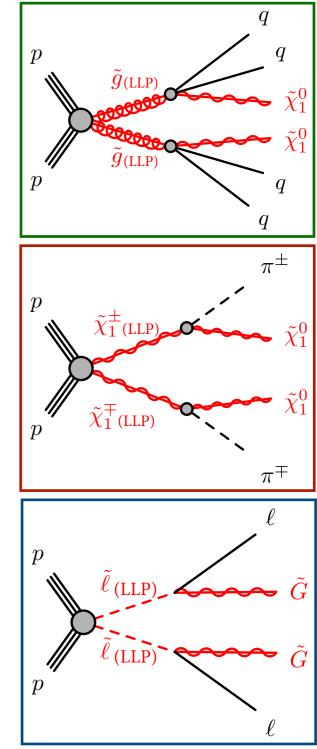
Search for heavy, long-lived, charged particles with large ionisation energy loss in *p p* collisions at  $\sqrt{(s)} = 13$  TeV using the ATLAS experiment and the full Run 2 dataset

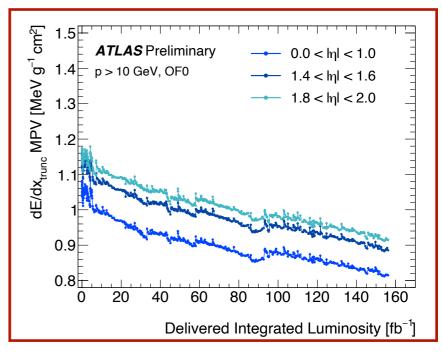
Ismet Siral on Behalf of ATLAS Collaboration La Thuile March 6-12, 2022

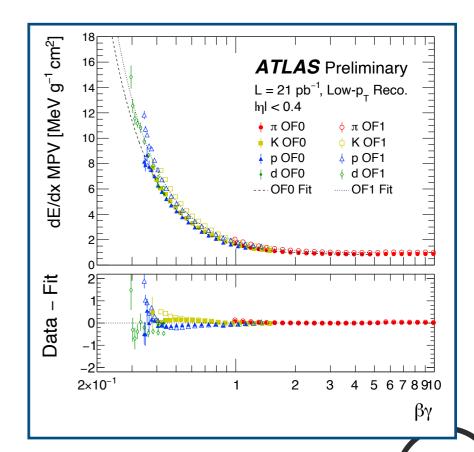
Paper is soon to be published:


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-42/






## Introduction


- In the SUSY dE/dx analysis, we attempt to detect the masses of long-lived particles that may or may not decay in the ATLAS detector, using the energy they deposit inside the pixel detector (dE/dx).
  - Using the ionization energy loss (dE/dx) we can extract the  $\beta\gamma$
  - Reconstruct the mass of these tracks using  $p/\beta\gamma = M$
- We are sensitive to majority of charged LLP with life-times longer than 1ns.
  - We are considering gluinos that form R-hadrons as well as sleptons and charginos, but the analysis is designed aimed to be model independent.
- The search strategy of this analysis is:
  - Identifying isolated tracks with high transverse momentum  $(p_T)$ , and large specific ionisation.
  - Reconstruct the mass.
  - Generate data-driven background distributions
  - Identify mass windows containing good signal over background ratio as a function of signal model mass and lifetime and set limits or find excesses in those windows.



#### dE/dx Measurement, Calibration and $\beta\gamma$ mapping

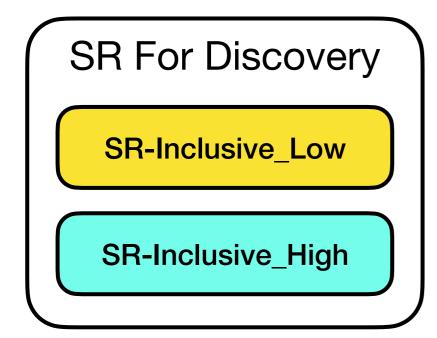
- When charged particles pass through the inner detector layer, they deposit energy and multiple pixel hits across a pixel layer are recorded.
- The dE/dx measurement of an individual track is calculated by averaging the individual clusters that are associated with the tracks. ( $< dE/dx >_{trunc}$ )
- The  $\langle dE/dx \rangle_{\text{trunc}}$  values are  $|\eta|$ , detector conditions dependent. Each  $\langle dE/dx \rangle_{\text{trunc}}$ measurement is calibrated as a function of runnumber and  $|\eta|$  to be flat on comparable.  $(\langle dE/dx \rangle_{\text{corr}})$
- Then a mapping of  $\beta\gamma$  to  $\langle dE/dx \rangle_{corr}$  is extracted in low-mu runs and are then used for extracting the  $\beta\gamma$  of each individual track.



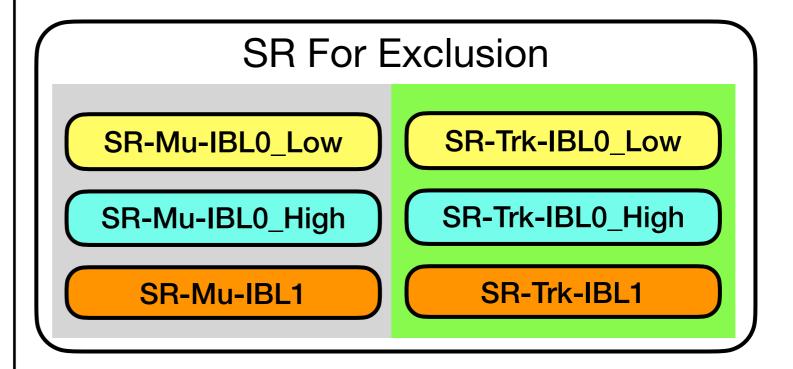


#### **Selection of Events and Tracks**

Events are triggered with a  $E_T^{\text{miss}}$  Trigger that varies between 70-110 GeV An additional offline  $E_T^{\text{miss}}$  requirement is applied at 170 GeV

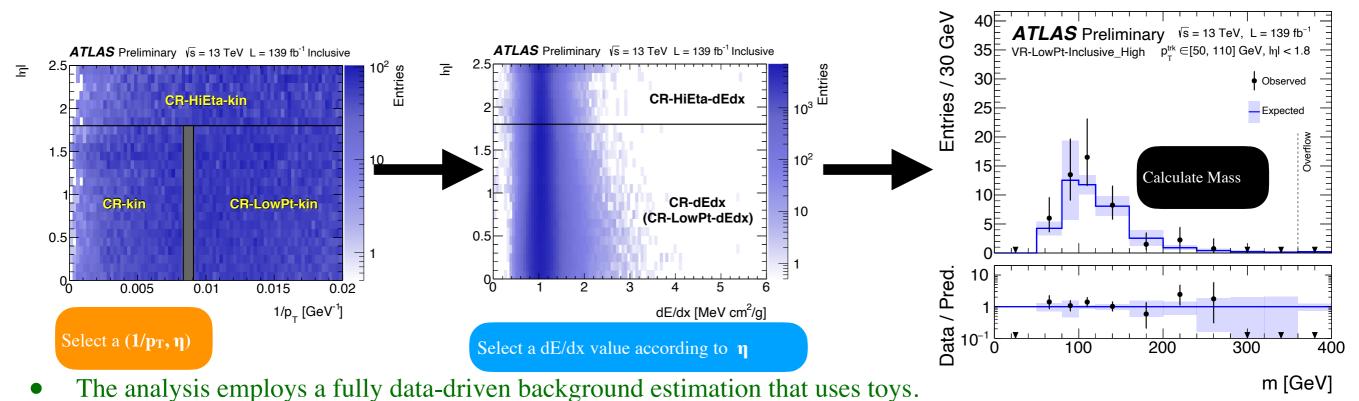

• The  $E_T^{\text{miss}}$  cuts are mostly a necessity for background reduction and trigger requirements.

Good quality , high  $p_T > 120$  GeV, central  $|\eta| < 1.8$  tracks are selected. The quality is ensured by hit requirements.


Tracks associated with jets, w bosons, tau's and electrons are removed by various isolation and  $m_T$ (Track,  $E_T^{miss}$ ) requirements

An ionization cut dE/dx > 1.8 is applied in-order to identify particles that have low  $\beta\gamma$  which is correlated to large dE/dx. The ionization cut varies across signal categories.

## **Signal Region Definitions**




- 2 exclusive signal regions that are used for searching for new physics.
  - dE/dx in (1.8, 2.4] (Low)
  - dE/dx in (2.4,∞] (High)

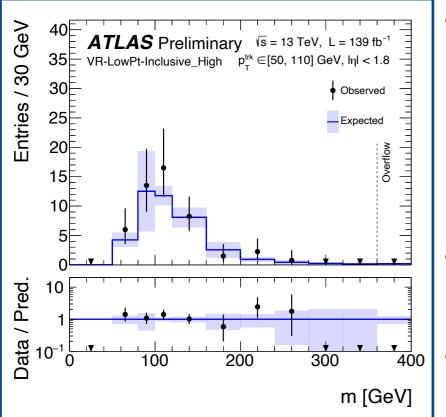


- When we going for exclusion limits the events are categorized according to the selected track properties:
  - Matched to a Muon (Mu) or Not (Trk)
  - dE/dx in (1.8, 2.4] (Low) or (2.4,∞] (High)
  - Has a hit with an IBL Overflow (IBL1)  $\{dE/dx > 1.8\}$

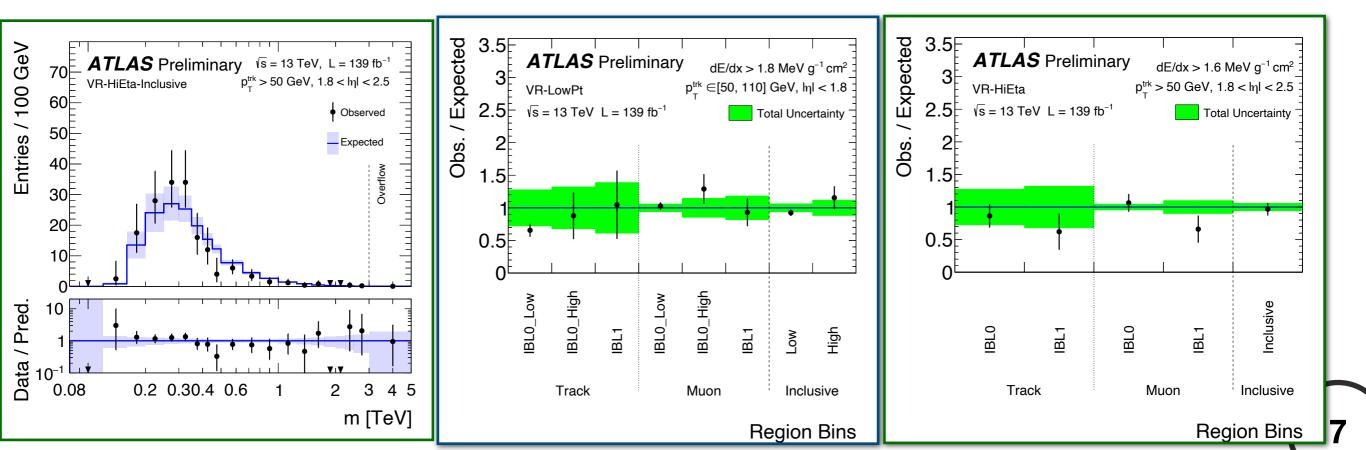
### **Background Estimation**



• The principle idea is to generate random toy tracks following the procedure below:

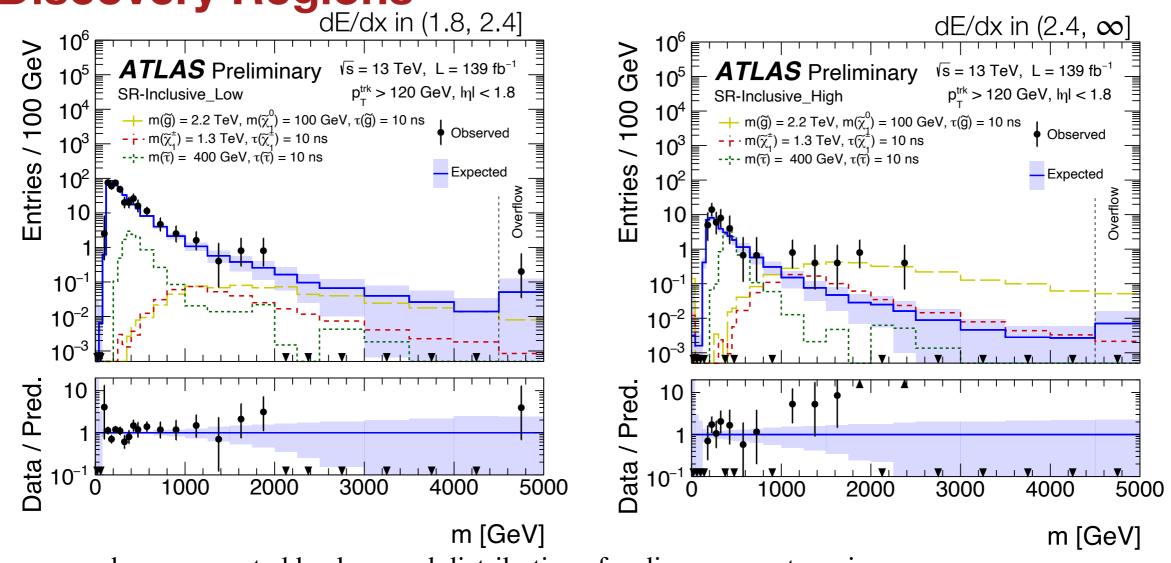

(1) Sample (1/p<sub>T</sub>, η) values from a region representing the kinematic profile of the SR (kinematic CR)

(2) Sample **dE/dx** value from corresponding from a region representing the dE/dx profile of the SR (dE/dx CR) (binned in η)


(3) Calculate mass of toy track from selected values  $(m = p/\beta\gamma)$ 

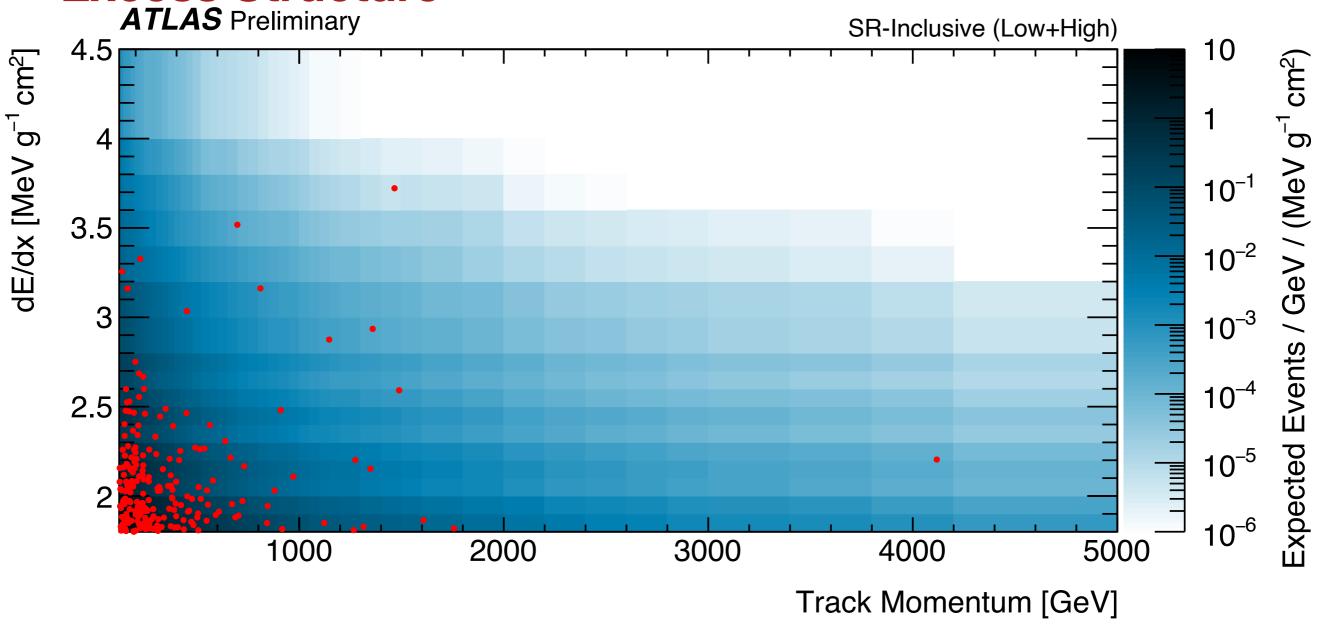
- This method is repeated millions of times for each category generating a mass distribution.
- The mass distribution is normalized to match the data on the low mass region where the signal contamination is negligible.
- Then a dE/dx cut is applied to the generated distribution and a new mass distribution is obtained that satisfies the new dE/dx cut.

### Validation of the Background Method



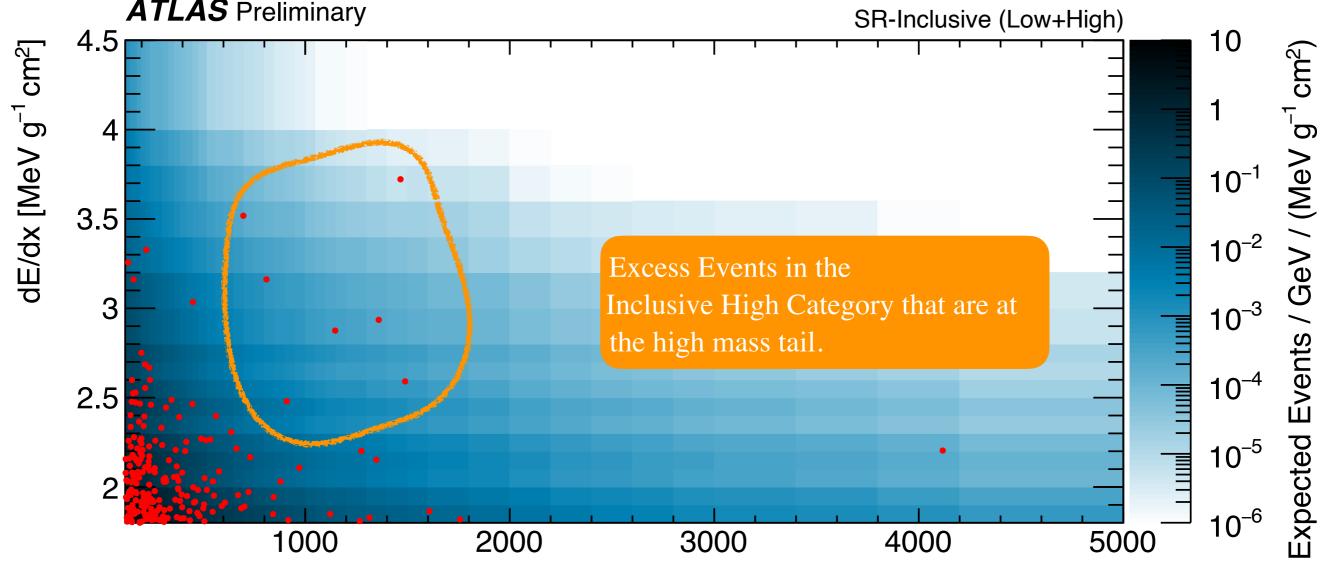

- In-order to validate the BG estimation method:
  - Low-pT validation region is defined by:  $p_T > 120 \rightarrow 50 < p_T < 110 \text{ GeV}$
  - High- $\eta$  validation region is defined as:  $|\eta| < 1.8 \rightarrow 1.8 < |\eta| < 2.5$  and  $p_T > 120 \rightarrow p_T > 50$  GeV
- Each of these regions have exclusive kinematic and dE/dx templates, and BG estimation is done independently in these VR.
- Both Low-pT VR and High-η validation has a data-BG agreement within uncertainties across discovery and exclusion categories.




# Results

#### Signal Region Plots Discovery Regions



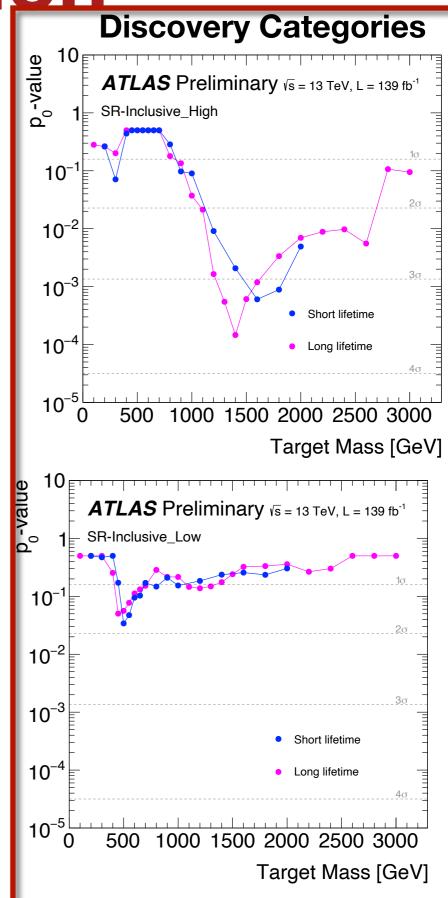

- Above are shown expected background distributions for discovery categories:
  - Overall a good shape agreement has been observed between data and expected background with the exception of:
    - An excess in the Inclusive-High category at m >1 TeV
- The observed excess events were examined individually for unexpected instrumentation effects and backgrounds.

Signal Region Excess Structure

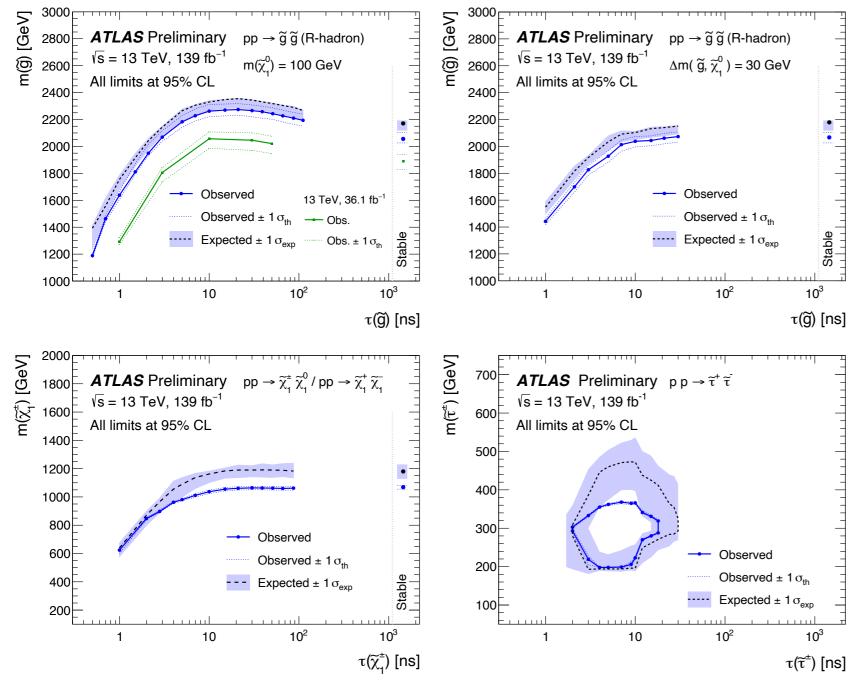


- We extracted all the candidate events and if plot these event as function of dE/dx and Track Momentum we get the following plot.
  - The red points are the data.
  - The blue shadings are expected background distributions.

Signal Region Excess Structure ATLAS Preliminary




Track Momentum [GeV]


- The ones enclosed in the yellow circle is our events in the high mass excess events.
  - 4 of these are Muon events
  - 2 of these are non-muon (TRK) tracks with IBL overflow
  - 1 of these is a non-muon track without IBL overflow
- The observed events are kinematically different from the rest of the background events.
- Overall the events topology of these always have a counter balancing jet.
  - Only exception to this is an event with counter balancing MET
- For further investigation: time of flight measurements of these excess event were also extracted from muon and calorimeter systems. In these studies, the excess events were observed to have a  $\beta \approx 1$ .

#### Statistical Interpretation

- For each signal MC a different mass windows is defined as function of signal model mass.
- For limit setting: Multi-bin fit over Exclusion signal categories using asymptotic formulae is used
- For significance calculation: Multi-bin fit over Discovery signal categories using asymptotic formulae is used
  - The fits were done individually for each mass window.
- The study shows that the observed excess in the SR-Inclusive-High region is responsible for a **local significance** of 3.6 sigma and a global significance of 3.3 sigma.
  - The maximum significance was found at 1.4 TeV (Mass window [1100,2800])
  - The observed p0 value is  $1.5 \times 10^{-4}$  for the target mass

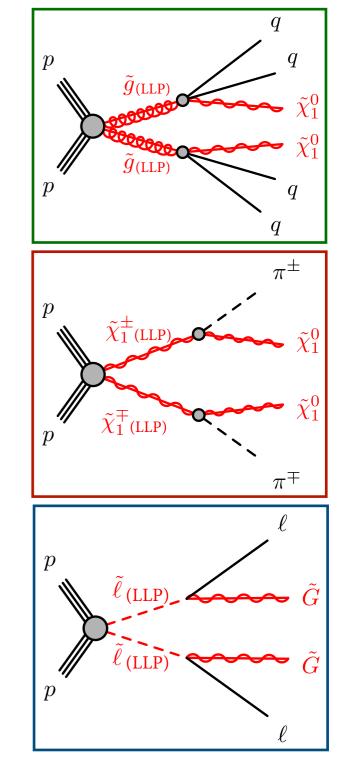


## **Limit Results**



- Limits plots for pair produced R-Hadrons for  $m(\tilde{\chi}_1^0) = 100$  GeV and  $\Delta m(\tilde{g}, \tilde{\chi}_1^0) = 30$  GeV are shown on top and charginos and staus are shown on plots on the bottom.
- The highest limits are obtained at:
  - $m(\tilde{\chi}_1^0) = 100 \text{ GeV}$ ,  $\tau = 20 \text{ ns}$ at 2.27 TeV
  - $\Delta m(\tilde{g}, \tilde{\chi}_1^0) = 30 \text{ GeV}, \tau = 30 \text{ ns}$ at 2.06 TeV
  - For charginos, the highest observed mass limit is at 1.07 TeV with  $\tau = 30$  ns
  - For staus, the mass range of 220-360 GeV is excluded at 10ns.
- Due to the observed excess, the observed limits are lower than expected.

## Conclusion


- An excess has been observed in the high mass range. All checks done do not show any instrumental or systematic effects which can account for this excess.
  - Only exception to this is that inner detector information point to the fact that these tracks have a  $0.4 < \beta \gamma < 0.7$  while Time-Of-Flight measurements tell that these particles have a speed of  $c \sim 1$
  - The local (global) significance observed excess is 3.6(3.3) sigma at 1.4 TeV
- Limits on chargino, R-Hadron and stau models have been set.

# Thank you for listening

Backups

## **Considered Signal Models**

- Long lived particle particles (LLPs) are predict by a large number of theories that extend the Standard Model (SM). Certain SUSY models predicted such LLP particles:
  - Gluinos  $(\tilde{g})$  that form R-Hadrons (can be charged or not).
    - In this paper pair produced glunio from 400 GeV to 3 TeV of 1 ns to stable lifetimes with two different neutralino mass schemes of  $m(\tilde{\chi}_1^0) = 100$  GeV and  $\Delta m(\tilde{g}, \tilde{\chi}_1^0) = 30$  GeV were considered.
  - Charginos  $(\tilde{\chi}_1^{\pm})$  when the mass splitting between the neutralino  $(\tilde{\chi}_1^0)$  counterpart is highly degenerate.
    - In this paper  $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 160$  MeV with masses between 400 GeV to 1.6 TeV with 1ns to stable lifetimes were considered.
  - Staus  $(\tilde{\tau})$  when the quasi-massless gravitino is assumed to be the lightest neutral SUSY particle.
    - In this paper gravitinos are massless and Staus masses between 100 GeV to 1 TeV with 1ns to stable lifetimes are considered.
- As charged particles cross the detectors they have ionisation losses (dE/dx) along their paths which are recorded by the detector layers. Charged heavy particles are expected to have significantly higher ionisation losses as they have low  $\beta\gamma$ .
  - Using the deposited energy (dE/dx) the  $\beta\gamma$  of the particle can be extracted in the range [0.3-0.9], which can be used to derive the mass of the particle.



## **Selection of Events and Tracks**

| Category Item  |                                  | Description                                                  |  |  |
|----------------|----------------------------------|--------------------------------------------------------------|--|--|
| Event topology | Trigger                          | Un-prescaled lowest threshold $E_{\rm T}^{\rm miss}$ trigger |  |  |
|                | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $E_{\rm T}^{\rm miss} > 170 { m GeV}$                        |  |  |
|                | Primary vertex                   | The hard-scatter vertex must have at least two tracks        |  |  |

MET trigger varies from 70 GeV to 110GeV during the data taking periods

#### Offline $E_T^{\text{miss}}$ variable contains:

- Baseline Electrons, Muons and Jets
- Soft tracks that are coming from PV not associated with other objects.

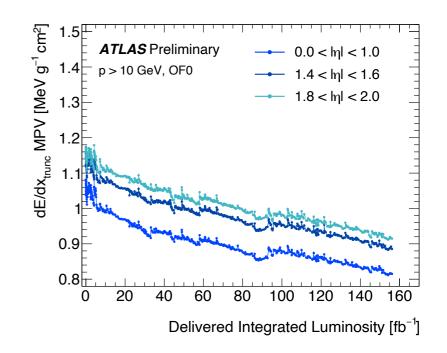
| <br>= | Tracks are reconstructed only using ID             |
|-------|----------------------------------------------------|
| <br>- | information, and is required to be high-pt low eta |
|       | to veto the non-prompt background.                 |

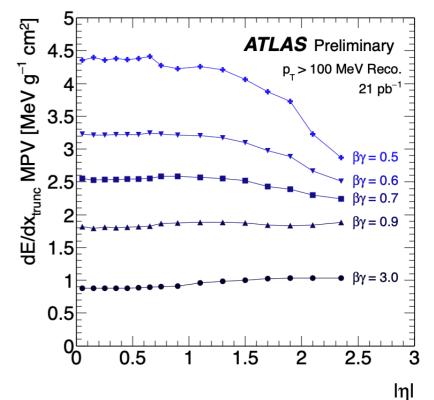
 $m_T(\text{track}, p_T^{\text{miss}}) > 130 \text{ GeV}$  is applied to reduce W boson background.

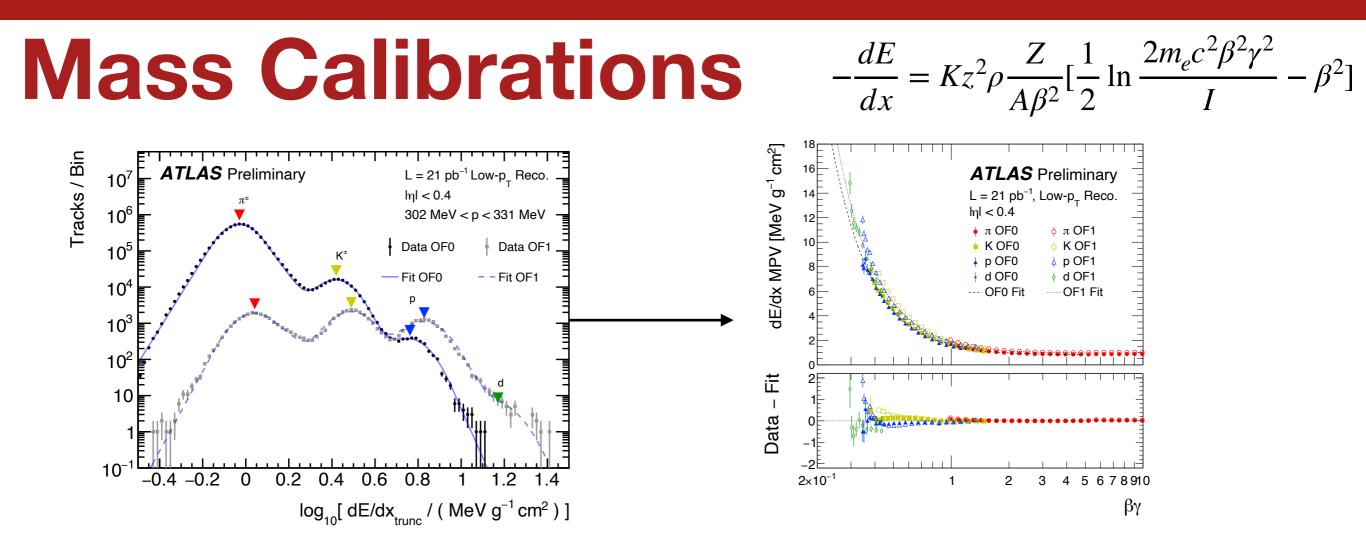
Hit requirements are applied to ensure track and dE/dx measurement quality.

Tracks associated with jets and electrons are removed.

An ionization cut is applied in-order to identify particles that have low  $\beta\gamma$  which is correlated to large dE/dx. The ionization cut varies across signal categories.


| Events are required to have at least one track fulfilling <i>all</i> criteria listed below; tracks sorted in $p_{\rm T}$ descending order |                                           |                                                                                                             |   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|--|
| Track kinematics                                                                                                                          | Momentum                                  | $p_{\rm T} > 120 { m GeV}$                                                                                  |   |  |
|                                                                                                                                           | Pseudorapidity                            | $ \eta  < 1.8$                                                                                              | ļ |  |
|                                                                                                                                           | $W^{\pm} \rightarrow \ell^{\pm} \nu$ veto | $m_{\rm T}({\rm track}, \vec{p}_{\rm T}^{\rm miss}) > 130 {\rm GeV}$                                        | ļ |  |
|                                                                                                                                           |                                           |                                                                                                             |   |  |
| Track quality                                                                                                                             | Impact parameters                         | Track associated to the hard-scatter vertex; $ d_0  < 2 \text{ mm and }  \Delta z_0 \sin \theta  < 0$       |   |  |
|                                                                                                                                           | Rel.momentum resolution                   | $\sigma_p < \max\left(10\%, -1\% + 90\% \times \frac{ p }{\text{TeV}}\right) \text{ and } \sigma_p < 200\%$ |   |  |
|                                                                                                                                           | Cluster requirement (1)                   | At least two clusters used for the $\langle dE/dx \rangle_{trunc}$ calculation                              |   |  |
| Cluster requirement (2)                                                                                                                   |                                           | Must have a cluster in IBL (if this is expected), or                                                        |   |  |
|                                                                                                                                           |                                           | a cluster in the next-to-innermost layer                                                                    |   |  |
|                                                                                                                                           |                                           | (if this is expected while it is not expected in IBL)                                                       | ŀ |  |
|                                                                                                                                           | Cluster requirement (3)                   | No shared pixel clusters and no split pixel clusters                                                        |   |  |
|                                                                                                                                           | Cluster requirement (4)                   | Number of SCT clusters > 5                                                                                  |   |  |
|                                                                                                                                           |                                           |                                                                                                             | ٦ |  |
| Vetoes                                                                                                                                    | Isolation                                 | $\left(\sum_{\text{trk}} p_{\text{T}}\right) < 5 \text{ GeV} (\text{cone } \Delta R < 0.3)$                 |   |  |
|                                                                                                                                           | Electron veto                             | EM fraction < 0.95                                                                                          |   |  |
|                                                                                                                                           | Hadron and tau veto                       | $E_{\rm jet}/p_{\rm track} < 1$                                                                             |   |  |
| Muon requirement                                                                                                                          |                                           | SR-Mu: MS track matched to ID track; SR-Trk: otherwise                                                      | 1 |  |
| Pixel $dE/dx$                                                                                                                             | Inclusive                                 | Low: $dE/dx \in [1.8, 2.4] \text{ MeV g}^{-1} \text{ cm}^2$                                                 | 1 |  |
|                                                                                                                                           | Inclusive                                 | High: $dE/dx > 2.4 \text{ MeV g}^{-1} \text{cm}^2$                                                          | I |  |
|                                                                                                                                           |                                           | IBLO_Low: $dE/dx \in [1.8, 2.4]$ MeV g <sup>-1</sup> cm <sup>2</sup> and OF <sub>IBL</sub> = 0              | ļ |  |
|                                                                                                                                           | Binned                                    | IBLO_High: $dE/dx > 2.4 \text{ MeV g}^{-1} \text{ cm}^2$ and $OF_{IBL} = 0$                                 |   |  |
|                                                                                                                                           |                                           | IBL1: $dE/dx > 1.8 \text{ MeV g}^{-1} \text{ cm}^2 \text{ and } \text{OF}_{\text{IBL}} = 1$                 |   |  |


### dE/dx Measurement


- When charged particles pass through the inner detector layer multiple pixel hits across a pixel layer are recorded.
  - The charge deposited on a cluster of hits is calculated by summing the charges over all pixels in a cluster.
  - In the IBL layer, If the deposited charge exceeds the dynamic range of a pixel (~2MIPs), an overflow bit is set. The tracks that use these energy deposits with overflows are referred in this paper as IBL overflow tracks (OF<sub>IBL</sub>). All other pixel layers have much larger dynamic range (~10 MIPs), but no overflow bits
- The dE/dx measurement of an individual track is calculated by averaging the individual clusters that are associated with the tracks.
  - It's expected that the energy deposited by an individual track on a cluster should follow a Landau distribution.
  - To estimate the most probable dE/dx value for a track from the limited number of the dE/dx measurements associated to it a truncated mean method is used. The most probable dE/dx value is represented by  $\langle dE/dx \rangle_{trunc}$

## dE/dx Corrections

- The measured  $\langle dE/dx \rangle_{trunc}$  changes with dataperiod due to detector conditions as well as radiation damage.
  - $|\eta|$  dependence can be observed in the plots.
- To correct for these effects each run
  - Each run is corrected to a reference run as a function of  $|\eta|$ , OF<sub>IBL</sub>
  - After run dependent corrections,  $|\eta|$  corrections are done separately for tracks with/with IBL overflow.
- The resulting corrected dE/dx value is referred to as  $\langle dE/dx \rangle_{corr}$







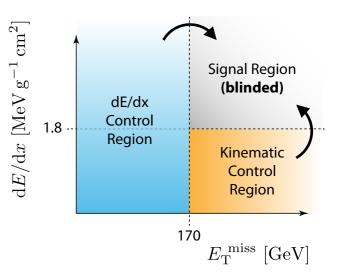
- The  $\langle dE/dx \rangle_{corr}$  to  $\beta\gamma$  mapping is done using the low pile-up runs taken in 2017 with a luminosity of 21 pb<sup>-1</sup> with low momentum reconstructed tracks.
  - Similar to dE/dx energy calibration, IBL overflow is treated separately.
- In the low pile-up runs, tracks as low as 100 MeV are used to measure the Bethe-Bloch curve.
- This is done by plotting the dE/dx curves in eta and momentum slices.
- Template fitting these slices to separate the pion, Kaon and proton contributions.
  - This way the most probable dE/dx value for a given momentum for each of these particle types is obtained, which can be converted in to the seen  $\beta\gamma$  function.

### **Event Subsamples**

| SR-Inclusive_Low  | /                                                                    |                                                                      |                                                              |                                                                   | dE/dx [MeV g <sup>-1</sup> cm <sup>2</sup> ]                                          |
|-------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                   | $\checkmark$                                                         |                                                                      | inclusive                                                    | both                                                              | [1.8, 2.4]                                                                            |
| SR-Inclusive_High | $\checkmark$                                                         |                                                                      | menusive                                                     |                                                                   | > 2.4                                                                                 |
| SR-Trk-IBL0_Low   |                                                                      | $\checkmark$                                                         |                                                              | no                                                                | [1.8, 2.4]                                                                            |
| SR-Trk-IBL0_High  |                                                                      | $\checkmark$                                                         | track                                                        | no                                                                | > 2.4                                                                                 |
| SR-Trk-IBL1       |                                                                      | $\checkmark$                                                         |                                                              | yes                                                               | > 1.8                                                                                 |
| SR-Mu-IBL0_Low    |                                                                      | $\checkmark$                                                         |                                                              | no                                                                | [1.8, 2.4]                                                                            |
| SR-Mu-IBL0_High   |                                                                      | $\checkmark$                                                         | muon tracks                                                  | no                                                                | > 2.4                                                                                 |
| SR-Mu-IBL1        |                                                                      | $\checkmark$                                                         |                                                              | yes                                                               | > 1.8                                                                                 |
|                   | SR-Trk-IBL0_High<br>SR-Trk-IBL1<br>SR-Mu-IBL0_Low<br>SR-Mu-IBL0_High | SR-Trk-IBL0_High<br>SR-Trk-IBL1<br>SR-Mu-IBL0_Low<br>SR-Mu-IBL0_High | SR-Trk-IBL0_High✓SR-Trk-IBL1✓SR-Mu-IBL0_Low✓SR-Mu-IBL0_High✓ | SR-Trk-IBL0_High✓trackSR-Trk-IBL1✓SR-Mu-IBL0_Low✓SR-Mu-IBL0_High✓ | SR-Trk-IBL0_High✓tracknoSR-Trk-IBL1✓yesSR-Mu-IBL0_Low✓noSR-Mu-IBL0_High✓muon tracksno |

#### **Discovery Categories**

- Instead categorize tracks by
  - dE/dx in (1.8, 2.4] or
     (2.4,∞]
- 2 exclusive signal regions
- Also easier for reinterpretation


#### **Exclusion Categories**

- For exclusion limits, the events are categorized according to the selected track properties:
  - Matched to a Muon (Mu) or Not (Trk)
  - dE/dx in (1.8, 2.4] (Low) or (2.4,∞] (High)
  - Has a hit with an IBL Overflow (IBL1) {dE/dx > 1.8}

#### **Definition of Control and Validation Regions**

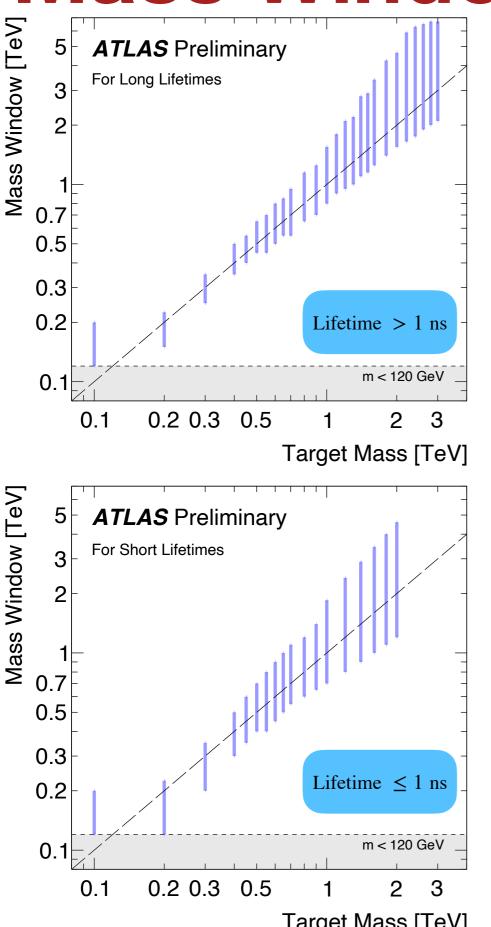
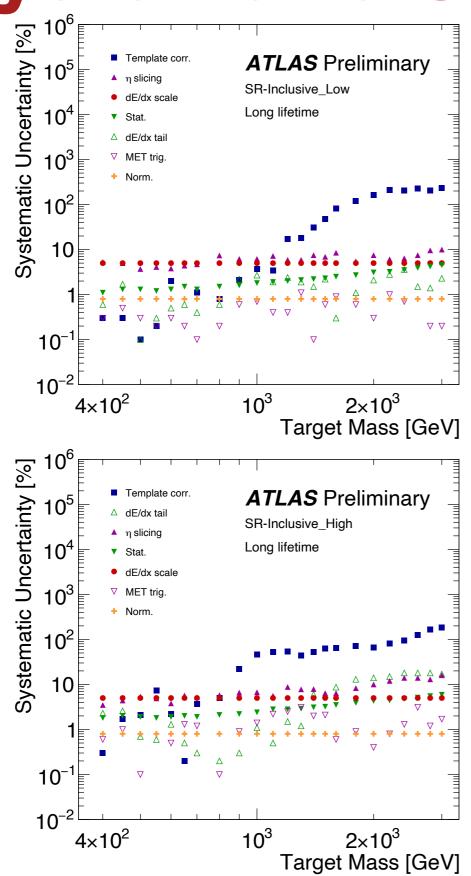

|               |                   |            |                              | 6                                            |
|---------------|-------------------|------------|------------------------------|----------------------------------------------|
| Region        | $p_{\rm T}$ [GeV] | $ \eta $   | $E_{\rm T}^{\rm miss}$ [GeV] | dE/dx [MeV g <sup>-1</sup> cm <sup>2</sup> ] |
| SR            |                   |            | > 170                        | > 1.8                                        |
| CR-kin        | > 120             | < 1.8      | > 170                        | < 1.8                                        |
| CR-dEdx       |                   |            | < 170                        | > 0                                          |
| VR-LowPt      |                   |            | > 170                        | > 1.8                                        |
| CR-LowPt-kin  | [50, 110]         | < 1.8      | > 170                        | < 1.8                                        |
| CR-LowPt-dEdx |                   |            | < 170                        | > 0                                          |
| VR-HiEta      |                   |            | > 170                        | > 1.6                                        |
| CR-HiEta-kin  | > 50              | [1.8, 2.5] | > 170                        | < 1.6                                        |
| CR-HiEta-dEdx |                   |            | < 170                        | > 0                                          |

Table 3: Definitions of the control and validation regions.



- In order to validate the generation background two separate VR has been designed:
  - High-η VR:
    - SR:  $|\eta| < 1.8 \rightarrow$  VR:  $1.8 < |\eta| < 2.5$
    - **SR:**  $p_T > 120 \rightarrow$  **VR:**  $p_T > 50$
    - SR:  $dE/dx > 1.8 \rightarrow$  VR: dE/dx > 1.6
  - Shares a similar momentum spectrum with the SR but has a differentiated dE/dx spectrum due to eta differences.
  - Low-pT VR:
    - SR:  $p_T > 120 \rightarrow$  VR: 50 <  $p_T < 110$
  - Shares identical dE/dx range and performance with SR but has a limited momentum range.
- In addition two control regions have been defined for every signal and validation region for background generation
  - Kinematic CR : dE/dx cut of >1.8 is reverted to <1.8 (1.6 for Hi-Eta VR)
  - dE/dx CR: MET cut of >170 GeV is reverted to <170 GeV and dE/dx cut is removed

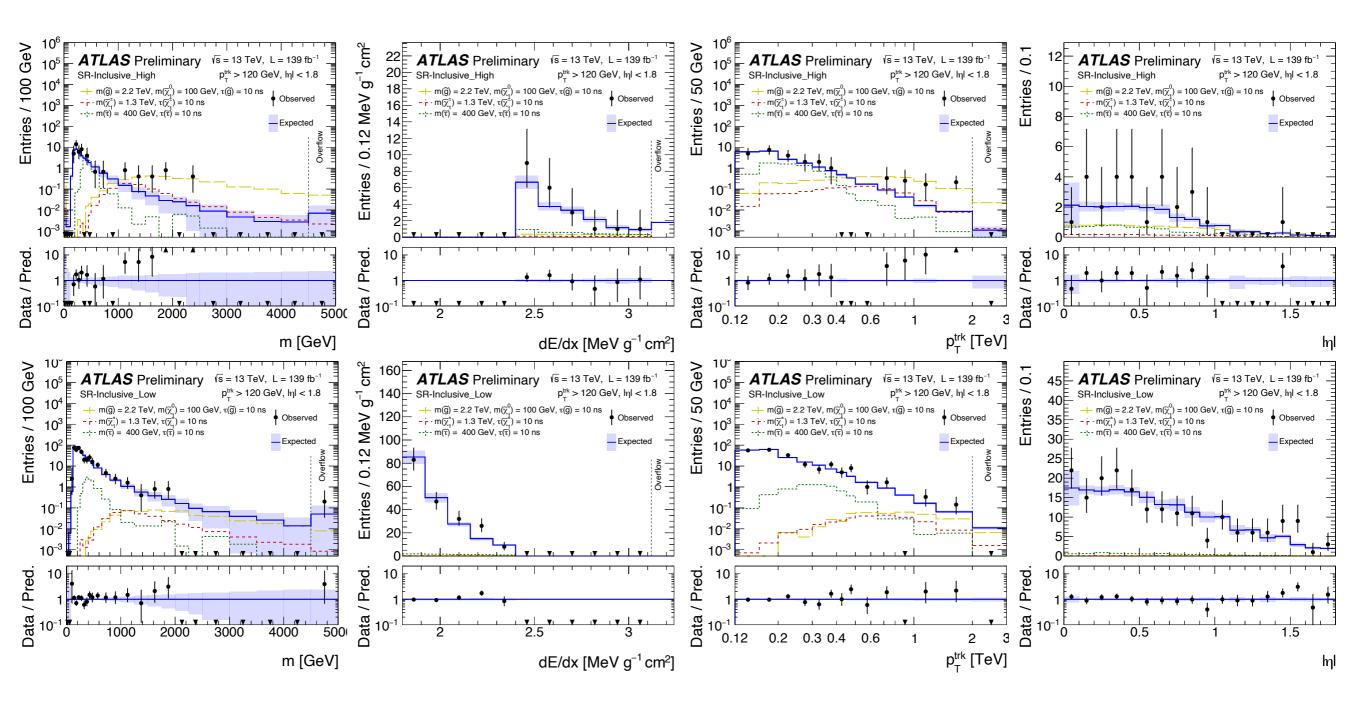

## Mass Windows



- The background is monotonically decreasing after 120 GeV, while the signal models peak around their central mass window.
  - Signal mass resolution is directly effected by our momentum resolution and the life time of the particle.
- When setting limits and fitting, different **sliding mass windows** are used for each individual signal mass point and life-time
- Two separate set off mass windows are defined which are a function of mass for two different life-times(short and long). They are optimized according to:
  - 70% signal MC are aimed to be captured by the signal mass windows.
  - Lower boundary is determined by maximizing  $1/\sqrt{BG}$

The short-life time mass windows are broader to due worse momentum resolution for short life-time signatures.

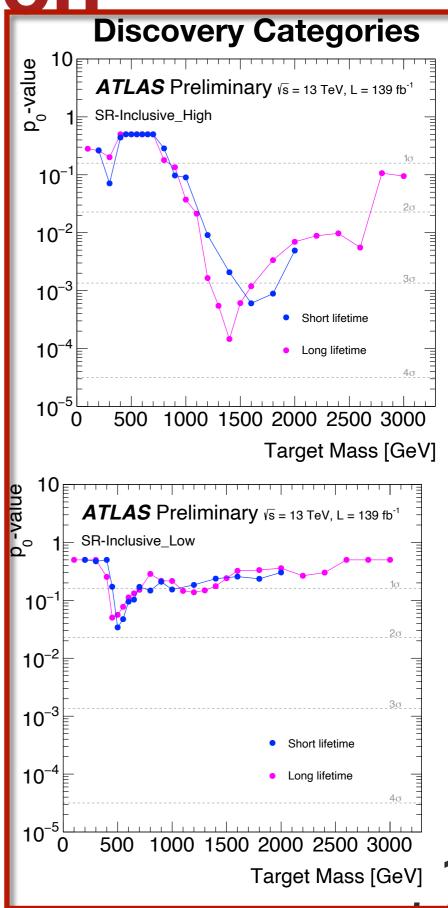
### **Systematic Uncertainties**




- Uncertainties are calculated **per each mass window** and the leading uncertainties are:
- **Template Corr:** Leading uncertainty. It evaluates for the data-driven BG the assumption that the kinematic and d*E*/d*x* template can be sampled separately to form a toy track. It's achieves that by generating a alternative BG solely using in dE/dx CR and comparing the data distribution in dE/dx CR.
- **η slicing:** It estimates the effect of the choice of η binning of the dE/dx templates
- dE/dx Scale: This uncertainty is introduced to cover the disagreement observed in the Low-pT VR - IBL0-Trk-Low.
  - The size of this additional systematic uncertainty is evaluated using VR-LowPt and VR-HiEta by making likelihood fit without other uncertainties.
- **dE/dx tail:** dE/dx tail statistical uncertainty estimated by using a fitted Crystal ball function instead of the raw template

## **Signal Systematic Uncertainties**

- Signal systematic uncertainties are computed for model dependent limits.
  - The dominant signal uncertainty depends on the signal model but overall the dominating uncertainties are:
    - Scale/ISR Uncertainties: Created by generating alternative MC samples (truth only) with variations in factorization, normalization and merging scales as well parton/radiation shower tunes. and comparing the differences in alternative MC samples to nominal samples.
    - IBLSyst: IBL overflow fraction year dependence.
    - Uncertainties on physics objects like track momentum measurement, offline  $E_T^{\text{miss}}$  calculation etc.


#### Signal Region Plots Extra Kinematic Plots



#### Statistical Interpretation

- For each signal MC a different mass windows is defined as function of signal model mass.
- Multi-bin fit over exclusion signal regions using asymptotic formulae is used for limit setting over the defined mass windows.

- The study shows that the observed excess in the SR-Inclusive-High region is responsible for a **local significance of 3.6 sigma and a global significance of 3.3 sigma.** 
  - The maximum significance was found at 1.4 TeV (Mass window [1100,2800])
  - The observed p0 value is  $1.5 \times 10^{-4}$  for the target mass
  - The p0-value calculation was done with 1 million toys per mass-window.

