach for dense visual SLAM (Simultaneous
Localization and Mapping) for RGB-D cameras.

A limitation of surfel-based 3D reconstruction methods,
like ElasticFusion, is that they only provide a reconstruction
of the occupied object surfaces. Therefore, they do not
encode incomplete regions of the surfel-based 3D model.
In previous work [5], it has been shown that the frontier
between unknown and known space can be efficiently ap-
proximated by using a surfel cloud. However, in [5] compu-
tation of the boundary between unknown and known space
required a persistent volumetric voxel-based map, that was
provided by KinectFusion [6].

In this work, we propose the first surfel-based incre-
mental approach for 3D reconstruction that approximates
the closed surface enclosing the current known space. That
is, the method generates a surfel cloud that includes both
the boundary between empty and occupied space (i.e. the
occupied surface), and the boundary between empty and
unknown space. The method does not require a persistent
voxel map of the environment.

The goal is challenging for two main reasons. First, mul-
tiple views from a moving depth camera must be integrated
to produce a surfel cloud in a globally consistent way. As
each depth image generates a surfel bounded volume of
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known space, the problem is solved by an iterative and
incremental procedure that computes the Boolean union of
two surfel bounded volumes: the known volume from pre-
vious frames and the space observed from the current depth
image. Being incremental, the algorithm does not require
to store all information about each sensor view simulta-
neously. Second, due to the discrete nature of surfels the
solution must be robust to approximation errors that may
compromise Boolean operations between surfel bounded
volumes. In particular, to cope with errors in the estimation
of surfel position and orientation, the proposed method
exploits redundancy of paths in ray casting operations, as
well as knowledge about the surfel neighborhood.

The approach was compared against a standard vol-
umetric 3D reconstruction algorithm (based on octrees),
available within the OctoMap library [7], which was used as
ground truth. Results indicate that the proposed method has
comparable accuracy, but it is faster, it has a lower memory
consumption, and it scales better in large environments.
Also, the proposed approach has better accuracy than the
state of the art method in [5]. In summary, the main contri-
butions of this work are:

• the first approach for the reconstruction of the
boundary between known space and unknown
space, encoded using a surfel-based representation;

• an experimental evaluation on real data acquired
using a depth camera in indoor environments, in-
cluding sequences from a publicly available dataset;

• a comparison with state of the art approaches [5] and
OctoMap;

• a publicly available open source implementation of
the proposed approach written in OpenCL/C++,
supporting both CPU and GPU.

This paper is organized as follows. Section 2 reviews
related works. The proposed method is described in Section
3. Section 4 presents the experimental evaluation. Finally,
Section 5 concludes the paper discussing future extensions.

2 RELATED WORK

In this section, we review related works about Boolean oper-
ations on surfel bounded solids. We also review methods for
surfel based reconstruction and other applications of surfel
representation.

2.1 Boolean operations on surfel bounded solids
The problem of performing Boolean operations on surfel
bounded models has been investigated only on single pairs
of solids [8], [9], [10], [11]. Adams et al. [8], [9] proposed
an approach based on an inside-outside test, which was
also adapted to work entirely on the GPU. Farias et al. [10]
adopted a more efficient solution, based on Constrained
BSP-trees, with no restrictions on the directions of cuts.
In [11] a method was proposed to cope with surfel sets
of different density that exploited Hierarchical Bounding
Volumes. Unlike these methods, in this work we aim to
incrementally execute Boolean union operations between
multiple surfel bounded solids extracted from sensor mea-
surements. Being incremental, the solution is more challeng-
ing than previous works in terms of noise sensitivity, as
errors accumulate during the 3D reconstruction.

2.2 Surfel based reconstruction

Several approaches, like ElasticFusion [4], have been in-
vestigated for surfel based mapping, however all previous
works do not distinguish between unknown and empty
space. Park et al. [12], [13] proposed a probabilistic approach
for surfel mapping based on dense LIDAR data. In [14]
a large scale scene reconstruction method was presented,
based on surfels and video sequences, acquired using a
hand-held Kinect sensor. Schadler et al. [15] presented an
approach for 3D environment mapping and 6D tracking of a
mobile robot, using a rotating planar laser scanner. In [16] an
approach was introduced for real-time registration of RGB-
D images that extracts multi-resolution surfel views and that
performs registration by exploiting a variant of the iterative
closest point (ICP) algorithm. Another method for visual
SLAM, which models measurement uncertainties by using
a probabilistic surfel map, was proposed in [17]. Henry et
al. [18] proposed a surfel based framework, called RGB-
D Mapping, that performs a joint optimization including
visual features and shape-based alignment. Carceroni et
al. [19] investigated the problem of 3D reconstruction of
shape and reflectance from multiple cameras, by exploit-
ing dynamic surfels to take also into account non rigid
motions of deformable surfaces. Puri et al. [20] proposed
a method, called GravityFusion, that corrects a surfel map
with inertial sensor data in the absence of a pose graph.
In [21] an approach for high quality surfel rendering was
presented by using a fast dynamic up-sampling algorithm
suitable for point-based geometry. In [22] a classification-
based approach for high quality rendering in large scenes
was developed that minimizes the number of rendered
points on the GPU. Klaess et al. [23] presented an efficient
method for mobile robot navigation that exploits surfels to
build a 2D navigation map.

2.3 Applications of surfel based representations

Besides being used for 3D reconstruction, surfels have been
successfully adopted in several areas, such as 3D visual-
ization, object detection, pose estimation, and RGB-D seg-
mentation. Following the work of Pfister et al. [3], several
works have targeted efficient and realistic surfel visualiza-
tion. In [24], surfel rendering was implemented in a real-
time virtual reality system, using multiple levels of detail.
In [25], a surfel-based differentiable renderer was proposed,
which uses the elliptical weighted average filter. McElhone
et al. [26] proposed a method for simultaneous detection
and pose tracking of multi-resolution surfel models in RGB-
D data. In [27] a surfel based filter was proposed for color
and position enhancement, to facilitate object segmentation
tasks.

3 METHOD

The proposed approach operates on surfels. Each surfel
represents a disk, centered in pψ (xψ, yψ, zψ), with normal
nψ (nx,ψ, ny,ψ, nz,ψ) and radius rψ . Surfel normals nψ are
oriented towards the interior of the volume representing the
known space. A set of surfels is also called surfel cloud. At
each iteration n the proposed algorithm takes as input the
surfel cloud Ψn, which bounds the current known space
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Fig. 1. (a) The surfel cloud Ψn (blue) bounding known space Kn (light
blue), and some of the inward pointing normals (black arrows). Black
filled polygons represent objects in the scene. (b) A new volume Cn
(light red) is observed, bounded by surfel cloud Xn (red). The volume
observed by the sensor cannot exceed a rectangular pyramid ∆(Pn)
(bounded by black dashed lines). (c) Red surfels are added to X−

n ,
while yellow surfels χ ∈ Xn, that are in Kn, are not added to X−

n .
Green surfels ψ ∈ Ψn are contained in Cn, therefore they are removed.
Blue surfels are kept in Ψ−

n . (d) The final surfel set (blue color) Ψn+1,
bounding Kn+1, obtained as the union of X−

n and Ψ−
n .

Kn, and the current depth image Hn, in order to compute a
new updated surfel cloud Ψn+1. Surfel cloud Ψn is obtained
from depth images H1 . . . Hn−1 of previous iterations. The
standard pinhole model is assumed for the camera. Each
depth image Hn = {nds,t} contains, for each pixel (s, t), the
distance nds,t to the observed object, measured along the
sensor viewing direction ẑ. Surfel cloud Ψn = Σn ∪ Φn
includes both occupied surfels Σn, which represent the
occupied surface, and frontier surfels Φn which separate
empty from unknown space. Therefore, Ψn represents a
closed surface that bounds all the known volume.

Let Cn be the observed volume from the current depth
image Hn. Let also Xn be the surfel set that bounds volume
Cn. The goal of each iteration is to produce a new updated
surfel cloud Ψn+1, which bounds Kn+1 =

⋃n
1 Cn, i.e. the

union of all observed volumes. Volume Kn+1 can also be
defined, by induction, as Kn+1 = Kn ∪ Cn, with the initial
conditions K1 = ∅ and Ψ1 = ∅ (Fig. 1a). Hence, Ψn+1

can be computed from two surfel bounded solids [8]: Kn,
bounded by surfel cloud Ψn, and Cn, bounded by surfel
cloud Xn. In particular, Ψn+1 is the union of two surfel sets:
Ψ−
n , which contains surfels ψ ∈ Ψn outside Cn, and X−

n ,
which contains surfels χ ∈ Xn outside Kn, i.e.

Ψn+1 = {ψ ∈ Ψn | pψ ̸∈ Cn}︸ ︷︷ ︸
Ψ−

n

∪{χ ∈ Xn | pχ ̸∈ Kn}︸ ︷︷ ︸
X−

n

(1)

In summary, to obtain Ψn+1, four elements are required:
surfel cloud Ψn (from previous iteration), observed volume
Cn (to be computed from Hn), surfel cloud Xn (to be com-

Fig. 2. Flowchart of our approach: Ψn+1 is computed from Ψn and Hn.

puted from Cn), and known volume Kn (to be computed
from Ψn). Computation of Ψn+1 involves both the creation
of new surfels to be added to Ψn, and the removal of other
surfels from Ψn.

Ideally, at the beginning of each iteration the surfel set
Ψn should bound known space Kn. When a new sensor
observation is taken from sensor pose Pn, with origin in
On, a new volume Cn is observed, and surfel cloud Xn
(bounding Cn) should be generated (Fig. 1b). Then, new
surfels χ ∈ Xn outside Kn should be created and added
to X−

n (red surfels in Fig. 1c), while surfels χ ∈ Xn in
Kn should not be added to X−

n (yellow surfels in Fig. 1c).
Similarly, surfels ψ ∈ Ψn which are contained in Cn should
be removed (green surfels in Fig. 1c). Finally, surfel cloud
Ψn+1 should be computed as the union of X−

n and Ψ−
n

(Fig. 1d).
It can be observed that bounding volume Kn may take

any shape, as it derives from the union of many sensor
observations. Conversely, volume Cn cannot exceed a rect-
angular pyramid ∆(Pn) in front of the sensor, with apex in
On and height equal to the maximum sensor range zmax

(Fig. 1b). Hence, surfel cloud Ψn+1 can be computed from
Ψn with changes limited to the pyramid ∆(Pn), i.e., it is
sufficient to compute volumes Kn and Cn only in pyramid
∆(Pn).

Instead of operating on the ideal volumes Kn and Cn,
our approach operates on their voxel-based approximations,
defined as C̃n and K̃n respectively. The voxel-based ap-
proximations are discarded at the end of each iteration.
Hence, the only information stored in memory for the next
iteration is surfel cloud Ψn+1. More specifically, a non-
uniform voxel grid (NUVG) is exploited (Section 3.1), which
contains pyramid ∆(Pn).

The general flowchart of the method is shown in Fig. 2.
In the Known space computation phase, K̃n is computed from
Ψn (Section 3.2). Computation of K̃n from Ψn is the most
complex step of our approach, as a voxel-based approxi-
mation of a volume must be extracted from a surfel cloud
(Ψn), which contains discrete samples (surfels) of the surface
bounding Kn. In the Observed space computation phase, C̃n is
computed from Hn (Section 3.3). Then, C̃n is used in the
Surfel removal phase to compute Ψ−

n from Ψn (Section 3.4).
Furthermore, C̃n is also used in the Surfel creation phase to
compute surfels in Xn that bound Cn. In the New surfels
filtering phase only surfels χ ∈ Xn, which are not in K̃n,
are added to X−

n . The Surfel creation and New surfels filtering
phases are described in Section 3.5. Finally, Ψn+1 is obtained
as the union of X−

n and Ψ−
n .

In the following it is assumed that surfel cloud Ψn is
transformed into sensor coordinates at each new sensor
observation using sensor pose Pn, and then transformed
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Fig. 3. Left: viewing rays (green) from sensor origin On. Occupied mea-
surements occur along the rays (light red volume), between minimum
zmin and maximum zmax range. The distance between two adjacent
rays is δ (z). Right: the NUVG, composed of a pyramidal and a cuboid
region. The origin of the parameter space i, j, k is in the lower left
corner. Padding voxels are displayed in yellow. Maximum coordinate k is
kmax , corresponding to maximum sensor range zmax . Plane k = kmin

separates the cuboid region from the pyramidal region of the NUVG.

back into world coordinates at the end of the update. Hence,
pψ and nψ indicate the position and the normal of surfel ψ
in sensor coordinates. A similar assumption is made for all
symbols defined next.

3.1 Non-uniform voxel grid
The intrinsic parameters of the depth camera are its focal
length f , the image center (sc, tc), and the image reso-
lution smax, tmax. Pixel indexes have the following range:
0 ≤ s < smax, 0 ≤ t < tmax. Measurements ds,t can occur
only in a truncated pyramid (frustum), between minimum
(zmin) and maximum (zmax) sensor range (Fig. 3, left). The
space between 0 and ds,t along the viewing ray is consid-
ered empty. The local reference frame (x̂, ŷ, ẑ) of the sensor,
located at On, is oriented so that the ẑ axis points outward
along the camera optical axis. The distance δ (z) between
adjacent viewing sensor rays, at depth z, is δ (z) = z

f .
Hence, when a surface is observed at depth z, points are
acquired with resolution δ (z). As no measurement can
occur with z < zmin, the smallest resolution of observed
surfaces is δmin = δ (zmin).

For each iteration of the proposed method, a non-
uniform voxel grid (NUVG) is generated as a superset of
the volume ∆(Pn) observable from the current pose of the
sensor (Fig. 3, right). The NUVG is deleted at the end of each
iteration. The NUVG is defined in a 3D parameter space
[i, j, k]

⊺ ∈ R3. Each voxel v of the NUVG is indexed by three
non-negative integer values in the parameter space. The
origin of the NUVG is located at the center of the lower left
corner voxel with (i, j, k) = (0.0, 0.0, 0.0). The maximum
values of the voxel indexes are [imax , jmax , kmax ]

⊺.
In particular, the NUVG is composed of two regions: a

cuboid between 0 and zmin and a truncated pyramid be-
tween zmin and zmax. The truncated pyramid region contains
frustum-oriented voxels that become larger as the distance
from the sensor increases. Thus, far from the sensor the
density of voxels is reduced. Frustum-oriented voxels make
it is easier to determine C̃n (Section 3.3). The cuboid region
close to the sensor contains uniform cubic voxels with side
δmin, otherwise there would be too many small frustum-
oriented voxels to be considered. Each depth image pixel

Fig. 4. Computation of the voxel-based representation K̃n (light blue
cells) of known spaceKn in the NUVG from Ψn, by traversing the voxels
along a set of paths (left). Orange path segments are in known space,
green path segments are in unknown space. A path enters Kn if the
dot product between the surfel normal at the intersection point and the
tangent to the path is positive (right).

can be associated to a sequence of adjacent non-uniform
voxels along parameter value k in the truncated pyramid
region. The range of voxel indexes for parameters i and j,
in both regions, is equal to the range of the sensor pixels,
plus an extra border (padding) ip and jp on each side.
Padding prevents border effects in the Surfel creation phase
(Section 3.5). Maximum indexes imax and jmax , and center
(ic, jc) are:

imax = smax + 2 ip − 1, jmax = tmax + 2 jp − 1

(ic, jc) = (sc + ip, tc + jp)
(2)

Even if the cuboid region is over dimensioned with re-
spect to the actual volume observable by the sensor ∆(Pn),
the overhead caused by the extra space is usually small,
as for most sensors zmin ≪ zmax. A padding kp is also
added behind the sensor, so that the sensor origin On in
the parameter space is located at [ic, jc, kp]

⊺.
The nonlinear piecewise function F : R3 → R3, which

maps points in sensor coordinates [x, y, z]
⊺ to points in the

parametric coordinates of the NUVG [i, j, k]
⊺
= F (x, y, z),

is given by:

F (x, y, z) =



x/δmin

y/δmin

z/δmin

+

 icjc
kp

 if z < zmin


x f
z + ic
y f
z + jc

f ln(z)−f ln(zmin)+kmin

 if zmin ≤ z

(3)

Further details about function F and its inverse
F−1 (i, j, k) = [x, y, z]

⊺ are described in Section A of the
supplemental material.

3.2 Known space computation
In the Known space computation phase a voxel-based repre-
sentation of the ideal current known space Kn is computed
from surfel cloud Ψn. The voxel based representation is
named Known space field (K̃n). Since the NUVG contains
∆(Pn), in order to update the known space it is sufficient
to compute K̃n only inside the NUVG. Hence, the proposed
algorithm sets the Known space field K̃n (v), of each voxel
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Fig. 5. A surfel configuration where even a small error in the normal of
the surfel at p2 may cause path Γ1 (ω) to pass through gaps between
surfels (left). A surfel configuration where it is not possible to accurately
determine whether path Γ3 (ω), which is nearly tangent to the surface,
enters or exits the surface (right).

Fig. 6. The family of paths (5) in red (top left), (6) in green (top right), and
(7) in blue (bottom left). A complete 3D view of all paths (bottom right).
The NUVG is displayed in black.

v (i, j, k) inside the NUVG, equal to 1 if the voxel center
v is inside known space, and 0 otherwise. In particular, as
surfel cloud Ψn approximates a closed surface of arbitrary
shape, K̃n can be determined by traversing the voxels inside
the NUVG along different paths (Fig. 4, left), computing
the intersections points of the paths with Ψn, marking
intersections as entering or exiting Ψn, splitting each path
into segments at the intersection points, and classifying each
segment as being inside or outside the known volume. A
path Γ (ω) : R → R3, parameterized by ω, enters Ψn
intersecting surfel ψ in ωψ , if the inner product between
the tangent vector to Γ (ωψ) and the surfel normal is greater
than a threshold thd (Fig. 4, right), i.e.

⟨nψ,
dΓ (ωψ)

dω
⟩ > thd (4)

A special condition occurs for the first segment entering the
NUVG. In this case the segment is classified considering the
last intersecting surfel outside the NUVG.

The approach outlined above to compute K̃n is, how-
ever, prone to errors caused by the discrete nature of
surfels. Small errors in surfel position and normal vectors
can indeed leave gaps between close surfels. Therefore, a
path may miss the intersection with a surfel (Fig. 5, left).
Moreover, when a path is nearly tangent to a surfel, it may
be difficult to determine if the path is entering or exiting the
surface (Fig. 5, right). To cope with these issues the method
exploits redundancy of paths and it considers not only the
surfel itself, but also surfels in its neighborhood.

Fig. 7. Left: example of ∥D (v)∥ in each voxel with blue shading. Right:
a section of the NUVG. Four of the six 2D grids in the known space hull
are visible (orange, purple, red and cyan lines). Projections occur along
the paths of families (6) and (7) (green and blue dashed lines). Projected
surfels are displayed as gray ellipses with a colored border.

Redundancy of paths is achieved by traversing each
voxel v multiple times along different paths. In particular,
three families of paths are created, and each family con-
tains paths in forward and backward direction. The three
families of paths are defined as Γij,k,I , Γji,k,I , Γki,j,I , where
I ∈ {−1, 1} specifies the direction (forward and backward),
i.e.:

∀j, k, I Γij,k,I (ω) = F−1 (Iω, j, k) (5)

∀i, k, I Γji,k,I (ω) = F−1 (i, Iω, k) (6)

∀i, j, I Γki,j,I (ω) = F−1 (i, j, Iω) (7)

Family of paths (5) and (6) generate paths parallel to the
x̂ and ŷ axes respectively. Family of paths (7) generates
piecewise linear paths, parallel in the cuboid region of the
NUVG, and radial in the pyramidal region (Fig. 6). Any
path in (5)-(7) passes through voxel centers of the NUVG for
integer values of ω. Each voxel v is, therefore, traversed by
six paths in total, i.e., one path for each of the three families,
in both directions.

A detailed description of the required steps to determine
K̃n is reported in the following Sections. In particular, in
order to determine whether a path is intersecting surfel
cloud Ψn an approach robust to noise in surfel pose is
adopted that exploits the surfel neighborhood. An inner
product sign field Dn ∈ R3 data structure, defined for each
voxel v, is used to this purpose (Section 3.2.1). Moreover, a
known state hull (Ẽn) is computed, which is a data structure
used to find the last intersected surfel outside the NUVG
for each path (Section 3.2.2). Finally, known space field K̃n is
computed (Section 3.2.3) based on D (v) and Ẽn. Even if Dn
and Ẽn are computed at each iteration, the subscript n is
omitted in the following.

3.2.1 Inner product sign field
For each voxel v in the NUVG, an inner product sign field
D (v) ∈ R3 is computed, which is the weighted sum of the
inner product sign gψ ∈ R3 of the surfels in a neighborhood
of v (Fig. 7, left). The inner product sign gψ of a surfel is a
3D vector, with one component for each path family (5)-
(7). Each component of gψ is equal to 1 if the forward path
enters Ψn at ψ, and −1 if the forward path exits Ψn. The
neighborhood of a voxel is defined as an ellipsoid, with two
equal semi-axes orthogonal to nψ , of length 2rψ . The length
of the third semi-axis, along nψ , is set so that the ellipsoid
includes at least a voxel.
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Fig. 8. Left: a set Ψn of surfels forming a closed boundary (in blue) in
the NUVG (gray grid) traversed by path Γ (ω), and a scalar example of
inner product sign field D, computed for the voxels highlighted in yellow,
along the path. A path segment (orange) in known space is also shown,
between the local maximum and the local minimum values of D. Right:
a set of surfels partially outside the NUVG. The inner product sign field
D is computed only in the NUVG. Then, the last intersected surfel is
projected onto the surface of the NUVG to obtain the known state hull
Ẽ, so that it can be determined that the path is in known space when it
enters the NUVG.

Moreover, an invalid inner product field /D (v)=[
/Di (v) , /Di (v) , /Dk (v)

]
is defined. Each component /Di,

/Dj , /Dk is equal to 1 if there is at least one surfel in the
neighborhood of v, for which it is not possible to determine
if the corresponding path family enters or exits Ψn. Further
details on the computation of D and /D are provided in
Section B of the supplemental material.

3.2.2 Known state hull
A path segment belongs to known space Kn if (4) is true
at the beginning of the segment. In the special case when
a path segment enters the NUVG, inequality (4) must be
evaluated for the last intersected surfel before entering the
NUVG. To this purpose, an efficient approach is adopted
that uses a known state hull Ẽ data structure, and that
projects surfels outside the NUVG on the surface of the
NUVG along the paths. In particular, the known state hull Ẽ
is a set of six 2D grid Ẽτ,I (α, β) (Fig. 7, right). There exists
a grid for each path family (5)-(7) and for each direction
I . Value τ ∈ {i, j, k} indicates the path family Γτα,β,I (ω),
with I indicating the direction of the path, and α, β being
cell indices. For example, 2D grid Ẽi,−1 (j, k) corresponds
to path family Γij,k,−1 (ω) traversed along the backward
direction. Each cell (α, β) is equal to 1, if the path is in
known space when entering the NUVG, and 0 otherwise.
Further information about Ẽ is provided in Section C in the
supplemental material.

3.2.3 Known space field computation
The known space field K̃n (v), which is 1 if voxel v (i, j, k)
is in known space, is computed from the inner product sign
field D (v), the invalid inner product field /D (v) and known
state hull Ẽ (v) at the current iteration n. In particular, an
unfiltered known space field K̃ ′

n (v) is first computed, and then
K̃n (v) is obtained from K̃ ′

n (v). The unfiltered known space
field K̃ ′

n (v) is initialized to 0. The unfiltered known space field
K̃ ′
n is determined by traversing each path Γτα,β,I (ω) defined

in (5)-(7). The path is initially in known or unknown space
according to known state hull Ẽ. When a path traverses a
voxel v where D (v) has a local maximum of the component
corresponding to the path family (or minimum, if the path
is in backward direction), it is considered as entering the

Algorithm 1 Unfiltered known space field computation
Input: D (i, j, k): inner product sign field
Input: /D (i, j, k): invalid inner product field
Input: Ẽ: known state hull
Output: K̃ ′

n (i, j, k): unfiltered known space field
1: for each Γτα,β,I (ω) do
2: e← Ẽτ,I (α, β)
3: for each v along Γτα,β,I (ω) do
4: if /Dτ (v) then
5: e← 0
6: else
7: if IsPeak (−I Dτ (v)) then
8: e← 0
9: end if

10: K̃ ′
n (v)← K̃ ′

n (v) ∨ e
11: if IsPeak (I Dτ (v)) then
12: e← 1
13: end if
14: end if
15: end for
16: end for

known space. Conversely, if the component of D (v) has
local minimum (or maximum, if the path is in backward
direction), the path is considered as exiting the known space
(Fig. 8). When a path traverses a voxel v where /D (v)=1, it
is reset to unknown state.

In particular, each path is traversed (line 1 in Algorithm
1), and at each step a knowledge state variable e ∈ {0, 1}
is set to 1 if the path is currently in known space and 0
otherwise. The knowledge state is initialized to the value of
the known state hull Ẽτ,I (α, β) (line 2). Paths are traversed
one voxel v at a time, using integer values of ω (line 3). As
long as knowledge state e = 1, K̃ ′

n (v) is set to 1 (line 10),
that is, if any path is in known state in v, v is considered in
known space. The knowledge state e is set to 0 whenever
/Dτ (v) = 1 (lines 4-5), or when a local minimum of the inner
product sign field Dτ (v) is found (lines 7-9). Conversely, e
is set to 1 whenever a local maximum of Dτ (v) is found,
where τ ∈ {i, j, k} indicates a component of vector D (v)
(lines 11-13). Function IsPeak (A (v)) is used to detect local
maxima. The test for a local maximum (line 11) is performed
after updating the unfiltered known space field (line 10), so that
the voxel containing the maximum is conservatively not set
in known space.

After computation, a median filter is applied to the unfil-
tered known space field K̃ ′

n (v), i.e., given the 26-neighborhood
N26 (v) of voxel v, the known space field is computed as:

K̃n (v) =

{
1 if K̃ ′

n (v) +
∑
v′∈N26(v)

K̃ ′
n (v

′) ≥ 14

0 otherwise
(8)

3.3 Observed space field computation
When a new depth image Hn = {nds,t} is observed at
frame n, the current observed space field C̃n (v) is computed,
so that C̃n (v) is equal to 1 if voxel v (i, j, k) is traversed by
a viewing ray cast from On, and 0 otherwise.

In the cuboid region of the NUVG (k < kmin ) a viewing
ray is cast through each pixel (s, t) of Hn that contains a
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Fig. 9. A surfel ψ (black circle) with radius rψ split into four smaller surfels
ψ1,1, ψ1,−1, ψ−1,1 and ψ−1,−1 (orange circles) in the surfel removal
phase. The side of the square (dashed line) which connects the four
surfel centers is rψ/

√
2.

valid depth. Viewing rays are sampled at integer values of k,
which correspond to uniform steps of δmin along the ẑ axis.
Observed space field C̃n (v) is set to 1 in voxels that contain at
least one sample along the viewing ray, and to 0 otherwise.
More specifically, for each voxel v (i, j, k) where k < kmin ,
C̃n (v) = 1 if there exist a pixel (s, t) with a valid depth
measurement nds,t, so that in parameter space

v = Round (F (x, y, z)) , (9)

z = (k − kp) δmin, x =
z

f
(s− sc) , y =

z

f
(t− tc) (10)

In the pyramidal region of the NUVG there is a one-to-one
correspondence between a viewing ray and a sequence of
adjacent voxels along parameter value k. Therefore, for k ≥
kmin , C̃n (v) can be more efficiently computed as:

C̃n (v) =

{
1 if F−1

z < nds,t, s = i− ip, t = j − jp
0 otherwise

(11)

where F−1
z (i, j, k) is the z component of vector F−1 (i, j, k).

3.4 Surfel removal

To compute Ψ−
n from Ψn (1), surfels ψ ∈ Ψn must be

removed if they are inside Cn. Therefore, in the surfel
removal phase, surfels are deleted if they are inside a voxel
v, where C̃n (v) = 1. Large surfels that span across multiple
voxels are first split into smaller surfels having a diameter
comparable to the voxel size. More specifically, a surfel ψ
is split if the radius is more than twice the diagonal of
the voxel, i.e. rψ ≥ 2

√
3max (δ (zψ) , δmin), where zψ is

the distance of the voxel to the sensor. Let (x̂ψ, ŷψ, ẑψ) be
the local reference frame of the surfel, with ẑψ = nψ . Four
surfels ψa,b, (a, b) ∈ {−1, 1}2 are created with radius rψ/2
(Fig. 9) at position:

pψa,b
= pψ +

rψ

2
√
2
a x̂ψ +

rψ

2
√
2
b ŷψ (12)

At the end of the surfel removal phase, Ψ−
n contains all

surfels ψ ∈ Ψn where C̃n (F (pψ)) = 0.

Fig. 10. Surfel removal and creation example. The light gray rectangles
with a dashed contour are objects in the environment. (a) Voxels where
K̃n = 1 are displayed with a light blue background, bounded by blue
surfels Ψn. (b) Voxels where C̃n = 1 are displayed with a light red
background, bounded by red surfels Xn. (c) In purple voxels, both K̃n =
1 and C̃n = 1. Green surfels are those surfels ψ ∈ Ψn which are in
voxels where C̃n = 1, so they are not added to Ψ−

n . Yellow surfels
are those surfels χ ∈ Xn where K̃n = 1, or those that overlap an
existing (blue) surfel, so they are not added to X−

n . (d) Surfels in Ψn+1 =
X−
n ∪Ψ−

n bound voxels where K̃n ∨ C̃n = 1.

3.5 Surfel creation and filtering

3.5.1 Surfel creation

In the Surfel creation phase, surfel cloud Xn is created, which
contains surfels χ that bound C̃n. Surfels are created at the
center of voxels immediately outside the observed space, i.e.
in voxels v where C̃n (v) = 0, and in the neighborhood of a
voxel with C̃n (v) = 1:{

C̃n (v) = 0,

∃ v′ ∈ N6 (v) | C̃n (v
′) = 1

(13)

where N6 (v) is the 6-neighborhood of v. Position pχ, nor-
mal nχ and radius rχ of a new surfel χ are set as follows
(normalization omitted):

pχ = F−1 (v)

nχ =
∑

v′∈N26(v)

F−1 (v′)− pχ
∥F−1 (v′)− pχ∥

C̃n (v
′)

rχ =

√
3

2
max (δ (zχ) , δmin)

(14)

Radius rχ is set to half the approximate side of the voxel at
depth zχ, so that the surfel spans the whole voxel. Normal
nχ is estimated as the average of the vectors pointing from
voxel v to all voxels v′ in the 26-neighborhood N26 (v) of v
that are inside the observed space C̃n. Therefore, the surfel
is oriented towards observed (known) space. In degenerate



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

cases, normal nχ is null due to the symmetric shape of C̃n in
the neighborhood of v. These cases occur when C̃n (v) = 0,
and C̃n (v′) = 1 for one or more pairs of opposite neighbor
voxels v′. In these cases the surfel is not created as the
voxel v is between two regions of observed space, and not
between observed and unobserved space.

3.5.2 New surfel filtering
In the New surfel filtering phase, X−

n is computed, which
contains surfels in Xn outside Kn to comply with (1). To
avoid generating multiple surfels inside the same voxel v,
surfels are not added to X−

n if another surfel ψ ∈ Ψn is
already present in the same voxel. Hence, X−

n is defined as
follows:

X−
n =

{
χ ∈ Xn

∣∣∣∣∣ K̃n (F (pχ)) = 0,

∄ψ ∈ Ψ−
n | Round (F (pψ)) = v

}
(15)

An example of the surfel removal and creation procedure is
shown in Fig. 10.

3.5.3 Surfel labeling
Surfel cloud Ψn+1 includes both the subset of occupied
surfels (Σn+1), as well as the subset of frontier surfels
(Φn+1), i.e., Ψn+1 = Σn+1 ∪ Φn+1. The ability to recon-
struct from multiple views both surfels that separate empty
from occupied space, as well as surfels that separate empty
from unknown space, is the main novelty of the proposed
approach. The goal of the Surfel labeling phase is to label
each surfel ψ ∈ Ψn+1 either as occupied, i.e. ψ ∈ Σn+1, or
as a frontier surfel, i.e. ψ ∈ Φn+1.

At each iteration n, all new surfels are first initialized as
frontier surfels in Φn. Those surfels ψ that come from a real
sensor observation are then labeled as occupied ψ ∈ Σn+1.
Surfels that are created due to real sensor observations are
those for which a viewing ray hits a real surface. Sensor
observations may occur only in the pyramidal region of
the NUVG, as the cuboid region of the NUVG is below the
minimum range of the sensor. Hence, at current observation
n, a surfel ψ in voxel v = (i, j, k) = F (pψ) is labeled as
occupied if in voxel v′ (i, j, k − 1) the viewing ray hits a
surface, i.e. if the following conditions hold:

k > kmin ∧ C̃n (i, j, k − 1) = 1 (16)

Once a surfel is labeled as occupied, it remains in this state
indefinitely.

4 EXPERIMENTAL EVALUATION

4.1 Experimental setup
An OpenCL/C++ implementation of the proposed ap-
proach was developed, that can run both on CPU and GPU.
Experiments were performed on an Intel Core i7-7700 CPU
(3.60 GHz, 16 GB RAM), with an NVidia GeForce GTX 1070
GPU (8 GB RAM). Tests performed on CPU are based on
the Intel SDK for OpenCL Applications (version 18.1), using
device fission to ensure that only a single thread is used.
Tests performed on GPU use NVidia CUDA 10.0 OpenCL
runtime. The source code is available as open-source at
http://rimlab.ce.unipr.it/Software.html (under surfels_
unknown_space).

Fig. 11. RGB image of the first Scenario (a), RGB image of the second
Scenario (b). RGB images of the TUM dataset [28]: office environment
used in Scenario 3 and 4 (c) and large-scale environment used in
Scenarios 5 and 6 (d).

TABLE 1
Parameters used in the experimental evaluation

Parameter Value Description
thd cos (80◦) Confidence threshold in (4)
ip, jp, kp 5, 5, 2 Padding (Section 3.1)
smax 160 pixel Image width
tmax 120 pixel Image height

4.1.1 Dataset

The proposed method was evaluated in six indoor RGB-D
image sequences, acquired using a Kinect v1 sensor. The
six Scenarios were selected to show that the approach can
work both in small and large scale environments, and that
it provides consistent results on different scanning strate-
gies. The first two image sequences were acquired in a
laboratory building. In particular, Scenario 1 (2000 frames)
reconstructed a box and a ball on top of an office chair in
the middle of an (almost) empty room (Fig. 11a). Scenario 2
(1450 frames) contains several objects located on top of a
table (Fig. 11b). In the first two scenarios, the camera was
oriented towards the objects and it was moved along an ap-
proximately circular path. The width of the observed space
in both Scenarios 1 and 2 is about 4 m. Scenarios 3, 4, 5 and 6
were selected from the TUM RGB-D SLAM dataset [28], to
also show the viability of the approach on publicly avail-
able datasets. In particular, we selected image sequences
“fr1/360” (Scenario 3, 742 frames), “fr1/room” (Scenario 4,
1344 frames), “fr2/360 hemisphere” (Scenario 5, 2653
frames) and “fr2/pioneer slam2” (Scenario 6, 1794 frames).
In both Scenarios 3 and 4, the sensor performed a 360-
degrees scan around an office environment (Fig. 11c and
11d), the width of the observed space is about 7 m. In
Scenario 5, the sensor performed a similar 360-degrees scan
in a large-scale environment (Fig. 11e), the observed space
is about 11×13 m. In Scenario 6 the sensor was mounted on
a mobile robot that performed a navigation task in the same
large-scale environment of Scenario 5.

Our approach requires knowledge of the camera pose
Pn at each sensor frame n. In Scenarios 1 and 2 we used the
camera pose provided by the sensor egomotion tracking sys-
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Fig. 12. Surfel-based 3D reconstruction of Scenarios 1, 2, 3 and 4 (top
to bottom). Occupied surfels σ ∈ Σn are displayed with their own RGB
color. Unknown surfels ϕ ∈ Φn are displayed in blue. Left: overall view of
the surfel-based reconstruction approximating a closed surface. Right: a
view of the reconstruction from the inside of the surface in Scenarios 1,
2, and 3, and from the unknown region in the middle of the scene
in Scenario 4. The yellow rectangle highlights the region of unknown
space in Scenario 3 (third row, right) where the sensor was located. The
yellow circle (fourth row, left) highlights the unknown region of space in
Scenario 4, and the yellow contour highlights the ridge (fourth row, right).

tem of ElasticFusion [4], which was executed alongside the
proposed method. In Scenarios 3, 4, 5 and 6 the camera pose,
acquired from a high-precision tracking system, was already
available in the TUM dataset. Depth images acquired by
the Kinect sensor (640 × 480) were downsampled by a
factor of 4 both vertically and horizontally, for performance
reasons, using the nearest-neighbor algorithm. Therefore,
our approach was evaluated at 160× 120 image resolution.
Sensor focal length, which is about 525 pixel, was divided
by 4 accordingly. Minimum sensor range zmin was set to 0.5,
hence, according to Section 3.1, minimum resolution was
δmin = zmin

f ≈ 3.8 mm. Maximum range zmax was set to
3 m in Scenarios 1-4, and to 8 m in large-scale Scenarios 5
and 6. Sensor measurements beyond zmax were discarded.
Other parameters used in the experimental evaluation are
reported in Table 1.

4.1.2 Ground truth generation
We created a ground truth dataset using a volumetric 3D
representation based on OctoMap [7]. OctoMap implements
an octree M̃n (v) for 3D occupancy mapping, and it en-
codes 3D data into ternary occupancy values, where each

Fig. 13. Surfel-based 3D reconstruction of large-scale Scenarios 5 and 6
(top to bottom). Left: overall view of the surfel-based reconstruction
approximating a closed surface. Right: a view of the reconstruction from
the inside of the surface. The yellow rectangle highlights the region
of unknown space in Scenario 5 (top row, right). The yellow ellipse
highlights unknown volume (in Scenario 6) behind an obstacle, that was
observed only in the direction of the yellow arrow (bottom row, right).

voxel v centered at position pv is either occupied , empty or
unknown . The Octomap voxel resolution was set to δmin ,
i.e., the minimum resolution of the proposed approach. The
standard insertPointCloud method was used to incremen-
tally insert in OctoMap each depth image Hn observed at
sensor pose Pn. The insertPointCloud method performs ray
casting and sets to empty all voxels traversed by each ray,
except for the last voxel which is set to occupied .

A ground truth surfel cloud Mn was then generated
from the OctoMap octree, by exploiting a surfel creation
algorithm similar to the one described in Section 3.5.1. That
is, for each unknown voxel v that satisfies{

M̃n (v) = unknown,

∃ v′ ∈ N6 (v) | M̃n (v
′) ̸= unknown

(17)

i.e., which is adjacent to either an empty or an occupied
voxel, a surfel µ ∈ Mn is created with position pµ, normal
nµ and radius rµ as follows (normalization of the normal
omitted):

pµ = pv

nµ =
∑

v′∈N26(v)

pv′ − pµ
∥pv′ − pµ∥

KM̃ (v′)

rµ =

√
3

2
δmin

(18)

where KM̃ (v′) = 1 if M̃n (v
′) ̸= unknown , and 0 otherwise.

4.2 Results
4.2.1 Accuracy
The results of the surfel-based reconstruction in the six
Scenarios are shown in Figs. 12 and 13. As expected, in
each experiment the generated surfel cloud approximates a
closed surface enclosing the known volume. In Scenarios 1
and 2, the depth camera was moved along a circular path,
oriented towards the objects in the middle of the scene.
Perimeter walls of the scene were not observed for the most
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Fig. 14. The evolution of the surfel-based 3D reconstruction in Scenarios 1 (top) and 2 (bottom). Unknown surfels are displayed in blue.

TABLE 2
Reconstruction accuracy

Scen.
Proposed approach Monica et al. [5]

FP |Ψn| FDR FP |ΨK | FDR
1 8 860 2 377k 0.37% 89 409 7 974k 1.11%

2 2 312 1 700k 0.14% 65 613 5 465k 1.20%

3 2 197 2 033k 0.11% 1 722 20 938k 8.22%

4 603 2 901k 0.21% 1 281k 23 330k 5.49%

Scen. FN |Mn| FOR FN |Mn| FOR
1 0 6 786k 0.00% 567k 6 786k 8.36%

2 0 4 837k 0.00% 53k 4 837k 1.10%

3 166 18 200k 0.00% 4 676k 18 200k 25.70%

4 7 17 604k 0.00% 2 259k 17 604k 12.83%

part of the experiments, as they were outside the sensor
maximum range. Therefore, in Scenarios 1 and 2 the known
volume is bounded for the most part by unknown surfels. In
Scenarios 3, 4, and 5 a region of unknown space is present
in the middle of the scene. In Scenario 3, the region of
unknown space appears where the sensor was located while
turning 360 degrees horizontally and tilting up and down
(Fig. 12, 3, right). In Scenarios 4 (Fig. 12, 4, left) and 5 (Fig. 13,
5, right) the region of unknown space appears because the
sensor was moved around without observing the center of
the scene. In Scenario 4 a ridge is also visible on the surface
of such unobserved region of space (Fig. 12, 4, right), along
the sensor path. Finally, in Scenario 6, the ceiling was not ob-
served by the mobile robot and remained unknown (Fig. 13,
6, left). Volume behind obstacles remained unknown as
well (Fig. 13, 6, right). Fig. 14 shows the evolution of the
surfel-based reconstruction in Scenarios 1 and 2. It can be
noticed that the proposed approach provides a consistent
reconstruction, and that the unknown space decreases as
the 3D reconstruction advances.

A quantitative evaluation against the ground truth pro-
vided by OctoMap is presented next. We define false positive
a surfel ψ ∈ Ψn at a distance further than 5 cm from all
surfels inMn. Conversely, a false negative is a surfel µ ∈Mn

at a distance further than 5 cm from all surfels in Ψn. Given
the number of false positives (FP) and false negatives (FN),
we report the False Omission Rate FOR = FN/|Mn| and

Fig. 15. Examples of false positives surfels (red).

Fig. 16. Surfel cloud ΨK reconstructed using the method in [5], in
Scenarios 3 and 4. Unlike the proposed approach (Fig. 12, rows 3
and 4), some regions of known space (inside red rectangles) outside
the TSDF volume have not been reconstructed.

the False Discovery Rate FDR = FP/|Ψn|, where |Ψn| and
|Mn| are the cardinalities of Ψn andMn. Table 2 shows the
results in Scenarios 1 to 4. Accuracy was not evaluated in
Scenarios 5 and 6, as OctoMap did not complete because
it exceeded memory resources. It can be noticed that the
number of false negatives is very low. False positives are
about 0.2%, and are mostly caused by observation of sur-
faces at high distances from the sensor, where the accuracy
of the depth camera decreases (Fig. 15, left). Despite the
redundancy of paths a few false positives are also caused
by the difficulty to determine if a voxel is in known space,
due to the issues presented in Section 3.2. In particular,
when voxels incorrectly remain in the initial unknown state,
unknown surfels are incorrectly generated at their boundary
(Fig. 15, right). The lower cardinality of Ψn with respect
to Mn is caused by the different surfel radius which is
constant in the ground truth, whereas it increases with
sensor distance in our approach.

Table 2 also reports a comparison against the method
in [5], which was based on “KinFu”, an implementation of
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TABLE 3
Average computation time per frame (ms) in Scenario 1 and RSD.

Phase (Section)
CPU GPU

Avg. RSD Avg. RSD
Inner product sign field (3.2.1) 982 28% 62.3 40%

Known state hull (3.2.2) 99 60% 0.9 80%

Known space field (3.2.3) 243 6% 4.9 35%

Known space median filter (3.2.3) 224 1% 2.0 4%

Observed space field (3.3) 10 21% 2.2 18%

Surfel removal (3.4) 8 56% 7.6 56%

Surfel creation (3.5) 29 28% 3.1 46%

Total 1 595 19% 83.5 36%

Kinect Fusion with extension to large scale environments.
KinFu was configured with the same voxel map resolution
of OctoMap (3.8 mm). The size of the Truncated Signed
Distance Function (TSDF) volume used in KinFu was set
to 3.8 m. The TSDF volume is moved as the scan progresses
through the environment. In this configuration, the volu-
metric representation required about 4 GB of GPU RAM. A
surfel cloud ΨK bounding the known space was generated
including both the surfel cloud Σ and the frontel cloud Φ,
as described in [5]. Values of FDR and FOR are higher than
those of the proposed approach. In particular, in Scenarios 3
and 4 FOR is above 10%. Indeed, in these scenarios some
regions of the known space could not be reconstructed by
[5], as they were located outside the TSDF volume (Fig. 16).

4.2.2 Computation time
Table 3 shows the average computation time per frame as
well as the relative standard deviation (RSD) in Scenario 1
for each phase of the proposed approach, on single-thread
CPU as well as using parallel GPU implementation. The
number next to each phase, in parentheses, refers to the
Section where the phase is described. In particular, the
known space median filtering phase in (8) requires 224 ms
on CPU, almost as much as the computation time of the
unfiltered known space field. The speedup of the GPU version
is about 19. The maximum and minimum total times were
144 ms and 35 ms on GPU, whereas 2 108 ms and 955 ms on
CPU. The most time consuming part is the inner product sign
field computation phase, which requires about one second
on average on CPU and 62.3 ms on GPU. In this phase,
the position of each surfel in the NUVG is computed, and
all voxels in the ellipsoid centered at the surfel must be
updated. Since all nearby surfels update the same data, the
inner product sign field phase is not easily parallelizable on
GPU. Also, the surfel removal phase (Section 3.4) has about
the same computation time on CPU and GPU, as the most
expensive step is the surfel splitting operation, which is
mostly executed on CPU. In our implementation, the surfel
cloud is stored in a dynamic array on the host side and
uploaded to OpenCL buffers at each iteration. Hence, the
surfel cloud is always available on CPU RAM.

The CPU computation time at each frame in all Scenarios
is shown in Fig. 17 (top) and 18 for the proposed approach.
In Scenarios 1 to 4, the computation time at each frame of
OctoMap is also reported (Fig. 17, bottom). Table 4 reports
the minimum, the maximum and the average CPU single-
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Fig. 17. Computation time at each frame in Scenarios 1 to 4, using
the proposed approach (top) and OctoMap (bottom), on single-threaded
CPU.
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Fig. 18. Computation time at each frame in large-scale Scenarios 5
and 6, using the proposed approach on single-threaded CPU.

threaded computation time per frame in all Scenarios, as
well as the relative standard deviation. The average CPU
computation time of our approach is about one order of
magnitude lower than OctoMap. Moreover, our approach
scales well with the size of the environment. Conversely,
the volumetric approach in OctoMap does not scale well in
large scale scenes (Scenarios 5 and 6), as it did not complete
execution due to memory saturation. Table 4 also shows that
the OctoMap RSD is higher than the RSD of the proposed
approach. This is also confirmed by Fig. 17, where it can
be noticed that OctoMap computation time exhibits more
frequent oscillations. An explanation can be given by con-
sidering that OctoMap computation time mainly depends
on the number of voxel updates which must be performed.
Few voxel updates are required if the region of space
has already been observed, while many voxel updates are
required when observing new regions of space. Conversely,
the computation time of the proposed approach has a lower
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TABLE 4
CPU single-threaded computation time (s) per frame

Scenario Method Avg. RSD Min Max

1
Proposed 1.60 19% 0.96 2.11

OctoMap 16.88 29% 3.05 29.38

2
Proposed 1.43 14% 0.97 2.02

OctoMap 14.23 38% 6.26 34.35

3
Proposed 1.14 21% 0.81 2.05

OctoMap 33.75 40% 3.68 59.39

4
Proposed 1.13 15% 0.81 1.74

OctoMap 20.49 51% 2.33 49.73

5
Proposed 1.77 24% 1.09 3.30

OctoMap - - - -

6
Proposed 1.27 18% 0.78 1.90

OctoMap - - - -

TABLE 5
No. of surfels in Ψn, memory usage, memory peak value

Scenario Method |Ψn| Data Peak

1
Proposed 2 377k 90 MB 434 MB
OctoMap - 652 MB 3 085 MB

2
Proposed 1 700k 61 MB 406 MB
OctoMap - 391 MB 3 162 MB

3
Proposed 2 033k 84 MB 428 MB
OctoMap - 1 902 MB 6 647 MB

4
Proposed 2 901k 105 MB 449 MB
OctoMap - 1 801 MB 5 981 MB

5
Proposed 5 059k 219 MB 567 MB
OctoMap - - >16 GB

6
Proposed 3 461k 139 MB 488 MB
OctoMap - - >16 GB

variance as data processing is performed for each voxel in
the NUVG, which has fixed size.

Table 5 reports for each Scenario the CPU RAM usage
of both approaches, measured at the last iteration of each
algorithm. Memory usage (Data column in Table 5) refers
to RAM consumption of the Octree in OctoMap, and to
the size of the dynamic surfel array holding Ψn in our
approach. The number of surfels in the dynamic surfel array
is reported in column |Ψn|. Peak working memory is an
approximate estimation of the maximum amount of RAM
used to update the data structures, as measured by the
operating system. Our approach needs about one order of
magnitude less memory than OctoMap. Moreover, the peak
working memory in our approach is almost constant, as
most of the computation is performed on arrays of fixed
size, containing a value for each cell of the NUVG.

4.2.3 Confidence threshold evaluation

The proposed approach was evaluated on Scenario 2 at dif-
ferent values of the confidence threshold thd. The resulting
False Discovery Rate and False Omission Rate are illustrated
in Fig. 19. At low values of thd paths are erroneously consid-
ered inside the known space even when they are almost tan-
gent to a surfel. Surfels along these paths, whereKn (v) = 1,
are not created according to (15). Hence, some holes appear
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Fig. 19. False Discovery Rate (FDR) and False Omission Rate (FOR)
for different values of thd around the reference value cos (80◦) = 0.174.

Fig. 20. Surfel-based 3D reconstruction in Scenario 2 for thd = 0.174
(top left), thd = 0.011 (top right), thd = 0.422 (bottom left), and
thd = 0.174 without the median filter (8) (bottom right). False positives
are highlighted in red. Unknown surfels are displayed in blue.

in the final 3D reconstruction (Fig. 20, top right) and a large
amount of false negatives are generated. Conversely, for
high values of thd, the knowledge state variable e does
not change even if paths enter a surfel at high incidence
angles. Hence, as many paths are incorrectly considered in
unknown space, many false positives are generated (Fig. 20,
bottom left). To assess the effect of the median filtering
operation on the known space field (Section 3.2.3), another
trial was carried out using K̃n (v) = K̃ ′

n (v) instead of (8).
By not executing the median filter the computation time can
be reduced up to 224 ms, according to Table 3. However,
without the median filter many false positives appear in the
3D reconstruction (FDR increases from 0.1% to 2.1%), as
the main effect of the median filter is to remove isolated
spurious unknown voxels (Fig. 20, bottom right).

5 CONCLUSION

This work presented the first approach for incremental 3D
reconstruction of a surfel cloud that encloses the known
space, using a moving depth camera. The surfel cloud
models not only the occupied surface between empty and
occupied space, but also the surface between empty and
unknown space. This information can be useful to assess
the completeness of the 3D model, or it can be used to
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solve problems like Next Best View planning. The approach
was evaluated on real data acquired with a depth camera in
indoor scenarios, and it was compared against state of the
art methods. The proposed approach achieves a low False
Omission Rate and a low False Discovery Rate. Moreover,
it is faster than the standard volumetric method, and it
has a lower memory usage. Future work will involve the
integration of the proposed approach in an autonomous
robot system for exploration tasks, based on Next Best View
planning. Moreover, we will investigate the feasibility of
automatic loop closure, which is a challenging problem
as errors in surfel pose estimation may violate the closed-
surface hypothesis of our approach, when a surface is ob-
served multiple times.
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[16] J. Stüeckler and S. Behnke, “Robust Real-Time Registration of
RGB-D Images using Multi-Resolution Surfel Representations,” in
7th German Conference on Robotics (ROBOTIK), 2012, pp. 1–4.

[17] Z. Yan, M. Ye, and L. Ren, “Dense Visual SLAM with Probabilis-
tic Surfel Map,” IEEE Transactions on Visualization and Computer
Graphics, vol. 23, no. 11, pp. 2389–2398, 2017.

[18] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D map-
ping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments,” The International Journal of Robotics Research,
vol. 31, no. 5, pp. 647–663, 2012.

[19] R. L. Carceroni and K. N. Kutalakos, “Multi-view scene capture by
surfel sampling: from video streams to non-rigid 3D motion, shape
and reflectance,” in Proceedings Eighth IEEE International Conference
on Computer Vision (ICCV), vol. 2, 2001, pp. 60–67 vol.2.

[20] P. Puri, D. Jia, and M. Kaess, “Gravityfusion: Real-time dense
mapping without pose graph using deformation and orientation,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 6506–6513.

[21] G. Guennebaud, L. Barthe, and M. Paulin, “Dynamic surfel set
refinement for high-quality rendering,” Computers & Graphics,
vol. 28, no. 6, pp. 827 – 838, 2004.

[22] H. Zhang and A. Kaufman, “A classification-based rendering
method for point models,” Computers & Graphics, vol. 31, no. 5,
pp. 730 – 736, 2007.
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