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ABSTRACT
This paper presents an approach to formalizing and enforcing a

class of use privacy properties in data-driven systems. In contrast

to prior work, we focus on use restrictions on proxies (i.e. strong

predictors) of protected information types. Our definition relates

proxy use to intermediate computations that occur in a program,

and identify two essential properties that characterize this behavior:

1) its result is strongly associated with the protected information

type in question, and 2) it is likely to causally affect the final out-

put of the program. For a specific instantiation of this definition,

we present a program analysis technique that detects instances of

proxy use in a model, and provides a witness that identifies which

parts of the corresponding program exhibit the behavior. Recogniz-

ing that not all instances of proxy use of a protected information

type are inappropriate, we make use of a normative judgment or-

acle that makes this inappropriateness determination for a given

witness. Our repair algorithm uses the witness of an inappropriate

proxy use to transform the model into one that provably does not

exhibit proxy use, while avoiding changes that unduly affect classi-

fication accuracy. Using a corpus of social datasets, our evaluation

shows that these algorithms are able to detect proxy use instances

that would be difficult to find using existing techniques, and subse-

quently remove them while maintaining acceptable classification

performance.

CCS CONCEPTS
• Security and privacy → Privacy protections;

KEYWORDS
privacy; use privacy; proxy; causal analysis

1 INTRODUCTION
Restrictions on information use occupy a central place in privacy

regulations and legal frameworks [28, 54, 61, 62]. We introduce the

term use privacy to refer to privacy norms governing information

use. A number of recent cases have evidenced that inappropriate
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information use can lead to violations of both privacy laws [68]

and user expectations [16, 19], prompting calls for technology to

assist with enforcement of use privacy requirements [53]. In or-

der to meet these regulatory imperatives and user expectations,

companies dedicate resources toward compliance with privacy poli-

cies governing information use [53, 57]. A large body of work has

emerged around use privacy compliance governing the explicit

use of protected information types (see Tschantz et al. [64] for a

survey). Such methods are beginning to see deployment in major

technology companies like Microsoft [58].

In this paper, we initiate work on formalizing and enforcing a

richer class of use privacy restrictions—those governing the use of

protected information indirectly through proxies in data-driven sys-

tems. Data-driven systems include machine learning and artificial

intelligence systems that use large swaths of data about individuals

in order to make decisions about them. The increasing adoption

of these systems in a wide range of sectors, including advertising,

education, healthcare, employment, and credit, underscores the

critical need to address use privacy concerns [53, 57].

We start with a set of examples to motivate these privacy con-

cerns and identify the key research challenges that this paper will

tackle to address them. In 2012, the department store Target drew

flak from privacy advocates and data subjects for using the shopping

history of their customers to predict their pregnancy status and

market baby items based on that information [19]. While Target in-

tentionally inferred the pregnancy status and used it for marketing,

the privacy concern persists even if the inference were not explic-

itly drawn. Indeed, the use of health condition-related search terms

and browsing history—proxies (i.e., strong predictors) for health

conditions—for targeted advertising have been the basis for legal

action and public concern from a privacy standpoint [16, 44, 68].

Similar privacy concerns have been voiced about the use of personal

information in the Internet of Things [40, 49, 52, 67].

Use privacy To address these threats, this paper articulates the

problem of protecting use privacy in data-driven systems.

Use privacy constraints restrict the use of protected information types

and some of their proxies in data-driven systems.

Setting A use privacy constraint may require that health infor-

mation or its proxies not be used for advertising. Indeed there are

calls for this form of privacy constraint [17, 46, 53, 68]. In this paper,

we consider the setting where a data-driven system is audited to

ensure that it complies with such use privacy constraints. The audit-

ing could be done by a trusted data processor who is operating the

system or by a regulatory oversight organization who has access

to the data processors’ machine learning models and knowledge of
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the distribution of the dataset. In other words, we assume that the

data processor does not act to evade the detection algorithm, and

provides accurate information. This trusted data processor setting

is similar to the one assumed in differential privacy [25].

In this setting, it is impossible to guarantee that data processors

with strong background knowledge are not able to infer certain

facts about individuals (e.g., their pregnancy status) [21]. Even in

practice, data processors often have access to detailed profiles of

individuals and can infer sensitive information about them [19,

66]. Use privacy instead places a more pragmatic requirement on

data-driven systems: that they simulate ignorance of protected

information types (e.g., pregnancy status) by not using them or

their proxies in their decision-making. This requirement is met if

the systems (e.g., machine learning models) do not infer protected

information types or their proxies (even if they could) or if such

inferences do not affect decisions.

Recognizing that not all instances of proxy use of a protected in-

formation type are inappropriate, our theory of use privacy makes

use of a normative judgment oracle that makes this inappropri-

ateness determination for a given instance. For example, while

using health information or its proxies for credit decisions may be

deemed inappropriate, an exception could be made for proxies that

are directly relevant to the credit-worthiness of the individual (e.g.,

her income and expenses).

Proxy use A key technical contribution of this paper is a formal-

ization of proxy use of protected information types in programs.

Our formalization relates proxy use to intermediate computations

obtained by decomposing a program. We begin with a qualitative

definition that identifies two essential properties of the interme-

diate computation (the proxy): 1) its result perfectly predicts the

protected information type in question, and 2) it has a causal affect

on the final output of the program.

In practice, this qualitative definition of proxy use is too rigid for

machine learning applications along two dimensions. First, instead

of demanding that proxies are perfect predictors, we use a standard

measure of association strength from the quantitative information

flow security literature to define an ϵ-proxy of a protected informa-

tion type; here ϵ ∈ [0, 1] with higher values indicating a stronger

proxy. Second, qualitative causal effects are not sufficiently infor-

mative for our purpose. Instead we use a recently introduced causal

influence measure [14] to quantitatively characterize influence. We

call it the δ -influence of a proxy where δ ∈ [0, 1] with higher values

indicating stronger influence. Combining these two notions, we

define a notion of (ϵ,δ )-proxy use.

We arrive at this program-based definition after a careful exami-

nation of the space of possible definitions. In particular, we prove

that it is impossible for a purely semantic notion of intermediate

computations to support a meaningful notion of proxy use as char-

acterized by a set of natural properties or axioms (Theorem 1). The

program-based definition arises naturally from this exploration by

replacing semantic decomposition with decompositions of the pro-

gram. An important benefit of this choice of restricting the search

for intermediate computations to those that appear in the text of

the program is that it supports natural algorithms for detection and

repair of proxy use. Our framework is parametric in the choice of a

programming language in which the programs (e.g., machine learnt

models) are expressed and the population to which it is applied.

The choice of the language reflects the level of white-box access

that the analyst has into the program.

Detection We instantiate our definition to a simple program-

ming language that contains conditionals, arithmetic and logical

operations, and decompositions that involve single variables and

associative arithmetic. For example, decompositions of linear mod-

els include additive sets of linear terms, and decision forests include

subtrees, and sets of decision trees. For this instantiation of the def-

inition, we present a program analysis technique that detects proxy

use in a model, and provides a witness that identifies which parts

of the corresponding program exhibit the behavior (Algorithm 4).

Our algorithm assumes access to the text of a program that com-

putes the model, as well as a dataset that has been partitioned into

analysis and validation subsets. The algorithm is program-directed

and is directly inspired by the definition of proxy use. We prove

that the algorithm is complete relative to our instantiation of the

proxy use definition — it identifies every instance of proxy use in

the program (Theorem 3) and outputs witnesses (i.e. intermediate

computations that are the proxies). We provide three optimizations

that leverage sampling, pre-computation, and reachability to speed

up the detection algorithm.

Repair If a found instance of proxy use is deemed inappropriate,

our repair algorithm (Algorithm 5) uses the witness to transform

the model into one that provably does not exhibit that instance of

proxy use (Theorem 4), while avoiding changes that unduly affect

classification accuracy. We leverage the witnesses that localize

where in the program a violation occurs in order to focus repair

there. To repair a violation, we search through expressions local to

the violation, replacing the one which has the least impact on the

accuracy of the model and at the same time reduces the association

or influence of the violation to below the (ϵ,δ ) threshold.

Evaluation We empirically evaluate our proxy use definition,

detection and repair algorithms on four real datasets used to train

decision trees, linear models, and random forests. Our evaluation

demonstrates the typical workflow for practitioners who use our

tools for a simulated financial services application. It highlights

how they help them uncover more proxy uses than a baseline

procedure that simply eliminates features associated with the pro-

tected information type. For three other simulated settings on real

data sets—contraception advertising, student assistance, and credit

advertising—we find interesting proxy uses and discuss how the

outputs of our detection tool could aid a normative judgment oracle

determine the appropriateness of proxy uses. We evaluate the per-

formance of the detection algorithm and show that, in particular

cases, the runtime of our system scales linearly in the size of the

model. We demonstrate the completeness of the detection algo-

rithm by having it discover artificially injected violations into real

data sets. Finally, we evaluate impact of repair on model accuracy,

in particular, showing a graceful degradation in accuracy as the

influence of the violating proxy increases.

Closely related work The emphasis on restricting use of in-

formation by a system rather than the knowledge possessed by

agents distinguishes our work from a large body of work in pri-

vacy (see Smith [59] for a survey). The privacy literature on use
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restrictions has typically focused on explicit use of protected infor-

mation types, and not on proxy use (see Tschantz et al. [64] for a

survey and Lipton and Regan [46]). Recent work on discovering

personal data use by black-box web services focuses mostly on

explicit use of protected information types by examining causal

effects [2, 16, 27, 35–37, 43, 44, 47, 69, 71]); some of this work also

examines associational effects [43, 44]. Associational effects capture

some forms of proxy use but not others as we argue in Section 3.

In a setting similar to ours of a trusted data processor, differential

privacy [25] protects against a different type of privacy harm. For

a computation involving data contributed by a set of individuals,

differential privacyminimizes any knowledge gains by an adversary

that are caused by the contribution of a single individual. This

requirement, however, says nothing about what information types

about an individual are actually used by the data processor, the

central concern of use privacy.

Lipton and Regan’s notion of “effectively private" captures the

idea that a protected feature is not explicitly used to make decisions,

but does not account for proxy use [46]. Prior work on fairness has

also recognized the importance of dealing with proxies in machine

learning systems [22, 29, 63]. However treatments of proxy use

considered there do not match the requirements of use privacy.

We elaborate on this point in Section 3. In Section 7, we provide a

more detailed comparison with related work highlighting that use

privacy enhancing technology (PET) complements existing work

on PETs. It is not meant to supplant other PETs geared toward

restricting data collection and release. While the results of this

paper represent significant progress toward enabling use privacy,

as elaborated in Section 8, a host of challenging problems remain

open.

Contributions In summary, we make the following contribu-

tions:

• An articulation of the problem of protecting use privacy in

data-driven systems. Use privacy restricts the use of pro-

tected information types and some of their proxies (i.e.,

strong predictors) in automated decision-making systems

(§1, 2).

• A formal definition of proxy use—a key building block for

use privacy–and an axiomatic basis for this definition (§3).

• An algorithm for detection and tracing of an instantiation of

proxy use in a machine learnt program, and proof that this

algorithm is sound and complete (§4).

• A repair algorithm that provably removes violations of the

proxy use instantiation in a machine learning model that are

identified by our detection algorithm and deemed inappro-

priate by a normative judgment oracle (§5).

• An implementation and evaluation of our approach on pop-

ular machine learning algorithms applied to real datasets

(§6).

An extended version[13] of this paper includes additional evalu-

ation and further details on the datasets employed.

2 USE PRIVACY
We use the Target example described earlier in the paper to mo-

tivate our notion of use privacy. Historically, data collected in a

context of interaction between a retailer and a consumer is not ex-

pected to result in flows of health information. However, such flow

constraints considered in significant theories of privacy (e.g., see

Nissenbaum [51]) cannot be enforced because of possible statistical

inferences. In particular, prohibited information types (e.g., preg-

nancy status) could be inferred from legitimate flows (e.g., shopping

history). Thus, the theory of use privacy instead ensures that the

data processing systems “simulate ignorance” of protected informa-

tion types (e.g., pregnancy status) and their proxies (e.g., purchase

history) by not using them in their decision-making. Because not

all instances of proxy use of a protected information type are in-

appropriate, our theory of use privacy makes use of a normative

judgment oracle that makes this inappropriateness determination

for a given instance.

We model the personal data processing system as a program p.
The use privacy constraint governs a protected information type Z .
Our definition of use privacy makes use of two building blocks: (1)

a function that given p, Z , and a population distribution 𝒫 returns

a witnessw of proxy use of Z in a program p (if it exists); and (2)

a normative judgment oracle 𝒪(w ) that given a specific witness

returns a judgment on whether the specific proxy use is appropriate

(true) or not (false).

Definition 1 (Use Privacy). Given a program p, protected in-

formation type Z , normative judgment oracle 𝒪, and population

distribution 𝒫 , use privacy in a program p is violated if there exists a

witnessw in p of proxy use of Z in 𝒫 such that 𝒪(w ) returns false.

In this paper, we formalize the computational component of

the above definition of use privacy, by formalizing what it means

for an algorithm to use a protected information type directly or

through proxies (§3) and designing an algorithm to detect proxy

uses in programs (§4). We assume that the normative judgment

oracle is given to us and use it to identify inappropriate proxy uses

and then repair them (§5). In our experiments, we illustrate how

such an oracle would use the outputs of our proxy use analysis and

recommend the repair of uses deemed inappropriate by it (§6).

This definition cleanly separates computational considerations

that are automatically enforceable and ethical judgments that re-

quire input from human experts. This form of separation exists also

in some prior work on privacy [33] and fairness [23].

3 PROXY USE: A FORMAL DEFINITION
We now present an axiomatically justified, formal definition of

proxy use in data-driven programs. Our definition for proxy use

of a protected information type involves decomposing a program

to find an intermediate computation whose result exhibits two

properties:

• Proxy: strong association with the protected type

• Use: causal influence on the output of the program

In § 3.1, we present a sequence of examples to illustrate the

challenge in identifying proxy use in systems that operate on data

associated with a protected information type. In doing so, we will

also contrast our work with closely-related work in privacy and

fairness. In §3.2, we formalize the notions of proxy and use, prelimi-

naries to the definition. The definition itself is presented in §3.3 and

§3.4. Finally, in §3.5, we provide an axiomatic characterization of the

notion of proxy use that guides our definitional choices. We note
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that readers keen to get to the detection and repair mechanisms

may skip §3.5 without loss of continuity.

3.1 Examples of Proxy Use
Prior work on detecting use of protected information types [15,

30, 44, 63] and leveraging knowledge of detection to eliminate

inappropriate uses [30] have treated the system as a black-box.

Detection relied either on experimental access to the black-box [15,

44] or observational data about its behavior [30, 63]. Using a series

of examples motivated by the Target case, we motivate the need to

peek inside the black-box to detect proxy use.

Example 3.1. (Explicit use, Fig. 1a) A retailer explicitly uses preg-

nancy status from prescription data available at its pharmacy to

market baby products.

This form of explicit use of a protected information type can

be discovered by existing black-box experimentation methods that

establish causal effects between inputs and outputs (e.g., see [15,

44]).

Example 3.2. (Inferred use, Fig. 1b) Consider a situation where

purchase history can be used to accurately predict pregnancy sta-

tus. A retailer markets specific products to individuals who have

recently purchased products indicative of pregnancy (e.g., a1,a2 ∈
purchases).

This example, while very similar in effect, does not use health

information directly. Instead, it infers pregnancy status via associ-

ations and then uses it. Existing methods (see [30, 63]) can detect

such associations between protected information types and out-

comes in observational data.

Example 3.3. (No use, Fig. 1c) Retailer uses some uncorrelated

selection of products (a1,n1 ∈ purchases) to suggest ads.

In this example, even though the retailer could have inferred

pregnancy status from the purchase history, no such inference was

used in marketing products. As associations are commonplace, a

definition of use disallowing such benign use of associated data

would be too restrictive for practical enforcement.

Example 3.4. (Masked proxy use, Fig. 1d) Consider a more in-

sidious version of Example 3.2. To mask the association between

the outcome and pregnancy status, the company also markets baby

products to people who are not pregnant, but have low retail en-

gagement, so these advertisements would not be viewed in any

case.

While there is no association between pregnancy and outcome in

both Example 3.3 and Example 3.4, there is a key difference between

them. In Example 3.4, there is an intermediate computation based

on aspects of purchase history that is a predictor for pregnancy

status, and this predictor is used to make the decision, and therefore

is a case of proxy use. In contrast, in Example 3.3, the intermediate

computation based on purchase history is uncorrelated with preg-

nancy status. Distinguishing between these examples by measuring

associations using black box techniques is non-trivial. Instead, we

leverage white-box access to the code of the classifier to identify

the intermediate computation that serves as a proxy for pregnancy

status. Precisely identifying the particular proxy used also aids the

f A function

⟨X,𝒜⟩𝒫 Amodel, which is a function𝒜 used for prediction,

operating on random variables X, in population 𝒫
X A random variable

p A program

⟨X,p⟩𝒫 A syntactic model, which is a program p, operating
on random variables X

[p1/X ]p2 A substitution of p1 in place of X in p2
X A sequence of random variables

Table 1: Summary of notation used in the paper

normative decision of whether the proxy use is appropriate in this

setting.

3.2 Notation and Preliminaries
We assume individuals are drawn from a population distribution

𝒫 , in which our definitions are parametric. Random variables

W ,X ,Y ,Z , . . . are functions over 𝒫 , and the notation W ∈ 𝒲
represents that the type of random variable isW : 𝒫 → 𝒲 . An

important random variable used throughout the paper is X, which
represents the vector of features of an individual that is provided to a

predictive model. A predictive model is denoted by ⟨X,𝒜⟩𝒫 , where

𝒜 is a function that operates onX. For simplicity, we assume that𝒫
is discrete, and that models are deterministic. Table 1 summarizes

all the notation used in this paper, in addition to the notation for

programs that is introduced later in the paper.

3.2.1 Proxies. A perfect proxy for a random variable Z is a ran-

dom variable X that is perfectly correlated with Z . Informally, if

X is a proxy of Z , then X or Z can be interchangeably used in any

computation over the same distribution. One way to state this is to

require that Pr(X = Z ) = 1, i.e. X and Z are equal on the distribu-

tion. However, we require our definition of proxy to be invariant

under renaming. For example, if X is 0 whenever Z is 1 and vice

versa, we should still identify X to be a proxy for Z . In order to

achieve invariance under renaming, our definition only requires

the existence of mappings between X and Z , instead of equality.

Definition 2 (Perfect Proxy). A random variable X ∈ 𝒳 is

a perfect proxy for Z ∈ 𝒵 if there exist functions f : 𝒳 → 𝒵,д :

𝒵 → 𝒳 , such that Pr(Z = f (X )) = Pr(д(Z ) = X ) = 1.

While this notion of a proxy is too strong in practice, it is useful

as a starting point to explain the key ideas in our definition of

proxy use. This definition captures two key properties of proxies,

equivalence and invariance under renaming.

Equivalence Definition 2 captures the property that proxies ad-

mit predictors in both directions: it is possible to construct a pre-

dictor of X from Z , and vice versa. This condition is required to

ensure that our definition of proxy only identifies the part of the

input that corresponds to the protected attribute and not the input

attribute as a whole. For example, if only the final digit of a zip code

is a proxy for race, the entirety of the zip code will not be identified

as a proxy even though it admits a predictor in one direction. Only

if the final digit is used, that use will be identified as proxy use.
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Figure 1: Examples of models (decision trees) used by a retailer for offering medicines and for selecting advertisements to
show to customers. The retailer uses pregnancy status, past purchases, and customer’s level of retail engagement. Products
a1 and a2 are associated with pregnancy (e.g., prenatal vitamins, scent-free lotions) whereas products n1 and n2 are associated
with a lack of pregnancy (e.g., alcohol, camping gear); all four products are equally likely. Retail engagement, (high or low),
indicating whether the customer views ads or not, is independent of pregnancy.

The equivalence criterion distinguishes benign use of associ-

ated information from proxy use as illustrated in the next example.

For machine learning in particular, this is an important pragmatic

requirement; given enough input features one can expect any pro-

tected class to be predictable from the set of inputs. In such cases,

the input features taken together are a strong associate in one di-

rection, and prohibiting such one-sided associates from being used

would rule out most machine learnt models.

Example 3.5. Recall that in Figure 1, a1,a2 is a proxy for preg-

nancy status. In contrast, consider Example 3.3, where purchase

history is an influential input to the program that serves ads. Sup-

pose that the criteria is to serve ads to those with a1, n1 in their

purchase history. According to Definition 2, neither purchase his-

tory or a1,n1 are proxies, because pregnancy status does not predict
purchase history or a1,n1. However, if Definition 2 were to allow

one-sided associations, then purchase history would be a proxy

because it can predict pregnancy status. This would have the unfor-

tunate effect of implying that the benign application in Example 3.3

has proxy use of pregnancy status.

Invariance under renaming This definition of a proxy is in-

variant under renaming of the values of a proxy. Suppose that a

random variable evaluates to 1when the protected information type

is 0 and vice versa, then this definition still identifies the random

variable as a proxy.

3.2.2 Influence. Our definition of influence aims to capture the

presence of a causal dependence between a variable and the output

of a function. Intuitively, a variable x is influential on f if it is

possible to change the value of f by changing x while keeping the

other input variables fixed.

Definition 3. For a function f (x ,y), x is influential if and only

if there exists values x1, x2, y, such that f (x1,y) , f (x2,y).

In Figure 1a, pregnancy status is an influential input of the sys-

tem, as just changing pregnancy status while keeping all other

inputs fixed changes the prediction. Influence, as defined here, is

identical to the notion of interference used in the information flow

literature.

3.3 Definition
We use an abstract framework of program syntax to reason about

programs without specifying a particular language to ensure that

our definition remains general. Our definition relies on syntax

to reason about decompositions of programs into intermediate

computations, which can then be identified as instances of proxy

use using the concepts described above.

Programdecomposition Weassume thatmodels are represented

by programs. For a set of random variables X, ⟨X,p⟩𝒫 denotes the

assumption that p will run on the variables in X. Programs are

given meaning by a denotation function J·KX that maps programs

to functions. If ⟨X,p⟩𝒫 , then JpK is a function on variables in X,
and JpK(X) represents the random variable of the outcome of p,
when evaluated on the input random variables X. Programs sup-

port substitution of free variables with other programs, denoted by

[p1/X ]p2, such that if p1 and p2 programs that run on the variables

X and X,X , respectively, then [p1/X ]p2 is a program that operates

on X.
A decomposition of program p is a way of rewriting p as two

programs p1 and p2 that can be combined via substitution to yield

the original program.

Definition 4 (Decomposition). Given a program p, a decompo-

sition (p1,X ,p2) consists of two programs p1, p2, and a fresh variable

X , such that p = [p1/X ]p2.

For the purposes of our proxy use definition we view the first

component p1 as the intermediate computation suspected of proxy

use, and p2 as the rest of the computation that takes in p1 as an
input.

Definition 5 (Influential Decomposition). Given a program

p, a decomposition (p1,X ,p2) is influential iff X is influential in p2.

Main definition

Definition 6 (Proxy Use). A program ⟨X,p⟩𝒫 has proxy use of

Z if there exists an influential decomposition (p1,X ,p2) of ⟨X,p⟩𝒫 ,

and Jp1K(X) is a proxy for Z .

Example 3.6. In Figure 1d, this definition would identify proxy

use using the decomposition (p1,U ,p2), where p2 is the entire tree,
but with the condition (a1,a2 ∈ purchases) replaced by the variable
U . In this example, U is influential in p2, since changing the value

of U changes the outcome. Also, we assumed that the condition

(a1,a2 ∈ purchases) is a perfect predictor for pregnancy, and is

therefore a proxy for pregnancy. Therefore, according to our def-

inition of proxy use, the model in 1d has proxy use of pregnancy

status.
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3.4 A Quantitative Relaxation
Definition 6 is too strong in one sense and too weak in another.

It requires that intermediate computations be perfectly correlated

with a protected attribute, and that there exists some input, however

improbable, in which the result of the intermediate computation is

relevant to the model. For practical purposes, we would like to cap-

ture imperfect proxies that are strongly associated with an attribute,

but only those whose influence on the final model is appreciable. To

relax the requirement of perfect proxies and non-zero influence, we

quantify these two notions to provide a parameterized definition.

Recognizing that neither perfect privacy nor perfect utility are prac-

tical, the quantitative definition provides a means for navigating

privacy vs. utility tradeoffs.

ϵ-proxies We wish to measure how strongly a random variable

X is a proxy for a random variable Z . Recall the two key require-

ments from the earlier definition of a proxy: (i) the association

needs to be capture equivalence and measure association in both

directions, and (ii) the association needs to be invariant under re-

naming of the random variables. The variation of information metric

dvar (X ,Z ) = H (X |Z ) + H (Z |X ) [12] is one measure that satisfies

these two requirements. The first component in the metric, the

conditional entropy of X given Z , H (X |Z ), measures how well X
can be predicted from Z , and H (Z |X ) measures how well Z can be

predicted from X , thus satisfying the requirement for the metric

measuring association in both directions. Additionally, one can

show that conditional entropies are invariant under renaming, thus

satisfying our second criteria. To obtain a normalized measure in

[0, 1], we choose 1−
dvar (X ,Z )
H (X ,Z ) as our measure of association, where

the measure being 1 implies perfect proxies, and 0 implies statistical

independence. Interestingly, this measure is identical to normal-

ized mutual information [12], a standard measure that has also

been used in prior work in identifying associations in outcomes of

machine learning models [63].

Definition 7 (Proxy Association). Given two random variables

X and Z , the strength of a proxy is given by normalized mutual

information,

d (X ,Z )
def

= 1 −
H (X |Z ) + H (Z |X )

H (X ,Z )

where X is defined to be an ϵ-proxy for Z if d (X ,Z ) ≥ ϵ .

We do not present the complexity of association computation

independently of detection as we rely on pre-computations to re-

duce the amortized runtime of the entire detection algorithm. The

complexity as part of our detection algorithm is discussed in Ap-

pendix D.2.

δ-influential decomposition Recall that for a decomposition

(p1,X ,p2), in the qualitative sense, influence is interference which

implies that there exists x , x1, x2, such that Jp2K(x ,x1) , Jp2K(x ,x2).
Herex1,x2 are values ofp1, that for a givenx , change the outcome of

p2. However, this definition is too strong as it requires only a single

pair of values x1, x2 to show that the outcome can be changed

by p1 alone. To measure influence, we quantify interference by

using Quantitative Input Influence (QII), a causal measure of input

influence introduced in [14]. In our context, for a decomposition

(p1,X ,p2), the influence of p1 on p2 is given by:

ι (p1,p2)
def

= EX,X′
$

←𝒫 Pr

(
Jp2K(X, Jp1K(X)) , Jp2K(X, Jp1K(X′))

)
.

Intuitively, this quantity measures the likelihood of finding ran-

domly chosen values of the output of p1 that would change the

outcome of p2. Note that this general definition allows for proba-

bilistic models though in this work we only evaluate our methods

on deterministic models.

The time complexity of influence computation as part of our

detection algorithm can be found in Appendix D.2, along with

discussion on estimating influence.

Definition 8 (Decomposition Influence). Given a decomposi-

tion (p1,X ,p2), the influence of the decomposition is given by the QII

of X on p2. A decomposition (p1,X ,p2) is defined to be δ -influential
if ι (p1,p2) > δ .

(ϵ,δ )-proxy use Now that we have quantitative versions of the

primitives used in Definition 6, we are in a position to define quan-

titative proxy use (Definition 9). The structure of this definition is

the same as before, with quantitative measures substituted in for

the qualitative assertions used in Definition 6.

Definition 9 ((ϵ,δ )-proxy use). A program ⟨X,p⟩𝒫 has (ϵ,δ )-
proxy use of random variable Z iff there exists a δ -influential decom-

position (p1,X ,p2), such that JpK(X) is an ϵ-proxy for Z .

This definition is a strict relaxation of Definition 6, which reduces

to (1, 0)-proxy use.

3.5 Axiomatic Basis for Definition
We now motivate our definitional choices by reasoning about a

natural set of properties that a notion of proxy use should satisfy.

We first prove an important impossibility result that shows that no

definition of proxy use can satisfy four natural semantic properties

of proxy use. The central reason behind the impossibility result is

that under a purely semantic notion of function composition, the

causal effect of a proxy can be made to disappear. Therefore, we

choose a syntactic notion of function composition for the definition

of proxy use presented above. The syntactic definition of proxy use

is characterized by syntactic properties which map very closely to

the semantic properties.

Property 1. (Explicit Use) IfZ is an influential input of the model

⟨{X,Z },𝒜⟩𝒫 , then ⟨{X,Z },𝒜⟩𝒫 has proxy use of Z .

This property identifies the simplest case of proxy use: if an

input to the model is influential, then the model exhibits proxy use

of that input.

Property 2. (Preprocessing) If a model ⟨{X,X },𝒜⟩𝒫 has proxy

use of random variableZ , then for any function f such that Pr ( f (X) = X ) =
1, let 𝒜′(x ) def

= 𝒜(x , f (x )). Then, ⟨X,𝒜′⟩𝒫 has proxy use of Z .

This property covers the essence of proxy use where instead of

being provided a protected information type explicitly, the program

uses a strong predictor for it instead. This property states that

models that use inputs explicitly and via proxies should not be

differentiated under a reasonable theory of proxy use.

Property 3. (Dummy) Given ⟨X,𝒜⟩𝒫 , define 𝒜′ such that for

all x ,x ′, 𝒜′(x ,x ′) def

= 𝒜(x ), then ⟨X,𝒜⟩𝒫 has proxy use for some Z
iff ⟨{X,X },𝒜′⟩𝒫 has proxy use of Z .
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This property states that the addition of an input to a model that

is not influential, i.e., has no effect on the outcomes of the model,

has no bearing on whether a program has proxy use or not. This

property is an important sanity check that ensures that models

aren’t implicated by the inclusion of inputs that they do not use.

Property 4. (Independence) If X is independent of Z in 𝒫 , then

⟨X,𝒜⟩𝒫 does not have proxy use of Z .

Independence between the protected information type and the

inputs ensures that the model cannot infer the protected informa-

tion type for the population 𝒫 . This property captures the intuition

that if the model cannot infer the protected information type then

it cannot possibly use it.

While all of these properties seem intuitively desirable, it turns

out that these properties can not be achieved simultaneously.

Theorem 1. No definition of proxy use can satisfy Properties 1-4

simultaneously.

See Appendix A for a proof of the impossibility result and a

discussion. The key intuition behind this result is that Property 2

requires proxy use to be preserved when an input is replaced with a

function that predicts that input via composition. However, with a

purely semantic notion of function composition, after replacement,

the proxy may get canceled out. To overcome this impossibility

result, we choose a more syntactic notion of function composition,

which is tied to how the function is represented as a program, and

looks for evidence of proxy use within the representation.

We now proceed to the axiomatic justification of our definition

of proxy use. As in our attempt to formalize a semantic definition,

we base our definition on a set of natural properties given below.

These are syntactic versions of their semantic counterparts defined

earlier.

Property 5. (Syntactic Explicit Use) If X is a proxy of Z , and X
is an influential input of ⟨{X,X },p⟩𝒫 , then ⟨{X,X },p⟩𝒫 has proxy

use.

Property 6. (Syntactic Preprocessing) If ⟨{X,X },p1⟩𝒫 has proxy

use ofZ , then for anyp2 such that Pr
(
Jp2K(X) = X

)
= 1, ⟨X, [p2/X ]p1⟩𝒫

has proxy use of Z .

Property 7. (Syntactic Dummy)Given a program ⟨X,p⟩𝒫 , ⟨X,p⟩𝒫
has proxy use for some Z iff ⟨{X,X },p⟩𝒫 has proxy use of Z .

Property 8. (Syntactic Independence) If X is independent of Z ,
then ⟨X,p⟩𝒫 does not have proxy use of Z .

Properties 5 and 6 together characterize a complete inductive

definition, where the induction is over the structure of the program.

Suppose we can decompose programs p into (p1,X ,p2) such that

p = [p1/X ]p2. Now if X , which is the output of p1, is a proxy

for Z and is influential in p2, then by Property 5, p2 has proxy

use. Further, since p = [p1/X ]p2, by Property 6, p has proxy use.

This inductive definition where we use Property 5 as the base

case and Property 6 for the induction step, precisely characterizes

Definition 6. Additionally, it can be shown that Definition 6 also

satisfies Properties 7 and 8. Essentially, by relaxing our notion

of function composition to a syntactic one, we obtain a practical

definition of proxy use characterized by the natural axioms above.

Algorithm 1 Detection for expression programs.

Require: association (d), influence(ι) measures

procedure ProxyDetect(p,X,Z , ϵ,δ )
P ← ∅
for each subprogram p1 appearing in p do

for each program p2 such that [p2/u]p1 = p do
if ι (p1,p2) ≥ δ ∧ d (Jp1K(X),Z ) ≥ ϵ then

P ← P ∪ {(p1,p2)}

return P

4 DETECTING PROXY USE
In this section, we present an algorithm for identifying proxy use of

specified variables in a given machine-learning model (Algorithm 1,

Appendix B contains a more formal presentation of the algorithm

for the interested reader). The algorithm is program-directed and

is directly inspired by the definition of proxy use in the previous

section. We prove that the algorithm is complete in a strong sense —

it identifies every instance of proxy use in the program (Theorem 3).

We also describe three optimizations that speed up the detection

algorithm: sampling, reachability analysis, and contingency tables.

4.1 Environment Model
The environment in which our detection algorithm operates is

comprised of a data processor, a dataset that has been partitioned

into analysis and validation subsets, and a machine learning model

trained over the analysis subset. We assume that the data processor

does not act to evade the detection algorithm, and the datasets

correspond to a representative sample from the population we wish

to test proxy use with respect to. Additionally, we assume that

information types we wish to detect proxies of are also part of the

validation data. We discuss these points further in Section 8.

For the rest of this paper we focus on an instance of the proxy use

definition, where we assume that programs are written in the simple

expression language shown in Figure 2. However, our techniques

are not tied to this particular language, and the key ideas behind

them apply generally. This language is rich enough to support

commonly-used models such as decision trees, linear and logis-

tic regression, Naive Bayes, and Bayesian rule lists. Programs are

functions that evaluate arithmetic terms, which are constructed

from real numbers, variables, common arithmetic operations, and

if-then-else (ite(·, ·, ·)) terms. Boolean terms, which are used as con-

ditions in ite terms, are constructed from the usual connectives

and relational operations. Finally, we use λ-notation for functions,

i.e., λx .e denotes a function over x which evaluates e after replac-
ing all instances of x with its argument. Details on how machine

learning models such as linear models, decision trees, and random

forests are translated to this expression language are discussed in

Appendix B.2 and consequences of the choice of language and de-

composition in that language are further discussed in more detail

in Section 8.

Distributed proxies Our use of program decomposition pro-

vides for partial handling of distributed representations, the idea

that concepts can be distributed among multiple entities. In our

case, influence and association of a protected information type can

be distributed among multiple program points. First, substitution
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⟨aexp⟩ ::= R | var | op(⟨aexp⟩, . . . , ⟨aexp⟩)

| ite(⟨bexp⟩, ⟨aexp⟩, ⟨aexp⟩)
⟨bexp⟩ ::= T | F | ¬ ⟨bexp⟩

| op(⟨bexp⟩, . . . , ⟨bexp⟩)

| relop(⟨aexp⟩, ⟨aexp⟩)

⟨prog⟩ ::= λvar1, . . . , varn . ⟨aexp⟩

Figure 2: Syntax for the language used in our analysis.

(denoted by [p1/X ]p2) is defined to replace all instances of vari-

able X in p2 with the program p1. If there are multiple instances

of X in p2, they are still describing a single decomposition and

thus the multiple instances of p2 in p1 are viewed as a single proxy.

Further, implementations of substitution can be (and is in our im-

plementation) associativity-aware: programs like x1 + x2 + x3 can
be equivalent regardless of the order of the expressions in that they

can be decomposed in exactly the same set of ways. If a proxy is dis-

tributed among x1 and x3, it will still be considered by our methods

because x1 + (x2 + x3) is equivalent to (x1 + x3) + x2, and the sub-

expression x1 + x3 is part of a valid decomposition. Allowing such

equivalences within the implementation of substitution partially

addresses the problem that our theory does not respect semantic

equivalence, which is a necessary consequence of Theorem 1.

4.2 Analyzing Proxy Use
Algorithm 1 describes a general technique for detecting (ϵ,δ )-proxy
use in expression programs. In addition to the parameters and ex-

pression, it takes as input a description of the distribution governing

the feature variables X and Z . In practice this will nearly always

consist of an empirical sample, but for the sake of presentation we

simplify here by assuming the distribution is explicitly given. In

Section D.2, we describe how the algorithm can produce estimates

from empirical samples.

The algorithm proceeds by enumerating sub-expressions of the

given program. For each sub-expression e appearing inp, ProxyDetect
computes the set of positions at which e appears. If e occurs mul-

tiple times, we consider all possible subsets of occurrences as po-

tential decompositions. It then iterates over all combinations of

these positions, and creates a decomposition for each one to test for

(ϵ,δ )-proxy use. Whenever the provided thresholds are exceeded,

the decomposition is added to the return set. This proceeds until

there are no more subterms to consider. While not efficient in the

worst-case, this approach is both sound and complete with respect

to Definition 9.

Theorem 2 (Detection soundness). Any decomposition (p1,p2)
returned by ProxyDetect(p,X, ϵ,δ ) is a decomposition of the input

program p and had to pass the ϵ,δ thresholds, hence is a (ϵ,δ )-proxy
use.

Theorem 3 (Detection completeness). Every decomposition

which could be a (ϵ,δ )-proxy use is enumerated by the algorithm.

Thus, if (p1,p2) is a decomposition of p with ι (p1,p2) ≥ d and

d (Jp1K(X),Z ) ≥ ϵ , it will be returned by ProxyDetect(p,X, ϵ,δ ).

Our detection algorithm considers single terms in its decompo-

sition. Sometimes a large number of syntactically different prox-

ies with weak influence might collectively have high influence. A

stronger notion of program decomposition that allows a collection

of multiple terms to be considered a proxy would identify such a

case of proxy use but will have to search over a larger space of

expressions. Exploring this tradeoff between scalability and richer

proxies is an important topic for future work.

The detection algorithm runs in time𝒪 (��p�� c ( |𝒟 | + k |𝒟 |))where
|𝒟 | is the size of a dataset employed in the analysis, c is the num-

ber of decompositions of a program, k is the maximum number of

elements in the ranges of all sub-programs (|𝒟 | in the worst case),

and
��p�� is the number of sub-expressions of a program. The number

of decompositions varies from 𝒪 (��p��) to 𝒪
(
2
|p |
)
depending on

the type of program analyzed. Details can be found in Appendix D

along with more refined bounds for several special cases.

5 REMOVING PROXY USE VIOLATIONS
In this section we present a repair algorithm for removing viola-

tions of (ϵ,δ )-Proxy Use in a model. Our approach has two parts:

first (Algorithm 2) is the iterative discovery of proxy uses via the

ProxyDetect procedure described in the previous section and sec-

ond (Algorithm 3) is the repair of the ones found by the oracle to

be violations. We describe these algorithms informally here, and

Appendix C contains formal descriptions of these algorithms. The

iterative discovery procedure guarantees that the returned program

is free of violations (Algorithm 5). Our repair procedures operate

on the expression language, so they can be applied to any model

that can be written in the language. Further, our violation repair

algorithm does not require knowledge of the training algorithm

that produced the model. The witnesses of proxy use localize where

in the program violations occur. To repair a violation we search

through expressions local to the violation, replacing the one which

has the least impact on the accuracy of the model that at the same

time reduces the association or influence of the violation to below

the (ϵ,δ ) threshold.
At the core of our violation repair algorithm is the simplifica-

tion of sub-expressions in a model that are found to be violations.

Simplification here means the replacement of an expression that

is not a constant with one that is. Simplification has an impact on

the model’s performance hence we take into account the goal of

preserving utility of the machine learning program we repair. We

parameterize the procedure with a measure of utilityv that informs

the selection of expressions and constants for simplification. We

briefly discuss options and implementations for this parameter later

in this section.

The repair procedure (Algorithm 3) works as follows. Given

a program p and a decomposition (p1,p2), it first finds the best

simplification to apply to p that would make (p1,p2) no longer a

violation. This is done by enumerating expressions that are local

to p1 in p2 (Line 3). Local expressions are sub-expressions of p1 as
well as p1 itself and if p1 is a guard in an if-then-else expression,

then local expressions of p1 also include that if-then-else’s true

and false branches as well as their sub-expressions. Each of the

local expressions corresponds to a decomposition of p into the local

expression p′
1
and the context around it p′

2
. For each of these local

decompositions we discover the best constant, in terms of utility,

to replace p′
1
with (Line 4). We then make the same simplification

to the original decomposition (p1,p2), resulting in (p′′
1
,p′′

2
) (Line 5)
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Algorithm 2 Witness-driven repair.

Require: association (d), influence (ι), utility (v) measures, oracle

(𝒪)

procedure Repair(p,X,Z , ϵ,δ )
P ←

{
d ∈ ProxyDetect(p,X,Z , ϵ,δ ) : not 𝒪(d )

}
if P , ∅ then

(p1,p2) ← element of P
p′ ← ProxyRepair(p, (p1,p2),X,Z , ϵ,δ )
return Repair(p′,X,Z , ϵ,δ )

else
return p

Algorithm 3 Local Repair.

Require: association (d), influence (ι), utility (v) measures

1: procedure ProxyRepair(p, (p1,p2),X,Z , ϵ,δ )
2: R ← {}
3: for each subprogram p′

1
of p1 do

4: r∗ ← Optimal constant for replacing p′
1

5: (p′′
1
,p′′

2
) ← (p1,p2) with r

∗
subst. for p′

1

6: if ι (p′′
1
,p′′

2
) ≤ δ ∨ d (Jp′′

1
K(X),Z ) ≤ ϵ then

7: R ← R ∪ [u/r∗]p′
2

8: return argmaxp∗∈R v (p∗)

Using this third decomposition we check whether making the sim-

plification would repair the original violation (Line 6), collecting

those simplified programs that do. Finally, we take the best simpli-

fication of those found to remove the violation (Line 8). Details on

how the optimal constant is selected is described in Appendix C.1.

Two important things to note about the repair procedure. First,

there is always at least one subprogram on Line 3 that will fix the

violation, namely the decomposition (p1,p2) itself. Replacing p1
with a constant in this case would disassociate it from the sensitive

information type. Secondly, the procedure produces a model that

is smaller than the one given to it as it replaces a non-constant

expression with a constant. These two let us state the following:

Theorem 4. Algorithm 2 terminates and returns a program that

does not have any (ϵ,δ )-Proxy Use violations (instances of (ϵ,δ )-
Proxy Use for which oracle returns false).

6 EVALUATION
In this section we empirically evaluate our definition and algo-

rithms on several real datasets. In particular, we simulate a finan-

cial services application and demonstrate a typical workflow for a

practitioner using our tools to detect and repair proxy use in deci-

sion trees and linear models (§6.1). We highlight that this workflow

identifies more proxy uses over a baseline procedure that simply

removes features associated with a protected information type. For

three other simulated settings on real data sets—contraception ad-

vertising, student assistance, and credit advertising—we describe

our findings of interesting proxy uses and demonstrate how the

outputs of our detection tool would allow a normative judgment

oracle to determine the appropriateness of proxy uses (§6.2). In §6.3,

by injecting violations into real data sets so that we have ground

truth, we evaluate the completeness of our algorithm, and show a

graceful degradation in accuracy as the influence of the violating

proxy increases.

Models and Implementation Our implementation currently

supports linear models, decision trees, random forests, and rule lists.

Note that these model types correspond to a range of commonly-

used learning algorithms such as logistic regression, support vector

machines [10], CART [6], and Bayesian rule lists [45]. Also, these

models represent a significant fraction of models used in practice in

predictive systems that operate on personal information, ranging

from advertising [9], psychopathy [38], criminal justice [4, 5], and

actuarial sciences [32, 34]. Our prototype implementation was writ-

ten in Python, and we use scikit-learn package to train the models

used in the evaluation. The benchmarks we describe later in this

section were recorded on a Ubuntu Desktop with 4.2 GHz Intel

Core i7 and 32GB RAM.

6.1 Example Workflow
A financial services company would like to expand its client base

by identifying potential customers with high income. To do so, the

company hires an analyst to build a predictive model that uses

age, occupation, education level, and other socio-economic features

to predict whether an individual currently has a “high” or “low”

income. This practice is in line with the use of analytics in the

financial industry that exploit the fact that high-income individuals

are more likely to purchase financial products [70].

Because demographic data is known to correlate with marital

status [50], the data processor would like to ensure that the trained

model used to make income predictions does not effectively infer

individuals’ marital status from the other demographic variables

that are explicitly used. In this context, basing the decision of which

clients to pursue onmarital status could be perceived as a privacy vi-

olation, as other socio-economic variables are more directly related

to one’s interest and eligibility in various financial services.

To evaluate this scenario, we trained an income prediction model

from the UCI Adult dataset which consists of roughly 48,000 rows

containing economic and demographic information for adults de-

rived from publicly-available U.S. Census data. One of the features

available in this data is marital status, so we omitted it during

training, and later used it when evaluating our algorithms. In this

scenario, we act as the oracle in order to illustrate the kind of

normative judgments an analyst would need to make as an oracle.

After training a classifier on the preprocessed dataset, we found

a strong proxy for marital status in terms of an expression involving

relationship status. Figure 3 visualizes all of the expressions mak-

ing up the model (marked as •), along with their association and

influence measures. In decision trees, sub-expressions like these

coincide with decompositions in our proxy use definition; each

sub-expression can be associated with a decomposition that cuts

out that sub-expression from the tree, and leaves a variable in its

place. The connecting lines in the figure denote the sub-expression

relationship. Together with the placement of points on the influence

and association scales, this produces an overview of the decision

tree and the relationship of its constituent parts to the sensitive

attribute.

On further examination the relationship status was essentially

a finer-grained version of marital status. While not interesting

Session E5:  Privacy-Preserving Analytics CCS’17, October 30-November 3, 2017, Dallas, TX, USA

1201



2−22−42−62−82−102−12

δ / influence [probability]

20

2−2

2−4

2−6

2−8

2−10

ε
/

as
so

ci
at

io
n

(n
m

i)

relationship ≤ 0.5

root

maximal
exps.

Figure 3: The association and influence of the expres-
sions composing a decision tree trained on the UCI Adult
dataset. Narrow lines designate the sub-expression relation-
ship. Shaded area designates the feasible values for associa-
tion and influence between none, andmaximal. Marker size
denotes the relative size of the sub-expressions pictured.

2−22−42−62−82−102−12

δ / influence [probability]

20

2−2

2−4

2−6

2−8

2−10ε
/

as
so

ci
at

io
n

(n
m

i)

Aexps.

exps. (repaired)

Figure 4: Decision tree trained on the UCI Adult dataset
but with the relationship attribute removed (•), and the re-
paired version (+) of the same tree. Dark area in the upper-
left designates the thresholds used in repair.

in itself, this occurrence demonstrates an issue with black-box

use of machine learning without closely examining the structure

of the data. In particular, one can choose to remove this feature,

and the model obtained after retraining will make predictions

that have low association with marital status. However, one sub-

model demonstrated relatively strong proxy use (ϵ = 0.1,δ = 0.1):
age ≤ 31 and sex = 0 and capital_loss ≤ 1882.50 (labeled A in

Figure 4). This demonstrates that simply removing a feature does

not ensure that proxies are removed. When the model is retrained,

the learning algorithm might select new computations over other

features to embed in the model, as it did in this example. Also, note

that the new proxy combines three additional features. Eliminating

all of these features from the data could impact model performance.

Instead we can use our repair algorithm to remove the proxy: we

designate the unacceptable ϵ,δ thresholds (the darkest area in Fig-

ure 4) and repair any proxies in that range. The result is the decision

tree marked with + in the figure. Note that this repaired version

has no sub-expressions in the prohibited range and that most of

the tree remains unchanged (the • and + markers largely coincide).

6.2 Other Case Studies
We now briefly discuss interesting examples for proxy use from

other case studies, demonstrating how our framework aids norma-

tive use privacy judgments.

Targeted contraception advertising We consider a scenario in

which a data processor wishes to show targeted advertisements for

contraceptives to females. We evaluated this scenario using data

collected for the 1987 National Indonesia Contraceptive Survey [1],

which contains a number of socio-economic features, including

feature indicating whether the individual’s religious beliefs were Is-

lam. A decision tree trained on this dataset illustrates an interesting

case of potential use privacy via the following proxy for religion:

ite (educ < 4∧nchild ≤ 3∧age < 31, no, yes). This term predicts

that women younger than 31, with below-average education back-

ground and fewer than four children will not use contraception. In

fact, just the “guard” term educ < 4 alone is more closely associated

with religion, and its influence on the model’s output is nearly as

high. This reveals a surprising association between education levels

and religion leading to a potentially concerning case of proxy use.

Student assistance A current trend in education is the use of

predictive analytics to identify students who are likely to benefit

from certain types of interventions [31, 39]. We look at a scenario

where a data processor builds a model to predict whether a sec-

ondary school student’s grades are likely to suffer, based on a range

of demographic features, social information, and academic infor-

mation. To evaluate this scenario, we trained a model on the UCI

Student Alcohol Consumption dataset [11], with alcohol use as the

sensitive feature. Our algorithm found the following proxy for al-

cohol use: studytime < 2. This finding suggests that this instance

of proxy use can be deemed an appropriate use, and not a privacy

violation, as the amount of time a student spends studying is clearly

relevant to their academic performance.

Credit advertisements We consider a situation where a credit

card company wishes to send targeted advertisements for credit

cards based on demographic information. In this context, the use

of health status for targeted advertising is a legitimate privacy

concern [18]. To evaluate this scenario, we trained a model to

predict interest in credit cards using the PSID dataset. From this,

we trained two models: one that identifies individuals with student

loans and another that identifies individuals with existing credit

cards as the two groups to be targeted. The first model had a number

of instances of proxy use. One particular subcomputation that was

concerning was a subtree of the original decision tree that branched

on the number of children in the family. This instance provided

negative outcomes to individuals with more children, and may be

deemed inappropriate for use in this context. In the second model,

one proxy was a condition involving income income ≤ 33315. The

use of income in this context is justifiable, and therefore this may

be regarded as not being a use privacy violation.

6.3 Detection and Repair
For the remainder of the section we focus on evaluating the per-

formance and efficacy of the detection and repair algorithms. We

begin by exploring the impact of the dataset and model size on the

detection algorithm’s runtime.
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Figure 5: Worst-case detection algorithm run-time (average
of 5 runs) as a function of input dataset size. Influence and
association computed on each decomposition (hence worst-
case). Themodels are decision tree(◦), random forest(+), and
logistic regression(×) trained on the UCI Adult dataset.
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Figure 6: Repaired accuracy vs. influence of proxy during re-
pair of a synthetic proxy inserted into randompositions of a
decision tree trained on the UCI Student Alcohol Consump-
tion dataset. Accuracy is agreement to non-repaired model.
The syntheticmodel is a (1.0)-proxy for alcohol use, inserted
into a decision tree predicting student grade. Repair is con-
figured for (0.01, 0.01)-proxy use removal. Note that other
proxies (if they exist) are not repaired in this experiment.

Figure 5 demonstrates the runtime of our detection algorithm

on three models trained on the UCI Adult dataset vs. the size of the

dataset used for the association and influence computations. The

algorithm here was forced to compute the association and influence

metrics for each decomposition (normally influence can be skipped

if association is below threshold) and thus represents a worst-case

runtime. The runtime for the random forest and decision tree scales

linearly in dataset size due to several optimizations. The logistic

regression does not benefit from these and scales quadratically.

Further, runtime for each model scales linearly in the number of

decompositions , but logistic regression models contain an expo-

nential number of decompositions as a function of their size.

To determine the completeness of our detection algorithm we

inserted a proxy in a trained model to determine whether we can

detect it. To do this, we used the UCI Student Alcohol Consump-

tion dataset to train two decision trees: one to predict students’

grades, and one to predict alcohol consumption. We then inserted

the second tree into random positions of the first tree thereby in-

troducing a proxy for alcohol consumption. We observed that in

each case, we were able to detect the introduced proxy. While not

interesting in itself due to our completeness theorem, we used this

experiment to explore how much utility is actually lost due to re-

pair. We evaluate our repair algorithm on a set of similar models

with inserted violations of various influence magnitude. The results

can be seen in Figure 6. We can see that the accuracy (i.e., ratio of

instances that have agreement between repaired and unrepaired

models) falls linearly with the influence of the inserted proxy. This

implies that repair of less influential proxies will incur a smaller

accuracy penalty than repair of more influential proxies. In other

words, our repair methods do not unduly sacrifice accuracy when

repairing only minor violations.

A point not well visible in this figure is that occasionally repair

incurs no loss of utility. This is due to our use of the scikit-learn

library for training decision trees as it does not currently support

pruning unnecessary nodes. Occasionally such nodes introduce

associations without improving the model’s accuracy. These nodes

can be replaced by constants without loss. We have also observed

this in some of our case studies.

7 RELATEDWORK
7.1 Definition
Minimizing disclosures In the computer science literature, pri-

vacy has been thought of as the ability to protect against unde-

sired flows of information to an adversary. Much of the machinery

developed in cryptography, such as encryption, anonymous com-

munication, private computation, and database privacy have been

motivated by such a goal. Differential privacy [25] is one of themain

pillars of privacy research in the case of computations over data

aggregated from a number of individuals, where any information

gained by an adversary observing the computation is not caused by

an individual’s participation. However, none of these technologies

cover the important setting of individual-level data analytics, where

one may want to share some information while hiding others from

adversaries with arbitrary background knowledge. This absence is

with good reason, as in the general case it is impossible to prevent

flows of knowledge from individual-level data, while preserving

the utility of such data, in the presence of arbitrary inferences that

may leverage the background knowledge of an adversary [21]. In

this work, we do not attempt to solve this problem either.

Nevertheless, the setting of individual level data analytics is per-

vasive, especially in the case of predictive systems that use machine

learning. Since these systems are largely opaque, even developers

do not have a handle on information they may be inadvertently

using via inferences. Therefore, in this work, we make the case

for proxy use restrictions in data driven systems and develop tech-

niques to detect and repair violations of proxy use. Restrictions

on information use, however do not supplant the need for other

privacy enhancing technologies geared for restricting information

collection and disclosure, which may be useful in conjunction with

the enforcement of use restrictions. For example, when machine

learning models are trained using personal data, it is desirable

to minimize disclosures pertaining to individuals in the training

set, and to reduce the use of protected information types for the

individuals the models are applied to.
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Identifying explicit use The privacy literature on use restric-

tions has typically focused on explicit use of protected information

types, not on proxy use (see Tschantz et al. [64] for a survey and

Lipton and Regan [46]). Recent work on discovering personal data

use by black-box web services focuses mostly on explicit use of

protected information types by examining causal effects [16, 44];

some of this work also examines associational effects [43, 44]. As-

sociational effects capture some forms of proxy use but not others

as we argued in Section 3.

7.2 Detection and Repair Models
Our detection algorithm operates with white-box access to the

prediction model. Prior work requires weaker access assumptions.

Access to observational data Detection techniques working

under an associative use definition [30, 63] usually only require

access to observational data about the behavior of the system.

Access to black-box experimental data Detection techniques

working under an explicit use definition of information use [16, 44]

typically require experimental access to the system. This access

allows the analyst to control some inputs to the system and observe

relevant outcomes.

The stronger white-box access level allows us to decompose the

model and trace an intermediate computation that is a proxy. Such

traceability is not afforded by the weaker access assumptions in

prior work. Thus, we explore a different point in the space by giving

up on the weaker access requirement to gain the ability to trace

and repair proxy use.

Tramèr et al. [63] solve an important orthogonal problem of

efficiently identifying populations where associations may appear.

Since our definition is parametric in the choice of the population,

their technique could allow identifying relevant populations for

further analysis using our methods.

Repair Removal of violations of privacy can occur at different

points of the typical machine learning pipeline. Adjusting the train-

ing dataset is the most popular approach, including variations that

relabel only the class attribute [48], modify entire instances while

maintaining the original schema [30], and transform the dataset

into another space of features [24, 72]. Modifications to the train-

ing algorithm are specific to the trainer employed (or to a class of

trainers). Adjustments to Naive Bayes [7] and trainers amiable to

regularization [42] are examples. Several techniques for produc-

ing differentially-private machine learning models modify trained

models by perturbing coefficients [3, 8]. Other differentially-private

data analysis techniques [26] instead perturb the output by adding

symmetric noise to the true results of statistical queries. All these

repair techniques aim to minimize associations or inference from

the outcomes rather than constrain use.

8 DISCUSSION
Beyond strict decomposition Theorem 1 shows that a defini-

tion satisfying natural semantic properties is impossible. This result

motivates our syntactic definition, parameterized by a program-

ming language and a choice of program decomposition. In our

implementation, the choice of program decomposition is strict. It

only considers single terms in its decomposition. However, proxies

may be distributed across different terms in the program. As dis-

cussed in Section 4.1, single term decompositions can also deal with

a restricted class of such distributed proxies. Our implementation

does not identify situations where each of a large number of syntac-

tically different proxies have weak influence but together combine

to result in high influence. A stronger notion of program decompo-

sition that allows a collection of multiple terms to be considered a

proxy would identify such a case of proxy use.

The choice of program decomposition also has consequences

for the tractability of the detection and repair algorithms. The

detection and repair algorithms presented in this paper currently

enumerate through all possible subprograms in the worst case.

Depending on the flexibility of the language chosen and the model
1

being expressed there could be an exponentially large number of

subprograms, and our enumeration would be intractable.

Important directions of future work are therefore organized

along two thrusts. The first thrust is to developmore flexible notions

of program decompositions that identify a wide class of proxy uses

for other kinds of machine learning models, including deep learning

models that will likely require new kinds of abstraction techniques

due to their large size. The second thrust is to identify scalable

algorithms for detecting and repairing proxy use for these flexible

notions of program decompositions.

Data and access requirements Our definitions and algorithms

require (i) a specification of which attributes are protected, (ii) entail

reasoning using data about these protected information types for

individuals, and (iii) white box access to models and a representative

dataset of inputs. Obtaining a complete specification of protected

information types can be challenging when legal requirements and

privacy expectations are vague regarding protected information

types. However, in many cases, protected types are specified in laws

and regulations governing the system under study (e.g., HIPAA,

GDPR), and also stated in the data processor’s privacy policies.

Further, data about protected information types is often not

explicitly collected. Pregnancy status, for example, would rarely

find itself as an explicit feature in a purchases database (though it

was the case in the Target case). Therefore, to discover unwanted

proxy uses of protected information types, an auditor might need to

first infer the protected attribute from the collected data to the best

extent available to them. Though it may seem ethically ambiguous

to perform a protected inference in order to (discover and) prevent

protected inferences, it is consistent with the view that privacy

is a function of both information and the purpose for which that

information is being used [65]
2
. In our case, the inference and use

of protected information by an auditor has a different (and ethically

justified) purpose than potential inferences in model being audited.

Further, protected information has already been used by public

and private entities in pursuit of social good: affirmative action

requires the inference or explicit recording of minority membership,

search engines need to infer suicide tendency in order to show

suicide prevention information in their search results[60], health

conditions can potentially be detected early from search logs of

affected individuals [56]. Supported by law and perception of public

1
Though deep learning models can be expressed in the example language presented in

this paper, doing so would result in prohibitively large programs.

2
This principle is exemplified by law in various jurisdictions including the PIPEDA

Act in Canada [54], and the HIPAA Privacy Rule in the USA [55].
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good, we think it justified to expect system owners be cooperative

in providing the necessary information or aiding in the necessary

inference for auditing.

Finally, in order to mitigate concerns over intellectual prop-

erty due to access requirements for data and models, the analyst

will need to be an internal auditor or trusted third party; exist-

ing privacy-compliance audits (Sen et al. [58]) that operate under

similar requirements could be augmented with our methods.

Normative judgments Appropriateness decisions by the ana-

lyst will be made in accordance with legal requirements and ethical

norms. Operationally, this task might fall on privacy compliance

teams. In large companies, such teams include law, ethics, and

technology experts. Our work exposes the specific points where

these complex decisions need to be made. In our evaluation, we ob-

served largely human-interpretable witnesses for proxies. For more

complex models, additional methods from interpretable machine

learning might be necessary to make witnesses understandable.

Another normative judgment is the choice of acceptable ϵ,δ
parameters. Similar to differential privacy, the choice of parameters

requires identifying an appropriate balance between utility and

privacy. Our quantitative theory could provide guidance to the

oracle on how to prioritize efforts, e.g., by focusing on potentially

blatant violations (high ϵ,δ values).

9 CONCLUSION
We develop a theory of use privacy in data-driven systems. Distinc-

tively, our approach constrains not only the direct use of protected

information types but also their proxies (i.e. strong predictors),

unless allowed by exceptions justified by ethical considerations.

We formalize proxy use and present a program analysis tech-

nique for detecting it in a model. In contrast to prior work, our

analysis is white-box. The additional level of access enables our

detection algorithm to provide a witness that localizes the use to a

part of the algorithm. Recognizing that not all instances of proxy

use of a protected information type are inappropriate, our theory of

use privacy makes use of a normative judgment oracle that makes

this appropriateness determination for a given witness. If the proxy

use is deemed inappropriate, our repair algorithm uses the witness

to transform the model into one that does not exhibit proxy use.

Using a corpus of social datasets, our evaluation shows that these

algorithms are able to detect proxy use instances that would be

difficult to find using existing techniques, and subsequently remove

them while maintaining acceptable classification performance.
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A PROOF OF THEOREM 1

Theorem 1. No definition of proxy use can satisfy Properties 1-4

simultaneously.

Proof. Proof by contradiction. Assume that a definition of proxy

use satisfies all four properties. Let X , Y , and Z be uniform binary

random variables, such that Pr(Y = X ⊕ Z ) = 1, but X , Y and Z
are pairwise independent. By (explicit use of proxy), the model

𝒜(Y ,Z ) = Y ⊕ Z has proxy use of Z . By (dummy), the model

𝒜′(Y ,Z ,X ) = Y ⊕Z has proxy use of Z . Choose f (x , z) = x ⊕z. By
our assumption earlier, Pr (Y = f (X ,Z )) = 1. Therefore, by (prepro-

cessing), the model 𝒜′′(Z ,X ) = 𝒜′( f (X ,Z ),Z ,X ) has proxy use

of Z . Note that𝒜′′(Z ,X ) = X ⊕Z ⊕Z = X . Therefore, by (dummy),

𝒜′′′(X ) = X has proxy use of Z . But, by (independence),𝒜′′′ does
not have proxy use of Z . Therefore, we have a contradiction. □

The key intuition behind this result is that Property 2 requires

proxy use to be preserved when an input is replaced with a function

that predicts that input via composition. However, with a purely

semantic view of function composition, the causal effect of the

proxy can disappear. The particular example of this observation we

use in the proof is Y ⊕Z , where Z is the protected information type.

This function has proxy use of Z . However, if X ⊕ Z is a perfect

predictor for Y , then the example can be reduced to X ⊕Z ⊕Z = X ,

which has no proxy use of Z . To overcome this impossibility result,

we choose a more syntactic notion of function composition, which

is tied to how the function is represented as a program, and looks

for evidence of proxy use within the representation.

B ALGORITHM FOR DETECTION
In this section we provide technical details about the detection

algorithm skipped from themain body of the paper. In particular, we

formally define the decomposition used in the implementation, how

machine learning models are translated to the term language, and

how associational tests mitigate spurious results due to sampling.

B.1 Decomposition
Before we present the formal algorithm for detection, we need to

develop notation for precisely denoting decompositions. Decompo-

sition follows naturally from the subterm relation on expressions.

However, as identical subterms can occur multiple times in an ex-

pression, care must be taken during substitution to distinguish

between occurrences. For this reason we define substitution po-

sitionally, where the subterm of expression e = op(e1, . . . , en ) at
position q, written e |q , is defined inductively:

op(e1, . . . , en ) |q =




op(e1, . . . , en ) if q = ϵ
ei |q′ if q = iq′ ∧ 1 ≤ i ≤ n
op(ei1 , . . . , eik ) if q = {i1, . . . , ik }
⊥ otherwise

We denote q as ‘positional indicator’. Specifically, q has the syntax

of the following.

⟨q⟩ ::= ϵ | i⟨q⟩ | {i1, . . . , ik }

We then define the term obtained by substituting s in e at position q,
written e[s]q , to be the term where e[s]q |q = s , and e[s]q |q′ = eq′

for all q′ that are not prefixed by q. For a sequence of positions

q1, . . . ,qn and terms s1, . . . , sn , we write e[s1, . . . , sn]q1, ...,qn to

Algorithm 4 Detection for expression programs.

Require: association (d), influence(ι) measures

procedure ProxyDetect(p,X,Z , ϵ,δ )
P ← ∅
for each term e appearing in p do

p1 ← λx1, . . . ,xn .e
Q ← {q | p |q = e}
for each k ∈ [1, . . . , |Q |], (q1, . . . ,qk ) ∈ Q do

p2 ← λx1, . . . ,xn ,u .p[u]q1, ...,qk
if ι (p1,p2) ≥ δ ∧ d (Jp1K(X),Z ) ≥ ϵ then

P ← P ∪ {(p1,p2)}
end if

end for
end for
return P
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0 1

0

≤ 1

2
> 1

2

≤ 1

≤ 0 > 0

> 1
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2
,

0
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ite(x3 ≤ 0, 0, 1),
0)))

Figure 7: Decision tree and corresponding expression pro-
gram.

denote the sequential replacement obtained in order from 1 to n.
Given a program p = λx⃗ .e , we will often write p |q or p[s]q for

brevity to refer to e |q and e[s]q , respectively. The set of decomposi-

tions of a program p is then defined by the set of positions q such

that p |q ,⊥. Given position q, the corresponding decomposition is

simply (λx⃗ .p |q ,u, λx⃗ ,u .p[u]q ).

Example B.1. Consider a simple model,

p = λx ,y.ite(x + y ≤ 0, 1, 0)

= λx ,y.ite(≤ (+(x ,y), 0), 1, 0)

There are eight positions in the body expression, namely {ϵ, 1, 2, 3,
11, 12, 111, 112}. The subexpression at position 112 isy, andp[u]11 =
ite(u ≤ 0, 1, 0). This corresponds to the decomposition:

(λx ,y.x + y,u, λx ,y,u .ite(u ≤ 0, 1, 0))

With this notation in place, we can formally describe the detec-

tion algorithm in Algorithm 4.

B.2 Translation
This section describes the translation of machine learning models

used in our implementation to the term language.

B.2.1 Decision trees and Rule lists. Decision trees can be written
in this language as nested ite terms, as shown in Figure 7. The

Boolean expression in each term corresponds to a guard, and the

arithmetic expressions to either a proper subtree or a leaf. Bayesian

rule lists are a special kinds of decision trees, where the left subtree

is always a leaf.
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B.2.2 Linear models. Linear regression models are expressed by

direct translation into an arithmetic term, and linear classification

models (e.g., logistic regression, linear support vector machines,

Naive Bayes) are expressed as a single ite term, i.e.,

sgn(w⃗ · x⃗ + b) becomes λx⃗.ite(w⃗ · x⃗ + b ≥ 0, 1, 0)

Importantly, the language supports n-ary operations when they

are associative, and allows for rearranging operands according

to associative and distributive equivalences. In other words, the

language computes on terms modulo an equational theory. Without

allowing such rearrangement, when a linear model is expressed

using binary operators, such as ((((w1×x1)+ (w2×x2))+ (w3×x3)),
then the algorithm cannot select the decomposition:

p1 = λx⃗.(w1 × x1) + (w3 × x3)
p2 = λx⃗,u .u + (w2 × x2)

B.2.3 Decision Forests. Decision forests are linear models where

each linear term is a decision tree. We combine the two translations

described above to obtain the term language representation for

decision forests.

B.3 Validity Testing
We use mutual information to determine the strength of the statis-

tical association between Jp1K(X) and Z . Each test of this metric

against the threshold ϵ amounts to a hypothesis test against a null

hypothesis which assumes that d (Jp1K(X),Z ) < ϵ . Because we po-
tentially take this measure for each valid decomposition of p, it
amounts to many simultaneous hypothesis tests from the same

data source. To manage the likelihood of encountering false posi-

tives, we employ commonly-used statistical techniques. The first

approach that we use is cross-validation. We partition the primary

dataset n times into training and validation sets, run Algorithm 4

on each training set, and confirm the reported proxy uses on the

corresponding validation set. We only accept reported uses that

appear at least t times as valid.

The second approach uses bootstrap testing to compute a p-

value for each estimate
ˆd (p1 (X),Z ), and applying Bonferroni cor-

rection [20] to account for the number of simultaneous hypothesis

tests. Specifically, the bootstrap test that we apply takes n samples

of (X,Z ), [(X̂i , Ẑi )]1≤i≤n , and permutes each X̂i , Ẑi to account for

the null hypothesis thatX and Z are independent. We then estimate

the p-value by computing:

p =
1

n

∑
1≤i≤n

1(d (X̂i , Ẑi ) < d (Jp1K(X),Z ))

After correction, we can bound the false positive discovery rate by

only accepting instances that yield p ≤ α , for sufficiently small α .
We note, however, that this approach is only correct when the as-

sociation strength ϵ = 1, as the null hypothesis in this test assumes

that Jp1K is independent of Z . To use this approach in general, we

would need to sample [(X̂i , Ẑi )]1≤i≤n under the assumption that

d (X̂i , Ẑi ) ≥ ϵ . We leave this detail to future work.

C ALGORITHMS FOR REPAIR
We now provide a formal description of the repair algorithms infor-

mally described in the paper. Algorithm 5, and 6 correspond to 2,

and 3 respectively.

Algorithm 5 Witness-driven repair.

Require: association (d), influence (ι), utility (v) measures, oracle

(𝒪)

procedure Repair(p,X,Z , ϵ,δ )
P ←

{
d ∈ ProxyDetect(p,X,Z , ϵ,δ ) : not 𝒪(d )

}
if P , ∅ then

(p1,p2) ← element of P
p′ ← ProxyRepair(p, (p1,p2),X,Z , ϵ,δ )
return Repair(p′,X,Z , ϵ,δ )

else
return p

end if

Algorithm 6 Local Repair.

Require: association (d), influence (ι), utility (v) measures

1: procedure ProxyRepair(p, (p1,p2),X,Z , ϵ,δ )
2: R ← {}
3: for each decomp. (p′

1
,p′

2
) w/ p′

1
local to p1 in p2 do

4: r∗ ← argmaxr v
(
[u/r ]p′

2

)
5: (p′′

1
,p′′

2
) ← (p1,p2) with r

∗
substituted for p′

1

6: if ι (p′′
1
,p′′

2
) ≤ δ ∨ d (Jp′′

1
K(X),Z ) ≤ ϵ then

7: p∗ ← [u/r∗]p′
2

8: R ← R ∪
{
p∗
}

9: end if
10: end for
11: return argmaxp∗∈R v (p∗)

C.1 Optimal constant selection
As constant terms cannot be examples of (ϵ,δ )-Proxy Use, there

is freedom in their selections as replacements for implicated sub-

programs. In Algorithm 6 we pick the replacement that optimizes

some measure of utility of the patched program. If the given pro-

gram was constructed as a classifier, we define utility as the patched

program’s prediction accuracy on the data set using 0-1 loss. Simi-

larly, if the program were a regression model, v would correspond

to mean-squared error.

If the program computes a continuous convex function, as in the

case of most commonly-used regression models, then off-the-shelf

convex optimization procedures can be used in this step. However,

because we do not place restrictions on the functions computed

by programs submitted for repair, the objective function might not

satisfy the conditions necessary for efficient optimization. In these

cases, it might be necessary to develop a specialized procedure for

the model class. Below we describe such a procedure for the case

of decision trees.

Decision trees Decision trees are typically used for classification

of instances into a small number of classesC . For these models, the

only replacement constants that will provide reasonable accuracy

are those that belong toC , so in the worst case, the selection proce-

dure must only consider a small finite set of candidates. However,

it is possible to calculate the optimal constant with a single pass

through the dataset.

Given a decomposition (p1,p2) of p, let ϕ be the weakest formula

over p’s variables such that ∀x⃗ .p1 (x⃗ ) = p (x⃗ ). ϕ corresponds to the
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conjoined conditions on the path in p prefixing p1. We can then

define the objective function:

v (r ) =
∑
x⃗ ∈X⃗

1(ϕ (x⃗ ) → x⃗c = r )

This objective is minimized when r matches the greatest number

of class labels for samples that pass through p1. This minimizes

classification error over X⃗ , and is easily computed by taking the

class-label mode of training samples that satisfy ϕ.

Example C.1. Consider the tree in Figure 7, and assume that x1
and x2 are distributed according to𝒩 ( 1

2
, 1), and x3 = x1 + x2. For

simplicity, assume that the class label for each instance is given

exactly by the tree. Then given the decomposition:

p1 = λx⃗ .ite(x3 ≤ 0, 0, 1)

p2 = λx⃗ ,u .ite(x1 ≤ 1/2, 0, ite(x2 ≤ 1,u, 0))

we need to find an optimal constant to replace the subtree rooted

at x3. In this case, ϕ
def

= x1 >
1

2
∧ x2 ≤ 1, so we select X⃗ϕ = {x⃗ ∈

X⃗ |x1 >
1

2
∧ x2 ≤ 1} and take the mode of the empirical sample

[p (x⃗ )]x⃗ ∈X⃗ϕ
.

D COMPLEXITY
The complexity of the presented algorithms depend on several

factors, including the type of model being analyzed, the number of

elements in the ranges of sub-programs, and reachability of sub-

programs by dataset instances . In this section we describe the the

complexity characteristics of the detection and repair algorithms

under various assumptions. Complexity is largely a property of

the association and influence computations and the number of

decompositions of the analyzed program. We begin by noting our

handling of probability distributions as specified by datasets, several

quantities of interest, discuss the complexity of components of our

algorithms, and conclude with overall complexity bounds.

D.1 Distributions, datasets, and probability
It is rarely the case that one has access to the precise distribution

from which data is drawn. Instead, a finite sample must be used

as a surrogate when reasoning about random variables. In our

formalism we wrote X
$

← 𝒫 to designate sampling of a value

from a population. Given a dataset surrogate 𝒟, this operation is

implemented as an enumeration x ∈ 𝒟, with each element having

probability 1/ |𝒟 |. We will overload the notation and use 𝒟 also as

the random variable distributed in the manner just described. We

assume here that the sensitive attribute Z is a part of the random

variable X .

The following sections use the following quantities to express

complexity bounds, mostly overloading prior notations:

• 𝒟 - The number of instances in the population dataset.

• p - The number of expressions in a programp being analyzed.
• Z - The number of elements in the support of Z .
• k - The maximum number of unique elements in support of

every sub-expression, that is maxp′∈p ��support
(
JpK𝒟

) ��.
• c - The number of decompositions in a given program. We

will elaborate on this quantity under several circumstances

later in this section.

• b - The minimum branching factor of sub-expressions in a

given program.

We will assume that the number of syntactic copies of any sub-

expression in a program is no more than some constant. This means

we will ignore the asymptotic effect of decompositions with multi-

ple copies of the same sub-program p1.
The elementary operation in our algorithms is a lookup of a

probability of a value according to some random variable. We pre-

compute several probabilities related to reachability and contin-

gency tables to aid in this operation. When we write “p1 is reached”,
we mean that the evaluation of p, containing p1, on a given instance

X, will reach the sub-expression p1 (or that p1 needs to be evaluated
to evaluate p on X).

Probability pre-computation
For every decomposition Jp2K

(
X , Jp1KX

)
= JpK (X ), we compute:

(1) the r.v. (Jp1KX,XZ ) for X
$

← 𝒟,

(2) the r.v. X| (p1 is reached by X) for X
$

← 𝒟, and

(3) the value PrX
$

←𝒟 (p1 is reached by X).

In point (1) abovewewriteXZ to designate the sensitive attribute

component of X′, hence this point computes the r.v. representing

the output of p1 along with the sensitive attribute Z . This will be
used for the association computation.

The complexity of these probability computations varies de-

pending on circumstances. In the worst case, the complexity is

𝒪 (c𝒟p). However, under some assumptions related to programs

p and datasets 𝒟, these bounds can be improved. We define two

types of special cases which we call splitting and balanced:

Definition D.1. p is splitting for 𝒟 iff it has at most a constant

number of reachable op operands (arguments of op expressions).

The Decision trees are local for any dataset as they do not con-

tain any op operands (they do contain relop operands). Further, if

number of trees in random forests or number of coefficients in lin-

ear regression are held constant, then these models too are splitting

for any dataset. The reasoning behind this definition is to prohibit

arbitrarily large programs that do not split inputs using if-then-else

expressions. It is possible to create such programs using arithmetic

and boolean operations, but not using purely relational operations.

Definition D.2. p is b-balanced for𝒟 iff all but a constant number

of sub-expressions e ′ have parent e with b > 1 sub-expressions

which split the instances that reach them approximately equally

among their children.

Balanced implies splitting as op operands do not satisfy the bal-

anced split property hence there has to be only a constant number

of them. Also, the definition is more general than necessary for

the language presented in this paper where the branching factor

is always 2 because the if-then-else expressions are the only ones

that can satisfy the balanced split condition. Decision trees trained

using sensible algorithms are usually balanced due to the branch

split criteria employed preferring approximately equal splits of

training instances. For the same reason, if the number of trees are

held constant, then random forests are also likely to be balanced.

When p is splitting for 𝒟, the probability computation step

reduces to 𝒪
(
𝒟p2
)
. This stems from the fact that the number
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of decompositions is asymptotically equal to the number of sub-

expressions (limits to operands prevent more decompositions). Fur-

ther, if p is b-balanced for 𝒟, the probability pre-computation re-

duces to 𝒪
(
𝒟 logb 𝒟

)
. In the language presented b = 2. These

bounds derive similarly to the typical divide and conquer program

analysis; there are logb 𝒟 layers of computation, each processing

𝒟 instances.

D.2 Influence and Association
Our proxy definition further relies on two primary quantities used

in Algorithm 1, influence and association. We describe the methods

we use to compute them here.

Quantitative decomposition influence Given a decomposi-

tion (p1,u,p2) of p, the influence of p1 on p2’s output is defined
as:

ι (p1,p2)
def

= E
X ,X ′

$

←𝒟
[
Pr

(
Jp2K
(
X, Jp1KX

)
, Jp2K

(
X, Jp1KX′

))]
This quantity requires 𝒟2

samples to compute in general. Each

sample takes at most 𝒪 (p) time, for a total of 𝒪
(
p𝒟2

)
. However,

we can take advantage of the pre-computations described in the

prior section along with balanced reachability criteria and limited

ranges of values in expression outputs to do better. We break down

the definition of influence into two components based on reacha-

bility of p1:

ι (p1,p2)
def

= E
X,X′

$

←𝒟
[
Pr

(
Jp2K
(
X, Jp1KX

)
, Jp2K

(
X, Jp1KX′

))]
= E

X
$

←𝒟

[
E

X′
$

←𝒟
[
Pr

(
Jp2K
(
X, Jp1KX

)
, Jp2K

(
X, Jp1KX′

))] ]
= Pr (p1 not reached) · E

X
$

←𝒟 |p1 not reached
[· · ·]

+ Pr (p1 reached) · E
X

$

←𝒟 |p1 reached
[· · ·]

= 0 + Pr (p1 reached) ·

E
X

$

←𝒟 |p1 reached

[
E

X
$

←𝒟
[
Pr

(
JpK(X) , Jp2K

(
X, Jp1KX′

))] ]
= Pr (p1 reached) ·

E
X

$

←𝒟 |p1 reached


E

Y
$

←Jp1K𝒟
[
Pr

(
JpK(X) , Jp2K (X,Y)

)]
Note that all both random variables and one probability value in

the final form of influence above have been pre-computed. Further,

if the number of elements in the support of Jp1KX is bounded by k ,
we compute influence using k𝒟 samples (at most 𝒟 for X and at

most k for Y), for total time of 𝒪 (kp𝒟).
Influence can also be estimated, ι̂ by taking a sample from𝒟×𝒟.

By Hoeffding’s inequality [41], we select the subsample size n to

be at least log(2/β )/2α2 to ensure that the probability of the error

ι̂ (p1,p2) − ι (p1,p2) being greater than β is bounded by α .

Association As discussed in Section 3, we use mutual informa-

tion to measure the association between the output of a subprogram

and Z . In our pre-computation steps we have already constructed

the r.v.

(
Jp1KX,XZ

)
for X

$

← 𝒟. This joint r.v. contains both the

subprogram outputs and the sensitive attribute hence it is sufficient

to compute association metrics. In case of normalized mutual infor-

mation, this can be done in time 𝒪 (kZ ), linear in the size of the

support of this random variable.

D.3 Decompositions
The number of decompositions of amodel determines the number of

proxies that need to be checked in detection and repair algorithms.

We consider two cases, splitting and non-splitting programs. For

splitting models, the number of decompositions is bounded by

the size of the program analyzed, whereas in case of non-splitting

models, the number of decompositions can be exponential in the

size of the model. These quantities are summarized in Table 2.

splitting non-splitting

worst-case general 𝒪 (p) 𝒪
(
2
p )

linear model with (constant or f )

number of coefficients

𝒪 (1) 𝒪
(
2
f
)

decision tree of height h 𝒪
(
2
h
)

𝒪
(
2
h
)

random forest of (constant or t )
number of trees of height h

𝒪
(
2
h
)

𝒪
(
2
t
2
h
)

Table 2: The number of decompositions in various types
of models. When we write “(constant or f)” we denote two
cases: one in which a particular quantity is considered con-
stant in a model making it satisfy the splitting condition,
and one in which that same quantity is not held constant,
falsifying the splitting condition.

D.4 Detection
The detection algorithm can be written 𝒪 (A + B ·C ), a combina-

tion of three components. A is probability pre-computation as de-

scribed earlier in this section, B is the complexity of association and

influence computations, and C is the number of decompositions.

The complexity in terms of the number of decompositions under

various conditions is summarized in Table 3. Instantiating the pa-

rameters, the overall complexity ranges from 𝒪
(
𝒟 logb 𝒟 + p2𝒟

)
in case of models like balanced decision trees with a constant num-

ber of classes, to 𝒪
(
p2p𝒟2

)
in models with many values and as-

sociative expressions like linear regression. If the model size is

held constant, these run-times become 𝒪
(
𝒟 logb 𝒟

)
and 𝒪

(
𝒟2

)
,

respectively.

non-splitting 𝒪 (pc (𝒟 + k𝒟))

splitting 𝒪 (p (𝒟p + ck𝒟))

b−balanced 𝒪
(
𝒟 logb 𝒟 + ckp𝒟

)
Table 3: The complexity of the detection algorithm under
various conditions, as a function of the number of decom-
positions.
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