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ABSTRACT
Partitioning a security-sensitive application into least-privileged
components and putting each into a separate protection domain
have long been a goal of security practitioners and researchers.
However, a stumbling block to automatically partitioning C/C++
applications is the presence of pointers in these applications. Point-
ers make calculating data dependence, a key step in program par-
titioning, difficult and hard to scale; furthermore, C/C++ pointers
do not carry bounds information, making it impossible to automat-
ically marshall and unmarshall pointer data when they are sent
across the boundary of partitions. In this paper, we propose a set of
techniques for supporting general pointers in automatic program
partitioning. Our system, called PtrSplit, constructs a Program De-
pendence Graph (PDG) for tracking data and control dependencies
in the input program and employs a parameter-tree approach for
representing data of pointer types; this approach is modular and
avoids global pointer analysis. Furthermore, it performs selective
pointer bounds tracking to enable automatic marshalling/unmar-
shalling of pointer data, even when there is circularity and arbitrary
aliasing. As a result, PtrSplit can automatically generate executable
partitions for C applications that contain arbitrary pointers.

KEYWORDS
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1 INTRODUCTION
Following the principle of least privilege, privilege separation in
software refers to separating a software application into multiple
partitions, each with its own set of privileges. Partitions are isolated
so that the compromise of one partition does not directly lead to the
compromise of other partitions. Function calls between partitions
are realized by Remote-Procedure Calls (RPCs); data for an RPC
are marshalled and sent to the callee, which unmarshalls the data,
performs its computation, and sends the result back to the caller.

Privilege separating programs in low-level, type-unsafe lan-
guages such as C/C++ is especially beneficial to security because
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these programs are prone to attacks (e.g., attacks enabled by mem-
ory vulnerabilities). For instance, OpenSSHwas refactored by Provos
et al. to have unprivileged monitor processes for handling user con-
nections and one privileged server process [28]. Another example
is the microkernel operating-system design, in which a minimum
amount of code is kept in the kernel and most OS functionalities
are pushed outside. Yet another example is Google’s Chromium
browser, which isolates each tab into a sandboxed process [1, 29].

These manual restructuring efforts have significantly improved
the security of the relevant software; however, they are labor inten-
sive and sometimes error-prone.

Several systems [3, 5, 21, 32] have been proposed to apply pro-
gram analysis to separate C/C++ applications automatically into
partitions, from a small number of user annotations about sensitive
data. These systems demonstrate automatic program partitioning
can be practical. However, one major limitation of these systems is
that they lack good support for pointer data, which are prevalent
in C/C++ applications. In particular,

• C-style pointers do not carry bounds information; when
a pointer needs to be sent across the partition boundary
in an RPC call, marshalling does not know the size of the
underlying buffer and consequently cannot marshall the
buffer automatically. Some systems adopt heuristics when
marshalling pointer data (e.g., a “char *” pointer is assumed
to point to a null-terminated string); however, programmers
are often required to write marshalling and unmarshalling
code manually for pointer data, especially for pointers that
point to dynamically allocated buffers. Some systems avoid
the problem by restricting the partitioning algorithm to not
create partitions that require pointer passing; this design,
however, limits the flexibility of where partitions can be
created.
• A program-partitioning algorithm needs to reason about
dependence in a program to decide where to split. When the
program has pointers, a global pointer analysis is typically
required to understand aliasing and how data flow in mem-
ory. However, global pointer analysis is often complex and
does not scale to large programs.

In this paper, we propose a series of techniques that enable the
support of pointers in automatic program partitioning. These tech-
niques are implemented and evaluated in a system called PtrSplit.
Its major techniques and contributions are as follows:

• Taking source code as input, PtrSplit constructs a static
Program-Dependence Graph (PDG) for the program. A fea-
ture in PtrSplit’s PDG that distinguishes it from previous
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PDGs for imperative programs is a technique called parame-
ter trees. It provides a modular way of constructing the PDG
for a program with pointers; as a result, only an intraproce-
dural pointer analysis is needed, instead of a global pointer
analysis. Our tree representation generalizes the object-tree
approach in prior work [19], which discussed a tree repre-
sentation for objects in object-oriented languages and did
not cover pointers at the language level; our system uses the
tree representation for representing pointers in imperative
languages and deals with circular data structures resulting
from pointers.
Based on the PDG, PtrSplit performs a standard reachability-
based program-partitioning algorithm that separates the
program into a partition that accesses sensitive data and
a partition for the rest of the code.
• To marshall pointers, PtrSplit instruments the program so
that pointers carry bounds information. However, prior work
shows that full pointer bounds tracking incurs significant
performance overhead. PtrSplit makes the critical observa-
tion that program partitioning does not need full pointer
tracking—it is sufficient to track the bounds of pointers that
cross the partitioning boundary. Therefore, given an arbi-
trary partitioning of the program, PtrSplit computes a set of
pointers that require bounds information and instruments
the program to track the bounds of only those pointers. We
call this selective pointer bounds tracking.
• PtrSplit generates code that performs marshalling and un-
marshalling for data sent over an RPC call. This is auto-
matic even for pointer data because all pointers that cross
the partition boundary carry bounds information. We de-
scribe a type-based algorithm for performing deep copies of
pointer data, which can cope with the situation of circular
data structures and arbitrary aliasing, without user involve-
ment. For instance, PtrSplit allows one partition to send a
circular linked list to a second partition.

The prototype of PtrSplit is implemented inside LLVM; our pre-
liminary evaluation on security-sensitive benchmarks and compute-
intensive benchmarks suggests the system is already practical for
C applications with pointers and can produce executable partitions
with a modest amount of performance overhead.

2 RELATEDWORK
Several tools have been proposed to assist programmers in program
partitioning. Privman [16] is a library for helping programmers
manually partition their applications to control access to privileged
system calls. Wedge [3] provides a dynamic profiling tool for parti-
tioning assistance. It collects statistics about how a program uses
memory to help programmers draw partition boundaries; how-
ever, programmers still need to perform manual code changes and
partitioning. Trellis [22] infers access policies on code and data
in multi-user applications from user annotations and enforces the
policies through a modified OS.

Automatic program partitioning employs program analysis and
separates a program into multiple partitions, with minimum user
involvement. Privtrans [5] performs static analysis to automati-
cally partition a C application into a privileged master process

with sensitive information and an unprivileged slave process. Pro-
gramCutter [32] collects a dynamic dependence graph via profiling
and performs graph partitioning to produce partitions that bal-
ance performance and security using a multi-terminal minimal cut
algorithm. SeCage [21] employs hybrid static/dynamic analysis
to compute a set of functions that can access secrets and isolates
the sensitive partition via hardware virtualization support. Jif/s-
plit [33, 35] automatically partitions a Java source program based
on security-label annotations and a description of trust relation-
ships between protection domains. Swift [7] generalizes Jif/split
for the development of web applications by exploring general al-
gorithms for improving both security and performance. With the
emergence of Trusted Execution Environments (TEEs), there have
also been program-partitioning frameworks that target Intel’s SGX
or ARM’s TrustZone. For instance, Rubinov et al. [30] proposed a
static-analysis framework that partitions an Android application
into one component that runs in TrustZone’s secure world and one
that runs in TrustZone’s normal world. A similar system called
Glamdring [20] targets Intel’s SGX.

All the aforementioned automatic program partitioning frame-
works, either partition programs in languages that do not have
explicit pointers (e.g., Java) or require programmers to manually
write marshalling and unmarshalling code for pointer data [5, 32];
furthermore, data dependence computed by these frameworks that
partition C/C++ application are incomplete in the presence of point-
ers and can lead to incorrect partitioning results. In contrast, Ptr-
Split uses a PDG representation that soundly represents pointer
data as parameter trees, and tracks pointer bounds for automatic
marshalling and unmarshalling without user involvement.

PtrSplit partitions programs so that sensitive data within the
sensitive partition cannot be directly or indirectly accessed by the
insensitive partition. It is a form of controlling the flow of sen-
sitive information. Information flow can be controlled in other
mechanisms, through dynamic information-flow flow tracking as
in systems such as Asbestos [10], HiStar [34], and Flume [17], or
a capability model as in Capsicum [31], or via a static language
mechanism such as Jif [23].

3 SYSTEM OVERVIEW
Fig. 1 presents PtrSplit’s workflow. It takes the source code of a sin-
gle threaded C application as input; the code has been annotated by
the programmer with information about sensitive and declassified
data. Sensitive data can be either confidential data (e.g., keys) or
data from an untrusted source (i.e., tainted data such as user input).

The source code is converted to an LLVM IR program by LLVM’s
front end. PtrSplit then constructs the PDG for the IR program.
A PDG-based algorithm then computes two raw partitions: one
sensitive raw partition that can access sensitive data and one in-
sensitive raw partition with the rest of the code. However, raw
partitions cannot run directly because after partitioning some func-
tion calls become Remote-Procedure Calls (RPCs) and it is necessary
to add RPC wrapper code for data marshalling and unmarshalling.
In PtrSplit, each partition is loaded into a separate process, so RPC
wrapper code must be added for inter-process communication.

Based on raw partitions, PtrSplit performs selective pointer
bounds tracking, which tracks bounds information for pointers
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Figure 1: The workflow of our automatic program-partitioning framework (gray components belong to PtrSplit).

whose values can potentially cross the partitioning boundary. Bounds
information for pointers is then used by a type-basedmethod, which
generates RPC wrappers that perform data marshalling and unmar-
shalling for inter-process RPC calls. In the end, PtrSplit generates
one executable partition with all sensitive code, data, and RPCwrap-
pers, and also an executable partition with insensitive code, data,
and RPC wrappers.

A running example. Wewill illustrate the main points of PtrSplit
by a toy example in Fig. 2. The example takes a username and a
text input from the user, greets the user by the greeter function,
initializes a key, and encrypts the text by xor-ing it with the key.
The global key is the sensitive data that needs protection; therefore,
it is marked sensitive using a C attribute. Note the program has a
format-string vulnerability at line 6 in greeter, which could allow
an attacker to take over the program and learn the key.

Intuitively, a partitioning framework should put the greeter
function into the insensitive partition since no sensitive data can
flow to it. Other functions, including initkey, encrypt, and main
should be in the sensitive partition since key may be accessed
by them directly or indirectly. This partitioning would isolate the
format-string error in greeter into the insensitive partition and pre-
vent the attacker from learning the key. Similar to other partitioning
frameworks, PtrSplit also supports declassification. If ciphertext
is annotated as declassified data, main can also stay in the insen-
sitive partition even though it accesses ciphertext; in this way,
vulnerabilities in main are isolated.

4 PDG AND PARTITIONING
Program partitioning requires analyzing dependence in an input
program carefully and adjusting the program to a distributed pro-
gramming style. A key step in PtrSplit is to construct for the pro-
gram a graph representation of dependencies, called the Program
Dependence Graph (PDG [11]); two follow-up steps in PtrSplit in-
cluding program partitioning and selective pointer bounds tracking
are performed on the PDG, as we will discuss.

Conceptually, a PDG represents a program’s data and control
dependence in a single graph and can facilitate static analysis in-
cluding program slicing and automatic parallelization. There are
many systems that construct PDGs for programs in different lan-
guages and with different precision. A distinguishing feature of
our PDG construction is its approach of parameter trees for rep-
resenting composite data (e.g., pointers) that are passed during
function calls and returns. We will start explaining nodes and edges
that are common in a PDG representation in Sec. 4.1, and discuss
the parameter-tree approach in Sec. 4.2. In this discussion, we will
use examples in C for readability, even though PtrSplit constructs
PDGs for LLVM IR programs; the IR-level PDG construction will
be explained in Sec. 4.3. Finally, we present a standard PDG-based
partitioning algorithm in Sec. 4.4.

4.1 Regular Nodes and Edges in PDGs
Every instruction in the program is represented as an instruction
node in a PDG. For edges, there are data/control dependence edges
and call edges.

In general, an instruction node n1 is data dependent on instruc-
tion node n2 if n1 uses some data produced by n2. Our PDGs have
two kinds of data-dependence edges:
(1) there is a def-use dependence ifn1 uses a variable x that is defined

in n2; an edge from n2 to n1 with label x is added.1
(2) there is a RAW (Read-After-Write) dependence if n1 reads mem-

ory that was written by n2 and an edge from n2 to n1 is added
with label id, assuming id points to the memory in question.
An example of def-use dependence is as follows. Variable x is

defined in “x = 1” and later used in the assignment to y.
x = 1;
... // x not modified
y = x + x;

1The edge direction reflects the dataflow direction, instead of the direction of depen-
dence; this makes algorithms on PDGs easier to state.
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1 char __attribute__((annotate("sensitive"))) *key

;

2 char *ciphertext;

3 unsigned int i;

4

5 void greeter (char *str) {

6 printf(str); printf(", welcome!\n"); }

7

8 void initkey (int sz) {

9 key = (char *) (malloc (sz));

10 // init the key randomly; code omitted

11 for (i=0; i<sz; i++) key[i]= ...;

12 }

13

14 void encrypt (char *plaintext, int sz) {

15 ciphertext = (char *) (malloc (sz));

16 for (i=0; i<sz; i++)

17 ciphertext[i]=plaintext[i] ^ key[i];

18 }

19

20 void main (){

21 char username[20], text[1024];

22

23 printf("Enter username: ");

24 scanf("%19s",username);

25 greeter(username);

26 printf("Enter plaintext: ");

27 scanf("%1023s",text);

28

29 initkey(strlen(text));

30 encrypt(text, strlen(text));

31 printf("Cipher text: ");

32 for (i=0; i<strlen(text); i++)

33 printf("%x ",ciphertext[i]);

34 }

Figure 2: A toy C program that encrypts a plaintext.

An example of RAW dependence is as follows. Memory location
pointed to by p is written in instruction “*p = 1” and read in the
assignment to y.

*p = 1;
... // memory pointed to by p not modified
y = *p;

For control dependence, an instruction node n1 is control depen-
dent on n2 if, intuitively, there are two edges out of n2 and taking
one edge results in the execution of n1, while taking the other edge
results in the case of not executing n1. The formal definition of
control dependence can be found in [11].

Call edges connect call sites with the entries of possible callee
functions. For an indirect call (a call through a variable, e.g.), it may
be connected with multiple possible callee functions. We adopt
static, type-based matching [26] so that an indirect call via a func-
tion pointer can target any function whose type is compatible with

the function pointer’s type. For this method to be valid, some prepro-
cessing of source code is required [26] (e.g., to eliminate type casts
that involve function-pointer types by adding function wrappers).

4.2 Parameter Trees
The motivation for parameter trees is to simplify the computation
of inter-procedural data dependence and obtain a modular PDG-
construction approach. To illustrate this, let us revisit the example
in Fig. 2. Notice on line 30, there is a function call to encrypt and
text is passed; inside main the text buffer is written by scanf and
inside encrypt the passed buffer is read. Therefore, there is a RAW
dependence between the scanf call instruction in main and the
instruction in encrypt that reads the buffer.

This kind of dependence is inter-procedural. The proper calcula-
tion of such dependence would require a whole program analysis
such as a global pointer analysis, which needs access to all code, is
complex, and often does not scale. Furthermore, the resulting PDG
may suffer from edge blow ups: suppose the caller has n instruc-
tions that can write to a buffer and all n writes can affect the result
ofm reads in the callee, then the number of dependence edges is
O(n ∗m).

To obtain a modular and scalable PDG-construction system, we
introduce parameter trees. In this approach, for each parameter of a
function, we build a formal parameter tree according to the parame-
ter’s type. The parameter tree contains nodes that represent all the
storage (memory) regions that the function can access through the
parameter directly or indirectly.

We will present a formal algorithm for parameter-tree building
in Sec. 4.3. An example is instead discussed in this subsection. The
parameter tree for the plaintext parameter of encrypt in the run-
ning example can be found inside Fig. 3. It has a root node labeled
“plaintext:char*” for representing the storage of the pointer, and
a child node labeled “*plaintext:char” for the memory region
that the pointer points to. The type in a parameter-tree node speci-
fies the type of elements the corresponding memory region holds.

In addition to formal parameter trees, we also construct an actual
parameter tree for each argument at a function call site, and connect
nodes in an actual tree with corresponding nodes in a formal tree by
data-dependence edges. Fig. 3 draws a PDG snippet for the running
example that shows the interaction between main and encrypt.
The call site in main has two arguments: text and strlen(text);
each is built with an actual parameter tree. The encrypt function
has two parameters, each with a formal parameter tree.

Parameter trees enable modular construction of PDGs. To build a
PDG for a large program, we can first build a PDG for each function
using an intra-procedural analysis, and then “glue” the functions’
PDGs together using parameter trees. A global analysis is avoided.
Put it in another way, all data-dependence edges become local,
either between two instruction nodes or between an instruction
node and a parameter-tree data node. Inter-procedural data depen-
dence is represented transitively via local data-dependence edges.
Let us revisit the running example; recall that there is a RAW de-
pendence between the scanf call in main and the instruction in
encrypt that reads the plaintext buffer; this interprocedural de-
pendence is broken into three edges in Fig. 3: one from the scanf

4

Session K3:  Program Analysis CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2362



Figure 3: A PDG snippet for our running example. For clar-
ity, the graph uses a single node for the entire for loop in
encrypt; in contrast, PtrSplit’s PDG construction breaks a
loop into LLVM IR instructions and has one node for each IR
instruction. The graph also omits labels on data-dependence
edges.

node to parameter-tree node *text; one from *text to parameter-
tree node *plaintext; one from *plaintext to the loop node that
reads memory via plaintext.

Thanks to parameter trees, if the caller has n instructions that
can write to a buffer and all n writes can affect the result ofm reads
in the callee, the number of edges becomes O(n +m): we add O(n)
edges from the write instructions to the data nodes in the actual
parameter trees, O(m) edges from the data nodes in the formal
parameter trees to them read instruction, and a constant number
of edges between actual and formal parameter trees.

We note that return values and global data are also represented
as parameter trees. For instance, the key and ciphertext global
data in the running example are represented using trees similar to
the one for plaintext, as shown in Fig. 3. Also, data-dependence
edges between instructions that perform global data access and
corresponding tree nodes for global data are added.

4.3 LLVM PDG Construction
We next outline PtrSplit’s algorithm for PDG construction in LLVM.

Parameter-tree building. PtrSplit’s parameter tree building is
type based. We next formalize the process. Fig. 4 presents the syntax
of a subset of LLVM IR types. A type t can be an integer type int,
a pointer type t1∗, an anonymous struct type that contains a list
of types for the struct’s fields, and a named type with name tn.
We use tn for a type name. We further assume a type map TM,
which is a finite map from type names to their type definitions (that
is, a collection of typedefs). For example, the named struct type
“struct Node {int value; Node *next}” is represented as

TM = {Node 7→ struct {value : int; next : Node∗}}

Type t := int | t1 ∗ | struct {id1 : t1; . . . ; idm : tm } | tn
TM : TypeName ⇀fin Type

Figure 4: Syntax of types and a type map from type names
to their type definitions.

Fig. 5 presents the algorithm for type-based parameter tree build-
ing. Given an identifier id with type t , it builds a tree with root
annotated with “id : t” and child trees based on components of t .
Notation Tree(id : t , tr1, . . . , trm ) is for a tree that has root “id : t”
andm child trees in tr1 to trm . The algorithm in Fig. 5 is recursive.
If t is a struct type, it recursively builds subtrees for field types
before constructing a tree for the struct type. If t is a pointer type
“t1∗”, we construct a tree of root “id : t” and a subtree based on type
t1 and identifier ∗id.

Since types may be recursive (as in the case of the Node type), the
build-tree algorithm adopts ak-limiting approach to stop expanding
types after k expansions, avoiding an infinite expansion at the type
level. This is implemented in the cases when t is a type name tn: it
decreases k after expanding the type name using the type map TM
and stops expanding when k hits zero. Our implementation fixes k
to be one. For the example Node type, the 1-limiting parameter tree
is presented in Fig. 6.

Semantically, each node in a parameter tree represents an ab-
stract memory region. The type on the node tells the type of ele-
ments stored in the memory region. Take the tree of Fig. 6 as an
example: the root node represents an abstract memory region that
holds a sequence of Node* pointers (it is a sequence as head may
actually point to an array of Node* elements); the “(*head).next
node represents a sequence of Node* pointers as well as all storage
those pointers can reach.

Computing intra-procedural dependence. A function’s PDG is
built as follows: (1) add nodes for instructions in the function; (2)
build formal parameter trees for parameters of the function; (3) for
a call instruction in the function, build actual parameter trees for
arguments of the call; (4) add intra-procedural dependence edges.
For a function, we only need to build its formal parameter trees
once; by contrast, the actual parameter trees need to be built per
function call site.

We next discuss how dependence edges are computed. Intra-
procedural dependence edges for a function consists of control-
dependence and data-dependence edges. Control dependence can
be computed with a classic algorithm [11] based on post-dominator
trees.

Def-use data dependence can be computed easily because LLVM
IR uses the SSA (Static Single Assignment) form. For a use of a
variable in an instruction, it suffices to find the single definition
of the variable and add a edge from the definition to the use. A
function parameter is conceptually defined at the beginning of the
function; therefore, data-dependence edges are added from the root
node of a parameter’s tree representation to uses of the parameter.

RAW (Read-After-Write) data dependence is computed with the
help of an intra-procedural pointer analysis. In LLVM IR, only
store instructions can write to memory and only load instruc-
tions can read from memory. Therefore, for each load instruction,
our implementation checks every store instruction in the same
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buildTree(t , id,k) =



Tree(id : t) if t = int
Tree(id : t , tr1) if t = t1 ∗ and tr1 = buildTree(t1, ∗id,k)
Tree(id : t , tr1, . . . , trm ) if t = struct {id1 : t1, . . . , idm : tm }

and tri = buildTree(ti , (id).idi ,k) for i = 1 . . .m
buildTree(TM(tn), id,k − 1) if t = tn and k > 0
Tree(id : TM(tn)) if t = tn and k = 0

Figure 5: Type-based parameter-tree building.

Figure 6: Parameter tree for head of type Node *.

function and see whether their destination memory locations can
overlap, using the DSA pointer analysis [18]; if so, an edge is added
from the store to the load instruction. This construction is flow-
insensitive as it ignores the ordering of instructions; it makes an
over-approximation.

In addition, we add RAW data-dependence edges between in-
struction nodes and parameter-tree nodes; examples can be found
in Fig. 3 (note for succinctness the figure omits RAW labels on
data-dependence edges). Conceptually, nodes in a formal parameter
tree of a function represent potential reads/writes in the callers
of the function; therefore, if the function has a load/store instruc-
tion and the instruction accesses memory regions represented by a
parameter-tree node, a data-dependence edge should be added be-
tween the instruction’s node and the parameter-tree node. Similarly,
nodes in an actual parameter tree at a function call site conceptually
represent potential reads/writes in the callee function; therefore,
data-dependence edges are also added between corresponding in-
struction nodes and nodes in actual parameter trees.

Computing inter-procedural dependence. With parameter trees,
inter-procedural dependence representation becomes trivial. For
each function call site, we just connect nodes in the actual parame-
ter trees to the corresponding formal parameter trees of the callee
function, using bidirectional flow edges.

We note that library function calls (e.g., calls to scanf, printf,
exit...) are represented as regular instruction nodes with depen-
dence edges added according to the library functions’ semantics.
Alternatively, we could treat library functions as ordinary functions
and represent them using PDGs based on their source code, but it
would substantially increase the PDG size.

4.4 PDG-Based Program Partitioning
PtrSplit’s partitioning algorithm takes the PDG of a program and
separates it into a sensitive partition with access to sensitive data

Algorithm 1 PDG-based program partitioning
Input: G is a PDG
Output: Fs : the set of sensitive functions; Gls ; the set of sensitive

global variables

sensitive← {n | n is marked sensitive}
worklist ← sensitive
while worklist is not empty do

n← worklist.pop()
for data/control dependence edge n → n′ do

if n′ is not declassified and n′ < sensitive then
sensitive← {n′} ∪ sensitive
worklist ← {n′} ∪ worklist

Fs ← { f | f has a node n in sensitive}
Gls ← {д | д′s parameter tree has a node n in sensitive}

and an insensitive partition for the rest of the code. The algorithm
performs function-level partitioning and does not split a single
function. Furthermore, since our PDG represents both data and
control dependence, the algorithm considers both explicit flows of
sensitive data (via data dependence) and implicit flows (via control
dependence) when deciding what part of code may have access to
the sensitive data.

The partitioning algorithm is standard. The focus of the paper
is on supporting program partitioning in the presence of general
pointers so that any partitioning algorithm can be supported no
matter where the algorithm decides to split the program. There
are many interesting aspects of the partitioning algorithm that can
be improved, including performing instruction-level partitioning
instead of function-level partitioning and balancing between per-
formance and security. We plan to explore these issues in future
work (discussed in Sec. 8).

Algorithm 1 presents the PDG-based partitioning algorithm. The
input is a PDG and the output is a set of functions Fs and a set
of global variables Gls that should be put into the sensitive par-
tition; the rest of the program is in the insensitive partition. The
sensitive set starts with the set of nodes that programmers mark
as sensitive using attributes (an example is line 1 in Fig. 2). Then
a worklist algorithm is used to compute the set of nodes that a
sensitive node can reach along the data-dependence edges (explicit
data flow) and the control-dependence edges (implicit data flow)
in the PDG, while excluding nodes that programmers mark as de-
classified nodes (also using attributes). At the end of the algorithm,
any function whose PDG contains sensitive nodes is put into the
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set of sensitive functions and any global variable whose parameter-
tree representation contains sensitive nodes is put into the set of
sensitive global variables.

For the example PDG in Fig. 3, the node with label “*key:char”
is marked sensitive. As a result, the encrypt function is sensi-
tive because it has a node with an incoming data-dependence
edge from “*key:char”. Similarly, initkey is marked sensitive
(its PDG is not shown in Fig. 3). Then node “*ciphertext:char”
is marked sensitive because of an incoming data-dependence edge.
Consequently, main is marked sensitive (because of an edge from
“*ciphertext:char” to a node in main, not shown in Fig. 3). In
contrast, if node “*ciphertext:char” were marked declassified,
then main would not be marked sensitive.

5 SELECTIVE POINTER BOUNDS TRACKING
As discussed before, a core challenge in partitioning C/C++ pro-
grams is that pointers do not carry the bounds of the underlying
buffers, making marshalling/unmarshalling of pointer data a man-
ual and error-prone process. Bounds information is also critical for
another security application: spatial memory safety. There have
been many systems (e.g., [8, 9, 24, 25]) that track bounds informa-
tion as metadata on buffers or pointers and insert checks before
pointer operations to prevent out-of-bound buffer access. However,
systems that enforce spatial memory safety incur high performance
overhead; e.g., SoftBound’s performance overhead on the SPEC and
Olden benchmarks is 67% on average.

For marshalling and unmarshalling it is necessary to perform
only bounds tracking, but not bounds checking. That is, it is suffi-
cient to track the bounds of pointers without performing bounds
checking on pointer accesses; even if the insensitive partition had
an out-of-bound pointer, it would not be able to access the sensitive
data through the pointer as it is in a separate process. We further
observe that it is necessary to track the bounds of pointers that can
cross the boundary of partitions, but not the bounds of all point-
ers. Therefore, by performing only bounds tracking for a subset
of pointers, the performance overhead should be lower than those
systems that enforce spatial memory safety.

Based on this observation, we have designed a Selective Pointer
Bounds Tracking (SPBT) system,which (1) computes a set of Bounds-
Required (BR) pointers given a partitioning of the program, and (2)
instruments the program to track the bounds of those BR pointers.

Computing the set of bounds-required pointers. The algorithm
for computing the set of BR pointers is presented in Algorithm 2. It
operates on a PDG and takes as input a partitioning of the program,
in the form of two sets of functions F0 and F1, one for each partition.
The BR set is initialized with the set of pointers that are sent across
from one partition to the other partition; obviously, bounds infor-
mation are required for automatic marshalling and unmarshalling
of these pointers.

With a backward propagation process along the data-dependence
edges in the PDG, the algorithm further computes the set of pointers
whose values can flow transitively to the initial BR set. Such pointers
also need bounds information because, when a pointer p1’s value
flows to p2, the bounds of p2 is set according to the bounds of
p1; therefore, if p2 is sent over the partition boundary afterwards,
p1’s bounds need to be tracked as well. As an example, suppose

Algorithm 2 Compute a set of BR pointers
Input: G is the PDG for a program; F0 and F1 are two disjoint sets

of functions that cover the program
Output: P is the set of bounds-required pointers

BR← ∅
for function f ∈ F0 ∪ F1 and call C ∈ f do

if (f ∈ Fi and C’s callees ∩ F1−i , ∅) then
for node n in C’s parameter trees do

if n’s label is (id : t∗) then
BR← BR ∪ {(n, id)}

worklist ← BR
while worklist is not empty do
(n, id) ← worklist.pop()
for data-dependence edge n′ → n with label id1 do

if alias(id, id1) then
for all pointer-typed id ′ in n′ do

if (n′, id ′) < BR then
BR← BR ∪ {(n′, id ′)}
worklist ← worklist ∪ {(n′, id ′)}

P ← {id | (n, id) ∈ BR}

p1 is the result of a memory allocation and its value flows to p2,
which is sent over the boundary; it is then necessary to create the
bounds information for p1 at the site of memory allocation and
then propagate the information from p1 to p2.

The algorithm tracks a set of pairs of nodes and identifiers in the
sensitive set, instead of a set of nodes. This improves the precision
of the algorithm. To illustrate, suppose the PDG has a node n for
instruction “p1 = p2+i”, where p1 is a BR pointer and i is an integer.
The algorithm then puts (n,p2) into the BR set and performs further
processing along n’s incoming data-dependence edges; during this
processing, all edges with label i can be ignored. Such distinction
could not be made if the algorithm used a set of nodes in the BR
set.

SPBT instrumentation. PtrSplit’s SPBT instrumentation is based
on SoftBound [24], an LLVM-based code transformation for enforc-
ing spatial memory safety (another version also enforces temporal
memory safety). For each pointer, SoftBound keeps its base and
bound. Metadata is created for pointers at allocation sites. Meta-
data is propagated along with the propagation of pointer values,
for example, when pointers are passed during function calls. Fi-
nally, before load/store instructions, metadata is used to check for
memory-safety violations.

Our SPBT instrumentation removes memory-safety checking
before load/store instructions. Furthermore, at an allocation site, if
the returned pointer is not in the set of BR pointers (as computed
by Algorithm 2), SPBT removes instrumentation that records the
pointer’s base and bound metadata. Similarly, when pointer values
are propagated, if the involved pointers are not in the set of BR
pointers, the instrumentation that propagates metadata is removed.
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6 TYPE BASED MARSHALLING AND
UNMARSHALLING

Since partitions are loaded into separate processes, some function
calls are turned into Remote Procedure Calls (RPCs). During an RPC,
arguments from the caller are marshalled into a data buffer and sent
to the callee, which unmarshalls the data buffer and recreates the
values for the parameters in the callee process. Data marshalling is
straightforward for values of most data types, including integers,
arrays of fixed sizes, and structs.

However, pointer types cause many troubles. First, C pointers do
not carry bounds information; so marshalling does not know the
sizes of underlying buffers and cannot marshall the buffers as a re-
sult. Second, it is possible to create recursive data structures such as
linked lists and arbitrary aliases when using pointers, which makes
marshalling/unmarshalling difficult. For instance, if the caller sends
a pointer that points to a circular linked list, after marshalling and
unmarshalling, a linked list with the same circularity and aliasing
should be recreated in the callee process.

Previous program-partitioning frameworks [5, 32] avoid the
pointer issue by asking programmers to write manual marshalling
and unmarshalling code when pointer data are involved. General
Interface Description Languages (IDLs) also do not provide a satis-
factory solution. For instance, the Microsoft COM IDL [4] requires
manual annotation about the size of a variable-sized array and also
annotation about aliasing when multiple pointers are involved. The
popular SWIG IDL [2] adopts the approach of opaque pointers: point-
ers are wrapped as opaque objects and are sent over the boundary
without copying the underlying buffers; whenever the callee do-
main needs to perform operations on those pointers, the control is
transferred back to the caller domain for the actual operations. The
opaque-pointer approach avoids the pointer issue, but it may lead to
frequent domain crossings; further, it may cause a security problem
if an untrusted partition can spoof opaque pointers to read arbi-
trary memory; some solution for opaque pointer integrity would be
needed. Finally, popular RPC libraries (e.g., Google’s gRPC [12] and
Oracle’s TI-RPC [27]) also do not provide good support for pointers
and require manual intervention.

Thanks to SPBT, all pointers that cross the partition boundary
in our system are equipped with bounds information, making it
possible to automatically marshall/unmarshall even pointer data.
Therefore, we propose the approach of type-based deep copy of
pointer data: a pointer value is marshalled along with the buffer
the pointer points to; if the buffer itself contains pointers, those
pointers are marshalled recursively; the callee process unmarshalls
the received data to recreate the pointer and the buffer, also in a
recursive way; furthermore, as we will discuss, our approach takes
care of circularity and aliasing in data.

Before proceeding, there are several points worth mentioning.
First, the deep-copying approach is type directed and relies on types
to identify pointers within data to be marshalled; consequently, if
an application performs a type cast on some data and the result type
hides pointers, some necessary data may not be deep copied. More
discussion about this (especially on void pointers) is in Section 8.

Another concern about deep copying is its efficiency, when a
large amount of data needs to be marshalled during deep copying.

However, our main focus in this paper is to enable any partition-
ing of an application, even if the partitioning creates the situation
of sending pointer data across the partitioning boundary. A good
partitioning algorithm would take efficiency of deep copying into
account when choosing among multiple partition choices and bal-
ance between efficiency and security; this will be an interesting
research direction.

We also mention that the deep copying approach is not the only
design choice. An alternativewould be the opaque-pointer approach
we discussed before; however, it would create very frequent domain
crossings, which we would like to avoid. Another approach is to
set up a shared memory region between the two partitions for
communication; this could potentially eliminate some data copying.
However, this assumes a custom memory allocator or some level of
programmer cooperation so that relevant data is put into the shared
memory. For instance, if a linked list is sent across the boundary, all
nodes in the linked list have to be allocated in the shared memory.
This is a nontrivial assumption and requires either programmers to
transform their code or at least the support of automatic program
transformation.

6.1 Algorithm for Deep Copying
We next present a formal algorithm for type-based marshalling/un-
marshalling that performs deep copying of pointer data. We will
use the same set of types in Fig. 4 when presenting the algorithm.
In addition, the syntax for values is as follows:

Value v := n | struct {id1 = v1, . . . , idn = vn } | p(b,e)

A value can be an integern, a struct value with field values inside,
or a pointer value of the form p(b,e). After SPBT, all pointers that
cross the boundary have bounds information in the form of (b, e),
where b is the beginning of the underlying buffer, e is the end of
the buffer, and the buffer size is e − b. A null pointer is encoded as
0(0,0) (that is, it points to an empty buffer).

Type-based marshalling. Fig. 7 presents a recursive algorithm
for encoding a value v of type t into a list of bytes. In the figure,
we use [ ] for an empty list, and l1 + l2 for the concatenation of two
lists. The algorithm assumes a list of utility functions, which are
explained in the caption.

The case when t = int is simple; just encode the type and the
integer. For a struct type, all field values and their types are encoded.
For a named type tn, the value is encoded according to the type
definition for tn as defined in the type map TM.

The case for a pointer type is challenging since the algorithm
has to deal with circularity caused by pointers. For that, the en-
code function also takes a parameter B, which remembers a list of
buffers (in the form of (b, e)) that have already been encoded; when
encoding a pointer that points to an already encoded buffer, there
is no need to encode the buffer again. If the buffer has not been
encoded, (b, e) is added to B and every element in the buffer is then
encoded recursively (with the help of function enc_bufB (b, e, t)).

A marshalling example. As an example, assume we need to
marshall a circular linked list of two nodes, shown in Fig. 8. Each
node is of type Node with two fields, one is type int and one Node∗;
each field is assumed to occupy four bytes. To marshall this data
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encodeB (v, t) =



enc_typ(t) + enc_int(n) if t = int and v = n
enc_typ(t) + l1 + . . . + ln if t = struct {id1 : t1, . . . , idn : tn }

and v = struct {id1 = v1, . . . , idn = vn }
and li = encodeB (vi , ti ) for i ∈ [1..n]

enc_typ(t) + encodeB (v,TM(tn)) if t = tn
enc_typ(t) + enc_ptr(p(b,e)) + lbuf if t = t1 ∗ and v = p(b,e)

lbuf =

{
[ ] if (b, e) ∈ B
enc_bufB∪{(b,e)}(b, e, t1) otherwise

enc_bufB (b, e, t) =
{

encodeB (v, t) + enc_bufB (b + size(t), e, t) if b + size(t) ≤ e and v = read_mem(b, t)
[ ] otherwise

Figure 7: Type-based marshalling. In the algorithm, we assume a set of basic utility functions: enc_typ(t) for encoding a type
into a list of bytes; enc_int(n) for encoding an integer; enc_ptr(p(b,e)) for encoding a pointer; size(t) for the size of values in type
t ; read_mem(b, t) for reading a value of type t from memory at address b.

2 22( , 8)p pp
 1 11( , 8)p pp

1n 2n

1 11( , 8)p pp


2p1p 1 8p  2 8p 

Figure 8: A two-node circular linked list.

structure, we make the following call:

encode∅(p1(p1,p1+8),Node∗)

This call encodes the p1 pointer as well as the buffer it points to;
the buffer contains the first node (viewed as an array of one node).
When encoding the buffer, because of the pointer inside the first
node, the encoder is recursively invoked as follows:

encode{(p1,p1+8)}(p2(p2,p2+8),Node∗)

This call encodes the p2 pointer and the second node. Since the sec-
ond node contains another pointer, the following call is triggered:

encode{(p1,p1+8),(p2,p2+8)}(p1(p1,p1+8),Node∗)

At this point, however, only the pointer is encoded, not the under-
lying buffer since it has already been encoded.

Typed-based unmarshalling. Fig. 9 presents the algorithm for
type-based unmarshalling. The decode function takes a list of bytes
and returns a value, a type, and the remaining list of bytes that
have not been decoded. The cases for integer types, struct types,
and named types are straightforward.

For a pointer type, the algorithm needs to remember the map
between buffers in the sender partition and buffers in the receiver
partition. This is why the decode function has an additional param-
eterM for remembering the map. There are two cases, for pointer
p(b,e) that is sent, if (b, e) is not recorded in M , then the receiver
has not allocated an corresponding buffer yet; in this case, a new
buffer is allocated and initialized by the dec_buf function. If (b, e)
has been recorded inM , then the corresponding buffer has already
been allocated and there is no need for reallocation. In both cases,
the returned pointer value uses the bounds information of the buffer
in the receiver and p is adjusted to be b ′ + p − b to maintain the
offset between the pointer and the beginning of the buffer.

For the example of circular linked lists, the decoder allocates a
node for each node in the original linked list and at the same time
adjusts pointer values according to the buffer mapM .

Other issues and LLVM implementation. The previous algo-
rithm shows how to marshall/unmarshall one argument, but our
implementation marshalls and unmarshalls all arguments at the
same time. This is important, not just for efficiency, but for correct-
ness in the case when multiple pointer arguments alias the same
buffer; the buffer should be encoded just once so that the receiver
can recreate aliasing. Essentially, this approach treats multiple ar-
guments as a value of a tuple type.

When a pointer is passed from a caller to a callee partition,
PtrSplit performs deep copying of pointer data. Since the callee may
modify such data, it is necessary to copy back the entire pointer
data from the callee and caller at the end of the RPC call. This
implements the copy-in and copy-out semantics for pointer data,
which is compatible with single-threaded code.

After marshalling, arguments of a function call are encoded as
a byte array, which is sent to the receiver via the help of an RPC
library. We use the popular TI-RPC library [27] for sending and
receiving byte arrays.

In our system, deep copying of pointer data applies to only user-
space data pointers. Our implementation maintains a whitelist of
other kinds of pointers that are not deep copied, including pointers
to OS-kernel data structures and pointers to code. It is not possible
to deep copy these pointers; therefore we adopt the opaque-pointer
approach for them. For instance, when one partition creates a file
pointer through the OS, our marshalling wraps the file pointer as
an opaque object without performing deep copying. The receiver is
transformed to send the file pointer back to the sender for operating
on the underlying file. For a code pointer that crosses the boundary,
our system also wraps it as an opaque pointer with a runtime tag;
an indirect call via a code pointer is instrumented to decide whether
the code pointer is local or remote before performing a local or an
RPC call.

7 EVALUATION
The latest versions of LLVM do not support DSA, the alias analysis
that PtrSplit uses. Therefore, we implemented PtrSplit in LLVM 3.5,
an older version of LLVM. SoftBound’s public release only supports
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decodeM (l) =



(n, int, l2) if dec_typ(l) = (int, l1) and dec_int(l1) = (n, l2)
(struct {id1 = v1, . . . , idn = vn }, t , ln+1) if dec_typ(l) = (t , l1) and t = struct {id1 : t1, . . . , idn : tn }

and decodeM (li ) = (vi , ti , li+1) for i ∈ [1..n]
(v, tn, l2) if dec_typ(l) = (tn, l1) and decodeM (l1) = (v,TM(tn), l2)
((b ′ + p − b)(b′,e ′), t1∗, l3) if dec_typ(l) = (t1∗, l1) and dec_ptr(l1) = (p(b,e), l2)

and (b, e) < dom(M) and b ′ = alloc(e − b) and
e ′ = b ′ + e − b and l3 = dec_bufM∪{(b,e)7→(b′,e ′)}(b ′, e ′, t1, l2)

((b ′ + p − b)(b′,e ′), t1∗, l2) if dec_typ(l) = (t1∗, l1) and dec_ptr(l1) = (p(b,e), l2)
and (b, e) ∈ dom(M) and (b ′, e ′) = M(b, e)

dec_bufM (b, e, t , l) =


l2 if b + size(t) ≤ e and decodeM (l) = (v, t , l1)
and write_mem(b,v) and dec_bufM (b + size(t), e, t , l1) = l2

l otherwise

Figure 9: Type-based unmarshalling. Function dec_typ(l) is for decoding a type in the first bytes of l ; dec_int(l) for decoding an
integer; dec_ptr(l) for decoding a pointer; alloc(n) for allocating a buffer of size n; write_mem(b,v) for writing v at address b in
memory.

LLVM 3.4; so we had to upgrade its code base to support LLVM 3.5.
Several LLVM passes were added to implement the components
of PtrSplit. We evaluated PtrSplit using a set of benchmarks on a
system running x86-64 Ubuntu 14.04 with the Linux kernel ver-
sion 3.19.0, an Intel Core i5-4590 at 3.3GHz, and 16GB of physical
memory.

The evaluation aims to answer several questions: (1) whether Ptr-
Split can automatically partition realistic C applications and scale
to relatively large C applications, (2) whether the performance over-
head of a partitioned application is acceptable, given the overhead
of performing SPBT and deep copying of RPC data, (3) whether
SPBT significantly reduces the overhead, when compared with a
solution that enforces full spatial memory safety.

We first evaluated with a set of microbenchmarks to validate the
major functionalities of PtrSplit. The programs include the running
example in Fig. 2 and programs that send data structures (including
trees, linked lists, and circular linked lists) over RPC calls.

We then evaluated PtrSplit with a set of security-sensitive pro-
grams and programs from SPECCPU 2006. For each program, we
ran its partitioned version and checked that the partitioned ver-
sion functioned well using the reference data set attached with the
program. During the process, we also measured the performance
overhead of the partitioned version. These experiments are detailed
next.

Security-sensitive programs. Weevaluated PtrSplit on four security-
sensitive programs. Considering that all of these programs are
networking programs, which are greatly affected by the network
latency, we used another machine that was in the same LAN as a
remote server. The remote server machine has the same hardware
and OS configuration as the local machine. For each program, we
analyzed its functionality and marked some sensitive data that need
isolation; recall that sensitive data means data of either high secrecy
or low integrity. Then PtrSplit is used to partition these programs
to isolate sensitive code and data into a separate partition. Results
for these programs are presented in Table 1. We next discuss in
detail how experiments were performed for each program.

ssh is a networking utility included in OpenSSH (version: 7.4p1),
which is a suite of utilities based on the SSH protocol. The ssh utility

implements the client-side of the SSH protocol. We annotated the
buffer that receives the RSA private key as the sensitive data. We
also declassified the return results of functions sshkey_load_file
and sshkey_load_private; although these functions compute on
sensitive data, their return results are status/error codes, which are
not correlated to sensitive data. (The reason for declassification in
wget and telnet is the same and we will not repeat it when we
discuss those programs.) In total, twelve functions were put into a
sensitive partition. For measuring performance overhead, we used
our partitioned ssh to log in to the server one hundred times.

wget (version: 1.18) is a command-line program for retrieving
files from a remote HTTP or FTP server. We annotated the buffer
for receiving the downloaded file from an FTP server as the sen-
sitive data because the file may contain malicious content. We
also declassified the return results of functions fd_read_body and
skip_short_body. Formeasuring performance overhead, we down-
loaded a 1KB file from the FTP server one hundred times.

thttpd (version: 2.27) is an open-source http server program.We
chose its authentication file as the sensitive data, and annotated the
corresponding buffer that reads contents from the authentication
file in the source code; a single declassification annotation was
also added to declassify the result of function auth_check. After
separation, five functions that access the authentication-file buffer
were put into a sensitive partition. Tomeasure the average overhead,
we set up a server on the remote machine with our partitioned
thttpd and downloaded a 1KB file on that server multiple times
through a local client.

telnet (version: inetutils-1.9.4) is a networking client utility
based on the telnet protocol. We consider the threat of a remote
entity that pretends to be a server and the client somehow connects
to the fake server (in a phishing attack, e.g.) and the fake server
tries to use a vulnerability to attack the client. To counter the threat,
we annotated the buffer that receives packets from the server as the
sensitive data because the received packets may contain malicious
content. We also declassified the return results of functions telrcv,
ttyflush and process_rings. In total, eleven functions were put
into a sensitive partition. We measured the average performance
overhead of using our partitioned telnet to log in to a remote server
one hundred times.
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Benchmark SLOC Sensitive Data # of functions/ Total/BR pointers PBT SPBT Total
sensitive functions overhead overhead overhead

ssh 64,671 private key file 1235/12 21020/591 45.0% 2.6% 7.4%
wget 61,216 downloaded file 666/8 14939/466 52.5% 3.4% 6.5%
thttpd 21,925 authentication file 145/5 3068/189 56.3% 3.6% 8.8%
telnet 11,118 received data from server 180/11 2068/233 74.1% 5.1% 9.6%

Table 1: Partitioning results of security-sensitive programs. (Abbreviations: "Total pointers": total pointer variables in LLVM-IR; "BR
pointers": bounds-required pointer variables; "PBT": pointer bounds tracking; "SPBT": selective pointer bounds tracking.)

Overall, our experiments showed promising results, shown in
Table 1. For each program, the table lists its lines of source code, the
sensitive data, the total number of functions in the program versus
the number of functions in the sensitive partition computed by
the partitioning algorithm, the total number of pointers (i.e., static
counts of pointer variables) versus the number of Bounds-Required
(BR) pointers computed by SPBT, the performance overhead (com-
pared to the vanilla, uninstrumented program) when full pointer
bounds tracking is applied, the performance overhead when only
SPBT is applied, and the total performance overhead for the parti-
tioned application.

As shown in the table, SPBT is effective at reducing the overhead
of pointer bounds tracking and the overall performance overhead of
the security-sensitive applications is acceptable. They demonstrated
that PtrSplit can be used for partitioning realistic security-sensitive
applications to improve security, with a modest amount of perfor-
mance overhead.

SPECCPU 2006 benchmarks. We then evaluated PtrSplit using
the SPECCPU 2006 C benchmarks. These programs are compute-
intensive benchmarks and are not security-sensitive benchmarks.
However, we felt it is important to evaluate PtrSplit using compute-
intensive benchmarks as they stress test the instrumentation mech-
anism of PtrSplit; furthermore, we would like to compare the perfor-
mance overhead of SPBT with the overhead of full pointer bounds
tracking (PBT) on SPEC benchmarks. For each of the benchmarks,
we randomly selected a global variable, marked it sensitive, and fed
it to PtrSplit; in this experiment, only explicit flows are taken into
account and no declassification is used during partitioning since it
is not for evaluating security but for evaluating the instrumentation
mechanism.

Table 2 presents the experimental results. We note that three
programs (perlbench, gcc, and gobmk) were excluded because Soft-
Bound’s memory-safety instrumentation produces runtime crashes
due to SoftBound’s implementation bugs and PtrSplit’s SPBT im-
plementation is on top of SoftBound. The original SoftBound paper
also did not report results on perlbench and gcc; further, a recent
paper [6] reported the difficulty of instrumenting SPEC benchmarks
using SoftBound. We also excluded mcf because it is a small pro-
gram with 24 functions and any global variable marked as sensitive
would lead to all functions being in one partition (adding declassifi-
cation annotations would produce a separation, but we refrained
from doing so since it is unclear where to declassify based on a
randomly selected global variable).

For SPBT, we can see from the table the total number of point-
ers that require bounds is typically a small percentage of the total

number of pointers in a program (we counted the number of point-
ers statically, based on their types). As a result, the average SPBT
runtime overhead for the benchmarks is 7.2%, which is much lower
than the average overhead of 136.2% for full pointer bounds track-
ing (PBT). This shows the effectiveness of SPBT. Note that milc
has no BR pointers because no pointer data are passed between the
created partitions.

The runtime overhead of PtrSplit comes from two sources: pointer
bounds tracking and data marshalling/unmarshalling for RPC calls.
Table 2 also shows the total runtime overhead. libquantum’s over-
head is rather large; we found that RPC call overhead is positively
correlated to the RPC call frequency. For libquantum, the randomly
selected variable leads to a partitioning with a high RPC call fre-
quency (94 Hz); the RPC call frequency of other benchmarks is
below 3Hz. Choosing a different global variable of libquantum
would lead to a similar result.

To further validate the robustness of our partitioning framework,
for each SPEC benchmark, we built a script that randomly splits
the benchmark’s set of functions into two disjoint sets of functions
and creates a partitioning based on the split. The script was run
multiple times and for each run we checked that the partitioned ap-
plication worked as intended (using the reference data set included
in SPECCPU 2006). Some of these random partitionings created
complex interfaces that required exchange of complex data (structs,
pointers, etc.) and provided good stress tests of PtrSplit’s RPCmech-
anism. Table 3 presents the results. For each benchmark, the table
includes the BR-pointer ratio (the number of BR pointers divided
by the number of total pointers), the SPBT overhead, and the total
overhead, averaged over multiple runs of performing random par-
titioning. The total overhead is on the high side, which indicates
random partitioning would not lead to efficient partitionings.

8 LIMITATIONS AND FUTUREWORK
In this section, we discuss current limitations of PtrSplit and how it
can be extended to address them. PtrSplit’s PDG-based partitioning
algorithm can be extended to produce multiple partitions instead
of just two. Programmers can use attributes for different kinds
of sensitive data (e.g., one for networking data and one for data
retrieved from a database) and then the same reachability-based
algorithm can be used to produce multiple partitions, one for pro-
cessing one kind of sensitive data. It is possible that a function
can access multiple categories of sensitive data, in which case the
function can be duplicated in multiple partitions. Another design
would be to employ a security lattice; all functions that access the
same categories of sensitive data are assigned the same label and
put into their own partition.
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Benchmark SLOC Sensitive # of functions/ Total/BR PBT SPBT Total
data and type sensitive functions pointers overhead overhead overhead

lbm 1,156 LBM_Grid* srcGrid 19/5 695/131 141.4% 19.7% 24.3%
libquantum 4,358 struct quantum_reg* lambda 115/3 1690/128 282.3% 11.2% 179.2%
bzip2 8,393 char* progName 100/6 4356/8 59.4% 3.1% 5.3%
sjeng 13,547 char* realholdings 144/5 3415/81 41.7% 3.4% 10.2%
milc 15,042 double[] path_coeff 235/2 5001/0 111% 0% 2.2%
sphinx3 25,090 char** liveargs 369/3 9491/37 90.5% 5.1% 7.1%
hmmer 35,992 int ser_randseed 538/7 17692/175 128.5% 5.8% 26.7%
h264ref 51,578 int[] FirstMBInSlice 590/5 32212/461 234.4% 9.6% 15.5 %
Average 136.2% 7.2% 33.8%

Table 2: Partitioning results for SPECCPU 2006 benchmarks (use a random global as sensitive variable).

Table 3: The random partitioning results for SPECCPU 2006 benchmarks.

Benchmark Average BR-pointer ratio Average SPBT overhead Average total overhead
lbm 14.3% 15.4% 55.1%
libquantum 16.2% 51.5% 163.3%
bzip2 12.4% 16.4% 71.3%
sjeng 15.2% 14.1% 63.9%
milc 10.7% 23.4% 83.2%
sphinx 8.7% 17.9% 37.5%
hmmer 8.8% 29.8% 89.7%
h264ref 9.1% 38.4% 101.9%
Average 11.8% 29.4% 79.3%

A second straightforward improvement of the partitioning algo-
rithm is to produce partitions that balance between security and
performance. A program profiling tool can be used to profile the
frequency of function calls and size of data sent over function calls;
such performance numbers can be used to annotate PDG edges.
Then an algorithm such as the one used by ProgramCutter [32]
can be used to produce a partitioning that takes into account of
both security and performance. Another interesting direction is to
target specific application domains. For instance, OS developers
have long been interested in privilege separating kernel code and
there had been manual privilege separation effort [13]; similarly,
there is a need to partition legacy applications to be compatible
with a trusted execution environment such as Intel’s SGX. Finally,
extending the support to C++ applications requires extending our
type-based marshalling and unmarshalling to cover more types
including C++ classes.

PtrSplit automatically partitions single threaded code and it will
be a technical challenge to extend it to cover multi-threaded code.
One issue with multi-threading is that the computation of data de-
pendence is more complex, because of shared data between threads.
Furthermore, the mechanism of deep copying pointer data naturally
leads to a sequential execution model: pointer data is copied in at
the beginning of an RPC call and copied out at the end. For a multi-
threaded application, one thread can perform an RPC call, which
leads to a copy of the passed pointer data; without synchronization,
a second thread can modify the original pointer data, while the
callee can separately modify its own copy. Proper synchronization

code needs to be generated for pointer data, while not sacrificing
too much performance.

PtrSplit also makes assumptions about how types are used in
order for partitioned applications to function correctly. We men-
tioned before that PtrSplit’s computation of call edges in PDGs
assumes the lack of certain type casts on function-pointer types.
Another assumption is that pointers can be identified through the
types of cross-partition data. This assumption may be violated by
type casts. As an example, suppose an application casts the type
of a struct pointer to a void pointer. For bounds tracking, LLVM
treats a void pointer as an i8* pointer (pointer to bytes) and Soft-
Bound can track its bounds. As a result, a void pointer across the
boundary is marshalled as a byte array. This is problematic when
the original struct contains other pointers as they are hidden from
the type-based marshalling process. Therefore, PtrSplit currently
assumes void pointers do not appear at the boundary and raises
an alarm when such a situation occurs. We did not encounter this
case in our experiments. An alternative design would be to add run-
time type information (RTTI) for data pointers and use the runtime
types for marshaling and unmarshalling. As a side note, PtrSplit’s
PDG-construction builds on DSA alias analysis, which can handle
type casts when calculating aliases; so dependence edges are not
missed in PDGs because of type casts.

PtrSplit can be further optimized by using more efficient pointer
bounds tracking tools to reduce the overhead. Recent work such
as Low-Fat Pointers [14, 15] and CUP [6] seem to provide general
pointer tracking with lower overhead than SoftBound, while still
maintaining the Application Binary Interface (ABI). Unfortunately,
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these systems are not yet open sourced. When they are available,
we wish to combine our SPBT approach and these state-of-the-art
bounds tracking techniques to make PtrSplit more efficient.

9 CONCLUSIONS
Automatic partitioning security-critical applications is an effective
way of improving software security. It is important to support the
automatic partitioning of C/C++ applications given their lack of
memory safety and that trusted execution environments including
SGX and TrustZone can run only native code; managed code such as
Java bytecode cannot run directly inside SGX without first porting
the whole language virtual machine into an SGX enclave. In this
paper, we describe several techniques that support general pointers
in C/C++ applications, including parameter trees, selective pointer
bounds tracking, and type-based marshalling/unmarshalling. These
techniques push forward the state-of-the-art of privilege separating
C/C++ applications and experiments suggest they have the potential
of making automatic program partitioning practical.
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