
Mass Discovery of Android Tra�ic Imprints through Instantiated
Partial Execution

Yi Chen1,3, Wei You2, Yeonjoon Lee2, Kai Chen1,3∗, XiaoFeng Wang2∗, Wei Zou1,3

1{SKLOIS§, CAS-KLONAT†, BKLONSPT‡}, Institute of Information Engineering, Chinese Academy of Sciences
2School of Informatics and Computing, Indiana University Bloomington

3School of Cyber Security, University of Chinese Academy of Sciences
{chenyi,chenkai,zouwei}@iie.ac.cn,{youwei,yl52,xw7}@indiana.edu

ABSTRACT
Monitoring network behaviors of mobile applications, controlling
their resource access and detecting potentially harmful apps are
becoming increasingly important for the security protection within
today’s organizational, ISP and carriers. For this purpose, apps
need to be identi�ed from their communication, based upon their
individual tra�c signatures (called imprints in our research). Cre-
ating imprints for a large number of apps is nontrivial, due to the
challenges in comprehensively analyzing their network activities
at a large scale, for millions of apps on today’s rapidly-growing
app marketplaces. Prior research relies on automatic exploration
of an app’s user interfaces (UIs) to trigger its network activities,
which is less likely to scale given the cost of the operation (at least 5
minutes per app) and its e�ectiveness (limited coverage of an app’s
behaviors).

In this paper, we present Tiger (Tra�c Imprint Generator), a
novel technique that makes comprehensive app imprint generation
possible in a massive scale. At the center of Tiger is a unique instan-
tiated slicing technique, which aggressively prunes the program
slice extracted from the app’s network-related code by evaluat-
ing each variable’s impact on possible network invariants, and
removing those unlikely to contribute through assigning them con-
crete values. In this way, Tiger avoids exploring a large number of
program paths unrelated to the app’s identi�able tra�c, thereby
reducing the cost of the code analysis by more than one order of
magnitude, in comparison with the conventional slicing and execu-
tion approach. Our experiments show that Tiger is capable of recov-
ering an app’s full network activities within 18 seconds, achieving
over 98% coverage of its identi�able packets and 0.742% false detec-
tion rate on app identi�cation. Further running the technique on
over 200,000 real-world Android apps (including 78.23% potentially
harmful apps) leads to the discovery of surprising new types of

∗ Corresponding Authors.
§ State Key Laboratory of Information Security, IIE, CAS.
† Key Laboratory of Network Assessment Technology, CAS.
‡ Beijing Key Laboratory of Network Security and Protection Technology
.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’17, Oct. 30–Nov. 3, 2017, Dallas, Texas, USA
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . .$15.00
DOI: h�p://dx.doi.org/0.1145/3133956.3134009

tra�c invariants, including fake device information, hardcoded
time values, session IDs and credentials, as well as complicated
trigger conditions for an app’s network activities, such as human
involvement, Intent trigger and server-side instructions. Our �nd-
ings demonstrate that many network activities cannot easily be
invoked through automatic UI exploration and code-analysis based
approaches present a promising alternative.

CCS CONCEPTS
•Security and privacy→Mobile and wireless security;

KEYWORDS
tra�c signature, ISP, large scale, slicing, partial execution

1 INTRODUCTION
�e pervasiveness of mobile devices mounts great pressure on to-
day’s network security infrastructures. Just like other desktop or
web applications, mobile apps are supposed to be under the mon-
itoring and protection of the security systems within enterprise,
ISP or carriers. Particularly, with the threat of potentially-harmful
apps (PHAs) [18] [10] [11] on the rise, there is a strong demand
for detecting them at the network level, using the anti-malware
systems deployed by individual organizations or mobile carriers
(through their Managed Security Services [16]). Even for legitimate
apps, those running on the personal devices brought by employees
to their work places (dubbed “bring your own device” or BYOD) are
increasingly required to be subject to the control of next-generation
�rewalls (NGFW), for managing their access to corporate resources
(like bandwidth, internal servers, etc.) [17]. To serve these purposes,
most important here is identi�cation of individual apps from their
communication tra�c, before the PHA detection and access control
can happen. �is, however, is by no means trivial. Di�erent from
desktop applications, mobile apps typically are hard to be identi-
�ed by their protocols and port numbers. Instead, they mainly use
HTTP protocol with their port numbers changing continuously
for every HTTP packet and rarely include app names within the
User-Agent header as recommended for identi�cation. Also look-
ing for the servers the apps talk to (within the HOST �eld of the
HTTP header) does not work either, simply because increasingly
the same host (o�en belonging to third parties) serves many di�er-
ent apps (e.g., Baidu Map SDK [4] for location services). �erefore,
e�ective techniques are needed to �ngerprint individual apps from

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

815

their network tra�c, extracting their signatures (also called im-
prints in our study) from their packets at a large scale, given that
already tens of millions of apps are in the wild.
Imprint mass production: challenges. Note that app tra�c im-
prints cannot be produced at a large scale through manual analysis,
as done by some NGFW companies today, which is in no position
to handle any substantial portion of legitimate apps on various
app markets, not even hundreds of thousands of PHAs reported
by VirusTotal [4]. �ere are a�empts to automate this process, for
example, through analyzing app tra�c traces recorded by an ISP
to recover invariable and also distinguishing tokens for individual
apps [28]. A question is for a given app, how to systematically
generate such tra�c before the invariants can be extracted. To
this end, large NGFW providers like Palo Alto Networks utilize dy-
namic analysis, running individual apps and trying to trigger their
network activities [31]. Techniques have been proposed to fuzz an
app’s user interfaces (UI) and enhance random testing tools such as
Monkey [3] for a more targeted exploration of di�erent UI paths.
However, these techniques are less suitable for mass production of
precise app imprints, due to fundamental limitations of dynamic
analysis and UI fuzzing, which are hard to discover all network
activities the users can possibly trigger. Further, such analysis takes
time: actually, no one knows today how long an app needs to run
in order to disclose all its network activities or when it has indeed
been extensively explored [14] [13]. No techniques are available to
enable a truly large scale and comprehensive analysis of app tra�c
for generating their network imprints.
Tiger. To address these challenges, we present a new technique
to support a large-scale discovery of Android app imprints. Our
system, called Tiger (Tra�c Imprint Generator), is built upon a
highly e�cient invariant recovery mechanism that only partially
executes an app under test, focusing on its code fragments directly
contributing to the formation of the invariable tokens within the
app’s tra�c. To this end, Tiger employs a novel backward slicing
technique to work on every network API discovered in the app’s
code. Unlike a conventional slicing algorithm, our technique contin-
uously evaluates every program statement related to the network
API to discover variables which are unlikely to a�ect any constant
value of the API’s output (network packets). Once found, such a
variable is immediately instantiated by assigning it an appropriate
concrete value so as to avoid further backtracking other statements
upstream that may have impacts on the variable. Essentially, this
approach automatically prunes the code slice for each network sink,
leaving only a small set of statements believed to contribute to
the creation of invariants (e.g., a special URL, a key-value pair, a
hidden app ID used by the developer) on the app’s tra�c, thereby
cu�ing down the cost for code analysis and dynamically executing
the slice. To further reduce the analysis complexity, Tiger also
identi�es shared code across di�erent slices and replaces their out-
put with concrete values generated in previous analysis. In this
way, only such a highly simpli�ed slice needs to be executed for
recovering tra�c tokens, which are then compared across those
produced by other apps to form the app’s unique tra�c imprints.

�is instantiated partial execution (IPE) technique is found to be
very e�ective: in our evaluation, the IPE outperformed the conven-
tional slicing and execution approach by 12.42 times (Section 4.3).

On average, a commercial app was analyzed within 18 seconds
with all its network sinks fully covered. Compared with prior ap-
proaches (e.g., [14]), which dynamically recover tra�c signatures
for app �ngerprinting, Tiger produces richer tra�c imprints, not
only package names, advertising identi�ers (Ad-IDs) and URL, but
also keys and values extracted from HTTP headers and content
(Section 5.2). Particularly, when running our approach against a
prominent app usage identifer that generates easy-to-obtain sig-
natures [39], Tiger discovered 43.98% more packets (Section 4.2)
containing imprints. Further our study shows that among all the
packets with identi�able tra�c tokens, our approach achieved a
coverage of 98.54%. �is is important since mobile users tend to
migrate across di�erent networks (LTE and Wi-Fi), causing an or-
ganizational NGFW to miss some identi�able packets; therefore,
the more packets an app’s imprints can cover, the more likely it can
be timely identi�ed for detection and access control.
Our �ndings. �e high e�ciency achieved by Tiger enabled us to
discover app tra�c imprints at an unprecedented scale: we ran our
system on over 200,000 apps including 78.23% PHAs from Virus-
Total. Altogether, 392,645 invariants were discovered, uniquely
characterizing all identi�able apps. Interestingly, some of these
apps produce new types of invariable tokens never reported in
prior research, including new keys and values within HTTP head-
ers and content. Particularly, we found that shared libraries send
out fake device information when their host apps do not have per-
missions to do so on mobile devices, and some apps communicate
with their servers using hardcoded time values, credentials and
their developers’ personal information and even �xed session and
cookie IDs, which were all automatically recovered as the apps’
unique tra�c identi�ers. Further we discovered that indeed some
tra�c �ows involving distinguishing imprints cannot be easily trig-
gered: o�entimes human interventions are expected to get through
login pages, and most intriguingly identi�able tra�c could show
up only when the Activity of an app is invoked by other apps or
by the click on the URL scheme posted by its server to the app’s
webview. We also found that suspicious behaviors containing iden-
ti�able imprints can only be triggered by some special conditions
(e.g., a certain event or a remote command). �e �ndings strongly
indicate that code-analysis based app �ngerprinting is a promising
alternative to automatic UI exploration, which is both slow (at least
5 minutes per app) and incapable of triggering the apps’ real-world
network activities in a comprehensive way.
Contributions. �e contributions of the paper are summarized as
follows:
• Innovative tra�c imprint generation. We present a new technique
that e�ciently triggers an app’s network activities and discovers its
invariable tokens. Our approach utilizes a highly-e�cient partial
execution technique, which targets potential invariants and signi�-
cantly simpli�es the code slices for a network sink by instantiating
the variables believed to be unrelated to the invariants. �is allows
us to quickly identify the invariable tokens for imprint generation.
With the IPE mechanism, Tiger achieves over 98% coverage of iden-
ti�able packets with only 0.74% false detection rate. Not only does it
outperform existing tra�c �ngerprinting techniques (for Android
apps) but it runs at least an order of magnitude faster than the

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

816

conventional slicing and execution, which is critically important
for analyzing app tra�c at a large scale.
• Large-scale imprint discovery. Running our technique on over
200,000 recent apps, the largest study of this kind, our research
sheds new light on the tra�c features of Android apps, includ-
ing surprising tra�c content that can serve as apps’ unique tra�c
imprints and complicated conditions for triggering their identi�-
able network activities. �e �ndings help us be�er understand
apps’ network behaviors that can uniquely characterize them, high-
lighting the code-analysis based approaches as a promising way to
�ngerprint network tra�c of apps.

2 BACKGROUND
In this section, we discuss the tra�c invariants of Android apps
and explicate the assumptions made in our study.
Tra�c imprints of Android apps. Most mobile apps are web
applications, which operate through interacting with their server-
side components. For example, news apps communicate with their
servers for requesting latest news; map and weather utilities use
geo-locations to retrieve from their servers pieces of map images or
weather conditions. �ese activities leave invariable tra�c content
that could potentially allow apps identi�cation. In this study, we
refer to any �eld with invariable content (e.g., IP address, host name,
key, value, Ad-ID and their transformations) in network �ows as a
token. Once a token or combination of several tokens in one single
packet can uniquely identify an app, we call the combination an
imprint.

�e coverage of imprints is important to app access management
and PHA detection. Like desktop or web programs, mobile apps
are also expected to be monitored and controlled within individual
organizations or by ISPs and carriers. Serving this purpose is the
NGFW technologies, through which a �rewall uses imprints to
identify apps for capturing harmful code or enforcing security
policies on their access to corporate resources. Note that this is
very di�erent from how traditional �rewalls work, which largely
rely on IPs and ports to �nd the targets they are meant to control.
�e approach cannot be applied to apps, since most of them use
HTTP with their port numbers changing continuously for every
HTTP packet. And therefore cannot be di�erentiated from each
other according to their port numbers. For these apps, their imprints
(also referred to as signature, �ngerprints in prior studies) are the
key to determining their presence.

Such imprints are discovered today through dynamic analysis,
from the tra�c �ows generated by running individual apps, as all
major NGFW providers (e.g., Palo Alto Networks, Dell, HP, Huawei,
Sophos, MobileIron, etc) do. Various techniques have been devel-
oped for this purpose, for example, systematically fuzzing an app’s
user-interfaces. However, as mentioned earlier, these approaches
cannot comprehensively explore an app’s behavior, triggering all its
network-related activities: for example, an app may require user lo-
gin and a mobile game may need deep human involvements before
moving to the stage where characterizing tra�c is generated. Even
more challenging is PHAs, which may include carefully-cra�ed
conditions (such as time, locations, events, etc.) for hiding its mali-
cious activities that cannot be easily triggered. Further, dynamic
analysis alone tends to be heavyweight, less suitable for processing

a large number of apps (on the order of hundreds of thousands or
even millions). Development of e�ective techniques to make the
imprint discovery more comprehensive and highly scalable is the
aim of our research (Section 3).
Assumptions. Our study focuses on the apps capable of producing
network tra�c that carries identi�able imprints. A small portion of
real-world apps do not generate tra�c at all or do not have unique
tokens in their communication �ows, which are outside the scope
of our study. Also we do not consider the tra�c tokens introduced
by an app’s server-side logic, since these tokens could be altered by
the server. Further, given the limitations of today’s NGFW, which
does not work well on stateful tra�c signatures, all the imprints
generated in our research are combinations of the invariable tokens
within a single packet. Finally, it is important to note that the ob-
jective of our study is to generate imprints to serve network-based
PHA detection and app management, which are widely deployed
within organizations today and become increasingly important to
ISPs and carriers. Our imprint generation approach is based on
code analysis and independent from the network protocol (HTTP
or HTTPS) adopted by apps. In this study, we focus on HTTP
tra�c as a �rst step, since the overwhelming majority of apps are
HTTP-based [14]. For HTTPS tra�c, a trusted HTTPS proxy need
to be placed MITM to scan the cleartext of the tra�c for matching
with the generated imprints [33].

3 FINDING IMPRINTS WITH TIGER
Here we elaborate the design and implementation of Tiger, starting
with a high-level description of the idea and the architecture of our
system and then coming to technical details, particularly those of
the IPE technique.

3.1 Overview
As mentioned earlier, Tiger is designed for a comprehensive, scal-
able analysis of Android apps, automatically identifying invariable
tokens in the apps’ network tra�c. �e key idea here is to stat-
ically locate all network sinks within an app, and then slice and
prune the program to identify the statements related to putative
invariants before partially executing the simpli�ed slice to generate
the invariant tokens if they indeed exist. To serve this purpose,
Tiger includes a suite of technical innovations: it �rst run a coarse
(yet fast) slicing to establish a relation between a statement (more
precisely its variables) and a set of internal sources of invariants
(e.g., constant values, manifest or other resource content); among
such statements, it further performs a di�erential analysis to �nd
the variables whose values have no impact on possible invariable to-
kens. By assigning concrete values (instantiation) to such variables,
the IPE avoids the cost for back-tracking the statements a�ecting
these variables, and also produces a simpli�ed slice (with fewer
statements) that can be quickly executed to obtain the tokens for
constructing the app’s tra�c imprints.
Architecture. Figure 1 illustrates the architecture of Tiger, which
includes the pre-processing module, IPE engine (with coarse slicing,
di�erential analysis and cross-slice optimization), partial execution
module and imprint generator. �e pre-processor disassembles
an app, locates all its network sinks (the APIs for sending mes-
sages) and builds up call graphs (CG) of the app. �e IPE performs

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

817

IPE ENGINE

IMPRINT

GENERATOR

Sinks
CFG

PDT

token collections
imprintsAndroid

Apps

PRE-PROCESSOR

app
disassembler

network sink
locater

CFG
constructor

partial
executor

totototototokekekekekeken n n cococollllllllllllececectitititititionononsssss

Slicecoarse slicing
analyzer

differential
analyzer

cross-slice optimizer

invariants
generator

cross-app
checker

Figure 1: Architecture of Tiger.

1. public void a(arg1, arg2, …){
2. …
3. v4 = f(v1, v2, v3);
4. …
5. v5 = v1 + v4;
6. …
7. (HttpClient.execute(((HttpUriRequest)v5));
8. …
9. }

instantiate due to
coarse slicing

HTTP request

i t ti t d t

instantiate due to
differential analysis

putative invariant

Figure 2: An example showing how instantiated slicing �nds
a token.

both coarse slicing and di�erential analysis for each sink, selects
the invariant-related statements and runs these statements to ac-
quire invariable tokens through the partial execution module. �e
generator constructs an imprint for the app using all the tokens
found.
An example. Here we use an example (Figure 2) to walk through
the whole imprint discovery process. �e code fragment in the
�gure is from a popular Chinese app com.tjsinfo.mangguoVideo.
Once the sink statement at Line 7 is discovered by the pre-processor,
the IPE starts working on the variablev5 which represents an object
of HTTP request, slicing the program backward until the statement
at Line 5 with variables v1 and v4 encountered. So we need to
check whether any variable among v1 and v4 a�ects v5. A�er
running a coarse slicing (at the method level) on both variables,
v1 is determined to be unrelated to any invariant source within
the app while v4 does. So we instantiate v1, and further slice back
on v4. We �nd that the content of v4, once adjusted, causes the
change on a signi�cant portion of the sink’s output. �at portion
is considered to be a putative token. Going further up the control
�ow, the IPE �nds that two new variables v2 and v3 at Line 3
impact v4 through function f . �is triggers a di�erential analysis
in which the IPE changes the content of v2 or v3 while �xing
the other before running the partial slice toward the sink. �e
analysis result reveals that v2 does not contribute to the putative
token. Hence, both v1 (unrelated to any invariable sources) and
v2 (not a�ecting any invariable token) are assigned with concrete
values, allowing the slicing to continue without exploring their
corresponding branches. During this process, the IPE continuously
checks the methods discovered along the CFG: if any of them shows
up within a known slice (for a di�erent sink within an app), the
output of the method is instantiated based upon prior �ndings.

In the end, a simpli�ed slice is constructed as illustrated in the
�gure in bold font. �e slice is then executed to produce the out-
put for the sink, which con�rms that the putative output is in-
deed an invariant. �is invariant, which is actually a collection
of tokens (data, nid, 93535c6092f543e8a257ee435a69da06), is
further compared with those produced by other apps. If it is only
present in the tra�c of this app, the invariant is reported as one

of the app’s imprints. When a NGFW performs PHA detection/ac-
cess control and �nds a network packet containing the imprint, we
say com.tjsinfo.mangguoVideo is identi�ed. In the following we
elaborate how these components work.

3.2 Instantiated Slicing
Critical to the high-performance design of Tiger is its IPE engine,
which given a set of network sinks discovered by the preprocessor,
quickly identi�es the statements related to possible invariants pro-
duced by these sinks and further runs the statements to recover the
tokens in the tra�c. Serving this purpose is a unique instantiated
slicing technique. More speci�cally, program slicing discovers a
set of statements (called a program slice) that a�ect variables at
some point of interest (the network sinks in this case). Execution
of the slice leads to the disclosure of the variables’ values. However,
this conventional approach does not scale well on complicated pro-
grams, due to the di�culties in keeping track of potentially a large
number of paths. To address these challenges, towards a highly
e�cient, scalable invariant discovery, our IPE engine is designed
to prune within the sink-related paths, leaving only a small set of
statements related to potential invariants. �is is achieved through
testing a variable’s relevance to tokens, including a coarse slicing
and di�erential analysis, and instantiating less essential variables
to avoid exploring their branches. �is approach enhances the
performance of the slicing step by at least one order of magnitude,
as observed Section 4.3, and achieves the accuracy (0.742% false
detection rate and 98.54% app coverage, see Section 4.2). Following
we �rst describe the pre-processing step that discovers the network
sinks and then explicate our unique slicing technique.
Pre-processing. �e preprocessor is designed to locate network
sinks within an app and also convert the code to the form that
can be easily analyzed by the IPE. Speci�cally, our implementa-
tion �rst disassembles the app’s DEX bytecode to the SMALI1 in-
termediate representation [35] and then builds a call graph (CG)
across di�erent methods within the app based on the idea from
Flowdroid [8]2. �en within each method involving network sinks
(APIs) like org.apache.h�p.client.H�pClient.execute(), its control-
�ow graph (CFG) is created for the follow-up slicing analysis. Our
approach further builds CFGs3 for other methods whenever the
backward slicing goes across the procedure boundary and enters
these methods.

1We choose to use SMALI instead of a simpler IR (e.g., Jimple) since SMALI can
represent the original bytecode in a more accurate way.
2Similar with Flowdroid, our CG construction approach takes into consideration the
callback and message handling mechanisms. But currently, we do not support the
resolution of re�ective calls.
3We acknowledge that we do not handle ICC while building CFGs.

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

818

org.apache.http.client.HttpClient.execute()

1. method A(){
2. …
3. B(v1);
4. …
5. }

6. method B(arg1){
7. …
8. v2 = C(arg1, v4);
9. v3 = v2;
10. …
11. }

12. method C(arg1, arg2){
13. …
14. v5 = F.a;
15. v6 = D();
16. v7 = android.content.res.

Resouces.getString();
17. …
18. }

v3

method B

method C

method A

Cv2
v4

arg1

v1

F.a

19. method D(){
20. …
21. v8 = E();
22. …
23. }

method D

D

E

return variablevariable assign function input
return variable whose function contains constants

etturn variiiabbblllevariiabblle assiig

24. method E(){
25. return Location.getLatitude() + “ “

+ Location.getLongitude();
26. }

gn ffunctiion iinputig

method E

gLa gLo

Figure 3: Example of backward slicing. �e initial slice is in
method B, which is highlighted.

Backward slicing. For each network sink, Tiger then conducts
backward slicing to discover the statements a�ecting invariable
tokens sent out through the sink. Speci�cally, starting from the
input parameters of a sink API (e.g., v in the API org.apache.h�p.
client.H�pClient.execute(v)), our approach goes backward on the
CFG of the method containing the sink (called sink method) to
build an initial slice with all the statements within the method that
directly or indirectly in�uence the sink. In the meantime, Tiger also
constructs a Possibly Dependent Tree (PDT) for the method, with all
variables potentially related to the output invariants. Speci�cally,
for each statement on the slice, if it does not involve a function call,
its variables are then added to the PDT. For example, in Figure 3,
suppose that in method B, v3 is the content sent out at a network
sink, and a statement on the slice is v3 = v2 at Line 9. �en v2
is added to the PDT with an edge from v2 to v3. Further Tiger
slices back to Line 8. �e statement assigns a return value of a
function call to v2. So Tiger adds a node C (which represents a
return variable) and an edge from C to v2. Tiger assumes that the
returned variable is a�ected by all the inputs (arд1 and v4) of the
function C(), therefore adds these variables to the PDT and labels
them for a later revisit. �en our approach continues to slice the
method until all its input variables are on the PDT. �is process
results in an initial slice as illustrated in the grayed box at the right-
hand side of Figure 3, in the form of a tree rooted at the network
sink.

�e initial slice is for a single method, the one containing the
sink. �e next step, naturally, is to extend the slice across proce-
dures, to include related statements in the functions it calls and
those in the methods that call it. Also, the variables on these state-
ments (e.g., v1, F .a and D in Figure 3) need to be added to the PDT.
�e challenge here is the complexity of analyzing these methods,
which requires not only slicing their code but traversing the CG
to work on other methods they trigger or those that invoke them.
Also stepping into such methods signi�cantly raises the chance
to encounter the program structures hard to process, loops in par-
ticular. Although techniques exist for estimating the number of
iterations for each loop [40] or unwinding iterations [15], they are
heavy-weight and less accurate. So our strategy is to avoid ge�ing

into these functions whenever possible, unless the variable received
from a method (through parameters with which it calls the sink
method) is considered highly likely to have an impact on the tra�c
invariants.

Speci�cally, Tiger is designed to strategically analyze the la-
beled variables from the app’s initial slice, only extending those
likely to a�ect tra�c tokens while instantiating others. In this way,
we can minimize the cost of inter-procedural slicing, remove all
non-essential functions and their subtrees (the ones rooted at the
function calls) and only execute the simpli�ed slice to discover
target network invariants. For this purpose, our approach performs
two correlation analyses on each variable to identify irrelevant vari-
ables (which are instantiated later): coarse slicing and di�erential
analysis. Note that our approach does not sacri�ce accuracy. Tiger
achieves over 98% coverage with 0.74% false detection rate (see
Section 4.2).
Sources of invariants and coarse slicing. A key observation we
leverage for irrelevant variable identi�cation is that almost always,
a tra�c token produced by an app’s network sink originates from
some constant values within the program, such as constants, re-
source and manifest �les. For example, package names appear in
an app’s manifest �le; domain names are o�en hardcoded in the
code or stored in the resource �le. In our research, we found that all
invariants observed from 100 randomly sampled apps exactly come
from these sources. �erefore, we consider constant, manifest and
resource �les of an app as its sources of invariants and expect that
invariable tokens in the app’s tra�c all have a data-�ow related to
these sources. �is observation enables us to simplify the slicing
operation by stopping the backward analysis on the variables unre-
lated to these sources. Speci�cally, for each variable encountered
in PDT, Tiger quickly evaluates its contributions to the network
invariants through a coarse slicing: for the variable returned from a
function (including the return value and the �eld of a global object),
our approach inspects the CG to extract a subgraph of calls invoked
by the function and �nds out whether any method on the subgraph
contains a source of invariants; if none of them do, the variable is
considered irrelevant. An example is that, in Figure 3, the return
variable of D does not need to be sliced.

�is approach does not slice callees within a function. Instead it
quickly goes through code statements of each callee and the callee’s
subgraph to �nd the constants and Android system APIs calls which
access source of invariants (e.g., android.os.Bundle.getString-
Array() for reading from the manifest and android.content.res.
Resources.getString() for accessing to the resource �les). Fig-
ure 3 presents an example. As we can see here, v6 in method
C() depends on the return value of method D(). �en coarse slic-
ing quickly looks into the method D() and its subgraph to check
whether any source of invariants exists there. In this example, there
only exist APIs for acquiring geo-location, which do not access any
sources of invariants, indicating that v6 is irrelevant to the source
and should be instantiated.
Di�erential analysis. Di�erential analysis is another technique
for removing irrelevant variables from the slicing targets, when
these variables cannot be identi�ed through the coarse slicing. For a
function that returns a variable in the PDT, the di�erential analysis
identi�es a subset of the function’s inputs (any variables de�ned

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

819

org.apache.http.client.HttpClient.execute(v)
org.apache.http.client.HttpClient.execute(v)

1. public void a(String arg1) {
2. …
3. String v4=AdMogoUtil.convertToHex(v1, v2, v3);
4. …
5. }
6. public static String convertToHex (String arg1, String arg2, String arg3) {
7. byte[] v12 = md5(arg2+arg3);
8. while (len < v12.length) { v13 = … }
9. v10 = arg1 + v13.toString();
10. return v10 ;
11. }

Figure 4: Example of di�erential analysis.

outside the function before its use within the function, including
the parameters from its caller, return variables from its internal
calls and global variables) that do not contribute to the tra�c token,
and instantiates them with concrete values.

�e whole idea of di�erential analysis comes from a key observa-
tion: given a function whose output is either a string or the content
serializable to a string (e.g., JSONObject), if any of its inputs indeed
contributes to the tra�c token, the inputs must also a�ect the in-
variable part of this function’s output, which serves to propagate
invariable data from the inputs related to sources of invariants to
the tra�c invariant portion; in other words, any input indepen-
dent of the function’s invariable output will not relate to the sink’s
invariant. Based on this observation, our approach �rst identi�es
the invariable part of a function’s output and utilizes a lightweight
partial execution to test whether any input has an impact on this
invariable portion. Speci�cally, consider a function with n inputs
and a return variable R. �rough the coarse slicing, Tiger is able
to identify some of the inputs that do not contribute to the tra�c
token by checking their relations to the sources of invariants. Let
I0, · · · , Ik (0 ≤ k < n) be such irrelevant variables. �en we test
whether any variable of Ik+1, · · · , In contributes to the invariable
portion of R. Note that in the case that all inputs are irrelevant,
R is instantiated directly as discussed before. Also, when none of
the inputs can be dropped by the coarse slicing, we consider that
the whole output R is invariable and each input of the function
contributes to R.

To identify the invariable part in R, we randomly assign two sets
of values to I0, · · · , Ik and one set of values to the rest of inputs
Ik+1, · · · , In , according to their individual types. 4. By executing
the function (see Section 3.3) twice (each corresponding to a set of
values for I1, · · · , Ik), two return values, R1 and R2, are produced,
which are all strings, given that the output of the function we
consider is either a string or the type that can be serialized to a
string. �e common substrings of R1 and R2 (denoted by R1 ∩ R2),
is then considered to be the invariable part of the function output.
�en for the rest of the inputs Ii ∈ {Ik+1, ..., In }, Tiger tests every
variable’s contribution to the invariant by changing the value of Ii
while keeping the content of other variables intact, before running
the function with the new inputs to get a new return string R3. If
R1∩R2 = R2∩R3 (that is, R3 also contains the invariant of R1∩R2),
we decide that Ii does not a�ect the invariable part of the function’s
output and Ii is therefore irrelevant to the tra�c token.

Figure 4 explains how the technique works through a real-world
example (a popular Chinese app com.tjsinfo.mangguoVideo). In
function a(), v4 is related to a tra�c sink, three inputs (v1, v2 and

4Note that here we only consider the primitive types (int, �oat, boolean, char) and
serializable objects (e.g., string, time). �e value of a primitive variable is randomly
chosen in its data range. For a serializable variable, we randomly choose a value for
each of its �eld.

v3, all are strings) of convertToHex()may have contribution to the
invariable portion of v4. To establish the connection, a static analy-
sis of convertToHex() seems necessary. However, the connection
between the inputs and the potential invariant within the return
variablev10 (at Line 10) can be hard to analyze, due to the complex-
ity of the function. �erefore, here we resort to the coarse slicing
and di�erential analysis. More speci�cally, through the coarse slic-
ing, we know that v2 has no relation to any source of invariant,
while both v1 and v3 may come from constants. So we randomly
choose two values forv2 (abcd and e f дh) when se�ingv1 to a �xed
value abcd and v3 to abcd , running the function, recording its re-
turn values v101 (abcd794f d8d f 6686e85e0d8345670d2cd4ae) and
v102 (abcd03ac593f a7146ea182eeb2eb44d4dc f a) and identifying
their common part abcd . �en we randomly choose another value
e f дh forv3 and observe that the return valuev103 (abcd36e2d7c526
f d876eb14cd0b3ea2a3d43) has the same common part as the in-
tersection between v102 and v103, which indicates that v3 has no
relation with the intersection. However, once we change v1 and ex-
ecute the function again, the common part of the variables changes
as well. �is demonstrates that the impact of v1 on the invariant
portion of the function’s output cannot be ignored. So Tiger has
to continue slicing the program with regard to that variable v1.
In this way, our approach avoids working on the variables clearly
unrelated to the invariant target, thereby signi�cantly reducing the
analysis time (see Section 4.3).
3.3 Optimization and Imprint Generation
�rough the coarse slicing and di�erential analysis, Tiger can al-
ready signi�cantly reduce the size of the slice for a network sink.
Here we show that the slicing process can be further simpli�ed by
reusing the �ndings about the methods analyzed before. �e slice
generated in this way is further executed to discover tra�c tokens
and constructing app imprints, which also is elaborated below.
Cross-slice optimization. When running the IPE engine over an
app, we can expect that a number of functions will be invoked
again and again. �is presents an opportunity for further optimiz-
ing the slicing process and simplifying the slice produced. More
speci�cally, Tiger was designed to avoid repeated analysis of the
same code and leverage existing PDT whenever possible. When
slicing with regard to a network sink, the IPE creates a pro�le for
each function it evaluated, which records whether the function
contains invariant sources and which inputs a�ect the invariant on
the function’s output. �ese pro�les are used when the IPE moves
onto other network sinks within the same app: for all functions
already pro�led, their input and output variables are either imme-
diately added onto the sink’s PDT (when the variables are relevant)
or instantiated (when they are not). �is treatment further reduces
the workload of the slicing operation.
Partial execution. Once a slice is generated, it needs to be exe-
cuted to produce tra�c tokens for imprint generation. �e slice is
in the form of a tree, which is rooted at its network sink statement.
To run the slice, the IPE engine extracts its individual paths, from
each leaf to the root, and then loads them to a modi�ed Dalvik
virtual machine (VM) for execution. Also, during the di�erential
analysis, we need to run a method over di�erent input values to
identify those irrelevant to the output invariants. �is step also
relies on the modi�ed VM.

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

820

�e standard Dalvik VM runs on the mobile platform and can
only process well-forma�ed Android APKs. In our research, we
ported Dalvik VM to the desktop platform for large-scale evaluation
and leveraged its support of Java re�ection [2] to run individual
statements on a slice. A challenge here comes from Android frame-
work APIs. A direct loading of all their code into the VM is too
heavyweight and also error-prone: for example, the system may
crash when the API asks for the support from hardware. Our so-
lution is API modeling, a common approach used in binary code
analysis [19, 43] that summarizes the operations an API performs
on given inputs. In our research, we found that most APIs en-
countered during the backward slicing do not contribute to the
invariants (e.g., those returning the current geo-location and time).
�erefore, their outputs can also be instantiated: that is, assign-
ing the variable receiving the output a random value according to
its type. However, there are a set of APIs highly related to tra�c
invariants, particularly those returning package name and other
content from the manifest and other resource �les, such as an-
droid.os.Bundle.getStringArray() for reading from the manifest and
android.content.res.Resources.getString() for accessing the resource
�les. In sum, �ve categories of APIs are modeled5. �ese APIs are
application independent and their functionalities are performed
outside the VM before the results are delivered back to VM while
calling these APIs in a slice.
Imprint generation. To discover invariable tokens and gener-
ate an app’s imprints, Tiger runs each path on a slice twice with
di�erent parameters (di�erent values for instantiating irrelevant
variables). �e common part of the tra�c (a collection of common
keys, values and other URL elements on an HTTP message) is then
identi�ed as the tra�c token for the path. A�er identifying the
invariants for all slices within an app, Tiger compares these token
collections (one for each slice) among them to remove duplicates.

Although these token collections are invariable for an app, they
may not be quali�ed as an app’s imprints. �is is because some
tokens can be very general, shared across multiple apps. An exam-
ple is shared libraries producing tra�c invariants. �ese tokens
or token collections show up in the communication of any app
integrating the libraries and therefore cannot be used as an app’s
imprint. To address this issue, Tiger performs a cross-app unique
content check, which compares each app’s token collections against
those of others. A token is dropped once it is also found on a dif-
ferent app’s tra�c. By running this check across a large number
of apps (over 200,000 in our research), we have a reason to believe
that the invariants le� are speci�c enough to represent their corre-
sponding apps. �ese invariants are therefore reported as the app’s
imprints.

Imprints are then sent to NGFWs to detect PHA or provide
access control. In the process of detection, whenever a NGFW �nds
a packet containing all tokens of an imprint that Tiger generates,
we say the app is identi�ed6.

5Also, note that these APIs are implemented in the same way from version 1.6 to 7.0
(current version), which means we only need to implement their desktop version for
once. In case their implementations are changed in the future version, revising the
modeling is straightforward.
6�e techniques of e�ciently capturing apps using given imprints are out of the scope
of this paper. Actually, these techniques are mature in current NGFW companies.

Table 1: App collection

App Source Count
GooglePlay 25,750

�ird-Party
Markets

360 6,177
Xiaomi 600
Huawei 3,592

Wandoujia 1,235
Anzhi 3,891

AppChina 848
ChinaTelecom 2,290

VirusTotal 159,481

4 EVALUATION
In our research, we put our implementation to test using 200,000
real-world apps. In particular, we evaluated the e�ectiveness of
Tiger by measuring its capability to capture identi�able tra�c and
false detection rate. Our study shows that Tiger is able to achieve
extremely high coverage of capturing identi�able tra�c, detecting
>98% of identi�able packets from real-world app tra�c, 43.98%
more packets and 16.34% more apps than the prior approach [39].
�e false detection rate is only 0.742%. In the meantime, our IPE
technique turns out to be highly e�cient: running against the stan-
dard techniques for slice generation and evaluation, our approach
performs at least one order of magnitude faster.

4.1 Setting
Here we describe the apps collected in our study and the hardware
and so�ware se�ings for the experiments.
App collection. We crawled real-world apps from various sources
last year, and got 203,864 apps a�er removing duplicated ones
according to their MD5 checksums: 44,383 apps from Google Play
and third-party Android markets covering every category provided
by these markets (e.g. social, business, etc.); and 159,481 most recent
PHAs (till June, 2016) collected from VirusTotal [4]. Everyday,
nearly 800 thousands distinct samples are uploaded to VirusTotal
for scanning, supporting the most up-to-date PHA samples covering
wide range of malicious behaviors for studies [5]. �e detailed
information about these apps is presented in Table 1.
Platform. All the experiments were conducted on two servers run-
ning Ubuntu. One has 40 cores with 2.0GHz CPU, 256GB memory
and 70TB hard drivers and the other has 20 cores with 2.1GHz CPU,
128GB memory and 30TB hard drivers.

4.2 E�ectiveness
�e most important for understanding the e�cacy of our technique
is the coverage it can achieve, in terms of the number of apps
recognized from their tra�c and the portion of the tra�c a�ributed
to their apps. Here we report our experimental study that evaluated
these key properties of our technique. Also, we analyze the impact
of dead code, which could lead to the imprints not showing up in
any app’s tra�c.
App coverage. To measure the coverage, we installed Android
apps on emulators (Android 4.4) and triggered their network be-
haviors to see how many of them can be captured by Tiger. In
theory, it is very di�cult, even impossible, to trigger all network

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

821

Table 2: App & Tra�c Coverage.
Package Name

& Ad-ID
Package Name
Ad-ID & Host Tiger

App
Identi�ed

All 59.72%
(2986/5000)

69.82%
(3491/5000)

76.06%
(3803/5000)

Benign 80.20%
(2005/2500)

83.88%
(2097/2500)

85.80%
(2145/2500)

PHAs 39.24%
(981/2500)

55.76%
(1394/2500)

66.32%
(1658/2500)

Packet
Coverage

All 28.87% 62.71% 72.85%
Benign 40.08% 82.19% 91.16%
PHAs 17.66% 43.23% 54.54%

behaviors of an app. In order to cover as many network behaviors
as possible, the tra�c for testing was produced by a human-guided
UI probing which is based on a state-of-the-art automatic UI explo-
ration tool from NetworkPro�ler [14] to execute Android apps for
5 minutes, as suggested by NetworkPro�ler. �e tool try to cover
most of the network behaviors of apps: it �rst randomly operates
on UIs of an app, records the paths it has gone through and then
heuristically generates new paths to guide more UI explorations.
And we manually moved the tool out of the UI state once it gets
stuck in. Considering it is impossible to install and dynamically
run all the collected apps, we randomly selected 2,500 apps from
the legitimate markets and 2,500 PHAs from VirusTotal for test. All
the tra�c generated during the process was recorded and scanned
using these apps’ imprints from Tiger.

As we can see from the Table 2, Tiger produced the imprints that
successfully identi�ed 76.06% (3,803/5,000) of the apps. By com-
parison, the tra�c signatures proposed by the prior approach [39],
including package names and Ad-IDs, captured 59.72% (2,986/5,000)
apps, which is 16.34% less than those captured by Tiger. From the
16.34% coverage increase, we found 10.10% (= 69.82% − 59.72%)
were contributed by domain names. Note that, without Tiger’s IPE,
simply searching strings that look like hostnames and using them
as imprints may not get the 10.10% increase since some hostnames
are dynamically generated from the code. We also compare the
app coverage between those from legitimate markets and PHAs
from Virustotal. Interestingly, only 39.24% PHAs can be covered by
the prior approach [39], while Tiger improves the rate to 66.32%.
Looking into the improvement, we found that Tiger is capable of
�nding new types of invariants within tra�c which helped detect
additional apps. We provide the details about these new imprints
in Section 5. We also note that, although the PHA coverage is in-
creased while compared with previous approaches, it is still not as
high as the coverage of legitimate apps. �is is mainly due to the
shared tokens among malware (e.g., potential harmful libraries [11]).
Since our goal is to distinguish each unique app from other, we
did not catch them in current implementation of Tiger. However,
it would not be di�cult to enhance our approach to identify the
PHAs. For example, a straightforward way is to keep the shared
tokens between PHAs.

We are also curious of the reason why Tiger’s imprint missed
the detection of the rest 1,197 apps. To �nd such reason, we have
to manually check the generated imprints and the corresponding
code in the apps. Considering that it is very hard to analyze all
the 1,197 apps, we randomly selected 100 apps (around 10%) from
them. And we found that 90 apps produce tra�c tokens from
the shared libraries they integrate (which appears on the tra�c
of any apps utilizing these libraries) and/or downloads resources

from generic domains like h�p://qzone.qq.cn. �ese tra�c tokens
are not unique for a single app, hence cannot be used as imprints
for app identi�cation. Excluding these 90 apps that do not have
identi�able imprints, Tiger only missed 10 apps due to the limitation
of IPE on processing loops (see Section 6). In other words, for the
apps that can be �ngerprinted (including 3,803 identi�ed, and 120
(= 1197 × (10/100)) possible missed by Tiger), our approach caught
96.94% (= 3803/(3803 + 120)) of them.
Tra�c coverage. Further we studied the tra�c coverage which is
estimated using the percent of the packets that carry the imprints for
uniquely identifying these individual apps. �is “tra�c coverage”
ratio is important, as it is critical in determining how timely and
likely an app can be recognized from its network tra�c. �e more
packets emi�ed by an app can be �ngerprinted, the sooner and
more likely the app can be detected. Especially, when mobile users
walk from one networks (e.g., 4G and Wi-Fi) to another one and
some of their apps’ identi�able packets could be missed by these
networks. Still, considering the cost of dynamic analysis, we use the
5,000 randomly sampled apps as those in app coverage evaluation.

In our experiment, we found 72.85% packets of the apps sampled
were detected using the imprints created by Tiger, while only 28.87%
could be identi�ed by those generated by other approach [39], as
shown in Table 2. Again, this di�erence (43.98%) is caused by other
types of invariants discovered by Tiger through partially executing
these apps’ sink related code. As a result, the apps become easier
to detect and more likely to identify using our new technique. In
order to understand the imprints’ coverage of truly identi�able
packets, we further randomly selected 100 apps and manually in-
spected all 3,872 packets in their communication. Among them,
2,844 carried identi�able imprints, with 2,803 packages caught by
the imprints from Tiger. Altogether, we conclude that Tiger is
capable of capturing 98.56% (= 2, 803/2, 844) of the packets car-
rying identi�able invariants. �is level of coverage even exceeds
what could be a�ained with a perfect training set: assuming that all
URL-related invariants can be recovered from the perfect training
set using other prior approaches [14] which is hard in practice;
still the coverage that could possibly be achieved using package
names, Ad-IDs and also the learnt hostnames was found to be no
more than 62.71%, which is 10.14% below our approach, due to the
new invariable tokens discovered by Tiger never reported before
(see Section 5.2). Further, by looking into the 41 (= 2, 844 − 2, 803)
packets our approach missed, we found that in all these cases, the
IPE engine recovered most part of their imprints. What it did not
do right include one or two missing tokens caused by inaccurately
processing a loop (which our approach only unwinds one iteration)
that brings in erroneous invariants.
False detection. We also want to see how many apps were in-
correctly captured by the imprints generated by Tiger. Since this
evaluation does not need to dynamically run the apps, we used all
of the 200,000 apps that we collected in this evaluation. In detail,
we randomly selected 50,000 apps from 200,000 apps and generated
their imprints. �en we checked the false detection using the rest
150,000 apps. �at is, for every app in the rest 150,000 apps, we
checked whether it can be identi�ed by the imprints from 50,000
apps. If the identi�ed app is not the one that generates the imprint,
we view it as a false detection. Here, to judge whether two apps

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

822

http://qzone.qq.cn

Table 3: False detection
Total Apps #(%) False Detection

GooglePlay 20,028 31 (0.155%)
360 4,651 17 (0.366%)

Xiaomi 450 2 (0.444%)
Huawei 2,702 20 (0.740%)

Wandoujia 936 8 (0.856%)
Anzhi 2,927 11 (0.376%)

AppChina 637 8 (1.256%)
ChinaTelecom 1,731 29 (1.675%)

VirusTotal 122,953 1,008 (0.820%)
All Apps 152,897 1,134 (0.742%)

Table 4: Performance of IPE.
Full Slice Coarse Slice Tiger

Total Time Cost 314 hours 134 hours 25 hours
Avg Time Cost 226.380 s 96.482 s 18.227 s
of Total Node 155,839,237 101,082,209 9,214,422
of Avg Node 31,168 20,216 1,843

are the same, we performed a strict rule: if the two apps have dif-
ferent MD5 values, we view them as di�erent apps. Considering
that we have removed the redundant apps with the same MD5 in
our dataset, any identi�ed app from the 150,000 apps should be a
false detection. Based on this strict rule, we found that the false
detection rate is only 0.742%. We also measured the false detection
rate for each market (in Table 3). For the apps from Google Play,
the false detection rate is very low (only 0.155%). We also found
the apps from some Chinese markets have high false detection rate.
�is may be due to the repackaged apps, which are mis-identi�ed
by the imprints of the original apps.
Impact of dead code. Some imprints from Tiger may not match
any app’s tra�c, since their corresponding network sinks may sit
in a chunk of dead code. In our research, we estimated the ratio of
such non-functioning imprints by running a reachability test on
the sinks of the randomly selected 5,000 apps. Among the 9,488
network sinks discovered from these apps, 2,005 (21.13%) of them
could not be reached from any entry point. Note that imprints pro-
duced by our approach are supposed to be used in NGFW, which
is optimized to �lter tra�c with a large number of signatures. Re-
dundant signatures of a moderate scale (such as 21.13%) only have
a marginal impact on the �rewall’s performance. �erefore, we
did not integrate into our implementation any mechanism for dead
code removal.

4.3 Performance
Tiger is designed for discovering app tra�c imprints on a massive
scale. Key to this mission is high performance, which our unique
design, the IPE in particular, strives to achieve. Here we report
our e�ort to understand whether the new technique is indeed up
to this high performance expectation, compared with its more
straightforward alternative [32]. �is evaluation was conducted on
the randomly selected 5,000 apps from our dataset.
Bene�t of IPE. We ran Tiger against the conventional slicing and
execution approach, as proposed by the prior research [32]. In the
experiment, we set the timeouts in both approaches to 10 minutes.
�e results of this study are presented in Table 4. As we can see
here, the total time the conventional approach, which requires a
full slicing, took to process all these apps is 314 hours on one of
server with 20 cores. In contrast, our IPE technique spent merely

8.38

11.81

14.29
16.17

14.07

29.14

33.50

36.80

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 80 500 1000 1500 2000 2500 3000 3500 4000

App Dex size(KB)

T
im

e
 p

e
rf

o
rm

a
n

ce
 i
n

cr
e

a
se

Figure 5: Performance increase between instantiated slicing
and full slicing regarding to app size.

25 hours going through all these apps. On average, our approach
needed 18 seconds per app, while the conventional counterpart took
226 seconds7. Table 4 further shows the number of pruned nodes
from full slices. As we can see, on average, 94.09% (= (31, 168 −
1, 843)/31, 168) of nodes on a slice were pruned by the IPE, which
resulted in a signi�cant enhancement of the performance. Overall,
Tiger achieved 12.42× (= 226.38s/18.227s) speed-up compared with
the conventional approach.
App sizes. We also compare the performance increase between
instantiated slicing and full slicing regarding to app sizes (Figure 5).
From the �gure, we found the performance of Tiger increases more
when an app has a larger size.

5 MEASUREMENT
By analyzing the tra�c tokens derived from the code of over 200,000
real-world applications, a scale never a�ained before for this type
of research, we were able to gain an unprecedented understanding
of these imprints and their connections with today’s Android apps,
including their uniqueness and e�ectiveness in app identi�cation,
their relations with an app’s functionalities and the conditions for
triggering their related network tra�c. Particularly, in addition to
known invariants, we discovered other unexpected types of content
that uniquely characterize a large number of popular apps. Further,
from the content of some invariants, we could even �gure out an
app’s operation environments (e.g., the permissions possessed by a
library’s host app). Our study also shows that the tra�c involving
some highly identi�able imprints cannot be easily triggered by
automatic exploration tools like monkeyrunner, though the related
functionalities can probably be invoked by human users frequently.

5.1 Landscape
Imprint generation. From the 203,864 apps, 181,582 apps have
network sinks, and among them, Tiger discovered 392,645 imprints
in total, as summarized in Table 5. Except the PHAs from VirusTo-
tal, the apps from other sources, including Google Play and other
third-party marketplaces, all have very high identi�cation rates:

7 �e time is di�erent from that reported in the prior work (150 seconds) [32]. �is
is mainly because the sinks that Tiger cares (HTTP-related APIs) is much more than
that of HARVESTER (SMS-related APIs). Also, to be fair, we did not let HARVESTER
use Soot to slice, which is known to be slow. We re-implement the slicing algorithm
using the same technique as our IPE.

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

823

Table 5: Apps and their imprints
(Note that most unidenti�ed apps are repackaged ones, which do not have unique imprints and are not identi�able from their tra�c.)

Total Apps # (%) Apps Having Tra�c # (%) Identi�able Apps # Imprints # Imprints per App
GooglePlay 25,750 25,183 (97.80%) 24,753 (98.29%) 89,678 3.62

360 6,177 5,986 (96.91%) 5,830 (97.39%) 40,316 6.92
Xiaomi 600 585 (97.50%) 571 (97.61%) 4,590 8.04
Huawei 3,592 3,483 (96.97%) 3,423 (98.28%) 25,126 7.34

Wandoujia 1,235 1,160 (93.93%) 1,113 (95.95%) 8,996 8.08
Anzhi 3,891 3,829 (98.41%) 3,751 (97.96%) 13,496 3.60

AppChina 848 821 (96.82%) 769 (93.67%) 4,878 6.34
ChinaTelecom 2,290 2,122 (92.66%) 2,007 (94.58%) 14,665 7.31

VirusTotal 159,481 138,413 (86.79%) 97,748 (70.62%) 202,393 2.07
All Apps 203,864 181,582 (89.07%) 139,965 (77.08%) 392,645 2.81

above 93%, with more than 98% of Google Play apps being identi�ed
by their imprints. In the meantime, PHAs from VirusTotal have
lower identi�cation ratio (70.62%). To �nd the reason, we checked
the PHAs and found that a portion of PHAs from VirusTotal cannot
be uniquely �ngerprinted, due to their network sinks all present
in shared code, including shared libraries, code templates or other
apps they repackaged [9]. �e invariants extracted from these apps
also appear on the tra�c produced by other apps using the same
shared code. Although, we discovered that from all 40,665 such
apps, only 920 unique certi�cates were recovered; also the app
pairs we randomly sampled are almost identical in their code, ex-
cept some di�erences in their resource �les unrelated to network
activities. As a result, all the invariants discovered from these apps
are actually shared by their individual families. In our research, we
discovered that these PHAs within some families can be unambigu-
ously identi�ed. Altogether, 77.08% of these 181,582 were found
to be identi�able. On average each app has 2.81 imprints. Table 5
summarizes the identi�ability of the apps from di�erent sources.
In each category, we can see the average number of imprints per
app. �e apps from VirusTotal have the least.
Invariable token. As mentioned earlier (Section 4.2), the imprints
discovered by Tiger cover more packets than the tra�c signatures
produced by prior approaches [14, 39]. Fundamentally, the advan-
tage comes from new types of invariable tra�c tokens recovered
from apps (Section 5.2). Table 6 presents the types of tokens we
found, including not only domain, IP and keys that are also used
in the prior research [24] which generate signatures from a given
tra�c training set, but also time values, device information values
and credentials that have never been reported before. Even for the
categories with known invariable tokens, such as ID-Value, not
only does it include package name, but it also contains other sur-
prising identi�able information like hardcoded session ID values
(Section 5.2). Further, even for the same keys like appkey, they
could appear at di�erent locations in an HTTP packet, like on a
URL, or within the HTTP header or content. �e la�er has never
been used to �ngerprint an app, up to our knowledge.

Each imprint contains one or more tokens (a keyword or a value),
whose length ranges from 9 to 338 bytes. For example, the im-
print of an real app involves �ve tokens “webservice”, “command”,
“getimage”, “session” and “itemid”. Even with a high coverage,
individual tokens tend to be too generic for app identi�cation. As an
example, in our dataset, “command” is in the tra�c of 133 apps and
“session” relates to 214 di�erent apps. Combinations of multiple
ones are much more speci�c. In our research, we found that except

Table 6: Invariable token

Category Example %

Key

ID/Key appKey, appID, channelID, uid, sid, … 49.66%
Time time, date, timestamp,updateTime, … 6.92%

Version appVersion, apiVersion, osVersion, … 11.91%
Device imei, imsi, screen-width, screen-height, … 23.73%
H�p Content-Type, Accept-Encoding, … 27.55%

Unknown hufplg, czkpln, lg, usd, … 30.24%

Value

Domain-IP h�p://www.fotgtechnologies.com/, … 91.78%
ID/Key 555f89c2-94e6-8e8f-�cb4d55a0c4, … 9.92%
Time 1936-07-09 06:34:05, … 0.39%

Device 3223423(imei), 23423(imsi), … 1.43%
Credential 280391LORE(password), … 0.15%
Unknown 13868388931, updateOpening, … 47.59%

the long tokens like package IDs, most imprints (53.47%) contain
more than one invariable tokens.

5.2 New Invariable Tokens
Among all the new tokens in Table 6, some are extremely intriguing.
Here we take a close look at those most interesting ones, including
fake device information, hardcoded time, login credentials and even
the values of session IDs. �e presence of these tokens also o�ers
us a unique opportunity to be�er understand the backgrounds and
operation environments of related apps only by imprints.
Fake device information. Since device information’s values are
supposed to change across devices and cannot be tied to a speci�c
program, it has never been reported that an app can be identi�ed
by the values of these keys, such as “imei”, “imsi’. Interestingly,
we found in our dataset that such unique values do appear on the
imprints of 2,826 apps. For example, an app sends out an URL:
“http://admin.ad-maker.info/...&device id=94c24a0bc4fb
8d342f0db892a5d39b4a”, regardless of the devices that it is run-
ning on. From its code, we found that the value “94c24a0bc4fb8d34
2f0db892a5d39b4a” is actually the md5 hash value of “android id”
and the related code statement is only executed when the app is
running in background. Another example is that an app sends a
�x value “a63123717ccbd3561a58808a6310e057” for device value ID
when its host app does not have the READ PHONE STATE permission
. Such fake device information can serve to �ngerprint the target
apps, and reveal some operation environments of the apps (e.g.,
being executed in background or having no READ PHONE STATE
permission).
Hardcoded time. Time and date information o�en appears in
network tra�c. What is unexpected is that 768 apps in our dataset
always send out the same time values in their tra�c, which are
actually embedded in their code. As an example, a bus app for users
to choose suitable buses and communicate with each other adds
“date=2012-1-1 00:00:00” to its HTTP message. A�er analyzing

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

824

com.paomian.crazystar imprint
token in entity: accountType
token in entity: HOSTED_OR_GOOGLE
token in entity: Email
token in entity: reallibc@gmail.com
token in entity: Passwd
token in entity: bici0109

Figure 6: Example of Credential.

com.infinity.lcwlearn imprint
token in url: http://hizliegitim.infinityyazilim.com/api/AddSupportFile
token in url: sessionKey=48029f79-de1a-415d-be10-ae773f32e206
token in header: Connection
token in header: Keep-Alive
token in header: Content-Type
token in header: multipart/form-data
token in header: boundary

Figure 7: Example of Session ID.

the app’s code, we found that the HTTP request serves to retrieve
from the app’s server the chat logs always starting from this speci�c
date. Also we found that 27 apps utilize their release time as a
replacement for their version information. Such dates, again, are
hardcoded and therefore can be used in imprints.
Credential and personal data. Prior research reports that many
apps include hardcoded login credentials [21], which actually were
found in the imprints generated by Tiger. For example, we found an
app developer le� an authentication key inside the app dogantv.tv2,
when requests any resource stored in the developer’s server. Since
the data is hardcoded, the authentication key, therefore, becomes
an invariable token for the app. Most interestingly, we saw some
apps even include plaintext user names and passcodes within their
code (see Figure 6), which were also observed in their tra�c. �ese
information was automatically extracted by our implementation to
serve as a tra�c token in the corresponding apps’ imprints.
Session ID. Also surprising is our �nding that even session IDs
(or cookies) were hardcoded and picked up from their tra�c by
Tiger as their invariable tokens. As we know, a session ID is a
piece of data that helps stateless network protocols identify a ses-
sion. It is typically used to recognize a user a�er she logs into
a website. Usually, session IDs should be generated dynamically.
However, there are indeed apps using �xed session IDs, as pre-
sented Figure 7, which shows that an app sends the session key
“48029f79-de1a-415d-be10-ae773f32e206” out to a server. A
possible explanation here could be the need for convenient access
to the server-side resource of an app without explicit login. Inter-
estingly, some developers seem aware of the risk of disclosing this
security-sensitive information to the public, and try to conceal the
IDs in HTTP packet headers, instead of directly exposing them on
URLs. For Tiger, however, this does not make any di�erence.

5.3 Triggers
By design, Tiger is well equipped to recover hidden identi�able
tokens that tend to be missed by automatic exploration tools. �is,
however, does not necessarily mean that these tokens rarely show
up in the app’s tra�c: on the contrary, such tokens could be good
indicators for the apps when they are interacting with human
users or performing operations of interest. Following we present

the examples for the cases where network sinks become extremely
hard to trigger automatically without looking into their code (which
makes all existing learning-based approaches less e�ective).
Human involvement. For the automatic tool, a common example
for a complicated trigger is an app’s login page. We found that
about 24% of apps hide their identi�able network behaviors behind
login protection. Examples include Airbnb and iKuLing. Note that
to enable an automatic tool to generate login tra�c, one needs to
manually enter a list of login credentials for di�erent sites. For Tiger,
however, this becomes unnecessary, as long as the code responsible
for such behaviors is on the app side.
Intent trigger. Another case is an app whose identi�able tra�c can
only be invoked by an Intent issued by itself or other apps running
on the same device. For example, the app “com.pekingsjht.iyank
erapp” has a special “SearchActivity”, which cannot be reached
from its main view, and instead, can only be launched by an Intent.
Clearly, Monkey and its variations will be almost impossible to
trigger this activity. Actually, discovering the trigger condition
is highly nontrivial, which may require a symbolic execution to
recover the construction of the Intent. For Tiger, however, all we
need is to �nd the related network sink and partially runs the slice
to generate tokens, without constructing that Intent.
Triggered from the remote. Also discovered in our study is
the network operations that are triggered by the content on a
server. For example, there is an app includes a speci�c activity for
video playing that can only be activated when a URL scheme like
“aipai-vw://video/” displayed in the webview. �e trouble is that the
scheme may or may not show up behind certain widgets (such as a
bu�on) on the webpage within the webview and therefore becomes
almost impossible for an automatic tool to trigger. As a result, the
network operation in the video-playing activity simply cannot be
invoked automatically. Again, such hidden activities are tricky for
the automatic tool but can still be common when the app is being
operated by a human user.
Triggers of PHAs. Triggers inside PHAs protect suspicious behav-
iors from dynamic analysis, which makes the concealed imprints
di�cult by UI exploration approach to catch. We found such trig-
gers existing in our measurement. For example, we found a spyware
“com.nicky.lyyws.asl”, which is from the NickyBot family. Only
when an SMS message with speci�c contents is received by the
infected smartphone, the spyware is triggered to send the content
of the received message to a remote server. Another case we found
is “com.wuzla.game.ScootrHero Lite”, a malicious app from the
GoldDream malware family. Its imprints can only be captured by
activating the trigger through an UploadMessages command from
the remote controller. Tiger captured these imprints successfully.

6 DISCUSSION
With its high performance and e�ectiveness demonstrated in our
evaluation and measurement study, the current design and imple-
mentation of Tiger are still preliminary. Here we discuss a few
limitations of the technique and potential ways to move it forward.
Limitations of IPE. Tiger could lead to the imprints that do not
exist in any real apps’ tra�c, due to the limitations of the IPE tech-
nique and also the existence of dead code. �e former is mainly

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

825

aipai-vw://video/

caused by the challenges in processing loops (Section 4). One possi-
ble way to move forward is to explore the technique such as fuzzy
matching: looking for the token combination close to, instead of
exactly matching an imprint, given the observation that the errors
within an imprint, when exist, tend to be minor, involving typi-
cally only one token. �is may need to set up a threshold to judge
whether two imprints are the same. Such threshold could be mea-
sured from future evaluations on the false detection and coverage
rate. Another cause of the false negative is pruning of a variable
related to an invariant output. Particularly, partial execution of a
method can miss some of its internal paths, which could only be
triggered by assigning some input variables with speci�c values,
rather than the random concrete values given by our IPE engine. In
other words, some input variables could be dropped as irrelevant
ones but may actually a�ect the output invariants when they take
certain speci�c values. Although theoretically feasible, we have
not found any instance of this type from the randomly selected 100
apps a�er manual checking. What we observed actually are rela-
tively straightforward, serving the purpose such as encoding(e.g.,
base64, MD5) and building packet content (e.g., storing payloads
into a Hashmap). Also, Tiger achieves over 98% coverage using this
approach. Another issue is dead code, which leads to the analysis
on the sinks that will not be executed during an app’s real-world
operations. Our preliminary study shows that the impact of the
dead code can be limited (Section 4). More e�ort is needed to un-
derstand the performance implications of dead code, which make a
�rewall screen tra�c with more signatures than needed. In order
to further reduce the impact of dead code, an e�cient reachability
test is planed to be built into our system.
Imprint construction. Further, the main objective of Tiger is to
e�ciently generate high-quality tra�c. �e technique for imprint
construction is not the focus here and therefore may not be perfect.
More speci�cally, we now just look at the combination of invariable
tokens (e.g., key-value pairs) on the same �ow, and remove dupli-
cated tokens across apps. �e imprint generated in this way does
not capture some packets or even apps. For example, a repackaged
app may not have any �ow-based imprint, as its tra�c invariants
either belong to the app it clones or the advertising library injected
into its code, though it can still be �ngerprinted by the combination
of these invariants. Imprint generation over multiple �ows is chal-
lenging, due to the di�culty in linking these �ows together (e.g.,
a TCP connection for retrieving data from the server and another
connection for downloading ads). Prior research utilizes observed
temporal relations to correlate two �ows [28], which may not work
in the case of a repackage app, when its identi�able �ows are pro-
duced at di�erent times. How to address this problem is le� for the
future research.

7 RELATEDWORK
Imprint generation. Given the emerging demands for managing
network behaviors of mobile apps, techniques for app tra�c �nger-
printing have been intensively investigated in recent years, both by
the industry (such as Palo Alto networks) and the academia [6, 7, 12,
14, 24, 26, 28–30, 37, 42]. All existing techniques are based upon di-
rect analysis of app tra�c for imprint generation, mainly relying on
supervised learning to build a classi�cation model from a training

set of network traces [30]. Most of these approaches assume that
the app network traces are already given, sometimes from ISPs and
mobile carriers [28]. In the other cases, automatic UI exploration
techniques (e.g., monkeyrunner [1]) are directly used or enhanced
to generate app tra�c. For example, NetworkPro�ler [14] improves
monkeyrunner by leveraging recorded user events and other heuris-
tics to discover new UI paths of the app under the test. Still li�le is
known how comprehensive the traces produced in that way could
be, in comparison with the app’s real-world tra�c, even a�er a sub-
stantial amount of time is spent on the testing (at least 5 minutes).
In general, an app’s realistic, comprehensive network traces are
hard to come by, not to mention the challenge in generating such
traces at a large scale, for millions of apps. Tiger is designed to
address this challenge, which uses code-analysis to guide the tra�c
triggering and imprint generation. �e only prior approach not
relying on the training set or seed signatures has been proposed in
a study on in-app advertisement [39]. �e approach uses app names
(i.e., package names) and AD-IDs collected from an app’s meta data
to �ngerprint its tra�c. Also, the e�ectiveness of package names
has been mentioned in other work [24]. As demonstrated in our
experiment, the invariants Tiger recovers from an app’s code vastly
outperforms these tokens in terms of their coverage on the app’s
tra�c. Our �ndings show that indeed e�cient code-analysis is a
way to go for the large-scale app imprint generation.
Program slicing. Program slicing is a technique for simplifying a
program by focusing only on a subset of its code relevant to some
points of interest (aka sinks) [38]. It has been widely utilized in
debugging/testing [22, 41], program behavior analysis [23, 27] and
bug detection [25]. Due to the complexity of modern applications,
scalability is always an issue for the real-world use of the tech-
niques [34]. As a result, pruning is used to serve di�erent purposes:
for example, “thin slicing” [36] has been proposed to identify state-
ments that produce incorrect values [44]. �e slicing technique
has also been applied to analyze Android apps. As an example,
SAAF [20] utilizes slicing to backtrack the parameters of a given
method. Harvester [32] combines slicing with dynamic execution
for extracting runtime values of plain-text telephone numbers in
SMS trojans, command and control messages of bots in malware.
However, never before has the slicing technique been tuned towards
the analysis of tra�c invariants, using instantiation of unrelated
variables to prunes the slice tree. Our research shows that this new
technique achieves 12.42× speedup over the conventional slicing
and execution, and may have the potential to be applied to other
domains.

8 CONCLUSIONS
In this paper, we present Tiger, a novel technique that makes mas-
sive scale, comprehensive app imprint generation possible. At the
center of Tiger is a unique instantiated partial execution technique
that slices the code related to an app’s network sinks in a way that
the variables unessential to the app’s network tokens are quickly
identi�ed and instantiated, and related paths are quickly pruned.
As a result, only a very compact set of statements need to be run to
recover the content of the invariable tokens, which enables at least
one order of magnitude faster than a more conventional slicing
and execution approach. In the end, Tiger is shown to achieve the

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

826

performance of processing each app in 18 seconds on average and
the e�ectiveness of covering over 98% of identi�able app tra�c.

Running Tiger over 200,000 real-world apps, a scale never done
before in tra�c signature generation, we were able to gain an
in-depth understanding about the identi�able tra�c produced by
modern apps. We found that unexpected information from apps’
communication, including fake device information, hardcoded time,
credentials and session IDs, could all be used to uniquely �ngerprint
individual apps. Also discovered in our work is the presence of
complicated triggering conditions, requiring human intervention,
Intent trigger and remote instructions, which demonstrates the
limitations of automatic UI exploration and the importance for code-
analysis based solutions. Finally we show the potential directions to
move forward, particularly possible enhancement of our techniques
to generate more complicated cross-�ows imprints, and further
improvement on the coverage of the packets that can be identi�ed.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-
structive comments. And we also thank VirusTotal for the help in
validating suspicious apps in our study. IIE authors were supported
in part by NSFC U1536106 and 61728209, National Key Research
and Development Program of China (Grant No.2016QY04W0805,
No.2016YFB0801603), Youth Innovation Promotion Association
CAS, strategic priority research program of CAS (XDA06010701).
IU authors were supported by NSF CNS-1223477, 1223495, 1527141,
1618493, ARO W911NF1610127 and Samsung Gi� fund.

REFERENCES
[1] 2017. monkeyRunner. h�ps://developer.android.com/studio/test/monkeyrunner

/index.html. (2017).
[2] 2017. Trail: �e Re�ection API. h�ps://docs.oracle.com/javase/tutorial/re�ect/.

(2017).
[3] 2017. UI/Application Exerciser Monkey. h�p://developer.android.com/tools/help/

monkey.html. (2017).
[4] 2017. VirusTotal. h�ps://www.virustotal.com. (2017).
[5] 2017. VirusTotal �le statistics during last 7 days. h�ps://www.virustotal.com/en

/statistics/. (2017).
[6] AddictiveTips. 2017. Easily Monitor All Incoming & Outgoing Network Connec-

tions On Android. h�p://www.addictivetips.com/android/monitor-all-incoming-
outgoing-network-connections-on-android/. (2017).

[7] Hasan Faik Alan and Jasleen Kaur. [n. d.]. Can Android Applications Be Identi�ed
Using Only TCP/IP Headers of �eir Launch Time Tra�c. In Proceedings of the
9th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec’ 16), r (Ed.).

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: precise context, �ow, �eld, object-sensitive and lifecycle-aware taint
analysis for Android apps. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2014. 29.

[9] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scal-
ability simultaneously in detecting application clones on android markets.
In Proceedings of the 36th International Conference on So�ware Engineering.
ACM, 175–186.

[10] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing
Huang, Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds:
Mass Ve�ing for New �reats at the Google-Play Scale.. In USENIX Security
Symposium. 659–674.

[11] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following devil’s
footprints: Cross-platform analysis of potentially harmful libraries on android
and ios. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 357–376.

[12] Mauro Conti, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. 2015.
Can’t You Hear Me Knocking: Identi�cation of User Actions on Android Apps
via Tra�c Analysis. In Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy (CODASPY’ 15). 297–304.

[13] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puc-
ce�i, Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-
resilient privacy leak detection for mobile apps through di�erential analysis. In
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS). 1–16.

[14] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn
Song. 2013. NetworkPro�ler: Towards automatic �ngerprinting of Android
apps. In Proceedings of the 32nd IEEE International Conference on Computer
Communications (INFOCOM’ 13). 809–817.

[15] Marianne De Michiel, Armelle Bonenfant, Hugues Cassé, and Pascal Sainrat. 2008.
Static Loop Bound Analysis of C Programs Based on Flow Analysis and Abstract
Interpretation. In Proceedings of the 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications. IEEE, 161–166.

[16] Gartner. 2017. Managed Security Service Provider (MSSP).
h�p://www.gartner.com/it-glossary/mssp-managed-security-service-provider/.
(2017).

[17] Arnab Ghosh, Prashant Kumar Gajar, and Shashikant Rai. 2013. Bring your
own device (BYOD): Security risks and mitigating strategies. Journal of Global
Research in Computer Science 4, 4 (2013), 62–70.

[18] Google. 2017. �e Google Android Security Team’s Classi�cations for Potentially
Harmful Applications. h�ps://static.googleusercontent.com/media/source.andro
id.com/en//security/reports/Google Android Security PHA classi�cations.pdf.
(2017).

[19] Michael I Gordon, Deokhwan Kim, Je� Perkins, Limei Gilham, Nguyen Nguyen,
and Martin Rinard. 2015. Information-�ow analysis of Android applications in
DroidSafe. In Proc. of the Network and Distributed System Security Symposium
(NDSS). �e Internet Society.

[20] Johannes Ho�mann, Martin Ussath, �orsten Holz, and Michael Spreitzenbarth.
[n. d.]. Slicing droids: program slicing for smali code. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing (SAC’ 13). 1844–1851.

[21] Anurag Kumar Jain and Devendra Shanbhag. 2012. Addressing Security and
Privacy Risks in Mobile Applications. IT Professional 14, 5 (2012), 28–33.

[22] Mariam Kamkar, Peter Fritzson, and Nahid Shahmehri. 1993. Interprocedural
Dynamic Slicing Applied to Interprocedural Data How Testing. In Proceedings
of the Conference on So�ware Maintenance (ICSM’ 93). 386–395.

[23] Bogdan Korel and Juergen Rilling. 1998. Program Slicing in Understanding of
Large Programs. In Proceedings of the 6th International Workshop on Program
Comprehension (IWPC’ 89). 145–152.

[24] Anh Le, Janus Varmarken, Simon Langho�, Anastasia Shuba, Minas Gjoka,
and Athina Markopoulou. 2015. AntMonitor: A System for Monitoring from
Mobile Devices. In Proceedings of the 2015 ACM SIGCOMM Workshop on
Crowdsourcing and Crowdsharing of Big (Internet) Data,. 15–20.

[25] Bin Liang, Pan Bian, Yan Zhang, Wenchang Shi, Wei You, and Yan Cai. 2016.
AntMiner: mining more bugs by reducing noise interference. In Proceedings
of the 38th International Conference on So�ware Engineering (ICSE 2016). 333–
344.

[26] Envato Pty Ltd. 2017. Analyzing Android Network Tra�c.
h�p://code.tutsplus.com
/tutorials/analyzing-android-network-tra�c–mobile-10663. (2017).

[27] Andrea De Lucia, Anna Rita Fasolino, and Malcolm Munro. 1996. Understand-
ing Function Behaviors through Program Slicing. In Proceedings of the 4th
International Workshop on Program Comprehension (WPC’ 96). 9–10.

[28] Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi. 2015. App-
Print: Automatic Fingerprinting of Mobile Applications in Network Tra�c.
In Proceedings of the 16th International Conference on Passive and Active
Measurement (PAM’ 15). 57–69.

[29] Sophon Mongkolluksamee, Vasaka Visoo�iviseth, and Kensuke Fukuda. 2015.
Enhancing the Performance of Mobile Tra�c Identi�cation with Communica-
tion Pa�erns. In Proceedings of the 39th IEEE Annual Computer So�ware and
Applications Conference (COMPSAC’ 2015). 336–345.

[30] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar, and Abdullah Gani.
2016. Evaluation of machine learning classi�ers for mobile malware detection.
So� Comput. 20, 1 (2016), 343–357.

[31] Palo Alto Networks. 2017. WildFire Analysis Categories. h�ps://www.paloalto-
networks.com/documentation/autofocus/autofocus/autofocus admin guide/
assess-autofocus-artifacts/wild�re-analysis-categories.html. (2017).

[32] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016.
Harvesting Runtime Values in Android Applications �at Feature Anti-Analysis
Techniques. In Proceedings of the Network and Distributed System Security
Symposium (NDSS’ 16).

[33] RFC. 2000. HTTP Over TLS. h�ps://tools.ietf.org/html/rfc2818. (2000).
[34] Juergen Rilling and Tuomas Klemola. 2003. Identifying comprehension bo�le-

necks using program slicing and cognitive complexity metrics. In Proceedings
of the 11th IEEE International Workshop on Program Comprehension. IEEE,
115–124.

[35] Smali. 2013. An assembler/disassembler for Android’s dex format.
h�p://code.google
.com/p/smali/. (2013).

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

827

[36] Manu Sridharan, Stephen J. Fink, and Rastislav Bodı́k. 2007. �in slicing. In
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation (PLDI’ 07). 112–122.

[37] Jianhua Sun, Lingjun She andHao Chen, Wenyong Zhong, Cheng Chang, Zhiwen
Chen, Wentao Li, and Shuna Yao. 2015. Automatically identifying apps in mobile
tra�c. Concurrency and Computation: Practice and Experience (2015).

[38] Frank Tip. 1995. A survey of program slicing techniques. Journal of Program
Language 3, 3 (1995).

[39] Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song. 2013. Un-
derstanding Mobile App Usage Pa�erns Using In-App Advertisements. In
Proceedings of the 14th International Conference on Passive and Active
Measurement (PAM’ 13). 63–72.

[40] Aliaksei Tsitovich, Natasha Sharygina, Christoph M Wintersteiger, and Daniel
Kroening. 2011. Loop summarization and termination analysis. In International
Conference on Tools and Algorithms for the Construction and Analysis of

Systems. Springer, 81–95.
[41] Mark Weiser. 1982. Programmers Use Slices When Debugging. Commun. ACM

25, 7 (1982), 446–452.
[42] Qiang Xu, �omas Andrews, Yong Liao, Stanislav Miskovic, Zhuoqing Mor-

ley Mao, Mario Baldi, and Antonio Nucci. 2014. FLOWR: a self-learning
system for classifying mobileapplication tra�c. In Proceedings of the
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’14). 569–570.

[43] Mu Zhang and Heng Yin. 2014. E�cient, Context-aware Privacy Leakage Con-
�nement for Android Applications Without Firmware Modding. In Proceedings
of the 9th ACM Symposium on Information, Computer and Communications
Security (CCS’ 14). ACM, 259–270.

[44] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Pruning dynamic slices
with con�dence. In Proceedings of the ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation (PLDI’ 06). 169–180.

Session D2: Vulnerable Mobile Apps CCS’17, October 30-November 3, 2017, Dallas, TX, USA

828

	Abstract
	1 Introduction
	2 Background
	3 Finding Imprints with Tiger
	3.1 Overview
	3.2 Instantiated Slicing
	3.3 Optimization and Imprint Generation

	4 Evaluation
	4.1 Setting
	4.2 Effectiveness
	4.3 Performance

	5 Measurement
	5.1 Landscape
	5.2 New Invariable Tokens
	5.3 Triggers

	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

