
Ligero: Lightweight Sublinear Arguments
Without a Trusted Setup

Scott Ames

University of Rochester

sames@cs.rochester.edu

Carmit Hazay

Bar-Ilan University

carmit.hazay@cs.biu.ac.il

Yuval Ishai

Technion and UCLA

yuvali@cs.technion.ac.il

Muthuramakrishnan Venkitasubramaniam

University of Rochester

muthuv@cs.rochester.edu

ABSTRACT
We design and implement a simple zero-knowledge argument pro-

tocol for NP whose communication complexity is proportional to

the square-root of the veri�cation circuit size. The protocol can

be based on any collision-resistant hash function. Alternatively, it

can be made non-interactive in the random oracle model, yielding

concretely e�cient zk-SNARKs that do not require a trusted setup

or public-key cryptography.

Our protocol is attractive not only for very large veri�cation

circuits but also for moderately large circuits that arise in appli-

cations. For instance, for verifying a SHA-256 preimage in zero-

knowledge with 2
−40

soundness error, the communication complex-

ity is roughly 44KB (or less than 34KB under a plausible conjecture),

the prover running time is 140 ms, and the veri�er running time is

62 ms. This proof is roughly 4 times shorter than a similar proof

of ZKB++ (Chase et al., CCS 2017), an optimized variant of ZKBoo

(Giacomelli et al., USENIX 2016).

The communication complexity of our protocol is independent of

the circuit structure and depends only on the number of gates. For

2
−40

soundness error, the communication becomes smaller than the

circuit size for circuits containing roughly 3 million gates or more.

Our e�ciency advantages become even bigger in an amortized

setting, where several instances need to be proven simultaneously.

Our zero-knowledge protocol is obtained by applying an opti-

mized version of the general transformation of Ishai et al. (STOC

2007) to a variant of the protocol for secure multiparty compu-

tation of Damgård and Ishai (Crypto 2006). It can be viewed as

a simple zero-knowledge interactive PCP based on “interleaved”

Reed-Solomon codes.

1 INTRODUCTION
Verifying outsourced computations is important for tasks and sce-

narios when there is an incentive for the party performing the

computation to report incorrect answers. In this work, we present

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

CCS’17, Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 ACM. ISBN 978-1-4503-4946-8/17/10. . . $15.00

DOI: http://dx.doi.org/10.1145/3133956.3134104

a concretely e�cient argument protocol for NP whose communi-

cation complexity is proportional to the square root of the size of

a circuit verifying the NP witness. Our argument system is in fact

a zero-knowledge argument of knowledge, and it only requires

the veri�er to send public coins to the prover. The latter feature

implies that it can be made non-interactive via the Fiat-Shamir trans-

form [19], yielding an e�cient implementation of zero-knowledge

succinct non-interactive arguments of knowledge (zk-SNARKs [11])

without a trusted setup.

To put our work in the proper context, we give some relevant

background. The last half decade has seen tremendous progress in

designing and implementing e�cient systems for veri�able compu-

tation (see [4, 47] for recent surveys). These e�orts can be divided

into three broad categories according to the underlying combinato-

rial machinery.

Doubly e�cient interactive proofs: This line of work, initiated

by Goldwasser, Kalai, and Rothblum [23] (following a rich line

of work on interactive proofs with computationally unbounded

provers [24, 37, 44]), provides sublinear communication, e�ciently

veri�able proofs for low-depth polynomial-time computations.
1

See [15, 41, 45, 46] and references therein for a survey of works

along this line.

Probabilistically checkable proofs (PCPs) and their interac-
tive variants: Originating from the works of Kilian [36] and Mi-

cali [39], recent works [4, 6, 8] have shown how to obtain e�cient

sublinear arguments for NP from PCPs [1–3]. Classical PCPs have

been extended to allow additional interaction with the prover, �rst

in the model of interactive PCP (IPCP) [35] and then in the more

general setting of interactive oracle proofs (IOP) [9], also known

as probabilistically checkable interactive proofs (PCIP) [41]. Ar-

guments obtained via PCPs and IOPs have the advantages of not

relying on public-key cryptography, not requiring a trusted setup,

and o�ering conjectured security against quantum attacks. How-

ever, current implementations along this line are still quite far from

having good concrete e�ciency.

Linear PCPs: This line of work, initiated by Ishai, Kushilevitz, and

Ostrovsky [28] (in the interactive or designated veri�er setting) and

by Groth [27] (in the non-interactive, public veri�cation setting of

SNARKs) obtains sublinear arguments for NP with preprocessing by

1
The GKR technique has been recently extended to the case of NP statements by Zhang

et al. [48]. However, the communication complexity of the resulting arguments still

grows with the veri�cation circuit depth, and moreover their e�cient instantiation

requires the use of public-key cryptography.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2087

combining linear PCPs with homomorphic public-key cryptography.

In a linear PCP the veri�er can obtain a small number of linear

combinations of a proof vector. Linear PCPs are simpler to construct

than classical PCPs and have served as the basis for some of the

�rst implementations of veri�able computation protocols [43]. A

very e�cient construction of linear PCPs for NP that serves as the

basis for most current SNARK implementations, including the ones

used in zerocash [7], was given by Gennaro, Gentry, Parno, and

Raykova in [21]. (The view of these SNARKs as being based on

linear PCPs is due to Bitansky et al. [12] and Setty et al. [42].) Two

practical disadvantages of the protocols along this line are that they

are quite slow on the prover side (due to a heavy use of public-key

cryptography), and their soundness in the non-interactive setting

crucially relies on the existence of a long and “structured” common

reference string that needs to either be generated by a trusted party

or by an expensive distributed protocol.

Our goal in this work is to combine the best features of previous

approaches to the extent possible:

Obtain a simple, concretely e�cient, sublinear com-
munication zero-knowledge argument system for
NP, without any setup, complex PCP machinery, or
expensive public-key operations.

As discussed above, all prior works fall short of meeting the

above goal on one or more counts.

1.1 Our Results
The main result of this work is a zero-knowledge argument protocol

for NP with the following features.

• It is sublinear, in the sense that the asymptotic communi-

cation complexity is roughly the square root of the veri�-

cation circuit size.

• It is simple to describe and analyze in a self-contained way.

• It only employs symmetric-key primitives (collision-resistant

hash-functions) in a black-box way. Moreover, the protocol

can be made non-interactive in the random oracle model

by using the Fiat-Shamir transform [19], thus providing a

light-weight implementation of (publicly veri�able) zero-

knowledge SNARKs.

• It does not require any trusted setup, even in the non-

interactive case.

• It is concretely e�cient. We demonstrate its concrete e�-

ciency via an implementation.

• In the multi-instance setting where many instances for

the same NP veri�cation circuit are required, we obtain

improved amortized communication complexity with sub-

linear veri�cation time.

Our protocol can be seen as a light-weight instance of the second

category of protocols discussed above. However, instead of directly

applying techniques from the PCP literature, we combine e�cient

protocols for secure multiparty computation (MPC) with a variant

of the general transformation of Ishai, Kushilevitz, Ostrovsky, and

Sahai (IKOS) [29] that transforms such MPC protocols to zero-

knowledge interactive PCPs (ZKIPCP).

More concretely, we instantiate the MPC component with an

optimized variant of the protocol of Damgård and Ishai [16] (similar

to the one described in Appendix C of [33]) and transform it into a

ZKIPCP by applying a more e�cient variant of the IKOS transfor-

mation in the spirit of the IPS compiler [32]. In a nutshell, the main

di�erence with respect to the original IKOS transformation is that

we restrict the topology of the MPC network in a way that leads

to a better trade-o� between soundness error and communication

complexity.

A key feature of the underlying MPC protocol is that its total
communication complexity is roughly equal to the size of the circuit

being evaluated, independently of the number of parties. Letting

the number of parties be the square root of the circuit size, the com-

munication per party is also roughly the square root of the circuit

size. This translates into a ZKIPCP with similar parameters. See

Section 4 for a self-contained presentation of the ZKIPCP obtained

via the above approach.

The recent work of Giacomelli, Madsen and Orlandi [22] and

its improvement due to Chase et al. [13] already demonstrated

that the IKOS transformation can lead to concretely e�cient zero-

knowledge arguments, but where the communication is bigger than

the veri�cation circuit size. In the present work, we obtain a sublin-

ear variant of this result by modifying both the IKOS transformation

and the underlying MPC machinery.

To summarize, using the above approach we obtain a simple

proof of the following theorem with good concrete e�ciency:

Theorem 1.1 (Informal). Assume the existence of collision-resistant
hash-functions. Then there is a public-coin zero-knowledge argument
for proving the satis�ability of a circuit C with communication com-
plexity Õ(

√
|C|).

Concrete e�ciency.We now give more detailed information about

the concrete e�ciency of our implementation. The following num-

bers apply either to interactive zero-knowledge protocols based on

collision-resistant hash functions or to non-interactive zk-SNARKs

in the random oracle model obtained via the Fiat-Shamir transform.

We refer the reader to Section 6 for more details and give only a

few representative �gures below.

The communication complexity of proving the satis�ability of

an arithmetic circuit with s > 30000 gates over a �nite �eld F of

size |F| ≥ 2
128

with soundness error 2
−40

consists of roughly 95

√
s

�eld elements (or 70

√
s elements under Conjecture 4.1). For the case

of 2
−80

error, the communication is roughly 140

√
s (or 120

√
s under

Conjecture 4.1).

In the case of Boolean circuits, the communication complexity

becomes smaller than the circuit size for circuits with more than

roughly 3 million gates. One concrete benchmark that has been used

in prior works is verifying a SHA-256 preimage in zero-knowledge.

For this benchmark, the communication complexity of our protocol

with 2
−40

soundness error is roughly 44KB (or less than 34KB

under a Conjecture 4.1), the prover running time is 140 ms, and

the veri�er running time is 62 ms. This is roughly 4 times less

communication than a similar proof of ZKB++ [13], an optimized

variant of ZKBoo [22]. Requiring 2
−80

soundness error doubles the

communication (as in [13, 22]).

Our protocol easily extends to a multi-instance setting to pro-

vide additional bene�ts. In this setting, we can handle N instances

of a circuit of size s with soundness error 2
−κ

at an amortized

communication cost per instance smaller than s when N = Ω(κ2).

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2088

Moreover, the amortized veri�cation time in the multi-instance

setting is sublinear, involving a total of O(s log s + N logN) �eld

operations. Finally, the prover’s running time grows linearly with

the number of instances but still remains practically feasible for

reasonable number of instances. For the SHA-256 circuit, we show

that the amortized communication over 4096 instances is 2KB with

amortized prover time of 151 ms and veri�cation time of 500 µs.

This amortization is relevant to natural applications, e.g., in the

context of cryptocurrencies [7, 18].

Related work. In a concurrent and independent work [5], Ben-

Sasson et al. use di�erent techniques to construct concretely ef-

�cient IOPs that imply “transparent” proof systems, referred to

as zk-STARKs, of the same type we obtain here. These zk-STARK

constructions signi�cantly improve over the previous ones from [4].

A preliminary comparison with the concrete e�ciency of our con-

struction suggests that our construction is generally more attractive

in terms of prover computation time and also in terms of proof

size for smaller circuits (say, of size comparable to a few SHA-256

circuits), whereas the construction from [5] is more attractive in

terms of veri�er computation time and proof size for larger circuits.

We leave a more thorough comparison between the two approaches

for future work.

2 PRELIMINARIES

Basic notations. We denote the security parameter by κ. We say

that a function µ : N→ N is negligible if for every positive polyno-

mial p(·) and all su�ciently large κ’s it holds that µ(κ) < 1

p(κ) . We

use the abbreviation PPT to denote probabilistic polynomial-time

and denote by [n] the set of elements {1, . . . ,n} for some n ∈ N.

For an NP relation R, we denote by Rx the set of witnesses of x
and by LR its associated language. That is, Rx = {w | (x ,w) ∈ R}
and LR = {x | ∃w s .t . (x ,w) ∈ R}.

2.1 Collision-Resistant Hashing and Merkle
Trees

Let {Hκ }κ ∈N = {H : {0, 1}p(κ) → {0, 1}p
′(κ)}κ be a family of hash

functions, where p(·) and p′(·) are polynomials so that p′(κ) ≤ p(κ)
for su�ciently large κ ∈ N. For a hash function H ←Hκ a Merkle

hash tree [38] is a data structure that allows to commit to ` = 2
d

messages by a single hash value h such that revealing any message

requires only to reveal O(d) hash values.

A Merkle hash tree is represented by a binary tree of depth

d where the ` messages m1, . . . ,m` are assigned to the leaves

of the tree; the values assigned to the internal nodes are com-

puted using the underlying hash function H that is applied on

the values assigned to the children, whereas the value h that com-

mits to m1, . . . ,m` is assigned to the root of the tree. To open

the commitment to a message mi , one reveals mi together with

all the values assigned to nodes on the path from the root to mi ,

and the values assigned to the siblings of these nodes. We denote

the algorithm of committing to ` messages m1, . . . ,m` by h :=

CommitM(m1, . . . ,m`) and the opening of mi by (mi , path(i)) :=
OpenM(h, i). Verifying the opening of mi is carried out by essen-

tially recomputing the entire path bottom-up and comparing the

�nal outcome (i.e., the root) to the value given at the commitment

phase.

The binding property of a Merkle hash tree is due to collision-

resistance. Intuitively, this says that it is infeasible to e�ciently �nd

a pair (x ,x ′) so that H (x) = H (x ′), where H ←Hκ for su�ciently

large κ. In fact, one can show that collision-resistance of {Hκ }κ ∈N
carries over to the Merkle hashing. Formally, we say that a family of

hash functions {Hκ }κ is collision-resistant if for any PPT adversary

A the following experiment outputs 1 with probability negl(κ): (i)

A hash function H is sampled from Hκ ; (ii) The adversary A is

given H and outputs x ,x ′; (iii) The experiment outputs 1 if and

only if x , x ′ and H (x) = H (x ′).
In the random oracle model, Merkle tree can be computed by

replacing the function H with a random oracle ρ where statistical

binding follows due to the hardness of �nding a collision in this

model. We denote this algorithm by CommitROM .

2.2 Zero-Knowledge Arguments
We denote by 〈A(w),B(z)〉(x) the random variable representing

the (local) output of machine B when interacting with machine A
on common input x , when the random-input to each machine is

uniformly and independently chosen, and A (resp., B) has auxiliary

input w (resp., z).

Definition 2.1 (Interactive argument system). A pair of PPT
interactive machines 〈P,V〉 is called an interactive proof system

for a language L if there exists a negligible function negl such that
the following two conditions hold:

(1) Completeness: For every x ∈ L there exists a stringw such
that for every z ∈ {0, 1}∗,

Pr[〈P(w),V(z)〉(x) = 1] ≥ 1 − negl(|x |).

(2) Soundness: For every x < L, every interactive PPTmachine
P∗, and everyw, z ∈ {0, 1}∗

Pr[〈P∗(w),V(z)〉(x) = 1] ≤ negl(|x |).

Definition 2.2 (Zero-knowledge). Let 〈P,V〉 be an interactive
proof system for some language L. We say that 〈P,V〉 is compu-

tational zero-knowledge with respect to an auxiliary input if for
every PPT interactive machineV∗ there exists a PPT algorithm S,
running in time polynomial in the length of its �rst input, such that

{〈P(w),V∗(z)〉(x)}x ∈L,w ∈Rx ,z∈{0,1}∗
c

≈ {〈S〉(x , z)}x ∈L,z∈{0,1}∗

(when the distinguishing gap is considered as a function of |x |). Specif-
ically, the left term denote the output ofV∗ after it interacts with P
on common input x whereas, the right term denote the output of S
on x .

Our zero-knowledge protocols in fact satisfy the additional proof
of knowledge property, which is important for some applications.

See full version for more details.

2.3 Interactive PCPs
An interactive PCP [35] (IPCP) is a combination of a traditional PCP

with an interactive proof. An IPCP is a special case of interactive

oracle proofs (IOP) [9] (also known as probabilistically checkable

interactive proofs [41]). We will be interested in zero-knowledge

interactive PCPs [25] in which the veri�er reads a small number of

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2089

bits from the PCP and exchanges a small number of bits with the

prover P. We formalize this notion below.

Definition 2.3 (Interactive PCP). Let R(x ,w) be an NP rela-
tion corresponding to an NP language L. An interactive PCP (IPCP)

system for R with parameters (q, l , ϵ) is a pair of PPT interactive
machines 〈P,V〉 with the following properties.

(1) Syntax: On common input x and prover inputw , the prover
P computes in time poly(|x |) a bit string π (referred to as
the PCP). The prover P and veri�erV then interact, where
the veri�er has oracle access to π .

(2) Completeness: If (x ,w) ∈ R then

Pr[(P(x ,w),Vπ (x)) = 1] = 1.

(3) Soundness: For every x < L, every (unbounded) interactive
machine P∗ and every π̃ ∈ {0, 1}∗,

Pr [(P∗,V π̃ (x)) = 1] ≤ ϵ(|x |).

(4) Complexity: In the interaction (P(x ,w),Vπ (x)) at most
l(|x |) bits are communicated andV reads at most q(|x |) bits
of π .

A public-coin IPCP is one where every message sent by the veri�er
simply consists of fresh random bits.

The notion of IPCP can be extended to additionally guarantee

zero-knowledge. Our zero-knowledge variants of IPCP will achieve

perfect zero-knowledge against honest veri�ers. We present the

de�nition of zero-knowledge IPCP next.

Definition 2.4 (Zero-knowledge IPCP). Let 〈P,V〉 be an in-
teractive PCP forR. We say that 〈P,V〉 is an (honest veri�er, perfect)

zero-knowledge IPCP (or ZKIPCP for short) if there exists an expected
polynomial time algorithm S, such that for any (x ,w) ∈ R, the out-
put of S(x) is distributed identically to the view ofV in the interaction
(P(x ,w),Vπ (x)).

3 FROMMPC TO ZKIPCP
3.1 Our MPC Model
As mentioned in the introduction, the e�ciency of our constructions

can be distilled to identifying the right MPC model and designing

an e�cient protocol in this model. In this regards we deviate from

the original work of [29] which provided a general transformation

from any honest majority MPC protocol that can compute arbitrary

functionalities. In particular, our model is more in line with the

watchlist mechanism (a-la [32]). We begin with the description of

the MPC model and the protocol speci�cations that we will need

to design our zero-knowledge protocol. In Section 4, we use such

MPC protocols based on the works [14, 16, 32, 33].

In our model, we consider a sender client S , n servers P1, . . . , Pn
and a receiver client R. The sender has input x and a witnessw with

respect to some NP relation R. The receiver and the servers do not

receive any input, where the servers obtain random shares from the

sender and evaluate the computed circuit. Upon receiving (x ,w)
from the sender, the functionality computes R(x ,w) and forwards

the result to the receiver R. We consider the speci�c network where

we restrict the communication to a single message between S and

the servers at the beginning of the protocol and a single message

from the servers to the receiver R at the end of the protocol. The

only way the servers may communicate with each other is via a

broadcast. In our actual MPC protocol, the servers will never utilize

such a broadcast. Nevertheless, our transformation from MPC to ZK

can be easily extended to allow for the servers to invoke a broadcast.

For simplicity, in our actual transformation, we will restrict the

servers to not communicate with each other at all.

We consider the security of protocols in both the honest-but-

curious (passive) and the malicious (active) models. In the former

model, one may break the security requirements into the following

correctness and privacy requirements.

Definition 3.1 (Correctness). We say that Π realizes a deter-
ministic n + 1-party functionality (x , r1, . . . , rn) with perfect (resp.,
statistical) correctness if for all inputs (x , r1, . . . , rn), the probability
that the output of some player is di�erent from the output of f is 0
(resp., negligible in κ), where the probability is over the independent
choices of the random inputs r1, . . . , rn .

Definition 3.2 (tp -Privacy). Let 1 ≤ tp < n. We say that Π
realizes f with perfect tp -privacy if there is a PPT simulator S such
that for any inputs (x , r1, . . . , rn) and every set of corrupted players
T ⊂ [n], where |T | ≤ tp , the joint view ViewT (x , r1, . . . , rn) of
players in T is distributed identically to S(T ,x , {ri }i ∈T , fT (x , r1,
. . . , rn)).

With respect to our MPC model de�ned above, we consider

privacy in the presence of a static passive adversary that corrupts

the receiver R and at most tp servers.

In the malicious model, in which corrupted players may behave

arbitrarily, security cannot be generally broken into correctness

and privacy as above. However, for our purposes we only need the

protocols to satisfy a weaker notion of security in the malicious

model that is implied by the standard general de�nition. Speci�cally,

it su�ces that Π be tp -private as above, and moreover it should

satisfy the following notion of correctness in the malicious model.

Definition 3.3 (Statistical tr -Robustness). We say that Π
realizes f with statistical tr -robustness if it is perfectly correct in the
presence of a honest-but-curious adversary as in De�nition 3.1, and
furthermore for any (unbounded) active adversary that adaptively

corrupts a setT of at most tr players, and for any inputs (x , r1, . . . , rn),
the following robustness property holds. If there is no (r1, . . . , rn) such
that f (x , r1, . . . , rn) = 1, then the probability that R outputs 1 in an
execution of Π in which the inputs of the honest players are consistent
with (x , r1, . . . , rn) is negligible in κ where κ is a statistical parameter
that the protocol Π receives as input.

Our main theorems about our two-party ZK protocol are proven

in the presence of a static active adversary, that corrupts the prover

at the onset of the execution. Nevertheless, our proof relies on

the security of the underlying MPC protocol (utilized in the MPC-

in-the-head paradigm) being robust against an active adversary

that adaptively corrupts a subset of the servers in the underlying

MPC protocol. Concretely, with respect to our MPC model de�ned

above, we consider robustness in the presence of an adaptive active

adversary that corrupts the sender S and at most tr servers.

Finally, when used in the MPC-in-the-head paradigm, we need

the notion of consistent views between servers and the receiver

that we de�ne below.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2090

Definition 3.4 (Consistent views). We say that a pair of views
Vi ,Vj are consistent (with respect to the protocol Π and some public
input x) if the outgoing messages implicit in Vi are identical to the
incoming messages reported in Vj and vice versa.

3.2 ZKIPCP for NP - The General Case
Next, we provide our compilation from an MPC protocol satisfying

the requirements speci�ed in Section 3.1 to an interactive PCP. We

note that while the transformation presented in this section works

for any MPC in the model as described in the previous section, we

will simplify our MPC model as follows:

Two-phase: The protocol we consider will proceed in two phases:

In Phase 1, the servers receive inputs from the sender and

only perform local computation. After Phase 1, the servers

obtain a public random string r of length l sampled via

a coin-�ipping oracle and broadcast to all servers. The

servers use this in Phase 2 for their local computation at

the end of which each server sends a single output message

to the receiver R.

No broadcast: The servers never communicate with each other.

Each server simply receives inputs from the sender at the

beginning of Phase 1, then receives a public random string

in Phase 2, and �nally delivers a message to R.

Formally, let L be an NP-language with NP relation R. Let x an

NP statement that is the common input and let w be the private

input of the prover. Our construction Π
ZKIPCP

proceeds as follows:

Let Π be any MPC protocol in our model. We will now design a

ZKIPCP protocol Π
ZKIPCP

that meets De�nition 2.3.

Protocol Π
ZKIPCP

.
• Input: The prover P and the veri�er V share a common in-

put statement x and a circuit description C that realizes R. P

additionally has input w such that R(x ,w) = 1.

• Oracle π : The prover runs the MPC protocol Π “in-its-head” as

follows. It picks a random input rS and invokes S on (x ,w ; rS)
and a random input ri for every server Pi . The prover computes

the views of the servers up to the end of Phase 1 in Π, denoted by

(V1, . . . ,Vn), and sets the oracle as the n symbols (V1, . . . ,Vn).
• The interactive protocol.

(1) V picks a random challenge r of length l and sends it to

the sender.

(2) Upon receiving the challenge r , prover P sends the view V
of R.

2

(3) V computes the output of R from the view and checks if

R does not abort. It then picks a random subset Q of [n] of

size tp uniformly at random (with repetitions) from [n], and

queries the oracle on Q .

(4) V obtains from the oracle the views of the servers in Q .

(5) V aborts if the views of the servers are inconsistent with

the view of R. Otherwise, it accepts and halts.

We are now ready to prove the following theorem.

Theorem 3.5. Let f be the following functionality for a sender S
and n servers P1, . . . , Pn and receiver R. Given a public statement x

2
As the prover possesses all information about the servers, and the veri�er always

receives the broadcast message from each server, these broadcast messages can be

sent directly from the prover to the veri�er.

and an additional inputw received from S , the functionality delivers
R(x ,w) to R. Suppose that Π is a two-phase protocol in the MPCmodel
speci�ed in Section 3.1 that realizes f with statistical tr -robustness (in
the malicious model) and perfect tp -privacy (in the honest-but-curious
model), where tr < dn

2
e − 1. Then protocol Π

ZKIPCP
described above is

a ZKIPCP for NP relation R, with soundness error
(
1 −

tr
n

)tp
+ δ (κ)

where δ (κ) is the robustness error of Π.

Proof: Our proof follows by establishing completeness, soundness

and zero-knowledge as required in De�nitions 2.3-2.4.

Completeness: Completeness follows directly from the correct-

ness of the underlying MPC protocol.

Soundness: Consider a statement x < LR . We will show that

no prover P∗ can convinceV beyond a negligible probability to

accept a false statement. We will argue soundness by following an

approach similar to [29] where we �rst identify an inconsistency

graph and then invoke the properties of the underlying MPC. More

precisely, we consider an inconsistency graph G based on the n
views V1, . . . ,Vn and the view of the receiver R which contains the

messages from servers P1, . . . , Pn to R. Here, the servers and the

receiver correspond to nodes inG and inconsistency between every

pair of nodes is de�ned as in De�nition 3.4. Then there are two

cases depending on the graph G:

Case 1: There are more than tr edges inG. In this case, we will

argue that with high probability the set of servers opened by the

veri�er will hit one of these edges. Recall that the view of R is

provided to the veri�er. Therefore, for any edge in G between R
and Vi , if the corresponding server Pi falls in Q , then the veri�er

rejects. The probability that all tp servers chosen by the veri�er

misses all inconsistent edges is at most

(
1 −

tr
n

)tp
.

Case 2: There are fewer than tr edges inG. In this case, we will

argue that by the statistical tr -robustness of the underlying MPC

protocol Π, the veri�er will reject except with probability δ (κ). More

precisely, for every cheating strategy P∗ in the ZK proof we will

demonstrate an adversarial strategy A attacking the underlying

MPC protocol such that the probability with which V accepts a

false statement when interacting with P∗ on a false statement will

be bounded by the probability that R outputs 1 in an execution of

the underlying MPC protocol with adversary A.

More precisely, consider an adversary A that is participating in

the MPC protocol with n servers, a sender and a receiver. Internally,

A incorporates the code of P∗ while emulating the roles of the

oracle andV . When the protocol begins, P∗ set the oracle with the

views of the servers as in Phase 1 of Π. These views simply contain

the inputs sent to the servers (as all computations are local). Upon

obtaining the views of the servers A will corrupt the sender in the

external MPC execution, and acting as the sender, it will send as

input to server Pi the value that was internally generated by P∗

as the view of that server, namely Vi . Next, recall that in the MPC

protocol the servers receive a random string from the coin-�ipping

oracle (in our protocol the veri�er picks r as the challenge in Step

1). A will internally forward this string r to P∗ as the message

provided by the veri�er. Next internally, P∗ will generate the view

of the receiver R from which A computes the inconsistency graph

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2091

G . Recall that an edge is present between a server Pi and the receiver

R in this graph if the view of Pi is inconsistent with the view of R
and randomness r . LetT1 be the set of the servers of size t∗ that are

connected to an edge in G. If t∗ > tr , then A aborts.

Otherwise, A proceeds with the internal execution by selecting

tp indices for the veri�er’s challenge, for which the oracle will

reveal the views of these corresponding servers. If V rejects in

the internal execution because any of these views are inconsistent,

thenA aborts. Otherwise,A continues with the external execution.

Recall that in Phase 2, each server sends a single message to R. Then

just before the servers send these messages,A (adaptively) corrupts

the servers in T1 and replaces their (honestly generated) messages

sent to R by what was internally reported in the view of R, namely

the messages sent by P∗ to the veri�er in the proof. Upon sending

the message in Phase 2, let T2 of size t ′∗ be the set of the servers

that are inconsistent with the view o R. If |T1 ∪T2 | > tr , then A

aborts. Otherwise, A (adaptively) corrupts the servers in t ′∗ and

continues as above.

It follows from this description that the acceptance condition

of the veri�er in the internal emulation with A is identical to the

output of R in the external MPC execution. Since the underlying

MPC protocol is tr -robust and the number of parties corrupted by

A is t∗ such that |t∗ | ≤ tr , we have that R outputs 0 except with

probability at most δ (κ).
We conclude that the veri�er in the internal emulation by P∗

accepts the proof of a false statement except with probability at

most δ (κ). Next, we observe that the view of the veri�er emulated

byA in the internal emulation is identically distributed to the view

of an honest veri�er in an interactive with P∗. Therefore, we can

conclude that an honest veri�er accepts a false statement in this

case with probability at most δ (κ).
Applying a union bound, we conclude that the veri�er accepts a

false statement with probability at most

(
1 −

tr
n

)tp
+ δ (κ).

Zero-knowledge: The zero-knowledge property follows from the

tp -privacy of the underlying MPC protocol Π. Namely, we construct

a simulator S that invokes the simulator for the MPC protocol,

denoted bySΠ . In the simulationSΠ is required to produce the view

of R upon receiving a challenge r and then, upon obtaining the tp
indexes that the veri�er requests to open, outputs the views of these

tp servers, where SΠ simulates an adversary A that adaptively

corrupts these servers at the end of the computation. �

Communication complexity: The main source of complexity is

in revealing the view of R in the third message and revealing the

view of the tp servers in the last message. If the maximum size of

the view of each server Pi for i ∈ tp , is vsize, and the size of the

view of R is vR , then the total communication complexity from the

prover is tp · vsize +vR .

We can adjust the parameters of the protocol we use in Section

4 subject to the constraint that vsizevR = O(|C|). To minimize the

communication complexity, if we set tp ·vsize and vR to be roughly

equal then we obtain the optimum complexity of our approach.

4 A DIRECT ZKIPCP CONSTRUCTION
In this section we give a self-contained description of our zero-

knowledge interactive PCP protocol. This protocol is a slightly

optimized version of the protocol obtained by applying our variant

of the general “MPC to ZK” transformation from [30] (see Section 3)

to the honest-majority MPC protocol from [16].

Coding notation. For a code C ⊆ Σn and vector v ∈ Σn , denote

by d(v,C) the minimal distance of v from C , namely the number

of positions in which v di�ers from the closest codeword in C ,

and by ∆(v,C) the set of positions in which v di�ers from such a

closest codeword (in case of ties, take the lexicographically �rst

closest codeword). We further denote by d(V ,C) the minimal dis-

tance between a vector set V and a code C , namely d(V ,C) =
minv ∈V {d(v,C)}. Our ZKIPCP protocol uses Reed-Solomon (RS)

codes, de�ned next.

Definition 4.1 (Reed-Solomon Code). For positive integers n,k ,
�nite �eld F, and a vector η = (η1, . . . ,ηn) ∈ Fn of distinct �eld
elements, the code RSF,n,k,η is the [n,k,n − k + 1] linear code over F
that consists of all n-tuples (p(η1), . . . ,p(ηn))where p is a polynomial
of degree < k over F.

At a very high level, our ZKIPCP protocol proves the satis�ability

of an arithmetic circuit C of size s in the following way. The prover

arranges (a slightly redundant representation of) the s wire values

of C on a satisfying assignment in an O(
√
s) ×O(

√
s) matrix, and

encodes each row of this matrix using an RS code. The veri�er

challenges the prover to reveal O(
√
s) linear combinations of the

entries of the codeword matrix, and checks their consistency with

t randomly selected columns of this matrix, where t is a security

parameter. In the following we describe the ZKIPCP construction

in a bottom-up fashion, �rst addressing the case of IPCP (with no

zero-knowledge) and then introduce the modi�cations required for

making it zero-knowledge.

4.1 Testing Interleaved Linear Codes
We start by describing and analyzing a simple interactive prover-

assisted protocol for simultaneously testing the membership of

multiple vectors in a given linear code L. It will be convenient to

view m-tuples of codewords in L as codewords in an interleaved

code Lm . We formally de�ne this notion below.

Definition 4.2 (Interleaved code). Let L ⊂ Fn be an [n,k,d]
linear code over F. We let Lm denote the [n,mk,d] (interleaved) code
over Fm whose codewords are allm × n matrices U such that every
row Ui of U satis�es Ui ∈ L. For U ∈ Lm and j ∈ [n], we denote by
U [j] the jth symbol (column) of U .

To test the membership of U in Lm ,V challenges P to reveal a

random linear combination of the rows Ui , and then checks that

the revealed codeword is consistent with a randomly selected set

of t columns of U .
3

Test-Interleaved(F,L[n,k,d],m, t ;U)

3
This test is implicitly used in the veri�able secret sharing sub-protocol of e�cient

MPC protocols from the literature, and in particular in the protocols from [16, 33]

on which we build. Its soundness requires the MPC protocol to be adaptively secure
to accommodate P’s ability to make the locations of inconsistencies depend on V’s

random challenge; when the MPC adversary is adaptive, it can potentially corrupt all

parties observing such inconsistencies. Indeed, the compiler from statistically secure

MPC to ZK proofs from [30] relies on the adaptive security of the underlying MPC

protocol.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2092

• Oracle: A purported Lm -codewordU . Depending on the context,

we may view U either as a matrix in Fm×n in which each row

Ui is a purported L-codeword, or as a sequence of n symbols

(U [1], . . . ,U [n]), U [j] ∈ Fm .

• Interactive testing:
(1) V picks a random linear combinations r ∈ Fm and sends r

to P.

(2) P responds with w = rTU ∈ Fn .

(3) V queries a set Q ⊂ [n] of t random symbols U [j], j ∈ Q .

(4) V accepts i�w ∈ L andw is consistent withUQ and r . That

is, for every j ∈ Q we have

∑m
i=1 r j ·Ui, j = w j .

The following lemma follows directly from the linearity of L.

Lemma 4.1. IfU ∈ Lm and P is honest, thenV always accepts.

Our soundness analysis will rely on the following lemma.

Lemma 4.2. Let e be a positive integer such that e < d/4. Suppose
d(U ∗,Lm) > e . Then, for a random w∗ in the row-span of U ∗, we
have

Pr[d(w∗,L) ≤ e] ≤ (e + 1)/|F|.

Proof: Let L∗ be the row-span of U ∗. We consider two cases.

Case 1: There exists v∗ ∈ L∗ such that d(v∗,L) > 2e . In this case,

we show that

Pr

w∗∈RL∗
[d(w∗,L) ≤ e] ≤ 1/|F|. (1)

Indeed, using a basis for L∗ that includes v∗, a random w∗ ∈ L∗

can be written as αv∗ + x , where α ∈R F and x is distributed

independently of α . We argue that conditioned on any choice of x ,

there can be at most one choice of α such that d(αv∗ + x ,L) ≤ e ,

which implies (1). This follows by observing that ifd(αv∗+x0,L) ≤ e
and d(α ′v∗ + x0,L) ≤ e for α , α ′, then by the triangle inequality

we have d((α − α ′)v∗,L) ≤ 2e , contradicting the assumption that

d(v∗,L) > 2e .

Case 2: For every v∗ ∈ L∗,d(v∗,L) ≤ 2e . We show that in this case

Prw∗∈RL∗ [d(w
∗,L) ≤ e] ≤ (e + 1)/|F|. Let U ∗i be the i-th row of U ∗

and let Ei = ∆(U ∗i ,L). Note that, since 2e < d/2, each U ∗i can be

written uniquely as U ∗i = ui + χi where ui ∈ L and χi is nonzero

exactly in its Ei entries. Let E = ∪mi=1Ei . Since d(U ∗,Lm) > e , we

have |E | > e . We show that for each j ∈ E, except with 1/|F|
probability over a random choice ofw∗ from L∗, either j ∈ ∆(w∗,L)
or d(w∗,L) > e , from which the claim will follow.

Suppose j ∈ Ei . As before, we write w∗ = αU ∗i + x for α ∈R F
and x distributed independently of α . Condition on any possible

choice x0 of x . De�ne a bad set

Bj = {α : j < ∆(αU ∗i + x0,L) ∧ d(αU ∗i + x0,L) ≤ e}.

We show that |Bj | ≤ 1. Suppose towards contradiction that there are

two distinct α ,α ′ ∈ F such that for z = αU ∗i +x0 and z′ = α ′U ∗i +x0
we have d(z,L) ≤ e , d(z′,L) ≤ e , j < ∆(z,L), and j < ∆(z′,L). Since

d > 4e , for any z∗ in the linear span of z and z′ we have j < ∆(z∗,L).
SinceU ∗i is in this linear span, we have j < ∆(U ∗i ,L), in contradiction

to the assumption that j ∈ Ei .
We have shown that for each j ∈ E, conditioned on every possible

choice of x , either j ∈ ∆(w∗,L) or d(w∗,L) > e except with 1/|F|
probability over the choice of α . It follows that the same holds for

a random choice of x . Taking a union bound over the �rst e + 1

elements of E we get that Prw∗∈RL∗ [d(w
∗,L) ≤ e] ≤ (e + 1)/|F| as

required. �
We now prove the soundness of the testing procedure when the

given oracle is far from Lm .

Theorem 4.3. Let e be a positive integer such that e < d/4. Sup-
pose d(U ∗,Lm) > e . Then, for any malicious P strategy, the oracle
U ∗ is rejected byV except with ≤ (1−e/n)t + (e + 1)/|F| probability.

Proof: Letting w∗ = rTU ∗, it follows from Lemma 4.2 that

Pr[V acceptsU ∗] ≤ Pr[V accepts | d(w∗,L) > e]

+ Pr[d(w∗,L) ≤ e]

≤

(n−e−1
t

)(n
t
) + (e + 1)/|F|

≤ (1 − e/n)t + (e + 1)/|F|

as required. �
In Appendix A we present a simple generalization of the testing

algorithm that uses σ linear combinations to amplify soundness.

4.1.1 A Tighter Analysis? We conjecture that the requirement

e < d/4 in Theorem 4.3 can be relaxed to e < d/3 or possibly even

e < d/2 with essentially the same soundness error bound. In fact,

it su�ces for this to hold for RS codes. Such a stronger version of

Theorem 4.3 would yield roughly up to 25% improvement in the

size of our ZK arguments. We leave the con�rmation (or refutation)

of this conjecture to future work. Below we reduce such a stronger

version of Theorem 4.3 to a simple conjecture about the distance of

points on an a�ne line from an RS code.

We start by showing that for any linear code over a su�ciently

large �eld, when e < d/3 we can restrict the attention to Case 1

from the proof of Lemma 4.2.

Lemma 4.3. Let L be an [n,k,d] linear code over F. Let e be a
positive integer such that e < d/3 and |F| ≥ e . Suppose d(U ∗,Lm) >
e . Then, there exists v∗ ∈ L∗ such that d(v∗,L) > e , where L∗ is the
row-span of U ∗.

Proof: Assume towards a contradiction that d(v∗,L) ≤ e for all

v∗ ∈ L∗. Suppose v∗
0
∈ L∗ maximizes the distance from L. Since

d(U ∗,Lm) > e , there must be a rowU ∗i such that∆(U ∗i ,L)\∆(v
∗
0
,L) ,

∅. Let v∗
0
= u0 + χ0 and U ∗i = ui + χi for u0,ui ∈ L and χ0, χi

of weight ≤ e . We argue that there exists α ∈ F such that for

v̂ = v∗
0
+ αU ∗i we have d(v̂,L) > d(v∗

0
,L), contradicting the choice

of v∗
0
. This follows by a union bound, noting that for any j ∈

∆(v∗
0
,L)∪∆(U ∗i ,L) there is at most one choice of α such that v̂j = 0.

�
Given Lemma 4.3 it su�ces to show that in any a�ne subspace

of Fn , either all points are e-close to L or almost all are not. This

reduces to showing the same for 1-dimensional spaces. We state an

explicit version of the conjecture for the case of RS codes.

Conjecture 4.1. Let L = RSF,n,k,η be a Reed-Solomon code with
minimal distance d = n − k + 1. Let e be a positive integer such
that e < d/3. Then for every u,v ∈ Fn , de�ning an a�ne line
`u,v = {u + αv : α ∈ F}, either (1) for every x ∈ `u,v we have
d(x ,L) ≤ e , or (2) for at most d points x ∈ `u,v we have d(x ,L) ≤ e .

We do not have a counterexample to Conjecture 4.1 even when

e < d/2 and even when L is a general linear code. Moreover, even

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2093

if the conjecture holds with a relaxed version of condition (2) (say,

where d is replaced by n2), this relaxed version is still almost as

good in the context of the e�ciency of our ZKIPCP.

The following conjectured stronger version of Lemma 4.2 fol-

lows from Lemma 4.3 by extending Conjecture 4.1 from lines to

general a�ne subspaces. This extension follows from the fact that

if a subspace has a point that is far from L, then we can partition

the subspace (minus the point) into lines containing this point. As-

suming the conjecture for lines, each line should be almost entirely

far from the code, so the subspace should be almost entirely far

from the code.

Lemma 4.4. Suppose Conjecture 4.1 holds. Let L = RSF,n,k,η be
a Reed-Solomon code with minimal distance d = n − k + 1 and e a
positive integer such that e < d/3. Suppose d(U ∗,Lm) > e . Then, for
a randomw∗ in the row-span of U ∗, we have

Pr[d(w∗,L) ≤ e] ≤ d/|F|.

Lemma 4.4 implies the following conjectured stronger version

of Theorem 4.3.

Theorem 4.4. Suppose Conjecture 4.1 holds. Let e be a positive
integer such that e < d/3. Suppose d(U ∗,Lm) > e . Then, for any
malicious P strategy, the oracle U ∗ is rejected by V except with
≤ (1 − e/n)t + d/|F| probability.

4.2 Testing Linear Constraints over Interleaved
Reed-Solomon Codes

In this section we describe an e�cient procedure for testing that

a message encoded by an interleaved RS code satis�es a given set

of linear constraints. This generalizes a procedure from [26, 33]

for testing that such an encoded message satis�es a given set of

replication constraints.

In the following we assign a message in F` to each codeword

in Fn by considering a �xed set of ` evaluation points of the poly-

nomial de�ned by the codeword. Note that while each codeword

has a unique message assigned to it, several di�erent codewords

can be “decoded” into the same message. However, if the degree of

the polynomial corresponding to the codeword is restricted to be

smaller than `, the encoding becomes unique.

Definition 4.5 (Encoded message). Let L = RSF,n,k,η be an
RS code and ζ = (ζ1, . . . , ζ`) be a sequence of distinct elements
of F for ` ≤ k . For u ∈ L we de�ne the message Decζ (u) to be
(pu (ζ1), . . . ,pu (ζ`)), wherepu is the polynomial (of degree < k) corre-
sponding tou. ForU ∈ Lm with rowsu1, . . . ,um ∈ L, we letDecζ (U)
be the length-m` vector x = (x11, . . . ,x1` , . . . ,xm1, . . . ,xm`) such
that (xi1, . . . ,xi`) = Decζ (u

i) for i ∈ [m]. Finally, when ζ is clear
from the context, we say that U encodes x if x = Decζ (U).

We now describe a simple testing algorithm for checking that the

message x encoded byU satis�es a given system of linear equations

Ax = b, for A ∈ Fm`×m`
and b ∈ Fm`

. (We will always apply this

test with a sparse matrix A containing O(m`) nonzero entries.) The

test simply picks a random linear combination r ∈ Fm`
and checks

that (rTA)x = rTb. Note that if Ax , b, the test will only pass

with 1/|F| probability. To make the test sublinear, we let the prover

provide a polynomial encoding (rTA)x and check its consistency

with rTb and with U on t randomly chosen symbols.

To further simplify the description and analysis of the testing al-

gorithm, we assume thatU is promised to be e-close to Lm . Our �nal

IPCP we will run Test-Interleaved to ensure that if the promise

is violated, this is caught with high probability.

Test-Linear-Constraints-IRS(F,L = RSF,n,k,η ,m, t , ζ ,A,b;U)

• Oracle: A purported Lm -codeword U that should encode a mes-

sage x ∈ Fm`
satisfying Ax = b.

• Interactive testing:
(1) V picks a random vector r ∈ Fm`

and sends r to P.

(2) V and P compute

rTA = (r11, . . . , r1` , . . . , rm1, . . . , rm`)

and, for i ∈ [m], let ri (·) be the unique polynomial of degree

< ` such that ri (ζc) = ric for every c ∈ [`].

(3) P sends the k + ` − 1 coe�cients of the polynomial de�ned

by q(•) =
∑m
i=1 ri (•) · pi (•), where pi is the polynomial of

degree < k corresponding to row i of U .

(4) V queries a set Q ⊂ [n] of t random symbols U [j], j ∈ Q .

(5) V accepts if the following conditions hold:

(a)

∑
c ∈[`] q(ζc) =

∑
i ∈[m],c ∈[`] ricbic .

(b) For every j ∈ Q ,

∑m
i=1 ri (ηj) ·Ui, j = q(ηj).

We will analyze the test under the promise that the (possibly badly

formed) U is close to Lm .

The following lemma easily follows by inspection.

Lemma 4.5. If U ∈ Lm , U encodes x such that Ax = b, and P is
honest,V always accepts.

Soundness is argued by the following lemma.

Lemma 4.6. Let e be a positive integer such that e < d/2. Suppose
that a (badly formed) oracle U ∗ is e-close to a codeword U ∈ Lm

encoding x ∈ Fm` such that Ax , b. Then, for any malicious P
strategy,U ∗ is rejected byV except with at most ((e+k+`)/n)t+1/|F|
probability.

Proof: Let q be the polynomial generated in Step 3 following the

honest P strategy on input U . Since we assume Ax , b, we have

Prr [r
TAx = rTb] = 1/|F|. It follows that except with probability

1/|F| over the choice of r in Step 1, the polynomial q fails to satisfy

the condition in Step 5(a). Indeed, we have

∑
c ∈[`] q(ζc) = (r

TA)x

and

∑
i ∈[m],c ∈[`] ricbic = r

Tb.

Next, we analyze the probability that a malicious P strategy is

rejected conditioned on q failing in this way. Let q′ be the poly-

nomial sent by the prover. If q′ = q, the V rejects in Step 5(a).

If q′ , q, then using the fact that q and q′ are of degree at most

k + ` − 2, we have that the number of indices j ∈ [n] for which

q(ηj) = q′(ηj) is at most k + ` − 2. Let Q ′ be the set of indices on

which they agree. ThenV rejects in Step 5(b) whenever Q selected

in Step 4 contains an index i < Q ′ ∪ E. This fails to happen with

probability at most

(e+k+`−2
t

)
/
(n
t
)
≤ ((e + k + `)/n)t . The lemma

now follows by a union bound. �

4.3 Testing Quadratic Constraints over
Interleaved Reed-Solomon Codes

In this section we describe a simple test for verifying that vectors

x ,y, z ∈ Fm`
, encoded byU x ,Uy ,U z ∈ Lm respectively, satisfy the

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2094

constraints x � y + a � z = b for some known a,b ∈ Fm`
, where �

denotes pointwise product. Letting L = RSF,n,k,η ,Ua = Enc(a) and

Ub = Enc(b), this reduces to checking thatU x �Uy +U a �U z −U b

encodes the all-0 message 0
m`

in the (interleaved extension of) L̂ =
RSF,n,2k−1,η . This could be done using the general membership test

for interleaved linear codes (Test-Interleaved from Section 4.1),

since the set of codewords in L̂ that encode the all-0 message is a

linear subcode of L̂. In the following we present this test in a self-

contained way, exploiting the promise that U x ,Uy ,U z
are close to

Lm for a tighter analysis.

Test-Quadratic-Constraints-IRS(F,L = RSF,n,k,η ,m, t , ζ ,a,b;U
x ,

Uy ,U z)

• Oracle: Purported Lm-codewords U x ,Uy ,U z
that should en-

code messages x ,y, z ∈ Fm`
satisfying x � y + a � z = b.

• Interactive testing:
(1) Let U a = Encζ (a) and U b = Encζ (b).
(2) V picks a random linear combinations r ∈ Fm and sends r

to P.

(3) P sends the 2k − 1 coe�cients of the polynomial p0 de�ned

byp0(•) =
∑m
i=1 ri ·pi (•), wherepi (•) = p

x
i (•)·p

y
i (•)+p

a
i (•)·

pzi (•) − p
b
i (•), and where pxi ,p

y
i ,p

z
i are the polynomials of

degree < k corresponding to row i ofU x ,Uy ,U z
, andpai ,p

b
i

are the polynomials of degree < ` corresponding to row i

of U a ,U b
.

(4) V picks a random index set Q ⊂ [n] of size t , and queries

U x [j],Uy [j],U z [j], j ∈ Q .

(5) V accepts if the following conditions hold:

(a) p0(ζc) = 0 for every c ∈ [`].
(b) For every j ∈ Q , it holds that

m∑
i=1

ri ·
[
U x
i, j ·U

y
i, j +U

a
i, j ·U

z
i, j −U

b
i, j

]
= p0(ηj).

The following lemma follows again directly from the description.

Lemma 4.7. If U x ,Uy ,U z ∈ Lm encode vectors x ,y, z ∈ Fm`

satisfying x � y + a � z = b and P is honest,V always accepts.

Soundness is argued by the following lemma.

Lemma 4.8. Let e be a positive integer such that e < d/2. Let
U x∗,Uy∗,U z∗ be badly formed oracles and let U ∗ ∈ F3m×n be the
matrix obtained by vertically juxtaposing the correspondingm × n
matrices. Suppose d(U ∗,L3m) ≤ e , and let U x ,Uy ,U z , respectively,
be the (unique) codewords in Lm that are closest to U x∗,Uy∗,U z∗.
SupposeU x ,Uy ,U z encode x ,y, z such that x � y + a � z , b. Then,
for any malicious P strategy, (U x∗,Uy∗,U z∗) is rejected byV except
with at most 1/|F| + ((e + 2k)/n)t probability.

Proof: Let p0 be the polynomial generated in Step 3 following the

honest P strategy on U x ,Uy ,U z
. Since x ,y, z do not satisfy the

constraints, except with probability 1/|F| over the choice of r in

Step 2, the polynomial p0 fails to satisfy the condition in Step 5(a).

Indeed, we have p0(•) =
∑m
i=1 ri · pi (•) and there must exists an i

and ζc such that pi (ζc) , 0. Next, we analyze the probability that a

malicious P strategy is rejected conditioned on p0 failing in this

way.

Let p′
0

be the polynomial sent by the prover. If p′
0
= p0, V

rejects in Step 5(a). If p′
0
, p0, then using the fact that p0 and p′

0

are of degree at most 2k − 2, we have that the number of indices

j ∈ [n] for which p0(ηj) = p′
0
(ηj) is at most 2k − 2. Let Q ′ be the

set of indices on which p0 and p′
0

agree. Then V rejects in Step

5(b) whenever Q selected in Step 4 contains an index i < Q ′ ∪ E,

where E = ∆(U ∗,L3m). This fails to happen with probability at

most

(e+2k−2
t

)
/
(n
t
)
≤ ((e + 2k)/n)t . The lemma now follows by a

union bound. �

4.4 IPCP for Arithmetic Circuits
In this section, we provide our IPCP for arithmetic circuits. Fix

a large �nite �eld F. Let C : Fni → F be an arithmetic circuit.

Without loss of generality, we will assume that the circuit contains

only ADD and MULTIPLY gates with fan-in two. We show how a

prover can convince a veri�er that C(w) = 1.

Protocol IPCP(C,F).

• Input: The prover P and the veri�er V share a common in-

put arithmetic circuit C : Fni → F and input statement x . P

additionally has input α = (α1, . . . ,αni) such that C(α) = 1.

• Oracle π : Letm, ` be integers such thatm · ` > ni + s where s is

the number of gates in the circuit. Then P generates an extended

witness w ∈ Fm`
where the �rst ni + s entries of w are

(α1, . . . ,αni , β1, . . . , βs)

where βi is the output of the ith gate when evaluating C(α).
P de�nes a system of constraints that contains the following

constraint for every multiplication gate д in the circuit C

βa · βb − βc = 0

and for every addition gate, the constraint

βa + βb − βc = 0

where βa and βb are the input values to the gate д and βc is

the output value in the extended witness. For the output gate

we include the constraint βa + βb − 1 = 1 if the �nal gate is an

addition gate, and βa · βb − 1 = 0 if it is a multiplication gate. P

constructs vectors x , y and z in Fm`
where the jth entry of x , y

and z contains the values βa , βb , and βc corresponding to the

jth multiplication gate in w . P andV construct matrices Px , Py
and Pz in Fm`×m`

such that

x = Pxw,y = Pyw, z = Pzw .

Finally, it constructs matrix Padd ∈ F
m`×m`

such that the jth

position of Paddw equals βa +βb −βc where βa , βb , and βc corre-

spond to the jth addition gate of the circuit inw . LetUw ,U x ,Uy ,U z ∈

Lm respectively encode w,x ,y, z where L = RSF,n,k,η . P sets

the oracle π asU ∈ L4m which is set as the vertical juxtaposition

of the following four matrices Uw ,U x ,Uy ,U z ∈ Lm .

• Notation: We denote by (−1)m`
(respectively, 0m`

) the vector

in Fm`
whose entries are all equal to −1 (respectively, equal to

0). We further denote by In , the n × n identity matrix.

• The interactive protocol:
V and P run the following tests.

(1) // Test if U is e-close to a code in L4m

Test-Interleaved(F,L, 4m, t ;U)

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2095

(2) // Test if addition gates are correct.
Test-Linear-Constraints-IRS
(F,L,m, t , ζ , Padd, 0m`

;Uw)

(3) // Test if multiplication gates are correct.
– Test-Linear-Constraints-IRS(
F,L, 2m, t , ζ ,

[
Im` | − Px

]
, 02m`

;

[
U x

Uw

])
– Test-Linear-Constraints-IRS(
F,L, 2m, t , ζ ,

[
Im` | − Py

]
, 02m`

;

[
Uy

Uw

])
– Test-Linear-Constraints-IRS(
F,L, 2m, t , ζ ,

[
Im` | − Pz

]
, 02m`

;

[
U a

Uw

])
– Test-Quadratic-Constraints-IRS
(F,L,m, t , ζ , (−1)m` , 0m`

;U x ,Uy ,U z)

Since all the tests open the same number of columns t inUw ,Ux ,Uy ,Uz ,

theV will simply open t columns of U .V rejects if it rejects in

any of the tests above.

The completeness of our IPCP follows from the following lemma.

Lemma 4.9. If Uw ,U x ,Uy ,U z ∈ Lm encode vectors w,x ,y, z ∈
Fm` satisfying

x = Pxw, y = Pyw, z = Pzw, x�y+(−1)m`�z = 0m` , Paddw = 0m`

and P is honest,V always accepts.

The proof follows directly from Lemmas 4.1, 4.5 and 4.7. Next,

soundness is argued by the following lemma.

Lemma 4.10. Let e be a positive integer such that e < d/4 and
suppose that there exists no α such that C(α) = 1. Then, for any
maliciously formed oracle Û and any malicious prover strategy, the
veri�er rejects except with at most (e + 6)/|F| + (1 − e/n)t + 5((e +
2k)/n)t probability.

Proof: On a high-level, soundness will essentially follow by the

soundness of the individual tests and the overall soundness error

follows by a direct application of a union bound over the soundness

of these tests. In more detail, let U be the vertical juxtaposition of

Uw∗,U x∗,Uy∗,U z∗
. Then we argue soundness by considering the

following cases and applying a union bound:

Case d(U ,L4m) > e: Since e < d/4, we can conclude from Lemma 4.2

that the veri�er rejects in Test-Interleaved executed in

Step 1 except with probability (1 − e/n)t + (e + 1)/|F|.
Case d(U ,L4m) ≤ e: Next, let Uw ,U x ,Uy ,U z ∈ Lm be the codes

that are respectively close to Uw∗,U x∗,Uy∗,U z∗
and en-

code the messages w,x ,y, z. Recall that there exists no

w,x ,y, z that satisfy all the following constraints:

x = Pxw, y = Pyw, z = Pzw,

x � y + (-1)m` � z = 0m`
and Paddw = 0m`

.

Then we can conclude from Lemmas 4.6 and 4.8 by ap-

plying a union bound on the corresponding tests that the

veri�er rejects except with probability:

5/|F| + 4 · ((e + k + `)/n)t + ((e + 2k)/n)t

< 5 ·
(
1/|F| + ((e + 2k)/n)t

)
.

�
The following theorem follows from the construction described

above and the preceding Lemmas.

Theorem 4.6. Fix parametersn,m, `,k, t , e such that e < (n−k)/4.
Let C : Fni → F be an arithmetic circuit of size s , where |F| ≥ n and
m · ` > ni + s . Then protocol IPCP(C,F) satis�es the following:

• Completeness: If α is such that C(α) = 1 and oracle π is
generated honestly as described in the protocol, then
Pr[(P(C,w),Vπ (C)) = 1] = 1.

• Soundness: If there is no α is such that C(α) = 1, then for
every (unbounded) prover strategy P∗ and every π̃ ∈ F4mn ,
Pr [(P∗,V π̃ (C)) = 1] ≤ (e + 6)/|F| + (1 − e/n)t + 5((e +
2k)/n)t .

• Complexity: The number of �eld operations performed is
poly(|C|,n). The number of �eld elements communicated by
P toV is n + 4 · (k + ` − 1) + 2 · k − 1 whereasV reads t
symbols from F4m .

The �rst term in the communication cost is the communication

incurred by the test-interleaved protocol, the second term is due to

the four linear-constraints tests and the �nal term results from our

quadratic-constraint test.

We remark here that we can improve the communication of the

protocol by letting s only count the number of multiplication gates

by incorporating the linear constraints resulting from the addition

gates into the linear constraints used to de�ne the vectors x ,y and

z.

4.5 IPCP for Boolean Circuits
In order to obtain the bene�ts in soundness from running our IPCP

over a large �eld F, we show how we can prove the validity of a

Boolean circuit C : {0, 1}ni → {0, 1} by encoding the witness in

any larger �eld F. First, in the witness, the prover will map the

Boolean 0 to the additive identity ϵ0 in F and 1 to the multiplicative

identity ϵ1 in F. Now, we can enforce that each element in the

witness is a 0 or 1, by introducing a quadratic constraint β2 − β = 0.

Given that binary constraints are already enforced, next, we

proceed to demonstrating how we incorporate the constraints from

XOR and ADD gates.

In fact, we will show all gate constraints can be expressed as

a linear relation on the witness bits. Let x be a column vector

consisting of the witness string to the evaluation of the circuit. We

will construct a matrix A and a column vector w such that if w is

binary and is a valid witness then the elements of Aw will all be

0, and if w is binary and is not a valid witness then at least one

element of Aw will be nonzero. For each XOR and AND gate in

the circuit we will create a row of the matrix corresponding to the

enforcement of that relation in the witness. The vector w besides

including the input bits x , will include one additional bit for each

XOR and AND gate in the circuit. We explain the purpose of these

extra bits next.

Given integers b1 and b2 consider the arithmetic constraint b1 +
b2 = r0 + 2 · r1 over integers. In this constraint, if we enforce that

all values are bits then r0 is the XOR of b1 and b2 and r1 is the AND

of b1 and b2. If in our witness w we want to make sure that b1 XOR

b2 is b3 then we include an auxiliary bit d and enforce the linear

constraint b1+b2 = b3+2 ·d . A similar constraint can be established

for an AND relation analogously. To conclude, we observe that if the

values have been enforced to be a binary constraint then checking

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2096

the arithmetic constraints over integers can be done by checking

the equation modulo a su�ciently large prime (p ≥ 3).

We can also extend this idea to consider more complex gates

such as addition modulo 2
32

over 32-bit inputs and outputs. This

can be expressed as a linear constraint over the bits. Suppose a =
(a0, . . . ,a31), b = (b0, . . . ,b31) and c = (c0, . . . , c31) are the input

and output bits, the constraint a + b = c mod 2
32

can be expressed

as

31∑
i=0

2
i · ai +

31∑
i=0

2
i · bi = 2

32 · d +
31∑
i=0

2
i · ci

where d is an auxiliary input bit and all values are enforced to be

bits. However, this will require F with characteristic p > 2
33

.

4.6 Achieving Zero-Knowledge
Note �rst that the veri�er obtains two types of information in

two di�erent building blocks of the IPCP. First, it obtains linear

combinations of codewords in a linear code L. Second, it probes a

small number of symbols from each codeword. Since codewords

are used to encode the NP witness, both types of information give

the veri�er partial information about the NP witness, and thus the

basic IPCP we described is not zero-knowledge.

Fortunately, making the IPCP zero-knowledge only requires in-

troducing small modi�cations to the construction and analysis. The

second type of “local” information about codewords is made harm-

less by making the encoding randomized, so that probing just a

few symbols in each codeword reveals no information about the

encoded message. The high level idea for making the �rst type

of information harmless is to use an additional random codeword

for blinding the linear combination of codewords revealed to the

veri�er. However, this needs to be done in a way that does not com-

promise soundness. Below we describe the modi�cations required

for each of the IPCP ingredients.

4.6.1 ZK Testing of Interleaved Linear Codes. Recall that in the

veri�cation algorithm Test-Interleaved from Section 4.1, V ob-

tains a linear combination of the form w = rTU , where U ∈ Fm×n

is a matrix whose rows should be codewords in L. A natural ap-

proach for making this linear combination hide U is by allowing

the prover to add to the rows of U an additional random codeword

u ′ that is used for blinding.

A simple implementation of this idea that provides a slightly

inferior soundness guarantee is the following. Apply the algorithm

Test-Interleaved to Lm+1, with an extended oracleU ′ whose �rst

m rows containU and whose last row isu ′. Lettingw ′ = rTU +r ′u ′

be the random linear combination obtained byV , the test fails to be

zero-knowledge when r ′ = 0, which occurs with 1/|F| probability.

Alternatively, settling for a slightly worse soundness guarantee

(where e/|F| is replaced by e/(|F| − 1)), one could just let r ′ be a

random nonzero �eld element, and get perfect zero-knowledge.

It turns out, however, that one could �x r ′ to 1 and still get the

same soundness guarantee about U as in Lemma 4.2 since we can

apply the same the decomposition argument. This “a�ne” variant

of Test-Interleaved is described and analyzed in Appendix C.

4.6.2 ZK Testing of Linear Constraints over Interleaved Reed-
Solomon Codes. The veri�cation algorithm for the linear constraints

Ax = b samples a random vector r , obtains rTAx , and compares

it with rTb. Looking more carefully at our actual protocol, the

veri�er obtains a polynomial q(•) and checks whether the equal-

ity

∑
c ∈[`] q(ζc) =

∑
i ∈[m],c ∈[`] ricbic holds. While the sum itself

does not reveal any additional information beyond what is already

known, namely rTb, the individual evaluations of q, i.e. q(ζc) them-

selves may reveal information about the inputs.

To hide this, a simple idea is for P to provide an additional

vector u ′ along with U that encodes a message (γ1, . . . ,γ`) such

that

∑
c ∈[`] γc = 0, and append toA constraints that sum the entries

in the message encoded in u ′ and check if it is equal to 0.

However, as before, this will yield less than optimal soundness

guarantee. Instead we take the following approach that provides

the same soundness guarantee as the original (non-a�ne version

of the) test. In We apply the algorithm Test-Linear-Constraints-IRS

to Lm+1 where L = RSF,n,k,η , with an extended oracle U ′ whose

�rstm rows contain U and whose last row is u ′ where additionally

u ′ encodes a message (γ1, . . . ,γ`) such that

∑
c ∈[`] γc = 0. Letting

q(•) =
∑m
i=1 ri (•)·pi (•)+rblind(•) be the polynomial obtained byV

where rblind(•) is a polynomial (of degree < k+`−1) corresponding

to u ′, we can show that the soundness of the resulting scheme will

be the same as for Lemma 4.6. This “a�ne” variant of Test-Linear-
Constraints is described and analyzed in the full version.

4.6.3 ZK Testing of �adratic Constraints over Interleaved Reed-
Solomon Codes. We modify the quadratic constraint testing proce-

dure in the same way as we modi�ed the linear constraint testing.

Concretely, we apply the algorithm Test-Quadratic-Constraint
to L3m+1 where L = RSF,n,k,η , with an extended oracle U ′ whose

�rst 3m rows contain U x ,Uy ,U z
and whose last row is u ′ where

additionally u ′ encodes a message 0
`
. Letting p0(•) =

∑m
i=1 ri ·

pi (•)+ rblind(•) be the polynomial obtained byV where rblind(•) is
a polynomial (of degree < 2k −1) corresponding to u ′, we can show

that the soundness of the resulting scheme will be the same as for

Lemma 4.8. This “a�ne” variant of Test-Quadratic-Constraints
is described and analyzed in the full version.

4.7 The Final ZKIPCP
In this section provide a self contained description of the �nal

ZKIPCP protocol, combining all of the previous sub-protocols. In

this section, we provide our ZKIPCP for arithmetic circuits over a

large �eld F. On a high-level, the protocol is essentially the IPCP

construction from Section 4.4 with the exception that we replace

all the tests with the generalized a�ne version (with repetitions).

Protocol ZKIPCP(C,F).
• Input: The prover P and the veri�er V share a common in-

put arithmetic circuit C : Fni → F and input statement x . P

additionally has input α = (α1, . . . ,αni) such that C(α) = 1.

• Oracle π : Let m, ` be integers such that m · ` > ni + s where

s is the number of gates in the circuit. Then P generates an

extended witnessw ∈ Fm`
where the �rst ni + s entries ofw are

(α1, . . . ,αni , β1, . . . , βs) where βi is the output of the ith gate

when evaluating C(α). P constructs vectors x , y and z in Fm`

where the jth entry of x , y and z contains the values βa , βb , and

βc corresponding to the jth multiplication gate in w . P andV

construct matrices Px , Py and Pz in Fm`×m`
such that

x = Pxw,y = Pyw, z = Pzw .

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2097

Finally, it constructs matrix Padd ∈ F
m`×m`

such that the jth

row of Paddw equals βa+βb−βc where βa , βb , and βc correspond

to the jth addition gate of the circuit in w . The prover samples

random codewords Uw ,U x ,Uy ,U z ∈ Lm where L = RSF,n,k,η
subject to w = Decζ (U

w),x = Decζ (U
x),y = Decζ (U

y), z =
Decζ (U

z) where ζ = (ζ1, . . . , ζ`) is a sequence of distinct ele-

ments disjoint from (η1, . . . ,ηn). Let u ′h ,u
x
h ,u

y
h ,u

z
h ,u

0

h ,u
add
h be

auxiliary rows sampled randomly from L for everyh ∈ [σ]where

each of uxh ,u
y
h ,u

z
h ,u

add
h encodes an independently sampled ran-

dom ` messages (γ1, . . . ,γ`) subject to

∑
c ∈[`] γc = 0 and u0h

encodes 0
`
. P sets the oracle as U ∈ L4m which is set as the

vertical juxtaposition of the matrices Uw ,U x ,Uy ,U z ∈ Lm .

• The interactive protocol:
(1) For every h ∈ [σ],V picks the following random elements

and sends them to P:

− rh ∈ F
4m

,

// Testing Interleaved Reed-Solomon Codes
− raddh ∈ Fm`

,

// Testing Addition Gates
− rxh , r

y
h , r

z
h , ∈ F

m`
, r
q
h ∈ F

m
.

// Testing Multiplication Gates
(2) For every h ∈ [σ], P responds with

− vh = (rh)
TU + u ′h ∈ F

n
,

// Testing Interleaved Reed-Solomon Codes
− Polynomial qaddh (•) of degree < k + ` − 1 where

qaddh (•) = r
add
blind,h (•) +

∑m
i=1 r

add
h,i (•) · pi (•),

such that pi is the polynomial of degree < k corresponding

to row i of Uw
, raddh,i (·) is the unique polynomial of degree

< ` such that raddh,i (ζc) = ((r
add
h)

T Padd)ic for every c ∈ [`],

and raddblind,h (•) is the polynomial of degree < k + ` − 1

corresponding to uaddh .

// Testing Addition Gates
− Polynomials qxh (•), q

y
h (•),q

z
h (•) of degree < k + ` − 1,

and p
0,h (•) of degree < 2k − 1 where

qxh (•) = r
x
blind,h (•)+

∑m
i=1 r

x
h,i (•) · p

x
i (•)+

∑
2m
i=m+1 r

x
h,i (•) ·

pi−m (•)),
q
y
h (•) = r

y
blind,h (•) +

∑m
i=1 r

y
h,i (•) · p

x
i (•) +

∑
2m
i=m+1 r

y
h,i (•) ·

pi−m (•)),
qzh (•) = r

z
blind,h (•) +

∑m
i=1 r

z
h,i (•) · p

x
i (•) +

∑
2m
i=m+1 r

z
h,i (•) ·

pi−m (•)),

p
0,h (•) = r

0

blind,h (•) +
∑m
i=1

(
r
q
h
)
i ·

(
pxi (•) · p

y
i (•) − p

z
i (•)

)
where for a ∈ {x ,y, z}, pai is the polynomial of degree

< k corresponding to row i of U a
, rah,i (·) be the unique

polynomial of degree < ` such that rah,i (ζc) = ((r
a
h)

T [Im` | −

Pa])ic for every c ∈ [`], rablind,h (•) is the polynomial of

degree < k + ` − 1 corresponding to uah and r0blind,h is the

polynomial of degree < 2k − 1 corresponding u0h .

// Testing Multiplication Gates
(3) V picks a random index set Q ⊂ [n] of size t , and queries

U [j] that is the vertical juxtaposition ofU x
h [j],U

y
h [j],U

z
h [j],U

w
h [j],

uxh [j],u
y
h [j],u

z
h [j],u

add
h [j],u

′
h [j], j ∈ Q and accepts if the fol-

lowing conditions hold for every h ∈ [σ]:

− For every j ∈ Q we have

∑
4m
i=1 rh [j] ·Ui, j +u

′
h [j] = vh [j].

// Testing Interleaved Reed-Solomon Codes∑
c ∈[`] q

add
h (ζc) = 0 and for every j ∈ Q we have

uaddh [j] +
∑m
i=1 r

add
h,i (ηj) ·U

w
i, j = q

add
h (ηj).

// Testing Addition Gates
− For every a ∈ {x ,y, z},∑
c ∈[`] q

a
h (ζc) = 0 and for every j ∈ Q we have

uah [j] +
∑m
i=1 r

a
h,i (ηj) · U

a
i, j +

∑
2m
i=m+1 r

a
h,i (ηj) · U

w
i−m, j =

qah (ηj).

p
0,h (ζc) = 0 for every c ∈ [`] and for every j ∈ Q ,

u0h [j] +
∑m
i=1(r

q
h)i ·

[
U x
i, j ·U

y
i, j −U

z
i, j

]
= p

0,h (ηj).

// Testing Multiplication Gates

The completeness of our ZKIPCP follows from the next lemma.

Lemma 4.11. If Uw ,U x ,Uy ,U z ∈ Lm encode vectorsw,x ,y, z ∈
Fm` satisfying

x = Pxw, y = Pyw, z = Pzw, x�y+(−1)m`�z = 0m` , Paddw = 0m`

and P is honest,V always accepts.

Next, soundness is argued by the following lemma.

Lemma 4.12. Let e be a positive integer such that e < d/4. Suppose
that there exists no α such that C(α) = 1. Then, for any maliciously
formed oracle U ∗ and any malicious prover strategy, the veri�er
rejects except with at most (e + 6)/|F|σ + (1− e/n)t + 5((e + 2k)/n)t

probability.

The proofs of the preceding two lemmas follow analogously to

the proofs of Lemma 4.9 and Lemma 4.10. The next lemma estab-

lishes the honest veri�er zero-knowledge property.

Lemma 4.13. If k > ` + t , 〈P,V〉 is an (honest veri�er, perfect)

zero-knowledge IPCP.

Proof: To demonstrate zero-knowledge against honest veri�er,

we need to provide a simulator S that can given the randomness

provided by the honest veri�erV , be able to generate a transcript.

For every h ∈ [σ], the simulator �rst generates:

• random polynomial qaddh of degree < k + ` − 1 such that∑
c ∈[`] q

add
h (ζc) = 0.

• for a ∈ {x ,y, z}, random polynomialqah of degree < k+`−1

such that

∑
c ∈[`] q

a
h (ζc) = 0.

• random polynomial p
0,h of degree < 2k − 1 such that

p
0,h (ζc) = 0 for every c ∈ [`].

• random vector vh ∈ F
n

.

Next, it samples random elements from F forU x
h [j],U

y
h [j],U

z
h [j],U

w
h [j],

for every j ∈ Q . Finally, given the random challenges from V , it

sets u ′h [j],u
add
h [j],u

x
h [j],u

y
h [j],u

z
h [j],u

0

h [j] as follows:

• u ′h [j] =
∑
4m
i=1 rh [j] ·Ui, j −vh [j].

• uaddh [j] =
∑m
i=1 r

add
h,i (ηj) ·U

w
i, j − q

add
h (ηj)

• fora ∈ {x ,y, z},uah [j] =
∑m
i=1 r

a
h,i (ηj)·U

a
i, j+

∑
2m
i=m+1 r

a
h,i (ηj)·

Uw
i−m, j − q

a
h (ηj).

• u0h [j] =
∑m
i=1(r

q
h)i ·

[
U x
i, j ·U

y
i, j −U

z
i, j

]
− p

0,h (ηj).

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2098

Our simulation achieves perfect zero knowledge. This follows from

the fact that in an honest execution with the prover P, the distribu-

tion of {U x
h [j],U

y
h [j],U

z
h [j],U

w
h [j]}j ∈Q are uniformly distributed

and given that u ′h ,u
add
h ,u

x
h ,u

y
h ,u

z
h ,u

0

h are uniformly chosen, the

polynomials qaddh ,q
x
h ,q

y
h ,q

z
h ,p0,h and the vector vh are uniformly

distributed in their respective spaces. �
The following theorem follows from the construction described

above and the preceding Lemmas.

Theorem 4.7. Fix parametersn,m, `,k, t , e such that e < (n−k)/4.
Let C : Fni → F be an arithmetic circuit of size s , where |F| ≥ ` + n,
m · ` > ni + s and k > ` + t . Then protocol ZKIPCP(C,F) satis�es
the following:

• Completeness: If α is such that C(α) = 1 and oracle π is
generated honestly as described in the protocol, then
Pr[(P(C,w),Vπ (C)) = 1] = 1.

• Soundness: If there is no α is such that C(α) = 1, then for
every (unbounded) prover strategy P∗ and every π̃ ∈ F4mn ,
Pr [(P∗,V π̃ (x)) = 1] ≤ (e + 6)/|F|σ + (1 − e/n)t + 5((e +
2k)/n)t .

• Zero Knowledge: For every adversary veri�erV∗, there
exists a simulator S such that the output of SV

∗

(C) is dis-
tributed identically to the view ofV in the (P(C,w),Vπ (C)).

• Complexity: The number of �eld F operations performed is
poly(|C|,n). The number of �eld elements communicated by
P toV is σ · n + 4 · σ · (k + ` − 1) + σ · (2 · k − 1) whereas
V reads t symbols from F4m+5σ .

5 FROM ZKIPCP TO ZK
In this section we describe variants of known transformations from

(sublinear) zero-knowledge PCP to (sublinear) zero-knowledge ar-

gument. The latter can either be interactive using collision-resistant

hash functions, or non-interactive in the random oracle model.

5.1 The Interactive Variant
General transformations from (non-interactive) ZKPCP to (interac-

tive) ZK arguments that make a black-box use of collision-resistant

hash functions were given in [31, 34]. Here we address the more

general case of ZKIPCP, where in addition to the proof oracle there

is additional interaction between the prover and the veri�er.

Using the ZKIPCP, an honest-veri�er ZK protocol proceeds as

follows. The prover commits to each entry of the proof oracle using

a statistically hiding commitment scheme and then compresses the

commitment using a Merkle hash tree (cf. Section 2.1). Note that

both steps can be realized by making a black-box use of any family

H of collision-resistant hash functions. The rest of the ZK protocol

mimics the ZKIPCP, where the prover opens the committed values

that correspond to the veri�er’s queries. Malicious veri�ers can

be handled using standard techniques, as done in [31, 34]. See full

version for more details.

The communication complexity of the ZK argument includes the

communication complexity of the ZKIPCP protocol and communi-

cation resulting from committing the oracle Π and decommitting

to the queries Q .

5.2 The Non-Interactive Variant
It is possible to directly compile our previous protocol into a non-

interactive protocol using a random oracle, where the veri�er’s

messages are emulated by applying the random oracle on the partial

transcript in each round following the Fiat-Shamir transform [19]. A

formal description and analysis of this transformation is presented

in [9] for interactive oracle proofs (IOP) model which generalizes

(public-coin) IPCP.

In slight more detail, in this transformation the prover uses the

random oracle to generate the veri�er’s messages and complete the

execution (computing its own messages) based on the emulated

veri�er’s messages, where instead of using an oracle, the prover

commits to its proof and messages using Merkle hash trees. Com-

pleteness follows directly. If we start with an IOP that additionally

is zero-knowledge (ZKIPCP in our case), [9] show that this trans-

formation preserves (statistical) zero-knowledge property. Namely,

the resulting protocol can be proved to be zero-knowledge in the

random-oracle model.

In [9], the soundness of the transformed protocol is shown to

essentially match the soundness of the original protocol up to an

additive term that roughly depends on the product of q2 and 2
−λ

where q is an upper bound on the number of queries made to the

random oracle by a malicious prover and λ is the output length

of the random oracle. More precisely, [9] relates the soundness of

the transformed protocol to the state restoration soundness of the

underlying IPCP and collision-probability of queries to the random

oracle. State-restoration soundness refers to the soundness of the

IOP protocol against cheating prover strategies that may rewind

the veri�er back to any previously seen state, where every new

continuation from a state invokes the next-message function of

the veri�er with fresh randomness. In [9], they show that for any

(IOP) the state-restoration soundness of an IOP protocol is bounded

by

(T
k (x)

)
· ϵ(x) and the soundness of the transformed protocol is(T

k (x)
)
·ϵ(x)+ 3(T 2 + 1) · 2−λ whereT bounds the number of queries

made by cheating provers to the random oracle, k(x) is the round

complexity of the IOP and ϵ(x) is the (standard) soundness of the

IOP.

In the full version, we tighten the analysis presented in [9] for

the particular ZKIPCP constructed in Section 4.7 and show that the

soundness of the transformed protocol is T · ϵ(x) + 3(T 2 + 1) · 2−λ

where ϵ(x) is the soundness of the ZKIPCP, T bounds the number

of queries made by cheating provers to the random oracle and λ is

the output length of the random oracle.

5.3 Sublinear Zero-Knowledge Argument
In this section, we describe how to set the parameters of our zero-

knowledge argument protocol to obtain communication that is

sublinear in the circuit size. We consider �rst an arithmetic circuit

over a large �eld F. Following our transformation, the communica-

tion complexity of the zero-knowledge protocol that is compiled

based on our ZKIPCP is

[n · σ + 4 · σ · (k + ` − 1) + σ · (2 · k − 1)

+ t · (4 ·m + 5 · σ)] · dlog |F|e + t · dlogne · h

where h is the output length of the hash-function. For security

parameter κ, when F is large (i.e. |F| > O(2κ)) we can set σ = 1

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2099

for 2
−κ

-security. The other terms in the soundness are (1 − e/n)t

and ((e + 2k)/n)t where e < d/4 = (n − k)/4 and k = t + `. We

can optimize our parameters by setting k = O(κ), n = O(k) and

e = (n − k)/4 to achieve 2
−κ

-security. The next constraint on the

parameters requires thatm · ` is at least as large as the witness size,

which isO(s)where s is the number of (addition and multiplication)

gates in the circuit. Optimal values for m and ` can be obtained by

equating the dominating costs in the communication, namely, O(`)

and O(t ·m) which implies ` = O(
√
sκ) and m = O(

√
s/κ). Over-

all the communication complexity with these parameters will be

O(
√
sκ dlog |F|e). In the full version we show that, the communica-

tion complexity of proving the satis�ability of an arithmetic circuit

of size s > 30000 over a �nite �eld F, |F| ≥ 2
128

with soundness er-

ror 2
−40

consists of roughly 95

√
s �eld elements (or 70

√
s elements

under Conjecture 4.1). If we want security 2
−80

, the communication

is roughly 140

√
s (or 120

√
s under Conjecture 4.1).

Optimizing for Boolean circuits requires additional e�ort. In this

case there is yet another degree of freedom, namely the �eld size.

The only constraint on the �eld size is that there are su�ciently

many evaluation points, namely, we need |F| ≥ `+n. For a given sta-

tistical security parameter κ, we can show that for su�ciently large

circuits the optimal communication complexity is O(k ·
√
s log s)

where |F| = O(
√
s). For smaller circuits, the optimal value requires

a more careful analysis as the low order terms are signi�cant and

we present our results in the next section.

5.4 Multi-Instance Amortization
If we want to prove that C(xi , ·) is satis�able for N public inputs xi ,
we can simplify our ZKIPCP construction as follows. The prover

�rst computes the combined witness w = w1, . . . ,wN that is com-

prised of N witnesses, each is computed as in the single instance

case. Next, it arranges the witnesses in blocks of size ` = N ,

where block j contains the jth bits of each of the N witnesses. The

public inputs xi de�ne public blocks. The number of non-public

blocks equals the size of the witness of a single instance, which is

m = |wi | = O(s). The prover then encodes the blocks of messages

into U ∈ Lm .

Even for moderately large N , the multi-instance variant provides

signi�cant savings in both computational and communication costs.

This is because we do not need to rearrange the wire values as we

do in the single instance case. The total communication complexity

is

[n · σ + 4 · σ · (2N + t) + 2 · σ · (N + t − 2)+

t · (4 · s + 5 · σ)] · dlog |F|e + t · dlogne · h.

For su�ciently large �elds, we can set t = O(κ) where if N >
O(κ2), then the proof length is shorter than sN bits. Note that this

threshold is independent of the circuit size.

6 IMPLEMENTATION AND RESULTS
We implemented our protocol in C++ using Shoup’s NTL library

for the �nite �eld operations. We used BOOST::MPI for emulating

a network. To pick the evaluation points, we chose a prime that

had su�ciently large power of two roots of unity and set ηi and ζj
values to be roots of unity. This enabled us to perform interpolation

and evaluation using inverse FFT and FFT operations. We ran our

experiments on Intel Core i7-4720HQ CPU 2.60 GHz, 4 cores, 8 GiB

RAM. For our collision resistant hash function we used SHA-256.

We primarily compare our work with ZKB++/ZKBoo [13, 22]

that qualitatively match our result in most aspects. The crucial

advantage of our approach over ZKBoo/ZKB++ is that our com-

munication is sublinear in the circuit size whereas ZKBoo/ZKB++

incurs communication that is proportional in the circuit size. More-

over, in the amortized setting, our approach provides signi�cantly

better communication cost and runtimes over ZKBoo/ZKB++.

The primary Boolean predicate we used to demonstrate our

implementation was verifying a SHA-256 certi�cate as it is the

common benchmark used in prior works. Namely, on a common

input a 256-bit string y and a private input x of the prover, the

prover convinces the veri�er that SHA256(x) = y.

Optimizations. A standard computation of the SHA certi�cate,

involves AND and XOR gates and addition modulo 2
32

gates. One

approach is to simply realize the addition modulo 2
32

gates us-

ing Boolean AND and XOR gates. We follow a di�erent approach,

where we express the addition modulo 2
32

gate consistency as a

linear constraint over the bits of the inputs and output of the gate.

Following Section 4.5, this can be e�ciently realized if we rely on a

prime �eld larger than 2
33

. However, as mentioned in the previous

section, to obtain optimal communication for a given witness size

requires choosing a �eld of a speci�c size. To handle this, we incor-

porate these addition gates by considering a word size of dlog |F|e
and performing 32-bit additions using arithmetic over the smaller

word size. Following these optimizations, results in a witness size

of 33928 bits for the SHA-256 certi�cate (for |F| ≥ 2
14

). We ran our

protocol for di�erent circuit sizes and for each size, we ran ad-hoc

optimizers to obtain optimal parameters for soundness 2
−40

. We

remark that a tighter soundness error for the tests described in

Section 4 which in turn is used in our ZKIPCP can be obtained by

discarding the last inequality in Lemma 4.2, 4.6 and 4.8. We relied

on these better bounds in our optimizer (as opposed to the cleaner

bounds that appear in the Lemma statements). For the case of 2
−80

soundness error the communication and computation costs doubles

(as in [13, 22]). For boolean circuits, the quadratic constraints only

involves checking if each element of the witness is binary and we

can simplify the test in Section 4.3 by eliminating x ,y, z and having

the prover compute p0(•) =
∑
i ri · (p

w
i (•) · p

w
i (•) − p

w
i (•)).

In Figure 1, we compare the prover and veri�er running times

for verifying circuits of sizes varying from 2048 gates to 400000

gates.
4

The computational complexity of both the prover and the

veri�er in the single instance setting are proportional to O(s log s)
�eld operations, where s is the circuit size. The optimal �eld size

can be asymptotically shown to be O(log s) resulting in a overall

computational complexity of O(s log2 s). We remark here that if

we make uniformity assumptions on the circuit, then the veri�er’s

computational complexity becomes sublinear in the circuit size. In

fact, the multi-instance setting can be seen as a uniformity assump-

tion and here the veri�er’s complexity is indeed smaller than the

computational complexity.

4
Note that our proof length and computation times are not in�uenced by circuit

topology and only depend on the witness size which in turn depends only on the

number of gates. In fact, in the case of Boolean circuits, they are independent of gate

composition (assuming the circuit comprises of only XOR and AND gates).

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2100

103 104 105 106 107
5

10

50

100

500

1s

5s

10s

50s

3min

SHA256

s (circuit size)

R
u

n
ti

m
e

(m
s)

Prover time
Verifier time

1
Figure 1: Prover and veri�er running times for verifying
a single instance of di�erent circuit sizes.

103 104 105 106
5

10

50

100

500

3 · 106
G (# gates)

C
om

m
u
n
ic
at
io
n
(K

B
)

Ligero
Ligero-Strong
ZKB++ length
Circuit Size

1
Figure 2: Proof lengths for proving a single instance of
di�erence circuit sizes.

1 10 100 1000 5000

10−4

10−3

10−2

10−1

100

101

102

N (instances)

R
u
n
ti
m
e
/
in
st
a
n
ce

(m
s)

Prover time (2048)

Verifier time (2048)

Prover time (SHA256)

Verifier time (SHA256)

1
Figure 3: Amortized prover and veri�er running times
for verifying multiple instances of 2048 and gate circuit
and SHA-256 circuit.

1 2 4 8 16 32 64 128 256 29 210 211 212

100

101

102

103

104

2048 gate cir.

SHA256

N (instances)

C
om

m
u
n
ic
a
ti
on

/
in
st
an

ce
(K

B
)

2048 gate cir.
SHA256

1
Figure 4: Amortized proof lengths for multiple instances
of 2048 gate circuit and SHA-256 circuit.

In Figure 2, we provide the communication complexity in kilo-

bytes (KB) of our zero-knowledge argument. We plot two instan-

tiations of our protocol. We provide communication cost for our

provable variant labelled Ligero and the variant that assumes Con-

jecture 4.1 labelled as Ligero-Strong. We observe that Ligero-Strong

yields a 20% reduction in communication on the average. The com-

munication for a SHA certi�cate is 44KB with Ligero and 34KB with

Ligero-Strong. We can also see in Figure 2 that beyond 3 million

gates our communication cost is smaller than the circuit size.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2101

We compare our complexity with ZKB++ [13, 22]). We �rst note

that the complexity of ZKB++ only depends on the number of

Boolean AND gates (as XOR’s are for free). In our implementation

we relied on prime �elds and our communication cost depends on

the number of AND and XOR gates. However, had we relied on

extension �eld of GF2, we can eliminate the dependence on XOR

gates similar to ZKB++. In this variant of our protocol, each AND

gate will incur 3 bits in the witness. In Figure 2, in order to make

a fair comparison with ZKB++ for a circuit of size s , we plot the

communication cost incurred by the ZKB++ protocol for a circuit

of size 2s/3. The idea is that for a circuit comprising of 2s/3 AND

gates the cost of ZKB++ is compared with the communication cost

of our protocol assuming a characteristic-2 FFT implementation.

The threshold for which our approach incurs lesser communication

than ZKB++ is roughly 3000 (AND) gates.

In Figures 3 and 4 we provide our prover and veri�er running

times and communication for the multi-instance version of our

protocol. We take a 2048 gate circuit and the SHA-256 circuit to

illustrate our performance. The heaviest part of the veri�cation

involves performing FFTs over domains of sizes N and s where s
is the circuit size. Since we considered 1 to 4096 instances, even

for moderately sized circuits the FFT over domain of size s dom-

inates the cost. The prover complexity, on the other hand, varies

as Ns log s . We see a reduction in the amortized prover’s cost per

instance with periodic jumps because we perform FFT over a larger

domain, which is usually set to a power of 2.

The communication complexity varies additively in N and s . The

amortized communication cost per instance decreases linearly be-

cause, similar to the veri�er complexity, s dominates the complexity

until N becomes signi�cant compared to s .

7 CONCLUSIONS AND FUTUREWORK
We designed and implemented a zero-knowledge argument for NP

that simultaneously o�ers good concrete e�ciency and sublinear

communication in the circuit size. As the computational complex-

ity of our protocol is dominated by polynomial evaluations and

interpolations, we can rely on e�cient FFT implementations for

minimizing its computational cost. In the following we mention

some additional optimizations that we have not fully explored.

The current implementation relies on prime �elds. This allows us

to optimize arithmetics over integers by considering a su�ciently

large prime. Moreover, the witness includes two bits per gate for

both XOR and AND gates. If we instead rely on characteristic 2

�elds, then the witness size will require three bits per AND gate and

0 bits for XOR gates. Hence there is a tradeo� in choosing between

the two options. It is also unclear how the FFT algorithms compare

for characteristic 2 and prime �elds, though fast implementations

for the characteristic 2 case are known [10, 20].

The veri�cation of our zero-knowledge argument needs to eval-

uate a polynomial on a subset of the points in the domain. We

currently implement this by having the veri�er evaluate the poly-

nomial on the entire domain via FFT and extract the points in this

subset. Improving this will improve the veri�er’s e�ciency. Relying

on GPU for FFT computations can also bring signi�cant savings.

Finally, one can exploit a repetitive circuit structure (“uniformity”)

to reduce veri�cation time. We currently only take advantage of this

for reducing the amortized cost of verifying multiple evaluations

of the same circuit. On the prover side, more than 50% of the total

prover time for small circuits and 66% for large circuits is spent on

computing the hashes of the leaves of the Merkle tree. This leaves

room for improvement by relying on space- and cache-e�cient

hashing algorithms.

Finally, it would be interesting to explore the concrete e�ciency

of other approaches to lightweight sublinear zero-knowledge argu-

ments. In particular, one could consider constructions of PCPs based

on bivariate polynomials such as the one of Polishchuk and Spiel-

man [40] (see [8] for work in this direction), or the zero-knowledge

PCP obtained by applying our general transformation to the MPC

protocol from [17]. This type of constructions can be further sim-

pli�ed by applying an interactive procedure for testing linear con-

straints as we do in Section 4.2.

Acknowledgments. We thank Eli Ben-Sasson, Swastik Kopparty,

abhi shelat, Salil Vadhan, and Mike Wal�sh for useful discussions

and pointers, the anonymous CCS reviewers for helpful comments,

and Victor Shoup for his assistance with the NTL library.

The �rst and last authors were supported by Google Faculty Re-

search Grant and NSF Awards CNS-1526377 and CNS-1618884. The

second author was supported by the European Research Council

under the ERC consolidators grant agreement n. 615172 (HIPS), and

by the BIU Center for Research in Applied Cryptography and Cyber

Security in conjunction with the Israel National Cyber Bureau in

the Prime Minister’s O�ce. The third author was supported by

a DARPA/ARL SAFEWARE award, DARPA Brandeis program un-

der Contract N66001-15-C-4065, NSF Frontier Award 1413955, NSF

grants 1619348, 1228984, 1136174, and 1065276, ERC grant 742754,

NSF-BSF grant 2015782, ISF grant 1709/14, BSF grant 2012378, a

Xerox Faculty Research Award, a Google Faculty Research Award,

an equipment grant from Intel, and an Okawa Foundation Research

Grant. This material is based upon work supported by the Defense

Advanced Research Projects Agency through the ARL under Con-

tract W911NF-15-C-0205. The views expressed are those of the

authors and do not re�ect the o�cial policy or position of Google,

the Department of Defense, the National Science Foundation, or

the U.S. Government.

REFERENCES
[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

1998. Proof Veri�cation and the Hardness of Approximation Problems. J. ACM
45, 3 (1998), 501–555.

[2] Sanjeev Arora and Shmuel Safra. 1998. Probabilistic Checking of Proofs: A New

Characterization of NP. J. ACM 45, 1 (1998), 70–122.

[3] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. 1991. Checking

Computations in Polylogarithmic Time. In STOC. 21–31.

[4] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin,

Matan Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran

Tromer, and Madars Virza. 2017. Computational Integrity with a Public Random

String from Quasi-Linear PCPs. In EUROCRYPT. 551–579.

[5] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. 2017. Scalable,

transparent, and post-quantum secure computational integrity. Manuscript.

(2017). Slides at https://people.eecs.berkeley.edu/~alexch/docs/pcpip_bensasson.

pdf.

[6] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas

Spooner. 2016. Short Interactive Oracle Proofs with Constant Query Complexity,

via Composition and Sumcheck. IACR Cryptology ePrint Archive 2016 (2016),

324.

[7] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2102

https://people.eecs.berkeley.edu/~alexch/docs/pcpip_bensasson.pdf
https://people.eecs.berkeley.edu/~alexch/docs/pcpip_bensasson.pdf

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014. 459–474.

[8] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. 2013. On

the concrete e�ciency of probabilistically-checkable proofs. In Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013.

585–594.

[9] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive

Oracle Proofs. In TCC. 31–60.

[10] Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. 2016. Fast

Multiplication in Binary Fields on GPUs via Register Cache. In Proceedings of the
2016 International Conference on Supercomputing, ICS 2016, Istanbul, Turkey, June
1-3, 2016. 35:1–35:12.

[11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recursive

composition and bootstrapping for SNARKS and proof-carrying data. In STOC.

111–120.

[12] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

2013. Succinct Non-interactive Arguments via Linear Interactive Proofs. In TCC.

315–333.

[13] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-

macher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017. Post-

Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. IACR
Cryptology ePrint Archive 2017 (2017), 279.

[14] Hao Chen and Ronald Cramer. 2006. Algebraic Geometric Secret Sharing Schemes

and Secure Multi-Party Computations over Small Fields. In CRYPTO. 521–536.

[15] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical

veri�ed computation with streaming interactive proofs. In ITCS. 90–112.

[16] Ivan Damgård and Yuval Ishai. 2006. Scalable Secure Multiparty Computation.

In CRYPTO. 501–520.

[17] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. 2010. Perfectly Secure Mul-

tiparty Computation and the Computational Overhead of Cryptography. In

EUROCRYPT. 445–465.

[18] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno. 2013.

Pinocchio coin: building zerocoin from a succinct pairing-based proof system.

In PETShop’13, Proceedings of the 2013 ACM Workshop on Language Support for
Privacy-Enhancing Technologies, Co-located with CCS 2013, November 4, 2013,
Berlin, Germany. 27–30.

[19] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions to

Identi�cation and Signature Problems. In CRYPTO. 186–194.

[20] Shuhong Gao and Todd Mateer. 2010. Additive Fast Fourier Transforms over

Finite Fields. IEEE Trans. Inf. Theor. 56, 12 (Dec. 2010), 6265–6272.

[21] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-

dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT. 626–

645.

[22] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. 2016. ZKBoo: Faster

Zero-Knowledge for Boolean Circuits. In USENIX. 1069–1083.

[23] Sha� Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2015. Delegating

Computation: Interactive Proofs for Muggles. J. ACM 62, 4 (2015), 27:1–27:64.

[24] Sha� Goldwasser, Silvio Micali, and Charles Racko�. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In STOC. 291–

304.

[25] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. 2010. In-

teractive Locking, Zero-Knowledge PCPs, and Unconditional Cryptography. In

CRYPTO. 173–190.

[26] Jens Groth. 2009. Linear Algebra with Sub-linear Zero-Knowledge Arguments.

In CRYPTO. 192–208.

[27] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Argu-

ments. In ASIACRYPT. 321–340.

[28] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. 2007. E�cient Arguments

without Short PCPs. In CCC. 278–291.

[29] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

knowledge from secure multiparty computation. In STOC. 21–30.

[30] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2009. Zero-

Knowledge Proofs from Secure Multiparty Computation. SIAM J. Comput. 39, 3

(2009), 1121–1152.

[31] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. 2012. On E�cient Zero-

Knowledge PCPs. In TCC. 151–168.

[32] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2008. Founding Cryptography

on Oblivious Transfer - E�ciently. In CRYPTO. 572–591.

[33] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. 2009. Secure Arithmetic

Computation with No Honest Majority. In TCC. 294–314. Full version: IACR

Cryptology ePrint Archive 2008: 465.

[34] Yuval Ishai and Mor Weiss. 2014. Probabilistically Checkable Proofs of Proximity

with Zero-Knowledge. In TCC. 121–145.

[35] Yael Tauman Kalai and Ran Raz. 2008. Interactive PCP. In ICALP. 536–547.

[36] Joe Kilian. 1992. A Note on E�cient Zero-Knowledge Proofs and Arguments

(Extended Abstract). In STOC. 723–732.

[37] Carsten Lund, Lance Fortnow, Howard J. Karlo�, and Noam Nisan. 1990. Alge-

braic Methods for Interactive Proof Systems. 2–10.

[38] Ralph C. Merkle. 1989. A Certi�ed Digital Signature. In CRYPTO. 218–238.

[39] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In FOCS. 436–453.

[40] Alexander Polishchuk and Daniel A. Spielman. 1994. Nearly-linear size holo-

graphic proofs. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada. 194–203.

[41] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. 2016. Constant-round

interactive proofs for delegating computation. In STOC. 49–62.

[42] Srinath T. V. Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan

Parno, and Michael Wal�sh. 2013. Resolving the con�ict between generality and

plausibility in veri�ed computation. In Eighth Eurosys Conference 2013, EuroSys
’13, Prague, Czech Republic, April 14-17, 2013. 71–84.

[43] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Wal-

�sh. 2012. Making argument systems for outsourced computation practical

(sometimes). In 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012.

[44] Adi Shamir. 1990. IP=PSPACE. 11–15.

[45] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In

CRYPTO. 71–89.

[46] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Wal�sh. 2013.

A Hybrid Architecture for Interactive Veri�able Computation. In SP. 223–237.

[47] Michael Wal�sh and Andrew J. Blumberg. 2015. Verifying computations without

reexecuting them. Commun. ACM 58, 2 (2015), 74–84.

[48] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over

Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. 863–880.

A GENERALIZED INTERLEAVED CODE
TESTING

In this section we present a generalized version of the testing algo-

rithm that uses σ linear combinations to amplify soundness. This

algorithm is useful for obtaining better soundness over small �elds.

Generalized-Test-Interleaved(F,L[n,k,d],m, t ,σ ;U)
• Oracle: A purported Lm-codeword U . Depending on the con-

text, we may view U either as a matrix in Fm×n in which each

row is a purported L-codeword, or as a sequence of n symbols

(U1, . . . ,Un), Ui ∈ F
m

.

• Parameters:
– Probing parameter t < n (number of symbols Uj read byV).

– Repetition parameter σ (number of random linear combina-

tions).

• Interactive testing:
(1) V picks σ random linear combinations r1, . . . , rσ ∈ F

m
and

sends them to P.

(2) P responds with wh = r
T
hU ∈ F

n
, h = 1, . . . ,σ .

(3) V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q .

(4) V accepts i� all wh are in L and are consistent with UQ
and rh . That is, for every j ∈ Q and 1 ≤ h ≤ σ , we have∑m
i=1(rh)j ·Ui, j = (wh)j .

Lemma A.1. IfU ∈ Lm and P is honest, thenV always accepts.

Lemma A.2. Let e be a positive integer such that e < d/4. Suppose
d(U ∗,Lm) > e . Then, for a random w∗ in the row-span of U ∗, we
have

Pr[d(w∗,L) ≤ e] ≤ (e + 1)/|F|σ .

Theorem A.1. Let e be a positive integer such that e < d/4.
Suppose d(U ∗,Lm) ≥ e . Then, for any malicious P strategy, the
oracle U ∗ is rejected byV except with ≤ (1 − e/n)t + (e + 1)/|F|σ

probability.

A proof of a generalization of this test appears in Section C.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2103

B AFFINE INTERLEAVED CODE TESTING

A�ne-Test-Interleaved(F,L[n,k,d],m, t ;U ,u ′)
• Oracle: A purported Lm -codewordU and an additional auxiliary

row vector u ′ ∈ Fn .

• Interactive testing:
(1) V picks random linear combinations r ∈ Fm and sends r

to P.

(2) P responds with w = rTU + u ′ ∈ Fn .

(3) V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q , as

well as u ′j , j ∈ Q .

(4) V accepts i� w ∈ L and w is consistent with UQ , u ′Q , and r .

That is, for every j ∈ Q we have

∑m
i=1 r j ·Ui, j + u

′
j = w j .

Lemma B.1. If U ∈ Lm , u ′ ∈ L, and P is honest, thenV always
accepts.

Lemma B.2. Let e be a positive integer such that e < d/4. Suppose
d(U ∗,Lm) > e . Then, for arbitrary u ′ ∈ Fn and a randomw∗ in the
row-span of U ∗, we have Pr[d(w∗,L) ≤ e] ≤ (e + 1)/|F|.

Theorem B.1. Let e be a positive integer such that e < d/4.
Suppose d(U ∗,Lm) ≥ e . Then, for an arbitrary u ′ ∈ Fn and any
malicious P strategy, the oracle U ∗ is rejected by V except with
≤ (1 − e/n)t + (e + 1)/|F| probability.

A proof of a generalization of this test appears in the next section.

C GENERALIZED AFFINE INTERLEAVED
CODE TESTING

For the purpose of obtaining a zero-knowledge IPCP, the follow-

ing “a�ne” variant of Test-Interleaved is useful. Whenever V

requests a random linear combination of the rows of U , this linear

combination will be masked with an additional blinding vector

u ′ ∈ Fn . The vector u ′, which is also given as part of the proof

oracle, will be picked by an honest P at random from L and will

therefore hide all information aboutU whose rows are from L. The

soundness of the test should hold even when u ′ is adversarially

chosen and is not necessarily a codeword. We generalize it fur-

ther following the previous section to achieve better soundness by

repetition.

Generalized-A�ne-Test-Interleaved(F,L[n,k,d],m, t ,σ ;U ,u ′)
• Oracle: A purported Lm-codeword U and additional auxiliary

row vectors u ′
1
, . . . ,u ′σ ∈ F

n
.

• Interactive testing:
(1) V picks a random linear combinations r1, . . . , rσ ∈ F

m
and

sends r to P.

(2) P responds with wh = r
T
hU + u

′
h ∈ F

n
, h = 1, . . . ,σ .

(3) V queries a set Q ⊂ [n] of t random symbols Uj , j ∈ Q , as

well as (uσ)j , j ∈ Q .

(4) V accepts i� all wh ∈ L and are consistent with whandUQ ,

uh , and rh . That is, for every j ∈ Q we have

∑m
i=1(rh)j ·

Ui, j + (u
′
h)j = w j .

Completeness follows directly from the description. A formal

proof of our soundness is presented below.

Lemma C.1. IfU ∈ Lm , u ′
1
, . . . ,u ′σ ∈ L, and P is honest, thenV

always accepts.

Lemma C.2. Let e be a positive integer such that e < d/4. Suppose
d(U ∗,Lm) > e . Then, for arbitrary u ′

1
, . . . ,u ′σ ∈ F

n and a random
w∗ in the row-span of U ∗, we have Pr[∀ h ∈ [σ],d(w∗ + u ′h ,L) ≤

e] ≤ (e + 1)/|F|σ .

Proof: The proof of Lemma C.2 is almost identical to the proof of

Lemma 4.2. The high level reason why the same argument works

is that the decomposition w∗ = αv∗ + x where x is independent

of α still holds even for w∗ + u ′h (since u ′h is a �xed vector, and so

u ′h + x is independent of α). We provide the full proof below.

Let L∗ be the row-span of U ∗. We consider two cases similar to

our proof of Lemma 4.2.

Case 1: There exists v∗ ∈ L∗ such that d(v∗,L) > 2e . In this case,

we show that

Pr

w∗∈RL∗
[∀ h ∈ [σ],d(w∗ + u ′h ,L) ≤ e] ≤ 1/|F|σ . (2)

Indeed, using a basis for L∗ that includes v∗, a random w∗ ∈ L∗

can be written as αv∗ + x , where α ∈R F and x is distributed

independently of α . We argue that conditioned on any choice of x ,

there can be at most one choice of α such that d(αv∗+x+u ′h ,L) ≤ e .

We can conclude the case from this as the probability over r1, . . . , rh
that d((rh)

TU + u ′h ,L) ≤ e holds for every h is at most 1/|F|σ .

This follows by observing that if d(αv∗ + x0 + u ′h ,L) ≤ e and

d(α ′v∗ + x0 +u
′
h ,L) ≤ e for α , α ′, then by the triangle inequality

we have d((α − α ′)v∗,L) ≤ 2e . Since, by assumption d(v∗,L) > 2e
and this implies d(v∗,L) > 2e , we arrive at a contradiction.

Case 2: For every v∗ ∈ L∗,d(v∗,L) ≤ 2e . We show that in this

case Prw∗∈RL∗ [∀ h ∈ [σ],d(w∗ + u ′h ,L) ≤ e] ≤ (e + 1)/|F|σ . Let

U ∗i be the ith row of U ∗ and let Ei = ∆(U ∗i ,L). Note that, since

2e < d/2, each U ∗i can be written uniquely as U ∗i = ui + χi where

ui ∈ L and χi is nonzero exactly in its Ei entries. Let E = ∪mi=1Ei .
Since d(U ∗,Lm) > e , we have |E | > e . We show below that for

j ∈ E, except with 1/|F| probability over a random choice of w∗

from L∗, either j ∈ ∆(w∗ + u ′h ,L) or d(w∗ + u ′h ,L) > e . First, we

conclude the case and the proof of Lemma assuming this holds. We

observe that this implies that with probability at most 1/|F |σ over

the choice of r1, . . . , rσ , it holds that, for all h, j < ∆((rh)
TU +u ′h ,L)

and d((rh)
TU +u ′h ,L) ≤ e . Taking a union bound over the �rst e +1

elements of E the claim follows.

Suppose j ∈ Ei and �x an arbitrary h ∈ [σ]. As before, we write

w∗ = αU ∗i + x for α ∈R F and x distributed independently of α .

Condition on any possible choice x0 of x . De�ne a bad set

Bj = {α : j < ∆(αU ∗i + x0 + uh ,L) ∧ d(αU ∗i + x0 + uh ,L) ≤ e}.

We show that |Bj | ≤ 1. Suppose for contradiction that there are

two distinct α ,α ′ ∈ F such that for z = αU ∗i + x0 + uh and z′ =
α ′U ∗i + x0 + uh we have d(z,L) ≤ e , d(z′,L) ≤ e , j < ∆(z,L), and

j < ∆(z′,L). Since d > 4e , for any z∗ in the linear span of z and z′

we have j < ∆(z∗,L). Since (α −α ′)U ∗i = z −z′ is in this linear span,

we have j < ∆(U ∗i ,L), in contradiction to the assumption j ∈ Ei . �

Theorem C.1. Let e be a positive integer such that e < d/4. Sup-
pose d(U ∗,Lm) ≥ e . Then, for arbitrary u ′

1
, . . . ,u ′σ ∈ F and any

malicious P strategy, the oracle U ∗ is rejected by V except with
≤ (1 − e/n)t + (e + 1)/|F|σ probability.

Session J1: Outsourcing CCS’17, October 30-November 3, 2017, Dallas, TX, USA

2104

	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Collision-Resistant Hashing and Merkle Trees
	2.2 Zero-Knowledge Arguments
	2.3 Interactive PCPs

	3 From MPC to ZKIPCP
	3.1 Our MPC Model
	3.2 ZKIPCP for NP - The General Case

	4 A Direct ZKIPCP Construction
	4.1 Testing Interleaved Linear Codes
	4.2 Testing Linear Constraints over Interleaved Reed-Solomon Codes
	4.3 Testing Quadratic Constraints over Interleaved Reed-Solomon Codes
	4.4 IPCP for Arithmetic Circuits
	4.5 IPCP for Boolean Circuits
	4.6 Achieving Zero-Knowledge
	4.7 The Final ZKIPCP

	5 From ZKIPCP to ZK
	5.1 The Interactive Variant
	5.2 The Non-Interactive Variant
	5.3 Sublinear Zero-Knowledge Argument
	5.4 Multi-Instance Amortization

	6 Implementation and Results
	7 Conclusions and Future Work
	References
	A Generalized Interleaved Code Testing
	B Affine Interleaved Code Testing
	C Generalized Affine Interleaved Code Testing

