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S1. Biomass and coal samples 44 

In this study, six biomass materials and five types of coal were collected and burned to 45 

investigate the optical and chemical properties of the brown carbon (BrC) fractions emitted 46 

from biomass burning (BB) and coal combustion (CC) smoke. The six biomass materials 47 

consisted of three types of crop straw (wheat straw [WS], rice straw [RS], and corn straw 48 

[CS]) and three types of wood (pine wood [PW], Chinese fir [CF], and white poplar [WP]). 49 

The three crop straws were chosen because they were the main types of crop straw burned in 50 

China. These crop straws are usually used as fuels for heating in the winter or cooking in 51 

rural areas throughout the year, and are also occasionally burned in agricultural fields after 52 

the harvest season (Ke et al., 2019). The three wood materials are widespread in forests and 53 

are commonly used as biomass fuels in some rural areas of China. The combustion of these 54 

crop straws and woods has been reported to make a significant contribution to the 55 

atmospheric aerosol in China (Fan et al., 2018; Shen et al., 2013). Therefore, these biomass 56 

materials were selected as representative biomass fuels for the study of BB-derived BrC. In 57 

this study, WS, RS, and CS were collected in the rural area of Bengbu, Anhui Province, 58 

China, while PW, CF, and WP were collected from a forest area in Lu’an, Anhui Province, 59 

China. Before the experiment, the crop straws and wood materials were washed with water 60 

and air dried for seven days. 61 

In some developing countries, such as China, coal is still an important fuel in rural areas 62 

and also makes a large contribution to the levels of atmospheric pollution. In this study, five 63 

coals were chosen for the investigation of their BrC fractions from CC. They consisted of four 64 

bituminous coals (B-1, B-2, B-3, and B-4, with volatile fractions of 34%, 32%, 25%, and 19%, 65 
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respectively) and one anthracitic coal (with a volatile fraction of 3.3%). These five coals 66 

represented the major types of coal used for residential CC in China. After collection, the coals 67 

were washed with water three times to remove dust and then air-dried. Then raw coal was 68 

crushed, fully mixed, and made into coal briquettes.  69 

 70 

S2. Collection of smoke samples from BB and CC 71 

Samples of the smoke emitted from BB and CC were collected in a combustion and 72 

sampling system that was introduced in our previous studies (Fan et al., 2018; Li et al., 2018). 73 

The instrument was made of stainless steel and consisted of a combustion hood, clean air 74 

dilution and injection ports, smoke pipe, mixing fan, mixing chamber, PM2.5 sampler 75 

(JCH-120F Intelligent medium flow PM sampler, Juchuang Environmental Protection Group 76 

Co., Ltd, Qindao, China), and exhaust port. The smoke samples emitted from BB and CC 77 

were then collected as follows: 78 

(1) Biomass burning smoke samples. The biomass fuels were first prepared as small 79 

pieces (length ~10 cm) and then placed on a combustion stove. After dropping 1 mL of 80 

alcohol on the biomass fuels they were ignited with an electronic gas lighter. The smoke 81 

particles were diluted and transported into the mixing chamber. Finally, smoke particles were 82 

collected on quartz fiber filters (Ø 90 mm: Whatman, Maidstone, UK) in a PM2.5 sampler at a 83 

flow rate of 80 L/min. Five complete experiments were conducted for each biomass fuel and 84 

five smoke PM2.5 filter samples were obtained. 85 

(2) Coal combustion smoke samples. The smoke particles emitted from the CC 86 

samples were also collected in the same combustion and sampling system. Sample collection 87 
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was conducted according to the method introduced by Li et al. (2018). Briefly, two anthracite 88 

briquettes were ignited in a burning coal honeycomb briquette stove and were then moved 89 

into the other coal stove. After the burning stage of coal was reached and smoke emissions 90 

were minimized, the coal stove was placed into the sampling system. Then, one honeycomb 91 

sample was placed in the pre-burned coal stove. The resulting smoke was diluted and passed 92 

into the mixing chamber. Finally, smoke samples were collected with the PM2.5 sampler at a 93 

flow rate of 80 L/min. To obtain sufficient smoke sample for the comprehensive 94 

characterization of the BrC fractions, each coal was burned at least for three cycles. All 95 

quartz filters were baked for 6 h at 450 ºC to remove any organics absorbed on the filters and 96 

then wrapped with baked aluminum foil. After sampling, the filter samples were re-wrapped 97 

with baked aluminum foil and stored in a refrigerator (−20 ºC) prior to analysis. 98 

Field blank quartz filters were collected before each group of combustion experiments 99 

under conditions in which the fuels were not ignited. The field blank filters were used to 100 

correct the mass of smoke PM2.5 and water-/methanol- soluble BrC, as well as the optical 101 

signals and DTT consumption by BrC. To prevent contamination of the following sample, the 102 

collection system was cleaned before each new combustion experiment. 103 

 104 

S3. Extraction and fractionation of BrC 105 

The BrC fractions (i.e., water-soluble organic compounds [WSOC], humic-like 106 

substances [HULIS], and methanol-soluble organic compounds [MSOC]) were obtained with 107 

solvent extraction and a solid-phase extraction (SPE) method, as indicated in our previous 108 

studies (Fan et al., 2018; Fan et al., 2016; Li et al., 2018). The filter samples were 109 
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ultrasonically extracted three times with 20 mL ultrapure water for 30 min. The extracts were 110 

filtered through a 0.22 μm polytetrafluoroethylene (PTFE) syringe filter to obtain the WSOC 111 

fraction. The HULIS fraction in WSOC was isolated with an SPE method (Chen and Bond, 112 

2010; Zhang et al., 2013; Cheng et al., 2016; Cheng et al., 2017). Briefly, the pH of the 113 

WSOC solution was acidified to 2 with HCl, and the solution introduced into a 114 

pre-conditioned SPE cartridge (Oasis HLB, 200 mg, Waters, Milford, MA, USA). The most 115 

hydrophilic species was removed by the cartridge, whereas the relatively hydrophobic HULIS 116 

fraction was retained. Then the SPE column was rinsed with pure water to remove inorganics 117 

and the retained organics were eluted with methanol. Finally, the HULIS solution was 118 

evaporated to dryness under a gentle nitrogen stream. 119 

The MSOC was obtained by a method developed by Cheng et al. (2016). Briefly, the 120 

filter samples were immersed in 20 mL methanol (Macklin, >99.9%, Shanghai, China) for 2 h 121 

and then filtered through a 0.22 μm PTFE syringe filter (Jinteng, Tianjin, China). Static 122 

digestion without ultrasonic treatment can avoid the loss of particulate matter and facilitate 123 

the determination of dissolved organic matter content. Finally, the dried residual filters and 124 

untreated filters were analyzed to determine their carbon contents. 125 

 126 

S4. Organic carbon/elemental carbon (OC/EC) and total organic carbon (TOC) analysis 127 

The OC and EC in smoke filter samples were measured using an OC/EC analyzer (TOT, 128 

Sunset Laboratory Inc., Portland, OR, USA). The analysis was conducted according to the 129 

National Institute of Occupational Safety and Health (NIOSH) 870 method (Chow et al., 130 

2001; Wu et al., 2016). The TOC content of WSOC and HULIS was determined by a 131 
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high-temperature catalytic oxidation instrument (VCPH analyzer, Shimadzu, Kyoto, Japan) 132 

following the non-purgeable OC protocol. The detailed measurement method is provided in 133 

the SI file. The content of the MSOC fraction was indirectly obtained by subtracting the TC 134 

concentrations of the extracted filters from that of the untreated filters. The experiments were 135 

all repeated three times and the concentrations reported here were corrected for their 136 

respective blank concentrations. 137 

 138 

S5. UV-visible properties 139 

The UV-visible absorption spectra of the BrC fractions (i.e., WSOC, HULIS, and MSOC) 140 

were recorded between the wavelengths of 200 to 700 nm using a UV-2600 UV-vis 141 

spectrophotometer (Shimadzu). The sample solution was placed in a 1-cm quartz cuvette and 142 

analyzed at 1 nm intervals. Ultrapure water was used as a blank reference for the WSOC and 143 

HULIS solutions, while pure methanol was used for the MSOC fraction. The field blank sample 144 

solution was also used as the blank sample, and the interference from the instrument and 145 

operating blank was determined.  146 

The absorption Ångström exponent (AAE) is a measure of the spectral dependence of 147 

the light absorption of BrC solutions (Cheng et al., 2016), which was calculated by the 148 

following equation: 149 

                     Aλ = Kλ-AAE                         (2) 150 

where Aλ is the absorbance derived from the spectrophotometer at a given wavelength λ (330–151 

400 nm) and K is a constant. 152 

The mass absorption efficiency at 365 nm (MAE365) is an important parameter used to 153 
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characterize the light absorbing ability of BrC. It was obtained using the following equation: 154 

     MAE𝜆 =
𝐴𝜆

𝐶⋅𝐿
× ln(10)         (3) 155 

where Aλ is the absorbance at λ nm, c is the carbon concentration of BrC in solution (gC 156 

mL−1), and L is the absorbing path length.  157 

 158 

 159 

 160 

 161 

  162 
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Table S1. Region, excitation/emission wavelength maxima range and attribution of chromophores in BrC 164 

emitted from BB and CC 165 

Region λex max(nm) λem max(nm) Fluorescent compounds References 

I 220-250 290-320 protein-like amino acid (Cui et al., 2016; Coble, 

1996) 

II 220-250 320-380 protein-like UV region (Mostofa et al., 2011; 

Mounier et al., 2010) 

III 220-250 380-460 fulvic-like (Chen et al., 2003; 

Santos et al., 2012) 

IV 250-380 280-380 tryptophan-like/microbial 

byproduct 

(Santos et al., 2012; Cui 

et al., 2016) 

V 250-380 380-460 humic-like organic (Chen et al., 2003; Qin 

et al., 2018) 

 166 

 167 

 168 

 169 

Table S2. Results of DTT assay conducted on the WSOC, HULIS and MSOC of smoke samples 170 

  Calculated by PM mass(pmol/min/μg) 

 Samples WSOC HULIS MSOC 

Biomass 

burning 

WS 4.5±3.8 3.2±2.8 85±12 

RS 6.1±0.5 5.5±0.6 84±5.6 

CS 7.4±1.4 3.0±0.7 69±11 

PW 5.9±3.3 3.1±0.3 9.1±1.5 

CF 5.5±2.3 3.2±0.9 14±6.9 

WP 5.6±2.8 2.6±1.0 11±7.6 

Coal 

combustion 

B-1 1.6±0.2 1.1±0.1 7.7±0.8 

B-2 2.1±0.2 1.5±0.1 11±3.2 

B-3 0.5±0.1 0.5±0.1 3.2±1.7 

B-4 1.9±0.5 0.9±0.2 3.1±1.0 

AN 0.7±0.2 0.4±0.1 6.7±2.9 

a error bars represent standard deviation based on quadruplicate test 171 

 172 
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 174 

 175 
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 191 

Figure S1. The normalized UV-vis spectra by organic carbon contents of WSOC, HULIS, 192 

and MSOC fractions 193 
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Figure S2. EEM fluorescence counter maps of corresponding WSOC, HULIS, MSOC of BB 316 

and CC smoke samples, presented as specific intensity (a.u. L(mg C-1)) 317 
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Figure S3. 1H-NMR stacking diagram of corresponding WSOC, HULIS, MSOC of BB and 416 

CC smoke samples. The segment from 4.40 to 5.60 ppm was removed for NMR spectra due 417 

to MeOH and H2O residues. The peaks were assigned to specific compounds as follows: 418 

Levoglucosan (L), Phthlic acid (PA). 419 
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