
38 Int. J. Big Data Intelligence, Vol. 6, No. 1, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

A five-layer architecture for big data processing and
analytics

Julie Yixuan Zhu*
Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong
Email: yxzhu@eee.hku.hk
*Corresponding author

Bo Tang
Department of Computer Science and Engineering,
Southern University of Science and Technology,
1088 Xueyuan Ave, Nanshan Qu, Shenzhen Shi,
Guangdong Sheng, China
Email: tangb3@sustc.edu.cn

Victor O.K. Li
Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong
Email: vli@eee.hku.hk

Abstract: Big data technologies have attracted much attention in recent years. The academia and
industry have reached a consensus, that is, the ultimate goal of big data is about transforming ‘big
data’ to ‘real value’. In this article, we discuss how to achieve this goal and propose five-layer
architecture for big data processing and analytics (BDPA), including a collection layer, a storage
layer, a processing layer, an analytics layer, and an application layer. The five-layer architecture
targets to set up a de facto standard for current BDPA solutions, to collect, manage, process, and
analyse the vast volume of both static data and online data streams, and make valuable decisions
for all types of industries. Functionalities and challenges of the five-layers are illustrated, with
the most recent technologies and solutions discussed accordingly. We conclude with the
requirements for the future BDPA solutions, which may serve as a foundation for the future big
data ecosystem.

Keywords: big data processing and analytics; BDPA; online big data stream; five-layer
architecture.

Reference to this paper should be made as follows: Zhu, J.Y., Tang, B. and Li, V.O.K. (2019)
‘A five-layer architecture for big data processing and analytics’, Int. J. Big Data Intelligence,
Vol. 6, No. 1, pp.38–49.

Biographical notes: Julie Yixuan Zhu received her PhD in the Department of Electrical and
Electronic Engineering, The University of Hong Kong (HKU), in 2016. She received her BE in
Electronic Engineering from the Tsinghua University, Beijing, China, in 2012. Her research
interests include urban computing, spatio-temporal data mining, indoor localisation, and time
series data analytics.

Bo Tang received his PhD in Computer Science from The Hong Kong Polytechnic University in
2017. He is currently an Assistant Professor in Southern University of Science and Technology,
China. His research interests include similarity search on high dimensional dataset and data
exploration on multidimensional dataset.

Victor O.K. Li received his SB, SM, EE and ScD degrees in Electrical Engineering and
Computer Science from MIT in 1977, 1979, 1980, and 1981, respectively. He is the Chair of
Information Engineering, Cheng Yu-Tung Professor in Sustainable Development, and Head of
the Department of Electrical and Electronic Engineering at the University of Hong Kong (HKU).
He has received numerous awards, including the PRC Ministry of Education Changjiang Chair
Professorship at Tsinghua University, the UK Royal Academy of Engineering Senior Visiting
Fellowship in Communications, the Croucher Foundation Senior Research Fellowship, and the
Order of the Bronze Bauhinia Star.

 A five-layer architecture for big data processing and analytics 39

This paper is a revised and expanded version of a paper entitled ‘A four-layer architecture for
online and historical big data analytics’ presented at 2nd International Conference on Big Data
Intelligence and Computing (DataCom), Auckland, New Zealand, 8–12 August 2016.

1 Introduction

With the world’s data doubling every two years (Gantz and
Reinsel, 2012), increasingly more applications require the
capability of handling ‘big data’. These applications are of
various purposes including finance, public health, the
‘internet of things’, transportation, social media, sensor
networks, manufacturing, networking, telecommunications,
etc. For IT-related industry, different online service
providers (OSPs) have developed their own set of
technologies for big data analytics to resolve their own
problems, such as online search (e.g., Google), online
transaction processing (OLTP) (e.g., Amazon), and social
network applications (e.g., Facebook and Twitter). For
traditional industry, many companies and institutes are
starting or planning to collect various data based on their
business activities.

The initial goals of big data processing and analytics
(BDPA) were to handle the 5V’s of big data (Sagiroglu and
Sinanc, 2013): volume, velocity, variety, veracity and value.
Recently, with the development of big data technologies and
solutions, both the academia and industry have reached a
consensus, that is, the ultimate goal of big data is about
transforming ‘big data’ to ‘real value’. In this article, we
discuss how to achieve this goal by proposing five-layer
architecture for BDPA. The architecture is driven by the
increasing volumes of data, especially the online big data
streams, and by the demands of analysing data for all types
of industries. The proposed architecture extends (Zhu et al.,
2016) in three aspects. First, we have added a collection
layer at the bottom of the original architecture to illustrate
the importance of data quality. BDPA require us to extract
information from multiple, diversified data sources, such as
text, GPS, image, video, etc. with various qualities. Second,
since the development of big data solutions is progressing
fast, we have updated the case studies of big data solutions
to the current solutions. Third, we believe that the choice of
solutions in each layer is ultimately determined by the
demands of applications. Therefore, unlike in Zhu et al.
(2016), where we integrated online and historical data
processing together in one layer, in this manuscript we have
moved the stream processing as one function of the
analytical layer, to satisfy the different requirements of
analytics (such as, to discover insights offline, or on the fly).

The online big data streams discussed in this article
share the following characteristics:

• Large volume – data are generated, transmitted and ac-
cumulated in large volume.

• Continuous arrival – real-time data arrive continuously.

• Multiple sources – data streams are from multiple
distributed sources, and may be structured and
unstructured.

• Time-varying – the size, format, and arrival rate of data
streams change over time.

• Unbounded streaming – data come in unbounded
amounts, requiring unbounded memory for processing
and analytics.

To handle online big data streams, as well as the
accumulated historical data, the overall BDPA solution
should coordinate the following two types of functionalities:

• Processing – to handle large historical data repository
with parallel processing techniques, such as
MapReduce (MR) (Dean and Ghemawat, 2008), the
dominant batch programming model. In practice, the
processing of big data should consider not only the data
volume, but also the data diversity, indexing efficiency,
and the requirements from the specific application.

• Analytics – to discover knowledge and insights from
data, by deploying specific models and algorithms
based on the characteristics of the data. For example,
for on-line big data stream, a streaming tool, such as
Spark streaming (https://github.com/amplab-extras/
SparkR-pkg) may be used to detect useful information,
events and cross-correlation via processing online big
data streams in real-time. For graphical data analysis,
the GraphX (http://spark.apache.org/mllib/) library may
be used.

The analytics part of BDPA solution is to discover insights
and make decisions based on data. Thus, it could be built on
top of processing. We believe that the two functionalities,
which handle both online and historical data with scalability
and reliability, are important for real-world BDPA based on
two reasons:

1 The online data streams account for an increasing
proportion of big data analytics. For example, in 2012,
Google received over 2 million search queries per
minute (http://www.internetonlinestats.com/
google-search-statistics/). The number doubles to over
4 million per minute in the year 2014 (https://web-
assets.domo.com/blog/wp-content/uploads/2014/04/
DataNeverSleeps_2.0_v2.jpg). People and brands on
Twitter sent more than 200 million tweets per minute in
2012 (http://www.internetonlinestats.com/
twitter-statistics/), and more than 400 million by the
end of 2015 (http://www.internetonlinestats.com/

40 J.Y. Zhu et al.

twitter-statistics/). By the year 2020, over 50 billion
devices are expected to be connected to the internet
(Gerhardt et al., 2012), greatly advancing data-driven
technologies for the ‘internet of things’ while requiring
real-time big data analytics solutions to meet the users’
demands.

2 Existing big data analytics technologies, such as IBM
Infosphere (Biem et al., 2010), Twitter Storm
(https://github.com/nathanmarz/storm/wiki/Tutorial),
Apache S4 (Neumeyer et al., 2010), are de-signed to
process and analyse streaming data, which are massive,
heterogeneous, time-varying and unbounded. These
technologies are realised without a storage system. The
de-sign goals are mostly to guarantee quick event
detection and real-time processing for learning tasks.
However, to discover insight and value from the
steaming data, one usually needs to combine
information extracted from historical data.

Currently, there is no widely accepted BDPA solution,
especially a general purpose solution fit for both traditional
and internet industries. Hence in this paper, we propose
architecture for the current BDPA solutions, which may
serve as a de facto standard to help achieve value from data.
We organise our article as follows. First we come up with
the principles and desired characteristics of architecture for
BDPA. Then we introduce five-layer architecture, including
the functionalities and challenges for each layer. It is
beyond the scope of this paper to discuss the details of
existing technologies in each layer, so we only list some
examples to discuss the functionalities of each layer and
briefly focus on the motivations, merits and demerits of the
corresponding techniques. In the end, we discuss some
currently well-used BDPA solutions and conclude with the
requirements for future BDPA.

2 Principles and desired characteristics for
BDPA architecture

Driven by different types of demand on data analytics, such
as time complexity, space complexity and quality of service
(QoS), and inspired by the existing layer-based big data
analytics stack (Franklin, 2013), we propose to design a
layering architecture for BDPA. Layering architecture here
does not refer to a real layered stack as in Franklin (2013) or
as an enterprise cloud system such as Windows Azure
(https://azure.microsoft.com/en-us/) and Amazon EC2
(https://aws.amazon.com/ec2/), but a structuring technique
(Zimmermann, 1980) which comprises a succession of
layers for the general purpose of allowing different big data
analytics technologies in each layer to communicate and
cooperate with technologies in the adjacent layers. For data
driven analytics, where the inputs are online and historical
big data, designing a layering architecture needs to consider
the following principles and desired characteristics:

1 The architecture needs to collect structured,
unstructured, multi-source, and cleaned-up data,
generated by multiple data sources. These data come in
various formats, such as, text, image, trajectory in the
spatiotemporal space, etc. A collection layer is needed
at the bottom, to prepare adequate and high-quality data
for all kinds of analytical demands in the upper layers.

2 The architecture needs basic, extensible storage
infrastructure for historical data storage and migrated
data from the online data stream. Thus the storage
layer, serving as the second lowest layer, is needed to
guarantee I/O performance and scalability.

3 Since the massive, continuously arriving,
heterogeneous, time-varying and unbounded online big
data stream brings uncertainty to BDPA, an online and
historical data processing layer is needed to handle both
online inflow and batch files fetched from the storage
layer for the analytics task. Usually this layer is based
on a control or scheduling module to balance the two
paradigms of computation, built on top of the storage
layer. This layer aims to provide a cooperative and
scalable distributed programming framework for the
vast data streams and the accumulated historical big
data, and should accommodate the various goals of
analytics (e.g., prediction, recommendation, causal
inference, recognition, clustering, etc.).

4 An analytics layer is required to perform data mining,
prediction, and user-customised tasks. This layer needs
to be designed to be value-centric, to turn ‘big data’
into ‘big value’.

5 An application layer is required to serve as a flexible
layer for the whole architecture, realising the demands
from different industries and presenting the system
status and results to data scientists where the experts’
opinions are needed and giving feedbacks to the lower
layers.

6 The input of the system consists of two types of data,
i.e., streaming data and batch data. The online data
streams flow into the online and historical data
processing layer, while the historical data are imported
and stored in the storage system. Thus the online and
historical data processing layer needs to handle
different processing tasks with different computing
resource allocation and data migration strategies.

7 The output of the architecture, i.e., the analytics results
for value extraction and knowledge discovery, is from
the analytics layer. For example, analytics results
acquired at the output can be used for contextualisation
or visualisation.

8 The architecture solves the analytics problem in
general, rather than for specific problems.

 A five-layer architecture for big data processing and analytics 41

3 Five-layer architecture

To satisfy the principles and desired characteristics for the
layering architecture, we come up with the following
five-layer architecture for BDPA, as shown in Figure 1. The
layers are collection layer, storage layer, processing layer,
analytics layer, and application layer, from the bottom to the
top. This section will introduce the functionalities, example
case studies, as well as challenges for each layer.

3.1 Collection layer

The data collection layer serves as the foundation for the
entire BDPA solution. With increasingly more data sources,
such as smartphone data, networking data, sensor data,
social media data, health data, etc. a collection layer is
needed to integrate multi-source, structured and
unstructured data for further management. The streaming
data will be fed into the processing layer, and the
accumulated historical data will be stored in the storage
layer, in order to be further analysed with specific analytical
tools in the analytical layer, based on the demands from the
application layer. Solutions in this layer include both open
data sources and third-party data providers.

• Open data: these data are released to the public by
governments, organisations, research labs, or
companies free of charge, to advance the development
of BDPA solutions. Most of these data are not
connected with individuals or are anonymous before
publication.

• Third-party data providers: these data are collected
through professional data collection agencies, such as
Data-tang (http://factory.datatang.com/) and
Analysyschina (http://www.analysyschina.com/
about.html), via crawlers, commercial arrangement,
crowd-sourcing, etc. The data are further customised to
the users’ requirements, providing data as a service
(DAAS). Typically, these providers conduct
preliminary cleansing and annotation before releasing
these data, thus offering better data quality.

Challenges in this layer include diversity, privacy, labelling,
and fault-tolerance.

1 In practice, the collected data come in different formats,
such as GPS, text, image, video. This layer is required
to handle multi-source data efficiently, extract
information from unstructured data, and integrate
diversified data sources.

2 Data privacy is required to protect the personal
information of users, especially when dealing with
sensitive data, such as users’ locations, transactions,
etc.

3 Required by the analytical tasks of different
applications, labelled data is appreciated for

discovering unknown knowledge with higher precision.
For example, for data analysis based on deep learning,
some datasets without enough labels may not perform
as well as expected. Labelling requires automatic and
reliable annotation during data collection.

4 Fault-tolerance is required in the collection layer, to
minimise the cases of missing values, or errors caused
by the system, networking, etc.

Figure 1 Five-layer architecture for BDPA

3.2 Storage layer

The storage layer serves as the second layer and provides
basic, distributed extensible storage infrastructure for
historical data storage.

BDPA architecture requires storage technologies which
have the following characteristics: scalable, with tiered
storage, self-managing, highly available, widely accessible,
and recoverable. In current big data storage market, big data
storage architectures can be classified in Table 1.
Obviously, they are not mutually exclusive, so some
companies may use more than one.

Case studies

• Distributed nodes architecture: the most popular
solution is Hadoop distributed file system (HDFS)
(Borthakur, 2008). In most cases, HDFS works together
with MR to execute Hadoop jobs. The obvious
application for that storage architecture is many small
files. Generally, it is the lowest cost commodity
solution. However, it has relatively slow performance
and is hard to manage.

42 J.Y. Zhu et al.

• Scale-out NAS: it has the ability to scale throughput and
capacity in tandem or independently. The most famous
solution is Azure cloud storage (Calder et al., 2011). It
can accommodate tens of petabytes of data, sufficient
for many commercial applications. However, it is not
suitable for pre-processing intensive applications (e.g.,
data format convertion, ingestion of data). Its greatest
strength may be for large file processing.

• All-SSD arrays: Nutanix (https://www.nutanix.com/)
and a number of other flash memory storage start-ups
are offering pricey solid-state drive (SSD) arrays
storage. These kinds of storage architecture yield
information several times faster than more traditional
architectures (i.e., scale-out NAS and distributed
nodes). It is tailored for real-time processing where I/O
is the performance bottleneck.

• Object-based storage: it is used for diverse purposes
such as storing photos on Facebook, songs on Spotify,
or files in online collaboration services, such as
Dropbox. It has significant benefits for big data
analytical systems, as it is highly scalable and it uses
replication and distributed hash tables rather than
redundant array of inexpensive disks (RAID) to ensure
recoverability. It also supports peer-to-peer file sharing.

Table 1 Big data storage technologies

Technologies Description Best use cases

Distributed
nodes

• Low-cost commodity
hard-ware

• Scale in tandem with
the compute
environment

Hadoop, Small
distributed files

Scale-out
network-
attached storage
(NAS)

• Automated storage
tiering

• Capable of scaling
through-put and
capacity in tandem or
separately

• Distributed or
clustered file system

Large file
processing,
more traditional
extraction or
transformation
of big data

All-solid-state-
drive (SDD)
arrays

• Several times faster
than traditional storage
technologies

• Implemented like
JBOD and distributed
nodes

Real-time
processing
applications

Object-based
storage

• Store data in flexible
containers, not blocks

• Use hash tables and
replication

• Allow peer-to-peer
sharing across
distributed nodes

Organisations
willing to find a
really
competitive
advantage

Challenges in the storage layer include locality, scalability,
data migration, intelligence and independence, detailed
below:

1 Algorithms are required to enhance high computation
locality, and to be correlation-aware for distributed
computation.

2 Error-correction mechanisms are required for data
recovery and management of heterogeneous sources of
data.

3 Data migration is required when queries arrive, and the
streaming data, instead of being discarded, should be
selected, grouped, and appended to the existing storage
system.

4 The storage layer should be relatively independent and
capable of integrating enterprise-level infrastructure.

5 Intelligence is required for query optimisation with
distributed storage systems.

3.3 Processing layer

The data processing layer is the core in BDPA systems. It is
a fundamental layer of many data analytical tasks. In the big
data era, data sources are extremely heterogeneous in their
structure and content. These different data sources are of
widely differing data qualities (e.g., coverage, accuracy).
Generally, the data processing layer performs parallel
computing, data cleansing, data integration, data fusion,
data indexing, virtualisation, and so on.

• Parallel computing: for the parallel processing
technologies, two well-known examples are MR and
SQL server translator. MR provides an innovative and
scalable parallel programming model by allocating
computation resources to distributed nodes. The basic
idea is to divide the processing phase into two: map and
reduce. In the map phase data is filtered and sorted into
intermediate key/value pairs, then the reduce phase
merges the intermediate values belonging to the same
key. In practice, MR has been derived from Google’s
papers to an open-sourced framework for large-scale
concurrent processing, Hadoop, comprised of the
HDFS and the Hadoop MR. Hadoop stands out in terms
of integrity, high availability, scalability and elasticity.
However, it performs relatively poorly in stream
processing compared to batch processing. When data
come in continuous streams, the input files (in the
format of text, key-value, binary sequence) from HDFS
have to be segmented in small granules, causing
significant delay. Furthermore, the ‘reduce’ phase in
Hadoop only launches after all the ‘map’ jobs finish,
which prolongs the waiting time. To improve the time
efficiency of Hadoop jobs, improvement works have
been proposed including pipelining the MR (Condie
et al., 2010; Borthakur et al., 2011), adding interactive
awareness and caching mechanisms such as Haloop

 A five-layer architecture for big data processing and analytics 43

(Bu et al., 2010) and Pregel (Malewicz et al., 2010),
scheduling by considering data popularity
(Ananthanarayanan et al., 2011), and in-memory
computing [Spark (Zaharia et al., 2010)]. To enrich the
operations based on MR, OSPs and organisations come
up with SQL-translators built on top of MR, as
warehouses and middleware, such as Hive (Thusoo
et al., 2009), SCOPE (Chaiken et al., 2008), Pig (Olston
et al., 2008), etc. The SQL-translators could execute
MR tasks with developer-friendly languages, for
example, 95% Hadoop jobs at Facebook are generated
by Hive (Lee et al., 2011). Since SQL-translators are
based on MR, they are still not suitable for stream
processing. In practice, the choices of processing
solutions are normally determined by the specific
demands of applications or the characteristics of data.
Therefore, we only consider MR as the core function of
the processing layer, and move the SQL-translator and
in-memory processing (SPARK) to the analytics layer,
to make the BDPA solution more flexible to the
demands of the applications.

• Big data cleansing: many data cleansing systems have
been proposed in both academic and industry (Herzog
et al., 2007), e.g., Big-dansing (Khayyat et al., 2015),
Cleanix (Wang et al., 2016). In the big data era, the
quality of data cleansing is measured by the following
metrics:
1 Scalability – a good data cleansing system should

scale out to thousands of machines in a shared
nothing manner.

2 Usability – it should provide a simple and friendly
user interface for both expert and non-expert user.

3 Abstraction – measures the flexibility of data
cleansing system. For instance, users also need the
flexibility to define rules to correct typos or errors in
the dataset. However, none of the existing data
cleansing systems dominate others in the market.

• Big data integration: it is more challenging than
traditional data integration due to volume, velocity,
variety and veracity. Researchers from Google and
AT&T have pro-posed several big data integration
systems to overcome the challenges of big data
integration. For example, Solomon (Berti-Equille et al.,
2009) was proposed to detect copying among different
data sources. Alexander (Rekatsinas et al., 2015) helps
administrators select the sources to balance the quality
and the cost of integration. Time machine (Althoff
et al., 2015) generates a timeline of events and relations
for entities by integrating, and cleansing temporal
information in the internet.

• Big data fusion: data fusion links data of diverse types,
from heterogeneous data sources, in support of unified
data query, search and analysis. It is hard as it needs to
consider the semantics of the data set. We briefly
introduce zoom data fusion system

(http://www.zoomdata.com/). It makes multiple data
sources appear as one source without moving data. It
provides user friendly operations (e.g., drag and drop)
and a powerful computation system to conduct data
fusion. It also allows users to enrich big data with
lookup information from relational database
management systems, and with available metric
functions to handle unstructured data sources, from data
warehouses or other sources. Zoom data is also capable
of correlating real-time data feeds with historical data.

• Big data indexing: indexing was proposed to speed up
data query and data analysis in traditional OLTP and
online analytical processing (OLAP). In general,
indexes are a list of tags, names, subjects, etc. of a
group of items which references where the data can be
found (Adamu et al., 2016). However, existing
indexing techniques (e.g., R-tree, B-tree) may not be
suitable for big data analytics, e.g., the big data sets
always have many columns. The big data indexing
requirements are:
1 Speed – it could search over billions, even trillions

of data values in seconds.
2 Multi-variable – it should be efficient for combining

results from individual variable search results.
3 Volume – the index size must be a fraction of the

original data.
4 Parallelism – the big data index should be easily

partition into pieces for parallel and distributed
processing.

5 Speed of index generation – for in situ processing,
index should be built at the rate of data generation.

• Virtualisation: virtualisation (Xing and Zhan, 2012) is a
well-used technique in cloud computing regarding to
both the storage and processing layer. It creates virtual
(rather than physical) versions of computer hardware
platforms, operating system, storage, etc. for
provisioning, thus providing flexibility and scalability
with regard to the computing resources. An emerging
technology similar to virtualisation is Docker (Merkel,
2014), which is a container technology for Linux that
allows a developer to package up an application with
all of the parts it needs. By using containers, resources
can be isolated, services restricted, and processes
provisioned to have an almost completely private view
of the operating system with their own process ID
space, file system structure, and network interfaces.
Multiple containers share the same kernel, but each
container can be constrained to only use a defined
amount of resources such as CPU, memory and I/O.

The processing layer faces such challenges as scalability,
autonomic provisioning, low latency requirements, hot
plugging, flexibility, prediction capability and fault
tolerance mechanism, described in detail below:

1 Techniques in this layer should be scalable according to
the computation demands.

44 J.Y. Zhu et al.

2 Adaptive hardware resource allocation should be
considered, automatically determining the scale of the
Hadoop cluster to optimise processing.

3 MR tasks need to be added, reduced, launched, or
suspended in real-time to ensure low latency of the
processing system.

4 Subsystems in this layer are expected to be hot
pluggable in order to be flexibly assembled, to achieve
optimum performance.

5 The system requires a balance between stream
processing and batch processing.

6 Technologies in this layer should be capable of
predicting future arriving data stream volume and
properly con-figuring the system for optimised
performance in advance.

7 Moreover, packet losses and failures in the incoming
data stream must be properly handled.

3.4 Analytics layer

BDPA systems require a mix of data analytics tools for
different user requirements. In response to this trend, a
number of academic (Malewicz et al., 2010; Zaharia et al.,
2012) and commercial systems (Toshniwal et al. 2014) have
been developed to support such use cases. The earliest data
analytics systems, such as MR, gave users a powerful, but
less abstract programming interface. Apache Spark is a fast
and general engine for large-scale data processing and
analytics. It runs programs up to 100x faster than Hadoop
MR in memory. It is quite easy to use. Spark powers a set of
libraries, e.g., machine learning, and streaming, rendering
data analytics much easier than other systems. We overview
these data analytics libraries as follows:

• Apache spark SQL (Armbrust et al., 2015): it is a
module for working with structured data. It includes a
cost-based optimiser, columnar storage and code
generation to make SQL queries faster. It also scales to
thousands of nodes and multi-hour querying using
Spark engine. Spark SQL can perform relation
operations (e.g., join) on both internal data sources [i.e.,
Spark’s resilient distributed datasets (RDDs)] and
external data sources (e.g., datasets in HDFS). In order
to support many heterogeneous data sources and the
wide range of big data algorithms, Spark SQL includes
a highly extensible optimiser catalyst.

• Apache spark streaming (http://spark.apache.org/
streaming/): many modern data processing and analysis
environments require complex computation on
steaming data in real-time. For example, a Twitter user
requires making a number of complex decisions, often
based on the data that has just been created. Many
stream data processing and analytics have been
proposed to handle this kind of processing and analysis
requirements, for example: storm (Toshniwal et al.,

2014), and Spark streaming (http://spark.apache.org/
streaming/). Here we briefly introduce the apache
sparking streaming project. Spark streaming is a
large-scale near-real-time stream processing system. It
can scale to hundreds of nodes. The processing
latencies are in seconds. Spark streaming also integrates
apache spark’s batch and interactive processing API,
thus it provides many benefits for implementing
complex algorithms. It reads data from many data
sources: Flume, Kafka, Twitter or traditional data
storage systems (NAS, HDFS). In addition, one can
also customise the data sources.

• Apache spark MLlib (Meng et al., 2016): machine
learning is one core model in BDPA systems. It can
find patterns and make predictions from data based on
work in statistics, data mining, pattern recognition and
predictive analytics. Apache spark MLlib is the largest
distributed ma-chine learning library, which tightly
integrates with Spark. It provides fast and scalable
implementations of standard learning algorithms for
common learning settings including classification,
regression, collaborative filtering, clustering, and
dimensionality reduction. It benefits from
data-parallelism or model-parallelism to store and
operate on data or models in spark.

• Apache spark GraphX (Gonzalez et al., 2014): a
number of graph processing and analytics systems have
been proposed [Pregel (Malewicz et al., 2010),
PowerGraph (Gonzalez et al., 2012)] to meet the
analysis requirements, e.g., PageRank, community
detection in big data applications. However, most of
these graph processing systems abandon fault tolerance
in pursuit of system performance. Apache spark
GraphX is built on top of apache spark. Its
programming abstraction extends the spark data flow
operators by introduction several customised graph
operators (e.g., subgraph, vertices, leftjoinV, reverse).

There are many other data analytics libraries or sub-models
have been developed for apache spark. For example,
GeoSpark (https://github.com/DataSystemsLab/GeoSpark)
is a geospatial library for efficient spatial and temporal
system. SparkR (https://github.com/amplab-extras/SparkR-
pkg) is an R frontend for Spark. We omit the detailed
discussion of these projects and refer the interested reader to
the apache spark project (http://spark.apache.org/).

Challenges for the analytics layer include multiplicity,
analytical efficiency, adaptivity, pluggability, and
complexity:

1 Since current big data stream analytics concentrate on
three aspects, namely, artificial intelligence, knowledge
discovery and prediction tasks driven by various
services, the analytics layer should support both
commonly used and user-defined analytics applications.

2 Immediate prediction in spite of the potentially
unbounded streaming is required.

 A five-layer architecture for big data processing and analytics 45

3 Adaptive data mining models are expected for
structured, unstructured, multi-sourced, time-varying
big data streams.

4 These analytics applications should be pluggable for
developers to operate in open-source environments with
multiple upper-level languages.

5 In addition, it is desired to handle increasingly complex
statistical models for seeing both the forest and the
trees on the run, by analysing the overall datasets
instead of the samples or the data fragmentations.

3.5 Application layer

The application layer acts as the highest layer. With the
previous four layers, BDPA systems can build various
applications for different users. For example, business
intelligence, stock analysis and prediction. The outputs of
these applications help users to make fast decisions.

Figure 2 InfidataCA – city commercial areas analysis system
(see online version for colours)

Internal Data Source

Unstructured Relational Data

Data / Result
Visualizations

Data
Analytics

External Data Source

Data
Collection
and
Processing CleansingCollection IndexingIntegration

Learning

decision
tree

neural
network

pattern
learning

forest SVM genetic
algorithm

Exploration

outlier seasonality
time

series

cluster derivation extraction

Regression

logistic Variable

linear Non-linear

Correlation

negative positive

bias classical

Know
ledge

For example, Infidata (http://www.infidata.cn/) is a start-up
company, which focuses on helping organisations to build
big data processing applications. One of its commercial
products, Shenzhen’s commercial areas analysis system
(InfidataCA in Figure 2), is a real commercial system which
matches our five-layer big data processing and analysis
architecture. IndidataCA was developed to analyse the
commercial areas in Shenzhen, China. In data collection
layer, it collects external data (i.e., Weibo) and the basic
geographical data of that city. The internal data sources are
the traffic data (e.g., real-time bus, taxi and metro transit) in
Shenzhen. In data storage layer, it stores the data from
collection layer in distributed nodes architecture (i.e.,
HDFS). In data processing layer, it cleans and integrates
these heterogeneous data sources (e.g., original and

destination mapping in taxi trajectories). In data
analytics layer, it employs GeoSpark (https://github.com/
DataSystemsLab/GeoSpark) to analyse the trajectories of
taxi, buses to identify the abnormal cases in the traffic
systems. InfidataCA uses spark streaming (http://
spark.apache.org/streaming/) to process these real-time
trajectories and detect the traffic jams in the city. The spark
MLlib (http://spark.apache.org/mllib/) was used to conduct
further pre-diction and mining. In data visualisation layer,
InfidataCA visualises these analysis result for end-users and
helps them to make fast decisions. For example, InfidataCA
reports the real-time pedestrian numbers in these
commercial areas, and this information will assist the bus
company to schedule their buses.

The challenges for the application layer are in the
overall model and technology selection, and include
adaptivity, value, and generalisability issues:

1 The application layer is supposed to decide the
acceptance or rejection of different analytics models
and algorithms, as well as different resource allocation
strategies for the storage layer and processing layer.
This layer should be capable of adaptively making the
above-mentioned adjustment.

2 Extraction of ‘value’ based on the business logic is
expected.

3 The whole solution should be universally applicable to
multiple fields and industries.

4 Discussion of well-used big data solutions

4.1 Layer techniques bench-marking

The above mentioned five-layers constitute a bottom-up
structure with different priorities, supporting BDPA by
three mechanisms. First, one layer provides computation
and API to the next higher-level layer, while the
decision-making functionality in the highest-level layer
(application layer) controls the whole system based on
value-oriented decisions. Second, one layer has the ability
to schedule and optimise resource allocations for its own
and all the lower-level layers, thus provisioning adaptive
processing and analytics resources according to application
demands. Third, the choices of tools or products (such as
spark streaming, or spark SQL) within each layer, is
commonly determined by the upper layers, such as, what the
application targets at, or what the characteristics of the data
are.

Regarding the techniques used in the five-layers, there
have been quite a number of existing solutions targeting at
one specific layer or multiple layers. We first give a
comparative study on the performances of solutions within
the storage, processing, and analytics layers. Then, for those
vertical solutions covering all layers, we review these
solutions and summarise the corresponding challenges.

46 J.Y. Zhu et al.

Table 2 Comparison in the performances of different solutions in the storage, processing, and analytics layers

 Solutions Performance Benchmark Ref

Storage Nosql/HDFS vs.
SQL

 Nosql/HDFS (Millions of
transactions/day) SQL

(Thousands of
transactions/day)

 YCSB, BDB, TPC https://github.com/benstopford/
awesome-db-benchmarks

Processing Hadoop in physical
vs. virtual

environment

 Physical (significantly >)
virtual

 Pi, TestDFSIO,
TeraSort.

https://www.cse.wustl.edu/~jain/
cse570-13/ftp/bigdatap.pdf

Analytics Spark vs. Hadoop a 2.63–0.41x speed up a Pagerank http://udspace.udel.edu/bitstream/
handle/19716/17628/2015
_LiuLu_MS.pdf?sequence=1

b 2.76–1.53x speed up b WordCount
c 0.85–1.21x speed up c RunningSort
d 0.97–1.60x speed up d TeyraSort
e 13.83–89.01x speed up e Naïve-Bayes
f 4.06–2.20x speed up f K-means

Spark vs. Flink vs.
Kafka

 Spark can reach 5x or higher
throughput over other popular

streaming systems.

 Databricks-yahoo
streaming
benchmark

https://databricks.com/blog/
2017/10/11/benchmarking-
structured-streaming-on-
databricks-runtime-against-state-
of-the-art-streaming-
systems.html

Table 3 Challenges faced by popular vertical solutions in each layer

Layers and challenges 1 collection layer 2 storage layer 3 processing layer

Commercial and
open-source solutions

1.
1

D
iv

er
si

ty

1.
2

Pr
iv

ac
y

1.
3

La
be

lli
ng

1.
4

Fa

ul
t-t

ol
er

an
ce

2.
1

Lo
ca

lit
y

an
d

sc
al

ab
ili

ty

2.
2

D
at

a
m

ig
ra

tio
n

2.
3

In
de

pe
nd

en
ce

2.
4

In
te

lli
ge

nc
e

3.
1

Au
to

no
m

ic

pr
ov

is
io

ni
ng

3.
2

Sc
al

ab
ili

ty

3.
3

Lo
w

 la
te

nc
y

3.
4

H
ot

 p
lu

gg
in

g

Azure √ √ √ √ √ √ √ √
AWS √ √ √ √ √ √ √ √
Hortonworks √ √ √ √ √ √ √ √
InfidataCA √ √
BDAS √ √ √ √ √ √ √

Layers and challenges 4 analytics layer 5 application layer

Commercial and
open-source solutions

4.
1

M
ul

tip
lic

ity

4.
2

An
al

yt
ic

al

ef
fic

ie
nc

y

4.
3

St
re

am
in

g

4.
4

C
om

pl
ex

ity

ca
pa

bi
lit

y

5.
1

M
od

el

se
le

ct
io

n

5.
2

Ad
ap

tiv
ity

5.
3

Va
lu

e

5.
4

G
en

er
al

iz
ab

ili
ty

Azure √ √ √ √ √ √ √
AWS √ √ √ √ √ √ √
Hortonworks √ √ √ √ √ √
InfidataCA √ √ √ √
BDAS √ √ √ √ √ √

Note: √ symbol indicates the challenges each solution will address.

The storage, processing, and analytics layers in the
five-layer architecture are the core layers for demonstrating
the efficiency and scalability of big data solutions.
Therefore, we survey the corresponding solutions in the

three layers, with comparative statistics on their
performances, as shown in Table 2.

In the storage layer, benchmark tests (https://
github.com/benstopford/awesome-db-benchmarks) are

 A five-layer architecture for big data processing and analytics 47

conducted in both Nosql/HDFS based storage systems, and
traditional relational (SQL) databases. Basically, if the users
generate thousands of transactions per day, SQL database
will have no problem in terms of the response time.
However, when the users generate more than a million
transactions per day, SQL database will not be able to cope,
and Nosql/HDFS storage systems would be a better choice
to guarantee the throughput. In the processing layer, the
comparison of benchmarks (https://www.cse.wustl.edu/
~jain/cse570-13/ftp/bigdatap.pdf) for Hadoop in physical
and virtual environment show that Hadoop in physical
environment significantly outperforms Hadoop in virtual
environment. This indicates that the processing layer takes
advantage of the physical computational resources rather
than just schedules the computational resources. In the
analytics layer, statistics show that (http://udspace.udel.edu/
bitstream/handle/19716/17628/2015_LiuLu_MS.pdf?sequen
ce=1) spark outperforms Hadoop in terms of complex
computations, such as Naïve Bayes, but shares similar
performances for basic operations, such as TeraSort and
RunningSort. For analysing streaming data, Spark
streamlining can reach 5X or higher throughput over Flink
and Kafka (https://databricks.com/blog/2017/10/11/
benchmarking-structured-streaming-on-databricks-runtime-
against-state-of-the-art-streaming-systems.html). Recently,
spark-based solutions have obtained more attention in the
big data analytics architectures.

4.2 Challenges faced by BDPA solutions

Up to now the academia and industry have reached a
consensus that the ultimate goal for big data solutions is to
obtain ‘value’. To better understand this goal, we list the
challenges of the BDPA solutions regarding to each layer in
Table 3. We also compare five vertical big data solutions
[i.e., AWS (https://aws.amazon.com/ec2/), Azure (https://
azure.microsoft.com/en-us/), Hortonworks (https://
hortonworks.com), InfidataCA (http://www.infidata.cn/),
and BDAS (Franklin, 2013)] as to which challenges each
will address.

There are many vertical solutions provided by
established companies, either as big data on top of cloud
platforms, or as typical big data platforms. AWS
(https://aws.amazon.com/ec2/) and Azure (https://
azure.microsoft.com/en-us/) provide big data solutions
based on their cloud platforms, taking advantages of both
the scalable storage system and pay-as-you-go computation
resources. The big data solutions of Azure and AWS are
usually proposed as [data as a service (Daas)]’, divided
either by applications (mobile services, websites, etc.) or by
industries (finance, health, etc.). The cloud platform based
big data solutions focus more on the challenges of both the
infrastructure and the analytics models, i.e., the storage,
processing, and analytics layer. Hortonworks (https://
hortonworks.com) and InfidataCA (http://www.infidata.cn/)
provide two other perspectives on big data platforms.
Hortonworks’ big data platform is composed primarily by
Hadoop 2.0 and HDFS. Hadoop 2.0 provides the resource
management and pluggable architecture which enable a

wide variety of data access methods, allowing multiple
applications to run on the same platform. These big data
platforms focus more on the real cases rather than general
application functionalities. The big data solutions from
Hortonworks are presented either by use cases or by
industries.

Start-up companies tend to focus on the data analytics
part, and avoid high maintenance cost. They are more
focused on the data quality, getting reliable labels, and
intelligent analysis. For open-source big data platforms, the
Berkeley data analytics stack (BDAS) stands out as a
well-used software stack (Franklin, 2013), together with
many other innovative components in BDAS, such as spark
streaming (https://github.com/amplab-extras/SparkR-pkg)
and GraphX (http://spark.apache.org/mllib/). BDAS is built
by the AMPLab, from academia, and it focuses more on the
advanced technologies to tackle the challenges at the
analytics layer.

In practice, more user-friendly BDPA solutions are
expected to incorporate flexible sets of layers. It is noted
from Table 2 that for the challenges of privacy (1.2),
labelling (1.3), fault-tolerance (1.4), hot-plugging (3.4), and
generalisability (5.4), the discussed solution could not
satisfy the requirements quite well, indicating there could be
more opportunities to improve the data quality at the
collection layer, improve the efficiency of data processing
from the system level, and finally make the BDPA solution
more customised to different applications.

5 Conclusions

We are entering the data era, where BDPA solutions allow
the possibilities of getting “value” in both internet and
traditional industries. Future solutions should possess such
desirable features as being intelligent, real-time,
value-oriented, general-purpose, dismountable, and
user-customised, as shown in Figure 3. Realising such
features are challenging. Solutions on realising the
functionalities in five-layers, designing elements in these
layers, and scheduling middleware layer, need to be
proposed for the future BDPA architecture, which will be an
ecosystem built on the five-layers we present, with solutions
providing reliable and efficient interfaces to interact with
other solutions and satisfy the demands of real-world
applications.

Figure 3 Features of future BDLA solutions

48 J.Y. Zhu et al.

Acknowledgements

Bo Tang was supported by the Science and Technology
Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284)

References
Adamu, F.B. et al. (2016) ‘A survey on big data indexing

strategies’, SLAC National Accelerator Laboratory (SLAC),
No. SLAC-PUB-16460.

Althoff, T. et al. (2015) ‘TimeMachine: timeline generation for
knowledge-base entities’, Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM.

Ananthanarayanan, G. et al. (2011) ‘Scarlett: coping with skewed
content popularity in MapReduce clusters’, Proceedings of
the Sixth Conference on Computer Systems, ACM.

Armbrust, M. et al. (2015) ‘Spark SQL: relational data processing
in spark’, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ACM.

Berti-Equille, L. et al. (2009) ‘Sailing the information ocean with
awareness of currents: discovery and application of source
dependence’, CIDR.

Biem, A. et al. (2010) ‘IBM infosphere streams for scalable,
real-time, intelligent transportation services’, Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of Data, ACM.

Borthakur, D. (2008) HDFS Architecture Guide, Hadoop Apache
Project [online] https://hadoop.apache.org/docs/
r1.2.1/hdfs_design.pdf. (accessed 2018)

Borthakur, D. et al. (2011) ‘Apache Hadoop goes real-time at
Facebook’, Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, ACM.

Bu, Y. et al. (2010) ‘HaLoop: efficient iterative data processing on
large clusters’, Proceedings of the VLDB Endowment, Vols.
3.1–3.2, pp.285–296.

Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A.,
McKelvie, S., Xu, Y. et al. (2011) ‘Windows azure storage: a
highly available cloud storage service with strong
consistency’, in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ACM,
pp.143–157.

Chaiken, R. et al. (2008) ‘SCOPE: easy and efficient parallel
processing of massive datasets’, Proceedings of the VLDB
Endowment, Vol. 1.2, pp.1265–1276.

Condie, T. et al. (2010) ‘MapReduce online’, NSDI, Vol. 10,
No. 4.

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data
processing on large clusters’, Communications of the ACM,
Vol. 51.1, pp.107–113.

Franklin, M. (2013) ‘The Berkeley data analytics stack: present
and future’, in 2013 IEEE International Conference on Big
Data, IEEE, pp.2–3.

Gantz, J. and Reinsel, D. (2012) ‘The digital universe in 2020: big
data, bigger digital shadows, and biggest growth in the far
east’, IDC iView: IDC Analyze the Future.

Gerhardt, B., Griffin, K. and Klemann, R. (2012) Unlocking Value
in the Fragmented World of Big Data Analytics, Cisco
Internet Business Solutions Group, June.

Gonzalez, J.E. et al. (2012) ‘Powergraph: distributed
graph-parallel computation on natural graphs’, Presented as
part of the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12).

Gonzalez, J.E. et al. (2014) ‘Graphx: graph processing in a
distributed dataflow framework’, 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14).

Herzog, T.N. et al. (2007) Data Quality and Record Linkage
Techniques, Springer Science and Business Media,
New York.

Khayyat, Z. et al. (2015) ‘Bigdansing: a system for big data
cleansing’, Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ACM.

Lee, R. et al. (2011) ‘Ysmart: yet another SQL-to-MapReduce
translator’, 2011 31st International Conference on
Distributed Computing Systems (ICDCS), IEEE.

Malewicz, et al. G. (2010) ‘Pregel: a system for large-scale graph
processing’, Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ACM.

Malewicz, G. et al. (2010) ‘Pregel: a system for large-scale graph
processing’, Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ACM.

Meng, X. et al. (2016) ‘Mllib: machine learning in apache spark’,
JMLR. Vol. 17, No. 34, pp.1–7.

Merkel, D. (2014) ‘Docker: lightweight Linux containers for
consistent development and deployment’, Linux Journal,
No. 239, p.2.

Neumeyer, L. et al. (2010) ‘S4: distributed stream computing
platform’, 2010 IEEE International Conference on Data
Mining Workshops (ICDMW), IEEE.

Olston, C. et al. (2008) ‘Pig Latin: a not-so-foreign language for
data processing’, Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, ACM.

Rekatsinas, T. et al. (2015) ‘Finding quality in quantity: the
challenge of discovering valuable sources for integration’,
CIDR.

Sagiroglu, S. and Sinanc, D. (2013) ‘Big data: a review’, IEEE
International Conference on In Collaboration Technologies
and Systems (CTS), May, pp.42–47.

Thusoo, A. et al. (2009) ‘Hive: a warehousing solution over a
MapReduce framework’, Proceedings of the VLDB
Endowment, Vol. 2.2, pp.1626–1629.

Toshniwal, A. et al. (2014) ‘Storm@ twitter’, Proceedings of the
2014 ACM SIGMOD International Conference on
Management of Data, ACM.

Wang, H. et al. (2016) ‘Cleanix: a parallel big data cleaning
system’, ACM SIGMOD Record, Vol. 44, No. 4, pp.35–40.

Xing, Y. and Zhan, Y. (2012) ‘Virtualization and cloud
computing’, Future Wireless Networks and Information
Systems, Springer Berlin Heidelberg, pp.305–312.

Zaharia, M. et al. (2012) ‘Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing’,
Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, USENIX Association.

 A five-layer architecture for big data processing and analytics 49

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and
Stoica, I. (2010) ‘Spark: cluster computing with working
sets’, in Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing, Vol. 10, p.10.

Zhu, J.Y., Xu, J. and Li, V.O.K. (2016) ‘A four-layer architecture
for online and historical big data analytics’, 14th Intl Conf on
Pervasive Intelligence and Computing Dependable,
Autonomic and Secure Computing, 2nd Intl Conf on Big
Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/
CyberSciTech), 2016 IEEE 14th Intl C, IEEE.

Zimmermann, H. (1980) ‘OSI reference model – the ISO model of
architecture for open systems interconnection’, IEEE
Transactions on Communications, Vol. 28, No. 4, pp.425–
432.

Websites
http://www.internetonlinestats.com/google-search-statistics/
http://www.internetonlinestats.com/twitter-statistics/
https://github.com/nathanmarz/storm/wiki/Tutorial
https://azure.microsoft.com/en-us/

https://aws.amazon.com/ec2/
https://www.nutanix.com/
http://www.zoomdata.com/
http://spark.apache.org/streaming/
https://github.com/benstopford/awesome-db-benchmarks
https://www.cse.wustl.edu/~jain/cse570-13/ftp/bigdatap.pdf
http://udspace.udel.edu/bitstream/handle/19716/17628/2015_LiuL

u_MS.pdf?sequence=1
https://hortonworks.com
https://github.com/DataSystemsLab/GeoSpark
https://github.com/amplab-extras/SparkR-pkg
http://spark.apache.org/
http://www.infidata.cn/
http://spark.apache.org/mllib/
http://factory.datatang.com/
http://www.analysyschina.com/about.html
https://web-assets.domo.com/blog/wp-

content/uploads/2014/04/DataNeverSleeps_2.0_v2.jpg
https://databricks.com/blog/2017/10/11/benchmarking-structured-

streaming-on-databricks-runtime-against-state-of-the-art-
streaming-systems.html

