
Most Websites Don’t Need to Vibrate:
A Cost–Benefit Approach to Improving Browser Security

Peter Snyder
University Of Illinois at Chicago

psnyde2@uic.edu

Cynthia Taylor
University Of Illinois at Chicago

cynthiat@uic.edu

Chris Kanich
University Of Illinois at Chicago

ckanich@uic.edu

ABSTRACT
Modern web browsers have accrued an incredibly broad set of
features since being invented for hypermedia dissemination in
1990. Many of these features bene�t users by enabling new types
of web applications. However, some features also bring risk to
users’ privacy and security, whether through implementation error,
unexpected composition, or unintended use. Currently there is
no general methodology for weighing these costs and bene�ts.
Restricting access to only the features which are necessary for
delivering desired functionality on a given website would allow
users to enforce the principle of lease privilege on use of the myriad
APIs present in the modern web browser.

However, security bene�ts gained by increasing restrictionsmust
be balanced against the risk of breaking existing websites. This
work addresses this problem with a methodology for weighing
the costs and bene�ts of giving websites default access to each
browser feature. We model the bene�t as the number of websites
that require the feature for some user-visible bene�t, and the cost
as the number of CVEs, lines of code, and academic attacks related
to the functionality. We then apply this methodology to 74 Web
API standards implemented in modern browsers. We� nd that al-
lowing websites default access to large parts of the Web API poses
signi�cant security and privacy risks, with little corresponding
bene�t.

We also introduce a con�gurable browser extension that allows
users to selectively restrict access to low-bene�t, high-risk features
on a per site basis. We evaluated our extension with two hardened
browser con�gurations, and found that blocking 15 of the 74 stan-
dards avoids 52.0% of code paths related to previous CVEs, and
50.0% of implementation code identi�ed by our metric, without
a�ecting the functionality of 94.7% of measured websites.

CCS CONCEPTS
• Security and privacy→ Browser security; Vulnerability man-
agement; Software security engineering;

KEYWORDS
Browser security, Software security, Web security and privacy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN ISBN 978-1-4503-4946-8/17/10.
https://doi.org/http://dx.doi.org/10.1145/3133956.3133966

1 INTRODUCTION
Since its beginnings as a hypermedia dissemination platform, the
web has evolved extensively and impressively, becoming part com-
munication medium and part software distribution platform. More
recently, the move from browser plugins to native HTML5 capa-
bilities, along with e�orts like Chrome OS and the now defunct
Firefox OS, have expanded the Web API tremendously. Modern
browsers have, for example, gained the ability to detect changes
in ambient light levels [58], perform complex audio synthesis [14],
enforce digital rights management systems [25], cause vibrations
in enabled devices [36], and create peer to peer networks [11].

While the web has picked up new capabilities, the security model
underlying the Web API has remained largely unchanged. All web-
sites have access to nearly all browser capabilities. Unintended in-
formation leaks caused by these capabilities have been leveraged by
attackers in several ways: for instance, WebGL and Canvas allowed
Cao et al. to construct resilient cross-browser� ngerprints [21], and
Gras et al. were able to defeat ASLR in the browser [30] using the
Web Workers and High Resolution Timing APIs.1 One purported
bene�t of deploying applications via JavaScript in the browser is
that the runtime is sandboxed, so that websites can execute any
code it likes, even if the user had never visited that site before. The
above attacks, and many more, have subverted that assumption to
great e�ect.

These attacks notwithstanding, allowing websites to quickly pro-
vide new experiences is a killer feature that enables rapid delivery
of innovative new applications. Even though some sites take ad-
vantage of these capabilities to deliver novel applications, a large
portion of the web still provides its primary value through rich me-
dia content dissemination. We show in this work that most websites
can deliver their bene�cial functionality to users with only a limited
number of JavaScript APIs. Additionally, when websites need ac-
cess to less common functionality, we demonstrate a mechanism to
enable� ne-grained access to JavaScript features on a case-by-case
basis.

An understanding of the bene�ts and risks of each JavaScript
feature is necessary to make sound decisions about which features
need to be enabled by default to create the modern web experience.
With this knowledge, a set of highly bene�cial features can be
exposed by default to all websites, while only trusted sites that
need additional features are given the ability to access the full set
of capabilities in the browser, thus enforcing the principle of least
privilege on the Web API.

This work applies a systematic cost-bene�t analysis to the por-
tions of the Web API implemented in all popular browsers. We

1We present a more extensive overview of academic attacks and the JavaScript APIs
that enable them in Section 5.2.1, and further enumerate the attack to enabling feature
mapping in Table 4 in the Appendix.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

179

present a method to quantitatively evaluate both the cost of a fea-
ture (the added security risk of making a feature available) and
the bene�t of a feature (the number of websites that require the
feature to function properly). We then build a browser extension
which blocks selected JavaScript functions to generate the results
discussed in this paper. In this work we speci�cally consider the
open web accessed via a desktop browser, but the same approach
could be expanded to any website viewed via any browser.

Using these cost-bene�t measurements, we create two hardened
browser con�gurations by identifying high-cost standards that
could be blocked in the browser without a�ecting the browsing
experience on most websites. We present a browser extension that
enforces these hardened browser con�gurations, and compare the
usability of these hardened browser con�gurations against other
popular browser-security tools, NoScript and the Tor Browser Bun-
dle (TBB). We� nd that our hardened browser con�gurations o�er
substantial security bene�ts for users, while breaking fewer web-
sites than either NoScript or the default con�guration of the TBB
during our evaluation on both the 200 most popular sites in the
Alexa 10k, and a random sampling of the rest of the Alexa 10k.

Our browser-hardening extension is highly con�gurable, allow-
ing functionality to be blocked or allowed on a per-site basis. The
set of standards blocked can be updated to re�ect changes in the
popularity or security costs of each standard.

This work presents the following technical contributions:

• ES6 Proxy based feature� rewall. (Section 3) We lever-
age the ES6 proxy object to build a feature� rewall which
dynamically disables JavaScript API features without break-
ing most code that expects those features to exist.

• Code complexity as cost. (Section 4.5.2) We perform a
static analysis of the Firefox codebase to identify and count
lines of code exclusively used to enable each web standard.
We� nd a moderate, statistically signi�cant relationship be-
tween this code complexity metric and previously discovered
vulnerabilities attributed to these standards.

• Contextual protection extension. (Section 7) We pack-
age the feature� rewall in an open source browser exten-
sion that allows the deployment of pre-de�ned conservative
and aggressive feature blocking policies. The extension is
highly customizable, with a user experience similar to popu-
lar ad blocking software, including blocked API noti�cations,
streamlined reload and retry, and customizable site whitelist-
ing.

Further, these tools enable an analysis of the Firefox source code
with the intention of determining the costs and bene�ts of each
Web API standard, yielding the following additional contributions.

Understanding feature bene�t (Section 5.1). We de�ne the
bene�t of enabling a feature as the number of websites which
require the feature to function correctly, as perceived by the user in
a casual browsing scenario. We show that two humans using simple
rules to independently gauge the functionality of a website under
di�erent levels of browser functionality can have high agreement
(97%), and thus can be used to model the bene�t of a given feature.
We use this methodology to investigate the necessity of 74 di�erent

features in 1,684 di�erent paired tests undertaken across 500 hours
of human e�ort.

Understanding feature cost. (Section 5.2)We de�ne the cost
of enabling a feature as the number of vulnerabilities in the newly
exposed attack surface. Because this value is unknowable, we model
cost in three ways:� rst, we model security cost as a function of the
number of previously reported CVEs in a feature, on the intuition
that features which are di�cult to code correctly are more likely to
have further undiscovered vulnerabilities.

Second, we model security cost as the number of attacks intro-
duced in academic papers which have been enabled by each Web
API standard.

Third, we model security cost as a function of code complex-
ity. We attribute entry points in the browser’s C++ codebase to
JavaScript exposed features, and then quantify complexity as the
number of lines of code used solely to implement access to each
feature.

2 RELATEDWORK
In this section we discuss the current state of browser features, as
well as existing user level security defenses.

2.1 Browser Feature Inclusion
Browsers compete on performance, security, and compatibility. This
�nal point introduces two security related challenges:� rst, ven-
dors are very wary of removing features from the browser, even if
they are used by a very small fraction of all websites [5, 8]. Second,
because the web is evolving and even competing with native appli-
cations (especially on mobile devices), browser vendors are incen-
tivized to continue to add new features to the web browser and not
remove old features. Browsers using the same code base across all
devices, including mobile, browser OS devices (e.g., Google Chrome-
books), and traditional PCs also increases the amount of code in
the browser. The addition of support for this variety of devices
means that JavaScript features that support hardware features (we-
bcams, rotation sensors, vibration motors, or ambient light sensors,
etc. [36, 37, 39, 58]) are included in the browser for all devices, re-
gardless of whether they include such hardware. All of this has
resulted in a massive growth of the amount of code in the browser,
with Firefox currently containing over 13 million lines of code, and
Chrome containing over 14 million [18].

2.2 Client Side Browser Defenses
There are variety of techniques which “harden” the browser against
attacks via limiting what JavaScript is allowed to run within the
browser. These defenses can be split into two categories: those
con�gured by the user, and those con�gured by the website author.
Our method is in the former category, allowing the user to make
decisions about which features to enable when.

In the user con�gured category, both Adblock and NoScript pre-
vent JavaScript from running based on the site serving it. While
its primary function is to block ads for aesthetic purposes, Ad-
block [1] can also prevent infection by malware being served in
those ads [19, 51]. Adblock blocks JavaScript features by prevent-
ing the loading of resources from certain domains, rather than
disabling speci�c functionality. NoScript [42] prevents JavaScript

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

180

on an all-or-nothing basis, decided based on its origin. Its default
for unknown origins is to allow nothing, rendering a large swath
of the web unusable. It is worth noting that NoScript defaults to
whitelisting a number of websites, which has resulted in a proof of
concept exploit via purchasing expired whitelisted domains [20].
Beyond these popular tools, IceShield [33] dynamically detects sus-
picious JavaScript calls within the browser, and modi�es the DOM
to prevent attacks.

The Tor Browser [24] disables by default or prompts the user be-
fore using a number of features. Regarding JavaScript, they disable
SharedWorkers [10], and prompt before using calls from HTML5
Canvas, the GamePad API, WebGL, the Battery API, and the Sensor
API [52]. These particular features are disabled because they enable
techniques which violate the Tor Browser’s security and privacy
goals.

On the website author side, Content Security Policy allows lim-
iting of the functionality of a website, but rather than allowing
browser users to decide what will be run, CSP allows web devel-
opers to constrain code on their own sites so that potential attack
code cannot access functionality deemed unnecessary or danger-
ous [56]. Conscript is another client-side implementation which
allows a hosting page to specify policies for any third-party scripts
it includes [43]. There are also a number of technologies selected
by the website author but enforced on the client side, including
Google Caja [44] and GATEKEEPER [32].

There are existing models for enforcing policies to limit function-
ality outside of the web browser as well. Mobile applications use a
richer permission model where permission to use certain features
is asked of the user at either install or run-time [6, 17].

3 INTERCEPTING JAVASCRIPT
FUNCTIONALITY

Core to both our measurements and the browser hardening exten-
sion is the ability to disable speci�c features from the browser’s
JavaScript environment. Here we present a technique for removing
access to these features while minimizing collateral damage in code
that expects those features to be available.

3.1 Web API / W3C standards
When visiting and displaying websites, browsers build a tree-based
model of the document. This tree, along with the methods and
properties the browser provides to allow site authors to interact
with the browser and the tree, are collectively known as the DOM
(document object model), or the Web API.

The browser makes much of its functionality available to web-
sites through a single, global object, called window. Almost all
JavaScript accessible browser functionality is implemented as a
property or method on this global object. The set of properties,
functions, and methods available in the DOM is standardized us-
ing Interface Description Language documents. Browser vendors
implement these standards in their browsers.

For the purposes of this paper, we de�ne a feature as an in-
dividual JavaScript method or property available in the browser,
and a Web API standard (or just standard) as a collection of fea-
tures collected into a single document and published together. Each

standard generally contains features that are intended to be used to-
gether to enable a common functionality (such as WebGL graphics
manipulation, geolocation services, or cryptographic services).

3.2 Removing Features from the DOM
Eachwebpage and iframe gets its own global window object. Changes
made to the global object are shared across all scripts on the same
page, but not between pages. Furthermore, changes made to this
global object are seen immediately by all other script running in the
page. If one script deletes or overwrites the window.alert function,
for example, no other scripts on the page will be able to use the
alert function, and there is no way they can recover it.

As a result, code executed earlier can arbitrarily modify the
browser environment seen by code executed later. Since code run
by browser extensions can run before any scripts included by the
page, extensions can modify the browser environment for all code
executed in any page. The challenge in removing a feature from the
browser environment is not to just prevent pages from reaching
the feature, but to do so in way that still allows the rest of the code
on the page to execute without introducing errors.

For example, to disable the getElementsByTagName feature, one
could simply remove the getElementsByTagNamemethod from the
window.document object. However, this will result in fatal errors
if future code attempts to call that now-removed method.

Consider the code in Figure 1: removing the window.document
.getElementsByTagName method will cause an error on line one,
as the site would be trying to call the now-missing property as
if were a function. Replacing getElementsByTagName with a new,
empty function would solve the problem on line one, but would
cause an error on line two, unless the function returned an array
of at least length� ve. Even after accounting for that result, one
would need to expect that the setAttribute method was de�ned
on the fourth element in that array. One could further imagine that
other code on the page may be predicated on other properties of
that return value, and fail when those are not true.

1 var ps, p5;
2 ps = document.getElementsByTagName(�p�);
3 p5 = ps[4];
4 p5.setAttribute(�style�, �color: red�);
5 alert(�Success!�);

Figure 1: Trivial JavaScript code example, changing the color
of the text in a paragraph.

3.3 ES6 Proxy Con�guration
Our technique solves this problem through a specially constructed
version of the Proxy object. The Proxy object can intercept opera-
tions and optionally pass them along to another object. Relevant to
this work, proxy objects also allow code to trap on general language-
operations. Proxies can register generic handlers that� re when the
proxy is called like a function, indexed into like an array, has its
properties accessed like an object, and operated on in other ways.

We take advantage of the Proxy object’s versatility in two ways.
First, we use it to prevent websites from accessing certain browser
features, without breaking existing code. This use case is described

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

181

in detail in Subsection 3.4. And second, we use the Proxy object
to enforce policies on runtime created objects. This use case is
described in further detail in Subsection 3.5

3.4 Proxy-Based Approach
We� rst use the Proxy object to solve the problems described in
3.2. We create a specially con�gured a proxy object that registers
callback functions for all possible JavaScript operations, and having
those callback functions return a reference to the same proxy object.
We also handle cases where Web API properties and functions
return scalar values (instead of functions, arrays or higher order
objects), by programming the proxy to evaluate to 0, empty string,
or undefined, depending on the context. Thus con�gured, the
proxy object can validly take on the semantics of any variable in
any JavaScript program.

By replacing getElementsByTagName with our proxy, the code
in Figure 1 will execute cleanly and the alert dialog on line four
will successfully appear. On line one, the proxy object’s function
handler will execute, resulting in the proxy being stored in the ps
variable. On line two, the proxy’s get handler will execute, which
also returns the proxy, resulting in the proxy again being stored in
p5. Calling the setAttribute method causes the proxy object to
be called twice,� rst because of looking up the setAttribute, and
then because of the result of that look up being called as a function.
The end result is that the code executes correctly, but without
accessing any browser functionality beyond the core JavaScript
language.

The complete proxy-based approach to graceful degradation can
be found in the source code of our browser extension2.

Most state changing features in the browser are implemented
through methods which we block or record using the above de-
scribed method. This approach does not work for the small number
of features implemented through property sets. For example, assign-
ing a string to document.location redirects the browser to the
URL represented by the string. When the property is being set on a
singleton object in the browser, as is the case with the document ob-
ject, we interpose on property sets by assigning a new “set” function
for the property on the singleton using Object.defineProperty.

3.5 Sets on Non-Singleton Objects
A di�erent approach is needed for property sets on non-singleton
objects. Property sets cannot be imposed on through altering an
object’s Prototype, and non-singleton objects can not be modi�ed
with Object.defineProperty at instrumentation time (since those
objects do not yet exist). We instead interpose on methods that yield
non-singleton objects.

We modify these methods to return Proxy objects that wrap
these non-singleton objects, which we use to control access to set
these properties at run time. For example, consider the below code
example, using theWeb Audio API.

In this example, we are not able to interpose on the gainNode.
channelCount set, as the gainNode object does not exist when
we modify the DOM. To address these cases, we further modify the
AudioContext.property.createGain to return a specially cre-
ated proxy object, instead of a GainNode object. This, specially
2URL Redacted for review.

1 var context = new window.AudioContext ();
2 var gainNode = context.createGain ();
3 gainNode.channelCount = 1;

Figure 2: Example of setting a property on a non-singleton
object in the Web API.

crafted proxy object wraps the GainNode object, allowing us to in-
terpose on property sets. Depending on the current policy, we either
ignore the property set or pass it along to the original GainNode
object.

3.6 Security Implications
There are some code patterns where the proxy approach described
here could have a negative impact on security, such as when se-
curity sensitive computations are done in the client, relying on
functionality provided by the Web API, and where the results of
those calculations are critical inputs to other security sensitive op-
erations. We expect that such cases are rare, given common web
application design practices. Even so, in the interest of safety, we
whitelist the WebCrypto API by default, and discuss the security
and privacy tradeo�s here.

As discussed above, our proxy-based approach for interposing
on Web API features replaces references to the functionality being
blocked with a new function that returns the proxy object. In most
cases where the feature being replaced is security relevant, this
should not negativly e�ect the security of the system. For example,
if the encryptmethod from theWeb Crypto were replaced with our
proxy object, the function would not return an unencrypted string,
but instead the proxy object. While this would break a system that
expected the cryptographic operation to be successful, it would
“fail-closed”; sensitive information would not be returned where
encrypted information was expected.

Conversely, if getRandomValues is used to generate a nonce, the
returned proxy object would coerce to an empty string. While the
security repercussions of this silent failure could possibly be grave,
[54] observed that the vast majority of calls to getRandomValues
on the open web could be considered privacy-invasive, as they
were used as part of the Google Analytics tracking library. Even
so, the potential harm to users from a silent failure is too great,
resulting in our decision to whitelist WebCrypto. As our proposed
contextual protection extension can implement arbitrary policies,
we look forward to debate among experts and users as to what a
sensible set of defaults should be in this situation.

4 METHODOLOGY
In this section we describe a general methodology for measuring the
costs and bene�ts of enabling a Web API standard in the browser.
We measure the bene�t of each standard using the described feature
degradation technique for each standard of features, browsing sites
that use those feature, and observing the result.Wemeasure the cost
of enabling each standard in three ways: as a function of the prior
research identifying security or privacy issues with the standard,
the number and severity of associated historical CVEs, and the LoC
needed to implement that standard.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

182

4.1 Representative Browser Selection
This section describes a general methodology for evaluating the
costs and bene�ts of enabling Web API standards in web browsers,
and then the application of that general approach to a speci�c
browser, Firefox 43.0.1. We selected this browser to represent
modern web browsers general for several reasons.

First, Firefox’s implementation ofWebAPI standards is represen-
tative of how Web API standards are implemented in other popular
web browsers, such as Chrome. These browsers use WebIDL to
de�ne the supported Web API interfaces, and implement the un-
derlying functionality mostly in C++, with some newer standards
implemented in JavaScript. These browsers even share a signi�-
cant amount of code, through their use of third party libraries and
code explicitly copied from each other’s projects (for example, very
large portions of Mozilla’s WebRTC implementation is taken or
shared with the Chromium project in the form of the “webrtc” and
“libjingle” libraries).

Second, the standardized nature of theWeb API means that mea-
sures of Web API costs and bene�ts performed against one browser
will roughly generalize to all modern browsers; features that are
frequently used in one browser will be as popular when using any
other recent browser. Similarly, most of the attacks documented in
academic literature exploit functionality that is operating as speci-
�ed in these cross-browser standards, making it further likely that
this category of security issue will generalize to all browsers.

Third, we use Firefox, instead of other popular browsers, to build
on other related research conducted on Firefox (e.x. [54] and [53]).
Such research does not exist for other popular browsers, making
Firefox a natural choice as a research focus.

For these reasons, we use Firefox 43.0.1 as representative of
browsers in general in this work. However, this approach would
work with any modern browser, and is in no way tied to Firefox
43.0.1 in particular.

4.2 Measuring by Standard
To measure the costs and bene�ts of Web API features in the
browser, we identi�ed a large, representative set browser features
implemented across all modern web browsers. We extracted the
1,392 standardized Web API features implemented in Firefox, and
categorized those features into 74 Web API standards, using the
same technique as in [54].

Using the features listed in theW3C’s (and related standards orga-
nizations) publications, we categorized Console.prototype.log
and Console.prototype.timeline with the Console API,
SVGFilterElement.apply and SVGNumberList.prototype.getItem
with the SVG standard, and so forth, for each of the 1,392 features.

We use these 74 standards as our unit of Web API measurement
for two reasons. First, focusing on 74 standards leads to less of a
combinatorial explosion when testing di�erent subsets of Web API
functionality. Secondly, as standards are organized around high
level features of the browser that often have one cohesive purpose,
for instance the Scalable Vector Graphics standard or theWeb Audio
API, being able to reason about what features a website might need
is useful for communicating with users who might be interested
in blocking (or allowing) such features to run as part of a given
website.

4.3 Determining When AWebsite Needs A
Feature

Core to our bene�t metric is determining whether a given website
needs a browser feature to function. When a site does not need a
feature, enabling the feature on the site provides little bene�t to
browser users.

Importantly, we focus our measurements on an unauthenticated
casual browsing scenario. This approach will not capture features
like rich user to user messaging or video chat. We believe this casual
browsing scenario properly approximates the situation in which a
heightened security posture is most needed: when a user� rst visits
a new site, and thus does not have any trust relationship with the
site, and likely little or no understanding of the site’s reputation for
good security or privacy practices. Once a user has a better idea of
how much to trust the site and what features the site requires, they
may adaptively grant speci�c permissions to the site.

Determining whether a website actually needs a feature to func-
tion is di�cult. On one end of the spectrum, when a website never
uses a feature, the site trivially does not need to feature to run cor-
rectly. Previous work [54] shows that most features in the browser
fall in this category, and are rarely used on the open web.

However, a website may use a feature, but not need it to carry
out the site’s core functionality. With the feature removed, the
website will still function correctly and be fully usable. For example,
a blog may wish to use the Canvas standard to invisibly�ngerprint
the visitor. But if a visitor’s browser does not support the Canvas
standard, the visitor will still be able to interact with the blog as
if the standard was enabled (though the invisible�ngerprinting
attempt will fail).

This measure of feature “need” is intentionally focused on the
the perspective of the browser user. The usefulness of a feature to
a website author is not considered beyond the ability of the site
author to deliver a user-experience to the browser user. If a site’s
functionality is altered (e.g. tracking code is broken, or the ability
to A/B test is hampered) in a way the user cannot perceive, then
we consider this feature as not being needed from the perspective
of the browser user, and thus not needed for the site.

With this insight in mind, we developed a methodology for
evaluating the functionality of a given website. We instructed two
undergraduateworkers to visit the samewebsite, twice in a row. The
�rst visit is used as a control, and was conducted in an unmodi�ed
Firefox browser. The worker was instructed to perform as many
di�erent actions on the page as possible within one minute. (This is
in keeping with the average dwell time a user spends on a website,
which is slightly under a minute [41].) On a news site this would
mean skimming articles or watching videos, on e-commerce sites
searching for products, adding them to the cart and beginning the
checkout process, on sites advertising products reading or watching
informational material and trying any live demos available, etc.

The second visit is used to measure the e�ect of a speci�c treat-
ment on the browsing experience. The worker visits the same page
a second time, with all of the features in a Web API standard dis-
abled. For another minute, the worker attempts to perform the same
actions they did during the� rst visit. They then assign a score to
the functionality of the site: 1 if there was no perceptible di�erence
between the control and treatment conditions, 2 if the browsing

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

183

experience was altered, but the worker was still able to complete
the same tasks as during the� rst visit, or 3 if the worker was not
able to complete the same tasks as during the control visit.

We then de�ned a site as broken if the user cannot accomplish
their intended task (i.e., the visit was coded as a 3). This approach
is inherently subjective. To account for this, we had both workers
browse the same site independently, and record their score without
knowledge of the other’s experience. Ourworkers averaged a 96.74%
agreement ratio. This high agreement supports the hypothesis that
the workers were able to successfully gauge whether particular
functionality was necessary to the goals of a user performing casual
web browsing.

4.4 Determining Per-Standard Bene�t
We determined the bene�t of each of the 74 measured standards in
four steps.

First, we select a set of websites to represent the internet as a
whole. This work considers the top 10,000 most popular websites
on the Alexa rankings as representative of the web in general, as
of July 1, 2015, when this work began.

Second, for each standard, we randomly sampled 40 sites from
the Alexa 10k that use the standard, as identi�ed by [54]. Where
there were less than 40 sites using the standard, we selected all
such sites. That work found that while there is some di�erence in
the Web API standards that popular and unpopular websites use,
these di�erences are small [54]. We therefor treat these randomly
sampled 40 as representative of all sites using the standard.

Third, we used the technique described in Section 3 to create
multiple browser con�gurations, each with one standard disabled.
This yielded 75 di�erent browser con�gurations (one con�gura-
tion with each standard disabled, and one “control” case with all
standards enabled).

Fourth, we performed the manual testing described in Section 4.3.
We carried out the above process twice for each of the 1679 sites
tested for this purpose. By carrying out the above process for all 74
standards, we were able to measure the site break rate for each
Web API standard, de�ned as the percentage of times we observed
a site break during our paired tests with the featured disabled,
multiplied by how frequently the standard is used in the Alexa 10k.
We then de�ne the bene�t of a standard as a function of its site
break rate; the more sites break when a standard is disabled, the
more useful the standard is to a browser user. The results of this
measurement are discussed in Section 5.

4.5 Determining Per-Standard Cost
We measure the security cost of enabling a Web API standard in
three ways.

First, we measure the cost of enabling a Web API standard in a
browser as a function of CVEs that have been reported against the
standard’s implementation in the browser in the past. We take past
CVEs as an indicator of present risk for three reasons. First, areas of
code that have multiple past CVEs suggest that there is something
about the problem domain addressed by this code that is di�cult to
code securely, suggesting that these code areas deserve heightened
scrutiny (and carry additional risk). Second, prior research [50, 64]
suggest that bugs� xes often introduce nearly as many bugs as they

address, suggesting that code that has been previously patched for
CVEs carries heightened risk for future CVEs. Third, recent notable
industry practices suggest that project maintainers sometimes be-
lieve that code that has had multiple security vulnerabilities should
be treated greater caution (and that shedding the risky code is safer
than continually patching it) [29].

Second, we measure the cost of including a Web API standard
by the amount of related academic work documenting security and
privacy issues in a standard. We searched for attacks leveraging
each Web API standard in security conferences and journals over
the last� ve years.

Third, we measure the cost of including a Web API standard by
the number of lines of code needed solely to implement the standard
in the browser, as code complexity (measured through number
of lines of code in function de�nitions) has been shown to have
moderate predictive power for discovering where vulnerabilities
will happen within the Firefox codebase [53].

4.5.1 CVEs. We determined the number of CVEs previously
associated with eachWeb API standard through the following steps:

First, we searched the MITRE CVE database for all references
to Firefox in CVEs issued in 2010 or later, resulting in 1,554 CVE
records.

We then reviewed each CVE and discarded 41 CVEs that were
predominantly about other pieces of software, where the browser
was only incidentally related (such as the Adobe Flash Player plu-
gin [3], or vulnerabilities in web sites that are exploitable through
Firefox [4]).

Next, we examined each of the remaining CVEs to determine if
they documented vulnerabilities in the implementation of one of
the 74 considered Web API standards, or in some other part of the
browser, such as the layout engine, the JavaScript runtime, or net-
working libraries. We identi�ed 175 CVEs describing vulnerabilities
in Firefox’s implementation of 39 standards. 13 CVEs documented
vulnerabilities a�ecting multiple standards.

We identi�ed which Web API standard a CVE related to by
reading the text description of each CVE. We were able to attribute
CVEs to individual standards in the following ways:

• 117 (66.9%) CVEs explicitly named a Web API standard.
• 32 (18.3%) CVEs named a JavaScript method, structure or
interface) that we tied to a larger standard.

• 21 (12%) CVEs named a C++ class or method that we tie to the
implementation ofWebAPI standard, using themethodology
described in 4.5.2.

• 5 (2.8%) CVEs named browser functionality de�ned by aWeb
API standard (e.x. several CVEs described vulnerabilities
in Firefox’s handling of drag-and-drop events, which are
covered by the HTML standard [61]).

When associating CVEswithWebAPI standards, wewere careful
to distinguish between CVEs associated with DOM-level function-
ality and those associated with more core functionality. This was
done to narrowly measure the cost of only the DOM implementa-
tion of the standard. For example, the SVG Web API standard [22]
allows site authors to use JavaScript to dynamically manipulate
SVG documents embedded in websites. We counted CVEs like

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

184

interface BatteryManager {
 readonly charging;
 readonly chargingTime;
 readonly dischargingTime;

};

mozilla::dom::BatteryManagerBinding::
charging

mozilla::dom::BatteryManagerBinding::
chargingTime

mozilla::dom::BatteryManagerBinding::
dischargingTime

mozilla::dom::BatteryManager::
Charging

mozilla::dom::BatteryManager::
ChargingTime

mozilla::dom::BatteryManager::
DischargingTime

1

2

3

3

3

4

4

Standardized interface
description

Automatically generated
binding functions

Functions used exclusively
for implementing the Battery API

Figure 3: An example of applying the graph pruning algorithm to a simpli�ed version of the Ba�ery API.

CVE-2011-2363 [2], a “Use-after-free vulnerability” in Firefox’s
implementation of JavaScript DOM API for manipulating SVG doc-
uments, as part of the cost of including the SVG Web API standard
in Firefox. We did not consider CVEs relating to other aspects of
SVGs handing in our Web API standard costs. CVE-2015-0818 [7],
a privilege escalation bug in Firefox’s SVG handling, is an example
of a CVE we did not associate with the SVG Web API standard, as
it was not part of the DOM.

4.5.2 Implementation Complexity. We use the browser source
to generate lower-bound approximations for how complex each
standards’ implementation, as signi�cant lines of C/C++ code. We
consider standards with more complex implementations as having
a greater cost to the security of the browser than those with simpler
implementations.

We consider only lines of C/C++ code used only to support
JavaScript based access to that speci�c feature. We henceforth refer
to this metric as Exclusive Lines of Code, or ELoC. We compute
the ELoC for each Web API standard in three steps.

We generated a call graph of Firefox usingMozilla’s DXR tool [45].
DXR uses a clang compiler plugin to produce an annotated version
of the source code through a web app.3 We use this call graph to
determine which functions call which other functions, where func-
tions are referenced, etc. We further modi�ed DXR to record the
number of lines of code for each function.

Next, we determined each standards’ unique entry points in
the call graph. Each property, method or interface de�ned by a
Web API standard has two categories of underlying code in Fire-
fox code. There is implementation code (hand written code that
implements Web API standard’s functionality), and binding code
(programmatically generated C++ code only called by the JavaScript
runtime). Binding code is generated at build time from WebIDL
documents, an interface description language that de�nes eachWeb
API standard’s JavaScript API endpoints. By mapping each feature
in each Web IDL document to a Web API standard, we are able to
associate each binding code function with a Web API standard.

3An example of the DXR interface is available at https://dxr.mozilla.org/
mozilla-central/source/.

Given the entry points in the call graph for eachWeb API feature,
we used a recursive graph algorithm to identify implementation
code associated with each standard. We illustrate an example of this
approach in Figure 3. In step 1, we programmatically extract the
standard’s de�nitions for its binding functions, as we do here using
a simpli�ed version of the Battery API. In step 2, we locate these
generated binding functions in the Firefox call graph (denoted by
blue nodes). By following the call graph, we identify implementa-
tion functions that are called by the Battery API’s binding functions,
denoted by pink nodes. (step 3). If these pink nodes have no incom-
ing edges other than binding functions, we know they are solely
in the code base because of the Web API standard associated with
those binding functions.

The� rst iteration of the algorithm identi�es two functions,
Charging and DischargingTime, as being solely related to the Bat-
tery API standard, since no other code within the Firefox codebase
contains a reference or call to those functions. The second iteration
of the pruning process identi�es the ChargingTime function as
also guaranteed to be solely related to the Battery API standard’s
implementation, since it is only called by functions we know to
be solely part of the Battery API ’s implementation. Thus, the lines
implementing all three of these pink implementing functions are
used to compute the ELoC metric for the Battery API.

4.5.3 Third Party Libraries. This technique gives a highly accu-
rate, lower bound measurement of lines of code in the Firefox source
included only to implement a single Web API standard. It does not
include code from third-party libraries, which are compiled as a
separate step in the Firefox build process, and thus excluded from
DXR’s call-graph.

To better understand their use, we investigated how third party
libraries are used in the Firefox build process. In nearly all cases,
the referenced third party libraries are used in multiples places
in the Firefox codebase and cannot be uniquely attributed to any
single standard, and thus are not relevant to our per-standard ELoC
counts.

The sole exception is theWebRTC standard, which uniquely uses
over 500k lines of third party code. While this undercount is large,

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

185

0

10

20

30

40

50

0% 25% 50% 75%
Sites Broken Without this Feature

N
um

be
r o

f S
ta

nd
ar

ds

Figure 4: A histogram giving the number of standards
binned by the percentage of sites that broke when removing
the standard.

it is ultimately not signi�cant to our goal of identifying high-cost,
low-bene�t standards, as the high number of vulnerabilities in the
standard (as found in CVEs) and comparatively high ELoC metric
already� ag the standard as being high-cost.

5 MEASURED COST AND BENEFIT
This section presents the results of applying the methodology dis-
cussed in Section 4 to Firefox 43.0.1. The section� rst describes
the bene�t of each Web API standard, and follows with the cost
measurements.

5.1 Per-Standard Bene�t
As explained in Section 4.4, our workers conducted up to 40 mea-
surements of websites in the Alexa 10k known to use each speci�c
Web API standard. If a standard was observed being used fewer
than 40 times within the Alexa 10k, all sites using that standard
were measured. In total, we did two measurements of 1,684 (website,
disabled feature) tuples, one by each worker.

Figure 4 gives a histogram of the break rates for each of the 74
standards measured in this work. As the graph shows, removing
over 60% of the measured standards resulted in no noticeable e�ect
on the user’s experience.

In some cases, this was because the standard was never observed
being used4. In other cases, it was because the standard is intended
to be used in a way that users do not notice5.

Other standards caused a large number of sites to break when
removed from the browser. Disabling access to the DOM 1 standard
(which provides basic functionality for modifying the text and
appearance of a document) broke an estimated 69.05% of the web.

A listing of the site break rate for all 74 standards is provided in
the appendix in Table 4.

4e.x. the WebVTT standard, which allows document authors to synchronize text
changes with media playing on the page.
5e.x. the Beacon standard, which allows content authors to trigger code execution
when a user browses away from a website.

We note that these measurements only cover the interacting
with a website as an unauthenticated user. It is possible that site
feature use changes when users log into websites, since some sites
only provide full functionality to registered users. These numbers
only describe the functionality sites use before they’ve established
a trust-relationship with the site (e.g. before they’ve created an
account and logged into a web site).

5.2 Per-Standard Cost
As described in Section 4.5, we measure the cost of a Web API stan-
dard being available in the browser in three ways:� rst by related
research documenting security and privacy attacks that leverage
the standard (Section 5.2.1), second by the number of historical
CVEs reported against the standard since 2010 (Section 4.5.1), and
third with a lower bound estimate of the number of ELoC needed
to implement the standard in the browser (Section 4.5.2).

5.2.1 Security Costs - A�acks fromRelated Research. We searched
the last� ve years of work published at major research conferences
and journals for research on browser weaknesses related to Web
API standards. These papers either explicitly identify either Web
API standards, or features or functionality that belong to a Web
API standard. In each case the standard was either necessary for
the attack to succeed, or was used to make the attack faster or
more reliable. While academic attacks do not aim to discover all
possible vulnerabilities, the academic emphasis on novelty mean
that the Web API standards implicated in these attacks allow a new,
previously undiscovered way to exploit the browser.

The most frequently cited standard was the High Resolution Time
Level 2 [9] standard, which provides highly accurate, millisecond-
resolution timers. Seven papers published since 2013 leverage the
standard to break the isolation protections provided by the browser,
such as learning information about the environment the browser
is running in [31, 34, 49], learning information about other open
browser windows [16, 31, 38], and gaining identifying information
from other domains [59].

Other implicated standards include the Canvas standard, which
was identi�ed by researchers as allowing attackers to persistently
track users across websites [12], learn about the browser’s execu-
tion environment [34] or obtain information from other browsing
windows [38], and the Media Capture and Streams standard, which
was used by researchers to perform “cross-site request forgery,
history sni�ng, and information stealing” attacks [57].

In total we identi�ed 20 papers leveraging 23 standards to attack
the privacy and security protections of the web browser. Citations
for these papers are included in Table 4.

5.2.2 Security Costs - CVEs. Vulnerability reports are not evenly
distributed across browser standards. Figure 5 presents this com-
parison of standard bene�t (measured by the number of sites that
require the standard to function) on the y-axis, and the number
of severe CVEs historically associated with the standard on the x-
axis. A plot of all CVEs (not just high and severe ones), is included
in the appendix as Figure 7. It shows the same general relation-
ships between break rate and CVEs as Figure 5, and is included for
completeness.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

186

AJAX
DOM

DOM1

DOM2−C

DOM2−E

DOM2−S H−C

H−WW

HTML

SVG

WEBA
WEBGL

WRTC0%

25%

50%

75%

100%

0 10 20 30
Attributed High or Severe CVEs Since 2010

Si
te

s
Br

ok
en

 W
ith

ou
t t

hi
s

Fe
at

ur
e

Figure 5: A scatter plot showing the number of “high” or “se-
vere” CVEs� led against each standard since 2010, by how
many sites in the Alexa 10k break when the standard is re-
moved.

Points in the upper-left of the graph depict standards that are
high bene�t, low cost, i.e. standards that are frequently required
on the web but have rarely (or never) been implicated in CVEs.
For example, consider the Document Object Model (DOM) Level 2
Events Speci�cation standard, denoted byDOM2-E in Figure 5. This
standard de�nes how website authors can associate functionality
with page events such as button clicks and mouse movement. This
standard is highly bene�cial to browser users, being required by
34% of pages to function correctly. Enabling the standard comes
with little risk to web users, being associated with zero CVEs since
2010.

Standards in the lower-right section of the graph, by contrast, are
low bene�t, high cost standards, when using historical CVE counts
as an estimate of security cost. TheWebGL Speci�cation standard,
denoted byWEBGL in Figure 5, is an example of such a low-bene�t,
high-cost standard. The standard allows websites to take advantage
of graphics hardware on the browsing device for 3D graphics and
other advanced image generation. The standard is needed for less
than 1% of web sites in the Alexa 10k to function correctly, but is
implicated in 22 high or severe CVEs since 2010. How infrequently
this standard is needed on the web, compared with how often the
standard has previously been the cause of security vulnerabilities,
suggests that the standard poses a high security risk to users going
forward, with little attenuating bene�t.

As Figures 7 and 5 show, some standards have historically put
users at much greater risk than others. Given that for many of
these standards the risk has come with little bene�t to users, these
standards are good candidates for disabling when visiting untrusted
websites.

5.2.3 Security Costs - Implementation Complexity. We further
found that the cost of implementing standards in the browser are
not equal, and that some standards have far more complex imple-
mentations than others (with complexity measured as the ELoC
uniquely needed to implement a given standard). Figure 6 presents
a comparison of standard bene�t (again measured by the number

AJAX

DOM

DOM1

DOM2−C

DOM2−E

DOM2−S

H−C

HTML

HTML5

IDB SVGWEBA

WEBGL0%

25%

50%

75%

100%

0 5000 10000 15000 20000
Exclusively Used Lines of Code

Si
te

s
Br

ok
en

 W
ith

ou
t t

hi
s

Fe
at

ur
e

Figure 6: A scatter plot showing the LOC measured to im-
plement each standard, by how many sites in the Alexa 10k
break when the standard is removed.

of sites that require the standard to function) and the exclusive
lines of code needed to implement the standard, using the method
described in section 4.5.2.

Points in the upper-left of Figure 6 depict standards that are fre-
quently needed on theweb for sites for function correctly, but which
have relatively non-complex implementations. One example of such
a standard is the Document Object Model (DOM) Level 2 Core Speci-
�cation standard, denoted by DOM2-C. This standard provides ex-
tensions the browser’s basic document modi�cation methods, most
popularly, the Document.prototype.createDocumentFragment
method, which allows websites to quickly create and append sub-
documents to the current website. This method is needed for 89% of
websites to function correctly, suggesting it is highly bene�cial to
web users to have it enabled in their browser. The standard comes
with a low security cost to users as well; our technique identi�es
only 225 exclusive lines of code that are in the codebase solely to
enable this standard.

Points in the lower-right of the� gure depict standards that pro-
vide infrequent bene�t to browser users, but which are responsible
for a great deal of complexity in the browser’s code base. The Scal-
able Vector Graphics (SVG) 1.1 (Second Edition) standard, denoted by
SVG, is an example of such a high-cost, low-bene�t standard. The
standards allows website authors to dynamically create and interact
with embedded SVG documents through JavaScript. The standard
is required for core functionality in approximately 0% of websites
on the Alexa 10k, while adding a large amount of complexity to
the browser’s code base (at least 5,949 exclusive lines of code, more
than our technique identi�ed for any other standard).

5.3 Threats to Validity
The main threat to validity in this experiment is the accuracy of our
human-executed casual browsing scenario. With respect to internal
validity, the high agreement between the two users performing
tasks on the same sites lends credence to the claim that the users
were able to successfully exercise most or all of the functionality
that a casual browser might encounter. The students who worked

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

187

on this project spent over 500 hours combined performing these
casual browsing tasks and recording their results, and while they
were completely separated while actively browsing, they spent a
good deal of time comparing notes about how to fully exercise the
functionality of a website within the 70 second time window for
each site.

External validity, i.e. the extent to which our results can be
generalized, is also a concern. However, visiting a website for 70
or fewer seconds encapsulates 80% of all web page visits according
to [41], thus accurately representing a majority of web browsing
activity, especially when visiting untrusted websites. Furthermore,
while our experiment does not evaluate the JavaScript functionality
that is only available to authenticated users, we posit that protection
against unknown sites—the content aggregators, pop-up ads, or
occasionally consulted websites that a user does not interact with
enough to trust—are precisely the sites with which the user should
exercise the most caution.

6 USABILITY EVALUATION
This section describes howwe evaluated the usability of our feature-
restricting approach, to determine whether the security bene�ts
discussed in Section 5 could be achieved without negatively e�ect-
ing common browsing experiences across a broad range of websites.
We performed this evaluation in two steps. First, we selected two
sets of Web API standards to prevent websites from accessing by
default, each representing a di�erent trade o� between a�ecting
the functionality of existing sites and improving browser security.
Second, we implemented these hardened browser con�gurations
using the browser extension mentioned in Section 7, and compared
their usability against other popular browser hardening techniques.

6.1 Selecting Con�gurations
To evaluate the utility and usability of our� ne grained, standards-
focused approach to browser hardening, we created two hardened
browser con�gurations.

Table 3 lists the standards that we blocked for the conservative
and aggressive hardened browser con�gurations. Our conserva-
tive con�guration focuses on removing features that are infre-
quently needed by websites to function, and would be� tting for
users who desire more security than is typical of a commodity web
browser, and are tolerant of a slight loss of functionality. Our ag-
gressive con�guration focuses on removing attack surface from
the browser, even when that necessitates breaking more websites.
This con�guration would� t highly security sensitive environments,
where users are willing to accept breaking a higher percentage of
websites in order to gain further security

We selected these pro�les based on the data discussed in Section
5, related previous work on how often standards are needed by
websites [54], and prioritizing not a�ecting the functionality of the
most popular sites on the web. We further chose to not restrict the
Web Crypto standard, to avoid a�ecting the critical path of security
senstivie code.

We note that these are just two possible con�gurations, and that
users (or trusted curators, IT administrators, or other sources) could
use this method to� nd the security / usability tradeo� that best�t
their needs.

Statistic Conservative Aggressive

Standards blocked 15 45
Previous CVEs # 89 123
Previous CVEs % 52.0% 71.9%
LOC Removed # 37,848 53,518
LOC Removed % 50.00% 70.76%
% Popular sites broken 7.14% 15.71%
% Less popular sites broken 3.87% 11.61%

Table 1: Cost and bene�t statistics for the evaluated conser-
vative and aggressive browser con�gurations.

We evaluated the usability and the security gains these hardened
browser con�gurations provided. Table 1 shows the results of this
evaluation. As expected, blocking more standards resulted in a
more secure browser, but at some cost to usability (measured by
the number of broken sites).

Our evolution was carried out similarly to the per-standard mea-
surement technique described in Section 4.4. First we created two
sets of test sites, popular sites (the 200 most popular sites in the
Alexa 10k that are in English and not pornographic) and less pop-
ular sites (a random sampling of sites from the Alexa 10k that
are rank 201 or lower). This yielded 175 test sites in the popular
category, and 155 in the less popular category.

Next we had two evaluators visit each of these 330 websites
under three browsing con�gurations, for 60 seconds each. Our
decision to use 60 seconds per page is based on prior research [41]
�nding that that users on average spend under a minute per page.

Our evaluators� rst visited each site in an unmodi�ed Firefox
browser, to determine the author-intended functionality of the
website. Second, they visited in a Firefox browser in the above
mentioned conservative con�guration. And then� nally, a third
time in the aggressive hardened con�guration.

For the conservative and aggressive tests, the evaluators recorded
how the modi�ed browser con�gurations a�ected each page, using
the same 1–3 scale described in Section 4.4. Our evaluators inde-
pendently gave each site the same 1–3 ranking 97.6% of the time
for popular sites, and 98.3% of the time for less popular sites, giving
us a high degree of con�dence in their evaluations. The “% Popular
sites broken” and “% Less popular sites broken” rows in Table 1
give the results of this measurement.

To further increase our con�dence the reported site-break rates,
our evaluators recorded, in text, what broken functionality they
encountered. We were then able to randomly sample and check
these textual descriptions, and ensure that our evaluators were
experiencing similar broken functionality. The consistency we ob-
served through this sampling supports the internal validity of the
reported site break rates.

As Table 1 shows, the trade o� between gained security and
lessened usability is non-linear. The conservative con�guration
disables code paths associated with 52% of previous CVEs, and
removes 50% of ELoC, while a�ecting the functionally of only 3.87%-
7.14% of sites on the internet. Similarly, the aggressive con�guration
disables 71.9% of code paths associated with previous CVEs and

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

188

% Popular % Less popular Sites tested
sites broken sites broken

Conservative Pro�le 7.14% 3.87% 330
Aggressive Pro�le 15.71% 11.61% 330
Tor Browser Bundle 16.28% 7.50% 100
NoScript 40.86% 43.87% 330

Table 2: How many popular and less popular sites break
when using conservative and aggressive hardening pro�les,
versus other popular browser security tools.

over 70% of ELoC, while a�ecting the usability of 11.61%-15.71% of
the web.

6.2 Usability Comparison
We compared the usability of our sample browser con�gurations
against other popular browser security tools. We compared our
conservative and aggressive con�gurations� rst with Tor Browser
and NoScript, each discussed in Section 2.2. We� nd that the con-
servative con�guration has the highest usability of all four tested
tools, and that the aggressive hardened con�guration is roughly
comparable to the default con�guration of the Tor Browser. The
results of this comparison are given in Table 2.

We note that this comparison is not included to imply which
method is themost secure. The types of security problems addressed
by each of these approaches are largely intended to solve di�erent
types of problems, and all three compose well (i.e., one could use
a cost-bene�t method to determine which Web API standards to
enable and harden the build environment and route tra�c through
the Tor network and apply per-origin rules to script execution).
However, as Tor Browser and NoScript are widely used security
tools, comparing against them gives a good baseline for usability
for security conscious users.

We tested the usability using the same technique we used for the
conservative and aggressive browser con�gurations, described in
Section 6.1; the same two evaluators visited the same 175 popular
and 155 less popular sites, but compared the page in an unmodi�ed
Firefox browser with the default con�guration of the NoScript
extension.

The same comparison was carried out for default Firefox against
the default con�guration of the Tor Browser bundle6. The evalua-
tors again reported very similar scores in their evaluation, reaching
the same score 99.75% of the time when evaluating NoScript and
90.35% when evaluating the Tor Browser. We expect this lower
agreement score for the Tor Browser is a result of our evaluators
being routed di�erently through the Tor network, and receiving
di�erent versions of the website based on the location of their exit
nodes.7

As Table 2 shows, the usability of our conservative and aggres-
sive con�gurations is as good as or better than other popularly
used browser security tools. This suggests that, while our Web API

6Smaller sample sizes were used when evaluating the Tor Browser because of time
constraints, not for fundamental methodological reasons.
7We chose to not �x the Tor exit node in a� xed location during this evaluation to
accurately recreate the experience of using the default con�guration of the TBB.

standards cost-bene�t approach has some a�ect on usability, it is a
cost security-sensitive users would accept.

6.3 Allowing Features For Trusted Applications
We further evaluated our approach by attempting to use several
popular, complex JavaScript applications in a browser in the aggres-
sive hardened con�guration. We then created application-speci�c
con�gurations to allow these applications to run, but with access
to only the minimal set of features needed for functionality.

This process of creating speci�c feature con�gurations for di�er-
ent applications is roughly analogous to granting trusted applica-
tions additional capabilities (in the context of a permissions based
system), or allowing trusted domains to run JavaScript code (in the
context of browser security extensions, like NoScript).

We built these application speci�c con�gurations using a tool-
assisted, trial and error process:� rst, we visited the application with
the browser extension in “debug” mode, which caused the extension
to log blocked functionality. Next, when we encountered a part of
the web application that did not function correctly, we reviewed the
extension’s log to see what blocked functionality seemed related to
the error. We then iteratively enabled the related blocked standards
and revisited the application, to see if enabling the standard allowed
the app to function correctly. We repeated the above steps until the
app worked as desired.

This process is would be beyond what typical web users would
be capable of, or interested in doing. Users who were interested
in improving the security of their browser, but not interested in
creating hardened app con�gurations themselves, could subscribe
to trusted, expert curated polices, similar to how users of AdBlock
Plus receive community created rules from EasyList. Section 8.2
discusses ways that rulesets could be distributed to users.

For each of the following tests, we started with a browser con-
�gured in the previously mentioned aggressive hardened con�gu-
ration, which disables 42 of the 74 Web API standards measured in
this work. We then created application-speci�c con�gurations for
three popular, complex web applications, enabling only the addi-
tional standards needed to allow each application to work correctly
(as judged from the user’s perspective).

First, we watched videos on YouTube, by� rst searching for
videos on the site’s homepage, clicking on a video to watch, watch-
ing the video on its speci�c page, and then expanding the video’s
display to full-screen. Doing so required enabling three standards
that are blocked in our aggressive con�guration: the File API stan-
dard 8, the Media Source Extensions standard 9, and the Fullscreen
API standard. Once we enabled these three standards on the site,
we were able to search for and watch videos on the site, while still
having 39 other standards disabled.

Second, we used the Google Drive application to write and save
a text document, formatting the text using the formatting features
provided by the website (creating bulleted lists, altering justi�ca-
tions, changing fonts and text sizes, embedding links, etc.). Doing so
required enabling two standards that are by default blocked in our

8YouTube uses methods de�ned in this standard to create URL strings referring to
media on the page.
9YouTube uses the HTMLVideoElement.prototype.getVideoPlaybackQuality
method from this standard to calibrate video quality based on bandwith.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

189

aggressive con�guration: the HTML: Web Storage standard 10 and
the UI Events standard 11. Allowing Google Docs to access these two
additional standards, but leaving the other 40 standards disabled,
allowed us create rich text documents without any user-noticeable
a�ect in site functionality.

Third and� nally, we used the Google Maps application to map a
route between Chicago and New York. We did so by� rst searching
for “Chicago, IL”, allowing the map to zoom in on the city, click-
ing the “Directions” button, searching for “New York, NY”, and
then selecting the “driving directions” option. Once we enabled the
HTML: Channel Messaging standard 12 we were able to use the site
as normal.

7 BROWSER EXTENSION
As part of this work, we are also releasing a Firefox browser ex-
tension that allows users to harden their browsers using the same
standard disabling technique described in this paper. The extension
is available as source code13.

7.1 Implementation
Our browser extension uses the same Web API standard disabling
technique described in Section 3 to dynamically control the DOM-
related attack surface to expose to websites. The extension allows
users to deploy the same conservative and aggressive hardened
browser con�gurations described in Section 6.1. Extension users
can also create their own hardened con�gurations by selecting any
permutation of the 74 measured Web API standards to disable.

Hardened con�gurations can be adjusted over time, as the rel-
ative security and bene�t of di�erent browser features changes.
This� xed-core-functionality, updated-policies deployment model
works well for popular web-modifying browser extensions (such as
AdBlock, PrivacyBadger and Ghostery). Our browser-hardening ex-
tension similarly allows users to subscribe to con�guration updates
from external sources (trusted members of the security community,
a company’s IT sta�, security-and-privacy advice groups, etc.), or
allows users to create their own con�gurations.

If a browser standard were found to be vulnerable to new attacks
in the future, security sensitive users could update their hardened
con�gurations to remove it. Likewise, if other features becamemore
popular or useful to users on the web, future hardened con�gu-
rations could be updated to allow those standards. The extension
enables users to de�ne their own cost-bene�t balance in the security
of their browser, rather than prescribing a speci�c con�guration.

Finally, the tool allows users to create per-origin attack-surface
policies, so that trusted sites can be granted access tomore JavaScript-
accessible features and standards than unknown or untrusted web-
sites. Similar to, but� ner grained than, the origin based policies
of tools like NoScript, this approach allows users to better limit
websites to the least privilege needed to carry out the sites’ desired
functionality.

10Google Drive uses functionality from this standard to track user state between pages.
11Google Drive uses this standard for� ner-grained detection of where the mouse
cursor is clicking in the application’s interface.
12Which Google Maps uses to enable communication between di�erent sub-parts of
the application.
13https://github.com/snyderp/�refox-api-blocking-extension

We discussed our approach with engineers at Mozilla, and we
are investigating how our feature usage measurement and blocking
techniques could be incorporated into Firefox Test Pilot as an ex-
perimental feature. This capability would allow wider deployment
of this technique within a genuine browsing environment, which
can also improve the external validity of our measurements.

7.2 Tradeo�s and Limitations
Implementing our approach as a browser extension entails signi�-
cant tradeo�s. It has the bene�t of being easy for users to install
and update, and that it works on popular browsers already. The
extension approach also protect users from vulnerabilities that de-
pends on accessing a JavaScript-exposed method or data structure
(of which there are many, as documented in Section 5.2.2), with min-
imal re-engineering e�ort, allowing policies to be updated quickly,
as security needs change. Finally, the Web API standard-blocking,
extension approach is also useful for disabling large portions of
high-risk functionality, which could protect users from not-yet-
discovered bugs, in a way that ad-hoc� xing of known bugs could
not.

There are several signi�cant downsides to the extension-based
approach however. First is that there are substantial categories
of browser exploits that our extension-based approach cannot
guard against. Our approach does not provide protection against
exploits that rely on browser functionality that is reachable through
means other than JavaScript-exposed functionality. The extension
would not provide protection against, for example, exploits in the
browser’s CSS parser, TLS code, or image parsers (since the attacker
would not require JavaScript to access such code-paths).

Additionally, the extension approach does not have access to
some information that could be used to make more sophisticated
decisions about when to allow a website to access a feature. An
alternate approach that modi�ed the browser could use factors such
as the state of the stack at call time (e.x. distinguishing between
�rst-and-third party calls to a Web API standard), or where a func-
tion was de�ned (e.x. whether a function was de�ned in JavaScript
code delivered over TLS from a trusted website). Because such in-
formation is not exposed to the browser in JavaScript, our extension
is not able to take advantage of such information.

8 DISCUSSION
Below we outline some techniques which can be used with our
extension to maximize functionality for trusted websites while
simultaneously limiting the threat posed by unknown, untrusted
sites.

8.1 Potential Standards for Disabling
Standards that impose a large cost to the security and privacy
of browser users, while providing little corresponding bene�t to
users, should be considered for removal from the browser. While
historically such steps are rare, Mozilla’s decision to remove the
Battery API shows that Web API standard removal is feasible.

We identify several standards as candidates for removal from
the browser, based on the low bene�t they provide, and the high
risk they pose to users’ privacy and security. The High Resolution
Time Level 2, Canvas and Web Audio APIs have all been leveraged

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

190

in attacks in academic security research and have been associated
with CVEs (several severe). With perfect agreement, our testers
did not encounter any sites with broken functionality when these
standards were removed.

While its easy to imagine use cases for each of these standards,
our measurements indicate that such use cases are rare. The over-
whelming majority of websites do not require them to deliver their
content to users. Disabling these standards by default, and requiring
users to actively enable them, much like access to a user’s location
or webcam, would improve browser security at a minimal cost to
user convenience.

8.2 Dynamic Policy Con�guration
Our evaluation uses a global policy for all websites. This approach
could be modi�ed to apply di�erent levels of trust to di�erent
origins of code, similar to what TBB and NoScript do. A set of
community-derived feature rules could also be maintained for dif-
ferent websites, much like the EasyList ad blocker� lter [27], with
our conservative and aggressive pro�les serving as sensible de-
faults.

One could also apply heuristics to infer a user’s level of trust
with a given website. When visiting a site for the� rst time, a user
has no preexisting relationship with that origin. Under this insight,
di�erent features could be exposed depending on how often a user
visits a site, or whether the user has logged in to that website.

Similarly, browser vendors could reduce the set of enabled Web
API standards in “private browsing modes”, where users signal their
desire for privacy, at the possible cost of some convenience. This
signal is already being used, as Firefox enables enhanced tracking
protection features when a user enables private browsing mode.
Disabling high-cost standards in such a mode would be a further
way to protect user privacy and security.

9 CONCLUSION
As browser vendors move away from plugins and provide more
functionality natively within the DOM, the modern web browser
has experienced a terri�c growth in features available to every web
page that a user might visit. Indeed, part of the appeal of the web
is the ability to deploy complex, performant software without the
user even realizing that it has happened.14

However, the one size� ts all approach to exposing these features
to websites has a cost which is borne in terms of vulnerabilities,
exploits, and attacks. Simplistic approaches like ripping out every
feature that isn’t absolutely necessary are not practical solutions
to this problem. We believe that enabling users to contextually
control and empirically decide which features are exposed to which
websites will allow the web to continue to improve the browser’s
feature set and performance, while still being usable in high risk
situations where the security of a reduced feature set is desired.

10 ACKNOWLEDGEMENTS
Thank you to Joshua Castor and Moin Vahora for performing the
manual website analysis. This work was supported in part by Na-
tional Science Foundation grants CNS-1409868, CNS-1405886 and
DGE-1069311.
14https://xkcd.com/1367/

REFERENCES
[1] Adblock plus. https://adblockplus.org/. [Online; accessed 16-October-2015].
[2] Cve-2011-2363. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2011-2363, 2011. [Online; accessed 11-August-2016].
[3] Cve-2012-4171. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2012-4171, 2012. [Online; accessed 11-August-2016].
[4] Cve-2013-2031. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2013-2031, 2013. [Online; accessed 11-August-2016].
[5] Chromium blink mailing list discussion. https://groups.google.com/a/chromium.

org/forum/#!topic/blink-dev/1wWhVoKWztY, 2014. [Online; accessed 15-
February-2016].

[6] Android developer’s guide: System permissions. https://developer.android.com/
guide/topics/security/permissions.html, 2015. [Online; accessed 17-February-
2016].

[7] Cve-2015-0818. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-0818, 2015. [Online; accessed 11-August-2016].

[8] Chromium blink web features guidelines. https://dev.chromium.org/blink#
new-features, 2016. [Online; accessed 15-February-2016].

[9] High resolution time level 2. https://www.w3.org/TR/hr-time-2/, 2016. [Online;
accessed 11-November-2016].

[10] Web workers. https://www.w3.org/TR/workers/, 2016. [Online; accessed 13-
August-2016].

[11] Webrtc 1.0: Real-time communication between browsers. https://www.w3.org/
TR/webrtc/, 2016. [Online; accessed 11-August-2016].

[12] A���, G., E�����, C., E���������, S., J�����, M., N��������, A., ���D��� , C.
The web never forgets: Persistent tracking mechanisms in the wild. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security
(2014), ACM, pp. 674–689.

[13] A���, G., J�����, M., N����������, N., D���, C., G�����, S., P�������, F.,���
P������, B. Fpdetective: dusting the web for� ngerprinters. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security (2013),
ACM, pp. 1129–1140.

[14] A�����, P., W�����, C., ���R����� , C. Web audio api. http://www.w3.org/TR/
webaudio/, 2013.

[15] A����, F., ��� ���O �������, P. Device� ngerprinting for augmenting web
authentication: Classi�cation and analysis of methods. In Proceedings of the 32th
Annual Computer Security Applications Conference (2016).

[16] A�������, M., K����������, D., M�����, K., J����, R., L�����, S.,���
S������, H. On subnormal� oating point and abnormal timing. In 2015 IEEE
Symposium on Security and Privacy (2015), IEEE, pp. 623–639.

[17] A�, K. W. Y., Z���, Y. F., H����, Z., G���, P., ���L�� , D. Short paper: a look
at smartphone permission models. In Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices (2011), ACM, pp. 63–68.

[18] B����D ���S �������I��. The chromium (google chrome) open source project
on open hub. https://www.openhub.net/p/chrome/analyses/latest/code_history,
2015. [Online; accessed 16-October-2015].

[19] B���, V. You say advertising, i say block that malware. http://www.engadget.
com/2016/01/08/you-say-advertising-i-say-block-that-malware/, 2016. [Online;
accessed 15-February-2016].

[20] B�����, M. The noscript misnomer - why should
i trust vjs.zendcdn.net? https://thehackerblog.com/
the-noscript-misnomer-why-should-i-trust-vjs-zendcdn-net/index.html,
2015. [Online; accessed 12-August-2016].

[21] C��, Y., L�, S., ��� W������, E. (Cross-)Browser Fingerprinting via OS and
Hardware Level Features. In Proceedings of the Symposium on Networked and
Distributed System Security (2017).

[22] D������Ã��, E., D������, P., G�����, A., L�����, C., M�C������, C., S�������,
D., ��� W���, J. Scalable vector graphics (svg) 1.1 (second edition). http:
//www.w3.org/TR/SVG11/, 2011.

[23] D��, A., B������, N., ���C����� , M. Tracking mobile web users throughmotion
sensors: Attacks and defenses. In Proceedings of the 23rd Annual Network and
Distributed System Security Symposium (NDSS) (2016).

[24] D���������, R., M��������, N., ���S������� , P. Tor: The second-generation
onion router. Tech. rep., DTIC Document, 2004.

[25] D�����, D., S����, J., W�����, M., ���B ������, A. Encrypted media exten-
sions. http://www.w3.org/TR/encrypted-media/, 2015.

[26] E���������, S., ���N ��������, A. Online tracking: A 1-million-site mea-
surement and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (2016), ACM, pp. 1388–1401.

[27] F�����, M����A, F�����, ���K���� . Easylist. https://easylist.adblockplus.
org/en/. [Online; accessed 16-October-2015].

[28] G��������, N., ���H������� , A. Cross-site search attacks. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security
(2015), ACM, pp. 1394–1405.

[29] G�����. boringssl - git at google. https://boringssl.googlesource.com/boringssl/,
2016. [Online; accessed 12-November-2016].

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

191

[30] G���, B., R�����, K., B�����, E., B��, H., ���G ��������, C. ASLR on the
Line: Practical Cache Attacks on the MMU. In Proceedings of the Symposium on
Networked and Distributed System Security (2017).

[31] G����, D., B�����, D., ���M������ , S. Practical memory deduplication attacks
in sandboxed javascript. In European Symposium on Research in Computer Security
(2015), Springer, pp. 108–122.

[32] G��������, S., ���L������� , B. Gatekeeper: mostly static enforcement of security
and reliability policies for javascript code. In Proceedings of the 18th conference
on USENIX security symposium (Berkeley, CA, USA, 2009), SSYM’09, USENIX
Association, pp. 151–168.

[33] H��������, M., F�����, T., ���H��� , T. Iceshield: detection and mitigation
of malicious websites with a frozen dom. In International Workshop on Recent
Advances in Intrusion Detection (2011), Springer, pp. 281–300.

[34] H�, G., B����, D., B������, L., ���P �����, N. Tick tock: building browser red
pills from timing side channels. In 8th USENIXWorkshop on O�ensive Technologies
(WOOT 14) (2014).

[35] K��, H., L��, S., ���K�� , J. Exploring and mitigating privacy threats of html5
geolocation api. In Proceedings of the 30th Annual Computer Security Applications
Conference (2014), ACM, pp. 306–315.

[36] K���������, A. Vibration. http://www.w3.org/TR/vibration/, 2105.
[37] K���������, A., O������, I., ���H������M������� , D. Html media capture.

http://www.w3.org/TR/html-media-capture/, 2104.
[38] K������, R., P��, Y., J����, P., ���J ������, C. Cross-origin pixel stealing:

timing attacks using css� lters. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security (2013), ACM, pp. 1055–1062.

[39] L������, M., ���C�£¡����� , M. Screen orientation. http://www.w3.org/TR/
screen-orientation/, 2105.

[40] L��������, P., R���������, W., ���B �����, B. Beauty and the beast: Divert-
ing modern web browsers to build unique browser� ngerprints. In 37th IEEE
Symposium on Security and Privacy (S&P 2016) (2016).

[41] L��, C., W����, R. W., ���D����� , S. Understanding web browsing behaviors
through weibull analysis of dwell time. In Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information retrieval (2010),
ACM, pp. 379–386.

[42] M����, G. Noscript - javascript/java/�ash blocker for a safer� refox experience!
https://noscript.net/, 2015. [Online; accessed 08-February-2015].

[43] M���������, L. A., ���L������� , B. Conscript: Specifying and enforcing�ne-
grained security policies for javascript in the browser. In 2010 IEEE Symposium
on Security and Privacy (2010), IEEE, pp. 481–496.

[44] M�����, M. S. Google caja. https://developers.google.com/caja/, 2013.
[45] M������C ����������. Dxr. https://github.com/mozilla/dxr, 2016.
[46] N����������, N., K���������, A., J�����, W., K������, C., P�������, F.,���

V����, G. Cookieless monster: Exploring the ecosystem of web-based device
�ngerprinting. In IEEE Symposium on Security and Privacy (2013).

[47] O������, L. Stealing sensitive browser data with the W3C
Ambient Light Sensor API. https://blog.lukaszolejnik.com/
stealing-sensitive-browser-data-with-the-w3c-ambient-light-sensor-api/, 2017.

[48] O������, L., A���, G., C�����������, C., ���D��� , C. The leaking battery a
privacy analysis of the html5 battery status api. Tech. rep., Cryptology ePrint

Archive, Report 2015/616, 2015, ht tp://eprint. iacr. org, 2015.
[49] O���, Y., K�������, V. P., S������������, S., ���K�������� , A. D. The spy

in the sandbox: Practical cache attacks in javascript and their implications. In
Proceedings of the 22nd ACM SIGSACConference on Computer and Communications
Security (2015), ACM, pp. 1406–1418.

[50] O�����, A., ���S�������� , S. E. Milk or wine: does software security improve
with age? In Usenix Security (2006).

[51] P�������, A. How forbes inadvertently proved the anti-malware value
of ad blockers. http://www.networkworld.com/article/3021113/security/
forbes-malware-ad-blocker-advertisements.html, 2016. [Online; accessed 15-
February-2016].

[52] P����, M., C����, E., ���M������ , S. The design and implementation
of the tor browser. https://www.torproject.org/projects/torbrowser/design/
#�ngerprinting-linkability, 2015. [Online; accessed 15-February-2016].

[53] S���, Y., M������, A., W�������, L., ���O������ , J. A. Evaluating complexity,
code churn, and developer activity metrics as indicators of software vulnerabili-
ties. IEEE Transactions on Software Engineering 37, 6 (2011), 772–787.

[54] S�����, P., A�����, L., T�����, C., ���K����� , C. Browser feature usage on
the modern web. In Proceedings of the 2016 Internet Measurement Conference (to
appear) (2016).

[55] S��, S., ���S ��������, V. The postman always rings twice: Attacking and
defending postmessage in html5 websites. In NDSS (2013).

[56] S����, S., S�����, B., ���M������ , G. Reining in the web with content
security policy. In Proceedings of the 19th International Conference on World Wide
Web (2010), ACM, pp. 921–930.

[57] T���, Y., L��, Y. C., B������, A., H����, L. S., T����, P., ���J ������, C. All
your screens are belong to us: attacks exploiting the html5 screen sharing api. In
2014 IEEE Symposium on Security and Privacy (2014), IEEE, pp. 34–48.

[58] T�����, D., ��� K���������, A. Ambient light events. http://www.w3.org/TR/
ambient-light/, 2105.

[59] V��G������ , T., J�����, W., ���N���������� , N. The clock is still ticking:
Timing attacks in the modern web. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (2015), ACM, pp. 1382–
1393.

[60] V��G������ , T., V������, M., P�������, F., ���J����� , W. Request and
conquer: Exposing cross-origin resource size. In Proceedings of the Usenix Security
Symposium (2016).

[61] W��H ��������A ����������T���������W������G ���� (WHATWG). Html
living standard. https://html.spec.whatwg.org/, 2015.

[62] W����������, M., R��������, W., K����, E., K������, C., ��� V����, G. Zigzag:
Automatically hardening web applications against client-side validation vul-
nerabilities. In 24th USENIX Security Symposium (USENIX Security 15) (2015),
pp. 737–752.

[63] X�, M., J���, Y., X���, X., K��, T., ���L�� , W. Ucognito: Private browsing
without tears. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (2015), ACM, pp. 438–449.

[64] Z���������, T., N�������, N., ���Z����� , A. Predicting bugs from history.
In Software Evolution. Springer, 2008, pp. 69–88.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

192

AJAX
DOM

DOM1

DOM2−C

DOM2−E

DOM2−S
H−C

H−WW

HTML

SVG

WEBA

WEBGL
WRTC

0%

25%

50%

75%

100%

0 10 20 30
Attributed CVEs Since 2010

Si
te

s
Br

ok
en

 W
ith

ou
t t

hi
s

Fe
at

ur
e

Figure 7: A scatter plot showing the number of CVEs� led
against each standard since 2010, by how many sites in the
Alexa 10k break when the standard is removed.

A BROWSER CONFIGURATIONS

Standard Conservative Aggressive

Beacon X X
DOM Parsing and Serialization X X
Fullscreen API X X
High Resolution Time Level 2 X X
HTML: Web Sockets X X
HTML: Channel Messaging X X
HTML: Web Workers X X
Indexed Database API X X
Performance Timeline Level 2 X X
Resource Timing X X
Scalable Vector Graphics 1.1 X X
UI Events Speci�cation X X
Web Audio API X X
WebGL Speci�cation X X
Ambient Light Sensor API X
Battery Status API X
CSS Conditional Rules Module Level 3 X
CSS Font Loading Module Level 3 X
CSSOM View Module X
DOM Level 2: Traversal and Range X
Encrypted Media Extensions X
execCommand X
Fetch X
File API X
Gamepad X
Geolocation API Speci�cation X
HTML: Broadcasting X
HTML: Plugins X
HTML: History Interface X
HTML: Web Storage X
Media Capture and Streams X
Media Source Extensions X
Navigation Timing X
Performance Timeline X
Pointer Lock X
Proximity Events X
Selection API X
The Screen Orientation API X
Timing control for script-based animations X
URL X
User Timing Level 2 X
W3C DOM4 X
Web Noti�cations X
WebRTC 1.0 X

Table 3: Listing of which standards were disabled in the eval-
uated conservative and aggressive hardened browser con�g-
urations.

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

193

Standard Name Abbreviation # Alexa 10k Site Break Agree # CVEs # High or % ELoC Enabled
Using Rate % Severe attacks

WebGL WEBGL 852 <1% 93% 31 22 27.43 [15, 21, 34, 40]
HTML: Web Workers H-WW 856 0% 100% 16 9 1.63 [30, 34]
WebRTC WRTC 24 0% 93% 15 4 2.48 [15, 26]
HTML: The canvas element H-C 6935 0% 100% 14 6 5.03 [12, 15, 21, 26, 34, 38, 40]
Scalable Vector Graphics SVG 1516 0% 98% 13 10 7.86
Web Audio API WEBA 148 0% 100% 10 5 5.79 [15, 26]
XMLHttpRequest AJAX 7806 32% 82% 11 4 1.73
HTML HTML 8939 40% 85% 6 2 0.89 [13, 46]
HTML 5 HTML5 6882 4% 97% 5 2 5.72
Service Workers SW 0 0% - 5 0 2.84 [28, 59, 60]
HTML: Web Sockets H-WS 514 0% 95% 5 3 0.67
HTML: History Interface H-HI 1481 1% 96% 5 1 1.04
Indexed Database API IDB 288 <1% 100% 4 2 4.73 [12, 15]
Web Cryptography API WCR 7048 4% 90% 4 3 0.52
Media Capture and Streams MCS 49 0% 95% 4 3 1.08 [57]
DOM Level 2: HTML DOM2-H 8956 13% 89% 3 1 2.09
DOM Level 2: Traversal and Range DOM2-T 4406 0% 100% 3 2 0.04
HTML 5.1 HTML51 2 0% 100% 3 1 1.18
Resource Timing RT 433 0% 98% 3 0 0.10
Fullscreen API FULL 229 0% 95% 3 1 0.12
Beacon BE 2302 0% 100% 2 0 0.23
DOM Level 1 DOM1 9113 63% 96% 2 2 1.66
DOM Parsing and Serialization DOM-PS 2814 0% 83% 2 1 0.31
DOM Level 2: Events DOM2-E 9038 34% 96% 2 0 0.35
DOM Level 2: Style DOM2-S 8773 31% 93% 2 1 0.69
Fetch F 63 <1% 90% 2 0 1.14 [28, 59, 60]
CSS Object Model CSS-OM 8094 5% 94% 1 0 0.17 [46]
DOM DOM 9050 36% 94% 1 1 1.29
HTML: Plugins H-P 92 0% 100% 1 1 0.98 [13, 15]
File API FA 1672 0% 83% 1 0 1.46
Gamepad GP 1 0% 71% 1 1 0.07
Geolocation API GEO 153 0% 96% 1 0 0.26 [35, 63]
High Resolution Time Level 2 HRT 5665 0% 100% 1 0 0.02 [16, 28, 30, 31, 34, 38, 49, 59]
HTML: Channel Messaging H-CM 4964 0% 0.025 1 0 0.40 [55, 62]
Navigation Timing NT 64 0% 98% 1 0 0.09
Web Noti�cations WN 15 0% 100% 1 1 0.82
Page Visibility (Second Edition) PV 0 0% - 1 1 0.02
UI Events UIE 1030 <1% 100% 1 0 0.47
Vibration API V 1 0% 100% 1 1 0.08
Console API CO 3 0% 100% 0 0 0.59 [34]
CSSOM View Module CSS-VM 4538 0% 100% 0 0 2.85 [13]
Battery Status API BA 2317 0% 100% 0 0 0.15 [15, 26, 46, 48]
CSS Conditional Rules Module Lvl 3 CSS-CR 416 0% 100% 0 0 0.16
CSS Font Loading Module Level 3 CSS-FO 2287 0% 98% 0 0 1.24 [13, 15]
DeviceOrientation Event DO 0 0% - 0 0 0.06 [15, 23]
DOM Level 2: Core DOM2-C 8896 89% 97% 0 0 0.29
DOM Level 3: Core DOM3-C 8411 4% 96% 0 0 0.25
DOM Level 3: XPath DOM3-X 364 1% 97% 0 0 0.16
Encrypted Media Extensions EME 9 0% 100% 0 0 1.91
HTML: Web Storage H-WB 7806 0% 83% 0 0 0.55 [15, 34, 63]
Media Source Extensions MSE 1240 0% 95% 0 0 1.97
Selectors API Level 1 SLC 8611 15% 89% 0 0 0.00
Script-based animation timing control TC 3437 0% 100% 0 0 0.08 [46]
Ambient Light Sensor API ALS 18 0% 89% 0 0 0.00 [46, 47]

Table 4: This table includes data on all 74 measured Web API standards, excluding the 20 standards with a 0% break rate, 0 associated CVEs and accounting for
less than one percent of measured e�ective lines of code:

(1) The standard’s full name
(2) The abbreviation used when referencing this standard in the paper
(3) The number of sites in the Alexa 10k using the standard, per [54]
(4) The portion of measured sites that were broken by disabling the standard. (see Section 4.4)
(5) The mean agreement between two independent testers’ evaluation of sites visited while that feature was disabled (see Section 4.4)
(6) The number of CVEs since 2010 associated with the feature
(7) The number of CVEs since 2010 ranked as “high” or “severe”
(8) The percentage of lines of code exclusively used to implement this standard, expressed as a percentage of all 75,650 lines found using this methodology

(see Section 4.5.2).
(9) Citations for papers describing attacks relying on the standard

Session A4: Browsers CCS’17, October 30-November 3, 2017, Dallas, TX, USA

194

