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This paper is a revised and expanded version of a paper entitled ‘A four-layer architecture for 
online and historical big data analytics’ presented at 2nd International Conference on Big Data 
Intelligence and Computing (DataCom), Auckland, New Zealand, 8–12 August 2016. 

 

1 Introduction 

With the world’s data doubling every two years (Gantz and 
Reinsel, 2012), increasingly more applications require the 
capability of handling ‘big data’. These applications are of 
various purposes including finance, public health, the 
‘internet of things’, transportation, social media, sensor 
networks, manufacturing, networking, telecommunications, 
etc. For IT-related industry, different online service 
providers (OSPs) have developed their own set of 
technologies for big data analytics to resolve their own 
problems, such as online search (e.g., Google), online 
transaction processing (OLTP) (e.g., Amazon), and social 
network applications (e.g., Facebook and Twitter). For 
traditional industry, many companies and institutes are 
starting or planning to collect various data based on their 
business activities. 

The initial goals of big data processing and analytics 
(BDPA) were to handle the 5V’s of big data (Sagiroglu and 
Sinanc, 2013): volume, velocity, variety, veracity and value. 
Recently, with the development of big data technologies and 
solutions, both the academia and industry have reached a 
consensus, that is, the ultimate goal of big data is about 
transforming ‘big data’ to ‘real value’. In this article, we 
discuss how to achieve this goal by proposing five-layer 
architecture for BDPA. The architecture is driven by the 
increasing volumes of data, especially the online big data 
streams, and by the demands of analysing data for all types 
of industries. The proposed architecture extends (Zhu et al., 
2016) in three aspects. First, we have added a collection 
layer at the bottom of the original architecture to illustrate 
the importance of data quality. BDPA require us to extract 
information from multiple, diversified data sources, such as 
text, GPS, image, video, etc. with various qualities. Second, 
since the development of big data solutions is progressing 
fast, we have updated the case studies of big data solutions 
to the current solutions. Third, we believe that the choice of 
solutions in each layer is ultimately determined by the 
demands of applications. Therefore, unlike in Zhu et al. 
(2016), where we integrated online and historical data 
processing together in one layer, in this manuscript we have 
moved the stream processing as one function of the 
analytical layer, to satisfy the different requirements of 
analytics (such as, to discover insights offline, or on the fly). 

The online big data streams discussed in this article 
share the following characteristics: 

• Large volume – data are generated, transmitted and ac-
cumulated in large volume. 

• Continuous arrival – real-time data arrive continuously. 

• Multiple sources – data streams are from multiple 
distributed sources, and may be structured and 
unstructured. 

• Time-varying – the size, format, and arrival rate of data 
streams change over time. 

• Unbounded streaming – data come in unbounded 
amounts, requiring unbounded memory for processing 
and analytics. 

To handle online big data streams, as well as the 
accumulated historical data, the overall BDPA solution 
should coordinate the following two types of functionalities: 

• Processing – to handle large historical data repository 
with parallel processing techniques, such as 
MapReduce (MR) (Dean and Ghemawat, 2008), the 
dominant batch programming model. In practice, the 
processing of big data should consider not only the data 
volume, but also the data diversity, indexing efficiency, 
and the requirements from the specific application. 

• Analytics – to discover knowledge and insights from 
data, by deploying specific models and algorithms 
based on the characteristics of the data. For example, 
for on-line big data stream, a streaming tool, such as 
Spark streaming (https://github.com/amplab-extras/ 
SparkR-pkg) may be used to detect useful information, 
events and cross-correlation via processing online big 
data streams in real-time. For graphical data analysis, 
the GraphX (http://spark.apache.org/mllib/) library may 
be used. 

The analytics part of BDPA solution is to discover insights 
and make decisions based on data. Thus, it could be built on 
top of processing. We believe that the two functionalities, 
which handle both online and historical data with scalability 
and reliability, are important for real-world BDPA based on 
two reasons: 

1 The online data streams account for an increasing 
proportion of big data analytics. For example, in 2012, 
Google received over 2 million search queries per 
minute (http://www.internetonlinestats.com/ 
google-search-statistics/). The number doubles to over 
4 million per minute in the year 2014 (https://web-
assets.domo.com/blog/wp-content/uploads/2014/04/ 
DataNeverSleeps_2.0_v2.jpg). People and brands on 
Twitter sent more than 200 million tweets per minute in 
2012 (http://www.internetonlinestats.com/ 
twitter-statistics/), and more than 400 million by the 
end of 2015 (http://www.internetonlinestats.com/ 
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twitter-statistics/). By the year 2020, over 50 billion 
devices are expected to be connected to the internet 
(Gerhardt et al., 2012), greatly advancing data-driven 
technologies for the ‘internet of things’ while requiring 
real-time big data analytics solutions to meet the users’ 
demands. 

2 Existing big data analytics technologies, such as IBM 
Infosphere (Biem et al., 2010), Twitter Storm 
(https://github.com/nathanmarz/storm/wiki/Tutorial), 
Apache S4 (Neumeyer et al., 2010), are de-signed to 
process and analyse streaming data, which are massive, 
heterogeneous, time-varying and unbounded. These 
technologies are realised without a storage system. The 
de-sign goals are mostly to guarantee quick event 
detection and real-time processing for learning tasks. 
However, to discover insight and value from the 
steaming data, one usually needs to combine 
information extracted from historical data. 

Currently, there is no widely accepted BDPA solution, 
especially a general purpose solution fit for both traditional 
and internet industries. Hence in this paper, we propose 
architecture for the current BDPA solutions, which may 
serve as a de facto standard to help achieve value from data. 
We organise our article as follows. First we come up with 
the principles and desired characteristics of architecture for 
BDPA. Then we introduce five-layer architecture, including 
the functionalities and challenges for each layer. It is 
beyond the scope of this paper to discuss the details of 
existing technologies in each layer, so we only list some 
examples to discuss the functionalities of each layer and 
briefly focus on the motivations, merits and demerits of the 
corresponding techniques. In the end, we discuss some 
currently well-used BDPA solutions and conclude with the 
requirements for future BDPA. 

2 Principles and desired characteristics for 
BDPA architecture 

Driven by different types of demand on data analytics, such 
as time complexity, space complexity and quality of service 
(QoS), and inspired by the existing layer-based big data 
analytics stack (Franklin, 2013), we propose to design a 
layering architecture for BDPA. Layering architecture here 
does not refer to a real layered stack as in Franklin (2013) or 
as an enterprise cloud system such as Windows Azure 
(https://azure.microsoft.com/en-us/) and Amazon EC2 
(https://aws.amazon.com/ec2/), but a structuring technique 
(Zimmermann, 1980) which comprises a succession of 
layers for the general purpose of allowing different big data 
analytics technologies in each layer to communicate and 
cooperate with technologies in the adjacent layers. For data 
driven analytics, where the inputs are online and historical 
big data, designing a layering architecture needs to consider 
the following principles and desired characteristics: 
 

1 The architecture needs to collect structured, 
unstructured, multi-source, and cleaned-up data, 
generated by multiple data sources. These data come in 
various formats, such as, text, image, trajectory in the 
spatiotemporal space, etc. A collection layer is needed 
at the bottom, to prepare adequate and high-quality data 
for all kinds of analytical demands in the upper layers. 

2 The architecture needs basic, extensible storage 
infrastructure for historical data storage and migrated 
data from the online data stream. Thus the storage 
layer, serving as the second lowest layer, is needed to 
guarantee I/O performance and scalability. 

3 Since the massive, continuously arriving, 
heterogeneous, time-varying and unbounded online big 
data stream brings uncertainty to BDPA, an online and 
historical data processing layer is needed to handle both 
online inflow and batch files fetched from the storage 
layer for the analytics task. Usually this layer is based 
on a control or scheduling module to balance the two 
paradigms of computation, built on top of the storage 
layer. This layer aims to provide a cooperative and 
scalable distributed programming framework for the 
vast data streams and the accumulated historical big 
data, and should accommodate the various goals of 
analytics (e.g., prediction, recommendation, causal 
inference, recognition, clustering, etc.). 

4 An analytics layer is required to perform data mining, 
prediction, and user-customised tasks. This layer needs 
to be designed to be value-centric, to turn ‘big data’ 
into ‘big value’. 

5 An application layer is required to serve as a flexible 
layer for the whole architecture, realising the demands 
from different industries and presenting the system 
status and results to data scientists where the experts’ 
opinions are needed and giving feedbacks to the lower 
layers. 

6 The input of the system consists of two types of data, 
i.e., streaming data and batch data. The online data 
streams flow into the online and historical data 
processing layer, while the historical data are imported 
and stored in the storage system. Thus the online and 
historical data processing layer needs to handle 
different processing tasks with different computing 
resource allocation and data migration strategies. 

7 The output of the architecture, i.e., the analytics results 
for value extraction and knowledge discovery, is from 
the analytics layer. For example, analytics results 
acquired at the output can be used for contextualisation 
or visualisation. 

8 The architecture solves the analytics problem in 
general, rather than for specific problems. 
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3 Five-layer architecture 

To satisfy the principles and desired characteristics for the 
layering architecture, we come up with the following  
five-layer architecture for BDPA, as shown in Figure 1. The 
layers are collection layer, storage layer, processing layer, 
analytics layer, and application layer, from the bottom to the 
top. This section will introduce the functionalities, example 
case studies, as well as challenges for each layer. 

3.1 Collection layer 

The data collection layer serves as the foundation for the 
entire BDPA solution. With increasingly more data sources, 
such as smartphone data, networking data, sensor data, 
social media data, health data, etc. a collection layer is 
needed to integrate multi-source, structured and 
unstructured data for further management. The streaming 
data will be fed into the processing layer, and the 
accumulated historical data will be stored in the storage 
layer, in order to be further analysed with specific analytical 
tools in the analytical layer, based on the demands from the 
application layer. Solutions in this layer include both open 
data sources and third-party data providers. 

• Open data: these data are released to the public by 
governments, organisations, research labs, or 
companies free of charge, to advance the development 
of BDPA solutions. Most of these data are not 
connected with individuals or are anonymous before 
publication. 

• Third-party data providers: these data are collected 
through professional data collection agencies, such as 
Data-tang (http://factory.datatang.com/) and 
Analysyschina (http://www.analysyschina.com/ 
about.html), via crawlers, commercial arrangement, 
crowd-sourcing, etc. The data are further customised to 
the users’ requirements, providing data as a service 
(DAAS). Typically, these providers conduct 
preliminary cleansing and annotation before releasing 
these data, thus offering better data quality. 

Challenges in this layer include diversity, privacy, labelling, 
and fault-tolerance. 

1 In practice, the collected data come in different formats, 
such as GPS, text, image, video. This layer is required 
to handle multi-source data efficiently, extract 
information from unstructured data, and integrate 
diversified data sources. 

2 Data privacy is required to protect the personal 
information of users, especially when dealing with 
sensitive data, such as users’ locations, transactions, 
etc. 

3 Required by the analytical tasks of different 
applications, labelled data is appreciated for  
 
 
 

discovering unknown knowledge with higher precision. 
For example, for data analysis based on deep learning, 
some datasets without enough labels may not perform 
as well as expected. Labelling requires automatic and 
reliable annotation during data collection. 

4 Fault-tolerance is required in the collection layer, to 
minimise the cases of missing values, or errors caused 
by the system, networking, etc. 

Figure 1 Five-layer architecture for BDPA 

 

 

3.2 Storage layer 

The storage layer serves as the second layer and provides 
basic, distributed extensible storage infrastructure for 
historical data storage. 

BDPA architecture requires storage technologies which 
have the following characteristics: scalable, with tiered 
storage, self-managing, highly available, widely accessible, 
and recoverable. In current big data storage market, big data 
storage architectures can be classified in Table 1. 
Obviously, they are not mutually exclusive, so some 
companies may use more than one. 

Case studies 

• Distributed nodes architecture: the most popular 
solution is Hadoop distributed file system (HDFS) 
(Borthakur, 2008). In most cases, HDFS works together 
with MR to execute Hadoop jobs. The obvious 
application for that storage architecture is many small 
files. Generally, it is the lowest cost commodity 
solution. However, it has relatively slow performance 
and is hard to manage. 
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• Scale-out NAS: it has the ability to scale throughput and 
capacity in tandem or independently. The most famous 
solution is Azure cloud storage (Calder et al., 2011). It 
can accommodate tens of petabytes of data, sufficient 
for many commercial applications. However, it is not 
suitable for pre-processing intensive applications (e.g., 
data format convertion, ingestion of data). Its greatest 
strength may be for large file processing. 

• All-SSD arrays: Nutanix (https://www.nutanix.com/) 
and a number of other flash memory storage start-ups 
are offering pricey solid-state drive (SSD) arrays 
storage. These kinds of storage architecture yield 
information several times faster than more traditional 
architectures (i.e., scale-out NAS and distributed 
nodes). It is tailored for real-time processing where I/O 
is the performance bottleneck. 

• Object-based storage: it is used for diverse purposes 
such as storing photos on Facebook, songs on Spotify, 
or files in online collaboration services, such as 
Dropbox. It has significant benefits for big data 
analytical systems, as it is highly scalable and it uses 
replication and distributed hash tables rather than 
redundant array of inexpensive disks (RAID) to ensure 
recoverability. It also supports peer-to-peer file sharing. 

Table 1 Big data storage technologies 

Technologies Description Best use cases 

Distributed 
nodes 

• Low-cost commodity 
hard-ware 

• Scale in tandem with 
the compute 
environment 

Hadoop, Small 
distributed files 

Scale-out 
network-
attached storage 
(NAS) 

• Automated storage 
tiering 

• Capable of scaling 
through-put and 
capacity in tandem or 
separately 

• Distributed or 
clustered file system 

Large file 
processing, 
more traditional 
extraction or 
transformation 
of big data 

All-solid-state-
drive (SDD) 
arrays 

• Several times faster 
than traditional storage 
technologies 

• Implemented like 
JBOD and distributed 
nodes 

Real-time 
processing 
applications 

Object-based 
storage 

• Store data in flexible 
containers, not blocks 

• Use hash tables and 
replication 

• Allow peer-to-peer 
sharing across 
distributed nodes 

Organisations 
willing to find a 
really 
competitive 
advantage 

Challenges in the storage layer include locality, scalability, 
data migration, intelligence and independence, detailed 
below: 

1 Algorithms are required to enhance high computation 
locality, and to be correlation-aware for distributed 
computation. 

2 Error-correction mechanisms are required for data 
recovery and management of heterogeneous sources of 
data. 

3 Data migration is required when queries arrive, and the 
streaming data, instead of being discarded, should be 
selected, grouped, and appended to the existing storage 
system. 

4 The storage layer should be relatively independent and 
capable of integrating enterprise-level infrastructure. 

5 Intelligence is required for query optimisation with 
distributed storage systems. 

3.3 Processing layer 

The data processing layer is the core in BDPA systems. It is 
a fundamental layer of many data analytical tasks. In the big 
data era, data sources are extremely heterogeneous in their 
structure and content. These different data sources are of 
widely differing data qualities (e.g., coverage, accuracy). 
Generally, the data processing layer performs parallel 
computing, data cleansing, data integration, data fusion, 
data indexing, virtualisation, and so on. 

• Parallel computing: for the parallel processing 
technologies, two well-known examples are MR and 
SQL server translator. MR provides an innovative and 
scalable parallel programming model by allocating 
computation resources to distributed nodes. The basic 
idea is to divide the processing phase into two: map and 
reduce. In the map phase data is filtered and sorted into 
intermediate key/value pairs, then the reduce phase 
merges the intermediate values belonging to the same 
key. In practice, MR has been derived from Google’s 
papers to an open-sourced framework for large-scale 
concurrent processing, Hadoop, comprised of the 
HDFS and the Hadoop MR. Hadoop stands out in terms 
of integrity, high availability, scalability and elasticity. 
However, it performs relatively poorly in stream 
processing compared to batch processing. When data 
come in continuous streams, the input files (in the 
format of text, key-value, binary sequence) from HDFS 
have to be segmented in small granules, causing 
significant delay. Furthermore, the ‘reduce’ phase in 
Hadoop only launches after all the ‘map’ jobs finish, 
which prolongs the waiting time. To improve the time 
efficiency of Hadoop jobs, improvement works have 
been proposed including pipelining the MR (Condie  
et al., 2010; Borthakur et al., 2011), adding interactive 
awareness and caching mechanisms such as Haloop  
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(Bu et al., 2010) and Pregel (Malewicz et al., 2010), 
scheduling by considering data popularity 
(Ananthanarayanan et al., 2011), and in-memory 
computing [Spark (Zaharia et al., 2010)]. To enrich the 
operations based on MR, OSPs and organisations come 
up with SQL-translators built on top of MR, as 
warehouses and middleware, such as Hive (Thusoo  
et al., 2009), SCOPE (Chaiken et al., 2008), Pig (Olston 
et al., 2008), etc. The SQL-translators could execute 
MR tasks with developer-friendly languages, for 
example, 95% Hadoop jobs at Facebook are generated 
by Hive (Lee et al., 2011). Since SQL-translators are 
based on MR, they are still not suitable for stream 
processing. In practice, the choices of processing 
solutions are normally determined by the specific 
demands of applications or the characteristics of data. 
Therefore, we only consider MR as the core function of 
the processing layer, and move the SQL-translator and 
in-memory processing (SPARK) to the analytics layer, 
to make the BDPA solution more flexible to the 
demands of the applications. 

• Big data cleansing: many data cleansing systems have 
been proposed in both academic and industry (Herzog 
et al., 2007), e.g., Big-dansing (Khayyat et al., 2015), 
Cleanix (Wang et al., 2016). In the big data era, the 
quality of data cleansing is measured by the following 
metrics: 
1 Scalability – a good data cleansing system should 

scale out to thousands of machines in a shared 
nothing manner. 

2 Usability – it should provide a simple and friendly 
user interface for both expert and non-expert user. 

3 Abstraction – measures the flexibility of data 
cleansing system. For instance, users also need the 
flexibility to define rules to correct typos or errors in 
the dataset. However, none of the existing data 
cleansing systems dominate others in the market. 

• Big data integration: it is more challenging than 
traditional data integration due to volume, velocity, 
variety and veracity. Researchers from Google and 
AT&T have pro-posed several big data integration 
systems to overcome the challenges of big data 
integration. For example, Solomon (Berti-Equille et al., 
2009) was proposed to detect copying among different 
data sources. Alexander (Rekatsinas et al., 2015) helps 
administrators select the sources to balance the quality 
and the cost of integration. Time machine (Althoff  
et al., 2015) generates a timeline of events and relations 
for entities by integrating, and cleansing temporal 
information in the internet. 

• Big data fusion: data fusion links data of diverse types, 
from heterogeneous data sources, in support of unified 
data query, search and analysis. It is hard as it needs to 
consider the semantics of the data set. We briefly 
introduce zoom data fusion system  
 

(http://www.zoomdata.com/). It makes multiple data 
sources appear as one source without moving data. It 
provides user friendly operations (e.g., drag and drop) 
and a powerful computation system to conduct data 
fusion. It also allows users to enrich big data with 
lookup information from relational database 
management systems, and with available metric 
functions to handle unstructured data sources, from data 
warehouses or other sources. Zoom data is also capable 
of correlating real-time data feeds with historical data. 

• Big data indexing: indexing was proposed to speed up 
data query and data analysis in traditional OLTP and 
online analytical processing (OLAP). In general, 
indexes are a list of tags, names, subjects, etc. of a 
group of items which references where the data can be 
found (Adamu et al., 2016). However, existing 
indexing techniques (e.g., R-tree, B-tree) may not be 
suitable for big data analytics, e.g., the big data sets 
always have many columns. The big data indexing 
requirements are: 
1 Speed – it could search over billions, even trillions 

of data values in seconds. 
2 Multi-variable – it should be efficient for combining 

results from individual variable search results. 
3 Volume – the index size must be a fraction of the 

original data. 
4 Parallelism – the big data index should be easily 

partition into pieces for parallel and distributed 
processing. 

5 Speed of index generation – for in situ processing, 
index should be built at the rate of data generation. 

• Virtualisation: virtualisation (Xing and Zhan, 2012) is a 
well-used technique in cloud computing regarding to 
both the storage and processing layer. It creates virtual 
(rather than physical) versions of computer hardware 
platforms, operating system, storage, etc. for 
provisioning, thus providing flexibility and scalability 
with regard to the computing resources. An emerging 
technology similar to virtualisation is Docker (Merkel, 
2014), which is a container technology for Linux that 
allows a developer to package up an application with 
all of the parts it needs. By using containers, resources 
can be isolated, services restricted, and processes 
provisioned to have an almost completely private view 
of the operating system with their own process ID 
space, file system structure, and network interfaces. 
Multiple containers share the same kernel, but each 
container can be constrained to only use a defined 
amount of resources such as CPU, memory and I/O. 

The processing layer faces such challenges as scalability, 
autonomic provisioning, low latency requirements, hot 
plugging, flexibility, prediction capability and fault 
tolerance mechanism, described in detail below: 

1 Techniques in this layer should be scalable according to 
the computation demands. 
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2 Adaptive hardware resource allocation should be 
considered, automatically determining the scale of the 
Hadoop cluster to optimise processing. 

3 MR tasks need to be added, reduced, launched, or 
suspended in real-time to ensure low latency of the 
processing system. 

4 Subsystems in this layer are expected to be hot 
pluggable in order to be flexibly assembled, to achieve 
optimum performance. 

5 The system requires a balance between stream 
processing and batch processing. 

6 Technologies in this layer should be capable of 
predicting future arriving data stream volume and 
properly con-figuring the system for optimised 
performance in advance. 

7 Moreover, packet losses and failures in the incoming 
data stream must be properly handled. 

3.4 Analytics layer 

BDPA systems require a mix of data analytics tools for 
different user requirements. In response to this trend, a 
number of academic (Malewicz et al., 2010; Zaharia et al., 
2012) and commercial systems (Toshniwal et al. 2014) have 
been developed to support such use cases. The earliest data 
analytics systems, such as MR, gave users a powerful, but 
less abstract programming interface. Apache Spark is a fast 
and general engine for large-scale data processing and 
analytics. It runs programs up to 100x faster than Hadoop 
MR in memory. It is quite easy to use. Spark powers a set of 
libraries, e.g., machine learning, and streaming, rendering 
data analytics much easier than other systems. We overview 
these data analytics libraries as follows: 

• Apache spark SQL (Armbrust et al., 2015): it is a 
module for working with structured data. It includes a 
cost-based optimiser, columnar storage and code 
generation to make SQL queries faster. It also scales to 
thousands of nodes and multi-hour querying using 
Spark engine. Spark SQL can perform relation 
operations (e.g., join) on both internal data sources [i.e., 
Spark’s resilient distributed datasets (RDDs)] and 
external data sources (e.g., datasets in HDFS). In order 
to support many heterogeneous data sources and the 
wide range of big data algorithms, Spark SQL includes 
a highly extensible optimiser catalyst. 

• Apache spark streaming (http://spark.apache.org/ 
streaming/): many modern data processing and analysis 
environments require complex computation on 
steaming data in real-time. For example, a Twitter user 
requires making a number of complex decisions, often 
based on the data that has just been created. Many 
stream data processing and analytics have been 
proposed to handle this kind of processing and analysis 
requirements, for example: storm (Toshniwal et al.,  
 

2014), and Spark streaming (http://spark.apache.org/ 
streaming/). Here we briefly introduce the apache 
sparking streaming project. Spark streaming is a  
large-scale near-real-time stream processing system. It 
can scale to hundreds of nodes. The processing 
latencies are in seconds. Spark streaming also integrates 
apache spark’s batch and interactive processing API, 
thus it provides many benefits for implementing 
complex algorithms. It reads data from many data 
sources: Flume, Kafka, Twitter or traditional data 
storage systems (NAS, HDFS). In addition, one can 
also customise the data sources. 

• Apache spark MLlib (Meng et al., 2016): machine 
learning is one core model in BDPA systems. It can 
find patterns and make predictions from data based on 
work in statistics, data mining, pattern recognition and 
predictive analytics. Apache spark MLlib is the largest 
distributed ma-chine learning library, which tightly 
integrates with Spark. It provides fast and scalable 
implementations of standard learning algorithms for 
common learning settings including classification, 
regression, collaborative filtering, clustering, and 
dimensionality reduction. It benefits from  
data-parallelism or model-parallelism to store and 
operate on data or models in spark. 

• Apache spark GraphX (Gonzalez et al., 2014): a 
number of graph processing and analytics systems have 
been proposed [Pregel (Malewicz et al., 2010), 
PowerGraph (Gonzalez et al., 2012)] to meet the 
analysis requirements, e.g., PageRank, community 
detection in big data applications. However, most of 
these graph processing systems abandon fault tolerance 
in pursuit of system performance. Apache spark 
GraphX is built on top of apache spark. Its 
programming abstraction extends the spark data flow 
operators by introduction several customised graph 
operators (e.g., subgraph, vertices, leftjoinV, reverse). 

There are many other data analytics libraries or sub-models 
have been developed for apache spark. For example, 
GeoSpark (https://github.com/DataSystemsLab/GeoSpark) 
is a geospatial library for efficient spatial and temporal 
system. SparkR (https://github.com/amplab-extras/SparkR-
pkg) is an R frontend for Spark. We omit the detailed 
discussion of these projects and refer the interested reader to 
the apache spark project (http://spark.apache.org/). 

Challenges for the analytics layer include multiplicity, 
analytical efficiency, adaptivity, pluggability, and 
complexity: 

1 Since current big data stream analytics concentrate on 
three aspects, namely, artificial intelligence, knowledge 
discovery and prediction tasks driven by various 
services, the analytics layer should support both 
commonly used and user-defined analytics applications. 

2 Immediate prediction in spite of the potentially 
unbounded streaming is required. 
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3 Adaptive data mining models are expected for 
structured, unstructured, multi-sourced, time-varying 
big data streams. 

4 These analytics applications should be pluggable for 
developers to operate in open-source environments with 
multiple upper-level languages. 

5 In addition, it is desired to handle increasingly complex 
statistical models for seeing both the forest and the 
trees on the run, by analysing the overall datasets 
instead of the samples or the data fragmentations. 

3.5 Application layer 

The application layer acts as the highest layer. With the 
previous four layers, BDPA systems can build various 
applications for different users. For example, business 
intelligence, stock analysis and prediction. The outputs of 
these applications help users to make fast decisions. 

Figure 2 InfidataCA – city commercial areas analysis system 
(see online version for colours) 
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For example, Infidata (http://www.infidata.cn/) is a start-up 
company, which focuses on helping organisations to build 
big data processing applications. One of its commercial 
products, Shenzhen’s commercial areas analysis system 
(InfidataCA in Figure 2), is a real commercial system which 
matches our five-layer big data processing and analysis 
architecture. IndidataCA was developed to analyse the 
commercial areas in Shenzhen, China. In data collection 
layer, it collects external data (i.e., Weibo) and the basic 
geographical data of that city. The internal data sources are 
the traffic data (e.g., real-time bus, taxi and metro transit) in 
Shenzhen. In data storage layer, it stores the data from 
collection layer in distributed nodes architecture (i.e., 
HDFS). In data processing layer, it cleans and integrates 
these heterogeneous data sources (e.g., original and 

destination mapping in taxi trajectories). In data  
analytics layer, it employs GeoSpark (https://github.com/ 
DataSystemsLab/GeoSpark) to analyse the trajectories of 
taxi, buses to identify the abnormal cases in the traffic 
systems. InfidataCA uses spark streaming (http:// 
spark.apache.org/streaming/) to process these real-time 
trajectories and detect the traffic jams in the city. The spark 
MLlib (http://spark.apache.org/mllib/) was used to conduct 
further pre-diction and mining. In data visualisation layer, 
InfidataCA visualises these analysis result for end-users and 
helps them to make fast decisions. For example, InfidataCA 
reports the real-time pedestrian numbers in these 
commercial areas, and this information will assist the bus 
company to schedule their buses. 

The challenges for the application layer are in the 
overall model and technology selection, and include 
adaptivity, value, and generalisability issues: 

1 The application layer is supposed to decide the 
acceptance or rejection of different analytics models 
and algorithms, as well as different resource allocation 
strategies for the storage layer and processing layer. 
This layer should be capable of adaptively making the 
above-mentioned adjustment. 

2 Extraction of ‘value’ based on the business logic is 
expected. 

3 The whole solution should be universally applicable to 
multiple fields and industries. 

4 Discussion of well-used big data solutions 

4.1 Layer techniques bench-marking 

The above mentioned five-layers constitute a bottom-up 
structure with different priorities, supporting BDPA by 
three mechanisms. First, one layer provides computation 
and API to the next higher-level layer, while the  
decision-making functionality in the highest-level layer 
(application layer) controls the whole system based on 
value-oriented decisions. Second, one layer has the ability 
to schedule and optimise resource allocations for its own 
and all the lower-level layers, thus provisioning adaptive 
processing and analytics resources according to application 
demands. Third, the choices of tools or products (such as 
spark streaming, or spark SQL) within each layer, is 
commonly determined by the upper layers, such as, what the 
application targets at, or what the characteristics of the data 
are. 

Regarding the techniques used in the five-layers, there 
have been quite a number of existing solutions targeting at 
one specific layer or multiple layers. We first give a 
comparative study on the performances of solutions within 
the storage, processing, and analytics layers. Then, for those 
vertical solutions covering all layers, we review these 
solutions and summarise the corresponding challenges. 
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Table 2 Comparison in the performances of different solutions in the storage, processing, and analytics layers 

 Solutions  Performance  Benchmark Ref 

Storage Nosql/HDFS vs. 
SQL 

 Nosql/HDFS  (Millions of 
transactions/day) SQL  

(Thousands of 
transactions/day) 

 YCSB, BDB, TPC https://github.com/benstopford/ 
awesome-db-benchmarks 

Processing Hadoop in physical 
vs. virtual  

environment 

 Physical (significantly >) 
virtual 

 Pi, TestDFSIO, 
TeraSort. 

https://www.cse.wustl.edu/~jain/
cse570-13/ftp/bigdatap.pdf 

Analytics Spark vs. Hadoop a 2.63–0.41x speed up a Pagerank http://udspace.udel.edu/bitstream/
handle/19716/17628/2015 
_LiuLu_MS.pdf?sequence=1 

b 2.76–1.53x speed up b WordCount 
c 0.85–1.21x speed up c RunningSort 
d 0.97–1.60x speed up d TeyraSort 
e 13.83–89.01x speed up e Naïve-Bayes 
f 4.06–2.20x speed up f K-means 

Spark vs. Flink vs. 
Kafka 

 Spark can reach 5x or higher 
throughput over other popular 

streaming systems. 

 Databricks-yahoo 
streaming 
benchmark 

https://databricks.com/blog/ 
2017/10/11/benchmarking-
structured-streaming-on-
databricks-runtime-against-state-
of-the-art-streaming-
systems.html 

Table 3 Challenges faced by popular vertical solutions in each layer 

Layers and challenges 1 collection layer  2 storage layer  3 processing layer 

Commercial and  
open-source solutions 

1.
1 

D
iv

er
si

ty
 

1.
2 

Pr
iv

ac
y 

1.
3 

La
be

lli
ng

 

1.
4 

 
Fa

ul
t-t

ol
er

an
ce

 

 

2.
1 

Lo
ca

lit
y 

an
d 

sc
al

ab
ili

ty
 

2.
2 

D
at

a 
m

ig
ra

tio
n 

2.
3 

In
de

pe
nd

en
ce

 

2.
4 

In
te

lli
ge

nc
e 

 

3.
1 

Au
to

no
m

ic
 

pr
ov

is
io

ni
ng

 

3.
2 

Sc
al

ab
ili

ty
 

3.
3 

Lo
w

 la
te

nc
y 

3.
4 

H
ot

 p
lu

gg
in

g 

Azure    √  √ √ √ √  √ √ √  
AWS    √  √ √ √ √  √ √ √  
Hortonworks  √    √ √ √ √   √ √ √ 
InfidataCA √   √           
BDAS       √ √ √ √   √ √ √ 
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Azure √ √ √ √  √ √ √  
AWS √ √ √ √  √ √ √  
Hortonworks √ √ √ √   √ √  
InfidataCA √ √ √ √      
BDAS √ √ √ √   √ √  

Note: √ symbol indicates the challenges each solution will address. 
 

The storage, processing, and analytics layers in the  
five-layer architecture are the core layers for demonstrating 
the efficiency and scalability of big data solutions. 
Therefore, we survey the corresponding solutions in the 

three layers, with comparative statistics on their 
performances, as shown in Table 2. 

In the storage layer, benchmark tests (https:// 
github.com/benstopford/awesome-db-benchmarks) are 
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conducted in both Nosql/HDFS based storage systems, and 
traditional relational (SQL) databases. Basically, if the users 
generate thousands of transactions per day, SQL database 
will have no problem in terms of the response time. 
However, when the users generate more than a million 
transactions per day, SQL database will not be able to cope, 
and Nosql/HDFS storage systems would be a better choice 
to guarantee the throughput. In the processing layer, the 
comparison of benchmarks (https://www.cse.wustl.edu/ 
~jain/cse570-13/ftp/bigdatap.pdf) for Hadoop in physical 
and virtual environment show that Hadoop in physical 
environment significantly outperforms Hadoop in virtual 
environment. This indicates that the processing layer takes 
advantage of the physical computational resources rather 
than just schedules the computational resources. In the 
analytics layer, statistics show that (http://udspace.udel.edu/ 
bitstream/handle/19716/17628/2015_LiuLu_MS.pdf?sequen
ce=1) spark outperforms Hadoop in terms of complex 
computations, such as Naïve Bayes, but shares similar 
performances for basic operations, such as TeraSort and 
RunningSort. For analysing streaming data, Spark 
streamlining can reach 5X or higher throughput over Flink 
and Kafka (https://databricks.com/blog/2017/10/11/ 
benchmarking-structured-streaming-on-databricks-runtime-
against-state-of-the-art-streaming-systems.html). Recently, 
spark-based solutions have obtained more attention in the 
big data analytics architectures. 

4.2 Challenges faced by BDPA solutions 

Up to now the academia and industry have reached a 
consensus that the ultimate goal for big data solutions is to 
obtain ‘value’. To better understand this goal, we list the 
challenges of the BDPA solutions regarding to each layer in 
Table 3. We also compare five vertical big data solutions 
[i.e., AWS (https://aws.amazon.com/ec2/), Azure (https:// 
azure.microsoft.com/en-us/), Hortonworks (https:// 
hortonworks.com), InfidataCA (http://www.infidata.cn/), 
and BDAS (Franklin, 2013)] as to which challenges each 
will address. 

There are many vertical solutions provided by 
established companies, either as big data on top of cloud 
platforms, or as typical big data platforms. AWS 
(https://aws.amazon.com/ec2/) and Azure (https:// 
azure.microsoft.com/en-us/) provide big data solutions 
based on their cloud platforms, taking advantages of both 
the scalable storage system and pay-as-you-go computation 
resources. The big data solutions of Azure and AWS are 
usually proposed as [data as a service (Daas)]’, divided 
either by applications (mobile services, websites, etc.) or by 
industries (finance, health, etc.). The cloud platform based 
big data solutions focus more on the challenges of both the 
infrastructure and the analytics models, i.e., the storage, 
processing, and analytics layer. Hortonworks (https:// 
hortonworks.com) and InfidataCA (http://www.infidata.cn/) 
provide two other perspectives on big data platforms. 
Hortonworks’ big data platform is composed primarily by 
Hadoop 2.0 and HDFS. Hadoop 2.0 provides the resource 
management and pluggable architecture which enable a 

wide variety of data access methods, allowing multiple 
applications to run on the same platform. These big data 
platforms focus more on the real cases rather than general 
application functionalities. The big data solutions from 
Hortonworks are presented either by use cases or by 
industries. 

Start-up companies tend to focus on the data analytics 
part, and avoid high maintenance cost. They are more 
focused on the data quality, getting reliable labels, and 
intelligent analysis. For open-source big data platforms, the 
Berkeley data analytics stack (BDAS) stands out as a  
well-used software stack (Franklin, 2013), together with 
many other innovative components in BDAS, such as spark 
streaming (https://github.com/amplab-extras/SparkR-pkg) 
and GraphX (http://spark.apache.org/mllib/). BDAS is built 
by the AMPLab, from academia, and it focuses more on the 
advanced technologies to tackle the challenges at the 
analytics layer. 

In practice, more user-friendly BDPA solutions are 
expected to incorporate flexible sets of layers. It is noted 
from Table 2 that for the challenges of privacy (1.2), 
labelling (1.3), fault-tolerance (1.4), hot-plugging (3.4), and 
generalisability (5.4), the discussed solution could not 
satisfy the requirements quite well, indicating there could be 
more opportunities to improve the data quality at the 
collection layer, improve the efficiency of data processing 
from the system level, and finally make the BDPA solution 
more customised to different applications. 

5 Conclusions 

We are entering the data era, where BDPA solutions allow 
the possibilities of getting “value” in both internet and 
traditional industries. Future solutions should possess such 
desirable features as being intelligent, real-time,  
value-oriented, general-purpose, dismountable, and  
user-customised, as shown in Figure 3. Realising such 
features are challenging. Solutions on realising the 
functionalities in five-layers, designing elements in these 
layers, and scheduling middleware layer, need to be 
proposed for the future BDPA architecture, which will be an 
ecosystem built on the five-layers we present, with solutions 
providing reliable and efficient interfaces to interact with 
other solutions and satisfy the demands of real-world 
applications. 

Figure 3 Features of future BDLA solutions 

 



48 J.Y. Zhu et al.  

Acknowledgements 

Bo Tang was supported by the Science and Technology 
Innovation Committee Foundation of Shenzhen (Grant No. 
ZDSYS201703031748284) 

References 
Adamu, F.B. et al. (2016) ‘A survey on big data indexing 

strategies’, SLAC National Accelerator Laboratory (SLAC), 
No. SLAC-PUB-16460. 

Althoff, T. et al. (2015) ‘TimeMachine: timeline generation for 
knowledge-base entities’, Proceedings of the 21th ACM 
SIGKDD International Conference on Knowledge Discovery 
and Data Mining, ACM. 

Ananthanarayanan, G. et al. (2011) ‘Scarlett: coping with skewed 
content popularity in MapReduce clusters’, Proceedings of 
the Sixth Conference on Computer Systems, ACM. 

Armbrust, M. et al. (2015) ‘Spark SQL: relational data processing 
in spark’, Proceedings of the 2015 ACM SIGMOD 
International Conference on Management of Data, ACM. 

Berti-Equille, L. et al. (2009) ‘Sailing the information ocean with 
awareness of currents: discovery and application of source 
dependence’, CIDR. 

Biem, A. et al. (2010) ‘IBM infosphere streams for scalable,  
real-time, intelligent transportation services’, Proceedings of 
the 2010 ACM SIGMOD International Conference on 
Management of Data, ACM. 

Borthakur, D. (2008) HDFS Architecture Guide, Hadoop Apache 
Project [online] https://hadoop.apache.org/docs/ 
r1.2.1/hdfs_design.pdf. (accessed 2018) 

Borthakur, D. et al. (2011) ‘Apache Hadoop goes real-time at 
Facebook’, Proceedings of the 2011 ACM SIGMOD 
International Conference on Management of Data, ACM. 

Bu, Y. et al. (2010) ‘HaLoop: efficient iterative data processing on 
large clusters’, Proceedings of the VLDB Endowment, Vols. 
3.1–3.2, pp.285–296. 

Calder, B., Wang, J., Ogus, A., Nilakantan, N., Skjolsvold, A., 
McKelvie, S., Xu, Y. et al. (2011) ‘Windows azure storage: a 
highly available cloud storage service with strong 
consistency’, in Proceedings of the Twenty-Third ACM 
Symposium on Operating Systems Principles, ACM,  
pp.143–157. 

Chaiken, R. et al. (2008) ‘SCOPE: easy and efficient parallel 
processing of massive datasets’, Proceedings of the VLDB 
Endowment, Vol. 1.2, pp.1265–1276. 

Condie, T. et al. (2010) ‘MapReduce online’, NSDI, Vol. 10,  
No. 4. 

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data 
processing on large clusters’, Communications of the ACM, 
Vol. 51.1, pp.107–113. 

Franklin, M. (2013) ‘The Berkeley data analytics stack: present 
and future’, in 2013 IEEE International Conference on Big 
Data, IEEE, pp.2–3. 

Gantz, J. and Reinsel, D. (2012) ‘The digital universe in 2020: big 
data, bigger digital shadows, and biggest growth in the far 
east’, IDC iView: IDC Analyze the Future. 

 

 

Gerhardt, B., Griffin, K. and Klemann, R. (2012) Unlocking Value 
in the Fragmented World of Big Data Analytics, Cisco 
Internet Business Solutions Group, June. 

Gonzalez, J.E. et al. (2012) ‘Powergraph: distributed  
graph-parallel computation on natural graphs’, Presented as 
part of the 10th USENIX Symposium on Operating Systems 
Design and Implementation (OSDI 12). 

Gonzalez, J.E. et al. (2014) ‘Graphx: graph processing in a 
distributed dataflow framework’, 11th USENIX Symposium 
on Operating Systems Design and Implementation (OSDI 14). 

Herzog, T.N. et al. (2007) Data Quality and Record Linkage 
Techniques, Springer Science and Business Media,  
New York. 

Khayyat, Z. et al. (2015) ‘Bigdansing: a system for big data 
cleansing’, Proceedings of the 2015 ACM SIGMOD 
International Conference on Management of Data, ACM. 

Lee, R. et al. (2011) ‘Ysmart: yet another SQL-to-MapReduce 
translator’, 2011 31st International Conference on 
Distributed Computing Systems (ICDCS), IEEE. 

Malewicz, et al. G. (2010) ‘Pregel: a system for large-scale graph 
processing’, Proceedings of the 2010 ACM SIGMOD 
International Conference on Management of Data, ACM. 

Malewicz, G. et al. (2010) ‘Pregel: a system for large-scale graph 
processing’, Proceedings of the 2010 ACM SIGMOD 
International Conference on Management of Data, ACM. 

Meng, X. et al. (2016) ‘Mllib: machine learning in apache spark’, 
JMLR. Vol. 17, No. 34, pp.1–7. 

Merkel, D. (2014) ‘Docker: lightweight Linux containers for 
consistent development and deployment’, Linux Journal,  
No. 239, p.2. 

Neumeyer, L. et al. (2010) ‘S4: distributed stream computing 
platform’, 2010 IEEE International Conference on Data 
Mining Workshops (ICDMW), IEEE. 

Olston, C. et al. (2008) ‘Pig Latin: a not-so-foreign language for 
data processing’, Proceedings of the 2008 ACM SIGMOD 
International Conference on Management of Data, ACM. 

Rekatsinas, T. et al. (2015) ‘Finding quality in quantity: the 
challenge of discovering valuable sources for integration’, 
CIDR. 

Sagiroglu, S. and Sinanc, D. (2013) ‘Big data: a review’, IEEE 
International Conference on In Collaboration Technologies 
and Systems (CTS), May, pp.42–47. 

Thusoo, A. et al. (2009) ‘Hive: a warehousing solution over a  
MapReduce framework’, Proceedings of the VLDB 
Endowment, Vol. 2.2, pp.1626–1629. 

Toshniwal, A. et al. (2014) ‘Storm@ twitter’, Proceedings of the 
2014 ACM SIGMOD International Conference on 
Management of Data, ACM. 

Wang, H. et al. (2016) ‘Cleanix: a parallel big data cleaning 
system’, ACM SIGMOD Record, Vol. 44, No. 4, pp.35–40. 

Xing, Y. and Zhan, Y. (2012) ‘Virtualization and cloud 
computing’, Future Wireless Networks and Information 
Systems, Springer Berlin Heidelberg, pp.305–312. 

Zaharia, M. et al. (2012) ‘Resilient distributed datasets: a  
fault-tolerant abstraction for in-memory cluster computing’, 
Proceedings of the 9th USENIX Conference on Networked 
Systems Design and Implementation, USENIX Association. 

 

 

 



 A five-layer architecture for big data processing and analytics 49 

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. and 
Stoica, I. (2010) ‘Spark: cluster computing with working 
sets’, in Proceedings of the 2nd USENIX Conference on Hot 
Topics in Cloud Computing, Vol. 10, p.10. 

Zhu, J.Y., Xu, J. and Li, V.O.K. (2016) ‘A four-layer architecture 
for online and historical big data analytics’, 14th Intl Conf on 
Pervasive Intelligence and Computing Dependable, 
Autonomic and Secure Computing, 2nd Intl Conf on Big  
Data Intelligence and Computing and Cyber Science  
and Technology Congress (DASC/PiCom/DataCom/ 
CyberSciTech), 2016 IEEE 14th Intl C, IEEE. 

Zimmermann, H. (1980) ‘OSI reference model – the ISO model of 
architecture for open systems interconnection’, IEEE 
Transactions on Communications, Vol. 28, No. 4, pp.425–
432. 

Websites 
http://www.internetonlinestats.com/google-search-statistics/ 
http://www.internetonlinestats.com/twitter-statistics/ 
https://github.com/nathanmarz/storm/wiki/Tutorial 
https://azure.microsoft.com/en-us/ 

https://aws.amazon.com/ec2/ 
https://www.nutanix.com/ 
http://www.zoomdata.com/ 
http://spark.apache.org/streaming/ 
https://github.com/benstopford/awesome-db-benchmarks 
https://www.cse.wustl.edu/~jain/cse570-13/ftp/bigdatap.pdf 
http://udspace.udel.edu/bitstream/handle/19716/17628/2015_LiuL

u_MS.pdf?sequence=1 
https://hortonworks.com 
https://github.com/DataSystemsLab/GeoSpark 
https://github.com/amplab-extras/SparkR-pkg 
http://spark.apache.org/ 
http://www.infidata.cn/ 
http://spark.apache.org/mllib/ 
http://factory.datatang.com/ 
http://www.analysyschina.com/about.html 
https://web-assets.domo.com/blog/wp-

content/uploads/2014/04/DataNeverSleeps_2.0_v2.jpg 
https://databricks.com/blog/2017/10/11/benchmarking-structured-

streaming-on-databricks-runtime-against-state-of-the-art-
streaming-systems.html 


