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ABSTRACT
Many network intrusion detection systems use byte sequences to

detect lateral movements that exploit remote vulnerabilities. Attack-

ers bypass such detection by stealing valid credentials and using

them to transmit from one computer to another without creating

abnormal network traffic. We call this method Credential-based

Lateral Movement. To detect this type of lateral movement, we

develop the concept of a Network Login Structure that specifies nor-
mal logins within a given network. Our method models a network

login structure by automatically extracting a collection of login

patterns by using a variation of the market-basket analysis algo-

rithm. We then employ an anomaly detection approach to detect

malicious logins that are inconsistent with the enterprise network’s

login structure. Evaluations show that the proposed method is able

to detect malicious logins in a real setting. In a simulated attack,

our system was able to detect 82% of malicious logins, with a 0.3%

false positive rate. We used a real dataset of millions of logins over

the course of five months within a global financial company for

evaluation of this work.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malwaremitigation;Network security; •Computingmethod-
ologies → Anomaly detection;

KEYWORDS
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1 INTRODUCTION
Enterprise networks have been frequent targets of data breaches

and sabotage [5, 16, 29, 34]. A common theme of these attacks is

to follow a step by step process of chained computer hacking to

reach a planned target computer. In these attacks, the perpetrator

steals and uses credentials to compromise the next computer in

the chain. Such an attacker begins by setting up a foothold in a

network by compromising one computer, often by spear phishing.

The attacker then steals passwords of network users and uses them
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to log in to other computers. Doing this, the attacker moves lat-

erally between computers until obtaining access to critical data

located deeper inside the network. We call this method of attack

Credential-based Lateral Movement (CLM). Attackers have used

this technique in many instances of data breaches, including the JP

Morgan Chase [29] and Target hacks [16].

Traditional network intrusion detection systems (NIDS) detect

malicious network traffic that signifies execution of a remote exploit.

Since the content of network traffic in CLM is indistinguishable

from a benign login, NIDS is not useful in the detection of CLM.

On the other hand, access control policies and tools (e.g., Access

Control Lists, Active Directory) fail to minimize the possible paths

of lateral movement, due to obstacles faced in an enterprise envi-

ronment in achieving a perfect implementation of the principle of
least privilege [26]. Access control is usually relaxed to facilitate

business continuity and to enable recovery of computer services

when they fail. Therefore, permissions are provisioned for the worst

case scenarios, allowing logins that would not usually be required.

Sinclair et al. [30] have studied the problem of access controls in en-

terprise networks and showed that 50-90% of users are over-entitled

regarding what they can access. This situation allows attackers to

use stolen credentials to roam easily within a network and capture

their target destinations.

In this paper, we present a method for detection of an impor-

tant subclass of malicious logins within enterprise networks. Our

method relies on two observations. First, the login connectivities

of users within an enterprise are structured and mostly predictable.

For example, staff of the human resource department connect to a

server hosting an HR application, but employees of the accounting

department connect to a server hosting an accounting application.

Second, CLMs often involve connections between computers, that

are not consistent with the login structure of an enterprise network.

For example, an attacker might use a stolen credential to log in from

a computer in the HR department to a computer in the account-

ing department, which is not a typical destination for computers

of the HR department. These inconsistencies are inevitable as the

attacker can only use stolen credentials he has and computers that

he has already compromised to move forward. The difficulty in

detecting such unusual movements is arriving at a characterization

of normal login patterns in a complex enterprise system, and de-

tecting abnormal logins without incurring high false positives that

are inevitable due to the base rate fallacy [2]. Hence, we develop

the concept of Network Login Structure that specifies normal logins

within a given network. We develop a method to model a network

login structure by automatically extracting a collection of login

patterns. These patterns describe how groups of users typically log

in between a group of computers. We then employ an anomaly
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detection approach to detect malicious logins that are inconsistent

with the login structure of an enterprise network.

Specifically, we adopt a semi-supervised anomaly-based approach

and build a one-class classifier for detecting malicious logins. To

specify the class of normal logins, we propose a pattern mining

algorithm to extract login patterns, each of which describes a subset

of normal connectivities of network logins. Our algorithm uses a

variation of the market-basket analysis algorithm [14]. Elements of

a pattern include attributes of the connecting user (u), the source
computer (s), and the destination computer (d) of login. Login pat-

terns together define the network login structure. If a new login is

not consistent with the login structure, we classify it as a malicious

login.

In summary, this paper makes the following contributions:

• We explore the idea of detecting Credential-based Lateral

Movements using login anomaly detection within an enter-

prise network.

• We propose a method for modeling login structure of en-

terprise networks using login patterns. We also provide an

algorithm to automatically and efficiently extract login pat-

terns from a large login data set.

• We evaluate our method using a real data set of logins and

based on labeling by security analysts. Natural dynamics of

network logins and changes in the organizations are sources

of false positive in our system. We analyze these dynamic

and provide insights for follow-up works aiming to improve

the precision of the system. To the best of our knowledge,

this work provides the first analysis of the structure and

dynamics of logins within an enterprise network.

The rest of this paper is organized as follows. Section 2 overviews

the system we have designed and its components. Section 3 de-

scribes our login pattern mining algorithm. Section 4 details the

login classifier. In Section 5, we evaluate our method. This evalua-

tion includes analysis of the dynamics of logins of a real network. It

also includes measuring precision, true positive, and false positive

of the classifier. Section 6 reviews related work. Finally, we discuss

limitations of our current study and outline future work in Section 7.

We conclude the paper in section 8.

2 OVERVIEW OF THE SYSTEM
Attackers use stolen credentials in different ways each of which

might need a dedicated approach for detection. The focus of this pa-

per is the detection of malicious logins that differ from the expected

norm of a login concerning the user, source, or destination of it. In

this section, we formalize the problem and detail the technique we

have developed for detection.

2.1 Problem Statement
Credential-based Lateral Movement (CLM) is a network attack

method in which an attacker uses a stolen credential to log in to a

new computer to compromise it and therefore append it to a chain

of hacked computers. An attack of this type usually starts with a

phishing attack that compromises a user’s workstation within an

enterprise network [32]. The end goal of the attacker is to com-

promise computers that host high-value assets, such as a database

Figure 1: This diagram shows a simplified schematic of lo-
gins within a network. Solid lines represent logins that are
observed in a time interval in the past. Dashed lines are new
logins, one of which is benign (dashed black) and another of
which is malicious (dotted red). The benign login is consis-
tent with normal login structure, but the malicious login is
inconsistent.

or an application server enabling critical operations. In his jour-

ney, from a workstation to a target server, the attacker continually

steals new credentials and uses them to compromise a computer

and extend the chain of compromised computers. We can describe

a state of an attack using a set CC of compromised computers and

a set CU of compromised user accounts (i.e., stolen credentials).

In this context, a compromised computer is one that is owned by

and located within an enterprise network, but being exploited by

an attacker to run an arbitrary program (e.g., malware). Relying

on compromised computers as stepping-stone, the next move of

an attacker is to use a stolen credential u (i.e., u ∈ CU ) to login

from a compromised source computer s (i.e., s ∈ CC) to compro-

mise a destination computer d that is not already compromised (i.e.,

d < CC).
As the attacker uses credentials to log in to computers, some

of his login connectivities might be inconsistent with normal net-

work logins concerning user account and computers involved in

those logins. Such inconsistencies are inevitable because the at-

tacker can only use computers and user/system accounts that he

has already compromised, for his logins to computers that he wants

to compromise. We leverage this observation to detect malicious

logins.

2.2 System Architecture
Our approach for detecting malicious logins is anomaly-based and

focuses only on identifying abnormal connectivities. The archi-

tecture of the system we developed is presented in Figure 2. Our
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Figure 2: The inputs, processes, and outputs of our login
anomaly detection system. The Pattern Miner component
mines the login patterns. The Classifier component utilizes
the login patterns to classify new logins into two classes of
benign and malicious logins.

login anomaly detection system is composed of a pattern miner
component and a login classifier component.

Pattern Miner. Our method of detecting malicious logins relies

on their inconsistency with normal logins. Therefore, this method

needs to model the normal logins within a network. Put another

way; our algorithm needs to specify how users usually login be-

tween computers. To model these logins, we introduce the notion

of a login pattern which describes a subset of network logins with

regards to their connectivities. For example, it is intuitive to observe,

based on the logins of Figure 1, that logins of Sales from a desktop in

that department to the application server is a normal login pattern.

We define a login pattern P as a set of attributes for both users and

computers, and show it as a triplet of attributes P =< Û , Ŝ, D̂ >.
Examples of such attributes are the type (e.g., primary, admin or

service account) and title (e.g., investment banking manager, help

desk) for a user, and role (e.g., workstation or server), location, and

type of application that a server computer hosts, for computers.

The role of the pattern miner component is to mine logins and

extract login patterns. Inputs of this component are the history

of all logins of an interval, spanning a few months in the past,

and the attributes of both users and computers during the given

time interval. After processing these logins and mining patterns,

this component outputs a collection of login patterns as well as

confidence scores that indicate their reliability. Structure of logins

within an enterprise network, such as the financial company where

we collected our data set from, are subject to change. Therefore, the

pattern miner component should be scheduled to mine and update

login patterns, periodically. The optimum frequency of updates

depends on the pace of changes in the network login structure.

Login Classifier. Another component of this system is a classifier.

New logins are one of the inputs to this classifier. It also uses normal

login patterns extracted by the pattern miner component as input.

By computing the similarity of the new login with the class of

normal logins, this component classifies new logins into one of two

classes; benign or malicious.

2.3 Adversarial Model
A typical attack that our system can detect has some characteristics.

The main feature of such attack is that the attacker uses credentials

to log in from one computer to another within a network. Our

detection method is independent of how a credential is stolen. An

attacker might steal a password using keyloggers as it is entered

into a login page. He might also use tools such as Mimikatz [8]

that directly access password areas in memory of computer and

steal them as new user logs in locally or remotely. Regardless of

the method of stealing a credential, our detection method detects

attacks when the credential is used to login to computers over

the network. These logins might occur by the attacker entering

credentials into a login window or as a result of authentication

based on cached credentials when using software (e.g., file sharing

protocol) to access resources on a destination computer. In either

case, network records an incident of login, and our system uses it

for detection.

The credential that an attacker uses to log in from a source com-

puter to a destination computer is crucial to our detection algorithm.

If the attacker uses a credential that is normally used between two

computers, our algorithm can not detect the malicious login. How-

ever, the attacker is not always able to satisfy this condition. For

example, consider an attacker who steals the credential of a help-

desk admin who logs in remotely to a compromised computer to

fix it
1
. If the attacker uses this stolen credential to log in from the

compromised computer to any other computer, he will be detected

by our algorithm. It is also the case if the attacker tries to log in

back to help-desk admin’s computer since our algorithm considers

the direction of logins as well.

An attacker who is aware of an implementation of our algorithm

and knows normal login connectivities within a network environ-

ment does not necessarily have an advantage for evading detection.

To exploit his knowledge and bypass our detection algorithm, the

attacker must as well have the right credential and be located on a

computer that usually logs in to a destination.

3 PATTERN MINING
The pattern miner is the core component of our system. It extracts

login patterns each of which specifies a network login substructure.

A pattern is composed of attributes of a user, a source computer,

and a destination computer. Before describing the algorithm that

mines patterns, we first define some terms.

3.1 Definitions
Login. A login of a user u from computer s to d is uniquely iden-

tified and presented by the triplet l =< u, s,d >. For example, in

Figure 1, the network login of the useru1 from the source computer

c1 to the destination computer c7 can be represented by a triplet

< u1, c1, c7 >.
Login History. A collection of logins from a given period in the

past composes a login history H . The pattern mining algorithm

uses H to mine the login patterns.

Login Attributes. Each of the three elements of a login has some

attributes. Therefore, a login can be represented by a triplet of

1
Attackers sometimes slow down compromised computers to trick admins to log in to

a compromised computer using their administrative credentials, to steal them.
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Symbol Description

l =< u, s,d > A login, composed of user, source, and destination.

L =< U , S,D > A login attribute, composed of attributes of each component.

P =< Û , Ŝ, D̂ > A login pattern, composed of some attributes of each component.

< U ∗, S∗,D∗ > Power set of attributes.

Table 1: This table shows notations and description of symbols.

attributes in form of A =< U , S,D > where U = {x |x ∈ Au } is
the collection of all attributes of the user u, S = {y |y ∈ Ac } is a
collection of all attributes of the source s , and D = {z |z ∈ Ac }
is a collection of all attributes of the login destination. Each at-

tribute describes one aspect of the login, including the role of user

or computer, location, or type of computer. In the example of Fig-

ure 1, the login attributes of login l =< u1, c1, c7 > are A =<
(primary, Salessta f f ), (Desktop, SalesDept), (Server , SalesApp) >.
Login Pattern. A login pattern P =< Û , Ŝ, D̂ > describes a sub-

structure of network logins. Each element of the pattern is com-

posed of a subset of the attributes of users and computers. In the ex-

ample of Figure 1,P1 =< (Sales Sta f f ), (Desktop, Sales Dept), (Sales App) >
is a pattern.

Pattern Occurrence. We say that a login l =< u, s,d > with

attributes A =< U , S,D > is an occurrence of the pattern P =<
Û , Ŝ, D̂ > iff Û ⊂ U , Ŝ ⊂ S , and D̂ ⊂ D. For example, the login

< u4, c4, c7 > is an occurrence of the pattern P1. In comparison, the

login < u7, c5, c8 > is not an occurrence of it. It should be noted

that a login can be an occurrence of several login patterns.

Pattern Orientation. Depending on the ratio of number of users

and computers of a type describing a pattern to all users and comput-

ers of that type, a login pattern can be categorized to source-oriented,
destination-oriented, or user-oriented. Figure 3 shows several pos-
sible orientations for a pattern. Below, we describe each of these

orientations:

• Source-Oriented. A pattern P =< Û , Ŝ, D̂ > is source-

oriented if a noticeable fraction of source computers with

attributes S have at least one pattern occurrence in login

history H . An example of this orientation is the pattern de-

scribing logins of all employees of a department to a server

hosting an application related to responsibilities of that de-

partment.

• Destination-Oriented. A destination-oriented pattern has

a noticeable fraction of destination computers with attributes

D with at least one pattern occurrence in H . An example of

this orientation is pattern of logins of a patch management

server that accesses several computers of a given type to

push patches of an operating system or application.

• User-Oriented. A user-oriented pattern has a noticeable

fraction of users with attributesU with at least one pattern

occurrence in H . An example of this orientation is pattern of

delegated logins of many users through proxy applications

such as mobile gateways or exchange servers.

Orientation Score. Our algorithm computes a score for each of

the three orientations. An orientation score represents the degree to

which a pattern has an orientation. A login might have high scores

for more than one orientation. For example, a pattern related to

the logins of desktops to domain controllers has a high score for all

orientations because all users and computers connect to the domain

controllers since they are configured to work in a load-balancing

manner. Later in this section, we will describe how our algorithm

computes the orientation scores.

Figure 3: These figures demonstrate logins with the same
patterns but varying orientations.

Login Graph S-score D-score U-score

(A) 0.6 0.25 0.33

(B) 0.2 0.75 0.33

(C) 0.2 0.25 1

Table 2: Orientation scores of a pattern P =< Û , Ŝ, D̂ > with
different orientations as shown in Figure 3. All users as-
sumed to have the same attributes.

3.2 Pattern Mining Algorithm
Our pattern mining algorithm is similar to association rule mining

in market-basket analysis algorithms [14]. It employs two steps to

mine patterns of network logins. In the first step, it enumerates

candidate login patterns from each login in the login history H . In

the second step, this algorithm groups login patterns and counts

the number of occurrences of each. It also computes their orienta-

tion scores. Finally, the algorithm selects patterns with orientation

scores above a specified threshold. These selected patterns specify

characteristics of the network’s login structure and will be used for

detecting anomalous logins.

Enumerating Candidate Patterns. To enumerate candidate lo-

gin patterns, we first generate three power sets (i.e., the set of all

subsets), each based on attributes of elements of login. We denote

these power sets by U ∗
, S∗, and D∗

. Then, we create the Carte-

sian product U ∗ × S∗ × D∗
that generates all candidate patterns
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related to one login. We exclude candidate patterns that are miss-

ing all the attributes of any login element. Therefore, the number

of possible login patterns generated based on a login is equal to

(|U ∗ | − 1) × (|S∗ | − 1) × (|D∗ | − 1). For example, for a login of a

user (“Sales”,“Staff”) from (“Desktop”,“Sales”) computer to (“Sales-

Dept”,“Server”) (see Figure 1), the number of candidate patterns is

27 (three non-empty subsets of attributes for each element). The

total count of unique candidate patterns based on all logins in H
depends on the number of unique values of login attributes as well.

Algorithm 1 shows a simplified implementation of this algorithm.

Algorithm 1 This algorithm generates all pattern candidates from

a given login. The operator
∗
computes power set of a given set.

1: procedure EnumeratePatterns(u, s , d)
2: get < U , S,D >
3: gen-powerset < U ∗, S∗,D∗ >
4: for Û ∈ U ∗ do
5: for Ŝ ∈ S∗ do
6: for D̂ ∈ D∗ do
7: emit-candidate (< Û , Ŝ, D̂ >)

Computing Orientation Scores. To identify the orientations of

a pattern P =< Û , Ŝ, D̂ >, we calculate three orientation scores for

each pattern, as follows:

• S-score. This score represents the source orientation of a

pattern P. We compute the ratio of computers that satisfy

attribute S and appear in an occurrence of the pattern P in

the login history H to the count of all computers that satisfy

attribute S .
• D-score. This score represents the destination orientation of
a pattern P. We compute the ratio of computers that satisfy

attribute D and appear in an occurrence of pattern P in the

login historyH to the total number of computers that satisfy

attributes D.
• U-score. This score represents the degree to which a pattern
P is user oriented. We compute the ratio of users that satisfy

attributeU and appear in an occurrence of the pattern P in

the login history H to the total number of users that satisfy

attributeU .

Table 2 shows three orientation scores of patterns presented in

Figure 3.

3.3 A Fast Algorithm for Pattern Mining
A major task of our algorithm is to extract the candidate login

patterns and compute the Cartesian product of the power sets for

the attributes of each login. The time complexity of these compu-

tations over sets of values are non-polynomial, and therefore are

very expensive. Also, the total number of unique login patterns

extracted from a real dataset of login attributes can be overwhelm-

ing. For example, our algorithm generated 2.3 billion candidate

patterns from a dataset of more than 600,000 unique logins where

nine attributes described each login. The reason for this number of

candidate patterns is that each login attribute has several possible

values and therefore there are several possible combinations. For

example, in the dataset we studied, the location of computers has 70

possible values, each of which indicates a site of the global financial

company where a computer located. Considering this volume of

patterns to process, Algorithm 1 is not scalable. In this section, we

describe our technique to tackle this challenge.

Overview. To create a fast and scalable algorithm for generating

the candidate login pattern of a big dataset, we follow the encod-

ing and parallelization process illustrated in Figure 4. This process

includes encoding to minimize the memory required to represent

the patterns, and parallelization to improve the speed of execution

by a divide and conquer approach.

Encoding. Our approach to reduce the memory required to store

the Cartesian product of power set of attributes is a binary encoding

of the attributes of users and computers. The proposed encoding as-

signs an integer code to each value and generates a binary mask for

each different combination of these attributes. Using this method,

we present a login entry using the attribute codes. This encoding

takes considerably less space than storing string values. More im-

portantly, the login patterns only include attributes that describe

a pattern, and the binary mask identifies which code belongs to

which attribute. This compresses the space required to store each

pattern.

Parallelization.After reading logins and encoding their attributes,
the algorithm for generating patterns creates required masks. The

number of these masks is equal to 2
|U |+ |S |+ |D |

. For example, if

total number of attributes of login elements is nine, then 512 mask

values, ranging from 0 to 511, will be generated. Our parallelization

method splits these masks into several clusters, each assigned to

a CPU core for processing. Collectively, these parallel processes

generate all pattern candidates and output them into file storage.

We used Spark [1] for parallelization and Python generators to

improve the speed of the pattern generation algorithm.

Figure 4 shows flow of the pattern generation algorithm. For a

login Li =< Ui = (User1,DPT1,GB), Si = (C1,BLD1,LN ),Di =

(C2,BLD2,NY ) >, our algorithm first encodes the string values, say

User1 to 1 (User1 → 1) and DTP1 to 3 (DTP1 → 3), etc. After that,
the pattern generator creates the power set of the encoded login at-

tributes. For example, for storing< ({}, {}, 2), ({}, {}, 2), ({}, {}, 1)) >
pattern, binary mask 73 (binary 001001001) will be used. Using this

encoding, the compressed format of the pattern which is 73 : 2, 2, 1

will be stored. This compacted presentation reduces the space re-

quired to store generated patterns, dramatically.

For parallelization, our system runs the pattern processing al-

gorithm in a separate cluster for each range of mask values. This

parallelization accelerates the pattern mining algorithm to extract

patterns within minutes for a big dataset of logins.

4 LOGIN CLASSIFIER
The classifier of our system is a hybrid of two components and

evaluates each login independently. The first component uses a

exact matching approach and the second one uses pattern matching
for classification.

ExactMatching.The exactmatching classifies a login l =< u, s,d >
as benign if there is a login l ′ =< u ′, s ′,d ′ > in the login history H ,

whereu = u ′, s = s ′, and d = d ′. Otherwise, it classifies the login as

malicious. An attacker may bypass this classifier by poisoning the

login history used for classification. To reduce this possibility, we
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Figure 4: This diagram shows the process of encoding and
parallelization of the algorithm for generating the candi-
date login patterns.

exclude infrequent logins from the login history. To be included the

login history, a login must occur a sufficient number of times (e.g.,

minimum 10% of days) during the time interval that the system col-

lects logins. Therefore, an attacker will not be able to contaminate

the login history H without many logins that increase the risk of

detection.

PatternMatching.A pattern matching classifier first generates all

possible combination of attributes related to a login Lwith attributes
A =< U , S,D > using the same approach used for enumerating can-

didate network login patterns. The classifier classifies the login as

benign if at least one of the combinations of login attributes matches

a pattern of the set of network login patterns that describe the net-

work structure. In other words, login l =< u, s,d > will be classified
as benign if it is an occurrence of one of the patterns describing

the network login structure. For example, the login < u4, c4, c7 >
in Figure 1 is an occurrence of the pattern P1 and therefore will

be classified as a benign login. In contrast, the login < u7, c5, c8 >
is not an occurrence of any of the patterns and consequently will

be classified as malicious. The advantage of pattern matching over

exact matching is that it is flexible concerning legitimate changes

of network logins. In fact, many new logins do not exactly match a

previous benign login but match normal login patterns.

In addition to pattern matching, our algorithm computes a confi-

dence score for each benign login that does not exactly match any

past benign login but matches a normal login pattern. The confi-

dence score is computed with respect to the difference(s) with all

other occurrences of that pattern. For example, a new login might

connect to an instance of a type of destination computer type D̂ that

none of the other logins that match a pattern connect to it. In this

case, our algorithm uses the destination orientation of the pattern

as the confidence of matching a login with normal logins. Other

orientation scores will be used accordingly. Our algorithm uses

the minimum orientation score of a pattern if all three elements

of a login are different from past logins that match a normal login

pattern.

5 EVALUATION
We evaluated our system using a real data set of all logins of a global

financial company for a duration of five months. In this section,

we first explore the network structure and dynamics of logins of

the enterprise network. Then, we measure the precision of alerts

generated by our algorithm based on manual labeling by a number

of security analysts. Finally, we evaluate the false positives and true
positives of our algorithm based on its performance over synthetic

attack traces injected into the data set of real logins.

5.1 Dataset
The dataset of logins we used includes all login entries each of

which identifies a unique login event between two different com-

puters. A login connection includes username, and name of source,

and destination of a login. For each login, the dataset also includes

the daily count and type of login. A login type indicates the protocol

used for authentication. One of the login types is Windows network
login. This is the most common login type and happens implicitly

(using cached credentials) or explicitly (asking for username and

password), with or without user interaction, and in different scenar-

ios, including using file sharing&printing services and connecting

to a Kerberized application
2
. Another login type is remote inter-

active login (i.e., Remote Desktop) that is used when a graphical

interface connects to another computer.

The login data set includes some attributes for each of the three

elements describing a login. We collected these data from different

databases of the company, including HR and Change Management

databases. For each user, two attributes of type-of-user (e.g., end

user/admin/service account) and business unit (e.g., investment

banking, information technology) were available. For each com-

puter, three attributes of type-of-computer (e.g., desktop/server),

application (e.g., domain controller/exchange server/HR software),

and location of the computer (e.g., New York
3
) were provided. Ta-

ble 3 lists the attributes of each login element.

The logins in the data set involve a total of 25,450 unique user-

names. A total of 12,550 usernames belong to computer accounts.

These accounts are created to connect a computer to a Windows

network. The remaining usernames belong to individuals, admins

and non-admin users, and services.

The data set involves 33,151 unique computer names. These com-

puters mostly are desktops and servers with a permanent name. A

subset of the computer names, however, belongs to virtual desktops

that acquire a name on the spot when users initialize them. The

average number of unique login connections (i.e., unique triplets of

the user, source, and destination) was about 160,000 logins per day.

Login Connectivities. The number of unique login connectivities

in this data set is 633,657. That is 0.05% of all possible connectivi-

ties between different computers. This small percentage confirms

that legitimate connections between computers are structured. In

fact, client/server interactions are the major use case in enterprise

networks. As a result, logins are mostly to servers, and desktops

infrequently login to each other. To confirm, we obtained the av-

erage in-degree (i.e., login to) and out-degree (i.e., login from) of

2
An application accepting Kerberos tokens for authentication.

3
Truncated for the privacy of the company.
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Component Attributes

User Type, Business Unit

Source Computer Type, Application Name, Location

Destination Computer Type, Application Name, Location

Table 3: Attributes of login elements used for pattern mining.

computers in the dataset. While average in-degree of servers is 293,

it is 14 for workstations.

To understand the login connectivities further, we studied orga-

nizational structure and its correlation with the login connectivities.

For example, we examined the logins of two business units A and

B
4
with 82 and 17 employees, respectively. We observed that none

of the users of the department A logged in from a computer of

the department B, and vice versa, during five months. We also ob-

served that users of business unit B connected to 18 computers

(local servers) to which group A did not connect and that com-

puters of both groups logged in to 13 global servers (e.g., domain

controllers and email servers) that provide service for the entire

network. These imply that enterprise logins are structured. In other

words, we can predict which user logs in from a computer to an-

other one. The goal of our system is to capture and model the login

structure of a network and use that for anomalous loging detection.

Dynamics of Logins. We analyzed the data set to understand the

dynamics of logins. More specifically, we studied the changes of

login connectivities in comparison to the history of a collection of

logins in the past. Compared with logins of history, we categorize

each login into five different classes:

• No-Change. A login represented as a triplet l =< u, s,d >
(i.e., user, source and destination names) is a no-change login

if there exists a login l ′ =< u ′, s ′,d ′ > in the history of logins
where (u = u ′), (s = s ′), and (d = d ′). In other words, if the

login l has happened in the past, then it is a no-change login.

• Source-Change. If a login l =< u, s,d > has not happened

in the past but there exists a login l ′ =< u ′, s ′,d ′ > in

the history of logins where u = u ′, s , s ′ and d = d ′,
then the login is categorized as source-change. In Figure 5,

the login < u3, s2,d2 > is a source-change compared with

history of logins. This type of change happens for a couple

of reasons, including logins of employees from a different

office while traveling, or using virtual desktop technologies

when working from home.

• Destination-Change. If a login l =< u, s,d > has not hap-

pened in the past but a login l ′ =< u ′, s ′,d ′ > exists in the

history of logins where u = u ′, s = s ′ and d , d ′, then the

login is categorized as destination-change. In Figure 5, the

login < u2, s2,d2 > is destination-change. This category of

logins happens for several reasons, including connection to

a new server in a collection of load balanced servers, de-

ployment of new servers, activation of a disaster recovery

process, or assignment of a task to an employee, that requires

access to a new server computer.

• User-Change. If a login l =< u, s,d > has not happened

in the past but there exists a login l ′ =< u ′, s ′,d ′ > in

4
Redacted to protect sensitive information.

Figure 5: This diagram shows four categories of login
changes. Logins at the center represent history of logins in
the past.

the history of logins where u , u ′, s = s ′ and d = d ′,
then the login is categorized as user-change. In Figure 5, the

login< u3, s2,d1 > is an user-change, because computers u2
and d2 have been previously connected using user u2, but
not u3. Such a change happens for several reasons, including

delegating logins between proxies and destination servers.

• Full-Change. If a login l =< u, s,d > has not happened

in the past and none of the pairs of login elements have

occurred in the past, then this login is a full change compared

to the history of logins. This type of change usually happens

because of the addition of a new user or computers to the

network, or because of a significant shift in the roles of users

or computers. In Figure 5, the login < u1, s2,d2 > is a full-

change.

We measured the change of logins concerning the categories

described above. For this purpose, we used four months of logins

to compile an aggregated history of logins. Then, we identified

the type of change for every login for the month after. Figure 6

shows the percentage of logins of each category. The category of no-

change is dominant and covers 85-95% of logins. The rate of logins

that do not change shows that most of the logins of an enterprise

network have happened at some point in time in the past. Another

observation is that the percentage of no-change decreases as time
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elapses. This drift is due to long lasting changes in the network

(e.g., a new server) and business operations. Our analysis shows

that non-admin users are responsible for about 70% of the changes,

admins for 20%, and service accounts for 10% of the changes.

The most common category of changes was destination-change

which covers 2-6% of all logins. About 80% of the destination-

changes involved a server as the login destination. Our analysis

shows that between 1-2.5% of all logins include a source-change.

Servers and desktop account for equal portions of source-changes.

User-change and full-change were the smallest categories of login

change.

Based on these statistics, we conclude that the majority of cur-

rent logins in a network have been observed sometime in the past.

Moreover, there are logins that we have not seen in the past but

legitimately occur because of natural dynamics of network and

organization. The goal of our technique is to distinguish benign

from malicious login changes.

5.2 Experiment by Security Analysts
In the absence of a set of labeled bad logins, we asked some se-

curity analysts of the same financial organization that provided

the login data for us to evaluate the logins that our system detects

as malicious. In this section, we describe the setup of the system,

methodology of evaluation, and the results of this experiment.

System Setup. The classifier of our algorithm has two components

each requires data for training. The first component is an exact

matcher that uses a history of logins from the past. We prepared the

input for this component by aggregating four months of previous

logins.

To enable the second component, the pattern matcher, the sys-

tem first needed to mine the login patterns. Therefore, we input

the logins of the past four months as well as details of computers

and users to the pattern mining algorithm. Overall, eight different

attributes, including two for users and three for each computer was

used to describe login attributes. The pattern mining algorithm gen-

erated about 200,000 patterns. Also, it computed three orientation

score for each login pattern. We provided the entire logins of one

day to the system to classify the logins. The total number of logins

given was about 177,000 and system generated 578 alerts.

Labeling Process. Since labeling the entire set of alerts was re-

source intensive, we asked the security analysts to label only a sub-

set of alerts. We scheduled half-hour sessions with three analysts

and asked each to label the logins while thinking aloud describ-

ing the reason for assigning each label. We developed and used

an online labeling panel that shows only one login at a time to

minimize the bias of showing more than one alert. Each security

analyst used his own workstation to visit the online labeling page.

They also were allowed to use other security and information man-

agement software they usually use, to cross-verify their hypothesis

in case they weren’t sure about their answer or needed to find

an explanation. For each alert, we asked them to mark one of the

following:

(a) The login is most likely a good login

(b) This needs further investigation

(c) The login is most likely a malicious login

We considered the labeling of the security analysts as the ground

truth. If a security analyst chose option (a), we would consider the

login as benign. Making sure that a login is malicious requires

efforts by security analysts, that were beyond resources allocated to

this experiment. Moreover, labeling a login as (b) indicates that the

login is unusual and potentially suspicious. Therefore, we consider

logins marked either (b) or (c) a suspicious login.

For each alert, we showed the username, name of the source

and destination computers, and all eight attributes related to user

and computers. After labeling an item, the system showed another

login for labeling. During the labeling, the analysts were allowed

to consult other sources of information, including an HR system

describing more details of responsibilities for a user, along with a

database that provides detailed information about computers in the

network.

Precision of the System. Precision is a measure of the positive

predictive value of a classifier. For an attack detection system, it is

computed as the fraction of true alerts among all alerts generated

by a system. In other words, the precision of a binary classifier

is computed by
T P

T P+F P where TP and FP are the counts of true

positive and false positive, respectively. This measure is specifically

suitable when the actual number of positive samples in the dataset

is uknown.

To measure the precision of our system, we showed an overall of

80 alerts randomly selected from 578 alerts generated by the system

to three security analysts. We showed an almost equal number (i.e.,

one-third) of alerts to each one. Each alert was labeled only by one

security analyst. We asked them to go through each alert one by

one and label them. Security analysts marked a total of 11 out of

80 of logins as suspicious. Therefore, the accuracy of our system

was 13% in the described experiment. Low precision is a canonical

problem of anomaly-based detection approaches [2, 31].

We investigated the reasons for low accuracy of our system by

seeking feedback from security analysts. The main reasons for false

alerts were (I) logins related to admin accounts, and (II) missing

attributes of elements of login. The reason that our system generates

false alerts for many admin logins is the difficulty of modeling

behavior of admins. In most of the cases, legitimate logins of admins

are not frequent enough and therefore do not pass the threshold

to be include in the history of login. As a result, a pattern will not

be generated to cover them. Details of attributes for new users and

computers are not quickly updated in the database. That is the main

reason for missing attributes of elements of some login (i.e., user

and computers). Without them, our system is not able to do the

pattern matching and therefore identifies them as suspicious logins.

5.3 Experimenting with Synthetic Attack
traces

Our evaluation based on feedback from security analysts was lim-

ited mainly because without knowing the actual number of mali-

cious logins we can not measure the number of malicious logins

that our algorithm misses. To overcome this problem, we evaluated

our system based on several synthesized malicious logins injected

into real traces of logins from the enterprise network.

Benign logins. We used five consecutive months of login data set

to set up and evaluate our approach. We split this dataset into two
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(a) No-Change Trend (b) Login Changes (User-Change, Source-Change,Destination-Change, Full-
Change)

Figure 6: (a) shows the percentage of no-change logins relative to a collection of logins of the past four months. (b) shows the
percentage of each category of login change. Most of the changes are related to destination-change. The y-axis is shortened
for readability.

partitions. We used four months of logins to train our anomaly

detection algorithm to extract the login structure of the networks.

With the last month of logins, we measured the false positive rate

of our algorithm.

Attack traces. We generated traces of malicious logins based on a

realistic strategy of attack that is often employed by penetration-

testing campaigns to emulate a lateral movement attack within

an enterprise network. Accordingly, we consider the following

assumptions about an attack of this type:

• The attacker has already infected and compromised a work-

station within an enterprise network and tries to transmit

to another computer.

• The attacker is able to steal the password of any user who is

active on a compromised computer. This includes accounts

that are used to login from or to the compromised computer.

• The transmission of an attacker is naturally constrained by

standard access controls of a network. The most important

one is that non-admin accounts can only gain administrative

access to a workstation. To compromise a server, the attacker

must have access to an admin account.

• A stealthy attacker minimizes the number of malicious lo-

gins, as too many logins can raise an alert. Therefore, at-

tackers that we simulated tried to login only to five other

computers in the network.

To generate some malicious login traces, we randomly selected

a number of workstations as a source of malicious logins. Then,

we identified all credentials that were active on each computer

and marked them as compromised. These were credentials that

an attacker could use to log in and compromise other computers.

Then, we chose five random target computers as the destination

of a malicious login from each compromised computer. Using this

process, we generated 150 traces of malicious logins in the form

Figure 7: True positive rate of the algorithm based on differ-
ent threshold for pattern confidence.

of < u, s,d >. This set of logins comprised the positive samples of

our data set. We injected these malicious logins into the data set of

logins of the enterprise and used it for measuring the performance

of the algorithm.

Quality of Patterns. Performance of our detection algorithm de-

pends on the quality of patterns used for classification. Onemeasure

of the quality of patterns is their confidence scores. Patterns with

higher orientations scores are more reliable and therefore have

higher confidence. Here, we report the performance of the system

concerning different thresholds of pattern confidence.

True Positive Rate. An important performance measure of a de-

tection algorithm is true positive rate that is the capability of the
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Figure 8: False positive rate relative to different thresholds
for pattern confidence.

system to detect malicious logins. The true positive rate is com-

puted using
T P

T P+FN . To measure this, we counted the number of

malicious logins of the test data set that the classifier was able to

detect. The true positive rate of the algorithm was varied depend-

ing on the minimum confidence score to include a login pattern in

the classifier. A higher threshold for orientation scores results in

patterns with greater confidence. It is less likely that our algorithm

matches a malicious login patterns with a legitimate login pattern

mistakenly when it uses a higher confidence threshold. Figure 7

shows the percentage of true positives relative to the threshold of

pattern confidence. As our system increases the threshold, it will

be able to detect more malicious logins.

False Positives Rate. A detection algorithm is only usable if the

number of false alarms it generates is manageable. Number of false

alerts that this system generates varies depending on the pattern

confidence threshold. If the system uses a lower threshold, it will

include more login patterns. Therefore, it will be more likely to

find a matching pattern with a new benign login and this results a

lower false positive rate. Figure 8 shows the false positive rate of the

algorithm at different thresholds. We observe that false positive rate

decreases as the system use lower threshold for pattern confidence.

ROC Curve. The threshold of pattern confidence that the system

uses for choosing qualified patterns affects its false positive and

false negative rates; While increasing the threshold improves the

true positive rate, it increases the false positive as well. To show

this interaction and find a balancing threshold, we used receiver

operating characteristic (ROC) curve. In a ROC curve, the X-axis

shows the false positive rate of the classifier and the Y-axis repre-

sents its true positive rates. We computed the data points based on

different thresholds of pattern confidence. Figure 9 shows the ROC

curve of our classifier. This diagram indicates that our system is

able to detect 82% of malicious logins, while generating 0.3% false

alerts.

6 RELATEDWORK
This section reviews previous works relevant to ours. This section

also clarifies the scope of our work and reasons why some alterna-

tive approaches might not be suitable for detecting CLM.

Role-based Access Control. Role-Based Access Control (RBAC)

Figure 9: ROC diagram shows the false positive vs. True pos-
itive of the detection method.

defines rules for access to network resources based on the role of

users. Several mechanisms such as Access Control Lists in Linux

and Active Directory in Windows systems [19] allow the network

admins to enforce rules of access. Using the notion of groups of

users and objects, network admins can allow or deny access of

a group of users to a collection of resources. This mechanism is

useful for stopping an employee from accessing data or resources

he/she should have never access. For resources that a user might

need access, the access is granted even if the user needs it rarely.

In fact, business continuity is the main reason for granting more

access than is required at each particular point in time. As a result,

50-90% of users are over-entitled [4]. These excessive permissions

allow an attacker to move almost freely within a network. This

work complements the access control mechanisms and is suitable

for an enterprise environment where business continuity has high

priority. Our system generates an alert if a login is abnormal. By in-

vestigating the alerts, security analysts can make sure that a highly

unlikely login is not malicious.

MonitoringActivitieswithinNetworks. In response to strength-
ened networks and servers that resist direct external attacks, attack-

ers have shifted to indirect attack methods. In one such method, the

attackers compromise a desktop within a network using a phish-

ing attack [5, 22, 34]. Then they use this foothold to compromise

other computers or servers that host valuable data they could not

access otherwise. This attack method motivates the production of

monitoring and detection tools based on malicious traffic within en-

terprise networks [11, 23, 23, 35]. These tools rely on an enormous

amount of data collected from network and host activities using

sensors installed on computers and networking devices. Some de-

tection approaches have only focused on infected computers. Yen et

al. [35] have proposed a system that automatically mines knowledge

from the log data produced by a broad range of security products

(e.g., anti-virus, firewall) to detect infected workstations. Fawaz et

al. [11] have proposed a framework for fusing data from different

sources within a network to detect orchestrated attacks, including

lateral movement. Oprea et al. [23] proposed a belief propagation
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technique that determines the state of a computer (i.e., benign vs.

malicious) given prior knowledge about its past state and interac-

tions with external resources (e.g., external websites). Using this

technique, they have been able to discover new malicious entities.

These techniques, do not utilize information about credential usage,

and therefore can not detect the important class of credential-based

lateral movement that we explored in this paper.

Detecting Malicious User Activities. Even though attackers use

remote exploits and zero-day vulnerabilities, these methods are

overrated [24]. Instead, attacks based on credential-based lateral

movement (CLM), using usernames and passwords tomove laterally

between computers within a network [3], has prevailed. Some pre-

vious works have studied credential-based attacks. GonÃğalves et

al. [13] employed credential usages for detecting misbehaving com-

puters based on an unsupervised clustering approach. They used

features such as the number of successful and failed logins, as well

as statistics about admin logins for detection. Their approach is not

able to detect CLM because it does not exhibit any statistical abnor-

malities such as frequent logins. In comparison, our approach can

identify a single login of an attacker because it relies on the struc-

ture of logins instead of the frequency of them. Freeman et al. [12]

have proposed a supervised statistical method for classification of

logins in the client-server interactions. They use several features,

including IP reputations to classify benign and malicious logins. In

comparison, our method is related to logins within an enterprise

network. These logins involve a more complex set of interactions

between machines beyond client-server structure. Our approach is

also different from theirs as we do not need labeled data for training

our classifier. Instead, we use a semi-supervised anomaly detection

approach. Siadati et al. [28] have used a signature-based method

for detecting malicious logins. Their system relies on iterative vi-

sual exploration of logins within enterprise to identify and define

signature of malicious logins.

Our approach has potential application in fraud and insider

threat detection. Eberle et al. [9] have proposed a graph-based

detection method for identifying anomalous actions concerning

the interactions of computers within a network. Their approach

computes the changes of a graph of interactions in comparison with

a model of interaction they build atop the most frequent subgraphs

of the connections. However, it is not able to correctly distinguish

benign changes that occur due to network dynamics frommalicious

ones.

Evaluation Methods. Depending on the availability of appropri-

ate test data, different methods can be used for evaluating anomaly

detection approaches [10, 17, 21, 25]. The ideal scenario is when

the ground truth is available [18, 31]. Similar to [15], we compiled

a limited data set of labeled logins based on labeling of some se-

curity analysts and measured the precision of our system based

on that. We also used another accepted method, that is creating

synthetic attack traces and injecting the traces into the benign

data [6, 7, 20, 27, 33].

7 LIMITATIONS AND DISCUSSIONS
Evasions. Our method utilizes network login structure to detect

malicious logins that are not consistent with the normal login

structure. An attacker who is aware of an implementation of our

system and identifies login structure of a target company might try

to evade detection. To imitate a legitimate login, the attacker must

have the right combination of username and computer to log in to

a destination computer. It is not always feasible for an attacker to

satisfy these conditions. At the beginning of a lateral movement

attack, it is more difficult for an attacker to satisfy these conditions

and evade detection because the attacker has fewer compromised

computers and stolen credentials. Therefore, our systemwill be able

to detect attacks in their earliest stages. An attacker may combine

CLM method with a vulnerability-based lateral movement to evade

detection. Therefore, it is highly recommended to use our approach

along with ones that detect remote software vulnerabilities.

Poisoning Attack. For training our classifier, we use logins in a

period in the past. It is possible for an attacker to create some logins

with the goal of misleading the pattern miner module to include

an illegitimate pattern in the set of login patterns. To avoid this

type of poisoning, we only use logins that have occurred frequently

enough in the past. More specifically, we compute the percentage

of the days in which a login has happened in the past. We include

a login in the training only if this ratio is above a certain threshold.

In our experiment, we used logins that happen in more than 10% of

days in the past. Even if an attacker does a particular login more

than 10% of the days, this event does not simply suggest a new

pattern to our system. Instead, he must log in from enough number

of different source computers of the type to enough number of

destination computers of the type using appropriate usernames

to suggest patterns with a minimum required orientation scores.

Therefore, an attacker will not be able to contaminate the training

data without risking detection.

Limitations. Although we had access to a rare data set of millions

of logins of an enterprise, our study is still limited to one company

and one type of enterprise. We are fully aware of the limitations of

generalizing the findings of this paper to other networks, particu-

larly those with more login dynamics and very different structures.

Specifically, the stability of login structure varies from enterprise to

enterprise. For example, in a development environment such as a

software company, the login structure varies over time dramatically

as some changes on a project might introduce significant changes

in the login structure. Therefore, the updates of the classifier can

not keep up with the dynamics of the network.

Our approach can not correctly classify some of the benign logins

caused by dramatic changes in a network, such as activation of a

disaster recovery center. A potential fix for this problem requires

an intervention of security analysts to whitelist such login patterns

prior or during the disaster recovery process. Another possible fix

is to train a separate model at the time of the disaster recovery test

and use the system as a disaster occurs.

We have not studied the effect of a longer period of logins as

input for the pattern miner because we did not have access to such

data. For the same reason, we have not studied the optimal window

at which the algorithm should be retrained. However, according to

the amount of change in the logins from 5% to 15% after a month,

it is recommended to retrain the algorithm frequently. Our fast

algorithm makes it easy to retrain the algorithm in a reasonable

amount of time.

Our work, similar to any other work in the intrusion detection

domain, suffers from canonical challenges in anomaly detection.
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One of such problems is base-rate fallacy [2] that inherently chal-

lenges the precision of detection systems. Our strategy to reduce the

amount of error was combining two classifiers; an exact matcher

and a pattern matcher. To improve this even further, we plan to

integrate the result of manual inspections of the security analysts in

a feedback loop to the system and adopt an online learning process

to reduce false positives and improve precision over time.

8 CONCLUSION
To the best of our knowledge, this is the first work reporting the

internals and login dynamics of an enterprise network. We utilized

the insights gained from our analysis to develop the notion of net-

work login structure to model normal logins of enterprise networks

based on triplets of attributes of user and computers involved in

network logins. We have developed a fast and scalable pattern min-

ing algorithm to automatically extract such login patterns. Utilizing

the network login structure to model the class of benign logins,

we built a binary classifier to detect structurally anomalous logins.

We evaluated our system based on labeling of security analysts as

well as synthetic attack traces. Our evaluation shows that using an

appropriate data set for training, our system can detect more than

82% of malicious logins with 0.3% false alerts.
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