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Preface

We are delighted to introduce the proceedings of the 11th Conference on Empirical Methods in Natural
Language Proceessing, organized under the auspices of SIGDAT, the ACL Special Interest Group for
linguistic data and corpus-based approaches to NLP.

This was a wonderfully fruitful year for EMNLP; we received 234 submissions, drawn from every area
of language processing. Of these we were able to accept 73 papers (an acceptance rate of 31%), making
for an unusually broad and exciting program. 43 of the papers were presented as talks, and 30 as posters.

The papers were selected by a program committee of 13 area chairs from Asia, Australia, Europe, and
North America, ably assisted by a superb panel of 258 reviewers, also from all over the world. We are
deeply indebted to the area chairs and the reviewers for their tireless and generous work.

Additional thanks to to the Publications Chair, Eric Ringger, who put this volume together, to the Local
Arrangements Chair, James Curran, to the COLING/ACL Organizing Committee, especially Claire
Cardie and Suzanne Stevenson, for constant advice, and to David Yarowsky and Ken Church of SIGDAT
for fielding many questions. Special thanks go to the student volunteers at Stanford (Dan Cer, Pi-Chuan
Chang, Surabhi Gupta, William Morgan, Yun-Hsuan Sung, and Huihsin Tseng).

We wish you all an enjoyable and thought-provoking conference.

Dan Jurafsky and Eric Gaussier
EMNLP Co-Chairs
June 2006
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Brooke Cowan, Ivona Kŭcerová and Michael Collins

Modeling Impression in Probabilistic Transliteration into Chinese
LiLi Xu, Atsushi Fujii and Tetsuya Ishikawa

xvi



Saturday, 22 July 2006 (continued)

Long Poster Session 1: Discourse, Dialogue, MT, Computational Semantics, Parsing
(4:00–6:30) (continued)

Unsupervised Named Entity Transliteration Using Temporal and Phonetic Correlation
Tao Tao, Su-Youn Yoon, Andrew Fister, Richard Sproat and ChengXiang Zhai

Capturing Out-of-Vocabulary Words in Arabic Text
Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi and Falk Scholer

Using linguistically motivated features for paragraph boundary identification
Katja Filippova and Michael Strube

BESTCUT: A Graph Algorithm for Coreference Resolution
Cristina Nicolae and Gabriel Nicolae

Automatic Construction of Predicate-argument Structure Patterns for Biomedical Infor-
mation Extraction
Akane Yakushiji, Yusuke Miyao, Tomoko Ohta, Yuka Tateisi and Jun’ichi Tsujii

Protein folding and chart parsing
Julia Hockenmaier, Aravind K. Joshi and Ken A. Dill

Learning Phrasal Categories
William P. Headden III, Eugene Charniak and Mark Johnson

Priming Effects in Combinatory Categorial Grammar
David Reitter, Julia Hockenmaier and Frank Keller

Better Informed Training of Latent Syntactic Features
Markus Dreyer and Jason Eisner

xvii



Sunday, 23 July 2006

Session 4a: Sentiment

8:25–8:50 Get out the vote: Determining support or opposition from Congressional floor-debate
transcripts
Matt Thomas, Bo Pang and Lillian Lee

8:50–9:15 Partially Supervised Coreference Resolution for Opinion Summarization through Struc-
tured Rule Learning
Veselin Stoyanov and Claire Cardie

9:15–9:40 Sentiment Retrieval using Generative Models
Koji Eguchi and Victor Lavrenko

9:40–10:05 Fully Automatic Lexicon Expansion for Domain-oriented Sentiment Analysis
Hiroshi Kanayama and Tetsuya Nasukawa

10:05–10:30 A Skip-Chain Conditional Random Field for Ranking Meeting Utterances by Importance
Michel Galley

Session 4b: Language Modeling

8:25–8:50 Style & Topic Language Model Adaptation Using HMM-LDA
Bo-June (Paul) Hsu and James Glass

8:50–9:15 Text data acquisition for domain-specific language models
Abhinav Sethy, Panayiotis G. Georgiou and Shrikanth Narayanan

9:15–9:40 Corrective Models for Speech Recognition of Inflected Languages
Izhak Shafran and Keith Hall

9:40–10:05 Lexicon Acquisition for Dialectal Arabic Using Transductive Learning
Kevin Duh and Katrin Kirchhoff

10:05–10:30 Arabic OCR Error Correction Using Character Segment Correction, Language Modeling,
and Shallow Morphology
Walid Magdy and Kareem Darwish

xviii



Sunday, 23 July 2006 (continued)

Short Poster Session 2: Sentiment, WSD, Machine Learning Models and Methods,
Term and Entity Extraction (11:00–12:30)

Partially Supervised Sense Disambiguation by Learning Sense Number from Tagged and
Untagged Corpora
Zheng-Yu Niu, Dong-Hong Ji and Chew Lim Tan

Automatically Assessing Review Helpfulness
Soo-Min Kim, Patrick Pantel, Tim Chklovski and Marco Pennacchiotti

Joint Extraction of Entities and Relations for Opinion Recognition
Yejin Choi, Eric Breck and Claire Cardie

Feature Subsumption for Opinion Analysis
Ellen Riloff, Siddharth Patwardhan and Janyce Wiebe

Relevance Feedback Models for Recommendation
Masao Utiyama and Mikio Yamamoto

Random Indexing using Statistical Weight Functions
James Gorman and James R. Curran

A Hybrid Markov/Semi-Markov Conditional Random Field for Sequence Segmentation
Galen Andrew

Boosting Unsupervised Relation Extraction by Using NER
Ronen Feldman and Benjamin Rosenfeld

Short Text Authorship Attribution via Sequence Kernels, Markov Chains and Author Un-
masking: An Investigation
Conrad Sanderson and Simon Guenter

Entity Annotation based on Inverse Index Operations
Ganesh Ramakrishnan, Sreeram Balakrishnan and Sachindra Joshi

Unsupervised Information Extraction Approach Using Graph Mutual Reinforcement
Hany Hassan, Ahmed Hassan and Ossama Emam

Empirical Study on the Performance Stability of Named Entity Recognition Model across
Domains
Hong Lei Guo, Li Zhang and Zhong Su

xix



Sunday, 23 July 2006 (continued)

Session 5a: Generation, Summarization, and Lexical Semantics

1:45–2:10 Statistical Ranking in Tactical Generation
Erik Velldal and Stephan Oepen

2:10–2:35 Sentence ordering with manifold-based classification in multi-document summarization
Paul D Ji and Stephen Pulman

2:35–3:00 Quality Assessment of Large Scale Knowledge Resources
Montse Cuadros and German Rigau

3:00–3:25 Graph-based Word Clustering using a Web Search Engine
Yutaka Matsuo, Takeshi Sakaki, Kôki Uchiyama and Mitsuru Ishizuka

Session 5b: Machine Learning Models and Methods

1:45–2:10 Context-Dependent Term Relations for Information Retrieval
Jing Bai, Jian-Yun Nie and Guihong Cao

2:10–2:35 Loss Minimization in Parse Reranking
Ivan Titov and James Henderson

2:35–3:00 Unsupervised Relation Disambiguation with Order Identification Capabilities
Jinxiu Chen, Donghong Ji, ChewLim Tan and Zhengyu Niu

3:00–3:25 Competitive generative models with structure learning for NLP classification tasks
Kristina Toutanova

xx



Sunday, 23 July 2006 (continued)

Session 6a: Word Senses

4:00–4:25 Two graph-based algorithms for state-of-the-art WSD
Eneko Agirre, David Martínez, Oier López de Lacalle and Aitor Soroa

4:25–4:50 Broad-Coverage Sense Disambiguation and Information Extraction with a Supersense Se-
quence Tagger
Massimiliano Ciaramita and Yasemin Altun

Session 6b: Machine Learning Models and Methods

4:00–4:25 Learning Field Compatibilities to Extract Database Records from Unstructured Text
Michael Wick, Aron Culotta and Andrew McCallum

4:25–4:50 Discriminative Methods for Transliteration
Dmitry Zelenko and Chinatsu Aone

4:50–5:15 Solving the Problem of Cascading Errors: Approximate Bayesian Inference for Linguistic
Annotation Pipelines
Jenny Rose Finkel, Christopher D. Manning and Andrew Y. Ng

xxi





Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 1–8,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Unsupervised Discovery of a Statistical Verb Lexicon

Trond Grenager and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305

{grenager, manning}@cs.stanford.edu

Abstract

This paper demonstrates how unsupervised tech-
niques can be used to learn models of deep linguis-
tic structure. Determining thesemantic rolesof a
verb’s dependents is an important step in natural
language understanding. We present a method for
learning models of verb argument patterns directly
from unannotated text. The learned models are sim-
ilar to existing verb lexicons such as VerbNet and
PropBank, but additionally include statistics about
the linkings used by each verb. The method is
based on a structured probabilistic model of the do-
main, and unsupervised learning is performed with
the EM algorithm. The learned models can also
be used discriminatively as semantic role labelers,
and when evaluated relative to the PropBank anno-
tation, the best learned model reduces 28% of the
error between an informed baseline and an oracle
upper bound.

1 Introduction

An important source of ambiguity that must be
resolved by any natural language understanding
system is the mapping between syntactic depen-
dents of a predicate and thesemantic roles1 that
they each express. The ambiguity stems from the
fact that each predicate can allow several alternate
mappings, orlinkings,2 between its semantic roles
and their syntactic realization. For example, the
verb increasecan be used in two ways:

(1) The Fed increased interest rates.
(2) Interest rates increased yesterday.

The instances have apparently similar surface syn-
tax: they both have a subject and a noun phrase
directly following the verb. However, while the
subject ofincreaseexpresses the agent role in the
first, it instead expresses the patient role in the sec-
ond. Pairs of linkings such as this allowed by a
single predicate are often calleddiathesis alterna-
tions (Levin, 1993).

The current state-of-the-art approach to resolv-
ing this ambiguity is to use discriminative classi-
fiers, trained on hand-tagged data, to classify the

1Also calledthematic roles, theta roles, or deep cases.
2Sometimes calledframes.

semantic role of each dependent (Gildea and Juraf-
sky, 2002; Pradhan et al., 2005; Punyakanok et al.,
2005). A drawback of this approach is that even
a relatively large training corpus exhibits consid-
erable sparsity of evidence. The two main hand-
tagged corpora are PropBank (Palmer et al., 2003)
and FrameNet (Baker et al., 1998), the former of
which currently has broader coverage. However,
even PropBank, which is based on the 1M word
WSJ section of the Penn Treebank, is insufficient
in quantity and genre to exhibit many things. A
perfectly common verb likeflapoccurs only twice,
across all morphological forms. The first example
is an adjectival use (flapping wings), and the sec-
ond is a rare intransitive use with an agent argu-
ment and a path (ducks flapping over Washington).
From this data, one cannot learn the basic alterna-
tion pattern forflap: the bird flapped its wingsvs.
the wings flapped.

We propose to address the challenge of data
sparsity by learning models of verb behavior di-
rectly from raw unannotated text, of which there
is plenty. This has the added advantage of be-
ing easily extendible to novel text genres and lan-
guages, and the possibility of shedding light on
the question of human language acquisition. The
models learned by our unsupervised approach pro-
vide a new broad-coverage lexical resource which
gives statistics about verb behavior, information
that may prove useful in other language process-
ing tasks, such as parsing. Moreover, they may be
used discriminatively to label novel verb instances
for semantic role. Thus we evaluate them both in
terms of the verb alternations that they learn and
their accuracy as semantic role labelers.

This work bears some similarity to the sub-
stantial literature on automatic subcategorization
frame acquisition (see, e.g., Manning (1993),
Briscoe and Carroll (1997), and Korhonen
(2002)). However, that research is focused on ac-
quiring verbs’ syntactic behavior, and we are fo-
cused on the acquisition of verbs’ linking behav-
ior. More relevant is the work of McCarthy and

1



Relation Description
subj NP preceding verb
np#n NP in thenth position following verb
np NP that is not the subject and

not immediately following verb
cl#n Complement clause

in thenth position following verb
cl Complement clause

not immediately following verb
xcl#n Complement clause without subject

in thenth position following verb
xcl Complement clause without subject

not immediately following verb
acomp#n Adjectival complement

in thenth position following verb
acomp Adjectival complement

not immediately following verb
prepx Prepositional modifier

with prepositionx
advmod Adverbial modifier
advcl Adverbial clause

Table 1: The set of syntactic relations we use, wheren ∈
{1, 2, 3} andx is a preposition.

Korhonen (1998), which used a statistical model
to identify verb alternations, relying on an existing
taxonomy of possible alternations, as well as La-
pata (1999), which searched a large corpus to find
evidence of two particular verb alternations. There
has also been some work on both clustering and
supervised classification of verbs based on their
alternation behavior (Stevenson and Merlo, 1999;
Schulte im Walde, 2000; Merlo and Stevenson,
2001). Finally, Swier and Stevenson (2004) per-
form unsupervised semantic role labeling by using
hand-crafted verb lexicons to replace supervised
semantic role training data. However, we believe
this is the first system to simultaneously discover
verb roles and verb linking patterns from unsuper-
vised data using a unified probabilistic model.

2 Learning Setting

Our goal is to learn a model which relates a verb,
its semantic roles, and their possible syntactic re-
alizations. As is the case with most semantic role
labeling research, we do not attempt to model the
syntax itself, and instead assume the existence of a
syntactic parse of the sentence. The parse may be
from a human annotator, where available, or from
an automatic parser. We can easily run our system
on completely unannotated text by first running
an automatic tokenizer, part-of-speech tagger, and
parser to turn the text into tokenized, tagged sen-
tences with associated parse trees.

In order to keep the model simple, and indepen-
dent of any particular choice of syntactic represen-
tation, we use an abstract representation of syn-

Sentence: A deeper market plunge today could
give them their first test.

Verb: give
Syntactic Semantic Head
Relation Role Word

subj ARG0 plunge/NN
np ARGM today/NN

np#1 ARG2 they/PRP
np#2 ARG1 test/NN

v = give
` = {ARG0 → subj, ARG1 → np#2

ARG2 → np#1}
o = [(ARG0, subj), (ARGM, ?),

(ARG2, np#1), (ARG1, np#2)]
(g1, r1, w1) = (subj, ARG0, plunge/NN)
(g2, r2, w2) = (np, ARG0, today/NN)
(g3, r3, w3) = (np#1, ARG2, they/PRP )
(g4, r4, w4) = (np#2, ARG1, test/NN)

Figure 1: An example sentence taken from the Penn Treebank
(wsj 2417), the verb instance extracted from it, and the values
of the model variables for this instance. The semantic roles
listed are taken from the PropBank annotation, but are not
observed in the unsupervised training method.

tax. We define a small set ofsyntactic relations,
listed in Table 1, each of which describes a possi-
ble syntactic relationship between the verb and a
dependent. Our goal was to choose a set that pro-
vides sufficient syntactic information for the se-
mantic role decision, while remaining accurately
computable from any reasonable parse tree using
simple deterministic rules. Our set does not in-
clude the relationsdirect objector indirect object,
since this distinction can not be made determin-
istically on the basis of syntactic structure alone;
instead, we opted to number the noun phrase (np),
complement clause (cl, xcl), and adjectival com-
plements (acomp) appearing in an unbroken se-
quence directly after the verb, since this is suffi-
cient to capture the necessary syntactic informa-
tion. The syntactic relations used in our experi-
ments are computed from the typed dependencies
returned by the Stanford Parser (Klein and Man-
ning, 2003).

We also must choose a representation for se-
mantic roles. We allow each verb a small fixed
number of roles, in the manner similar to Prop-
Bank’s ARG0 . . . ARG5. We also designate a
single adjunct role which is shared by all verbs,
similar to PropBank’sARGM role. We say “sim-
ilar” because our system never observes the Prop-
Bank roles (or any human annotated semantic
roles) and so cannot possibly use the same names.
Our system assigns arbitrary integer names to the
roles it discovers, just as clustering systems give

2



1 ≤ j ≤ M

v

`

o

gj rj wj

Figure 2: A graphical representation of the verb linking
model, with example values for each variable. The rectangle
is aplate, indicating that the model contains multiple copies
of the variables shown within it: in this case, one for each
dependentj. Variables observed during learning are shaded.

arbitrary names to the clusters they discover.3

Given these definitions, we convert our parsed
corpora into a simple format: a set ofverb in-
stances, each of which represents an occurrence
of a verb in a sentence. A verb instance consists of
the base form (lemma) of the observed verb, and
for each dependent of the verb, the dependent’s
syntactic relation and head word (represented as
the base form with part of speech information). An
example Penn Treebank sentence, and the verb in-
stances extracted from it, are given in Figure 1.

3 Probabilistic Model

Our learning method is based on a structured prob-
abilistic model of the domain. A graphical repre-
sentation of the model is shown in Figure 2. The
model encodes a joint probability distribution over
the elements of a single verb instance, including
the verb type, the particular linking, and for each
dependent of the verb, its syntactic relation to the
verb, semantic role, and head word.

We begin by describing the generative process
to which our model corresponds, using as our run-
ning example the instance of the verbgiveshown
in Figure 1. We begin by generating the verb
lemmav, in this casegive. Conditioned on the

3In practice, while our system is not guaranteed to choose
role names that are consistent with PropBank, it often does
anyway, which is a consequence of the constrained form of
the linking model.

choice of verbgive, we next generate a linking
`, which defines both the set of core semantic
roles to be expressed, as well as the syntactic re-
lations that express them. In our example, we
sample the ditransitive linking̀ = {ARG0 →
subj,ARG1 → np#2, ARG2 → np#1}. Con-
ditioned on this choice of linking, we next gen-
erate anorderedlinking o, giving a final position
in the dependent list for each role and relation in
the linking `, while also optionally inserting one
or more adjunct roles. In our example, we gener-
ate the vectoro = [(ARG0, subj), (ARGM, ?),
(ARG2, np#1), (ARG1, np#2)]. In doing so
we’ve specified positions forARG0, ARG1, and
ARG2 and added one adjunct roleARGM in the
second position. Note that the length of the or-
dered linkingo is equal to the total number of de-
pendentsM of the verb instance. Now we iterate
through each of the dependents1 ≤ j ≤ M , gen-
erating each in turn. For the core arguments, the
semantic rolerj and syntactic relationgj are com-
pletely determined by the ordered linkingo, so it
remains only to sample the syntactic relation for
the adjunct role: here we sampleg2 = np. We
finish by sampling the head word of each depen-
dent, conditioned on the semantic role of that de-
pendent. In this example, we generate the head
words w1 = plunge/NN , w2 = today/NN ,
w3 = they/NN , andw4 = test/NN .

Before defining the model more formally, we
pause to justify some of the choices made in de-
signing the model. First, we chose to distinguish
between a verb’score argumentsand itsadjuncts.
While core arguments must be associated with a
semantic role that is verb specific (such as the pa-
tient role of increase: the rates in our example),
adjuncts are generated by a role that is verb inde-
pendent (such as the time of a generic event:last
month in our example). Linkings include map-
pings only for the core semantic roles, resulting in
a small, focused set of possible linkings for each
verb. A consequence of this choice is that we in-
troduce uncertainty between the choice of linking
and its realization in the dependent list, which we
represent with ordered linking variableo.4

We now present the model formally as a fac-
tored joint probability distribution. We factor the
joint probability distribution into a product of the

4An alternative modeling choice would have been to add a
state variable to each dependent, indicating which of the roles
in the linking have been “used up” by previous dependents.
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probabilities of each instance:

P(D) =

N∏

i=1

P(vi, `i, oi,gi, ri,wi)

where we assume there areN instances, and we
have used the vector notationg to indicate the vec-
tor of variablesgj for all values ofj (and similarly
for r and w). We then factor the probability of
each instance using the independencies shown in
Figure 2 as follows:

P(v, `, o,g, r,w) =

P(v)P(`|v)P(o|`)

M∏

j=1

P(gj |o)P(rj |o)P(wj |rj)

where we have assumed that there areM depen-
dents of this instance. The verbv is always ob-
served in our data, so we don’t need to define
P(v). The probability of generating the linking
given the verbP(`|v) is a multinomial over pos-
sible linkings.5 Next, the probability of a partic-
ular ordering of the linkingP(o|`) is determined
only by the number of adjunct dependents that are
added too. One pays a constant penalty for each
adjunct that is added to the dependent list, but oth-
erwise all orderings of the roles are equally likely.
Formally, the orderingo is distributed according
to the geometric distribution of the difference be-
tween its length and the length of`, with constant
parameterλ.6 Next,P(gj |o) andP(rj|o) are com-
pletely deterministic for core roles: the syntactic
relation and semantic role for positionj are speci-
fied in the orderingo. For adjunct roles, we gener-
ategj from a multinomial over syntactic relations.
Finally, the word given the roleP(wj |rj) is dis-
tributed as a multinomial over words.

To allow for labeling elements of verb instances
(verb types, syntactic relations, and head words) at
test time that were unobserved in the training set,
we must smooth our learned distributions. We use
Bayesian smoothing: all of the learned distribu-
tions are multinomials, so we addpsuedocounts, a
generalization of the well-knownadd-one smooth-
ing technique. Formally, this corresponds to a
Bayesian model in which the parameters of these
multinomial distributions are themselves random

5The way in which we estimate this multinomial from
data is more complex, and is described in the next section.

6While this may seem simplistic, recall that all of the im-
portant ordering information is captured by the syntactic re-
lations.

Role Linking Operations
ARG0 Add ARG0 to subj
ARG1 No operation

Add ARG1 to np#1
Add ARG1 to cl#1
Add ARG1 to xcl#1
Add ARG1 to acomp#1
Add ARG1 to subj, replacingARG0

ARG2 No operation
Add ARG2 to prepx, ∀x
Add ARG2 to np#1, shiftingARG1 to np#2
Add ARG2 to np#1, shiftingARG1 to prepwith

ARG3 No operation
Add ARG3 to prepx, ∀x
Add ARG3 to cl#n, 1 < n < 3

ARG4 No operation
Add ARG4 to prepx, ∀x

Table 2: The set of linking construction operations. To con-
struct a linking, select one operation from each list.

variables, distributed according to a Dirichlet dis-
tribution.7

3.1 Linking Model

The most straightforward choice of a distribution
for P(`|v) would be a multinomial over all pos-
sible linkings. There are two problems with this
simple implementation, both stemming from the
fact that the space of possible linkings is large
(there areO(|G+1||R|), whereG is the set of syn-
tactic relations andR is the set of semantic roles).
First, most learning algorithms become intractable
when they are required to represent uncertainty
over such a large space. Second, the large space
of linkings yields a large space of possible mod-
els, making learning more difficult.

As a consequence, we have two objectives when
designingP(`|v): (1) constrain the set of linkings
for each verb to a set of tractable size which are
linguistically plausible, and (2) facilitate the con-
struction of a structured prior distribution over this
set, which gives higher weight to linkings that are
known to be more common. Our solution is to
model thederivationof each linking as a sequence
of construction operations, an idea which is sim-
ilar in spirit to that used by Eisner (2001). Each
operation adds a new role to the linking, possibly
replacing or displacing one of the existing roles.
The complete list of linking operations is given in
Table 2. To build a linking we select one opera-
tion from each list; the presence of a no-operation
for each role means that a linking doesn’t have to
include all roles. Note that this linking derivation
process is not shown in Figure 2, since it is possi-

7For a more detailed presentation of Bayesian methods,
see Gelman et al. (2003).
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ble to compile the resulting distribution over link-
ings into the simpler multinomialP(`|v).

More formally, we factorP(`|v) as follows,
wherec is the vector of construction operations
used to build̀ :

P(`|v) =
∑

c

P(`|c)P(c|v)

=
∑

c

|R|∏

i=1

P(ci|v)

Note that in the second step we drop the term
P(`|c) since it is always 1 (a sequence of opera-
tions leads deterministically to a linking).

Given this derivation process, it is easy to cre-
ated a structured prior: we just placepseudocounts
on the operations that are likelya priori across
all verbs. We place high pseudocounts on the
no-operations (which preserve simple intransitive
and transitive structure) and low pseudocounts on
all the rest. Note that the use of this structured
prior has another desired side effect: it breaks the
symmetry of the role names (because some link-
ings more likely than others) which encourages the
model to adhere to canonical role naming conven-
tions, at least for commonly occurring roles like
ARG0 andARG1.

The design of the linking model does incorpo-
rate prior knowledge about the structure of verb
linkings and diathesis alternations. Indeed, the
linking model provides a weak form of Univer-
sal Grammar, encoding the kinds of linking pat-
terns that are known to occur in human languages.
While not fully developed as a model of cross-
linguistic verb argument realization, the model is
not very English specific. It provides a not-very-
constrained theory of alternations that captures
common cross-linguistic patterns. Finally, though
we do encode knowledge in the form of the model
structure and associated prior distributions, note
that we do not provide any verb-specific knowl-
edge; this is left to the learning algorithm.

4 Learning

Our goal in learning is to find parameter settings of
our model which are likely given the data. Using
θ to represent the vector of all model parameters,
if our data were fully observed, we could express

our learning problem as

θ∗ = argmax
θ

P(θ|D) = argmax
θ

N∏

i=1

P(di; θ)

= argmax
θ

N∏

i=1

P(vi, `i, oi,gi, ri,wi; θ)

Because of the factorization of the joint distri-
bution, this learning task would be trivial, com-
putable in closed form from relative frequency
counts. Unfortunately, in our training set the vari-
ables̀ , o andr are hidden (not observed), leaving
us with a much harder optimization problem:

θ∗ = argmax
θ

N∏

i=0

P(vi,gi,wi; θ)

= argmax
θ

N∏

i=0

∑

`i,oi,ri

P(vi, `i, oi,gi, ri,wi; θ)

In other words, we want model parameters which
maximize the expected likelihood of the observed
data, where the expectation is taken over the
hidden variables for each instance. Although
it is intractable to find exact solutions to opti-
mization problems of this form, the Expectation-
Maximization (EM) algorithm is a greedy search
procedure over the parameter space which is guar-
anteed to increase the expected likelihood, and
thus find a local maximum of the function.

While the M-step is clearly trivial, the E-step
at first looks more complex: there are three hid-
den variables for each instance,`, o, andr, each of
which can take an exponential number of values.
Note however, that conditioned on the observed
set of syntactic relationsg, the variables̀ ando
are completely determined by a choice of rolesr

for each dependent. So to represent uncertainty
over these variables, we need only to represent a
distribution over possible role vectorsr. Though
in the worst case the set of possible role vectors is
still exponential, we only need role vectors that are
consistent with both the observed list of syntactic
relations and a linking that can be generated by
the construction operations. Empirically the num-
ber of linkings is small (less than 50) for each of
the observed instances in our data sets.

Then for each instance we construct a condi-
tional probability distribution over this set, which
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is computable in terms of the model parameters:

P(r, `r, or, |v,g,w) ∝

P(`r|v)P(or|`r)

M∏

j=1

P(gj |or)P(rj |or)P(wj |rj)

We have denoted as̀r andor the values of̀ and
o that are determined by each choice ofr.

To make EM work, there are a few additional
subtleties. First, because EM is a hill-climbing al-
gorithm, we must initialize it to a point in parame-
ter space with slope (and without symmetries). We
do so by adding a small amount of noise: for each
dependent of each verb, we add a fractional count
of 10−6 to the word distribution of a semantic role
selected at random. Second, we must choose when
to stop EM: we run until the relative change in data
log likelihood is less than10−4.

A separate but important question is how well
EM works for finding “good” models in the space
of possible parameter settings. “Good” models are
ones which list linkings for each verb that corre-
spond to linguists’ judgments about verb linking
behavior. Recall that EM is guaranteed only to
find a local maximum of the data likelihood func-
tion. There are two reasons why a particular maxi-
mum might not be a “good” model. First, because
it is a greedy procedure, EM might get stuck in lo-
cal maxima, and be unable to find other points in
the space that have much higher data likelihood.
We take the traditional approach to this problem,
which is to use random restarts; however empir-
ically there is very little variance over runs. A
deeper problem is that data likelihood may not cor-
respond well to a linguist’s assessment of model
quality. As evidence that this is not the case, we
have observed a strong correlation between data
log likelihood and labeling accuracy.

5 Datasets and Evaluation

We train our models with verb instances ex-
tracted from three parsed corpora: (1) the Wall
Street Journal section of the Penn Treebank (PTB),
which was parsed by human annotators (Marcus et
al., 1993), (2) the Brown Laboratory for Linguis-
tic Information Processing corpus of Wall Street
Journal text (BLLIP), which was parsed automat-
ically by the Charniak parser (Charniak, 2000),
and (3) the Gigaword corpus of raw newswire text
(GW), which we parsed ourselves with the Stan-
ford parser. In all cases, when training a model,

Coarse Roles Core Roles
Sec. 23 P R F1 P R F1
ID Only .957 .802 .873 .944 .843 .891
CL Only
Baseline .856 .856 .856 .975 .820 .886
PTB Tr. .889 .889 .889 .928 .898 .911
1000 Tr. .897 .897 .897 .947 .898 .920

ID+CL
Baseline .819 .686 .747 .920 .691 .789
PTB Tr. .851 .712 .776 .876 .757 .812
1000 Tr. .859 .719 .783 .894 .757 .820

Sec. 24 P R F1 P R F1
ID Only .954 .788 .863 .941 .825 .879
CL Only
Baseline .844 .844 .844 .980 .810 .882
PTB Tr. .893 .893 .893 .940 .903 .920
1000 Tr. .899 .899 .899 .956 .898 .925

ID+CL
Baseline .804 .665 .729 .922 .668 .775
PTB Tr. .852 .704 .771 .885 .745 .809
1000 Tr. .858 .709 .776 .900 .741 .813

Table 3: Summary of results on labeling verb instances
in PropBank Section 23 and Section 24 for semantic role.
Learned results are averaged over 5 runs.

we specify a set of target verb types (e.g., the ones
in the test set), and build a training set by adding a
fixed number of instances of each verb type from
the PTB, BLLIP, and GW data sets, in that order.

For the semantic role labeling evaluation, we
use our system to label the dependents of unseen
verb instances for semantic role. We use the sen-
tences in PTB section 23 for testing, and PTB sec-
tion 24 for development. The development set
consists of 2507 verb instances and 833 different
verb types, and the test set consists of 4269 verb
instances and 1099 different verb types. Free pa-
rameters were tuned on the development set, and
the test set was only used for final experiments.

Because we do not observe the gold standard
semantic roles at training time, we must choose
an alignment between the guessed labels and the
gold labels. We do so optimistically, by choos-
ing the gold label for each guessed label which
maximizes the number of correct guesses. This is
a well known approach to evaluation in unsuper-
vised learning: when it is used to compute accu-
racy, the resulting metric is sometimes calledclus-
ter purity. While this amounts to “peeking” at the
answers before evaluation, the amount of human
knowledge that is given to the system is small: it
corresponds to the effort required to hand assign a
“name” to each label that the system proposes.

As is customary, we divide the problem into
two subtasks: identification (ID) and classifica-
tion (CL). In the identification task, we identify
the set of constituents which fill some role for a
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Figure 3: Test set F1 as a function of training set size.

target verb: in our system we use simple rules
to extract dependents of the target verb and their
grammatical relations. In the classification task,
the identified constituents are labeled for their se-
mantic role by the learned probabilistic model. We
report results on two variants of the basic classifi-
cation task:coarse roles, in which all of the ad-
junct roles are collapsed to a singleARGM role
(Toutanova, 2005), andcore roles, in which we
evaluate performance on the core semantic roles
only (thus collapsing theARGM and unlabeled
categories). We do not report results on theall
rolestask, since our current model does not distin-
guish between different types of adjunct roles. For
each task we report precision, recall, and F1.

6 Results

The semantic role labeling results are summarized
in Table 3. Our performance on the identification
task is high precision but low recall, as one would
expect from a rule-based system. The recall er-
rors stem from constituents which are considered
to fill roles by PropBank, but which are not identi-
fied as dependents by the extraction rules (such as
those external to the verb phrase). The precision
errors stem from dependents which are found by
the rules, but are not marked by PropBank (such
as the expletive “it”).

In the classification task, we compare our sys-
tem to an informed baseline, which is computed
by labeling each dependent with a role that is a de-
terministic function of its syntactic relation. The
syntactic relationsubj is assumed to beARG0,
and the syntactic relationsnp#1, cl#1, xcl#1, and
acomp#1are mapped to roleARG1, and all other
dependents are mapped toARGM .

Our best system, trained with 1000 verb in-
stances per verb type (where available), gets an F1
of 0.897 on the coarse roles classification task on

Verb Learned Linkings
(4 F1)
give .57 {0=subj,1=np#2,2=np#1}
(+.436) .24 {0=subj,1=np#1}

.13 {0=subj,1=np#1,2=to}
work .45 {0=subj}
(+.206) .09 {0=subj,2=with}

.09 {0=subj,2=for}

.09 {0=subj,2=on}
pay .47 {0=subj,1=np#1}
(+.178) .21 {0=subj,1=np#1,2=for}

.10 {0=subj}

.07 {0=subj,1=np#2,2=np#1}
look .28 {0=subj}
(+.170) .18 {0=subj,2=at}

.16 {0=subj,2=for}
rise .25 {0=subj,1=np#1,2=to}
(+.160) .17 {0=subj,1=np#1}

.14 {0=subj,2=to}

.12 {0=subj,1=np#1,2=to,3=from}

Table 4: Learned linking models for the most improved verbs.
To conserve space,ARG0 is abbreviated as0, andprep to is
abbreviated asto.

the test set (or 0.783 on the combined identifica-
tion and classification task), compared with an F1
of 0.856 for the baseline (or 0.747 on the com-
bined task), thus reducing 28.5% of the relative
error. Similarly, this system reduces 35% of the
error on the coarse roles task on development set.

To get a better sense of what is and is not be-
ing learned by the model, we compare the perfor-
mance of individual verbs in both the baseline sys-
tem and our best learned system. For this analysis,
we have restricted focus to verbs for which there
are at least 10 evaluation examples, to yield a re-
liable estimate of performance. Of these, 27 verbs
have increased F1 measure, 17 are unchanged, and
8 verbs have decreased F1. We show learned link-
ings for the 5 verbs which are most and least im-
proved in Tables 4 and 5.

The improvement in the verbgive comes from
the model’s learning the ditransitive alternation.
The improvements inwork, pay, and look stem
from the model’s recognition that the oblique de-
pendents are generated by a core semantic role.
Unfortunately, in some cases it lumps different
roles together, so the gains are not as large as
they could be. The reason for this conservatism
is the relatively high level of smoothing in the
word distribution relative to the linking distribu-
tion. These smoothing parameters, set to opti-
mize performance on the development set, prevent
errors of spurious role formation on other verbs.
The improvement in the verbrise stems from the
model correctly assigning separate roles each for
the amount risen, the source, and the destination.
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Verb Learned Linkings
(4 F1)
help .52 {0=subj,1=cl#1}
(−.039) .25 {0=subj,1=xcl#1}

.16 {0=subj,1=np#1}
follow .81 {0=subj,1=np#1}
(−.056) .13 {0=subj,1=cl#1}
make .64 {0=subj,1=np#1}
(−.133) .23 {0=subj,1=cl#1}
leave .57 {0=subj,1=np#1}
(−.138) .18 {0=subj}

.12 {0=subj,1=cl#1}
close .24 {0=subj,2=in,3=at}
(−.400) .18 {0=subj,3=at}

.11 {0=subj,2=in}

.10 {0=subj,1=np#1,2=in,3=at}

Table 5: Learned linking models for the least improved verbs.
To conserve space,ARG0 is abbreviated as0, andprep to is
abbreviated asto.

The poor performance on the verbclosestems
from its idiosyncratic usage in the WSJ corpus;
a typical use isIn national trading, SFE shares
closed yesterday at 31.25 cents a share, up 6.25
cents(wsj 0229). Our unsupervised system finds
that the best explanation of this frequent use pat-
tern is to give special roles to the temporal (yes-
terday), locative (at 31.25 cents), and manner (in
trading) modifiers, none of which are recognized
as roles by PropBank. The decrease in perfor-
mance onleavestems from its inability to distin-
guish between its two common senses (left Mary
with the gift vs. left Mary alone), and the fact
that PropBank tags Mary asARG1 in the first in-
stance, butARG2 (beneficiary) in the second. The
errors inmakeandhelpresult from the fact that in
a phrase likemake them unhappythe Penn Tree-
bank chooses to wrapthem unhappyin a single
S, so that our rules show only a single dependent
following the verb: a complement clause (cl#1)
with head wordunhappy. Unfortunately, our sys-
tem calls this clauseARG1 (omplement clauses
following the verb are usuallyARG1), but Prop-
Bank calls itARG2. The errors in the verbfollow
also stem from a sense confusion:the second fol-
lowed the firstvs. he followed the principles.

7 Conclusion

We have demonstrated that it is possible to learn a
statistical model of verb semantic argument struc-
ture directly from unannotated text. More work
needs to be done to resolve particular classes of
errors; for example, the one reported above for the
verb work. It is perhaps understandable that the
dependents occurring in the obliqueswith andfor
are put in the same role (the head words should re-

fer topeople), but it is harder to accept that depen-
dents occurring in the obliqueonare also grouped
into the same role (the head words of these should
refer totasks). It seems plausible that measures to
combat word sparsity might help to differentiate
these roles: backing-off to word classes, or even
just training with much more data. Nevertheless,
semantic role labeling performance improvements
demonstrate that on average the technique is learn-
ing verb linking models that are correct.
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Abstract

In this paper we introduce an empirical
approach to the semantic interpretation of
superlative adjectives. We present a cor-
pus annotated for superlatives and pro-
pose an interpretation algorithm that uses
a wide-coverage parser and produces se-
mantic representations. We achieve F-
scores between 0.84 and 0.91 for detecting
attributive superlatives and an accuracy in
the range of 0.69–0.84 for determining the
correct comparison set. As far as we are
aware, this is the first automated approach
to superlatives for open-domain texts and
questions.

1 Introduction

Although superlative noun phrases (the nation’s
largest milk producer, the most complex arms-
control talks ever attempted, etc.) received consid-
erable attention in formal linguistics (Szabolcsi,
1986; Gawron, 1995; Heim, 1999; Farkas and
Kiss, 2000), this interest is not mirrored in com-
putational linguistics and NLP. On the one hand,
this seems remarkable, since superlatives are fairly
frequently found in natural language. On the other
hand, this is probably not that surprising, given
that their semantic complexity requires deep lin-
guistic analysis that most wide-coverage NLP sys-
tems do not provide.

But even if NLP systems incorporated linguistic
insights for the automatic processing of superla-
tives, it might not be of help: the formal semantics
literature on superlatives focuses on linguistically
challenging examples (many of them artificially
constructed) which might however rarely occur in
real data and would therefore have little impact

on the performance of NLP systems. Indeed, no
corpus-based studies have been conducted to get a
comprehensive picture of the variety of configura-
tions superlatives exhibit, and their distribution in
real occurring data.

In this paper we describe our work on the anal-
ysis of superlative adjectives, which is empiri-
cally grounded and is implemented into an exist-
ing wide-coverage text understanding system. To
get an overview of the behaviour of superlatives
in text, we annotated newswire data, as well as
queries obtained from search engines logs. On
the basis of this corpus study, we propose, imple-
ment and evaluate a syntactic and semantic analy-
sis for superlatives. To the best of our knowledge,
this is the first automated approach to the interpre-
tation of superlatives for open-domain texts that
is grounded on actual corpus-evidence and thor-
oughly evaluated. Some obvious applications that
would benefit from this work are question answer-
ing, recognition of entailment, and more generally
relation extraction systems.

2 Syntax and Semantics of Superlatives

2.1 Surface Forms

In English, superlative adjectives appear in a large
variety of syntactic and morphological forms.
One-syllable adjectives and some two-syllable ad-
jectives are directly inflected with the suffix “-est”.
Some words of two syllables and all words of three
or more syllables are instead introduced by “most”
(or “least”). Superlatives can be modified by ordi-
nals, cardinals or adverbs, such as intensifiers or
modals, and are normally preceeded by the defi-
nite article or a possessive. The examples below
illustrate the wide variety and uses of superlative
adjectives.
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the tallest woman

AS Roma’s quickest player

the Big Board’s most respected floor traders

France’s third-largest chemical group

the most-recent wave of friendly takeovers

the two largest competitors

the the southern-most tip of England

its lowest possible prices

Superlative adjectives can manifest themselves
in predicative (“Mia is the tallest.”) or attributive
form (“the tallest woman”). Furthermore, there
are superlative adverbs, such as “most recently”,
and idiomatic usages.

2.2 The Comparison Set

It is well known that superlatives can be analysed
in terms of comparative constructions (Szabolcsi,
1986; Alshawi, 1992; Gawron, 1995; Heim, 1999;
Farkas and Kiss, 2000). Accordingly, “the oldest
character” can be interpreted as the character such
that there is no older character, in the given con-
text. Therefore, a correct semantic interpretation
of the superlative depends on the correct charac-
terisation of the comparison set. The comparison
set denotes the set of entities that are compared to
each other with respect to a certain dimension (see
Section 2.3). In “the oldest character in the book”,
the members of the comparison set are characters
in the book, and the dimension of comparison is
age.

The computation of the comparison set is com-
plicated by complex syntactic structure involving
the superlative. The presence of possessives for
example, as in “AS Roma’s quickest player”, ex-
tends the comparison set to players of AS Roma.
Prepositional phrases (PPs), gerunds, and relative
clauses introduce additional complexity. PPs that
are attached to the head noun of the superlative are
part of the comparison set — those that modify
the entire NP are not. Similarly, restrictive rel-
ative clause are included in the comparison set,
non-restrictive aren’t.

We illustrate this complexity in the following
examples, taken from the Wall Street Journal,
where the comparison set is underlined:

The oldest designer got to work on the dash-
board, she recalls. (WSJ02)

A spokesman for Borden Inc., the nation’s
largest milk producer, concedes Goya may be on
to something. (WSJ02)

Right now, the largest loan the FHA can
insure in high-cost housing markets is $101,250.
(WSJ03)

With newspapers being the largest single
component of solid waste in our landfills ...
(WSJ02)

... questions being raised by what gen-
erally are considered the most complex
arms-control talks ever attempted. (WSJ02)

Besides syntactic ambiguities, the determina-
tion of the comparison set can be further compli-
cated by semantic ambiguities. Some occurrences
of superlatives licence a so-called “comparitive”
reading, as in the following example discussed in
the formal semantics literature (Heim, 1999; Sz-
abolcsi, 1986):

John climbed the highest mountain.

Here, in the standard interpretion, the moun-
tain referred to is the highest available in the con-
text. However, another interpretation might arise
in a situation where several people climbed several
mountains, and John climbed a mountain higher
than anyone else did, but not necessarily the high-
est of all mountains in the context. Our corpus
study reveals that these readings are rare, although
they tend to be more frequent in questions than in
newspaper texts.

2.3 Dimension
Part of the task of semantically interpretating su-
perlative adjectives is the selection of the dimen-
sion on which entities are compared. In “the
highest mountain” we compare mountains with re-
spect to the dimension height, in “the best paper”
we compare papers with respect to the dimension
quality, and so on. A well-known problem is that
some adjectives can be ambiguous or vague in
choosing their dimension. Detecting the appropri-
ate dimension is not covered in this paper, but is
orthogonal to the analysis we provide.

2.4 Superlatives and Entailment
Superlatives exhibit a non-trivial semantics. Some
examples of textual entailment make this very ev-
ident. Consider the contrasts in the following en-
tailment tests with indefinite and universally quan-
tified noun phrases:

I bought a blue car |= I bought a car
I bought a car 6|= I bought a blue car

I bought every blue car 6|= I bought every car
I bought every car |= I bought every blue car
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Observe that the directions of entailments are
mirrorred. Now consider a similar test with su-
perlatives, where the entailments fail in both di-
rections:

I bought the cheapest blue car 6|= I bought the cheapest car
I bought the cheapest car 6|= I bought the cheapest blue car.

These entailment tests underline the point that
the meaning of superlatives is rather complicated,
and that a shallow semantic representation, say
λx.[cheapest(x) ∧ car(x)] for “cheapest car”, sim-
ply won’t suffice. A semantic represention captur-
ing the meaning of a superlative requires a more
sophisticated analysis. In particular, it is impor-
tant to explicitly represent the comparison set of
a superlative. In “the cheapest car”, the compar-
ison set is formed by the set of cars, whereas in
“the cheapest blue car”, the comparison set is the
set of blue cars. Semantically, we can represent
“cheapest blue car” as follows, where the compar-
ison set is made explicit in the antecedent of the
conditional:

λx.[car(x) ∧ blue(x) ∧
∀y((car(y) ∧ blue(y) ∧ x 6=y) → cheaper(x,y))]

Paraphrased in English, this stipulates that some
blue car is cheaper than any other blue car. A
meaning representation like this will logically pre-
dict the correct entailment relations for superla-
tives.

3 Annotated Corpus of Superlatives

In order to develop and evaluate our system we
manually annotated a collection of newspaper arti-
cle and questions with occurrences of superlatives.
The design of the corpus and its characteristics are
described in this section.

3.1 Classification and Annotation Scheme

Instances of superlatives are identified in text and
classified into one of four possible classes: at-
tributive, predicative, adverbial, or idiomatic:

its rates will be among the highest (predicative)

the strongest dividend growth (attributive)

free to do the task most quickly (adverbial)

who won the TONY for best featured actor? (idiom)

For all cases, we annotate the span of the su-
perlative adjective in terms of the position of the
tokens in the sentence. For instance, in “its1 rates2

will3 be4 among5 the6 highest7”, the superlative
span would be 7–7.

Additional information is encoded for the at-
tributive case: type of determiner (possessive, def-
inite, bare, demonstrative, quantifier), number (sg,
pl, mass), cardinality (yes, no), modification (ad-
jective, ordinal, intensifier, none). Table 1 shows
some examples from the WSJ with annotation val-
ues.

Not included in this study are adjectives such
as “next”, “past”, “last”, nor the ordinal “first”,
although they somewhat resemble superlatives in
their semantics. Also excluded are adjectives that
lexicalise a superlative meaning but are not su-
perlatives morphologically, like “main”, “princi-
pal”, and the like. For etymological reasons we
however include “foremost” and “uttermost.”

3.2 Data and Annotation

Our corpus consists of a collection of newswire
articles from the Wall Street Journal (Sections 00,
01, 02, 03, 04, 10, and 15) and the Glasgow Her-
ald (GH950110 from the CLEF evaluation forum),
and a large set of questions from the TREC QA
evaluation exercise (years 2002 and 2003) and
natural language queries submitted to the Excite
search engine (Jansen and Spink, 2000). The data
was automatically tokenised, but all typos and
extra-grammaticalities were preserved. The cor-
pus was split into a development set used for tun-
ing the system and a test set for evaluation. The
size of each sub-corpus is shown in Table 2.

Table 2: Size of each data source (in number of
sentences/questions)

source dev test total
WSJ 8,058 6,468 14,526
GH — 2,553 2,553
TREC 1,025 — 1,025
Excite — 67,140 67,140
total 9,083 76,161 85,244

The annotation was performed by two trained
linguists. One section of the WSJ was anno-
tated by both annotators independently to calcu-
late inter-annotator agreement. All other docu-
ments were first annotated by one judge and then
checked by the second, in order to ensure max-
imum correctness. All disagreements were dis-
cussed and resolved for the creation of a gold stan-
dard corpus.

Inter-annotator agreement was assessed mainly
using f-score and percentage agreement as well as
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Table 1: Annotation examples of superlative adjectives
example sup span det num car mod comp set
The third-largest thrift institution in Puerto Rico
also [. . . ]

2–2 def sg no ord 3–7

The Agriculture Department reported that feedlots
in the 13 biggest ranch states held [. . . ]

9–10 def pl yes no 11–12

The failed takeover would have given UAL em-
ployees 75 % voting control of the nation ’s
second-largest airline [. . . ]

17–17 pos sg no ord 14–18

the kappa statistics (K), where applicable (Car-
letta, 1996). In using f-score, we arbitrarily take
one of the annotators’ decisions (A) as gold stan-
dard and compare them with the other annotator’s
decisions (B). Note that here f-score is symmetric,
since precision(A,B) = recall(B,A), and (balanced)
f-score is the harmonic mean of precision and re-
call (Tjong Kim Sang, 2002; Hachey et al., 2005,
see also Section 5).

We evaluated three levels of agreement on a
sample of 1967 sentences (one full WSJ section).
The first level concerns superlative detection: to
what extent different human judges can agree on
what constitutes a superlative. For this task, f-
score was measured at 0.963 with a total of 79 su-
perlative phrases agreed upon.

The second level of agreement is relative to type
identification (attributive, predicative, adverbial,
idiomatic), and is only calculated on the subset
of cases both annotators recognised as superlatives
(79 instances, as mentioned). The overall f-score
for the classification task is 0.974, with 77 cases
where both annotators assigned the same type to
a superlative phrase. We also assessed agreement
for each class, and the attributive type resulted the
most reliable with an f-score of 1 (total agree-
ment on 64 cases), whereas there was some dis-
agreement in classifying predicative and adverbial
cases (0.9 and 0.8 f-score, respectively). Idiomatic
uses where not detected in this portion of the data.
To assess this classification task we also used the
kappa statistics which yielded KCo=0.922 (fol-
lowing (Eugenio and Glass, 2004) we report K
as KCo, indicating that we calculate K à la Co-
hen (Cohen, 1960). KCo over 0.9 is considered to
signal very good agreement (Krippendorff, 1980).

The third and last level of agreement deals with
the span of the comparison set and only concerns
attributive cases (64 out of 79). Percentage agree-
ment was used since this is not a classification task

and was measured at 95.31%.
The agreement results show that the task ap-

pears quite easy to perform for linguists. Despite
the limited number of instances compared, this has
also emerged from the annotators’ perception of
the difficulty of the task for humans.

3.3 Distribution

The gold standard corpus comprises a total of
3,045 superlatives, which roughly amounts to one
superlative in every 25 sentences/questions. The
overwhelming majority of superlatives are attribu-
tive (89.1%), and only a few are used in a pred-
icative way (6.9%), adverbially (3.0%), or in id-
iomatic expressions (0.9%).1 Table 3 shows the
detailed distribution according to data source and
experimental sets. Although the corpus also in-
cludes annotation about determination, modifica-
tion, grammatical number, and cardinality of at-
tributive superlatives (see Section 3.1), this infor-
mation is not used by the system described in this
paper.

Table 3: Distribution of superlative types in the
development and evaluation sets.

dev test
type WSJ TREC WSJ GH Excite total
att 240 43 218 68 2,145 2,714
pre 40 3 26 17 125 211
adv 17 2 22 9 41 91
idi 6 5 1 2 15 29
total 303 53 267 96 2,326 3,045

4 Automatic Analysis of Superlatives

The system that we use to analyse superlatives is
based on two linguistic formalisms: Combinatory
Categorial Grammar (CCG), for a theory of syn-
tax; and Discourse Representation Theory (DRT)

1Percentages are rounded to the first decimal and do not
necessarily sum up to 100%.
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for a theory of semantics. In this section we will il-
lustrate how we extend these theories to deal with
superlatives and how we implemented this into a
working system.

4.1 Combinatory Categorial Grammar
(CCG)

CCG is a lexicalised theory of grammar (Steed-
man, 2001). We used Clark & Curran’s wide-
coverage statistical parser (Clark and Curran,
2004) trained on CCG-bank, which in turn is de-
rived from the Penn-Treebank (Hockenmaier and
Steedman, 2002). In CCG-bank, the majority of
superlative adjective of cases are analysed as fol-
lows:

the tallest woman

NP/N N/N N
N

NP

most devastating droughts

(N/N)/(N/N) N/N N
N/N

N

third largest bank

N/N (N/N)\(N/N) N
N/N

N

Clark & Curran’s parser outputs besides a CCG
derivation of the input sentence also a part-of-
speech (POS) tag and a lemmatised form for each
input token. To recognise attributive superla-
tives in the output of the parser, we look both
at the POS tag and the CCG-category assigned
to a word. Words with POS-tag JJS and CCG-
category N/N, (N/N)/(N/N), or (N/N)\(N/N) are
considered attributive superlatives adjectives, and
so are the words “most” and “least” with CCG cat-
egory (N/N)/(N/N).

However, most hyphenated superlatives are not
recognised by the parser as JJ instead of JJS, and
are corrected in a post-processing step.2 Examples
that fall in this category are “most-recent wave”
and “third-highest”.

4.2 Discourse Representation Theory (DRT)
The output of the parser, a CCG derivation of the
input sentence, is used to construct a Discourse
Representation Structure (DRS, the semantic rep-
resentation proposed by DRT (Kamp and Reyle,

2This is due to the fact that the Penn-Treebank annotation
guidelines prescribe that all hyphenated adjectives ought to
be tagged as JJ.

1993)). We follow (Bos et al., 2004; Bos, 2005) in
automatically building semantic representation on
the basis of CCG derivations in a compositional
fashion. We briefly summarise the approach here.

The semantic representation for a word is deter-
mined by its CCG category, POS-tag, and lemma.
Consider the following lexical entries:

the: λp.λq.(
x

;p(x);q(x))

tallest: λp.λx.( (
y

y 6=x
;p(y))⇒

taller(x,y)
;p(x))

man: λx.
man(x)

These lexical entries are combined in a compo-
sitional fashion following the CCG derivation, us-
ing the λ-calculus as a glue language:

tallest man: λx.
man(x)

y

y6=x
man(y)

⇒
taller(x,y)

the tallest man: λq.(

x

man(x)
y

y6=x
man(y)

⇒
taller(x,y)

;q(x))

In this way DRSs can be produced in a robust
way, achieving high-coverage. An example output
representation of the complete system is shown in
Figure 1.

As is often the case, the output of the parser is
not always what one needs to construct a meaning-
ful semantic representation. There are two cases
where we alter the CCG derivation output by the
parser in order to improve the resulting DRSs. The
first case concerns modifiers following a superla-
tive construction, that are attached to the NP node
rather than N. A case in point is

... the largest toxicology lab in New
England ...

where the PP in New England has the CCG cate-
gory NP\NP rather than N\N. This would result
in a comparison set containing of toxicology labs,
rather than a set toxicology labs in New England.

The second case are possessive NPs preceding
a superlative construction. An example here is

... Jaguar’s largest shareholder ...
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_______________________________________________
| x0 x1 x2 x3 x4 x5 x6 |
|-----------------------------------------------|
| acquisition(x1) |
| nn(x0,x1) |
| named(x0,georgia-pacific,nam) |
| named(x2,nekoosa,loc) |
| of(x1,x2) |
| company(x5) |
| nn(x3,x5) |
| forest-product(x3) |
| nn(x4,x5) |
| named(x4,us,loc) |
| ____________________ ________________ |
| | x7 x8 x9 | | | |
| |--------------------| |----------------| |
| | company(x9) | ==> | largest(x5,x9) | |
| | nn(x7,x9) | |________________| |
| | forest-product(x7) | |
| | nn(x8,x9) | |
| | named(x8,us,loc) | |
| | _________ | |
| | | | | |
| | __ |---------| | |
| | | | x5 = x9 | | |
| | |_________| | |
| |____________________| |
| create(x6) |
| agent(x6,x1) |
| patient(x6,x5) |
| event(x6) |
|_______________________________________________|

Figure 1: Example DRS output

where a correct interpretation of the superlative
requires a comparison set of shareholders from
Jaguar, rather than just any shareholder. However,
the parser outputs a derivation where “largest” is
combined with “shareholder”, and then with the
possessive construction, yielding the wrong se-
mantic interpretation. To deal with this, we anal-
yse possessives that interact with the superlative as
follows:

Rome ’s oldest church
NP ((NP/N)/(N/N)\NP N/N N

(NP/N)/(N/N)
NP/N
NP

This analysis yields the correct comparison set for
superlative that follow a possessive noun phrase,
given the following lexical semantics for the geni-
tive:

λn.λS.λp.λq.(
u

;S(λx.(p(x);n(λy.
of(y,x)

)(u);q(u))))

For both cases, we apply some simple post-
processing rules to the output of the parser to ob-
tain the required derivations. The effect of these
rules is reported in the next section, where we as-
sess the accuracy of the semantic representations
produced for superlatives by comparing the auto-
matic analysis with the gold standard.

5 Evaluation

The automatic analysis of superlatives we present
in the following experiments consists of two se-

quential tasks: superlative detection, and compar-
ison set determination.

The first task is concerned with finding a su-
perlative in text and its exact span (“largest”,
“most beautiful”, “10 biggest”). For a found string
to to be judged as correct, its whole span must cor-
respond to the gold standard. The task is evaluated
using precision (P), recall (R), and f-score (F), cal-
culated as follows:

P = correct assignments of c
total assignments of c

R = correct assignments of c
total corpus instances of c

F = 2PcRc
Pc+Rc

The second task is conditional on the first: once
a superlative is found, its comparison set must
also be identified (“rarest flower in New Zealand”,
“New York’s tallest building”, see Section 2.2). A
selected comparison set is evaluated as correct if
it corresponds exactly to the gold standard anno-
tation: partial matches are counted as wrong. As-
signments are evaluated using accuracy (number
of correct decisions made) only on the subset of
previously correctly identified superlatives.

For both tasks we developed simple baseline
systems based on part-of-speech tags, and a more
sophisticated linguistic analysis based on CCG
and DRT (i.e. the system described in Section 4).
In the remainder of the paper we refer to the latter
system as DLA (Deep Linguistic Analysis).

5.1 Superlative Detection
Baseline system For superlative detection we
generated a baseline that solely relies on part-of-
speech information. The data was tagged using
TnT (Brants, 2000), using a model trained on the
Wall Street Journal. In the WSJ tagset, superla-
tives can be marked in two different ways, depend-
ing on whether the adjective is inflected or modi-
fied by most/least. So, “largest”, for instance, is
tagged as JJS, whereas “most beautiful” is a se-
quence of RBS (most) and JJ (beautiful). We also
checked that they are followed by a common or
proper noun (NN.*), allowing one word to oc-
cur in between. To cover more complex cases,
we also considered pre-modification by adjectives
(JJ), and cardinals (CD). In summary, we matched
on sequences found by the following pattern:

[(CD || JJ)* (JJS || (RBS JJ)) * NN.*]

This rather simple baseline is capable of de-
tecting superlatives such as “100 biggest banks”,
“fourth largest investors”, and “most important
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element”, but will fail on expressions such as
“fastest growing segments” or “Scotland ’s lowest
permitted 1995-96 increase”.

DLA system For evaluation, we extrapolated
superlatives from the DRSs output by the system.
Each superlative introduces an implicational DRS
condition, but not all implicational DRS condi-
tions are introduced by superlatives. Hence, for
the purposes of this experiment superlative DRS
conditions were assigned a special mark. While
traversing the DRS, we use this mark to retrieve
superlative instances. In order to retrieve the orig-
inal string that gave rise to the superlative interpre-
tation, we exploit the meta information encoded in
each DRS about the relation between input tokens
and semantic information. The obtained string po-
sition can in turn be evaluated against the gold
standard.

Table 4 lists the results achieved by the base-
line system and the DLA system on the detection
task. The DLA system outperforms the baseline
system on precision in all sub-corpora. However,
the baseline achieves a higher recall on the Excite
queries. This is not entirely surprising given that
the coverage of the parser is between 90–95% on
unseen data. Moreover, Excite queries are often
ungrammatical, thus further affecting the perfor-
mance of parsing.

Table 4: Detection of Attributive Superlatives, re-
porting P (precision), R (Recall) and F-score, for
WSJ sections, extracts of the Glasgow Herald,
TREC questions, and Excite queries. D indicates
development data, T test data.

Baseline DLA
Corpus P R F P R F
WSJ (D) 0.93 0.86 0.89 0.96 0.90 0.93
WSJ (T) 0.91 0.83 0.87 0.95 0.87 0.91
GH (T) 0.80 0.76 0.78 0.87 0.81 0.84
TREC (D) 0.76 0.91 0.83 0.85 0.91 0.88
Excite (T) 0.92 0.92 0.92 0.97 0.84 0.90

5.2 Comparison Set Determination

Baseline For comparison set determination we
developed two baseline systems. Both use the
same match on sequences of part-of-speech tags
described above. For Baseline 1, the beginning
of the comparison set is the first word following
the superlative. The end of the comparison set is
the first word tagged as NN.* in that sequence (the

same word could be the beginning and end of the
comparison set, as it often happens).

The second baseline takes the first word after
the superlative as the beginning of the comparison
set, and the end of the sentence (or question) as the
end (excluding the final punctuation mark). We
expect this strategy to perform well on questions,
as the following examples show.
Where is the oldest synagogue in the United States?

What was the largest crowd to ever come see Michael Jordan?

This approach is obviously likely to generate com-
parison sets much wider than required.

More complex examples that neither baseline
can tackle involve possessives, since on the sur-
face the comparison set lies at both ends of the
superlative adjective:

The nation’s largest pension fund
the world’s most corrupt organizations

DLA 1 We first extrapolate superlatives from the
DRS output by the system (see procedure above).
Then, we exploit the semantic representation to se-
lect the comparison set: it is determined by the in-
formation encoded in the antecedent of the DRS-
conditional introduced by the superlative. Again,
we exploit meta information to reconstruct the
original span, and we match it against the gold
standard for evaluation.

DLA 2 DLA 2 builds on DLA 1, to which it adds
post-processing rules to the CCG derivation, i.e.
before the DRSs are constructed. This set of rules
deal with NP post-modification of the superlative
(see Section 4).

DLA 3 In this version we include a set of post-
processing rules that apply to the CCG derivation
to deal with possessives preceding the superlative
(see Section 4).

DLA 4 This is a combination of DLA 2 and
DLA 3. This system is clearly expected to per-
form best.

Results for both baseline systems and all versions
of DLA are shown in Table 5

On text documents, DLA 2/3/4 outperform the
baseline systems. DLA 4 achieves the best per-
formance, with an accuracy of 69–83%. On ques-
tions, however, DLA 4 competes with the base-
line: whereas it is better on TREC questions, it
performs worse on Excite questions. One of the
obvious reasons for this is that the parser’s model
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Table 5: Determination of Comparison Set of
Attributive Superlatives (Accuracy) for WSJ sec-
tions, extracts of the Glasgow Herald, TREC and
Excite questions. D indicates development data, T
test data.

Corpus Base 1 Base 2 DLA 1 DLA 2 DLA3 DLA 4
WSJ (D) 0.29 0.17 0.29 0.52 0.53 0.78
WSJ (T) 0.31 0.22 0.32 0.59 0.53 0.83
GH (T) 0.23 0.31 0.22 0.51 0.38 0.69
TREC (D) 0.10 0.69 0.13 0.69 0.23 0.82
Excite (T) 0.23 0.90 0.32 0.82 0.33 0.84

for questions was trained on TREC data. Addi-
tionally, as noted earlier, Excite questions are of-
ten ungrammatical and make parsing less likely to
succeed. However, the baseline system, by defini-
tion, does not output semantic representations, so
that its outcome is of little use for further reason-
ing, as required by question answering or general
information extraction systems.

6 Conclusions

We have presented the first empirically grounded
study of superlatives, and shown the feasibility of
their semantic interpretation in an automatic fash-
ion. Using Combinatory Categorial Grammar and
Discourse Representation Theory we have imple-
mented a system that is able to recognise a superla-
tive expression and its comparison set with high
accuracy.

For developing and testing our system, we have
created a collection of over 3,000 instances of su-
perlatives, both in newswire text and in natural
language questions. This very first corpus of su-
perlatives allows us to get a comprehensive picture
of the behaviour and distribution of superlatives in
real occurring data. Thanks to such broad view
of the phenomenon, we were able discover issues
previously unnoted in the formal semantics liter-
ature, such as the interaction of prenominal pos-
sessives and superlatives, which cause problems
at the syntax-semantics interface in the determina-
tion of the comparison set. Similarly problematic
are hyphenated superlatives, which are tagged as
normal adjectives in the Penn Treebank.

Moreover, this work provides a concrete way
of evaluating the output of a stochastic wide-
coverage parser trained on the CCGBank (Hock-
enmaier and Steedman, 2002). With respect to
superlatives, our experiments show that the qual-

ity of the raw output is not entirely satisfactory.
However, we have also shown that some sim-
ple post-processing rules can increase the perfor-
mance considerably. This might indicate that the
way superlatives are annotated in the CCGbank,
although consistent, is not fully adequate for the
purpose of generating meaningful semantic repre-
sentations, but probably easy to amend.

7 Future Work

Given the syntactic and semantic complexity of
superlative expressions, there is still wide scope
for improving the coverage and accuracy of our
system. One obvious improvement is to amend
CCGbank in order to avoid the need for postpro-
cessing rules, thereby also allowing the creation
of more accurate language models. Another as-
pect which we have neglected in this study but
want to consider in future work is the interac-
tion between superlatives and focus (Heim, 1999;
Gawron, 1995). Also, only one of the possible
types of superlative was considered, namely the at-
tributive case. In future work we will consider the
interpretation of predicative and adverbial superla-
tives, as well as comparative expressions. Finally,
we would like to investigate the extent to which
existing NLP systems (such as open-domain QA
systems) can benefit from a detailed analysis of
superlatives.
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Abstract

We propose a supervised, two-phase
framework to address the problem of para-
phrase recognition (PR). Unlike most PR
systems that focus on sentence similarity,
our framework detects dissimilarities be-
tween sentences and makes its paraphrase
judgment based on the significance of such
dissimilarities. The ability to differenti-
ate significant dissimilarities not only re-
veals what makes two sentences a non-
paraphrase, but also helps to recall addi-
tional paraphrases that contain extra but
insignificant information. Experimental
results show that while being accurate
at discerning non-paraphrasing dissimilar-
ities, our implemented system is able to
achieve higher paraphrase recall (93%), at
an overall performance comparable to the
alternatives.

1 Introduction
The task of sentence-level paraphrase recognition
(PR) is to identify whether a set of sentences (typ-
ically, a pair) are semantically equivalent. In such
a task, “equivalence” takes on a relaxed meaning,
allowing sentence pairs with minor semantic dif-
ferences to still be considered as paraphrases.

PR can be thought of as synonym detection ex-
tended for sentences, and it can play an equally
important role in natural language applications.
As with synonym detection, applications such as
summarization can benefit from the recognition
and canonicalization of concepts and actions that
are shared across multiple documents. Automatic
construction of large paraphrase corpora could
mine alternative ways to express the same con-

cept, aiding machine translation and natural lan-
guage generation applications.

In our work on sentence-level PR, we have iden-
tified two main issues through observation of sam-
ple sentences. The first is to identify all discrete in-
formation nuggets, or individual semantic content
units, shared by the sentences. For a pair of sen-
tences to be deemed a paraphrase, they must share
a substantial amount of these nuggets. A trivial
case is when both sentences are identical, word
for word. However, paraphrases often employ dif-
ferent words or syntactic structures to express the
same concept. Figure 1 shows two sentence pairs,
in which the first pair is a paraphrase while the
second is not. The paraphrasing pair (also denoted

Paraphrase (+pp):
Authorities said a young man injured Richard Miller.
Richard Miller was hurt by a young man.

Non-Paraphrase (-pp):
The technology-laced Nasdaq Composite Index

.IXIC added 1.92 points, or 0.12 percent, at 1,647.94.
The technology-laced Nasdaq Composite Index

.IXIC dipped 0.08 of a point to 1,646.

Figure 1: Examples: Paraphrasing & Non-
paraphrasing

as the +pp class) use different words. Focusing
just on the matrix verbs, we note differences be-
tween “injured” and “hurt”. A paraphrase recogni-
tion system should be able to detect such semantic
similarities (despite the different syntactic struc-
tures). Otherwise, the two sentences could look
even less similar than two non-paraphrasing sen-
tences, such as the two in the second pair. Also in
the paraphrasing pair, the first sentence includes an
extra phrase “Authorities said”. Human annotators
tend to regard the pair as a paraphrase despite the
presence of this extra information nugget.
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This leads to the second issue: how to recognize
when such extra information is extraneous with
respect to the paraphrase judgment. Such para-
phrases are common in daily life. In news articles
describing the same event, paraphrases are widely
used, possibly with extraneous information.

We equate PR with solving these two issues,
presenting a natural two-phase architecture. In the
first phase, the nuggets shared by the sentences
are identified by a pairing process. In the second
phase, any unpaired nuggets are classified as sig-
nificant or not (leading to −pp and +pp classifica-
tions, respectively). If the sentences do not contain
unpaired nuggets, or if all unpaired nuggets are in-
significant, then the sentences are considered para-
phrases. Experiments on the widely-used MSR
corpus (Dolan et al., 2004) show favorable results.

We first review related work in Section 2. We
then present the overall methodology and describe
the implemented system in Section 3. Sections 4
and 5 detail the algorithms for the two phases re-
spectively. This is followed with our evaluation
and discussion of the results.

2 Related Work

Possibly the simplest approach to PR is an infor-
mation retrieval (IR) based “bag-of-words” strat-
egy. This strategy calculates a cosine similar-
ity score for the given sentence set, and if the
similarity exceeds a threshold (either empirically
determined or learned from supervised training
data), the sentences are paraphrases. PR systems
that can be broadly categorized as IR-based in-
clude (Corley and Mihalcea, 2005; Brockett and
Dolan, 2005). In the former work, the authors
defined a directional similarity formula reflect-
ing the semantic similarity of one text “with re-
spect to” another. A word contributes to the di-
rectional similarity only when its counterpart has
been identified in the opposing sentence. The as-
sociated word similarity scores, weighted by the
word’s specificity (represented as inverted docu-
ment frequency, idf ), sum to make up the direc-
tional similarity. The mean of both directions
is the overall similarity of the pair. Brockett
and Dolan (2005) represented sentence pairs as
a feature vector, including features (among oth-
ers) for sentence length, edit distance, number of
shared words, morphologically similar word pairs,
synonym pairs (as suggested by WordNet and a
semi-automatically constructed thesaurus). A sup-

port vector machine is then trained to learn the
{+pp,−pp} classifier.

Strategies based on bags of words largely ig-
nore the semantic interactions between words.
Weeds et al. (2005) addressed this problem by
utilizing parses for PR. Their system for phrasal
paraphrases equates paraphrasing as distributional
similarity of the partial sub-parses of a candidate
text. Wu (2005)’s approach relies on the genera-
tive framework of Inversion Transduction Gram-
mar (ITG) to measure how similar two sentences
arrange their words based on edit distance.

Barzilay and Lee (2003) proposed to apply
multiple-sequence alignment (MSA) for tradi-
tional, sentence-level PR. Given multiple articles
on a certain type of event, sentence clusters are
first generated. Sentences within the same clus-
ter, presumably similar in structure and content,
are then used to construct a lattice with “back-
bone” nodes corresponding to words shared by the
majority and “slots” corresponding to different re-
alization of arguments. If sentences from differ-
ent clusters have shared arguments, the associated
lattices are claimed to be paraphrase. Likewise,
Shinyama et al. (2002) extracted paraphrases from
similar news articles, but use shared named enti-
ties as an indication of paraphrasing. It should be
noted that the latter two approaches are geared to-
wards acquiring paraphrases rather than detecting
them, and as such have the disadvantage of requir-
ing a certain level of repetition among candidates
for paraphrases to be recognized.

All past approaches invariably aim at a proper
similarity measure that accounts for all of the
words in the sentences in order to make a judg-
ment for PR. This is suitable for PR where in-
put sentences are precisely equivalent semanti-
cally. However, for many people the notion of
paraphrases also covers cases in which minor or
irrelevant information is added or omitted in can-
didate sentences, as observed in the earlier ex-
ample. Such extraneous content should not be a
barrier to PR if the main concepts are shared by
the sentences. Approaches that focus only on the
similarity of shared contents may fail when the
(human) criteria for PR include whether the un-
matched content is significant or not. Correctly
addressing this problem should increase accuracy.
In addition, if extraneous portions of sentences
can be identified, their confounding influence on
the sentence similarity judgment can be removed,
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leading to more accurate modeling of semantic
similarity for both recognition and acquisition.

3 Methodology
As noted earlier, for a pair of sentences to be a
paraphrase, they must possess two attributes:

1. similarity: they share a substantial amount of
information nuggets;

2. dissimilarities are extraneous: if extra infor-
mation in the sentences exists, the effect of
its removal is not significant.

A key decision for our two-phase PR framework
is to choose the representation of an information
nugget. A simple approach is to use representative
words as information nuggets, as is done in the
SimFinder system (Hatzivassiloglou et al., 2001).

Instead of using words, we choose to equate in-
formation nuggets with predicate argument tuples.
A predicate argument tuple is a structured repre-
sentation of a verb predicate together with its argu-
ments. Given a sentence from the example in Fig-
ure 1, its predicate argument tuple form in Prop-
Bank (Kingsbury et al., 2002) format is:

target(predicate): hurt
arg0: a young man
arg1: Richard Miller

We feel that this is a better choice for the repre-
sentation of a nugget as it accounts for the action,
concepts and their relationships as a single unit.
In comparison, using fine-grained units such as
words, including nouns and verbs may result in in-
accuracy (sentences that share vocabulary may not
be paraphrases), while using coarser-grained units
may cause key differences to be missed. In the rest
of this paper, we use the term tuple for conciseness
when no ambiguity is introduced.

An overview of our paraphrase recognition sys-
tem is shown in Figure 2. A pair of sentences is
first fed to a syntactic parser (Charniak, 2000) and
then passed to a semantic role labeler (ASSERT;
(Pradhan et al., 2004)), to label predicate argu-
ment tuples. We then calculate normalized tuple
similarity scores over the tuple pairs using a met-
ric that accounts for similarities in both syntactic
structure and content of each tuple. A thesaurus
constructed from corpus statistics (Lin, 1998) is
utilized for the content similarity.

We utilize this metric to greedily pair together
the most similar predicate argument tuples across

Figure 2: System architecture

sentences. Any remaining unpaired tuples repre-
sent extra information and are passed to a dissim-
ilarity classifier to decide whether such informa-
tion is significant. The dissimilarity classifier uses
supervised machine learning to make such a deci-
sion.

4 Similarity Detection and Pairing
We illustrate this advantage of using predicate ar-
gument tuples from our running example. In Ta-
ble 1, one of the model sentences is shown in the
middle column. Two edited versions are shown on
the left and right columns. While it is clear that
the left modification is an example of a paraphrase
and the right is not, the version on the left in-
volves more changes in its syntactic structure and
vocabulary. Standard word or syntactic similar-
ity measures would assign the right modification a
higher similarity score, likely mislabeling one or
both modifications.

In contrast, semantic role labeling identifies the
dependencies between predicates and their argu-
ments, allowing a more precise measurement of
sentence similarity. Assuming that the arguments
in predicate argument tuples are assigned the same
role when their roles are comparable1 , we define
the similarity score of two tuples Ta and Tb as
the weighted sum of the pairwise similarities of
all their shared constituents C={(ca, cb)} (c being
either the target or one of the arguments that both

1ASSERT, which is trained on the Propbank, only guaran-
tees consistency of arg0 and arg1 slots, but we have found in
practice that aligning arg2 and above arguments do not cause
problems.
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Modification 1: paraphrase Model Sentence Modification 2: non-paraphrase
Sentence Richard Miller was hurt by a

young man.
Authorities said a young man in-
jured Richard Miller.

Authorities said Richard Miller injured
a young man.

(Paired)
Tuples

target: said
arg0: Authorities
arg1: a young man injured

Richard Miller

target: said
arg0: Authorities
arg1: Richard Miller injured a

young man
target: hurt

arg0: a young man
arg1: Richard Miller

target: injured
arg0: a young man
arg1: Richard Miller

target: injured
arg0: Richard Miller
arg1: a young man

Table 1: Similarity Detection: pairing of predicate argument tuples

tuples have):

Sim(Ta, Tb) =
1

α

X

Sim(ca, cb)∗
c={target,argshared}

w
c==target
target (1)

where normalization factor α is the sum of the
weights of constituents in C , i.e.:

α = ‖{argshared}‖ + wtarget (2)

In our current implementation we reduce tar-
gets and their arguments to their syntactic head-
words. These headwords are then directly com-
pared using a corpus-based similarity thesaurus.
As we hypothesized that targets are more impor-
tant for predicate argument tuple similarity, we
multiply the target’s similarity by a weighting fac-
tor wtarget , whose value we have empirically de-
termined as 1.7, based on a 300-pair development
set from the MSR training set.

We then proceed to pair tuples in the two sen-
tences using a greedy iterative algorithm. The al-
gorithm locates the two most similar tuples from
each sentence, pairs them together and removes
them from futher consideration. The process stops
when subsequent best pairings are below the simi-
larity threshold or when all possible tuples are ex-
hausted. If unpaired tuples still exist in a given
sentence pair, we further examine the copular con-
structions and noun phrases in the opposing sen-
tence for possible pairings2 . This results in a one-

2Copular constructions are not handled by ASSERT. Such
constructions account for a large proportion of the semantic
meaning in sentences. Consider the pair “Microsoft rose 50
cents” and “Microsoft was up 50 cents”, in which the second
is in copular form. Similarly, NPs can often be equivalent
to predicate argument tuples when actions are nominalized.
Consider an NP that reads “(be blamed for) frequent attacks
on soldiers” and a predicate argument tuple: “(be blamed for)
attacking soldiers”. Again, identical information is conveyed
but not captured by semantic role labeling. In such cases,
they can be paired if we allow a candidate tuple to pair with
the predicative argument (e.g., 50 cents) of a copula, or (the
head of) an NP in the opposing sentence. As these heuristic
matches may introduce errors, we resort to these methods of
matching tuple only in the contingency when there are un-
paired tuples.

to-one mapping with possibly some tuples left un-
paired. The curved arrows in Table 1 denote the
correct results of similarity pairing: two tuples are
paired up if their target and shared arguments are
identical or similar respectively, otherwise they re-
main unpaired even if the “bag of words” they con-
tain are the same.

5 Dissimilarity Significance
Classification

If some tuples remain unpaired, they are dissimilar
parts of the sentence that need to be labeled by the
dissimilarity classifier. Such unpaired informa-
tion could be extraneous or they could be semanti-
cally important, creating a barrier for paraphrase.
We frame this as a supervised machine learning
problem in which a set of features are used to
inform the classifier. A support vector machine,
SVMLight, was chosen as the learning model as it
has shown to yield good performance over a wide
application range. We experimented with a wide
set of features of unpaired tuples, including inter-
nal counts of numeric expressions, named entities,
words, semantic roles, whether they are similar
to other tuples in the same sentence, and contex-
tual features like source/target sentence length and
paired tuple count. Currently, only two features
are correlated in improved classification, which
we detail now.

Syntactic Parse Tree Path: This is a series of
features that reflect how the unpaired tuple con-
nects with the context: the rest of the sentence.
It models the syntactic connection between the
constituents on both ends of the path (Gildea and
Palmer, 2002; Pradhan et al., 2004). Here, we
model the ends of the path as the unpaired tuple
and the paired tuple with the closest shared ances-
tor, and model the path itself as a sequence of con-
stituent category tags and directions to reach the
destination (the paired target) from the source (the
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unpaired target) via the the shared ancestor. When
no tuples have been paired in the sentence pair,
the destination defaults to the root of the syntactic
parse tree. For example, the tuples with target “in-
jured” are unpaired when the model sentence and
the non-paraphrasing modification in Table 1 are
being compared. A path “↑V BD, ↑V P , ↑S , ↑SBAR

, ↑V P , ↓V BD” links a target “injured” to the paired
target “said”, as shown in Figure 3.

VP̀
```̀

     VBD
said

SBAR
S
XXXX

����NP
a
aa

!
!!

NNP
Richard

NNP
Miller

VP
b
b

"
"VBD

injured
NP

Figure 3: Syntactic parse tree path

The syntactic path can act as partial evidence
in significance classification. In the above exam-
ple, the category tag “V BD” assigned to “injured”
indicates that the verb is in its past tense. Such
a predicate argument tuple bears the main con-
tent of the sentence and generally can not be ig-
nored if its meaning is missing in the opposing
sentence. Another example is shown in Figure
4. The second sentence has one unpaired target
“proposed” while the rest all find their counter-
part. The path we get from the syntactic parse tree
reads “↑V BN , ↑NP , ↑S , ...”, showing that the un-
paired tuple (consisting of a single predicate) is a
modifier contained in an NP. It can be ignored if
there is no contradiction in the opposing sentence.

We represent a syntactic path by a set of n-gram
(n ≤ 4) features of subsequences of category tags
found in the path, along with the respective direc-
tion. We require these n-gram features to be no
more than four category tags away from the un-
paired target, as our primary concern is to model
what role the target plays in its sentence.

Sheena Young of Child, the national infertility sup-
port network, hoped the guidelines would lead to a more
“fair and equitable” service for infertility sufferers.

Sheena Young, a spokesman for Child, the national
infertility support network, said the proposed guide-
lines should lead to a more “fair and equitable” service
for infertility sufferers.

Figure 4: Unpaired predicate argument tuple as
modifier in a paraphrase

Predicate: This is the lexical token of predi-

cate argument tuple’s target, as a text feature. As
this feature is liable to run into sparse data prob-
lems, the semantic category of the target would be
a more suitable feature. However, verb similar-
ity is generally regarded as difficult to measure,
both in terms of semantic relatedness as well as
in finding a consistent granularity for verb cate-
gories. We investigated using WordNet as well as
Levin’s classification (Levin, 1993) as additional
features on our validation data, but currently find
that using the lexical form of the target works best.

5.1 Classifier Training Set Acquisition
Currently, no training corpus for predicate argu-
ment tuple significance exists. Such a corpus is in-
dispensable for training the classifier. Rather than
manually annotating training instances, we use
an automatic method to construct instances from
paraphrase corpora. This is possible as the para-
phrase judgments in the corpora can imply which
portion of the sentence(s) are significant barriers
to paraphrasing or not. Here, we exploit the simi-
larity detector implemented for the first phase for
this purpose. If unpaired tuples exist after greedy
pairing, we classify them along two dimensions:
whether the sentence pair is a (non-)paraphrase,
and the source of the unpaired tuples:

1. [PS] paraphrasing pairs and unpaired predicate argu-
ment tuples are only from a single sentence;

2. [NS] non-paraphrasing pairs and only one single un-
paired predicate argument tuple exists;

3. [PM] paraphrasing pairs and unpaired predicate argu-
ment tuples are from multiple (both) sentences;

4. [NM] non-paraphrasing pairs and multiple unpaired
predicate argument tuples (from either one or both sen-
tences) exist.

Assuming that similarity detector pairs tuples
correctly, for the first two categories, the para-
phrasing judgment is directly linked to the un-
paired tuples. PS tuple instances are therefore
used as insignificant class instances, and NS as
significant ones. The last two categories can-
not be used for training data, as it is unclear which
of the unpaired tuples is responsible for the (non-)
paraphrasing as the similarity measure may mis-
takenly leave some similar predicate argument tu-
ples unpaired.

6 Evaluation
The goal of our evaluation is to show that our sys-
tem can reliably determine the cause(s) of non-
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MSR Corpus Label +pp -pp
system prediction correct? T F T F total
# sentence pairs (s-ps) 85 23 55 37 200
# labelings (H&C agree) 80 19 53 35 187
# tuple pairs (t-ps) (S) 80 6 36 35 157
# correct t-ps (H&S agree) 74 6 34 30 144
# missed t-ps (H) 11 10 5 5 31
# sig. unpaired tuples(H) 6 4 69 51 130
# sig. unpaired tuples(S) 0 32 70 0 102
# sig. unpaired tuples(H&S) 0 4 43 0 47
# -pp for other reasons 0 0 5 2 7

Table 2: (H)uman annotations vs. (C)orpus anno-
tations and (S)ystem output

paraphrase examples, while maintaining the per-
formance level of the state-of-the-art PR systems.

For evaluation, we conduct both component
evaluations as well as a holistic one, resulting in
three separate experiments. In evaluating the first
tuple pairing component, we aim for high preci-
sion, so that sentences that have all tuples paired
can be safely assumed to be paraphrases. In evalu-
ating the dissimilarity classifier, we simply aim for
high accuracy. In our overall system evaluation,
we compare our system versus other PR systems
on standard corpora.

Experimental Data Set. For these experi-
ments, we utilized two widely-used corpora for
paraphrasing evaluation: the MSR and PASCAL
RTE corpora. The Microsoft Research Paraphrase
coupus (Dolan et al., 2004) consists of 5801
newswire sentence pairs, 3900 of which are an-
notated as semantically equivalent by human an-
notators. It reflects ordinary paraphrases that peo-
ple often encounter in news articles, and may be
viewed as a typical domain-general paraphrase
recognition task that downstream NLP systems
will need to deal with. The corpus comes divided
into standard training (70%) and testing (30%) di-
visions, a partition we follow in our experiments.
ASSERT (the semantic role labeler) shows for this
corpus a sentence contains 2.24 predicate argu-
ment tuples on average. The second corpus is
the paraphrase acquisition subset of the PASCAL
Recognizing Textual Entailment (RTE) Challenge
corpus (Dagan et al., 2005). This is much smaller,
consisting of 50 pairs, which we employ for test-
ing only to show portability.

To assess the component performance, we need
additional ground truth beyond the {+pp, −pp}
labels provided by the corpora. For the first eval-

uation, we need to ascertain whether a sentence
pair’s tuples are correctly paired, misidentified or
mispaired. For the second, which tuple(s) (if any)
are responsible for a −pp instance. However, cre-
ating ground truth by manual annotation is expen-
sive, and thus we only sampled the data set to get
an indicative assessment of performance. We sam-
pled 200 random instances from the total MSR
testing set, and first processed them through our
framework. Then, five human annotators (two au-
thors and three volunteers) annotated the ground
truth for tuple pairing and the semantic signifi-
cance of the unpaired tuples, while checking sys-
tem output. They also independently came up with
their own {+pp,-pp} judgment so we could assess
the reliability of the provided annotations.

The results of this annotation is shown in Ta-
ble 2. Examining this data, we can see that the
similarity detector performs well, despite its sim-
plicity and assumption of a one-to-one mapping.
Out of the 157 predicate argument tuple pairs
identified through similarity detection, annotators
agreed that 144 (92%) are semantically similar or
equivalent. However, 31 similar pairs were missed
by the system, resulting in 82% recall. We defer
discussion on the other details of this table to Sec-
tion 7.

To assess the dissimilarity classifier, we focus
on the −pp subset of 55 instances recognized by
the system. For 43 unpaired tuples from 40 sen-
tence pairs (73% of 55), the annotators’ judgments
agree with the classifier’s claim that they are sig-
nificant. For these cases, the system is able to both
recognize that the sentence pair is not a paraphrase
and further correctly establish a cause of the non-
paraphrase.

In addition to this ground truth sampled evalu-
ation, we also show the effectiveness of the clas-
sifier by examining its performance on PS and NS
tuples in the MSR corpus as described in Section
5. The test set consists of 413 randomly selected
PS and NS instances among which 145 are signif-
icant (leading to non-paraphrases). The classifier
predicts predicate argument tuple significance at
an accuracy of 71%, outperforms a majority clas-
sifier (65%), a gain which is marginally statisti-
cally significant (p < .09).

significant insignificant
112 263 insignificant by classifier
33 5 significant by classifier

We can see the classifier classifies the majority
of insignificant tuples correctly (by outputting a
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709 Sentence Pairs Without 1016 Sentence Pairs With
Unpaired Tuples Unpaired Tuples Overall

Algorithm (41.1% of Test set) (58.9% of Test set) (100% of Test set)
Acc R P Acc R P Acc R P F1

Majority Classifier 79.5% 100% 79.5% 57.4% 100% 57.4% 66.5% 100% 66.5% 79.9%
SimFinder 82.2% 92.2% 86.4% 66.3% 84.9% 66.1% 72.9% 88.5% 75.1% 81.3%

CM05 - - - - - - 71.5% 92.5% 72.3% 81.2%
Our System 79.5% 100% 79.5% 66.7% 87.0% 66.0% 72.0% 93.4% 72.5% 81.6%

Table 3: Results on MSR test set

17 Sentence Pairs Without 33 Sentence Pairs With
Algorithm Unpaired Tuples Unpaired Tuples Overall

(34% of Test set) (66% of Test set) (100% of Test set)
Acc R P Acc R P Acc R P F1

Majority Classifier 65% 100% 65% 42% 100% 42% 50% 100% 50% 67%
SimFinder 71% 91% 71% 42% 21% 27% 52% 52% 52% 52%

Our System 65% 100% 65% 48% 64% 43% 54% 80% 53% 64%

Table 4: Results on PASCAL PP test set

score greater than zero), which is effectively a
98% recall of insignificant tuples. However, the
precision is less satisfatory. We suspect this is par-
tially due the tuples that fail to be paired up with
their counterpart. Such noise is found among the
automatically collected PS instances used in train-
ing.
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Figure 5: Dissimilarity classifier performance

For the final system-wide evaluation, we imple-
mented two baseline systems: a majority classifier
and SimFinder (Hatzivassiloglou et al., 2001), a
bag-of-words sentence similarity module incorpo-
rating lexical, syntactic and semantic features. In
Table 3, precision and recall are measured with re-
spect to the paraphrasing class. The table shows
sentence pairs falling under the column “pairs
without unpaired tuples” are more likely to be
paraphrasing than an arbitrary pair (79.5% ver-
sus 66.5%), providing further validation for using
predicate argument tuples as information nuggets.

The results for the experiment benchmarking the
overall system performance are shown under the
“Overall” column: our approach performs compa-
rably to the baselines at both accuracy and para-
phrase recall. The system performance reported in
(CM05; (Corley and Mihalcea, 2005)), which is
among the best we are aware of, is also included
for comparison.

We also ran our system (trained on the MSR
corpus) on the 50 instances in the PASCAL para-
phrase acquisition subset. Again, the system per-
formance (as shown in Table 4) is comparable to
the baseline systems.

7 Discussion
We have just shown that when two sentences have
perfectly matched predicate argument tuples, they
are more likely to be a paraphrase than a random
sentence pair drawn from the corpus. Further-
more, in the sampled human evaluation in Table
2, among the 88 non-paraphrasing instances with
whose MSR corpus labels our annotators agreed
(53 correctly and 35 incorrectly judged by our sys-
tem), the cause of the −pp is correctly attributed
in 81 cases to one or more predicate argument tu-
ples. The remaining 7 cases (as shown in the last
row) are caused by phenomenon that are not cap-
tured by our tuple representation. We feel this jus-
tifies using predicate argument tuples as informa-
tion nuggets, but we are currently considering ex-
panding our representation to account for some of
these cases.

The evaluation also confirms the difficulty of
making paraphrase judgements. Although the
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MSR corpus used strict means of resolving inter-
rater disagreements during its construction, the an-
notators agreed with the MSR corpus labels only
93.5% (187/200) of the time.

One weakness of our system is that we rely on a
thesaurus (Lin, 1998) for word similarity informa-
tion for predicate argument tuple pairing. How-
ever, it is designed to provide similarity scores
between pairs of individual words (rather than
phrases). If a predicate argument tuple’s target or
one argument is realized as a phrase (borrow →
check out, for instance), the thesaurus is unable to
provide an accurate similarity score. For similarity
between predicate argument tuples, negation and
modality have yet to be addressed, although they
account for only a tiny fraction of the corpus.

We further estimated how the similarity detec-
tor can be affected when the semantic role labeler
makes mistakes (by failing to identify arguments
or assigning incorrect role names). Checking 94
pairs ground-truth similar tuples, we found that the
system mislabels 43 of them. The similarity detec-
tor failed to pair around 30% of them. In compar-
sion, all the tuple pairs free of labeling errors are
correctly paired. A saving grace is that labeling
errors rarely lead to incorrect pairing (one pairing
in all the examined sentences). The labeling er-
rors impact the whole system in two ways: 1) they
caused similar tuples that should have been paired
up to be added as noise in that dissimilarity clas-
sifier’s training set and 2) paired tuples with label-
ing errors erroneously increase the target weight
in Equation (1).

Some example paraphrasing cases that are prob-
lematic for our current system are:

1. Non-literal language issues such as implica-
ture, idiom, metaphor, etc. are not addressed in
our current system. When predicate argument tu-
ples imply each other, they are less similar than
what our system currently is trained for, causing
the pairing to fail:
+pp, Later in the day, a standoff developed between French
soldiers and a Hema battlewagon that attempted to pass the
UN compound.
French soldiers later threatened to open fire on a Hema bat-
tlewagon that tried to pass near the UN compound.

2. A paraphrasing pair may exceed the systems’
threshold for syntactic difference:
+pp, With the exception of dancing, physical activity did not
decrease the risk.
Dancing was the only physical activity associated with a

lower risk of dementia.
3. One or more unpaired tuples exist, but their

significance is not inferred correctly:
+pp, Inhibited children tend to be timid with new people,
objects, and situations, while uninhibited children sponta-
neously approach them.
Simply put, shy individuals tend to be more timid with new
people and situations.

In the MSR corpus, the first error case is more
frequent than the other two. We identify these as
challenging cases where idiomatic processing is
needed.

Below we show some unpaired predicate ar-
gument tuples (underlined) that are significant
enough to be paraphrase barriers. These examples
give an indicative categorization of what signifi-
cant tuples are and their corpus frequency (when
predicate argument tuples are the reasons; we ex-
amined 40 such cases for this estimation). There
is one thing in common: every case involves sub-
stantial information that is difficult to infer from
context. Such tuples appear as:

1. (40%) The nucleus of the sentence (often the
matrix tuple):
Michael Hill, a Sun reporter who is a member of the
Washington-Baltimore Newspaper Guild’s bargaining com-
mittee, estimated meetings to last late Sunday.

2. (30%) A part of a coordination:
Security lights have also been installed and police have
swept the grounds for booby traps.

3. (13%) A predicate of a modifying clause:
Westermayer was 26 then, and a friend and former manager
who knew she was unhappy in her job tipped her to another
position.

4. (7%) An adjunct:
While waiting for a bomb squad to arrive, the bomb exploded,
killing Wells.

5. (7%) An embedded sentence:
Dean told reporters traveling on his 10-city “Sleepless
Summer” tour that he considered campaigning in Texas a
challenge.

6. (3%) Or factual content that conflicts with
the opposing sentence:
Total sales for the period declined 8.0 percent to USD1.99
billion from a year earlier.
Wal-Mart said sales at stores open at least a year rose 4.6
percent from a year earlier.

8 Conclusions
We have proposed a new approach to the para-
phrase recognition (PR) problem: a supervised,
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two-phase framework emphasizing dissimilarity
classification. To emulate human PR judgment
in which insignificant, extraneous information
nuggets are generally allowed for a paraphrase,
we estimate whether such additional information
nuggets affect the final paraphrasing status of a
sentence pair. This approach, unlike previous PR
approaches, has the key benefit of explaining the
cause of a non-paraphrase sentence pair.

In the first, similarity detection module, using
predicate argument tuples as the unit for compar-
ison, we pair them up in a greedy manner. Un-
paired tuples thus represent additional information
unrepresented in the opposing sentence. A second,
dissimilarity classification module uses the lexical
head of the predicates and the tuples’ path of at-
tachment as features to decide whether such tuples
are barriers to paraphrase.

Our evaluations show that the system obtains 1)
high accuracy for the similarity detector in pairing
predicate argument tuples, 2) robust dissimilar-
ity classification despite noisy training instances
and 3) comparable overall performance to current
state-of-the-art PR systems. To our knowledge this
is the first work that tackles the problem of identi-
fying what factors stop a sentence pair from being
a paraphrase.

We also presented corpus examples that illus-
trate the categories of errors that our framework
makes, suggesting future work in PR. While we
continue to explore more suitable representation
of unpaired predicate argument tuples, we plan to
augment the similarity measure for phrasal units
to reduce the error rate in the first component. An-
other direction is to detect semantic redundancy in
a sentence. Unpaired tuples that are semantically
redundant should also be regarded as insignificant.
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Abstract

NLP systems for tasks such as question
answering and information extraction typ-
ically rely on statistical parsers. But the ef-
ficacy of such parsers can be surprisingly
low, particularly for sentences drawn from
heterogeneous corpora such as the Web.
We have observed that incorrect parses of-
ten result in wildly implausible semantic
interpretations of sentences, which can be
detected automatically using semantic in-
formation obtained from the Web.

Based on this observation, we introduce
Web-based semantic filtering—a novel,
domain-independent method for automat-
ically detecting and discarding incorrect
parses. We measure the effectiveness of
our filtering system, called WOODWARD,
on two test collections. On a set of TREC
questions, it reduces error by 67%. On
a set of more complex Penn Treebank
sentences, the reduction in error rate was
20%.

1 Introduction

Semantic processing of text in applications such
as question answering or information extraction
frequently relies on statistical parsers. Unfortu-
nately, the efficacy of state-of-the-art parsers can
be disappointingly low. For example, we found
that the Collins parser correctly parsed just 42%
of the list and factoid questions from TREC 2004
(that is, 42% of the parses had 100% precision and
100% recall on labeled constituents). Similarly,
this parser produced 45% correct parses on a sub-
set of 100 sentences from section 23 of the Penn
Treebank.

Although statistical parsers continue to improve
their efficacy over time, progress is slow, par-
ticularly for Web applications where training the
parsers on a “representative” corpus of hand-
tagged sentences is not an option. Because of the
heterogeneous nature of text on the Web, such a
corpus would be exceedingly difficult to generate.

In response, this paper investigates the possibil-
ity of detecting parser errors by using semantic in-
formation obtained from the Web. Our fundamen-
tal hypothesis is that incorrect parses often result
in wildly implausible semantic interpretations of
sentences, which can be detected automatically in
certain circumstances. Consider, for example, the
following sentence from the Wall Street Journal:
“That compares with per-share earnings from con-
tinuing operations of 69 cents.” The Collins parser
yields a parse that attaches “of 69 cents” to “op-
erations,” rather than “earnings.” By computing
the mutual information between “operations” and
“cents” on the Web, we can detect that this attach-
ment is unlikely to be correct.

Our WOODWARD system detects parser errors
as follows. First, it maps the tree produced by a
parser to a relational conjunction (RC), a logic-
based representation language that we describe in
Section 2.1. Second, WOODWARD employs four
distinct methods for analyzing whether a conjunct
in the RC is likely to be “reasonable” as described
in Section 2.

Our approach makes several assumptions. First,
if the sentence is absurd to begin with, then a cor-
rect parse could be deemed incorrect. Second, we
require a corpus whose content overlaps at least in
part with the content of the sentences to be parsed.
Otherwise, much of our semantic analysis is im-
possible.

In applications such as Web-based question an-
swering, these assumptions are quite natural. The

27



questions are about topics that are covered exten-
sively on the Web, and we can assume that most
questions link verbs to nouns in reasonable com-
binations. Likewise, when using parsing for infor-
mation extraction, we would expect our assump-
tions to hold as well.

Our contributions are as follows:

1. We introduce Web-based semantic filtering—
a novel, domain-independent method for de-
tecting and discarding incorrect parses.

2. We describe four techniques for analyzing
relational conjuncts using semantic informa-
tion obtained from the Web, and assess their
efficacy both separately and in combination.

3. We find that WOODWARD can filter good
parses from bad on TREC 2004 questions for
a reduction of 67% in error rate. On a harder
set of sentences from the Penn Treebank, the
reduction in error rate is 20%.

The remainder of this paper is organized as fol-
lows. We give an overview of related work in Sec-
tion 1.1. Section 2 describes semantic filtering, in-
cluding our RC representation and the four Web-
based filters that constitute the WOODWARD sys-
tem. Section 3 presents our experiments and re-
sults, and section 4 concludes and gives ideas for
future work.

1.1 Related Work

The problem of detecting parse errors is most sim-
ilar to the idea of parse reranking. Collins (2000)
describes statistical techniques for reranking alter-
native parses for a sentence. Implicitly, a rerank-
ing method detects parser errors, in that if the
reranking method picks a new parse over the orig-
inal one, it is classifying the original one as less
likely to be correct. Collins uses syntactic and lex-
ical features and trains on the Penn Treebank; in
contrast, WOODWARD uses semantic features de-
rived from the web. See section 3 for a comparison
of our results with Collins’.

Several systems produce a semantic interpreta-
tion of a sentence on top of a parser. For example,
Bos et al. (2004) build semantic representations
from the parse derivations of a CCG parser, and
the English Resource Grammar (ERG) (Toutanova
et al., 2005) provides a semantic representation us-
ing minimal recursion semantics. Toutanova et al.
also include semantic features in their parse se-
lection mechanism, although it is mostly syntax-
driven. The ERG is a hand-built grammar and thus

does not have the same coverage as the grammar
we use. We also use the semantic interpretations
in a novel way, checking them against semantic
information on the Web to decide if they are plau-
sible.

NLP literature is replete with examples of sys-
tems that produce semantic interpretations and
use semantics to improve understanding. Sev-
eral systems in the 1970s and 1980s used hand-
built augmented transition networks or semantic
networks to prune bad semantic interpretations.
More recently, people have tried incorporating
large lexical and semantic resources like WordNet,
FrameNet, and PropBank into the disambiguation
process. Allen (1995) provides an overview of
some of this work and contains many references.
Our work focuses on using statistical techniques
over large corpora, reducing the need for hand-
built resources and making the system more robust
to changes in domain.

Numerous systems, including Question-
Answering systems like MULDER (Kwok et
al., 2001), PiQASso (Attardi et al., 2001), and
Moldovan et al.’s QA system (2003), use parsing
technology as a key component in their analysis
of sentences. In part to overcome incorrect parses,
Moldovan et al.’s QA system requires a complex
set of relaxation techniques. These systems
would greatly benefit from knowing when parses
are correct or incorrect. Our system is the first
to suggest using the output of a QA system to
classify the input parse as good or bad.

Several researchers have used pointwise mu-
tual information (PMI) over the Web to help make
syntactic and semantic judgments in NLP tasks.
Volk (2001) uses PMI to resolve preposition at-
tachments in German. Lapata and Keller (2005)
use web counts to resolve preposition attachments,
compound noun interpretation, and noun count-
ability detection, among other things. And Mark-
ert et al. (2003) use PMI to resolve certain types of
anaphora. We use PMI as just one of several tech-
niques for acquiring information from the Web.

2 Semantic Filtering

This section describes semantic filtering as imple-
mented in the WOODWARD system. WOODWARD

consists of two components: a semantic interpreter
that takes a parse tree and converts it to a conjunc-
tion of first-order predicates, and a sequence of
four increasingly sophisticated methods that check
semantic plausibility of conjuncts on the Web. Be-
low, we describe each component in turn.
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1. What(NP1) ∧ are(VP1, NP1, NP2) ∧ states(NP2) ∧ producing(VP2, NP2, NP3) ∧ oil(NP3) ∧ in(PP1, NP2, U.S.)

2. What(NP1) ∧ states(NP2) ∧ producing(VP1, NP3, NP2, NP1) ∧ oil(NP3) ∧ in(PP1, NP2, U.S.)

Figure 2: Example relational conjunctions. The first RC is the correct one for the sentence “What are oil producing
states in the U.S.?” The second is the RC derived from the Collins parse in Figure 1. Differences between the two RCs
appear in bold.
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Figure 1: An incorrect Collins Parse of a TREC ques-
tion. The parser treats “producing” as the main verb in
the clause, rather than “are”.

2.1 Semantic Interpreter

The semantic interpreter aims to make explicit the
relations that a sentence introduces, and the argu-
ments to each of those relations. More specifically,
the interpreter identifies the main verb relations,
preposition relations, and semantic type relations
in a sentence; identifies the number of arguments
to each relation; and ensures that for every ar-
gument that two relations share in the sentence,
they share a variable in the logical representation.
Given a sentence and a Penn-Treebank-style parse
of that sentence, the interpreter outputs a conjunc-
tion of First-Order Logic predicates. We call this
representation a relational conjunction (RC). Each
relation in an RC consists of a relation name and
a tuple of variables and string constants represent-
ing the arguments of the relation. As an example,
Figure 1 contains a sentence taken from the TREC
2003 corpus, parsed by the Collins parser. Fig-
ure 2 shows the correct RC for this sentence and
the RC derived automatically from the incorrect
parse.

Due to space constraints, we omit details about
the algorithm for converting a parse into an RC,
but Moldovan et al. (2003) describe a method sim-
ilar to ours.

2.2 Semantic Filters

Given the RC representation of a parsed sentence
as supplied by the Semantic Interpreter, we test the
parse using four web-based methods. Fundamen-
tally, the methods all share the underlying princi-
ple that some form of co-occurrence of terms in
the vast Web corpus can help decide whether a
proposed relationship is semantically plausible.

Traditional statistical parsers also use co-
occurrence of lexical heads as features for making
parse decisions. We expand on this idea in two
ways: first, we use a corpus several orders of mag-
nitude larger than the tagged corpora traditionally
used to train statistical parses, so that the funda-
mental problem of data sparseness is ameliorated.
Second, we search for targeted patterns of words
to help judge specific properties, like the number
of complements to a verb. We now describe each
of our techniques in more detail.

2.3 A PMI-Based Filter

A number of authors have demonstrated important
ways in which search engines can be used to un-
cover semantic relationships, especially Turney’s
notion of pointwise mutual information (PMI)
based on search-engine hits counts (Turney, 2001).
WOODWARD’s PMI-Based Filter (PBF) uses PMI
scores as features in a learned filter for predicates.
Following Turney, we use the formula below for
the PMI between two terms t1 and t2:

PMI(t1, t2) = log

(

P (t1 ∧ t2)

P (t1)P (t2)

)

(1)

We use PMI scores to judge the semantic plau-
sibility of an RC conjunct as follows. We con-
struct a number of different phrases, which we call
discriminator phrases, from the name of the rela-
tion and the head words of each argument. For
example, the prepositional attachment “operations
of 65 cents” would yield phrases like “operations
of” and “operations of * cents”. (The ‘*’ char-
acter is a wildcard in the Google interface; it can
match any single word.) We then collect hitcounts
for each discriminator phrase, as well as for the
relation name and each argument head word, and
compute a PMI score for each phrase, using the
phrase’s hitcount as the numerator in Equation 1.
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Given a set of such PMI scores for a single rela-
tion, we apply a learned classifier to decide if the
PMI scores justify calling the relation implausible.

This classifier (as well as all of our other ones)
is trained on a set of sentences from TREC and
the Penn Treebank; our training and test sets are
described in more detail in section 3. We parsed
each sentence automatically using Daniel Bikel’s
implementation of the Collins parsing model,1

trained on sections 2–21 of the Penn Treebank,
and then applied our semantic interpreter algo-
rithm to come up with a set of relations. We la-
beled each relation by hand for correctness. Cor-
rect relations are positive examples for our clas-
sifier, incorrect relations are negative examples
(and likewise for all of our other classifiers). We
used the LIBSVM software package2 to learn a
Gaussian-kernel support vector machine model
from the PMI scores collected for these relations.
We can then use the classifier to predict if a rela-
tion is correct or not depending on the various PMI
scores we have collected.

Because we require different discriminator
phrases for preposition relations and verb rela-
tions, we actually learn two different models.
After extensive experimentation, optimizing for
training set accuracy using leave-one-out cross-
validation, we ended up using only two patterns
for verbs: “noun verb” (“verb noun” for non-
subjects) and “noun * verb” (“verb * noun” for
non-subjects). We use the PMI scores from the
argument whose PMI values add up to the lowest
value as the features for a verb relation, with the
intuition being that the relation is correct only if
every argument to it is valid.

For prepositions, we use a larger set of patterns.
Letting arg1 and arg2 denote the head words of
the two arguments to a preposition, and letting
prep denote the preposition itself, we used the pat-
terns “arg1 prep”, “arg1 prep * arg2”, “arg1
prep the arg2”, ”arg1 * arg2”, and, for verb at-
tachments, “arg1 it prep arg2” and “arg1 them
prep arg2”. These last two patterns are helpful for
preposition attachments to strictly transitive verbs.

2.4 The Verb Arity Sampling Test

In our training set from the Penn Treebank, 13%
of the time the Collins parser chooses too many or
too few arguments to a verb. In this case, checking
the PMI between the verb and each argument in-
dependently is insufficient, and there is not enough

1http://www.cis.upenn.edu/∼dbikel/software.html
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

data to find hitcounts for the verb and all of its ar-
guments at once. We therefore use a different type
of filter in order to detect these errors, which we
call the Verb Arity Sampling Test (VAST).

Instead of testing a verb to see if it can take a
particular argument, we test if it can take a certain
number of arguments. The verb predicate produc-
ing(VP1, NP3, NP2, NP1) in interpretation 2 of
Figure 2, for example, has too many arguments.
To check if this predicate can actually take three
noun phrase arguments, we can construct a com-
mon phrase containing the verb, with the property
that if the verb can take three NP arguments, the
phrase will often be followed by a NP in text, and
vice versa. An example of such a phrase is “which
it is producing.” Since “which” and “it” are so
common, this phrase will appear many times on
the Web. Furthermore, for verbs like “produc-
ing,” there will be very few sentences in which
this phrase is followed by a NP (mostly temporal
noun phrases like “next week”). But for verbs like
“give” or “name,” which can accept three noun
phrase arguments, there will be significantly more
sentences where the phrase is followed by a NP.

The VAST algorithm is built upon this obser-
vation. For a given verb phrase, VAST first counts
the number of noun phrase arguments. The Collins
parser also marks clause arguments as being es-
sential by annotating them differently. VAST
counts these as well, and considers the sum of the
noun and clause arguments as the number of es-
sential arguments. If the verb is passive and the
number of essential arguments is one, or if the verb
is active and the number of essential arguments
is two, VAST performs no check. We call these
strictly transitive verb relations. If the verb is pas-
sive and there are two essential arguments, or if the
verb is active and there are three, it performs the
ditransitive check below. If the verb is active and
there is one essential argument, it does the intran-
sitive check described below. We call these two
cases collectively nontransitive verb relations. In
both cases, the checks produce a single real-valued
score, and we use a linear kernel SVM to iden-
tify an appropriate threshold such that predicates
above the threshold have the correct arity.

The ditransitive check begins by querying
Google for two hundred documents containing the
phrase “which it verb” or “which they verb”. It
downloads each document and identifies the sen-
tences containing the phrase. It then POS-tags and
NP-chunks the sentences using a maximum en-
tropy tagger and chunker. It filters out any sen-
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tences for which the word “which” is preceded by
a preposition. Finally, if there are enough sen-
tences remaining (more than ten), it counts the
number of sentences in which the verb is directly
followed by a noun phrase chunk, which we call an
extraction. It then calculates the ditransitive score
for verb v as the ratio of the number of extractions
E to the number of filtered sentences F :

ditransitiveScore(v) =
E

F
(2)

The intransitive check performs a very similar
set of operations. It fetches up to two hundred
sentences matching the phrases “but it verb” or
“but they verb”, tags and chunks them, and ex-
tracts noun phrases that directly follow the verb.
It calculates the intransitive score for verb v using
the number of extractions E and sentences S as:

intransitiveScore(v) = 1−
E

S
(3)

2.5 TextRunner Filter

TextRunner is a new kind of web search engine.
Its design is described in detail elsewhere (Ca-
farella et al., 2006), but we utilize its capabil-
ities in WOODWARD. TextRunner provides a
search interface to a set of over a billion triples
of the form (object string, predicate string, ob-
ject string) that have been extracted automatically
from approximately 90 million documents to date.
The search interface takes queries of the form
(string1, string2, string3), and returns all tu-
ples for which each of the three tuple strings con-
tains the corresponding query string as a substring.

TextRunner’s object strings are very similar to
the standard notion of a noun phrase chunk. The
notion of a predicate string, on the other hand, is
loose in TextRunner; a variety of POS sequences
will match the patterns for an extracted relation.
For example, a search for tuples with a predicate
containing the word ‘with’ will yield the tuple
(risks, associated with dealing with, waste wood),
among thousands of others.

TextRunner embodies a trade-off with the PMI
method for checking the validity of a relation. Its
structure provides a much more natural search for
the purpose of verifying a semantic relationship,
since it has already arranged Web text into pred-
icates and arguments. It is also much faster than
querying a search engine like Google, both be-
cause we have local access to it and because com-
mercial search engines tightly limit the number
of queries an application may issue per day. On
the other hand, the TextRunner index is at present

still about two orders of magnitude smaller than
Google’s search index, due to limited hardware.

The TextRunner semantic filter checks the va-
lidity of an RC conjunct in a natural way: it asks
TextRunner for the number of tuples that match
the argument heads and relation name of the con-
junct being checked. Since TextRunner predicates
only have two arguments, we break the conjunct
into trigrams and bigrams of head words, and av-
erage over the hitcounts for each. For predicate
P (A1, . . . , An) with n ≥ 2, the score becomes

TextRunnerScore =

1

n− 1

n
∑

i=2

hits(A1, P,Ai)

+
1

n
(hits(A1, P, ) +

n
∑

i=2

hits(, P,Ai))

As with PBF, we learn a threshold for good predi-
cates using the LIBSVM package.

2.6 Question Answering Filter

When parsing questions, an additional method of
detecting incorrect parses becomes available: use
a question answering (QA) system to find answers.
If a QA system using the parse can find an answer
to the question, then the question was probably
parsed correctly.

To test this theory, we implemented a
lightweight, simple, and fast QA system that di-
rectly mirrors the semantic interpretation. It re-
lies on TextRunner and KnowItNow (Cafarella et
al., 2005) to quickly find possible answers, given
the relational conjunction (RC) of the question.
KnowItNow is a state of the art Information Ex-
traction system that uses a set of domain inde-
pendent patterns to efficiently find hyponyms of
a class.

We formalize the process as follows: define a
question as a set of variables Xi corresponding to
noun phrases, a set of noun type predicates Ti(Xi),
and a set of relational predicates Pi(Xi1, ..., Xik)
which relate one or more variables and constants.
The conjunction of type and relational predicates
is precisely the RC.

We define an answer as a set of values for each
variable that satisfies all types and predicates

ans(x1, ..., xn) =
∧

i

Ti(xi) ∧
∧

j

Pj(xj1, ..., xjk)

The algorithm is as follows:

1. Compute the RC of the question sentence.
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2. ∀i find instances of the class Ti for possible
values for Xi, using KnowItNow.

3. ∀j find instances of the relation predicate
Pj(xj1, ..., xjk). We use TextRunner to ef-
ficiently find objects that are related by the
predicate Pj .

4. Return all tuples that satisfy ans(x1, ..., xn)

The QA semantic filter runs the Question An-
swering algorithm described above. If the number
of returned answers is above a threshold (1 in our
case), it indicates the question has been parsed cor-
rectly. Otherwise, it indicates an incorrect parse.
This differs from the TextRunner semantic filter in
that it tries to find subclasses and instances, rather
than just argument heads.

2.7 The WOODWARD Filter

Each of the above semantic filters has its strengths
and weaknesses. On our training data, TextRunner
had the most success of any of the methods on
classifying verb relations that did not have arity er-
rors. Because of sparse data problems, however, it
was less successful than PMI on preposition rela-
tions. The QA system had the interesting property
that when it predicted an interpretation was cor-
rect, it was always right; however, when it made a
negative prediction, its results were mixed.

WOODWARD combines the four semantic filters
in a way that draws on each of their strengths.
First, it checks if the sentence is a question that
does not contain prepositions. If so, it runs the
QA module, and returns true if that module does.

After trying the QA module, WOODWARD

checks each predicate in turn. If the predicate
is a preposition relation, it uses PBF to classify
it. For nontransitive verb relations, it uses VAST.
For strictly transitive verb relations, it uses Text-
Runner. WOODWARD accepts the RC if every re-
lation is predicted to be correct; otherwise, it re-
jects it.

3 Experiments

In our experiments we tested the ability of WOOD-
WARD to detect bad parses. Our experiments pro-
ceeded as follows: we parsed a set of sentences,
ran the semantic interpreter on them, and labeled
each parse and each relation in the resulting RCs
for correctness. We then extracted all of the nec-
essary information from the Web and TextRunner.
We divided the sentences into a training and test
set, and trained the filters on the labeled RCs from

the training sentences. Finally, we ran each of the
filters and WOODWARD on the test set to predict
which parses were correct. We report the results
below, but first we describe our datasets and tools
in more detail.

3.1 Datasets and Tools

Because question-answering is a key application,
we began with data from the TREC question-
answering track. We split the data into a train-
ing set of 61 questions (all of the TREC 2002 and
TREC 2003 questions), and a test set of 55 ques-
tions (all list and factoid questions from TREC
2004). We preprocessed the questions to remove
parentheticals (this affected 3 training questions
and 1 test question). We removed 12 test questions
because the Collins parser did not parse them as
questions,3 and that error was too easy to detect.
25 training questions had the same error, but we
left them in to provide more training data.

We used the Penn Treebank as our second data
set. Training sentences were taken from section
22, and test sentences from section 23. Because
PBF is time-consuming, we took a subset of 100
sentences from each section to expedite our exper-
iments. We extracted from each section the first
100 sentences that did not contain conjunctions,
and for which all of the errors, if any, were con-
tained in preposition and verb relations.

For our parser, we used Bikel’s implementation
of the Collins parsing model, trained on sections
2-21 of the Penn Treebank. We only use the top-
ranked parse for each sentence. For the TREC
data only, we first POS-tagged each question using
Ratnaparkhi’s MXPOST tagger. We judged each
of the TREC parses manually for correctness, but
scored the Treebank parses automatically.

3.2 Results and Discussion

Our semantic interpreter was able to produce the
appropriate RC for every parsed sentence in our
data sets, except for a few minor cases. Two id-
iomatic expressions in the WSJ caused the seman-
tic interpreter to find noun phrases outside of a
clause to fill gaps that were not actually there. And
in several sentences with infinitive phrases, the se-
mantic interpreter did not find the extracted sub-
ject of the infinitive expression. It turned out that
none of these mistakes caused the filters to reject
correct parses, so we were satisfied that our results
mainly reflect the performance of the filters, rather
than the interpreter.

3That is, the root node was neither SBARQ nor SQ.
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Relation Type num. correct num. incorrect PBF acc. VAST acc. TextRunner acc.
Nontrans. Verb 41 35 0.54 0.66 0.52
Other Verb 126 68 0.72 N/A 0.73
Preposition 183 58 0.73 N/A 0.76

Table 1: Accuracy of the filters on three relation types in the TREC 2004 questions and WSJ data.

Baseline WOODWARD

sents. parser eff. filter prec. filter rec. F1 filter prec. filter rec. F1 red. err.
trec 43 54% 0.54 1.0 0.70 0.82 1.0 0.90 67%
wsj 100 45% 0.45 1.0 0.62 0.58 0.88 0.70 20%

Table 2: Performance of WOODWARD on different data sets. Parser efficacy reports the percentage of sentences that
the Collins parser parsed correctly. See the text for a discussion of our baseline and the precision and recall metrics. We
weight precision and recall equally in calculating F1. Reduction in error rate (red. err.) reports the relative decrease in
error (error calculated as 1 − F1) over baseline.

In Table 1 we report the accuracy of our first
three filters on the task of predicting whether a re-
lation in an RC is correct. We break these results
down into three categories for the three types of
relations we built filters for: strictly transitive verb
relations, nontransitive verb relations, and prepo-
sition relations. Since the QA filter works at the
level of an entire RC, rather than a single relation,
it does not apply here. These results show that the
trends on the training data mostly held true: VAST
was quite effective at verb arity errors, and Text-
Runner narrowly beat PBF on the remaining verb
errors. However, on our training data PBF nar-
rowly beat TextRunner on preposition errors, and
the reverse was true on our test data.

Our QA filter predicts whether a full parse is
correct with an accuracy of 0.76 on the 17 TREC
2004 questions that had no prepositions. The
Collins parser achieves the same level of accuracy
on these sentences, so the main benefit of the QA
filter for WOODWARD is that it never misclassi-
fies an incorrect parse as a correct one, as was ob-
served on the training set. This property allows
WOODWARD to correctly predict a parse is correct
whenever it passes the QA filter.

Classification accuracy is important for good
performance, and we report it to show how effec-
tive each of WOODWARD’s components is. How-
ever, it fails to capture the whole story of a filter’s
performance. Consider a filter that simply predicts
that every sentence is incorrectly parsed: it would
have an overall accuracy of 55% on our WSJ cor-
pus, not too much worse than WOODWARD’s clas-
sification accuracy of 66% on this data. However,
such a filter would be useless because it filters out
every correctly parsed sentence.

Let the filtered set be the set of sentences that a

filter predicts to be correctly parsed. The perfor-
mance of a filter is better captured by two quanti-
ties related to the filtered set: first, how “pure” the
filtered set is, or how many good parses it contains
compared to bad parses; and second, how waste-
ful the filter is in terms of losing good parses from
the original set. We measure these two quantities
using metrics we call filter precision and filter re-
call. Filter precision is defined as the ratio of cor-
rectly parsed sentences in the filtered set to total
sentences in the filtered set. Filter recall is defined
as the ratio of correctly parsed sentences in the fil-
tered set to correctly parsed sentences in the un-
filtered set. Note that these metrics are quite dif-
ferent from the labeled constituent precision/recall
metrics that are typically used to measure statisti-
cal parser performance.

Table 2 shows our overall results for filtering
parses using WOODWARD. We compare against
a baseline model that predicts every sentence is
parsed correctly. WOODWARD outperforms this
baseline in precision and F1 measure on both of
our data sets.

Collins (2000) reports a decrease in error rate
of 13% over his original parsing model (the same
model as used in our experiments) by performing
a discriminative reranking of parses. Our WSJ
test set is a subset of the set of sentences used
in Collins’ experiments, so our results are not di-
rectly comparable, but we do achieve a roughly
similar decrease in error rate (20%) when we use
our filtered precision/recall metrics. We also mea-
sured the labeled constituent precision and recall
of both the original test set and the filtered set, and
found a decrease in error rate of 37% according to
this metric (corresponding to a jump in F1 from
90.1 to 93.8). Note that in our case, the error is re-
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duced by throwing out bad parses, rather than try-
ing to fix them. The 17% difference between the
two decreases in error rate is probably due to the
fact that WOODWARD is more likely to detect the
worse parses in the original set, which contribute a
proportionally larger share of error in labeled con-
stituent precision/recall in the original test set.

WOODWARD performs significantly better on
the TREC questions than on the Penn Treebank
data. One major reason is that there are far more
clause adjuncts in the Treebank data, and adjunct
errors are intrinsically harder to detect. Con-
sider the Treebank sentence: “The S&P pit stayed
locked at its 30-point trading limit as the Dow av-
erage ground to its final 190.58 point loss Friday.”
The parser incorrectly attaches the clause begin-
ning “as the Dow . . . ” to “locked”, rather than
to “stayed.” Our current methods aim to use key
words in the clause to determine if the attachment
is correct. However, with such clauses there is no
single key word that can allow us to make that de-
termination. We anticipate that as the paradigm
matures we and others will design filters that can
use more of the information in the clause to help
make these decisions.

4 Conclusions and Future Work

Given a parse of a sentence, WOODWARD con-
structs a representation that identifies the key se-
mantic relationships implicit in the parse. It then
uses a set of Web-based sampling techniques to
check whether these relationships are plausible.
If any of the relationships is highly implausible,
WOODWARD concludes that the parse is incorrect.
WOODWARD successfully detects common errors
in the output of the Collins parser including verb
arity errors as well as preposition and verb attach-
ment errors. While more extensive experiments
are clearly necessary, our results suggest that the
paradigm of Web-based semantic filtering could
substantially improve the performance of statisti-
cal parsers.

In future work, we hope to further validate this
paradigm by constructing additional semantic fil-
ters that detect other types of errors. We also plan
to use semantic filters such as WOODWARD to
build a large-scale corpus of automatically-parsed
sentences that has higher accuracy than can be
achieved today. Such a corpus could be used to
re-train a statistical parser to improve its perfor-
mance. Beyond that, we plan to embed semantic
filtering into the parser itself. If semantic filters
become sufficiently accurate, they could rule out

enough erroneous parses that the parser is left with
just the correct one.

Acknowledgements

This research was supported in part by NSF grant
IIS-0312988, DARPA contract NBCHD030010,
ONR grant N00014-02-1-0324 as well as gifts
from Google, and carried out at the University of
Washington’s Turing Center.

References

J. Allen. 1995. Natural Language Understand-
ing. Benjamin/Cummings Publishing, Redwood
City, CA, 2nd edition.

G. Attardi, A. Cisternino, F. Formica, M. Simi, and
A. Tommasi. 2001. PiQASso: Pisa Question An-
swering System. In TREC.

J. Bos, S. Clark, M. Steedman, J. R. Curran, and
J. Hockenmaier. 2004. Wide-coverage semantic
representations from a CCG parser. In COLING.

Michael J. Cafarella, Doug Downey, Stephen Soder-
land, and Oren Etzioni. 2005. KnowItNow: Fast,
scalable information extraction from the web. In
HLT-EMNLP.

M. J. Cafarella, M. Banko, and O. Etzioni. 2006. Re-
lational web search. UW Tech Report 06-04-02.

M. Collins. 2000. Discriminative reranking for natural
language parsing. In ICML, pages 175–182.

C. C. T. Kwok, O. Etzioni, and D. S. Weld. 2001. Scal-
ing question answering to the web. In WWW.

M. Lapata and F. Keller. 2005. Web-based models for
natural language processing. ACM Transactions on
Speech and Language Processing, 2:1–31.

K. Markert, N. Modjeska, and M. Nissim. 2003. Us-
ing the web for nominal anaphora resolution. In
EACL Workshop on the Computational Treatment of
Anaphora.

D. Moldovan, C. Clark, S. Harabagiu, and S. Maiorano.
2003. Cogex: A logic prover for question answer-
ing. In HLT.

K. Toutanova, C. D. Manning, D. Flickinger, and
S. Oepen. 2005. Stochastic HPSG parse disam-
biguation using the Redwoods Corpus. Journal of
Logic and Computation.

P.D. Turney. 2001. Mining the Web for Synonyms:
PMI–IR versus LSA on TOEFL. Lecture Notes in
Computer Science, 2167:491–502.

M. Volk. 2001. Exploiting the WWW as a corpus to
resolve PP attachment ambiguities. In Corpus Lin-
guistics.

34



Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 35–43,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Distributional Measures of Concept-Distance:
A Task-oriented Evaluation

Saif Mohammad and Graeme Hirst
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4, Canada
fsmm,ghg@cs.toronto.edu

Abstract

We propose a framework to derive the
distance between concepts from distribu-
tional measures of word co-occurrences.
We use the categories in a published
thesaurus as coarse-grained concepts, al-
lowing all possible distance values to
be stored in a concept–concept matrix
roughly .01% the size of that created
by existing measures. We show that
the newly proposed concept-distance mea-
sures outperform traditional distributional
word-distance measures in the tasks of
(1) ranking word pairs in order of se-
mantic distance, and (2) correcting real-
word spelling errors. In the latter task,
of all the WordNet-based measures, only
that proposed by Jiang and Conrath out-
performs the best distributional concept-
distance measures.

1 Semantic and distributional measures

Measures of distance of meaning are of two kinds.
The first kind, which we will refer to asseman-
tic measures, rely on the structure of a resource
such as WordNet or, in some cases, a semantic
network, and hence they measure the distance be-
tween the concepts or word-senses that the nodes
of the resource represent. Examples include the
measure for MeSH proposed by Rada et al. (1989)
and those for WordNet proposed by Leacock and
Chodorow (1998) and Jiang and Conrath (1997).
(Some of the more successful measures, such as
Jiang–Conrath, also use information content de-
rived from word frequency.) Typically, these mea-
sures rely on an extensive hierarchy of hyponymy
relationships for nouns. Therefore, these measures

are expected to perform poorly when used to es-
timate distance between senses of part-of-speech
pairs other than noun–noun, not just because the
WordNet hierarchies for other parts of speech are
less well developed, but also because the hierar-
chies for the different parts of speech are not well
connected.

The second kind of measures, which we will
refer to asdistributional measures, are inspired
by the maxim “You shall know a word by the
company it keeps” (Firth, 1957). These measures
rely simply on raw text, and hence are much less
resource-hungry than the semantic measures; but
they measure the distance between words rather
than word-senses or concepts. In these measures,
two words are considered close if they occur in
similar contexts. The context (or “company”) of
a target word is represented by itsdistributional
profile (DP), which lists the strength of associ-
ation between the target and each of the lexical,
syntactic, and/or semantic units that co-occur with
it. Commonly usedmeasures of strength of as-
sociation are conditional probability (0 to 1) and
pointwise mutual information (�∞ to ∞)1. Com-
monly used units of co-occurrence with the target
are otherwords, and so we speak of thelexical dis-
tributional profile of a word (lexical DPW) . The
co-occurring words may be all those in a prede-
termined window around the target, or may be re-
stricted to those that have a certain syntactic (e.g.,
verb–object) or semantic (e.g., agent–theme) re-
lation with the target word. We will refer to the
former kind of DPs asrelation-free. Usually in

1In our experiments, we set negative PMI values to 0, be-
cause Church and Hanks (1990), in their seminal paper on
word association ratio, show that negative PMI values are not
expected to be accurate unless co-occurrence counts are made
from an extremely large corpus.
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Table 1: Measures of DP distance and measures of
strength of association.

DP distance Strength of association
α-skew divergence conditional probability
cosine pointwise mutual information
Jensen–Shannon divergence
Lin

the latter case, separate association values are cal-
culated for each of the different relations between
the target and the co-occurring units. We will refer
to such DPs asrelation-constrained.

Typical relation-free DPs are those of Sch¨utze
and Pedersen (1997) and Yoshida et al. (2003).
Typical relation-constrained DPs are those of
Lin (1998) and Lee (2001). Below are contrived,
but plausible, examples of each for the wordpulse;
the numbers are conditional probabilities.

relation-free DP
pulse: beat (.28), racing (.2), grow
(.13),beans(.09),heart (.04), . . .

relation-constrained DP
pulse: <beat, subject–verb> (.34),
<racing, noun–qualifying adjective>
(.22),<grow, subject–verb> (.14), . . .

The distance between two words, given their
DPs, is calculated using ameasure of DP dis-
tance, such as cosine. While any of the mea-
sures of DP distance may be used with any of the
measures of strength of association (see Table 1),
in practiceα-skew divergence (ASD), cosine, and
Jensen–Shannon divergence (JSD) are used with
conditional probability (CP), whereas Lin is used
with PMI, resulting in the distributional measures
ASDcp (Lee, 2001),Coscp (Schütze and Pedersen,
1997),JSDcp, andLinpmi (Lin, 1998), respectively.
ASDcp is a modification of Kullback-Leibler diver-
gence that overcomes the latter’s problem of divi-
sion by zero, which can be caused by data sparse-
ness. JSDcp is another relative entropy–based
measure (likeASDcp) but it is symmetric.JSDcp

andASDcp are distance measures that give scores
between 0 (identical) and infinity (maximally dis-
tant).Linpmi andCoscp are similarity measures that
give scores between 0 (maximally distant) and 1
(identical). See Mohammad and Hirst (2005) for a
detailed study of these and other measures.

2 The distributional hypothesis and its
limitations

The distributional hypothesis (Firth, 1957) states
that words that occur in similar contexts tend to be
semantically similar. It is often suggested, there-
fore, that a distributional measure can act as a
proxy for a semantic measure: the distance be-
tween the DPs of words will approximate the dis-
tance between their senses. But when words have
more than one sense, it is not at all clear what se-
mantic distance between them actually means. A
word in each of its senses is likely to co-occur
with different sets of words. For example,bank
in the ‘financial institution’ sense is likely to co-
occur with interest, money, accounts,and so on,
whereas the ‘river bank’ sense might have words
such asriver, erosion,andsilt around it. If we de-
fine the distance between two words, at least one
of which is ambiguous, to be the closest distance
between some sense of one and some sense of the
other, then distributional distance between words
may indeed be used in place of semantic distance
between concepts. However, because measures of
distributional distance depend on occurrences of
the target word in all its senses, this substitution is
inaccurate. For example, observe that both DPWs
of pulseabove have words that co-occur with its
‘throbbing arteries’ sense and words that co-occur
with its ‘edible seed’ sense. Relation-free DPs of
pulse in its two separate senses might be as fol-
lows:

pulse ‘throbbing arteries’: beat (.36),
racing (.27),heart(.11), . . .
pulse ‘edible seeds’:grow (.24), beans
(.14), . . .

Thus, it is clear that different senses of a word have
different distributional profiles (“different com-
pany”). Using a single DP for the word will mean
the union of those profiles. While this might be
useful for certain applications, we believe that in
a number of tasks (including estimating linguistic
distance), acquiring different DPs for the differ-
ent senses is not only more intuitive, but also, as
we will show through experiments in Section 5,
more useful. We argue thatdistributional pro-
files of senses or concepts (DPCs)can be used to
infer semantic properties of the senses: “You shall
know a sense by the company it keeps.”
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3 Conceptual grain size and storage
requirements

As applications for linguistic distance become
more sophisticated and demanding, it becomes at-
tractive to pre-compute and store the distance val-
ues between all possible pairs of words or senses.
But both kinds of measures have large space re-
quirements to do this, requiring matrices of size
N�N, whereN is the size of the vocabulary (per-
haps 100,000 for most languages) in the case of
distributional measures and the number of senses
(75,000 just for nouns in WordNet) in the case of
semantic measures.

It is generally accepted, however, that WordNet
senses are far too fine-grained (Agirre and Lopez
de Lacalle Lekuona (2003) and citations therein).
On the other hand, published thesauri, such asRo-
get’sandMacquarie, group near-synonymous and
semantically related words into a relatively small
number ofcategories—typically between 800 and
1100—that roughly correspond to very coarse
concepts or senses (Yarowsky, 1992). Words with
more than one sense are listed in more than one
category. A published thesaurus thus provides us
with a very coarse human-developed set or inven-
tory of word sensesor concepts2 that are more in-
tuitive and discernible than the “concepts” gener-
ated by dimensionality-reduction methods such as
latent semantic analysis. Using coarse senses from
a known inventory means that the senses can be
represented unambiguously by a large number of
possibly ambiguous words (conveniently available
in the thesaurus)—a feature that we exploited in
our earlier work (Mohammad and Hirst, 2006) to
determine useful estimates of the strength of asso-
ciation between a concept and co-occurring words.

In this paper, we go one step further and use
the idea of a very coarse sense inventory to de-
velop a framework for distributional measures of
concepts that can more naturally and more ac-
curately be used in place of semantic measures
of word senses. We use theMacquarie The-
saurus(Bernard, 1986) as a sense inventory and
repository of words pertaining to each sense. It has
812 categories with around 176,000 word tokens
and 98,000 word types. This allows us to have
much smallerconcept–concept distance matri-
cesof size just 812�812 (roughly .01% the size

2We use the termssensesandconceptsinterchangeably.
This is in contrast to studies, such as that of Cooper (2005),
that attempt to make a principled distinction between them.

of matrices required by existing measures). We
evaluate our distributional concept-distance mea-
sures on two tasks: ranking word pairs in order
of their semantic distance, and correcting real-
word spelling errors. We compare performance
with distributional word-distance measures and
the WordNet-based concept-distance measures.

4 Distributional measures of
concept-distance

4.1 Capturing distributional profiles of
concepts

We use relation-freelexicalDPs—both DPWs and
DPCs—in our experiments, as they allow deter-
mination of semantic properties of the target from
just its co-occurring words.

Determining lexical DPWs simply involves
making word–word co-occurrence counts in a
corpus. A direct method to determine lexical
DPCs, on the other hand, requires information
about which words occur with which concepts.
This means that the text from which counts are
made has to be sense annotated. Since exist-
ing labeled data is minimal and manual annota-
tion is far too expensive, indirect means must be
used. In an earlier paper (Mohammad and Hirst,
2006), we showed how this can be done with sim-
ple word sense disambiguation and bootstrapping
techniques. Here, we summarize the method.

First, we create a word–category co-
occurrence matrix (WCCM) using theBritish
National Corpus (BNC) and the Macquarie
Thesaurus. The WCCM has the following form:

c1 c2 : : : cj : : :

w1 m11 m12 : : : m1 j : : :

w2 m21 m22 : : : m2 j : : :

...
...

...
. . . : : : : : :

wi mi1 mi2 : : : mi j : : :

...
...

...
...

...
. . .

A cell mi j , corresponding to wordwi and cate-
gorycj , contains the number of timeswi co-occurs
(in a window of�5 words in the corpus) with
any of the words listed under categorycj in the
thesaurus. Intuitively, the cellmi j captures the
number of timescj and wi co-occur. A contin-
gency table for a single word and single category
can be created by simply collapsing all other rows
and columns into one and summing their frequen-
cies. Applying a suitable statistic, such as odds
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co-occurrence counting
word–word

Figure 1: Distributional word-distance.

ratio, on the contingency table gives the strength
of association between a concept (category) and
co-occurring word. Therefore, the WCCM can be
used to create the lexical DP for any concept.

The matrix that is created after one pass of the
corpus, which we call thebase WCCM, although
noisy (as it is created from raw text and not sense-
annotated data), captures strong associations be-
tween categories and co-occurring words. There-
fore the intended sense (thesaurus category) of a
word in the corpus can now be determined using
frequencies of co-occurring words and its various
senses as evidence. A newbootstrapped WCCM
is created, after a second pass of the corpus, in
which the cellmi j contains the number of times
any word used in sense cj co-occurs withwi . We
have shown (Mohammad and Hirst, 2006) that the
bootstrapped WCCM captures word–category co-
occurrences much more accurately than the base
WCCM, using the task of determining word sense
dominance3 as a test bed.

4.2 Applying distributional measures to
DPCs

Recall that in computing distributional word-
distance, we consider two target words to be dis-
tributionally similar (less distant) if they occur in
similar contexts. The contexts are represented by
the DPs of the target words, where a DP gives the
strength of association between the target and the
co-occurring units. A distributional measure uses
a measure of DP distance to determine the distance
between two DPs and thereby between the two tar-
get words (see Figure 1). The various measures
differ in what statistic they use to calculate the
strength of association and the measure of DP dis-

3Near-upper-bound results were achieved in the task of
determining predominant senses of 27 words in 11 target texts
with a wide range of sense distributions over their two most
dominant senses.

distributional measures

BNC Thesaurus

distributional relatedness ofconcepts

word–categoryco-occurrence matrix sense disambiguation
bootstrapping and

co-occurrence counting
word–category

Figure 2: Distributional concept-distance.

tance they use (see Mohammad and Hirst (2005)
for details). For example, following is the cosine
formula for distance between wordsw1 andw2 us-
ing relation-free lexical DPWs, with conditional
probability of the co-occurring word given the tar-
get as the strength of association:

Coscp(w1;w2) =

∑w2C(w1)[C(w2) (P(wjw1)�P(wjw2))q
∑w2C(w1)P(wjw1)2�

q
∑w2C(w2)P(wjw2)2

Here,C(x) is the set of words that co-occur with
word xwithin a pre-determined window.

In order to calculate distributionalconcept-
distance, consider the same scenario, except that
the targets are now senses or concepts. Two con-
cepts are closer if their DPs are similar, and these
DPCs require the strength of association between
the targetconceptsand their co-occurring words.
The associations can be estimated from the boot-
strapped WCCM, described in Section 4.1 above.
Any of the distributional measures used for DPWs
can now be used to estimate concept-distance with
DPCs. Figure 2 illustrates our methodology. Be-
low is the formula for cosine with conditional
probabilities when applied to concepts:

Coscp(c1;c2) =

∑w2C(c1)[C(c2) (P(wjc1)�P(wjc2))q
∑w2C(c1)P(wjc1)2�

q
∑w2C(c2)P(wjc2)2

Now, C(x) is the set of words that co-occur with
concept xwithin a pre-determined window.

We will refer to such measures as distributional
measures of concept-distance (Distribconcept),
in contrast to the earlier-described distribu-
tional measures of word-distance (Distribword)
and WordNet-based (or semantic) measures of
concept-distance (WNetconcept). We shall refer
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to these three kinds of distance measures as
measure-types. Individual measures in each kind
will be referred to simply asmeasures.

A distributional measure of concept-distance
can be used to populate a small 812� 812
concept–concept distance matrixwhere a cell
mi j , pertaining to conceptsci and cj , contains
the distance between the two concepts. In con-
trast, a word–word distance matrix for a conserva-
tive vocabulary of 100,000 word types will have
a size 100,000� 100,000, and a WordNet-based
concept–concept distance matrix will have a size
75,000� 75,000 just for nouns. Our concept–
concept distance matrix is roughly .01% the size
of these matrices.

Note that the DPs we are using are relation-free
because (1) we use all co-occurring words (not just
those that are related to the target by certain syn-
tactic or semantic relations) and (2) the WCCM,
as described in Section 4.1, does not maintain sep-
arate counts for the different relations between the
target and co-occurring words. Creating a larger
matrix with separate counts for the different rela-
tions would lead torelation-constrainedDPs.

5 Evaluation

To evaluate the distributional concept-distance
measures, we used them in the tasks of ranking
word pairs in order of their semantic distance and
of correcting real-word spelling errors, and com-
pared our results to those that we obtained on the
same tasks with distributional word-distance mea-
sures and those that Budanitsky and Hirst (2006)
obtained with WordNet-based semantic measures.

The distributional concept-distance measures
used a bootstrapped WCCM created from theBNC
and theMacquarie Thesaurus. The word-distance
measures used a word–word co-occurrence matrix
created from theBNC alone. TheBNC was not
lemmatized, part of speech tagged, or chunked.
The vocabulary was restricted to the words present
in the thesaurus (about 98,000 word types) both
to provide a level evaluation platform and to keep
the matrix to a manageable size. Co-occurrence
counts less than 5 were reset to 0, and words
that co-occurred with more than 2000 other words
were stoplisted (543 in all). We usedASDcp (α =

0:99),Coscp, JSDcp, andLinpmi
4 to populate corre-

sponding concept–concept distance matrices and

4Whereas Lin (1998) used relation-constrained DPs, in
our experiments all DPs are relation-free.

Table 2: Correlation of distributional measures
with human ranking. Best results for each
measure-type are shown in boldface.

Measure-type
Distribword Distribconcept

Measure closest average

ASDcp .45 .60 –
Coscp .54 .69 .42
JSDcp .48 .61 –
Linpmi .52 .71 .59

word–word distance matrices. Applications that
require distance values will enjoy a run-time ben-
efit if the distances are precomputed. While it is
easy to completely populate the concept–concept
co-occurrence matrix, completely populating the
word–word distance matrix is a non-trivial task be-
cause of memory and time constraints.5

5.1 Ranking word pairs

A direct approach to evaluating linguistic dis-
tance measures is to determine how close they
are to human judgment and intuition. Given a
set of word-pairs, humans can rank them in or-
der of their distance—placing near-synonyms on
one end of the ranking and unrelated pairs on the
other. Rubenstein and Goodenough (1965) pro-
vide a “gold-standard” list of 65 human-ranked
word-pairs (based on the responses of 51 sub-
jects). One automatic word-distance estimator,
then, is deemed to be more accurate than another
if its ranking of word-pairs correlates more closely
with this human ranking. Measures of concept-
distance can perform this task by determining
word-distance for each word-pair by finding the
concept-distance between all pairs of senses of the
two words, and choosing the distance of the clos-
est sense pair. This is based on the assumption that
when humans are asked to judge the semantic dis-
tance between a pair of words, they implicitly con-
sider its closest senses. For example, most people
will agree thatbankand interestare semantically
related, even though both have multiple senses—
most of which are unrelated. Alternatively, the
method could take the average of the distance of
all pairs of senses.

5As we wanted to perform experiments with both
concept–concept and word–word distance matrices, we pop-
ulated them as and when new distance values were calculated.
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Table 3: Hirst and St-Onge metrics for evaluation
of real-word spelling correction.

suspect ratio =
no. of true-suspects

no. of malaps
no. of false-suspects
no. of non-malaps

alarm ratio =
no. of true-alarms

no. of true-suspects
no. of false-alarms

no. of false-suspects

detection ratio =
no. of true-alarms

no. of malaps
no. of false-alarms
no. of non-malaps

correction ratio =
no. corrected malaps

no. of malaps
no. of false-alarms
no. of non-malaps

correction accuracy = no. of corrected malaps
no. of true-alarms

Table 2 lists correlations of human rank-
ings with those created using distributional mea-
sures. Observe thatDistribconcept measures
give markedly higher correlation values than
Distribword measures. Also, using the distance of
the closest sense pair (forCoscp andLinpmi) gives
much better results than using the average dis-
tance of all relevant sense pairs. (We do not report
average distance forASDcp and JSDcp because
they give very large distance values when sense-
pairs are unrelated—values that dominate the av-
erages, overwhelming the others, and making the
results meaningless.) These correlations are, how-
ever, notably lower than those obtained by the best
WordNet-based measures (not shown in the table),
which fall in the range .78 to .84 (Budanitsky and
Hirst, 2006).

5.2 Real-word spelling error correction

The set of Rubenstein and Goodenough word pairs
is much too small to safely assume that measures
that work well on them do so for the entire En-
glish vocabulary. Consequently, semantic mea-
sures have traditionally been evaluated through ap-
plications that use them, such as the work by Hirst
and Budanitsky (2005) on correctingreal-word
spelling errors (or malapropisms). If a word
in a text is not “semantically close” to any other
word in its context, then it is considered asus-
pect. If the suspect has a spelling-variant that
is “semantically close” to a word in its context,
then the suspect is declared a probable real-word
spelling error and an “alarm” is raised; the related

spelling-variant is considered itscorrection. Hirst
and Budanitsky tested the method on 500 articles
from the 1987–89Wall Street Journalcorpus for
their experiments, replacing every 200th word by
a spelling-variant. We adopt this method and this
test data, but whereas Hirst and Budanitsky used
WordNet-based semantic measures, we use distri-
butional measuresDistribword andDistribconcept.

In order to determine whether two words are
“semantically close” or not as per any measure
of distance, athreshold must be set. If the dis-
tance between two words is less than the threshold,
then they will be consideredsemantically close.
Hirst and Budanitsky (2005) pointed out that there
is a notably wide band between 1.83 and 2.36
(on a scale of 0–4), such that all Rubenstein and
Goodenough word pairs were assigned values ei-
ther higher than 2.36 or lower than 1.83 by human
subjects. They argue that somewhere within this
band is a suitable threshold between semantically
close and semantically distant, and therefore set
thresholds for the WordNet-based measures such
that there was maximum overlap in what the mea-
sures and human judgments considered semanti-
cally close and distant. Following this idea, we
use an automatic method to determine thresholds
for the variousDistribword andDistribconceptmea-
sures. Given a list of Rubenstein and Goodenough
word pairs ordered according to a distance mea-
sure, we repeatedly consider the mean of all con-
secutive distance values ascandidate thresholds.
Then we determine the number of word-pairs cor-
rectly classified as semantically close or semanti-
cally distant for each candidate threshold, consid-
ering which side of the band they lie as per human
judgments. The candidate threshold with highest
accuracy is chosen as the threshold.

We follow Hirst and St-Onge (1998) in the met-
rics that we use to evaluate real-word spelling cor-
rection; they are listed in Table 3.Suspect ratio
andalarm ratio evaluate the processes of identify-
ing suspects and raising alarms, respectively.De-
tection ratio is the product of the two, and mea-
sures overall performance in detecting the errors.
Correction ratio indicates overall correction per-
formance, and is the “bottom-line” statistic that we
focus on. Values greater than 1 for each of these
ratios indicate results better than random guessing.
The ability of the system to determine the intended
word, given that it has correctly detected an error,
is indicated by thecorrection accuracy (0 to 1).

40



Table 4: Real-word error correction using distributional word-distance (Distribword), distributional
concept-distance (Distribconcept), and Hirst and Budanitsky’s (2005) results using WordNet-based
concept-distance measures (WNetconcept). Best results for each measure-type are shown in boldface.

suspect alarm detection correctioncorrection detection correction
Measure ratio ratio ratio accuracy ratio P R F performance

Distribword

ASDcp 3.36 1.78 5.98 0.84 5.03 7.37 45.53 12.69 10.66
Coscp 2.91 1.64 4.77 0.85 4.06 5.97 37.15 10.28 8.74
JSDcp 3.29 1.77 5.82 0.83 4.88 7.19 44.32 12.37 10.27
Linpmi 3.63 2.15 7.78 0.84 6.52 9.38 58.38 16.16 13.57

Distribconcept

ASDcp 4.11 2.54 10.43 0.91 9.49 12.19 25.28 16.44 14.96
Coscp 4.00 2.51 10.03 0.90 9.05 11.77 26.99 16.38 14.74
JSDcp 3.58 2.46 8.79 0.90 7.87 10.47 34.66 16.08 14.47
Linpmi 3.02 2.60 7.84 0.88 6.87 9.45 36.86 15.04 13.24

WNetconcept

Hirst–St-Onge 4.24 1.95 8.27 0.93 7.70 9.67 26.33 14.15 13.16
Jiang–Conrath 4.73 2.97 14.02 0.92 12.91 14.33 46.22 21.88 20.13
Leacock–Chodrow 3.23 2.72 8.80 0.83 7.30 11.56 60.33 19.40 16.10
Lin 3.57 2.71 9.70 0.87 8.48 9.56 51.56 16.13 14.03
Resnik 2.58 2.75 7.10 0.78 5.55 9.00 55.00 15.47 12.07

Notice that the correction ratio is the product of the
detection ratio and correction accuracy. The over-
all (single-point) precisionP (no. of true-alarms /
no. of alarms), recallR (no. of true-alarms / no.
of malapropisms), andF-score (2�P�R

P+R ) of detec-
tion are also computed. The product of detection
F-score and correction accuracy, which we will
call correction performance, can also be used as
a bottom-line performance metric.

Table 4 details the performance ofDistribword

andDistribconcept measures. For comparison, re-
sults obtained by Hirst and Budanitsky (2005)
with the use ofWNetconcept measures are also
shown. Observe that the correction ratio results
for theDistribword measures are poor compared to
Distribconceptmeasures; the concept-distance mea-
sures are clearly superior, in particularASDcp and
Coscp. Moreover, if we consider correction ratio to
be the bottom-line statistic, then theDistribconcept

measures outperform allWNetconceptmeasures ex-
cept the Jiang–Conrath measure. If we con-
sider correction performance to be the bottom-line
statistic, then again we see that the distributional
concept-distance measures outperform the word-
distance measures, except in the case ofLinpmi,
which gives slightly poorer results with concept-
distance. Also, in contrast to correction ratio val-
ues, using the Leacock–Chodorow measure results
in relatively higher correction performance values

than the bestDistribconcept measures. While it is
clear that the Leacock–Chodorow measure is rela-
tively less accurate in choosing the right spelling-
variant for an alarm (correction accuracy), detec-
tion ratio and detectionF-score present contrary
pictures of relative performance in detection. As
correction ratio is determined by the product of
a number of ratios, each evaluating the various
stages of malapropism correction (identifying sus-
pects, raising alarms, and applying the correction),
we believe it is a better indicator of overall per-
formance than correction performance, which is
a not-so-elegant product of anF-score and accu-
racy. However, no matter which of the two is
chosen as the bottom-line performance statistic,
the results show that the newly proposed distri-
butional concept-distance measures are clearly su-
perior to word-distance measures. Further, of all
the WordNet-based measures, only that proposed
by Jiang and Conrath outperforms the best dis-
tributional concept-distance measures consistently
with respect to both bottom-line statistics.

6 Related Work

Patwardhan and Pedersen (2006) createaggregate
co-occurrence vectorsfor a WordNet sense by
adding the co-occurrence vectors of the words in
its WordNet gloss. The distance between two
senses is then determined by the cosine of the an-
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gle between their aggregate vectors. However, as
we pointed out in Mohammad and Hirst (2005),
such aggregate co-occurrence vectors are expected
to be noisy because they are created from data that
is not sense-annotated. Therefore, we employed
simple word sense disambiguation and bootstrap-
ping techniques on our base WCCM to create
more-accurate co-occurrence vectors, which gave
markedly higher accuracies in the task of deter-
mining word sense dominance. In the exper-
iments described in this paper, we used these
bootstrapped co-occurrence vectors to determine
concept-distance.

Pantel (2005) also provides a way to create
co-occurrence vectors for WordNet senses. The
lexical co-occurrence vectors of words in a leaf
node are propagated up the WordNet hierarchy.
A parent node inherits those co-occurrences that
are shared by its children. Lastly, co-occurrences
not pertaining to the leaf nodes are removed from
its vector. Even though the methodology at-
tempts at associating a WordNet node or sense
with only those co-occurrences that pertain to it,
no attempt is made at correcting the frequency
counts. After all,word1–word2co-occurrence fre-
quency (or association) is likely not the same as
SENSE1–word2co-occurrence frequency (or asso-
ciation), simply becauseword1 may have senses
other thanSENSE1, as well. The co-occurrence
frequency of a parent is the weighted sum of co-
occurrence frequencies of its children. The fre-
quencies of the child nodes are used as weights.
Sense ambiguity issues apart, this is still prob-
lematic because a parent concept (say,BIRD) may
co-occur much more frequently (or infrequently)
with a word than its children (such as,hen, ar-
chaeopteryx, aquatic bird, trogon,and others). In
contrast, the bootstrapped WCCM we use not only
identifies which words co-occur with which con-
cepts, but also has more sophisticated estimates of
the co-occurrence frequencies.

7 Conclusion

We have proposed a framework that allows dis-
tributional measures to estimate concept-distance
using a published thesaurus and raw text. We
evaluated them in comparison with traditional dis-
tributional word-distance measures and WordNet-
based measures through their ability in ranking
word-pairs in order of their human-judged linguis-
tic distance, and in correcting real-word spelling

errors. We showed that distributional concept-
distance measures outperformed word-distance
measures in both tasks. They do not perform
as well as the best WordNet-based measures in
ranking a small set of word pairs, but in the task
of correcting real-word spelling errors, they beat
all WordNet-based measures except for Jiang–
Conrath (which is markedly better) and Leacock-
Chodorow (which is slightly better if we consider
correction performance as the bottom-line statis-
tic, but slightly worse if we rely on correction
ratio). It should be noted that the Rubenstein
and Goodenough word-pairs used in the ranking
task, as well as all the real-word spelling errors
in the correction task are nouns. We expect that
the WordNet-based measures will perform poorly
when other parts of speech are involved, as those
hierarchies of WordNet are not as extensively de-
veloped. On the other hand, our DPC-based mea-
sures do not rely on any hierarchies (even if they
exist in a thesaurus) but on sets of words that un-
ambiguously represent each sense. Further, be-
cause our measures are tied closely to the corpus
from which co-occurrence counts are made, we
expect the use of domain-specific corpora to result
in even better results.

All the distributional measures that we have
considered in this paper arelexical—that is, the
distributional profiles of the target word or con-
cept are based on their co-occurrence with words
in a text. By contrast,semanticDPs would be
based on information such as what concepts usu-
ally co-occur with the target word or concept. Se-
mantic profiles of words can be obtained from
the WCCM itself (using the row entry for the
word). It would be interesting to see how distri-
butional measures of word-distance that use these
semantic DPs of words perform. We also intend
to explore the use of semantic DPs of concepts
acquired from aconcept–concept co-occurrence
matrix (CCCM) . A CCCM can be created from
the WCCM by setting the row entry for a concept
or category to be the average of WCCM row val-
ues for all the words pertaining to it.

Both DPW- and WordNet-based measures have
large space and time requirements for pre-
computing and storing all possible distance val-
ues for a language. However, by using the cate-
gories of a thesaurus as very coarse concepts, pre-
computing and storing all possible distance values
for our DPC-based measures requires a matrix of
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size only about 800�800. This level of concept-
coarseness might seem drastic at first glance, but
we have shown that distributional measures of dis-
tance between these coarse concepts are quite use-
ful. Part of our future work will be to try an inter-
mediate degree of coarseness (still much coarser
than WordNet) by using the paragraph subdivi-
sions of the thesaurus instead of its categories to
see if this gives even better results.
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Abstract

We introduce SPMT, a new class of sta-
tistical Translation Models that use Syn-
tactified target language Phrases. The
SPMT models outperform a state of the art
phrase-based baseline model by 2.64 Bleu
points on the NIST 2003 Chinese-English
test corpus and 0.28 points on a human-
based quality metric that ranks translations
on a scale from 1 to 5.

1 Introduction

During the last four years, various implemen-
tations and extentions to phrase-based statistical
models (Marcu and Wong, 2002; Koehn et al.,
2003; Och and Ney, 2004) have led to signif-
icant increases in machine translation accuracy.
Although phrase-based models yield high-quality
translations for language pairs that exhibit simi-
lar word order, they fail to produce grammatical
outputs for language pairs that are syntactically
divergent. Recent models that exploit syntactic
information of the source language (Quirk et al.,
2005) have been shown to produce better outputs
than phrase-based systems when evaluated on rel-
atively small scale, domain specific corpora. And
syntax-inspired formal models (Chiang, 2005), in
spite of being trained on significantly less data,
have shown promising results when compared on
the same test sets with mature phrase-based sys-
tems. To our knowledge though, no previous re-
search has demonstrated that a syntax-based sta-
tistical translation system could produce better re-
sults than a phrase-based system on a large-scale,
well-established, open domain translation task. In
this paper we present such a system.

Our translation models rely upon and naturally
exploit submodels (feature functions) that have

been initially developed in phrase-based systems
for choosing target translations of source language
phrases, and use new, syntax-based translation and
target language submodels for assembling target
phrases into well-formed, grammatical outputs.

After we introduce our models intuitively, we
discuss their formal underpinning and parameter
training in Section 2. In Section 3, we present our
decoder and, in Section 4, we evaluate our models
empirically. In Section 5, we conclude with a brief
discussion.

2 SPMT: statistical Machine Translation
with Syntactified Phrases

2.1 An intuitive introduction to SPMT

After being exposed to 100M+ words of parallel
Chinese-English texts, current phrase-based statis-
tical machine translation learners induce reason-
ably reliable phrase-based probabilistic dictionar-
ies. For example, our baseline statistical phrase-
based system learns that, with high probabilities,
the Chinese phrases “ASTRO- -NAUTS”, “FRANCE

AND RUSSIA” and “COMINGFROM” can be trans-
lated into English as “astronauts”/“cosmonauts”,
“france and russia”/“france and russian” and
“coming from”/“from”, respectively. 1 Unfortu-
nately, when given as input Chinese sentence 1,
our phrase-based system produces the output
shown in 2 and not the translation in 3, which
correctly orders the phrasal translations into a
grammatical sequence. We believe this hap-
pens because the distortion/reordering models that
are used by state-of-the-art phrase-based systems,
which exploit phrase movement and ngram target

1To increase readability, in this paper, we represent Chi-
nese words using fully capitalized English glosses and En-
glish words using lowercased letters.
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language models (Och and Ney, 2004; Tillman,
2004), are too weak to help a phrase-based de-
coder reorder the target phrases into grammatical
outputs.

THESE 7PEOPLE INCLUDE COMINGFROM

FRANCE AND RUSSIA p-DE ASTRO- -NAUTS .
(1)

the 7 people including those from france

and the russian cosmonauts .
(2)

these 7 people include astronauts coming

from france and russia .
(3)

One method for increasing the ability of a de-
coder to reorder target language phrases is that
of decorating them with syntactic constituent in-
formation. For example, we may make ex-
plicit that the Chinese phrase “ASTRO- -NAUTS”

may be translated into English as a noun phrase,
NP(NNS(astronauts)); that the phrase FRANCE AND

RUSSIA may be translated into a complex noun-
phrase, NP(NP(NNP(france)) CC(and) NP(NNP(russia)));
that the phrase COMINGFROM may be translated
into a partially realized verb phrase that is look-
ing for a noun phrase to its right in order to be
fully realized, VP(VBG(coming) PP(IN(from) NP:x0));
and that the Chinese particle p-DE, when occurring
between a Chinese string that was translated into
a verb phrase to its left and another Chinese string
that was translated into a noun phrase to its right,
VP:x1 p-DE NP:x0, should be translated to noth-
ing, while forcing the reordering of the two con-
stituents, NP(NP:x0, VP:x1). If all these translation
rules (labeled r1 to r4 in Figure 1) were available
to a decoder that derives English parse trees start-
ing from Chinese input strings, this decoder could
produce derivations such as that shown in Fig-
ure 2. Because our approach uses translation rules
with Syntactified target language Phrases (see Fig-
ure 1), we call it SPMT.

2.2 A formal introduction to SPMT

2.2.1 Theoretical foundations

We are interested to model a generative process
that explains how English parse trees π and their
associated English string yields E, foreign sen-
tences, F , and word-level alignments, A, are pro-
duced. We assume that observed (π, F,A) triplets
are generated by a stochastic process similar to

r1 :NP(NNS(astronauts))→ ASTRO- -NAUTS

r2 :NP(NP(NNP(france)) CC(and) NP(NNP(russia)))→

FRANCE AND RUSSIA

r3 :VP(VBG(coming) PP(IN(from) NP:x0))→

COMINGFROM x0

r4 :NP(NP:x0, VP:x1)→ x1 p-DE x0

r5 :NNP(france)→ FRANCE

r6 :NP(NP(NNP(france)) CC(and) NP:x0)→ FRANCE AND x0

r7 :NNS(astronauts)→ ASTRO- -NAUTS

r8 :NNP(russia)→ RUSSIA

r9 :NP(NNS:x0)→ x0

r10 :PP(IN:x0 NP:x1)→ x0 x1

r11 :NP(NP:x0 CC:x1 NP:x2)→ x0 x1 x2

r12 :NP(NNP:x0)→ x0

r13 :CC(and)→ AND

r14 :NP(NP:x0 CC(and) NP:x1)→ x0 AND x1

r15 :NP(NP:x0 VP(VBG(coming) PP(IN(from) NP:x1)))→

x1 COMINGFROM x0

Figure 1: Examples of xRS rules.

that used in Data Oriented Parsing models (Bon-
nema, 2002). For example, if we assume that the
generative process has already produced the top
NP node in Figure 2, then the corresponding par-
tial English parse tree, foreign/source string, and
word-level alignment could be generated by the
rule derivation r4(r1, r3(r2)), where each rule is
assumed to have some probability.

The extended tree to string transducers intro-
duced by Knight and Graehl (2005) provide a nat-
ural framework for expressing the tree to string
transformations specific to our SPMT models.
The transformation rules we plan to exploit are
equivalent to one-state xRS top-down transduc-
ers with look ahead, which map subtree patterns
to strings. For example, rule r3 in Figure 1 can
be applied only when one is in a state that has a
VP as its syntactic constituent and the tree pat-
tern VP(VBG(coming) PP(IN(from) NP)) immediately
underneath. The rule application outputs the string
“COMINGFROM” as the transducer moves to the
state co-indexed by x0; the outputs produced from
the new state will be concatenated to the right of
the string “COMINGFROM”.

Since there are multiple derivations that could
lead to the same outcome, the probability of a
tuple (π, F,A) is obtained by summing over all
derivations θi ∈ Θ that are consistent with the tu-
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Figure 2: English parse tree derivation of the Chi-
nese string COMINGFROM FRANCE AND RUSSIA p-

DE ASTRO- -NAUTS.

ple, c(Θ) = (π, F,A). The probability of each
derivation θi is given by the product of the proba-
bilities of all the rules p(rj) in the derivation (see
equation 4).

Pr(π, F,A) =
∑

θi∈Θ,c(Θ)=(π,F,A)

∏

rj∈θi

p(rj) (4)

In order to acquire the rules specific to our
model and to induce their probabilities, we parse
the English side of our corpus with an in-house
implementation (Soricut, 2005) of Collins pars-
ing models (Collins, 2003) and we word-align the
parallel corpus with the Giza++2 implementation
of the IBM models (Brown et al., 1993). We
use the automatically derived 〈English-parse-tree,
English-sentence, Foreign-sentence, Word-level-
alignment〉 tuples in order to induce xRS rules for
several models.

2.2.2 SPMT Model 1

In our simplest model, we assume that each
tuple (π, F,A) in our automatically annotated
corpus could be produced by applying a com-
bination of minimally syntactified, lexicalized,
phrase-based compatible xRS rules, and mini-
mal/necessary, non-lexicalized xRS rules. We call
a rule non-lexicalized whenever it does not have
any directly aligned source-to-target words. Rules
r9–r12 in Figure 1 are examples of non-lexicalized
rules.

Minimally syntactified, lexicalized, phrase-
based-compatible xRS rules are extracted via a

2http://www.fjoch.com/GIZA++.html

simple algorithm that finds for each foreign phrase
F

j
i , the smallest xRS rule that is consistent with

the foreign phrase F
j
i , the English syntactic tree

π, and the alignment A. The algorithm finds for
each foreign/source phrase span its projected span
on the English side and then traverses the En-
glish parse tree bottom up until it finds a node
that subsumes the projected span. If this node has
children that fall outside the projected span, then
those children give rise to rules that have variables.
For example, if the tuple shown in Figure 2 is in
our training corpus, for the foreign/source phrases
FRANCE, FRANCE AND, FRANCE AND RUSSIA, and
ASTRO- -NAUTS, we extract the minimally syntac-
tified, lexicalized phrase-based-compatible xRS
rules r5, r6, r2, and r7 in Figure 1, respectively.
Because, as in phrase-based MT, all our rules have
continuous phrases on both the source and target
language sides, we call these phrase-based com-
patible xRS rules.

Since these lexicalized rules are not sufficient to
explain an entire (π, F,A) tuple, we also extract
the required minimal/necessary, non-lexicalized
xRS rules. The minimal non-lexicalized rules that
are licensed by the tuple in Figure 2 are labeled
r4, r9, r10, r11 and r12 in Figure 1. To obtain the
non-lexicalized xRS rules, we compute the set of
all minimal rules (lexicalized and non-lexicalized)
by applying the algorithm proposed by Galley et
al. (2006) and then remove the lexicalized rules.
We remove the Galley et al.’s lexicalized rules
because they are either already accounted for by
the minimally syntactified, lexicalized, phrase-
based-compatible xRS rules or they subsume non-
continuous source-target phrase pairs.

It is worth mentioning that, in our framework,
a rule is defined to be “minimal” with respect to a
foreign/source language phrase, i.e., it is the min-
imal xRS rule that yields that source phrase. In
contrast, in the work of Galley et al. (2004; 2006),
a rule is defined to be minimal when it is necessary
in order to explain a (π, F,A) tuple.

Under SPMT model 1, the tree in Figure 2 can
be produced, for example, by the following deriva-
tion: r4(r9(r7), r3(r6(r12(r8)))).

2.2.3 SPMT Model 1 Composed

We hypothesize that composed rules, i.e., rules
that can be decomposed via the application of a
sequence of Model 1 rules may improve the per-
formance of an SPMT system. For example, al-
though the minimal Model 1 rules r11 and r13 are
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Figure 3: Problematic syntactifications of phrasal
translations.

sufficient for building an English NP on top of two
NPs separated by the Chinese conjunction AND,
the composed rule r14 in Figure 1 accomplishes
the same result in only one step. We hope that the
composed rules could play in SPMT the same role
that phrases play in string-based translation mod-
els.

To test our hypothesis, we modify our rule ex-
traction algorithm so that for every foreign phrase
F

j
i , we extract not only a minimally syntactified,

lexicalized xRS rule, but also one composed rule.
The composed rule is obtained by extracting the
rule licensed by the foreign/source phrase, align-
ment, English parse tree, and the first multi-child
ancestor node of the root of the minimal rule. Our
intuition is that composed rules that involve the ap-
plication of more than two minimal rules are not
reliable. For example, for the tuple in Figure 2,
the composed rule that we extract given the for-
eign phrases AND and COMINGFROM are respec-
tively labeled as rules r14 and r15 in Figure 1.

Under the SPMT composed model 1,
the tree in Figure 2 can be produced,
for example, by the following derivation:
r15(r9(r7), r14(r12(r5), r12(r8))).

2.2.4 SPMT Model 2

In many instances, the tuples (π, F,A) in our
training corpus exhibit alignment patterns that can
be easily handled within a phrase-based SMT
framework, but that become problematic in the
SPMT models discussed until now.

Consider, for example, the (π, F,A) tuple frag-
ment in Figure 3. When using a phrase-based
translation model, one can easily extract the
phrase pair (THE MUTUAL; the mutual) and use it
during the phrase-based model estimation phrase
and in decoding. However, within the xRS trans-

ducer framework that we use, it is impossible to
extract an equivalent syntactified phrase transla-
tion rule that subsumes the same phrase pair be-
cause valid xRS translation rules cannot be multi-
headed. When faced with this constraint, one has
several options:

• One can label such phrase pairs as non-
syntactifiable and ignore them. Unfortu-
nately, this is a lossy choice. On our par-
allel English-Chinese corpus, we have found
that approximately 28% of the foreign/source
phrases are non-syntactifiable by this defini-
tion.

• One can also traverse the parse tree upwards
until one reaches a node that is xRS valid, i.e.,
a node that subsumes the entire English span
induced by a foreign/source phrase and the
corresponding word-level alignment. This
choice is also inappropriate because phrase
pairs that are usually available to phrase-
based translation systems are then expanded
and made available in the SPTM models only
in larger applicability contexts.

• A third option is to create xRS compati-
ble translation rules that overcome this con-
straint.

Our SPMT Model 2 adopts the third option by
rewriting on the fly the English parse tree for each
foreign/source phrase and alignment that lead to
non-syntactifiable phrase pairs. The rewriting pro-
cess adds new rules to those that can be created
under the SPMT model 1 constraints. The process
creates one xRS rule that is headed by a pseudo,
non-syntactic nonterminal symbol that subsumes
the target phrase and corresponding multi-headed
syntactic structure; and one sibling xRS rule that
explains how the non-syntactic nonterminal sym-
bol can be combined with other genuine nonter-
minals in order to obtain genuine parse trees. In
this view, the foreign/source phrase THE MUTUAL

and corresponding alignment in Figure 3 licenses
the rules ?NPB? NN(DT(the) JJ(mutual)) → THE MU-

TUAL and NPB(?NPB? NN:x0 NN:x1) → x0 x1 even
though the foreign word UNDERSTANDING is
aligned to an English word outside the NPB con-
situent. The name of the non-syntactic nontermi-
nal reflects the intuition that the English phrase “the

mutual” corresponds to a partially realized NPB that
needs an NN to its right in order to be fully real-
ized.
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Our hope is that the rules headed by pseudo
nonterminals could make available to an SPMT
system all the rules that are typically available to
a phrase-based system; and that the sibling rules
could provide a sufficiently robust generalization
layer for integrating pseudo, partially realized con-
stituents into the overall decoding process.

2.2.5 SPMT Model 2 Composed

The SPMT composed model 2 uses all rule
types described in the previous models.

2.3 Estimating rule probabilities

For each model, we extract all rule instances that
are licensed by a symmetrized Giza-aligned paral-
lel corpus and the constraints we put on the model.
We condition on the root node of each rule and use
the rule counts f(r) and a basic maximum likeli-
hood estimator to assign to each rule type a condi-
tional probability (see equation 5).

p(r|root(r)) =
f(r)∑

r′:root(r′)=root(r) f(r′)
(5)

It is unlikely that this joint probability model
can be discriminative enough to distinguish be-
tween good and bad translations. We are not too
concerned though because, in practice, we decode
using a larger set of submodels (feature functions).

Given the way all our lexicalized xRS rules have
been created, one can safely strip out the syntac-
tic information and end up with phrase-to-phrase
translation rules. For example, in string-to-string
world, rule r5 in Figure 1 can be rewritten as “france

→ FRANCE”; and rule r6 can be rewritten as “france

and → FRANCE AND”. When one analyzes the lex-
icalized xRS rules in this manner, it is easy to as-
sociate with them any of the submodel probability
distributions that have been proven useful in statis-
tical phrase-based MT. The non-lexicalized rules
are assigned probability distributions under these
submodels as well by simply assuming a NULL
phrase for any missing lexicalized source or target
phrase.

In the experiments described in this paper, we
use the following submodels (feature functions):
Syntax-based-like submodels:

• proot(ri) is the root normalized conditional
probability of all the rules in a model.

• pcfg(ri) is the CFG-like probability of the
non-lexicalized rules in the model. The lexi-
calized rules have by definition pcfg = 1.

• is lexicalized(ri) is an indicator feature func-
tion that has value 1 for lexicalized rules, and
value 0 otherwise.

• is composed(ri) is an indicator feature func-
tion that has value 1 for composed rules.

• is lowcount(ri) is an indicator feature func-
tion that has value 1 for the rules that occur
less than 3 times in the training corpus.

Phrase-based-like submodels:

• lex pef(ri) is the direct phrase-based con-
ditional probability computed over the for-
eign/source and target phrases subsumed by
a rule.

• lex pfe(ri) is the inverse phrase-based condi-
tional probability computed over the source
and target phrases subsumed by a rule.

• m1(ri) is the IBM model 1 probability com-
puted over the bags of words that occur on
the source and target sides of a rule.

• m1inv(ri) is the IBM model 1 inverse prob-
ability computed over the bags of words that
occur on the source and target sides of a rule.

• lm(e) is the language model probability of
the target translation under an ngram lan-
guage model.

• wp(e) is a word penalty model designed to
favor longer translations.

All these models are combined log-linearly dur-
ing decoding. The weights of the models are
computed automatically using a variant of the
Maximum Bleu training procedure proposed by
Och (2003).

The phrase-based-like submodels have been
proved useful in phrase-based approaches to
SMT (Och and Ney, 2004). The first two syntax-
based submodels implement a “fused” translation
and lexical grounded distortion model (proot) and
a syntax-based distortion model (pcfg). The indi-
cator submodels are used to determine the extent
to which our system prefers lexicalized vs. non-
lexicalized rules; simple vs. composed rules; and
high vs. low count rules.
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3 Decoding

3.1 Decoding with one SPMT model

We decode with each of our SPMT models using
a straightforward, bottom-up, CKY-style decoder
that builds English syntactic constituents on the
top of Chinese sentences. The decoder uses a bina-
rized representation of the rules, which is obtained
via a syncronous binarization procedure (Zhang et
al., 2006). The CKY-style decoder computes the
probability of English syntactic constituents in a
bottom up fashion, by log-linearly interpolating all
the submodel scores described in Section 2.3.

The decoder is capable of producing nbest
derivations and nbest lists (Knight and Graehl,
2005), which are used for Maximum Bleu train-
ing (Och, 2003). When decoding the test cor-
pus, the decoder returns the translation that has the
most probable derivation; in other words, the sum
operator in equation 4 is replaced with an argmax.

3.2 Decoding with multiple SPMT models

Combining multiple MT outputs to increase per-
formance is, in general, a difficult task (Matusov
et al., 2006) when significantly different engines
compete for producing the best outputs. In our
case, combining multiple MT outputs is much
simpler because the submodel probabilities across
the four models described here are mostly iden-
tifical, with the exception of the root normalized
and CFG-like submodels which are scaled differ-
ently – since Model 2 composed has, for example,
more rules than Model 1, the root normalized and
CFG-like submodels have smaller probabilities for
identical rules in Model 2 composed than in Model
1. We compare these two probabilities across the
submodels and we scale all model probabilities to
be compatible with those of Model 2 composed.

With this scaling procedure into place, we pro-
duce 6,000 non-unique nbest lists for all sentences
in our development corpus, using all SPMT sub-
models. We concatenate the lists and we learn a
new combination of weights that maximizes the
Bleu score of the combined nbest list using the
same development corpus we used for tuning the
individual systems (Och, 2003). We use the new
weights in order to rerank the nbest outputs on the
test corpus.

4 Experiments

4.1 Automatic evaluation of the models

We evaluate our models on a Chinese to English
machine translation task. We use the same training
corpus, 138.7M words of parallel Chinese-English
data released by LDC, in order to train several
statistical-based MT systems:

• PBMT, a strong state of the art phrase-based
system that implements the alignment tem-
plate model (Och and Ney, 2004); this is the
system ISI has used in the 2004 and 2005
NIST evaluations.

• four SPMT systems (M1, M1C, M2, M2C)
that implement each of the models discussed
in this paper;

• a SPMT system, Comb, that combines the
outputs of all SPMT models using the pro-
cedure described in Section 3.2.

In all systems, we use a rule extraction algo-
rithm that limits the size of the foreign/source
phrases to four words. For all systems, we use
a Kneser-Ney (1995) smoothed trigram language
model trained on 2.3 billion words of English. As
development data for the SPMT systems, we used
the sentences in the 2002 NIST development cor-
pus that are shorter than 20 words; we made this
choice in order to finish all experiments in time for
this submission. The PBMT system used all sen-
tences in the 2002 NIST corpus for development.
As test data, we used the 2003 NIST test set.

Table 1 shows the number of string-to-string or
tree-to-string rules extracted by each system and
the performance on both the subset of sentences in
the test corpus that were shorter than 20 words and
the entire test corpus. The performance is mea-
sured using the Bleu metric (Papineni et al., 2002)
on lowercased, tokenized outputs/references.

The results show that the SPMT models clearly
outperform the phrase-based systems – the 95%
confidence intervals computed via bootstrap re-
sampling in all cases are around 1 Bleu point. The
results also show that the simple system combina-
tion procedure that we have employed is effective
in our setting. The improvement on the develop-
ment corpus transfers to the test setting as well.

A visual inspection of the outputs shows signif-
icant differences between the outputs of the four
models. The models that use composed rules pre-
fer to produce outputs by using mostly lexicalized
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System # of rules Bleu score Bleu score Bleu score
(in millions) on Dev on Test on Test

(4 refs) (4 refs) (4 refs)
< 20 words < 20 words

PBMT 125.8 34.56 34.83 31.46
SPMT-M1 34.2 37.60 38.18 33.15
SPMT-M1C 75.7 37.30 38.10 32.39
SPMT-M2 70.4 37.77 38.74 33.39
SPMT-M2C 111.1 37.48 38.59 33.16
SPMT-Comb 111.1 39.44 39.56 34.10

Table 1: Automatic evaluation results.

rules; in contrast, the simple M1 and M2 mod-
els produce outputs in which content is translated
primarily using lexicalized rules and reorderings
and word insertions are explained primarily by the
non-lexical rules. It appears that the two strategies
are complementary, succeeding and failing in dif-
ferent instances. We believe that this complemen-
tarity and the overcoming of some of the search
errors in our decoder during the model rescoring
phase explain the success of the system combina-
tion experiments.

We suspect that our decoder still makes many
search errors. In spite of this, the SPTM outputs
are still significantly better than the PBMT out-
puts.

4.2 Human-based evaluation of the models

We also tested whether the Bleu score improve-
ments translate into improvements that can be per-
ceived by humans. To this end, we randomly se-
lected 138 sentences of less than 20 words from
our development corpus; we expected the transla-
tion quality of sentences of this size to be easier to
assess than that of sentences that are very long.

We prepared a web-based evaluation interface
that showed for each input sentence:

• the Chinese input;

• three English reference translations;

• the output of seven “MT systems”.

The evaluated “MT systems” were the six systems
shown in Table 1 and one of the reference trans-
lations. The reference translation presented as
automatically produced output was selected from
the set of four reference translations provided by
NIST so as to be representative of human transla-
tion quality. More precisely, we chose the second
best reference translation in the NIST corpus ac-
cording to its Bleu score against the other three

reference translations. The seven outputs were
randomly shuffled and presented to three English
speakers for assessment.

The judges who participated in our experiment
were instructed to carefully read the three refer-
ence translations and seven machine translation
outputs, and assign a score between 1 and 5 to
each translation output on the basis of its quality.
Human judges were told that the translation qual-
ity assessment should take into consideration both
the grammatical fluency of the outputs and their
translation adequacy. Table 2 shows the average
scores obtained by each system according to each
judge. For convenience, the table also shows the
Bleu scores of all systems (including the human
translations) on three reference translations.

The results in Table 2 show that the human
judges are remarkably consistent in preferring the
syntax-based outputs over the phrase-based out-
puts. On a 1 to 5 quality scale, the difference be-
tween the phrase-based and syntax-based systems
was, on average, between 0.2 and 0.3 points. All
differences between the phrase-based baseline and
the syntax-based outputs were statistically signif-
icant. For example, when comparing the phrase-
based baseline against the combined system, the
improvement in human scores was significant at
P = 4.04e−6(t = 4.67, df = 413).

The results also show that the LDC reference
translations are far from being perfect. Although
we selected from the four references the second
best according to the Bleu metric, this human ref-
erence was judged to be at a quality level of only
4.67 on a scale from 1 to 5. Most of the translation
errors were fluency errors. Although the human
outputs had most of the time the right meaning,
the syntax was sometimes incorrect.

In order to give readers a flavor of the types
of re-orderings enabled by the SPMT models, we
present in Table 3, several translation outputs pro-
duced by the phrase-based baseline and the com-
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System Bleu score Judge 1 Judge 2 Judge 3 Judge
on Dev avg
(3 refs)

< 20 words
PBMT 31.00 3.00 3.34 2.95 3.10
SPMT-M1 33.79 3.28 3.49 3.04 3.27
SPMT-M1C 33.66 3.23 3.43 3.26 3.31
SPMT-M2 34.05 3.24 3.45 3.10 3.26
SPMT-M2C 33.42 3.24 3.48 3.13 3.28
SPMT-Combined 35.33 3.31 3.59 3.25 3.38
Human Ref 40.84 4.64 4.62 4.75 4.67

Table 2: Human-based evaluation results.

bined SPMT system. The outputs were selected to
reflect both positive and negative effects of large-
scale re-orderings.

5 Discussion

The SPMT models are similar to the models pro-
posed by Chiang (2005) and Galley et al. (2006).
If we analyze these three models in terms of ex-
pressive power, the Galley et al. (2006) model is
more expressive than the SPMT models, which
in turn, are more expressive than Chiang’s model.
The xRS formalism utilized by Galley et al. (2006)
allows for the use of translation rules that have
multi-level target tree annotations and discontin-
uous source language phrases. The SPMT mod-
els are less general: they use translation rules that
have multi-level target tree annotations but require
that the source language phrases are continuous.
The Syncronous Grammar formalism utilized by
Chiang is stricter than SPMT since it allows only
for single-level target tree annotations.

The parameters of the SPMT models presented
in this paper are easier to estimate than those of
Galley et al’s (2006) and can easily exploit and
expand on previous research in phrase-based ma-
chine translation. Also, the SPMT models yield
significantly fewer rules that the model of Galley
et al. In contrast with the model proposed by Chi-
ang, the SPMT models introduced in this paper are
fully grounded in syntax; this makes them good
candidates for exploring the impact that syntax-
based language models could have on translation
performance.

From a machine translation perspective, the
SPMT translation model family we have proposed
in this paper is promising. To our knowledge,
we are the first to report results that show that a
syntax-based system can produce results that are
better than those produced by a strong phrase-
based system in experimental conditions similar

to those used in large-scale, well-established in-
dependent evaluations, such as those carried out
annually by NIST.

Although the number of syntax-based rules
used by our models is smaller than the number
of phrase-based rules used in our state-of-the-art
baseline system, the SPMT models produce out-
puts of higher quality. This feature is encouraging
because it shows that the syntactified translation
rules learned in the SPMT models can generalize
better than the phrase-based rules.

We were also pleased to see that the Bleu
score improvements going from the phrase- to the
syntax-based models, as well as the Bleu improve-
ments going from the simple syntax-based models
to the combined models system are fully consis-
tent with the human qualitative judgments in our
subjective evaluations. This correlation suggests
that we can continue to use the Bleu metric to fur-
ther improve our models and systems.
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Abstract

We discuss different strategies for smooth-
ing the phrasetable in Statistical MT, and
give results over a range of translation set-
tings. We show that any type of smooth-
ing is a better idea than the relative-
frequency estimates that are often used.
The best smoothing techniques yield con-
sistent gains of approximately 1% (abso-
lute) according to the BLEU metric.

1 Introduction

Smoothing is an important technique in statistical
NLP, used to deal with perennial data sparseness
and empirical distributions that overfit the training
corpus. Surprisingly, however, it is rarely men-
tioned in statistical Machine Translation. In par-
ticular, state-of-the-art phrase-based SMT relies
on aphrasetable—a large set of ngram pairs over
the source and target languages, along with their
translation probabilities. This table, which may
contain tens of millions of entries, and phrases of
up to ten words or more, is an excellent candidate
for smoothing. Yet very few publications describe
phrasetable smoothing techniques in detail.

In this paper, we provide the first system-
atic study of smoothing methods for phrase-based
SMT. Although we introduce a few new ideas,
most methods described here were devised by oth-
ers; the main purpose of this paper is not to in-
vent new methods, but to compare methods. In
experiments over many language pairs, we show
that smoothing yields small but consistent gains in
translation performance. We feel that this paper
only scratches the surface: many other combina-
tions of phrasetable smoothing techniques remain
to be tested.

We define a phrasetable as a set of source
phrases (ngrams)̃s and their translations̃t, along
with associated translation probabilitiesp(s̃|t̃) and
p(t̃|s̃). These conditional distributions are derived
from the joint frequenciesc(s̃, t̃) of source/target
phrase pairs observed in a word-aligned parallel
corpus.

Traditionally, maximum-likelihood estimation
from relative frequencies is used to obtain con-
ditional probabilities (Koehn et al., 2003), eg,
p(s̃|t̃) = c(s̃, t̃)/

∑

s̃ c(s̃, t̃) (since the estimation
problems forp(s̃|t̃) and p(t̃|s̃) are symmetrical,
we will usually refer only top(s̃|t̃) for brevity).
The most obvious example of the overfitting this
causes can be seen in phrase pairs whose con-
stituent phrases occur only once in the corpus.
These are assigned conditional probabilities of 1,
higher than the estimated probabilities of pairs for
which much more evidence exists, in the typical
case where the latter have constituents that co-
occur occasionally with other phrases. During de-
coding, overlapping phrase pairs are in direct com-
petition, so estimation biases such as this one in
favour of infrequent pairs have the potential to sig-
nificantly degrade translation quality.

An excellent discussion of smoothing tech-
niques developed for ngram language models
(LMs) may be found in (Chen and Goodman,
1998; Goodman, 2001). Phrasetable smoothing
differs from ngram LM smoothing in the follow-
ing ways:

• Probabilities of individual unseen events are
not important. Because the decoder only
proposes phrase translations that are in the
phrasetable (ie, that have non-zero count), it
never requires estimates for pairss̃, t̃ having
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c(s̃, t̃) = 0.1 However, probability mass is
reserved for theset of unseen translations,
implying that probability mass is subtracted
from the seen translations.

• There is no obvious lower-order distribution
for backoff. One of the most important tech-
niques in ngram LM smoothing is to com-
bine estimates made using the previousn− 1
words with those using only the previousn−i
words, for i = 2 . . . n. This relies on the
fact that closer words are more informative,
which has no direct analog in phrasetable
smoothing.

• The predicted objects are word sequences
(in another language). This contrasts to LM
smoothing where they are single words, and
are thus less amenable to decomposition for
smoothing purposes.

We propose various ways of dealing with these
special features of the phrasetable smoothing
problem, and give evaluations of their perfor-
mance within a phrase-based SMT system.

The paper is structured as follows: section 2
gives a brief description of our phrase-based SMT
system; section 3 presents the smoothing tech-
niques used; section 4 reviews previous work; sec-
tion 5 gives experimental results; and section 6
concludes and discusses future work.

2 Phrase-based Statistical MT

Given a source sentences, our phrase-based SMT
system tries to find the target sentencet̂ that is
the most likely translation ofs. To make search
more efficient, we use the Viterbi approximation
and seek the most likely combination oft and its
alignmenta with s, rather than just the most likely
t:

t̂ = argmax
t

p(t|s) ≈ argmax
t,a

p(t,a|s),

wherea = (s̃1, t̃1, j1), ..., (s̃K , t̃K , jK); t̃k are tar-
get phrases such thatt = t̃1 . . . t̃K ; s̃k are source
phrases such thats = s̃j1 . . . s̃jK

; and s̃k is the
translation of thekth target phrasẽtk.

1This is a first approximation; exceptions occur when dif-
ferent phrasetables are used in parallel, and when rules are
used to translate certain classes of entities.

To modelp(t,a|s), we use a standard loglinear
approach:

p(t,a|s) ∝ exp

[

∑

i

λifi(s, t,a)

]

where eachfi(s, t,a) is a feature function, and
weights λi are set using Och’s algorithm (Och,
2003) to maximize the system’s BLEU score (Pa-
pineni et al., 2001) on a development corpus. The
features used in this study are: the length oft;
a single-parameter distortion penalty on phrase
reordering ina, as described in (Koehn et al.,
2003); phrase translation model probabilities; and
trigram language model probabilitieslog p(t), us-
ing Kneser-Ney smoothing as implemented in the
SRILM toolkit (Stolcke, 2002).

Phrase translation model probabilities are fea-
tures of the form:

log p(s|t,a) ≈

K
∑

k=1

log p(s̃k|t̃k)

ie, we assume that the phrasess̃k specified bya
are conditionally independent, and depend only on
their aligned phrases̃tk. The “forward” phrase
probabilitiesp(t̃|s̃) are not used as features, but
only as a filter on the set of possible translations:
for each source phrasẽs that matches some ngram
in s, only the 30 top-ranked translationst̃ accord-
ing top(t̃|s̃) are retained.

To derive the joint countsc(s̃, t̃) from which
p(s̃|t̃) andp(t̃|s̃) are estimated, we use the phrase
induction algorithm described in (Koehn et al.,
2003), with symmetrized word alignments gener-
ated using IBM model 2 (Brown et al., 1993).

3 Smoothing Techniques

Smoothing involves some recipe for modifying
conditional distributions away from pure relative-
frequency estimates made from joint counts, in or-
der to compensate for data sparsity. In the spirit of
((Hastie et al., 2001), figure 2.11, pg. 38) smooth-
ing can be seen as a way of combining the relative-
frequency estimate, which is a model with high
complexity, high variance, and low bias, with an-
other model with lower complexity, lower vari-
ance, and high bias, in the hope of obtaining bet-
ter performance on new data. There are two main
ingredients in all such recipes: some probability
distribution that is smoother than relative frequen-
cies (ie, that has fewer parameters and is thus less
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complex) and some technique for combining that
distribution with relative frequency estimates. We
will now discuss both these choices: the distribu-
tion for carrying out smoothing and the combina-
tion technique. In this discussion, we usep̃() to
denote relative frequency distributions.

Choice of Smoothing Distribution

One can distinguish between two approaches to
smoothing phrase tables.Black-box techniques do
not look inside phrases but instead treat them as
atomic objects: that is, both thẽs and thẽt in the
expressionp(s̃|t̃) are treated as units about which
nothing is known except their counts. In contrast,
glass-box methods break phrases down into their
component words.

The black-box approach, which is the sim-
pler of the two, has received little attention in
the SMT literature. An interesting aspect of
this approach is that it allows one to implement
phrasetable smoothing techniques that are analo-
gous to LM smoothing techniques, by treating the
problem of estimatingp(s̃|t̃) as if it were the prob-
lem of estimating a bigram conditional probabil-
ity. In this paper, we give experimental results
for phrasetable smoothing techniques analogous
to Good-Turing, Fixed-Discount, Kneser-Ney, and
Modified Kneser-Ney LM smoothing.

Glass-box methods for phrasetable smoothing
have been described by other authors: see sec-
tion 3.3. These authors decomposep(s̃|t̃) into a
set of lexical distributionsp(s|t̃) by making inde-
pendence assumptions about the wordss in s̃. The
other possibility, which is similar in spirit to ngram
LM lower-order estimates, is to combine estimates
made by replacing words iñt with wildcards, as
proposed in section 3.4.

Choice of Combination Technique

Although we explored a variety of black-box and
glass-box smoothing distributions, we only tried
two combination techniques: linear interpolation,
which we used for black-box smoothing, and log-
linear interpolation, which we used for glass-box
smoothing.

For black-box smoothing, we could have used a
backoff scheme or an interpolation scheme. Back-
off schemes have the form:

p(s̃|t̃) =

{

ph(s̃|t̃), c(s̃, t̃) ≥ τ
pb(s̃|t̃), else

where ph(s̃|t̃) is a higher-order distribution,

pb(s̃|t̃) is a smooth backoff distribution, andτ is
a threshold above which counts are considered re-
liable. Typically,τ = 1 andph(s̃|t̃) is version of
p̃(s̃|t̃) modified to reserve some probability mass
for unseen events.

Interpolation schemes have the general form:

p(s̃|t̃) = α(s̃, t̃)p̃(s̃|t̃) + β(s̃, t̃)pb(s̃|t̃), (1)

where α and β are combining coefficients. As
noted in (Chen and Goodman, 1998), a key
difference between interpolation and backoff is
that the former approach uses information from
the smoothing distribution to modifỹp(s̃|t̃) for
higher-frequency events, whereas the latter uses
it only for low-frequency events (most often 0-
frequency events). Since for phrasetable smooth-
ing, better prediction of unseen (zero-count)
events has no direct impact—only seen events are
represented in the phrasetable, and thus hypoth-
esized during decoding—interpolation seemed a
more suitable approach.

For combining relative-frequency estimates
with glass-box smoothing distributions, we em-
ployed loglinear interpolation. This is the tradi-
tional approach for glass-box smoothing (Koehn
et al., 2003; Zens and Ney, 2004). To illustrate the
difference between linear and loglinear interpola-
tion, consider combining two Bernoulli distribu-
tionsp1(x) andp2(x) using each method:

plinear(x) = αp1(x) + (1 − α)p2(x)

ploglin(x) =
p1(x)αp2(x)

p1(x)αp2(x) + q1(x)αq2(x)

whereqi(x) = 1 − pi(x). Settingp2(x) = 0.5
to simulate uniform smoothing givesploglin(x) =
p1(x)α/(p1(x)α + q1(x)α). This is actuallyless
smooth than the original distributionp1(x): it pre-
serves extreme values 0 and 1, and makes inter-
mediate values more extreme. On the other hand,
plinear(x) = αp1(x) + (1 − α)/2, which has the
opposite properties: it moderates extreme values
and tends to preserve intermediate values.

An advantage of loglinear interpolation is that
we can tune loglinear weights so as to maximize
the true objective function, for instance BLEU; re-
call that our translation model is itself loglinear,
with weights set to minimize errors. In fact, a lim-
itation of the experiments described in this paper
is that the loglinear weights for the glass-box tech-
niques were optimized for BLEU using Och’s al-
gorithm (Och, 2003), while the linear weights for
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black-box techniques were set heuristically. Ob-
viously, this gives the glass-box techniques an ad-
vantage when the different smoothing techniques
are compared using BLEU! Implementing an al-
gorithm for optimizing linear weights according to
BLEU is high on our list of priorities.

The preceding discussion implicitly assumes a
single set of countsc(s̃, t̃) from which conditional
distributions are derived. But, as phrases of differ-
ent lengths are likely to have different statistical
properties, it might be worthwhile to break down
the global phrasetable into separate phrasetables
for each value of|t̃| for the purposes of smooth-
ing. Any similar strategy that does not split up
{s̃|c(s̃, t̃) > 0} for any fixedt̃ can be applied to
any smoothing scheme. This is another idea we
are eager to try soon.

We now describe the individual smoothing
schemes we have implemented. Four of them
are black-box techniques: Good-Turing and three
fixed-discount techniques (fixed-discount inter-
polated with unigram distribution, Kneser-Ney
fixed-discount, and modified Kneser-Ney fixed-
discount). Two of them are glass-box techniques:
Zens-Ney “noisy-or” and Koehn-Och-Marcu IBM
smoothing. Our experiments tested not only these
individual schemes, but also some loglinear com-
binations of a black-box technique with a glass-
box technique.

3.1 Good-Turing

Good-Turing smoothing is a well-known tech-
nique (Church and Gale, 1991) in which observed
countsc are modified according to the formula:

cg = (c + 1)nc+1/nc (2)

wherecg is a modified count value used to replace
c in subsequent relative-frequency estimates, and
nc is the number of events having countc. An
intuitive motivation for this formula is that it ap-
proximates relative-frequency estimates made by
successively leaving out each event in the corpus,
and then averaging the results (Nádas, 1985).

A practical difficulty in implementing Good-
Turing smoothing is that thenc are noisy for large
c. For instance, there may be only one phrase
pair that occurs exactlyc = 347, 623 times in a
large corpus, and no pair that occursc = 347, 624
times, leading tocg(347, 623) = 0, clearly not
what is intended. Our solution to this problem
is based on the technique described in (Church

and Gale, 1991). We first take the log of the ob-
served(c, nc) values, and then use a linear least
squares fit tolog nc as a function oflog c. To en-
sure that the result stays close to the reliable values
of nc for largec, error terms are weighted byc, ie:
c(log nc − log n′

c)
2, wheren′

c are the fitted values.
Our implementation pools all countsc(s̃, t̃) to-

gether to obtainn′

c (we have not yet tried separate
counts based on length oft̃ as discussed above). It
follows directly from (2) that the total count mass
assigned to unseen phrase pairs iscg(0)n0 = n1,
which we approximate byn′

1. This mass is dis-
tributed among contexts̃t in proportion toc(t̃),
giving final estimates:

p(s̃|t̃) =
cg(s̃, t̃)

∑

s cg(s̃, t̃) + p(t̃)n′

1

,

wherep(t̃) = c(t̃)/
∑

t̃ c(t̃).

3.2 Fixed-Discount Methods

Fixed-discount methods subtract a fixed discount
D from all non-zero counts, and distribute the re-
sulting probability mass according to a smoothing
distribution (Kneser and Ney, 1995). We use an
interpolated version of fixed-discount proposed by
(Chen and Goodman, 1998) rather than the origi-
nal backoff version. For phrase pairs with non-
zero counts, this distribution has the general form:

p(s̃|t̃) =
c(s̃, t̃) − D
∑

s̃ c(s̃, t̃)
+ α(t̃)pb(s̃|t̃), (3)

wherepb(s̃|t̃) is the smoothing distribution. Nor-
malization constraints fix the value ofα(t̃):

α(t̃) = D n1+(∗, t̃)/
∑

s̃

c(s̃, t̃),

where n1+(∗, t̃) is the number of phrases̃s for
which c(s̃, t̃) > 0.

We experimented with two choices for the
smoothing distributionpb(s̃|t̃). The first is a plain
unigramp(s̃), and the second is the Kneser-Ney
lower-order distribution:

pb(s̃) = n1+(s̃, ∗)/
∑

s̃

n1+(s̃, ∗),

ie, the proportion of unique target phrases thats̃ is
associated with, wheren1+(s̃, ∗) is defined anal-
ogously ton1+(∗, t̃). Intuitively, the idea is that
source phrases that co-occur with many different
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target phrases are more likely to appear in new
contexts.

For both unigram and Kneser-Ney smoothing
distributions, we used a discounting coefficient de-
rived by (Ney et al., 1994) on the basis of a leave-
one-out analysis:D = n1/(n1 + 2n2). For the
Kneser-Ney smoothing distribution, we also tested
the “Modified Kneser-Ney” extension suggested
in (Chen and Goodman, 1998), in which specific
coefficientsDc are used for small count values
c up to a maximum of three (ieD3 is used for
c ≥ 3). For c = 2 and c = 3, we used formu-
las given in that paper.

3.3 Lexical Decomposition

The two glass-box techniques that we considered
involve decomposing source phrases with inde-
pendence assumptions. The simplest approach as-
sumes that all source words are conditionally in-
dependent, so that:

p(s̃|t̃) =
J̃

∏

j=1

p(sj|t̃)

We implemented two variants forp(sj|t̃) that
are described in previous work. (Zens and Ney,
2004) describe a “noisy-or” combination:

p(sj |t̃) = 1 − p(s̄j |t̃)

≈ 1 −

Ĩ
∏

i=1

(1 − p(sj |ti))

where s̄j is the probability thatsj is not in the
translation oft̃, and p(sj|ti) is a lexical proba-
bility. (Zens and Ney, 2004) obtainp(sj|ti) from
smoothed relative-frequency estimates in a word-
aligned corpus. Our implementation simply uses
IBM1 probabilities, which obviate further smooth-
ing.

The noisy-or combination stipulates thatsj

should not appear iñs if it is not the translation
of any of the words iñt. The complement of this,
proposed in (Koehn et al., 2005), to say thatsj

should appear iñs if it is the translation of at least
one of the words iñt:

p(sj|t̃) =
∑

i∈Aj

p(sj |ti)/|Aj |

whereAj is a set of likely alignment connections
for sj. In our implementation of this method,
we assumed thatAj = {1, . . . , Ĩ}, ie the set of
all connections, and used IBM1 probabilities for
p(s|t).

3.4 Lower-Order Combinations

We mentioned earlier that LM ngrams have a
naturally-ordered sequence of smoothing distribu-
tions, obtained by successively dropping the last
word in the context. For phrasetable smoothing,
because no word iñt is a priori less informative
than any others, there is no exact parallel to this
technique. However, it is clear that estimates made
by replacing particular target (conditioning) words
with wildcards will be smoother than the original
relative frequencies. A simple scheme for combin-
ing them is just to average:

p(s̃|t̃) =
∑

i=Ĩ

c∗i (s̃, t̃)
∑

s̃ c∗i (s̃, t̃)
/Ĩ

where:

c∗i (s̃, t̃) =
∑

ti

c(s̃, t1 . . . ti . . . tĨ).

One might also consider progressively replacing
the least informative remaining word in the target
phrase (using tf-idf or a similar measure).

The same idea could be applied in reverse, by
replacing particular source (conditioned) words
with wildcards. We have not yet implemented
this new glass-box smoothing technique, but it has
considerable appeal. The idea is similar in spirit to
Collins’ backoff method for prepositional phrase
attachment (Collins and Brooks, 1995).

4 Related Work

As mentioned previously, (Chen and Goodman,
1998) give a comprehensive survey and evalua-
tion of smoothing techniques for language mod-
eling. As also mentioned previously, there is
relatively little published work on smoothing for
statistical MT. For the IBM models, alignment
probabilities need to be smoothed for combina-
tions of sentence lengths and positions not encoun-
tered in training data (Garcı́a-Varea et al., 1998).
Moore (2004) has found that smoothing to cor-
rect overestimated IBM1 lexical probabilities for
rare words can improve word-alignment perfor-
mance. Langlais (2005) reports negative results
for synonym-based smoothing of IBM2 lexical
probabilities prior to extracting phrases for phrase-
based SMT.

For phrase-based SMT, the use of smoothing to
avoid zero probabilities during phrase induction is
reported in (Marcu and Wong, 2002), but no de-
tails are given. As described above, (Zens and
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Ney, 2004) and (Koehn et al., 2005) use two dif-
ferent variants of glass-box smoothing (which they
call “lexical smoothing”) over the phrasetable, and
combine the resulting estimates with pure relative-
frequency ones in a loglinear model. Finally, (Cet-
tollo et al., 2005) describes the use of Witten-Bell
smoothing (a black-box technique) for phrasetable
counts, but does not give a comparison to other
methods. As Witten-Bell is reported by (Chen and
Goodman, 1998) to be significantly worse than
Kneser-Ney smoothing, we have not yet tested this
method.

5 Experiments

We carried out experiments in two different set-
tings: broad-coverage ones across six European
language pairs using selected smoothing tech-
niques and relatively small training corpora; and
Chinese to English experiments using all im-
plemented smoothing techniques and large train-
ing corpora. For the black-box techniques,
the smoothed phrase table replaced the original
relative-frequency (RF) phrase table. For the
glass-box techniques, a phrase table (either the
original RF phrase table or its replacement after
black-box smoothing) was interpolated in loglin-
ear fashion with the smoothing glass-box distribu-
tion, with weights set to maximize BLEU on a de-
velopment corpus.

To estimate the significance of the results across
different methods, we used 1000-fold pairwise
bootstrap resampling at the 95% confidence level.

5.1 Broad-Coverage Experiments

In order to measure the benefit of phrasetable
smoothing for relatively small corpora, we used
the data made available for the WMT06 shared
task (WMT, 2006). This exercise is conducted
openly with access to all needed resources and
is thus ideal for benchmarking statistical phrase-
based translation systems on a number of language
pairs.

The WMT06 corpus is based on sentences ex-
tracted from the proceedings of the European Par-
liament. Separate sentence-aligned parallel cor-
pora of about 700,000 sentences (about 150MB)
are provided for the three language pairs hav-
ing one of French, Spanish and German with En-
glish. SRILM language models based on the same
source are also provided for each of the four lan-
guages. We used the provided 2000-sentence dev-

sets for tuning loglinear parameters, and tested on
the 3064-sentence test sets.

Results are shown in table 1 for relative-
frequency (RF), Good-Turing (GT), Kneser-Ney
with 1 (KN1) and 3 (KN3) discount coefficients;
and loglinear combinations of both RF and KN3
phrasetables with Zens-Ney-IBM1 (ZN-IBM1)
smoothed phrasetables (these combinations are
denoted RF+ZN-IBM1 and KN3+ZN-IBM1).

It is apparent from table 1 that any kind of
phrase table smoothing is better than using none;
the minimum improvement is 0.45 BLEU, and
the difference between RF and all other meth-
ods is statistically significant. Also, Kneser-
Ney smoothing gives a statistically significant im-
provement over GT smoothing, with a minimum
gain of 0.30 BLEU. Using more discounting co-
efficients does not appear to help. Smoothing
relative frequencies with an additional Zens-Ney
phrasetable gives about the same gain as Kneser-
Ney smoothing on its own. However, combining
Kneser-Ney with Zens-Ney gives a clear gain over
any other method (statistically significant for all
language pairs except en→es and en→de) demon-
strating that these approaches are complementary.

5.2 Chinese-English Experiments

To test the effects of smoothing with larger
corpora, we ran a set of experiments for
Chinese-English translation using the corpora
distributed for the NIST MT05 evaluation
(www.nist.gov/speech/tests/mt). These are sum-
marized in table 2. Due to the large size of
the out-of-domain UN corpus, we trained one
phrasetable on it, and another on all other parallel
corpora (smoothing was applied to both). We also
used a subset of the English Gigaword corpus to
augment the LM training material.

corpus use sentences
non-UN phrasetable1 + LM 3,164,180
UN phrasetable2 + LM 4,979,345
Gigaword LM 11,681,852
multi-p3 dev 993
eval-04 test 1788

Table 2: Chinese-English Corpora

Table 3 contains results for the Chinese-English
experiments, including fixed-discount with uni-
gram smoothing (FDU), and Koehn-Och-Marcu
smoothing with the IBM1 model (KOM-IBM1)
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smoothing method fr −→ en es−→ en de−→ en en−→ fr en−→ es en−→ de

RF 25.35 27.25 20.46 27.20 27.18 14.60
GT 25.95 28.07 21.06 27.85 27.96 15.05
KN1 26.83 28.66 21.36 28.62 28.71 15.42
KN3 26.84 28.69 21.53 28.64 28.70 15.40
RF+ZN-IBM1 26.84 28.63 21.32 28.84 28.45 15.44
KN3+ZN-IBM1 27.25 29.30 21.77 29.00 28.86 15.49

Table 1: Broad-coverage results

as described in section 3.3. As with the
broad-coverage experiments, all of the black-box
smoothing techniques do significantly better than
the RF baseline. However, GT appears to work
better in the large-corpus setting: it is statistically
indistinguishable from KN3, and both these meth-
ods are significantly better than all other fixed-
discount variants, among which there is little dif-
ference.

Not surprisingly, the two glass-box methods,
ZN-IBM1 and KOM-IBM1, do poorly when used
on their own. However, in combination with an-
other phrasetable, they yield the best results, ob-
tained by RF+ZN-IBM1 and GT+KOM-IBM1,
which are statistically indistinguishable. In con-
strast to the situation in the broad-coverage set-
ting, these are not significantly better than the
best black-box method (GT) on its own, although
RF+ZN-IBM1 is better than all other glass-box
combinations.

smoothing method BLEU score
RF 29.85
GT 30.66
FDU 30.23
KN1 30.29
KN2 30.13
KN3 30.54
ZN-IBM1 29.55
KOM-IBM1 28.09
RF+ZN-IBM1 30.95
RF+KOM-IBM1 30.10
GT+ZN-IBM1 30.45
GT+KOM-IBM1 30.81
KN3+ZN-IBM1 30.66

Table 3: Chinese-English Results

A striking difference between the broad-
coverage setting and the Chinese-English setting
is that in the former it appears to be beneficial

to apply KN3 smoothing to the phrasetable that
gets combined with the best glass-box phrasetable
(ZN), whereas in the latter setting it does not. To
test whether this was due to corpus size (as the
broad-coverage corpora are around 10% of those
for Chinese-English), we calculated Chinese-
English learning curves for the RF+ZN-IBM1 and
KN3-ZN-IBM1 methods, shown in figure 1. The
results are somewhat inconclusive: although the
KN3+ZN-IBM1 curve is perhaps slightly flatter,
the most obvious characteristic is that this method
appears to be highly sensitive to the particular cor-
pus sample used.
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Figure 1: Learning curves for two glass-box com-
binations.

6 Conclusion and Future Work

We tested different phrasetable smoothing tech-
niques in two different translation settings: Eu-
ropean language pairs with relatively small cor-
pora, and Chinese to English translation with large
corpora. The smoothing techniques fall into two
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categories: black-box methods that work only on
phrase-pair counts; and glass-box methods that de-
compose phrase probabilities into lexical proba-
bilities. In our implementation, black-box tech-
niques use linear interpolation to combine relative
frequency estimates with smoothing distributions,
while glass-box techniques are combined in log-
linear fashion with either relative-frequencies or
black-box estimates.

All smoothing techniques tested gave statisti-
cally significant gains over pure relative-frequency
estimates. In the small-corpus setting, the best
technique is a loglinear combination of Kneser-
Ney count smoothing with Zens-Ney glass-box
smoothing; this yields an average gain of 1.6
BLEU points over relative frequencies. In the
large-corpus setting, the best technique is a log-
linear combination of relative-frequency estimates
with Zens-Ney smoothing, with a gain of 1.1
BLEU points. Of the two glass-box smoothing
methods tested, Zens-Ney appears to have a slight
advantage over Koehn-Och-Marcu. Of the black-
box methods tested, Kneser-Ney is clearly bet-
ter for small corpora, but is equivalent to Good-
Turing for larger corpora.

The paper describes several smoothing alterna-
tives which we intend to test in future work:

• Linear versus loglinear combinations (in our
current work, these coincide with the black-
box versus glass-box distinction, making it
impossible to draw conclusions).

• Lower-order distributions as described in sec-
tion 3.4.

• Separate count-smoothing bins based on
phrase length.
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Abstract

We investigate the impact of parse quality
on a syntactically-informed statistical ma-
chine translation system applied to techni-
cal text. We vary parse quality by vary-
ing the amount of data used to train the
parser. As the amount of data increases,
parse quality improves, leading to im-
provements in machine translation output
and results that significantly outperform a
state-of-the-art phrasal baseline.

1 Introduction

The current study is a response to a question
that proponents of syntactically-informed machine
translation frequently encounter: How sensitive is
a syntactically-informed machine translation sys-
tem to the quality of the input syntactic analysis?
It has been shown that phrasal machine translation
systems are not affected by the quality of the in-
put word alignments (Koehn et al., 2003). This
finding has generally been cast in favorable terms:
such systems are robust to poor quality word align-
ment. A less favorable interpretation of these re-
sults might be to conclude that phrasal statistical
machine translation (SMT) systems do not stand
to benefit from improvements in word alignment.

In a similar vein, one might ask whether con-
temporary syntactically-informed machine trans-
lation systems would benefit from improvements
in parse accuracy. One possibility is that cur-
rent syntactically-informed SMT systems are de-
riving only limited value from the syntactic anal-
yses, and would therefore not benefit from im-
proved analyses. Another possibility is that syn-
tactic analysis does indeed contain valuable infor-
mation that could be exploited by machine learn-

ing techniques, but that current parsers are not of
sufficient quality to be of use in SMT.

With these questions and concerns, let us be-
gin. Following some background discussion we
describe a set of experiments intended to elucidate
the impact of parse quality on SMT.

2 Background

We trained statistical machine translation systems
on technical text. In the following sections we
provide background on the data used for training,
the dependency parsing framework used to pro-
duce treelets, the treelet translation framework and
salient characteristics of the target languages.

2.1 Dependency parsing

Dependency analysis is an alternative to con-
stituency analysis (Tesnière, 1959; Meľcuk, 1988).
In a dependency analysis of syntax, words di-
rectly modify other words, with no intervening
non-lexical nodes. We use the terms child node
and parent node to denote the tokens in a depen-
dency relation. Each child has a single parent, with
the lexical root of the sentence dependent on a syn-
thetic ROOT node.

We use the parsing approach described in
(Corston-Oliver et al., 2006). The parser is trained
on dependencies extracted from the English Penn
Treebank version 3.0 (Marcus et al., 1993) by
using the head-percolation rules of (Yamada and
Matsumoto, 2003).

Given a sentencex, the goal of the parser is to
find the highest-scoring parseŷ among all possible
parsesy∈Y:

ŷ = argmax
y∈Y

s(x,y) (1)

The score of a given parsey is the sum of the
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scores of all its dependency links(i, j) ∈ y:

s(x,y) = ∑
(i, j)∈y

d(i, j) = ∑
(i, j)∈y

w · f(i, j) (2)

where the link(i, j) indicates a parent-child de-
pendency between the token at positioni and the
token at positionj. The scored(i, j) of each de-
pendency link(i, j) is further decomposed as the
weighted sum of its featuresf(i, j).

The feature vectorf(i, j) computed for each
possible parent-child dependency includes the
part-of-speech (POS), lexeme and stem of the par-
ent and child tokens, the POS of tokens adjacent
to the child and parent, and the POS of each to-
ken that intervenes between the parent and child.
Various combinations of these features are used,
for example a new feature is created that combines
the POS of the parent, lexeme of the parent, POS
of the child and lexeme of the child. Each feature
is also conjoined with the direction and distance
of the parent, e.g. does the child precede or follow
the parent, and how many tokens intervene?

To set the weight vectorw, we train twenty
averaged perceptrons (Collins, 2002) on different
shuffles of data drawn from sections 02–21 of the
Penn Treebank. The averaged perceptrons are then
combined to form a Bayes Point Machine (Her-
brich et al., 2001; Harrington et al., 2003), result-
ing in a linear classifier that is competitive with
wide margin techniques.

To find the optimal parse given the weight vec-
tor w and feature vectorf(i, j) we use the decoder
described in (Eisner, 1996).

2.2 Treelet translation

For syntactically-informed translation, we fol-
low the treelet translation approach described
in (Quirk et al., 2005). In this approach, trans-
lation is guided by treelet translation pairs. Here,
a treeletis a connected subgraph of a dependency
tree. A treelet translation pair consists of a source
treeletS, a target treeletT, and a word alignment
A ⊂ S× T such that for alls∈ S, there exists a
uniquet ∈ T such that(s, t)∈A, and ift is the root
of T, there is a uniques∈ Ssuch that(s, t) ∈ A.

Translation of a sentence begins by parsing
that sentence into a dependency representation.
This dependency graph is partitioned into treelets;
like (Koehn et al., 2003), we assume a uniform
probability distribution over all partitions. Each
source treelet is matched to a treelet translation

pair; together, the target language treelets in those
treelet translation pairs will form the target trans-
lation. Next the target language treelets are joined
to form a single tree: the parent of the root of each
treelet is dictated by the source. Lettr be the root
of the target language treelet, andsr be the source
node aligned to it. Ifsr is the root of the source
sentence, thentr is made the root of the target lan-
guage tree. Otherwise letsp be the parent ofsr ,
and tp be the target node aligned tosp: tr is at-
tached totp. Finally the ordering of all the nodes
is determined, and the target tree is specified, and
the target sentence is produced by reading off the
labels of the nodes in order.

Translations are scored according to a log-linear
combination of feature functions, each scoring dif-
ferent aspects of the translation process. We use a
beam search decoder to find the best translationT∗

according to the log-linear combination of models:

T∗ = argmax
T

{
∑
f∈F

λ f f (S,T,A)

}
(3)

The models include inverted and direct channel
models estimated by relative frequency, lexical
weighting channel models following (Vogel et al.,
2003), a trigram target language model using mod-
ified Kneser-Ney smoothing (Goodman, 2001),
an order model following (Quirk et al., 2005),
and word count and phrase count functions. The
weights for these models are determined using the
method described in (Och, 2003).

To estimate the models and extract the treelets,
we begin from a parallel corpus. First the cor-
pus is word-aligned using GIZA++ (Och and Ney,
2000), then the source sentence are parsed, and
finally dependencies are projected onto the target
side following the heuristics described in (Quirk et
al., 2005). This word aligned parallel dependency
tree corpus provides training material for an order
model and a target language tree-based language
model. We also extract treelet translation pairs
from this parallel corpus. To limit the combina-
torial explosion of treelets, we only gather treelets
that contain at most four words and at most two
gaps in the surface string. This limits the number
of mappings to beO(n3) in the worst case, where
n is the number of nodes in the dependency tree.

2.3 Language pairs

In the present paper we focus on English-to-
German and English-to-Japanese machine transla-
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you can set this property using Visual Basic

Sie können diese Eigenschaft auch mit Visual Basic festlegen

Figure 1: Example German-English and Japanese-English sentence pairs, with word alignments.

tion. Both German and Japanese differ markedly
from English in ways that we believe illumi-
nate well the strengths of a syntactically-informed
SMT system. We provide a brief sketch of the lin-
guistic characteristics of German and Japanese rel-
evant to the present study.

2.3.1 German

Although English and German are closely re-
lated – they both belong to the western branch of
the Germanic family of Indo-European languages
– the languages differ typologically in ways that
are especially problematic for current approaches
to statistical machine translation as we shall now
illustrate. We believe that these typological differ-
ences make English-to-German machine transla-
tion a fertile test bed for syntax-based SMT.

German has richer inflectional morphology than
English, with obligatory marking of case, num-
ber and lexical gender on nominal elements and
person, number, tense and mood on verbal ele-
ments. This morphological complexity, combined
with pervasive, productive noun compounding is
problematic for current approaches to word align-
ment (Corston-Oliver and Gamon, 2004).

Equally problematic for machine translation is
the issue of word order. The position of verbs is
strongly determined by clause type. For exam-
ple, in main clauses in declarative sentences, finite
verbs occur as the second constituent of the sen-
tence, but certain non-finite verb forms occur in fi-
nal position. In Figure 1, for example, the English
“can” aligns with German “k̈onnen” in second po-
sition and “set” aligns with German “festlegen” in
final position.

Aside from verbs, German is usually charac-
terized as a “free word-order” language: major
constituents of the sentence may occur in various
orders, so-called “separable prefixes” may occur
bound to the verb or may detach and occur at a

considerable distance from the verb on which they
depend, and extraposition of various kinds of sub-
ordinate clause is common. In the case of extrapo-
sition, for example, more than one third of relative
clauses in human-translated German technical text
are extraposed. For comparable English text the
figure is considerably less than one percent (Ga-
mon et al., 2002).

2.3.2 Japanese

Word order in Japanese is rather different from
English. English has the canonical constituent or-
der subject-verb-object, whereas Japanese prefers
subject-object-verb order. Prepositional phrases
in English generally correspond to postpositional
phrases in Japanese. Japanese noun phrases are
strictly head-final whereas English noun phrases
allow postmodifiers such as prepositional phrases,
relative clauses and adjectives. Japanese has lit-
tle nominal morphology and does not obligatorily
mark number, gender or definiteness. Verbal mor-
phology in Japanese is complex with morphologi-
cal marking of tense, mood, and politeness. Top-
icalization and subjectless clauses are pervasive,
and problematic for current SMT approaches.

The Japanese sentence in Figure 1 illustrates
several of these typological differences. The
sentence-initial imperative verb “move” in the En-
glish corresponds to a sentence-final verb in the
Japanese. The Japanese translation of the object
noun phrase “the camera slider switch” precedes
the verb in Japanese. The English preposition “to”
aligns to a postposition in Japanese.

3 Experiments

Our goal in the current paper is to measure the
impact of parse quality on syntactically-informed
statistical machine translation. One method for
producing parsers of varying quality might be to
train a parser and then to transform its output, e.g.
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by replacing the parser’s selection of the parent for
certain tokens with different nodes.

Rather than randomly adding noise to the
parses, we decided to vary the quality in ways that
more closely mimic the situation that confronts us
as we develop machine translation systems. An-
notating data for POS requires considerably less
human time and expertise than annotating syntac-
tic relations. We therefore used an automatic POS
tagger (Toutanova et al., 2003) trained on the com-
plete training section of the Penn Treebank (sec-
tions 02–21). Annotating syntactic dependencies
is time consuming and requires considerable lin-
guistic expertise.1 We can well imagine annotat-
ing syntactic dependencies in order to develop a
machine translation system by annotating first a
small quantity of data, training a parser, training a
system that uses the parses produced by that parser
and assessing the quality of the machine transla-
tion output. Having assessed the quality of the out-
put, one might annotate additional data and train
systems until it appears that the quality of the ma-
chine translation output is no longer improving.
We therefore produced parsers of varying quality
by training on the firstn sentences of sections 02–
21 of the Penn Treebank, wheren ranged from 250
to 39,892 (the complete training section). At train-
ing time, the gold-standard POS tags were used.
For parser evaluation and for the machine transla-
tion experiments reported here, we used an auto-
matic POS tagger (Toutanova et al., 2003) trained
on sections 02–21 of the Penn Treebank.

We trained English-to-German and English-to-
Japanese treelet translation systems on approxi-
mately 500,000 manually aligned sentence pairs
drawn from technical computer documentation.
The sentence pairs consisted of the English source
sentence and a human-translation of that sentence.
Table 1 summarizes the characteristics of this data.
Note that German vocabulary and singleton counts
are slightly more than double the corresponding
English counts due to complex morphology and
pervasive compounding (see section 2.3.1).

3.1 Parser accuracy

To evaluate the accuracy of the parsers trained on
different samples of sentences we used the tradi-

1Various people have suggested to us that the linguistic
expertise required to annotate syntactic dependencies is less
than the expertise required to apply a formal theory of con-
stituency like the one that informs the Penn Treebank. We
tend to agree, but have not put this claim to the test.
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Figure 2: Unlabeled dependency accuracy of
parsers trained on different numbers of sentences.
The graph compares accuracy on the blind test sec-
tion of the Penn Treebank to accuracy on a set of
250 sentences drawn from technical text. Punctu-
ation tokens are excluded from the measurement
of dependency accuracy.

tional blind test section of the Penn Treebank (sec-
tion 23). As is well-known in the parsing commu-
nity, parse quality degrades when a parser trained
on the Wall Street Journal text in the Penn Tree-
bank is applied to a different genre or semantic do-
main. Since the technical materials that we were
training the translation system on differ from the
Wall Street Journal in lexicon and syntax, we an-
notated a set of 250 sentences of technical material
to use in evaluating the parser. Each of the authors
independently annotated the same set of 250 sen-
tences. The annotation took less than six hours for
each author to complete. Inter-annotator agree-
ment excluding punctuation was 91.8%. Differ-
ences in annotation were resolved by discussion,
and the resulting set of annotations was used to
evaluate the parsers.

Figure 2 shows the accuracy of parsers trained
on samples of various sizes, excluding punctua-
tion tokens from the evaluation, as is customary
in evaluating dependency parsers. When mea-
sured against section 23 of the Penn Treebank,
the section traditionally used for blind evaluation,
the parsers range in accuracy from 77.8% when
trained on 250 sentences to 90.8% when trained
on all of sections 02–21. As expected, parse accu-
racy degrades when measured on text that differs
greatly from the training text. A parser trained on
250 Penn Treebank sentences has a dependency
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English German English Japanese
Training Sentences 515,318 500,000

Words 7,292,903 8,112,831 7,909,198 9,379,240
Vocabulary 59,473 134,829 66,731 68,048
Singletons 30,452 66,724 50,381 52,911

Test Sentences 2,000 2,000
Words 28,845 31,996 30,616 45,744

Table 1: Parallel data characteristics

accuracy of 76.6% on the technical text. A parser
trained on the complete Penn Treebank training
section has a dependency accuracy of 84.3% on
the technical text.

Since the parsers make extensive use of lexi-
cal features, it is not surprising that the perfor-
mance on the two corpora should be so similar
with only 250 training sentences; there were not
sufficient instances of each lexical item to train re-
liable weights or lexical features. As the amount
of training data increases, the parsers are able to
learn interesting facts about specific lexical items,
leading to improved accuracy on the Penn Tree-
bank. Many of the lexical items that occur in the
Penn Treebank, however, occur infrequently or not
at all in the technical materials so the lexical infor-
mation is of little benefit. This reflects the mis-
match of content. The Wall Street Journal articles
in the Penn Treebank concern such topics as world
affairs and the policies of the Reagan administra-
tion; these topics are absent in the technical mate-
rials. Conversely, the Wall Street Journal articles
contain no discussion of such topics as the intrica-
cies of SQL database queries.

3.2 Translation quality

Table 2 presents the impact of parse quality on a
treelet translation system, measured using BLEU
(Papineni et al., 2002). Since our main goal is to
investigate the impact of parser accuracy on trans-
lation quality, we have varied the parser training
data, but have held the MT training data, part-of-
speech-tagger, and all other factors constant. We
observe an upward trend in BLEU score as more
training data is made available to the parser; the
trend is even clearer in Japanese.2 As a baseline,
we include right-branching dependency trees, i.e.,
trees in which the parent of each word is its left

2This is particularly encouraging since various people
have remarked to us that syntax-based SMT systems may
be disadvantaged under n-gram scoring techniques such as
BLEU.

EG EJ
Phrasal decoder 31.7±1.2 32.9±0.9
Treelet decoder

Right-branching 31.4±1.3 28.0±0.7
250 sentences 32.8±1.4 34.1±0.9
2,500 sentences 33.0±1.4 34.6±1.0
25,000 sentences33.7±1.5 35.7±0.9
39,892 sentences33.6±1.5 36.0±1.0

Table 2: BLEU score vs. decoder and parser vari-
ants. Here sentences refer to the amount of parser
training data, not MT training data.

neighbor and the root of a sentence is the first
word. With this analysis, treelets are simply sub-
sequences of the sentence, and therefore are very
similar to the phrases of Phrasal SMT. In English-
to-German, this result produces results very com-
parable to a phrasal SMT system (Koehn et al.,
2003) trained on the same data. For English-to-
Japanese, however, this baseline performs much
worse than a phrasal SMT system. Although
phrases and treelets should be nearly identical
under this scenario, the decoding constraints are
somewhat different: the treelet decoder assumes
phrasal cohesion during translation. This con-
straint may account for the drop in quality.

Since the confidence intervals for many pairs
overlap, we ran pairwise tests for each system to
determine which differences were significant at
the p < 0.05 level using the bootstrap method de-
scribed in (Zhang and Vogel, 2004); Table 3 sum-
marizes this comparison. Neither language pair
achieves a statistically significant improvement
from increasing the training data from 25,000
pairs to the full training set; this is not surprising
since the increase in parse accuracy is quite small
(90.2% to 90.8% on Wall Street Journal text).

To further understand what differences in de-
pendency analysis were affecting translation qual-
ity, we compared a treelet translation system that
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Pharaoh Right-branching 250 2,500 25,000 39,892
Pharaoh ∼ > > > >

Right-branching > > > >
250 ∼ > >

2,500 > >
25,000 ∼

(a) English-German

Pharaoh Right-branching 250 2,500 25,000 39,892
Pharaoh < ∼ > > >

Right-branching > > > >
250 > > >

2,500 > >
25,000 ∼

(b) English-Japanese

Table 3: Pairwise statistical significance tests.> indicates that the system on the top is significantly better
than the system on the left;< indicates that the system on top is significantly worse than the system on
the left;∼ indicates that difference between the two systems is not statistically significant.
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Figure 3: BLEU score vs. number of sentences
used to train the dependency parser

used a parser trained on 250 Penn Treebank sen-
tences to a treelet translation system that used
a parser trained on 39,892 Treebank sentences.
From the test data, we selected 250 sentences
where these two parsers produced different anal-
yses. A native speaker of German categorized the
differences in machine translation output as either
improvements or regressions. We then examined
and categorized the differences in the dependency
analyses. Table 4 summarizes the results of this
comparison. Note that this table simply identifies
correlations between parse changes and translation
changes; it does not attempt to identify a causal

link. In the analysis, we borrow the term “NP
[Noun Phrase] identification” from constituency
analysis to describe the identification of depen-
dency treelets spanning complete noun phrases.

There were 141 sentences for which the ma-
chine translated output improved, 71 sentences for
which the output regressed and 38 sentences for
which the output was identical. Improvements in
the attachment of prepositions, adverbs, gerunds
and dependent verbs were common amongst im-
proved translations, but rare amongst regressed
translations. Correct identification of the depen-
dent of a preposition3 was also much more com-
mon amongst improvements.

Certain changes, such as improved root identifi-
cation and final punctuation attachment, were very
common across the corpus. Therefore their com-
mon occurrence amongst regressions is not very
surprising. It was often the case that improve-
ments in root identification or final punctuation at-
tachment were offset by regressions elsewhere in
the same sentence.

Improvements in the parsers are cases where
the syntactic analysis more closely resembles the
analysis of dependency structure that results from
applying Yamada and Matsumoto’s head-finding
rules to the Penn Treebank. Figure 4 shows dif-
ferent parses produced by parsers trained on dif-

3In terms of constituency analysis, a prepositional phrase
should consist of a preposition governing a single noun
phrase
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You can manipulate Microsoft Access objects from another application that also supports automation .ROOT

You can manipulate Microsoft Access objects from another application that also supports automation .ROOT

(a) Dependency analysis produced by parser trained on 250 Wall Street Journal sentences.

(b) Dependency analysis produced by parser trained on 39,892 Wall Street Journal sentences.

Figure 4: Parses produced by parsers trained on different numbers of sentences.

ferent numbers of sentences. The parser trained
on 250 sentences incorrectly attaches the prepo-
sition “from” as a dependent of the noun “ob-
jects” whereas the parser trained on the complete
Penn Treebank training section correctly attaches
the preposition as a dependent of the verb “ma-
nipulate”. These two parsers also yield different
analyses of the phrase “Microsoft Access objects”.
In parse (a), “objects” governs “Office” and “Of-
fice” in turn governs “Microsoft”. This analy-
sis is linguistically well-motivated, and makes a
treelet spanning “Microsoft Office” available to
the treelet translation system. In parse (b), the
parser has analyzed this phrase so that “objects”
directly governs “Microsoft” and “Office”. The
analysis more closely reflects the flat branching
structure of the Penn Treebank but obscures the
affinity of “Microsoft” and “Office”.

An additional measure of parse utility for MT
is the amount of translation material that can be
extracted from a parallel corpus. We increased the
parser training data from 250 sentences to 39,986
sentences, but held the number of aligned sentence
pairs used train other modules constant. The count
of treelet translation pairs occurring at least twice
in the English-German parallel corpus grew from
1,895,007 to 2,010,451.

4 Conclusions

We return now to the questions and concerns
raised in the introduction. First, is a treelet SMT
system sensitive to parse quality? We have shown
that such a systemis sensitive to the quality of

Error category Regress Improve
Attachment of prep 1% 22%
Root identification 13% 28%
Final punctuation 18% 30%
Coordination 6% 16%
Dependent verbs 14% 32%
Arguments of verb 6% 15%
NP identification 24% 33%
Dependent of prep 0% 7%
Other attachment 3% 22%

Table 4: Error analysis, showing percentage of
regressed and improved translations exhibiting a
parse improvement in each specified category

the input syntactic analyses. With the less accu-
rate parsers that result from training on extremely
small numbers of sentences, performance is com-
parable to state-of-the-art phrasal SMT systems.
As the amount of data used to train the parser in-
creases, both English-to-German and English-to-
Japanese treelet SMT improve, and produce re-
sults that are statistically significantly better than
the phrasal baseline.

In the introduction we mentioned the concern
that others have raised when we have presented
our research: syntax might contain valuable infor-
mation but current parsers might not be of suffi-
cient quality. It is certainly true that the accuracy
of the best parser used here falls well short of what
we might hope for. A parser that achieves 90.8%
dependency accuracy when trained on the Penn
Treebank Wall Street Journal corpus and evalu-
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ated on comparable text degrades to 84.3% accu-
racy when evaluated on technical text. Despite the
degradation in parse accuracy caused by the dra-
matic differences between the Wall Street Journal
text and the technical articles, the treelet SMT sys-
tem was able to extract useful patterns. Research
on syntactically-informed SMT is not impeded by
the accuracy of contemporary parsers.

One significant finding is that as few as 250
sentences suffice to train a dependency parser for
use in the treelet SMT framework. To date our
research has focused on translation from English
to other languages. One concern in applying the
treelet SMT framework to translation from lan-
guages other than English has been the expense
of data annotation: would we require 40,000 sen-
tences annotated for syntactic dependencies, i.e.,
an amount comparable to the Penn Treebank, in
order to train a parser that was sufficiently accu-
rate to achieve the machine translation quality that
we have seen when translating from English? The
current study gives hope that source languages can
be added with relatively modest investments in
data annotation. As more data is annotated with
syntactic dependencies and more accurate parsers
are trained, we would hope to see similar improve-
ments in machine translation output.

We challenge others who are conducting re-
search on syntactically-informed SMT to verify
whether or to what extent their systems are sen-
sitive to parse quality.
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Abstract

Reordering is currently one of the most
important problems in statistical machine
translation systems. This paper presents
a novel strategy for dealing with it: sta-
tistical machine reordering (SMR). It con-
sists in using the powerful techniques de-
veloped for statistical machine translation
(SMT) to translate the source language
(S) into a reordered source language (S’),
which allows for an improved translation
into the target language (T). The SMT task
changes from S2T to S’2T which leads to a
monotonized word alignment and shorter
translation units. In addition, the use of
classes in SMR helps to infer new word
reorderings. Experiments are reported in
the EsEn WMT06 tasks and the ZhEn
IWSLT05 task and show significant im-
provement in translation quality.

1 Introduction

During the last few years, SMT systems
have evolved from the original word-based ap-
proach (Brown et al., 1993) to phrase-based trans-
lation systems (Koehn et al., 2003). In parallel
to the phrase-based approach, the use of bilin-
gual n-grams gives comparable results, as shown
by Crego et al. (2005a). Two basic issues differ-
entiate the n-gram-based system from the phrase-
based: training data are monotonously segmented
into bilingual units; and, the model considers n-
gram probabilities rather than relative frequencies.
This translation approach is described in detail by
Mariño et al. (2005). The n-gram-based system
follows a maximum entropy approach, in which a
log-linear combination of multiple models is im-

plemented (Och and Ney, 2002), as an alternative
to the source-channel approach.

In both systems, introducing reordering capabil-
ities is of crucial importance for certain language
pairs. Recently, new reordering strategies have
been proposed in the literature on SMT such as the
reordering of each source sentence to match the
word order in the corresponding target sentence,
see Kanthak et al. (2005) and Crego et al. (2005b).
Similarly, Matusov et al. (2006) describe a method
for simultaneously aligning and monotonizing the
training corpus. The main problems of these ap-
proaches are: (1) the fact that the proposed mono-
tonization is based on the alignment and cannot be
applied to the test sets, and (2) the lack of reorder-
ing generalization.

This paper presents a reordering approach
called statistical machine reordering (SMR) which
improves the reordering capabilities of SMT sys-
tems without incurring any of the problems men-
tioned above. SMR is a first-pass translation
performed on the source corpus, which converts
it into an intermediate representation, in which
source-language words are presented in an order
that more closely matches that of the target lan-
guage. SMR and SMT are performed using the
same modeling tools as n-gram-based systems but
using different statistical log-linear models.

In order to be able to infer new reorderings we
use word classes instead of words themselves as
the input to the SMR system. In fact, the use of
classes to help in the reordering is a key difference
between our approach and standard SMT systems.

This paper is organized as follows: Section 2
outlines the baseline system. Section 3 describes
the reordering strategy in detail. Section 4 presents
and discusses the results, and Section 5 presents
our conclusions and suggestions for further work.
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2 N-gram-based SMT System

This section briefly describes the n-gram-based
SMT which uses a translation model based on
bilingual n-grams. It is actually a language model
of bilingual units, referred to as tuples, which ap-
proximates the joint probability between source
and target languages by using bilingual n-grams
(de Gispert and Mariño, 2002).

Bilingual units (tuples) are extracted from any
word alignment according to the following con-
straints:

1. a monotonous segmentation of each bilingual
sentence pairs is produced,

2. no word inside the tuple is aligned to words
outside the tuple, and

3. no smaller tuples can be extracted without vi-
olating the previous constraints.

As a result of these constraints, only one seg-
mentation is possible for a given sentence pair.

Figure 1 presents a simple example which illus-
trates the tuple extraction process.

I would like NULL to eat a huge ice−cream

NULL quisiera ir a comer un helado gigante

t
1

t
2

t
3

t
4

t
5

t
6

Figure 1: Example of tuple extraction from an
aligned bilingual sentence pair.

Two important issues regarding this translation
model must be considered. First, it often occurs
that large number of single-word translation prob-
abilities are left out of the model. This happens
for all words that are always embedded in tuples
containing two or more words. Consider for ex-
ample the word “ice-cream” in Figure 1. As seen
from the Figure, “ice-cream” is embedded into tu-
ple t6. If a similar situation is encountered for all
occurrences of “ice-cream” in the training corpus,
then no translation probability for an independent
occurrence of this word will exist.

To overcome this problem, the tuple 4-gram
model is enhanced by incorporating 1-gram trans-

lation probabilities for all the embedded words de-
tected during the tuple extraction step. These 1-
gram translation probabilities are computed from
the intersection of both, the source-to-target and
the target-to-source alignments.

The second issue has to do with the fact that
some words linked to NULL end up producing tu-
ples with NULL source sides. Consider for exam-
ple the tuple t3 in Figure 1. Since no NULL is ac-
tually expected to occur in translation inputs, this
type of tuple is not allowed. Any target word that
is linked to NULL is attached either to the word
that precedes or the word that follows it. To de-
termine this, we use the IBM1 probabilities, see
Crego et al. (2005a).

In addition to the bilingual n-gram transla-
tion model, the baseline system implements a
log-linear combination of four feature functions,
which are described as follows:

• A target language model. This feature con-
sists of a 4-gram model of words, which is
trained from the target side of the bilingual
corpus.

• A word bonus function. This feature intro-
duces a bonus based on the number of target
words contained in the partial-translation hy-
pothesis. It is used to compensate for the sys-
tem’s preference for short output sentences.

• A source-to-target lexicon model. This fea-
ture, which is based on the lexical param-
eters of the IBM Model 1 (Brown et al.,
1993), provides a complementary probabil-
ity for each tuple in the translation table.
These lexicon parameters are obtained from
the source-to-target alignments.

• A target-to-source lexicon model. Similarly
to the previous feature, this feature is based
on the lexical parameters of the IBM Model
1 but, in this case, these parameters are ob-
tained from target-to-source alignments.

All these models are combined in the de-
coder. Additionally, the decoder allows for a non-
monotonous search with the following distorsion
model.
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• A word distance-based distorsion model.

P (tK1 ) = exp(−
K∑

k=1

dk)

where dk is the distance between the first
word of the kth tuple (unit), and the last
word+1 of the (k − 1)th tuple. Distance
are measured in words referring to the units
source side.

To reduce the computational cost we place lim-
its on the search using two parameters: the dis-
tortion limit (the maximum distance measured in
words that a tuple is allowed to be reordered, m)
and the reordering limit (the maximum number of
reordering jumps in a sentence, j). This feature is
independent of the reordering approach presented
in this paper, so they can be used simultaneously.

In order to combine the models in the decoder
suitably, an optimization tool is needed to compute
log-linear weights for each model.

3 Statistical Machine Reordering

As mentioned in the introduction, SMR and SMT
are based on the same principles. Here, we give
a detailed description of the SMR reordering ap-
proach proposed.

3.1 Concept

The aim of SMR consists in using an SMT sys-
tem to deal with reordering problems. Therefore,
the SMR system can be seen as an SMT system
which translates from an original source language
(S) to a reordered source language (S’), given a
target language (T). Then, the translation tasks
changes from S2T to S’2T. The main difference
between the two tasks is that the latter allows for:
(1) monotonized word alignment, and (2) higher
quality monotonized translation.

3.2 Description

Figure 2 shows the SMR block diagram. The in-
put is the initial source sentence (S) and the output
is the reordered source sentence (S’). There three
blocks inside SMR: (1) class replacing ; (2) the de-
coder, which requires the translation model; and,
(3) the block which reorders the original sentence
using the indexes given by the decoder. The fol-
lowing example specifies the input and output of
each block inside the SMR.

Figure 2: SMR block diagram.

1. Source sentence (S):

El compromiso sólo podrı́a mejorar

2. Source sentence classes (S-c):

C38 C43 C49 C42 C22

3. Decoder output (translation, T ):

C38#0 | C43 C49 C42#1 2 0 | C22#0

where | indicates the segmentation into trans-
lation units and # divides the source and tar-
get. The source part is composed of word
classes and the target part is composed of
the new positions of the source word classes,
starting at 0.

4. SMR output (S’). The reordering information
inside each translation unit of the decoder
output (T ) is applied to the original source
sentence (S):

El sólo podrı́a compromiso mejorar

3.3 Training
For the reordering translation, we used an n-gram-
based SMT system (and considered only the trans-
lation model). Figure 3 shows the block diagram
of the training process of the SMR translation
model, which is a bilingual n-gram-based model.
The training process uses the training source and
target corpora and consists of the following steps:

1. Determine source and target word classes.

2. Align parallel training sentences at the word
level in both translation directions. Compute
the union of the two alignments to obtain a
symmetrized many-to-many word alignment.

3. Extract reordering tuples, see Figure 4.

(a) From union word alignment, extract
bilingual S2T tuples (i.e. source and
target fragments) while maintaining the
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Figure 3: Block diagram of the training process of the SMR translation model.

Figure 4: Example of the extraction of reordering
tuples (step 3).

alignment inside the tuple. As an ex-
ample of a bilingual S2T tuple consider:
only possible compromise # compromiso
sólo podrı́a # 0-1 1-1 1-2 2-0, as shown
in Figure 4, where the different fields are
separated by # and correspond to: (1)
the target fragment; (2) the source frag-
ment; and (3) the word alignment (in
this case, the fields that respectively cor-
respond to a target and source word are
separated by −).

(b) Modify the many-to-many word align-
ment from each tuple to many-to-one.
If one source word is aligned to two or
more target words, the most probable
link given IBM Model 1 is chosen, while
the other are omitted (i.e. the num-
ber of source words is the same before
and after the reordering translation). In
the above example, the tuple would be
changed to: only possible compromise

# compromiso sólo podrı́a # 0-1 1-2 2-
0, as Pibm1(only, sólo) is higher than
Pibm1(possible, sólo).

(c) From bilingual S2T tuples (with many-
to-one inside alignment), extract bilin-
gual S2S’ tuples (i.e. the source frag-
ment and its reordering). As in the ex-
ample: compromiso sólo podrı́a # 1 2 0,
where the first field is the source frag-
ment, and the second is the reordering
of these source words.

(d) Eliminate tuples whose source fragment
consists of the NULL word.

(e) Replace the words of each tuple source
fragment with the classes determined in
Step 1.

4. Compute the bilingual language model of the
bilingual S2S’ tuple sequence composed of
the source fragment (in classes) and its re-
order.

Once the translation model is built, the origi-
nal source corpus S is translated into the reordered
source corpus S’ with the SMR system, see Fig-
ure 2. The reordered training source corpus and
the original training target corpus are used to train
the SMT system (as explained in Section 2). Fi-
nally, with this system, the reordered test source
corpus is translated.

4 Evaluation Framework

In this section, we present experiments carried out
using the EsEn WMT06 and the ZhEn IWSLT05
parallel corpus. We detail the tools which have
been used and the corpus statistics.
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EuroParl Spanish English
Training Sentences 727.1 k 727.1 k
Words 15.7 M 15.2 M
Vocabulary 108.7 k 72.3 k
Development Sentences 500 500
Words 15.2 k 14.8 k
Vocabulary 3.6 k 3 k
Test Sentences 3064 3064
Words 91.9 k 85.2 k
Vocabulary 11.1 k 9.1 k

Table 1: Spanish to English task. EuroParl cor-
pus: training, development and test data sets.

4.1 Tools
• The word alignments were computed using

the GIZA++ tool (Och, 2003).

• The word classes were determined us-
ing ’mkcls’, a freely-available tool with
GIZA++.

• The language model was estimated using the
SRILM toolkit (Stolcke, 2002).

• We used MARIE as a decoder (Crego et al.,
2005b).

• The optimization tool used for computing
log-linear weights (see Section 2) is based
on the simplex method (Nelder and Mead,
1965).

4.2 Corpus Statistics
Experiments were carried out on the Spanish and
English task of the WMT06 evaluation1 (EuroParl
Corpus) and on the Chinese to English task of the
IWSLT05 evaluation2 (BTEC Corpus). The for-
mer is a large corpus, whereas the latter is a small
corpus translation task. Table 1 and 2 show the
main statistics of the data used, namely the number
of sentences, words, vocabulary, and mean sen-
tence lengths for each language.

4.3 Units
In this section different statistics units of both ap-
proaches (S2T and S’2T) are shown (using the
ZhEn task). All the experiments in this section
were carried out using 100 classes in the SMR
step.

1www.statmt.org/wmt06/shared-task/
2www.slt.atr.jp/IWSLT2005

BTEC Chinese English
Training Sentences 20 k 20 k
Words 176.2 k 182.3 k
Vocabulary 8.7 k 7.3 k
Development Sentences 506 506
Words 3.5 k 3.3 k
Vocabulary 870 799
Test Sentences 506 506
Words 4 k 3 k
Vocabulary 916 818

Table 2: Chinese to English task. BTEC corpus:
training, development and test data sets. Develop-
ment and test data sets have 16 references.

Table 3 shows the vocabulary of bilingual n-
grams and embedded words in the translation
model. Once the reordering translation has been
computed, alignment becomes more monotonic. It
is commonly known that non-monotonicity poses
difficulties for word alignments. Therefore, when
the alignment becomes more monotonic, we ex-
pect an improvement in the alignment, and, there-
fore in the translation. Here, we can observe a
significant enlargement of the number of transla-
tion units, which leads to a growth of the transla-
tion vocabulary. We also observe a decrease in the
number of embedded words (around 20%). From
Section 2, we know that the probability of embed-
ded words is estimated independently of the trans-
lation model. Reducing embedded words allows
for a better estimation of the translation model.

Figure 5 shows the histogram of the tuple size in
the two approaches. We observe that the number
of tuples is similar over length 5. However, there
are a greater number of shorter units in the case of
SMR+NB (shorter units lead to a reduction in data
sparseness).
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Figure 5: Comparison of the histogram of the tuple
size in the two approaches (NB and SMR+NB).
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System 1gr 2gr 3gr 4gr Embedded
NB 34487 57597 3536 1918 5735
SMR + NB 35638 70947 5894 3412 4632

Table 3: Vocabulary of n-grams and embedded words in the translation model.

System Total Vocabulary
NB 4460 959
SMR + NB 4628 1052

Table 4: Tuples used to translate the test set (total
number and vocabulary).

Table 4 shows the tuples used to translate the
test set (total number and vocabulary). Note that
the number of tuples and vocabulary used to trans-
late the test set is significantly greater after the re-
ordering translation.

4.4 Results

Here, we introduce the experiments that were car-
ried out in order to evaluate the influence of the
SMR approach in both tasks EsEn and ZhEn. The
log-linear translation model was optimized with
the simplex algorithm by maximizing over the
BLEU score. The evaluation was carried out us-
ing references and translation in lowercase and, in
the ZhEn task, without punctuation marks.

We studied the influence of the proposed SMR
approach on the n-gram-based SMT system de-
scribed using a monotonous search (NBm or
monotonous baseline configuration) in the two
tasks and a non-monotonous search (NBnm or
non-monotonous baseline configuration) in the
ZhEn task. In allowing for reordering in the SMT
decoder, the distortion limit (m) and reordering
limit (j) (see Section 2) were empirically set to
5 and 3, as they showed a good trade-off between
quality and efficiency. Both systems include the
four features explained in Section 2: the language
model, the word bonus, and the source-to-target
and target-to-source lexicon models.

Tables 5 and 6 show the results in the test set.
The former corresponds to the influence of the
SMR system on the EsEn task (NBm), whereas
the latter corresponds to the influence of the SMR
system on the ZhEn task (NBm and NBnm).

4.5 Discussion

Both BLEU and NIST coherently increase after
the inclusion of the SMR step when 100 classes
are used. The improvement in translation quality
can be explained as follows:

• SMR takes advantage of the use of classes
and correctly captures word reorderings that
are missed in the standard SMT system. In
addition, the use of classes allows new re-
orderings to be inferred.

• The new task S’2T becomes more
monotonous. Therefore, the translation
units tend to be shorter and SMT systems
perform better.

The gain obtained in the SMR+NBnm case indi-
cates that the reordering provided by SMR system
and the non-monotonous search are complemen-
tary. It means that the output of the SMR could
still be further monotonized. Note that the ZhEn
task has complex word reorderings.

These preliminary results also show that SMR
itself provides further improvements to those pro-
vided by the non-monotonous search.

5 Conclusions and Further Research

In this paper we have mainly dealt with the re-
ordering problem for an n-gram-based SMT sys-
tem. However, our approach could be used sim-
ilarly for a phrase-based system. We have ad-
dressed the reordering problem as a translation
from the source sentence to a monotonized source
sentence. The proposed SMR system is applied
before a standard SMT system. The SMR and
SMT systems are based on the same principles and
share the same type of decoder.

In extracting bilingual units, the change of order
performed in the source sentence has allowed the
modeling of the translation units to be improved
(shorter units mean a reduction in data sparse-
ness). Also, note that the SMR approach allows
the coherence between the change of order in the
training and test source corpora to be maintained.
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System Classes BLEU NIST WER PER
NBm - 27.69 7.31 61.6 45.34
SMR + NBm - 28.60 7.53 59.89 43.53
SMR + NBm 100 30.89 7.75 55.77 42.85

Table 5: Results in the test set of the EsEn task using a monotonous search.

System Classes BLEU NIST WER PER
NBm - 42.42 8.3 42.87 33.44
NBnm - 43.58 8.9 43.89 34.05
SMR + NBm 100 43.75 8.49 42.45 33.85
SMR + NBnm 100 45.97 9.0 40.92 32.32

Table 6: Results in the test set of the ZhEn task using a monotonous and a non-monotonous search.

Performing reordering as a preprocessing step
and independently from the SMT system allows
for a more efficient final system implementation
and a quicker translation. Additionally, using
word classes helps to infer unseen reorderings.
These preliminary results show consistent and sig-
nificant improvements in translation quality.

As further research, we would like to add extra
features to the SMR system, and study new types
of classes for the reordering task.
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Abstract 

In this paper, we present ParaEval, an 

automatic evaluation framework that uses 
paraphrases to improve the quality of 

machine translation evaluations. Previous 

work has focused on fixed n-gram 
evaluation metrics coupled with lexical 

identity matching. ParaEval addresses 

three important issues: support for para-
phrase/synonym matching, recall meas-

urement, and correlation with human 

judgments. We show that ParaEval corre-

lates significantly better than BLEU with 
human assessment in measurements for 

both fluency and adequacy. 

1 Introduction 

The introduction of automated evaluation proce-
dures, such as BLEU (Papineni et al., 2001) for 

machine translation (MT) and ROUGE (Lin and 

Hovy, 2003) for summarization, have prompted 
much progress and development in both of these 

areas of research in Natural Language Processing 

(NLP). Both evaluation tasks employ a compari-
son strategy for comparing textual units from 

machine-generated and gold-standard texts. Ide-

ally, this comparison process would be per-

formed manually, because of humans’ abilities to 
infer, paraphrase, and use world knowledge to 

relate differently worded pieces of equivalent 

information. However, manual evaluations are 
time consuming and expensive, thus making 

them a bottleneck in system development cycles.  

BLEU measures how close machine-generated 

translations are to professional human transla-
tions, and ROUGE does the same with respect to 

summaries. Both methods incorporate the com-

parison of a system-produced text to one or more 
corresponding reference texts. The closeness be-

tween texts is measured by the computation of a 

numeric score based on n-gram co-occurrence 

statistics. Although both methods have gained 
mainstream acceptance and have shown good 

correlations with human judgments, their defi-

ciencies have become more evident and serious 

as research in MT and summarization progresses 
(Callison-Burch et al., 2006).   

Text comparisons in MT and summarization 

evaluations are performed at different text granu-
larity levels. Since most of the phrase-based, 

syntax-based, and rule-based MT systems trans-

late one sentence at a time, the text comparison 

in the evaluation process is also performed at the 
single-sentence level. In summarization evalua-

tions, there is no sentence-to-sentence corre-

spondence between summary pairs—essentially 
a multi-sentence-to-multi-sentence comparison, 

making it more difficult and requiring a com-

pletely different implementation for matching 
strategies. In this paper, we focus on the intrica-

cies involved in evaluating MT results and ad-

dress two prominent problems associated with 

the BLEU-esque metrics, namely their lack of 
support for paraphrase matching and the absence 

of recall scoring. Our solution, ParaEval, utilizes 

a large collection of paraphrases acquired 
through an unsupervised process—identifying 

phrase sets that have the same translation in an-

other language—using state-of-the-art statistical 
MT word alignment and phrase extraction meth-

ods. This collection facilitates paraphrase match-

ing, additionally coupled with lexical identity 

matching which is designed for comparing 
text/sentence fragments that are not consumed by 

paraphrase matching. We adopt a unigram count-

ing strategy for contents matched between sen-
tences from peer and reference translations. This 

unweighted scoring scheme, for both precision 

and recall computations, allows us to directly 

examine both the power and limitations of 
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ParaEval.  We show that ParaEval is a more sta-

ble and reliable comparison mechanism than 

BLEU, in both fluency and adequacy rankings.  

This paper is organized in the following way: 
Section 2 shows an overview on BLEU and lexi-

cal identity n-gram statistics; we describe ParaE-

val’s implementation in detail in Section 3; the 
evaluation of ParaEval is shown in Section 4; 

recall computation is discussed in Section 5; in 

Section 6, we discuss the differences between 
BLEU and ParaEval when the numbers of refer-

ence translations change; and we conclude and 

discuss future work in Section 7.  

2 N-gram Co-occurrence Statistics 

Being an $8 billion industry (Browner, 2006), 

MT calls for rapid development and the ability to 
differentiate good systems from less adequate 

ones. The evaluation process consists of compar-

ing system-generated peer translations to human 

written reference translations and assigning a 
numeric score to each system. While human as-

sessments are still the most reliable evaluation 

measurements, it is not practical to solicit manual 
evaluations repeatedly while making incremental 

system design changes that would only result in 

marginal performance gains. To overcome the 

monetary and time constraints associated with 
manual evaluations, automated procedures have 

been successful in delivering benchmarks for 

performance hill-climbing with little or no cost.  
While a variety of automatic evaluation meth-

ods have been introduced, the underlining com-

parison strategy is similar—matching based on 
lexical identity. The most prominent implemen-

tation of this type of matching is demonstrated in 

BLEU (Papineni et al, 2002). The remaining part 

of this section is devoted to an overview of 
BLEU, or the BLEU-esque philosophy.  

2.1 The BLEU-esque Matching Philosophy 

The primary task that a BLEU-esque procedure 

performs is to compare n-grams from the peer 
translation with the n-grams from one or more 

reference translations and count the number of 

matches. The more matches a peer translation 

gets, the better it is.  
BLEU is a precision-based metric, which is 

the ratio of the number of n-grams from the peer 

translation that occurred in reference translations 
to the total number of n-grams in the peer trans-

lation. The notion of Modified n-gram Precision 

was introduced to detect and avoid rewarding 
false positives generated by translation systems. 

To gain high precision, systems could potentially 

over-generate “good” n-grams, which occur mul-

tiple times in multiple references. The solution to 

this problem was to adopt the policy that an n-
gram, from both reference and peer translations, 

is considered exhausted after participating in a 

match. As a result, the maximum number of 
matches an n-gram from a peer translation can 

receive, when comparing to a set of reference 

translations, is the maximum number of times 
this n-gram occurred in any single reference 

translation. Papineni et al. (2002) called this cap-

ping technique clipping. Figure 1, taken from the 

original BLEU paper, demonstrates the computa-
tion of the modified unigram precision for a peer 

translation sentence.  

To compute the modified n-gram precision, 

Pn, for a whole test set, including all translation 

segments (usually in sentences), the formula is: 

 

2.2 Lack of Paraphrasing Support 

Humans are very good at finding creative ways 

to convey the same information. There is no one 
definitive reference translation in one language 

for a text written in another. Having acknowl-

edged this phenomenon, however natural it is, 

human evaluations on system-generated transla-
tions are much more preferred and trusted. How-

ever, what humans can do with ease puts ma-

chines at a loss. BLEU-esque procedures recog-
nize equivalence only when two n-grams exhibit 

the same surface-level representations, i.e. the 

same lexical identities. The BLEU implementa-
tion addresses its deficiency in measuring seman-

tic closeness by incorporating the comparison 

with multiple reference translations. The ration-

ale is that multiple references give a higher 
chance that the n-grams, assuming correct trans-

lations, appearing in the peer translation would 

be rewarded by one of the reference’s n-grams. 
The more reference translations used, the better 

Figure 1. Modified n-gram precision from
BLEU.
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the matching and overall evaluation quality. Ide-

ally (and to an extreme), we would need to col-

lect a large set of human-written translations to 

capture all possible combinations of verbalizing 
variations before the translation comparison pro-

cedure reaches its optimal matching ability.  

One can argue that an infinite number of ref-
erences are not needed in practice because any 

matching procedure would stabilize at a certain 

number of references. This is true if precision 
measure is the only metric computed. However, 

using precision scores alone unfairly rewards 

systems that “under-generate”—producing un-

reasonably short translations. Recall measure-
ments would provide more balanced evaluations. 

When using multiple reference translations, if an 

n-gram match is made for the peer, this n-gram 
could appear in any of the references. The com-

putation of recall becomes difficult, if not impos-

sible. This problem can be reversed if there is 
crosschecking for phrases occurring across refer-

ences—paraphrase recognition. BLEU uses the 

calculation of a brevity penalty to compensate 

the lack of recall computation problem. The 
brevity penalty is computed as follows: 

 
Then, the BLEU score for a peer translation is 

computed as: 

 
BLEU’s adoption of the brevity penalty to off-

set the effect of not having a recall computation 
has drawn criticism on its crudeness in measur-

ing translation quality. Callison-Burch et al. 

(2006) point out three prominent factors: 

• ``Synonyms and paraphrases are only 
handled if they are in the set of multiple 

reference translations [available].  

• The scores for words are equally 
weighted so missing out on content-

bearing material brings no additional pen-

alty.  

• The brevity penalty is a stop-gap meas-

ure to compensate for the fairly serious 

problem of not being able to calculate re-

call.” 

With the introduction of ParaEval, we will ad-

dress two of these three issues, namely the para-

phrasing problem and providing a recall meas-
ure.  

3 ParaEval for MT Evaluation 

3.1 Overview 

Reference translations are created from the same 

source text (written in the foreign language) to 
the target language. Ideally, they are supposed to 

be semantically equivalent, i.e. overlap com-

pletely. However, as shown in Figure 2, when 
matching based on lexical identity is used (indi-

cated by links), only half (6 from the left and 5 

from the right) of the 12 words from these two 

sentences are matched. Also, “to” was a mis-
match. In applying paraphrase matching for MT 

evaluation from ParaEval, we aim to match all 

shaded words from both sentences. 

3.2 Paraphrase Acquisition 

The process of acquiring a large enough collec-

tion of paraphrases is not an easy task. Manual 
corpus analyses produce domain-specific collec-

tions that are used for text generation and are 

application-specific. But operating in multiple 
domains and for multiple tasks translates into 

multiple manual collection efforts, which could 

be very time-consuming and costly. In order to 

facilitate smooth paraphrase utilization across a 
variety of NLP applications, we need an unsu-

pervised paraphrase collection mechanism that 

can be easily conducted, and produces para-
phrases that are of adequate quality and can be 

readily used with minimal amount of adaptation 

effort.  
Our method (Anonymous, 2006), also illus-

trated in (Bannard and Callison-Burch, 2005), to 

automatically construct a large domain-

independent paraphrase collection is based on the 
assumption that two different phrases of the 

same meaning may have the same translation in a 

Figure 2. Two reference translations. Grey
areas are matched by using BLEU.
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foreign language. Phrase-based Statistical Ma-

chine Translation (SMT) systems analyze large 

quantities of bilingual parallel texts in order to 
learn translational alignments between pairs of 

words and phrases in two languages (Och and 

Ney, 2004). The sentence-based translation 

model makes word/phrase alignment decisions 
probabilistically by computing the optimal model 

parameters with application of the statistical es-

timation theory. This alignment process results in 
a corpus of word/phrase-aligned parallel sen-

tences from which we can extract phrase pairs 

that are translations of each other. We ran the 
alignment algorithm from (Och and Ney, 2003) 

on a Chinese-English parallel corpus of 218 mil-

lion English words, available from the Linguistic 

Data Consortium (LDC). Phrase pairs are ex-
tracted by following the method described in 

(Och and Ney, 2004) where all contiguous 

phrase pairs having consistent alignments are 
extraction candidates. Using these pairs we build 

paraphrase sets by joining together all English 

phrases that have the same Chinese translation. 

Figure 3 shows an example word/phrase align-
ment for two parallel sentence pairs from our 

corpus where the phrases “blowing up” and 

“bombing” have the same Chinese translation. 
On the right side of the figure we show the para-

phrase set which contains these two phrases, 

which is typical in our collection of extracted 
paraphrases.  

Although our paraphrase extraction method is 

similar to that of (Bannard and Callison-Burch, 

2005), the paraphrases we extracted are for com-
pletely different applications, and have a broader 

definition for what constitutes a paraphrase. In 

(Bannard and Callison-Burch, 2005), a language 
model is used to make sure that the paraphrases 

extracted are direct substitutes, from the same 

syntactic categories, etc. So, using the example 

in Figure 3, the paraphrase table would contain 

only “bombing” and “bombing attack”. Para-

phrases that are direct substitutes of one another 

are useful when translating unknown phrases. 
For instance, if a MT system does not have the 

Chinese translation for the word “bombing”, but 

has seen it in another set of parallel data (not in-
volving Chinese) and has determined it to be a 

direct substitute of the phrase “bombing attack”, 

then the Chinese translation of “bombing attack” 
would be used in place of the translation for 

“bombing”. This substitution technique has 

shown some improvement in translation quality 

(Callison-Burch et al., 2006).  

3.3 The ParaEval Evaluation Procedure 

We adopt a two-tier matching strategy for MT 

evaluation in ParaEval. At the top tier, a para-

phrase match is performed on system-translated 
sentences and corresponding reference sentences. 

Then, unigram matching is performed on the 

words not matched by paraphrases. Precision is 

measured as the ratio of the total number of 
words matched to the total number of words in 

the peer translation.  

Running our system on the example in Figure 
2, the paraphrase-matching phase consumes the 

words marked in grey and aligns “have been” 

and “to be”, “completed” and “fully”, “to date” 
and “up till now”, and “sequence” and “se-

quenced”. The subsequent unigram-matching 

aligns words based on lexical identity.  

We maintain the computation of modified uni-

gram precision, defined by the BLEU-esque Phi-

losophy, in principle. In addition to clipping in-

dividual candidate words with their correspond-
ing maximum reference counts (only for words 

not matched by paraphrases), we clip candidate 

paraphrases by their maximum reference para-
phrase counts. So two completely different 

phrases in a reference sentence can be counted as 

two occurrences of one phrase. For example in 

Figure 4, candidate phrases “blown up” and 
“bombing” matched with three phrases from the 

references, namely “bombing” and two instances 

of “explosion”. Treating these two candidate 
phrases as one (paraphrase match), we can see its 

clip is 2 (from Ref 1, where “bombing” and “ex-

plosion” are counted as two occurrences of a sin-

gle phrase). The only word that was matched by 
its lexical identity is “was”. The modified uni-

gram precision calculated by our method is 4/5, 

where as BLEU gives 2/5.  

Figure 3. An example of the paraphrase extraction
process.
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4 Evaluating ParaEval 

To be effective in MT evaluations, an automated 

procedure should be capable of distinguishing 

good translation systems from bad ones, human 

translations from systems’, and human transla-
tions of differing quality. For a particular evalua-

tion exercise, an evaluation system produces a 

ranking for system and human translations, and 
compares this ranking with one created by hu-

man judges (Turian et al., 2003). The closer a 

system’s ranking is to the human’s, the better the 
evaluation system is. 

4.1 Validating ParaEval 

To test ParaEval’s ability, NIST 2003 Chinese 

MT evaluation results were used (NIST 2003). 

This collection consists of 100 source documents 
in Chinese, translations from eight individual 

translation systems, reference translations from 

four humans, and human assessments (on flu-
ency and adequacy). The Spearman rank-order 

coefficient is computed as an indicator of how 

close a system ranking is to gold-standard human 

ranking. It should be noted that the 2003 MT 
data is separate from the corpus that we extracted 

paraphrases from.  

For comparison purposes, BLEU
1  was also 

run. Table 1 shows the correlation figures for the 

two automatic systems with the NIST rankings 

on fluency and adequacy. The lower and higher 
95% confidence intervals are labeled as “L-CI” 

and “H-CI”. To estimate the significance of the 

rank-order correlation figures, we applied boot-

strap resampling to calculate the confidence in-
tervals.  In each of 1000 runs, systems were 

ranked based on their translations of 100 ran-

domly selected documents.  Each ranking was 
compared with the NIST ranking, producing a 

correlation score for each run. A t-test was then 

                                                
1 Results shown are from BLEU v.11 (NIST).  

performed on the 1000 correlation scores. In both 

fluency and adequacy measurements, ParaEval 
correlates significantly better than BLEU. The 

ParaEval scores used were precision scores. In 

addition to distinguishing the quality of MT sys-
tems, a reliable evaluation procedure must be 

able to distinguish system translations from hu-

mans’ (Lin and Och, 2004). Figure 5 shows the 

overall system and human ranking. In the upper 
left corner, human translators are grouped to-

gether, significantly separated from the auto-

matic MT systems clustered into the lower right 
corner.  

4.2 Implications to Word-alignment 

We experimented with restricting the para-

phrases being matched to various lengths. When 

allowing only paraphrases of three or more 
words to match, the correlation figures become 

stabilized and ParaEval achieves even higher 

correlation with fluency measurement to 0.7619 
on the Spearman ranking coefficient.   

This phenomenon indicates to us that the bi-

gram and unigram paraphrases extracted using 

SMT word-alignment and phrase extraction pro-
grams are not reliable enough to be applied to 

evaluation tasks. We speculate that word pairs 

extracted from (Liang et al., 2006), where a bidi-
rectional discriminative training method was 

used to achieve consensus for word-alignment 

Figure 4. ParaEval’s matching process.
 

BLEU ParaEval

Fluency 0.6978 0.7575

95% L-CI 0.6967 0.7553

95% H-CI 0.6989 0.7596

Adequacy 0.6108 0.6918

95% L-CI 0.6083 0.6895

95% H-CI 0.6133 0.694

Table 1. Ranking correlations with human
assessments.

 

Figure 5. Overall system and human ranking.
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(mostly lower n-grams), would help to elevate 

the level of correlation by ParaEval.  

4.3 Implications to Evaluating Paraphrase 

Quality 

Utilizing paraphrases in MT evaluations is also a 
realistic way to measure the quality of para-

phrases acquired through unsupervised channels. 

If a comparison strategy, coupled with para-
phrase matching, distinguishes good and bad MT 

and summarization systems in close accordance 

with what human judges do, then this strategy 
and the paraphrases used are of sufficient quality. 

Since our underlining comparison strategy is that 

of BLEU-1 for MT evaluation, and BLEU has 

been proven to be a good metric for their respec-
tive evaluation tasks, the performance of the 

overall comparison is directly and mainly af-

fected by the paraphrase collection.  

5 ParaEval’s Support for Recall Com-

putation 

Due to the use of multiple references and allow-

ing an n-gram from the peer translation to be 

matched with its corresponding n-gram from any 

of the reference translations, BLEU cannot be 
used to compute recall scores, which are conven-

tionally paired with precision to detect length-

related problems from systems under evaluation.  

5.1 Using Single References for Recall 

The primary goal in using multiple references is 

to overcome the limitation in matching on lexical 

identity. More translation choices give more 
variations in verbalization, which could lead to 

more matches between peer and reference trans-

lations. Since MT results are generated and 

evaluated at a sentence-to-sentence level (or a 
segment level, where each segment may contain 

a small number of sentences) and no text con-

densation is employed, the number of different 
and correct ways to state the same sentence is 

small. This is in comparison to writing generic 

multi-document summaries, each of which con-

tains multiple sentences and requires significant 
amount of “rewriting”. When using a large col-

lection of paraphrases while evaluating, we are 

provided with the alternative verbalizations 
needed. This property allows us to use single 

references to evaluate MT results and compute 

recall measurements.  

5.2 Recall and Adequacy Correlations 

When validating the computed recall scores for 

MT systems, we correlate with human assess-

ments on adequacy only. The reason is that ac-
cording to the definition of recall, the content 

coverage in references, and not the fluency re-

flected from the peers, is being measured. Table 
2 shows ParaEval’s recall correlation with NIST 

2003 Chinese MT evaluation results on systems 

ranking. We see that ParaEval’s correlation with 
adequacy has improved significantly when using 

recall scores to rank than using precision scores.  

5.3 Not All Single References are Created 

Equal 

Human-written translations differ not only in 

word choice, but also in other idiosyncrasies that 

cannot be captured with paraphrase recognition. 
So it would be presumptuous to declare that us-

ing paraphrases from ParaEval is enough to al-

low using just one reference translation to evalu-
ate. Using multiple references allow more para-

phrase sets to be explored in matching.  

In Table 3, we show ParaEval’s correlation 
figures when using single reference translations. 

E01–E04 indicate the sets of human translations 

used correspondingly.  

Notice that the correlation figures vary a great 
deal depending on the set of single references 

used. How do we differentiate human transla-

tions and know which set of references to use? It 

is difficult to quantify the quality that a human 
written translation reflects. We can only define 

“good” human translations as translations that 

are written not very differently from what other 
humans would write, and “bad” translations as 

the ones that are written in an unconventional 

fashion. Table 4 shows the differences between 
the four sets of reference translations when com-

BLEU ParaEval

Adequacy 0.6108 0.7373

95% L-CI 0.6083 0.7368

95% H-CI 0.6133 0.7377

Table 2. ParaEval’s recall ranking correlation.
 

Table 3. ParaEval’s correlation (precision)
while using only single references.

E01 E02 E03 E04

Fluency 0.683 0.6501 0.7284 0.6192

95% L-CI 0.6795 0.6482 0.7267 0.6172

95% H-CI 0.6864 0.6519 0.73 0.6208

Adequacy 0.6308 0.5741 0.6688 0.5858

95% L-CI 0.6266 0.5705 0.665 0.5821

95% H-CI 0.635 0.5777 0.6727 0.5895
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paring one set of references to the other three. 

The scores here are the raw ParaEval precision 

scores. E01 and E03 are better, which explains 

the higher correlations ParaEval has using these 
two sets of references individually, shown in Ta-

ble 3.  

6 Observation of Change in Number of 

References 

When matching on lexical identity, it is the gen-
eral consensus that using more reference transla-

tions would increase the reliability of the MT 

evaluation (Turian et al., 2003). It is expected 
that we see an improvement in ranking correla-

tions when moving from using one reference 

translation to more. However, when running 
BLEU for the NIST 2003 Chinese MT evalua-

tion, this trend is inverted, and using single refer-

ence translation gave higher correlation than us-

ing all four references, as illustrated in Table 5.  

Turian et al. (2003) reports the same peculiar 
behavior from BLEU on Arabic MT evaluations 

in Figure 5b of their paper. When using three 

reference translations, as the number of segments 

(sentences usually) increases, BLEU correlates 
worse than using single references.  

Since the matching and underlining counting 

mechanisms of ParaEval are built upon the 
fundamentals of BLEU, we were keen to find out 

the differences, other than paraphrase matching, 

between the two methods when the number of 
reference translation changes. By following the 

description from the original BLEU paper, three 

incremental steps were set up for duplicating its 

implementation, namely modified unigram preci-
sion (MUP), geometric mean of MUP (GM), and 

multiplying brevity penalty with GM to get the 

final score (BP-BLEU). At each step, correla-

tions were computed for both using single- and 
multi- references, shown in Table 6a, b, and c. 

 Given that many small changes have been 

made to the original BLEU design, our replica-

tion would not produce the same scores from the 
current version of BLEU. Nevertheless, the in-

verted behavior was observed in fluency correla-

tions at the BP-BLEU step, not at MUP and GM. 
This indicates to us that the multiplication of the 

brevity penalty to balance precision scores is 

problematic. According to (Turian et al., 2003), 

correlation scores computed from using fewer 
references are inflated because the comparisons 

exclude the longer n-gram matches that make 

automatic evaluation procedures diverge from 
the human judgments. Using a large collection of 

paraphrases in comparisons allows those longer 

n-gram matches to happen even if single refer-
ences are used. This collection also allows 

ParaEval to directly compute recall scores, 

avoiding an approximation of recall that is 

problematic.  

ParaEval 95% L-CI 95% H-CI

E01 0.8086 0.8 0.8172

E02 0.7383 0.7268 0.7497

E03 0.7839 0.7754 0.7923

E04 0.7742 0.7617 0.7866

Table 4. Differences among reference
translations (raw ParaEval precision
scores).  

6(a). System-ranking correlation when using modified
unigram precision (MUP) scores.

6(b). System-ranking correlation when using geometric mean
(GM) of MUPs.

6(c). System-ranking correlation when multiplying the

brevity penalty with GM.

Table 6. Incremental implementation of
BLEU and the correlation behavior at the
three steps: MUP, GM, and BP-BLEU.

MUP E01 E02 E03 E04 4 refs

Fluency 0.6597 0.6216 0.6923 0.4912 0.692

95% L-CI 0.6568 0.6189 0.6917 0.4863 0.6915

95% H-CI 0.6626 0.6243 0.6929 0.496 0.6925

Adequacy 0.5818 0.5459 0.6141 0.4602 0.6165

95% L-CI 0.5788 0.5432 0.6132 0.4566 0.6156

95% H-CI 0.5847 0.5486 0.6151 0.4638 0.6174

GM E01 E02 E03 E04 4 refs

Fluency 0.6633 0.6228 0.6925 0.4911 0.6922

95% L-CI 0.6604 0.6201 0.692 0.4862 0.6918

95% H-CI 0.6662 0.6255 0.6931 0.4961 0.6929

Adequacy 0.5817 0.548 0.615 0.4641 0.6159

95% L-CI 0.5813 0.5453 0.614 0.4606 0.615

95% H-CI 0.5871 0.5508 0.616 0.4676 0.6169

BP-BLEU E01 E02 E03 E04 4 refs

Fluency 0.6637 0.6227 0.6921 0.4947 0.5743

95% L-CI 0.6608 0.62 0.6916 0.4899 0.5699

95% H-CI 0.6666 0.6254 0.6927 0.4996 0.5786

Adequacy 0.5812 0.5486 0.5486 0.5486 0.6671

95% L-CI 0.5782 0.5481 0.5458 0.5458 0.6645

95% H-CI 0.5842 0.5514 0.5514 0.5514 0.6697

 

Table 5. BLEU’s correlating behavior with

multi- and single-reference.

BLEU E01 E02 E03 E04 4 refs

Fluency 0.7114 0.701 0.7084 0.7192 0.6978

95% L-CI 0.7099 0.6993 0.7065 0.7177 0.6967

95% H-CI 0.7129 0.7026 0.7102 0.7208 0.6989

Adequacy 0.644 0.6238 0.6535 0.675 0.6108

95% L-CI 0.6404 0.6202 0.6496 0.6714 0.6083

95% H-CI 0.6476 0.6274 0.6574 0.6786 0.6133
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7 Conclusion and Future Work 

In this paper, we have described ParaEval, an 

automatic evaluation framework for measuring 

machine translation results. A large collection of 
paraphrases, extracted through an unsupervised 

fashion using SMT methods, is used to improve 

the quality of the evaluations. We addressed 
three important issues, the paraphrasing support, 

the computation of recall measurement, and pro-

viding high correlations with human judgments.  

Having seen that using paraphrases helps a 
great deal in evaluation tasks, naturally the next 

task is to explore the possibility in paraphrase 

induction. The question becomes how to use con-
textual information to calculate semantic close-

ness between two phrases. Can we expand the 

identification of paraphrases to longer ones, ide-

ally sentences?  
The problem in which content bearing words 

carry the same weights as the non-content bear-

ing ones is not addressed. From examining the 
paraphrase extraction process, it is unclear how 

to relate translation probabilities and confidences 

with semantic closeness. We plan to explore the 
parallels between the two to enable a weighted 

implementation of ParaEval.  
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Abstract 

In this paper we study the utility of dis-
course structure for spoken dialogue per-
formance modeling. We experiment with 
various ways of exploiting the discourse 
structure: in isolation, as context infor-
mation for other factors (correctness and 
certainty) and through trajectories in the 
discourse structure hierarchy. Our corre-
lation and PARADISE results show that, 
while the discourse structure is not useful 
in isolation, using the discourse structure 
as context information for other factors 
or via trajectories produces highly predic-
tive parameters for performance analysis. 

1 Introduction 

Predictive models of spoken dialogue system 
(SDS) performance are an important tool for re-
searchers and practitioners in the SDS domain. 
These models offer insights on what factors are 
important for the success of a SDS and allow 
researchers to assess the performance of future 
system improvements without running additional 
costly user experiments. 

One of the most popular models of perform-
ance is the PARADISE framework proposed by 
(Walker et al., 2000). In PARADISE, a set of 
interaction parameters are measured in a SDS 
corpus, and then used in a multivariate linear 
regression to predict the target performance met-
ric. A critical ingredient in this approach is the 
relevance of the interaction parameters for the 
SDS success. A number of parameters that 
measure the dialogue efficiency (e.g. number of 
system/user turns, task duration) and the dia-
logue quality (e.g. recognition accuracy, rejec-
tions, helps) have been shown to be successful in 

(Walker et al., 2000). An extensive set of pa-
rameters can be found in (Möller, 2005a). 

In this paper we study the utility of discourse 
structure as an information source for SDS per-
formance analysis. The discourse structure hier-
archy has been shown to be useful for other 
tasks: understanding specific lexical and pro-
sodic phenomena (Hirschberg and Nakatani, 
1996; Levow, 2004), natural language generation 
(Hovy, 1993), predictive/generative models of 
postural shifts (Cassell et al., 2001), and essay 
scoring (Higgins et al., 2004). 

We perform our analysis on a corpus of 
speech-based tutoring dialogues. A tutoring SDS 
(Litman and Silliman, 2004; Pon-Barry et al., 
2004) has to discuss concepts, laws and relation-
ships and to engage in complex subdialogues to 
correct student misconceptions. As a result, dia-
logues with such systems have a rich discourse 
structure. 

We perform three experiments to measure 
three ways of exploiting the discourse structure. 
In our first experiment, we test the predictive 
utility of the discourse structure in itself. For ex-
ample, we look at whether the number of pop-up 
transitions in the discourse structure hierarchy 
predicts performance in our system. 

The second experiment measures the utility of 
the discourse structure as contextual information 
for two types of student states: correctness and 
certainty. The intuition behind this experiment is 
that interaction events should be treated differ-
ently based on their position in the discourse 
structure hierarchy. For example, we test if the 
number of incorrect answers after a pop-up tran-
sition has a higher predictive utility than the total 
number of incorrect student answers. In contrast, 
the majority of the previous work either ignores 
this contextual information (Möller, 2005a; 
Walker et al., 2000) or makes limited use of the 
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discourse structure hierarchy by flattening it 
(Walker et al., 2001) (Section 5). 

As another way to exploit the discourse struc-
ture, in our third experiment we look at whether 
specific trajectories in the discourse structure are 
indicative of performance. For example, we test 
if two consecutive pushes in the discourse struc-
ture are correlated with higher learning. 

To measure the predictive utility of our inter-
action parameters, we focus primarily on corre-
lations with our performance metric (Section 4). 
There are two reasons for this. First, a significant 
correlation between an interaction parameter and 
the performance metric is a good indicator of the 
parameter’s relevance for PARADISE modeling. 
Second, correlations between factors and the per-
formance metric are commonly used in tutoring 
research to analyze the tutoring/learning process 
(Chi et al., 2001). 

Our correlation and PARADISE results show 
that, while the discourse structure is not useful in 
isolation, using the discourse structure as context 
information for other factors or via trajectories 
produces highly predictive parameters for per-
formance analysis. 

2 Annotation 

Our annotation for discourse structure and stu-
dent state has been performed on a corpus of 95 
experimentally obtained spoken tutoring dia-
logues between 20 students and our system 
ITSPOKE (Litman and Silliman, 2004).  
ITSPOKE is a speech-enabled version of the 
text-based Why2-Atlas conceptual physics tutor-
ing system (VanLehn et al., 2002). When inter-
acting with ITSPOKE, students first type an es-
say answering a qualitative physics problem us-
ing a graphical user interface. ITSPOKE then 
engages the student in spoken dialogue (using 
head-mounted microphone input and speech out-
put) to correct misconceptions and elicit more 
complete explanations, after which the student 
revises the essay, thereby ending the tutoring or 
causing another round of tutoring/essay revision. 
Each student went through the same procedure: 
1) read a short introductory material, 2) took a 
pretest to measure the initial physics knowledge, 
3) work through a set of 5 problems with 
ITSPOKE, and 4) took a posttest similar to the 
pretest. The resulting corpus had 2334 student 
turns and a comparable number of system turns. 

2.1 Discourse structure 
We base our annotation of discourse structure on 
the Grosz & Sidner theory of discourse structure 

(Grosz and Sidner, 1986). A critical ingredient of 
this theory is the intentional structure. According 
to the theory, each discourse has a discourse pur-
pose/intention. Satisfying the main discourse 
purpose is achieved by satisfying several smaller 
purposes/intentions organized in a hierarchical 
structure. As a result, the discourse is segmented 
in discourse segments each with an associated 
discourse segment purpose/intention. This theory 
has inspired several generic dialogue managers 
for spoken dialogue systems (Bohus and Rud-
nicky, 2003). 

 
Figure 1. The discourse structure and transition anno-

tation 
We automate our annotation of the discourse 

structure by taking advantage of the structure of 
the tutored information. A dialogue with 
ITSPOKE follows a question-answer format (i.e. 
system initiative): ITSPOKE asks a question, the 
student provides the answer and then the process 
is repeated. Deciding what question to ask, in 
what order and when to stop is hand-authored 
beforehand in a hierarchical structure that resem-
bles the discourse segment structure (see Figure 
1). Tutor questions are grouped in segments 
which correspond roughly to the discourse seg-
ments. Similarly to the discourse segment pur-
pose, each question segment has an associated 
tutoring goal or purpose. For example, in 
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ITSPOKE there are question segments discuss-
ing about forces acting on the objects, others dis-
cussing about objects’ acceleration, etc. 

In Figure 1 we illustrate ITSPOKE’s behavior 
and our discourse structure annotation. First, 
based on the analysis of the student essay, 
ITSPOKE selects a question segment to correct 
misconceptions or to elicit more complete expla-
nations. This question segment will correspond 
to the top level discourse segment (e.g. DS1). 
Next, ITSPOKE asks the student each question 
in DS1. If the student answer is correct, the sys-
tem moves on to the next question (e.g. Tu-
tor1→Tutor2). If the student answer is incorrect, 
there are two alternatives. For simple questions, 
the system will simply give out the correct an-
swer and move on to the next question (e.g. Tu-
tor3→Tutor4). For complex questions (e.g. apply-
ing physics laws), ITSPOKE will engage into a 
remediation subdialogue that attempts to reme-
diate the student’s lack of knowledge or skills. 
The remediation subdialogue is specified in an-
other question segment and corresponds to a new 
discourse segment (e.g DS2). The new discourse 
segment is dominated by the current discourse 
segment (e.g. DS2 dominated by DS1). Tutor2 
system turn is a typical example; if the student 
answers it incorrectly, ITSPOKE will enter dis-
course segment DS2 and go through its questions 
(Tutor3 and Tutor4). Once all the questions in 
DS2 have been answered, a heuristic determines 
whether ITSPOKE should ask the original ques-
tion again (Tutor2) or simply move on to the next 
question (Tutor5). 

To compute interaction parameters from the 
discourse structure, we focus on the transitions in 
the discourse structure hierarchy. For each sys-
tem turn we define a transition feature. This fea-
ture captures the position in the discourse struc-
ture of the current system turn relative to the 
previous system turn. We define six labels (see 
Table 1). NewTopLevel label is used for the first 
question after an essay submission (e.g. Tutor1). 
If the previous question is at the same level with 
the current question we label the current question 
as Advance (e.g. Tutor2,4). The first question in a 
remediation subdialogue is labeled as Push (e.g. 
Tutor3). After a remediation subdialogue is com-
pleted, ITSPOKE will pop up and it will either 
ask the original question again or move on to the 
next question. In the first case, we label the sys-
tem turn as PopUp. Please note that Tutor2 will 
not be labeled with PopUp because, in such 
cases, an extra system turn will be created be-
tween Tutor4 and Tutor5 with the same content as 

Tutor2. In addition, variations of “Ok, back to the 
original question” are also included in the new 
system turn to mark the discourse segment 
boundary transition. If the system moves on to 
the next question after finishing the remediation 
subdialogue, we label the system turn as  
PopUpAdv (e.g. Tutor5). Note that while the 
sum of PopUp and PopUpAdv should be equal 
with Push, it is smaller in our corpus because in 
some cases ITSPOKE popped up more than one 
level in the discourse structure hierarchy. In case 
of rejections, the system question is repeated us-
ing variations of “Could you please repeat that?”. 
We label such cases as SameGoal (e.g. Tutor6). 

Discourse structure transitions 

  

Advance 
NewTopLevel 
PopUp 
PopUpAdv 
Push 
SameGoal 

53.4% 
13.5% 
9.2% 
3.5% 

14.5% 
5.9% 

Certainty 

  

Certain 
Uncertain 
Mixed 
Neutral 

41.3% 
19.1% 
2.4% 

37.3% 
Correctness 

  

Correct 
Incorrect 
Partially Correct 
Unable to Answer 

63.3% 
23.3% 
6.2% 
7.1% 

Table 1: Transition and student state distribution. 
Please note that each student dialogue has a 

specific discourse structure based on the dialogue 
that dynamically emerges based on the correct-
ness of her answers. For this reason, the same 
system question in terms of content may get a 
different transition label for different students. 
For example, in Figure 1, if the student would 
have answered Tutor2 correctly, the next tutor 
turn would have had the same content as Tutor5 
but the Advance label. Also, while a human an-
notation of the discourse structure will be more 
complex but more time consuming (Hirschberg 
and Nakatani, 1996; Levow, 2004), its advan-
tages are outweighed by the automatic nature of 
our discourse structure annotation. 

We would like to highlight that our transition 
annotation is domain independent and automatic. 
Our transition labels capture behavior like start-
ing a new dialogue (NewTopLevel), crossing 
discourse segment boundaries (Push, PopUp, 
PopUpAdv) and local phenomena inside a dis-
course segment (Advance, SameGoal). If the dis-
course structure information is available, the 
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transition information can be automatically com-
puted using the procedure described above. 

2.2 Student state 

Because for our tutoring system student learning 
is the relevant performance metric, we hypothe-
size that information about student state in each 
student turn, in terms of correctness and cer-
tainty, will be an important indicator. For exam-
ple, a student being more correct and certain dur-
ing her interaction with ITSPOKE might be 
indicative of a higher learning gain. Also, 
previous studies have shown that tutoring 
specific parameters can improve the quality of 
SDS performance models that model the learning 
gain (Forbes-Riley and Litman, 2006).  

In our corpus, each student turn was manually 
labeled for correctness and certainty (Table 1). 
While our system assigns a correctness label to 
each student turn to plan its next move, we 
choose to use a manual annotation of correctness 
to eliminate the noise introduced by the auto-
matic speech recognition component and the 
natural language understanding component. A 
human annotator used the human transcripts and 
his physics knowledge to label each student turn 
for various degrees of correctness: correct, par-
tially correct, incorrect and unable to answer. 
“Unable to Answer” label was used for turns 
where the student did not answer the system 
question or used variants of “I don’t know”. 

Previous work has shown that certainty plays 
an important role in the learning and tutoring 
process (Pon-Barry et al., 2006; VanLehn et al., 
2003). A human annotator listened to the dia-
logues between students and ITSPOKE and la-
beled each student turn for its perceived degree 
of certainness. Four labels were used: certain, 
uncertain, neutral and mixed (both certain and 
uncertain). To date, one annotator has labeled all 
student turns in our corpus1. 

3 Interaction parameters 

For each user, interaction parameters measure 
specific aspects of the dialogue with the system. 
We use our transition and student state annota-
tion to create two types of interaction parame-
                                                 
1 The agreement between the manual correctness an-
notation and the correctness assigned by ITSPOKE is 
90% (kappa of 0.79). In a preliminary agreement 
study, a second annotator labeled our corpus for a 
binary version of certainty (uncertainty versus other), 
resulting in a 90% inter-annotator agreement and a 
kappa of 0.68. 

ters: unigrams and bigrams. The difference be-
tween the two types of parameters is whether the 
discourse structure context is used or not. For 
each of our 12 labels (4 for correctness, 4 for 
certainty and 6 for discourse structure), we de-
rive two unigram parameters per student over the 
5 dialogues for that student: a total parameter 
and a percentage parameter. For example, for the 
‘Incorrect’ unigram we compute, for each stu-
dent, the total number of student turns labeled 
with ‘Incorrect’ (parameter Incorrect) and the 
percentage of such student turns out of all stu-
dent turns (parameter Incorrect%). For example, 
if we consider only the dialogue in Figure 1, In-
correct = 3 (Student2,3,5) and Incorrect% = 60% 
(3 out of 5). 

Bigram parameters exploit the discourse struc-
ture context. We create two classes of bigram 
parameters by looking at transition–student state 
bigrams and transition–transition bigrams. The 
transition–student state bigrams combine the in-
formation about the student state with the transi-
tion information of the previous system turn. Go-
ing back to Figure 1, the three incorrect answers 
will be distributed to three bigrams: Advance–
Incorrect (Tutor2–Student2), Push–Incorrect (Tu-
tor3–Student3) and PopUpAdv–Incorrect (Tutor5–
Student5). The transition–transition bigram looks 
at the transition labels of two consecutive system 
turns. For example, the Tutor4–Tutor5 pair will 
be counted as an Advance–PopUpAdv bigram. 

Similar to the unigrams, we compute a total 
parameter and a percentage parameter for each 
bigram. The percentage denominator is number 
of student turns for the transition–student state 
bigrams and the number of system turns minus 
one for the transition–transition bigram. In addi-
tion, for each bigram we compute a relative per-
centage parameter (bigram followed by %rel) by 
computing the percentage relative to the total 
number of times the transition unigram appears 
for that student. For example, we will compute 
the Advance–Incorrect %rel parameter by divid-
ing the number of Advance–Incorrect bigrams 
with the number of Advance unigrams (1 divided 
by 2 in Figure 1); this value will capture the per-
centage of times an Advance transition is fol-
lowed by an incorrect student answer. 

4 Results 

We use student learning as our evaluation metric 
because it is the primary metric for evaluating 
the performance of tutoring systems. Previous 
work (Forbes-Riley and Litman, 2006) has suc-
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cessfully used student learning as the perform-
ance metric in the PARADISE framework. Two 
quantities are used to measure student learning: 
the pretest score and the posttest score. Both tests 
consist of 40 multiple-choice questions; the test’s 
score is computed as the percentage of correctly 
answered questions. The average score and stan-
dard deviation for each test are: pretest 0.47 
(0.17) and posttest 0.68 (0.17). 

We focus primarily on correlations between 
our interaction parameters and student learning. 
Because in our data the pretest score is signifi-
cantly correlated with the posttest score, we 
study partial Pearson’s correlations between our 
parameters and the posttest score that account for 
the pretest score. This correlation methodology is 
commonly used in the tutoring research (Chi et 
al., 2001). For each trend or significant correla-
tion we report the unigram/bigram, its average 
and standard deviation over all students, the 
Pearson’s Correlation Coefficient (R) and the 
statistical significance of R (p). 

First we report significant correlations for uni-
grams to test our first hypothesis. Next, for our 
second and third experiment, we report correla-
tions for transition–student state and transition–
transition parameters. Finally, we report our pre-
liminary results on PARADISE modeling. 

4.1 Unigram correlations 

In our first proposed experiment, we want to test 
the predictive utility of discourse structure in 
isolation. We compute correlations between our 
transition unigram parameters and learning. We 
find no trends or significant correlations. This 
result suggests that discourse structure in isola-
tion has no predictive utility. 

Here we also report all trends and significant 
correlations for student state unigrams as the 
baseline for contextual correlations to be pre-
sented in Section 4.2. We find only one signifi-
cant correlation (Table 2): students with a higher 
percentage of neutral turns (in terms of certainty) 
are negatively correlated with learning. We hy-
pothesize that this correlation captures the stu-
dent involvement in the tutoring process: more 
involved students will try harder thus expressing 
more certainty or uncertainty. In contrast, less 
involved students will have fewer certain/uncer-
tain/mixed turns and, in consequence, more neu-
tral turns. Surprisingly, student correctness does 
not significantly correlate with learning. 
Parameter Mean (SD) R. p 

Neutral % 37% (8%) -.47 .04 
Table 2: Trend and significant unigram correlations 

4.2 Transition–student state correlations 

For our second experiment, we need to determine 
the predictive utility of transition–student state 
bigram parameters. We find a large number of 
correlations for both transition–correctness bi-
grams and transition–certainty bigrams. 

Transition–correctness bigrams 
This type of bigram informs us whether ac-

counting for the discourse structure transition 
when looking at student correctness has any pre-
dictive value. We find several interesting trends 
and significant correlations (Table 3).  

The student behavior, in terms of correctness, 
after a PopUp or a PopUpAdv transition is very 
informative about the student learning process. 
In both situations, the student has just finished a 
remediation subdialogue and the system is pop-
ping up either by reasking the original question 
again (PopUp) or by moving on to the next ques-
tion (PopUpAdv). We find that after PopUp, the 
number of correct student answers is positively 
correlated with learning. In contrast, the number, 
the percentage and the relative percentage of in-
correct student answers are negatively correlated 
with learning. We hypothesize that this correla-
tion indicates whether the student took advantage 
of the additional learning opportunities offered 
by the remediation subdialogue. By answering 
correctly the original system question (PopUp–
Correct), the student demonstrates that she has 
absorbed the information from the remediation 
dialogue. This bigram is an indication of a suc-
cessful learning event. In contrast, answering the 
original system question incorrectly (PopUp–
Incorrect) is an indication of a missed learning 
opportunity; the more events like this happen the 
less the student learns. 

Parameter Mean (SD) R. p 
PopUp–Correct 7 (3.3) .45 .05 
PopUp–Incorrect 2 (1.8) -.42 .07 
PopUp–Incorrect % 1.6% (1.2%) -.46 .05 
PopUp–Incorrect %rel 17% (13%) -.39 .10 
PopUpAdv–Correct 2.5 (2) .43 .06 
PopUpAdv–Correct % 2% (1.3%) .52 .02 
NewTopLevel–Incorrect 2.3 (1.8) .56 .01 
NewTopLevel–Incorrect % 1.9% (1.4%) .49 .03 
NewTopLevel–Incorrect %rel 15% (12%) .51 .02 
Advance–Correct 40.5 (9.8) .45 .05 
Table 3: Trend and significant transition–correctness 

bigram correlations 
Similarly, being able to correctly answer the 

tutor question after popping up from a remedia-
tion subdialogue (PopUpAdv–Correct) is posi-
tively correlated with learning. Since in many 
cases, these system questions will make use of 

89



the knowledge taught in the remediation subdia-
logues, we hypothesize that this correlation also 
captures successful learning opportunities. 

Another set of interesting correlations is pro-
duced by the NewTopLevel–Incorrect bigram. 
We find that the number, the percentage and the 
relative percentage of times ITSPOKE starts a 
new essay revision dialogue that results in an 
incorrect student answer is positively correlated 
with learning. The content of the essay revision 
dialogue is determined based on ITSPOKE’s 
analysis of the student essay. We hypothesize 
that an incorrect answer to the first tutor question 
is indicative of the system’s picking of a topic 
that is problematic for the student. Thus, we see 
more learning in students for which more knowl-
edge gaps are discovered and addressed by 
ITSPOKE. 

Finally, we find the number of times the stu-
dent answers correctly after an advance transition 
is positively correlated with learning (the Ad-
vance–Correct bigram). We hypothesize that this 
correlation captures the relationship between 
students that advance without having major prob-
lems and a higher learning gains. 

Transition–certainty bigrams 
Next we look at the combination between the 

transition in the dialogue structure and the stu-
dent certainty (Table 4). These correlations offer 
more insight on the negative correlation between 
the Neutral % unigram parameter and student 
learning. We find that out of all neutral student 
answers, those that follow an Advance transi-
tions are negatively correlated with learning. 
Similar to the Neutral % correlation, we hy-
pothesize that Advance–Neutral correlations cap-
ture the lack of involvement of the student in the 
tutoring process. This might be also due to 
ITSPOKE engaging in teaching concepts that the 
student is already familiar with.  
Parameter Mean (SD) R. p 

Advance–Neutral 27 (8.3) -.40 .08 
Advance–Neutral % 21% (6%) -.62 .00 
Advance–Neutral %rel 38% (10%) -.73 .00 
SameGoal–Neutral %rel 35% (31%) .46 .05 
Table 4: Trend and significant transition–certainty 

bigram correlations 
In contrast, staying neutral in terms of cer-

tainty after a system rejection is positively corre-
lated with learning. These correlations show that 
based on their position in the discourse structure, 
neutral student answers will be correlated either 
negatively or positively with learning. 

Unlike student state unigram parameters 
which produce only one significant correlation, 

transition–student state bigram parameters pro-
duce a large number of trend and significant cor-
relations (14). This result suggests that exploiting 
the discourse structure as a contextual informa-
tion source can be beneficial for performance 
modeling. 

4.3 Transition–transition bigrams 

For our third experiment, we are looking at the 
transition–transition bigram correlations (Table 
5). These bigrams help us find trajectories of 
length two in the discourse structure that are as-
sociated with better student learning. Because 
our student state is domain dependent, translating 
the transition–student state bigrams to a new 
domain will require finding a new set of relevant 
factors to replace the student state. In contrast, 
because our transition information is domain in-
dependent, transition–transition bigrams can be 
easily implemented in a new domain.  

The Advance–Advance bigram covers situa-
tions where the student is covering tutoring ma-
terial without major knowledge gaps. This is be-
cause an Advance transition happens when the 
student either answers correctly or his incorrect 
answer can be corrected without going into a 
remediation subdialogue. Just like with the Ad-
vance–Correct correlation (recall Table 3), we 
hypothesize that these correlations links higher 
learning gains to students that cover a lot of ma-
terial without many knowledge gap.  
Parameter Mean (SD) R. p 

Advance–Advance 35 (9.1) .47 .04 
Push–Push 2.2 (1.7) .50 .03 
Push–Push % 1.8% (1.3%) .52 .02 
Push–Push %rel 11% (7%) .52 .02 
SameGoal–Push %rel 18% (23%) .49 .03 
Table 5: Trend and significant transition–transition 

bigram correlations 
The Push–Push bigrams capture another inter-

esting behavior. In these cases, the student incor-
rectly answers a question, entering a remediation 
subdialogue; she also incorrectly answers the 
first question in the remediation dialogue enter-
ing an even deeper remediation subdialogue. We 
hypothesize that these situations are indicative of 
big student knowledge gaps. In our corpus, we 
find that the more such big knowledge gaps are 
discovered and addressed by the system the 
higher the learning gain. 

The SameGoal–Push bigram captures another 
type of behavior after system rejections that is 
positively correlated with learning (recall the 
SameGoal–Neutral bigram, Table 4). In our pre-
vious work (Rotaru and Litman, 2006), we per-
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formed an analysis of the rejected student turns 
and studied how rejections affect the student 
state. The results of our analysis suggested a new 
strategy for handling rejections in the tutoring 
domain: instead of rejecting student answers, a 
tutoring SDS should make use of the available 
information. Since the recognition hypothesis for 
a rejected student turn would be interpreted most 
likely as an incorrect answer thus activating a 
remediation subdialogue, the positive correlation 
between SameGoal–Push and learning suggests 
that the new strategy will not impact learning. 

Similar to the second experiment, the results 
of our third experiment are also positive: in con-
trast to transition unigrams, our domain inde-
pendent trajectories can produce parameters with 
a high predictive utility. 

4.4 PARADISE modeling 

Here we present our preliminary results on ap-
plying the PARADISE framework to model 
ITSPOKE performance. A stepwise multivariate 
linear regression procedure (Walker et al., 2000) 
is used to automatically select the parameters to 
be included in the model. Similar to (Forbes-
Riley and Litman, 2006), in order to model the 
learning gain, we use posttest as the dependent 
variable and force the inclusion of the pretest 
score as the first variable in the model. 

For the first experiment, we feed the model all 
transition unigrams. As expected due to lack of 
correlations, the stepwise procedure does not 
select any transition unigram parameter. The 
only variable in the model is pretest resulting in a 
model with a R2 of .22. 

For the second and third experiment, we first 
build a baseline model using only unigram pa-
rameters. The resulting model achieves an R2 of 
.39 by including the only significantly correlated 
unigram parameter: Neutral %. Next, we build a 
model using all unigram parameters and all sig-
nificantly correlated bigram parameters. The new 
model almost doubles the R2 to 0.75. Besides the 
pretest, the parameters included in the resulting 
model are (ordered by the degree of contribution 
from highest to lowest): Advance–Neutral %rel, 
and PopUp–Incorrect %. These results strengthen 
our correlation conclusions: discourse structure 
used as context information or as trajectories in-
formation is useful for performance modeling. 
Also, note that the inclusion of student certainty 
in the final PARADISE model provides addi-
tional support to a hypothesis that has gained a 
lot of attention lately: detecting and responding 
to student emotions has the potential to improve 

learning (Craig et al., 2004; Forbes-Riley and 
Litman, 2005; Pon-Barry et al., 2006). 

The performance of our best model is compa-
rable or higher than training performances re-
ported in previous work (Forbes-Riley and Lit-
man, 2006; Möller, 2005b; Walker et al., 2001). 
Since our training data is relatively small (20 
data points) and overfitting might be involved 
here, in the future we plan to do a more in-depth 
evaluation by testing if our model generalizes on 
a larger ITSPOKE corpus we are currently anno-
tating. 

5 Related work 

Previous work has proposed a large number of 
interaction parameters for SDS performance 
modeling (Möller, 2005a; Walker et al., 2000; 
Walker et al., 2001). Several information sources 
are being tapped to devise parameters classified 
by (Möller, 2005a) in several categories: dia-
logue and communication parameters (e.g. dia-
logue duration, number of system/user turns), 
speech input parameters (e.g. word error rate, 
recognition/concept accuracy) and meta-
communication parameters (e.g. number of help 
request, cancel requests, corrections). 

But most of these parameters do not take into 
account the discourse structure information. A 
notable exception is the DATE dialogue act an-
notation from (Walker et al., 2001). The DATE 
annotation captures information on three dimen-
sions: speech acts (e.g. acknowledge, confirm), 
conversation domain (e.g. conversation- versus 
task-related) and the task model (e.g. subtasks 
like getting the date, time, origin, and destina-
tion). All these parameters can be linked to the 
discourse structure but flatten the discourse 
structure. Moreover, the most informative of 
these parameters (the task model parameters) are 
domain dependent. Similar approximations of the 
discourse structure are also common for other 
SDS tasks like predictive models of speech rec-
ognition problems (Gabsdil and Lemon, 2004). 

We extend over previous work in several ar-
eas. First, we exploit in more detail the hierarchi-
cal information in the discourse structure. We 
quantify this information by recording the dis-
course structure transitions. Second, in contrast 
to previous work, our usage of discourse struc-
ture is domain independent (the transitions). 
Third, we exploit the discourse structure as a 
contextual information source. To our knowl-
edge, previous work has not employed parame-
ters similar with our transition–student state bi-
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gram parameters. Forth, via the transition–
transition bigram parameters, we exploit trajecto-
ries in the discourse structure as another domain 
independent source of information for perform-
ance modeling. Finally, similar to (Forbes-Riley 
and Litman, 2006), we are tackling a more prob-
lematic performance metric: the student learning 
gain. While the requirements for a successful 
information access SDS are easier to spell out, 
the same can not be said about tutoring SDS due 
to the current limited understanding of the hu-
man learning process. 

6 Conclusion 

In this paper we highlight the role of discourse 
structure for SDS performance modeling. We 
experiment with various ways of using the dis-
course structure: in isolation, as context informa-
tion for other factors (correctness and certainty) 
and through trajectories in the discourse structure 
hierarchy. Our correlation and PARADISE re-
sults show that, while the discourse structure is 
not useful in isolation, using the discourse struc-
ture as context information for other factors or 
via trajectories produces highly predictive pa-
rameters for performance analysis. Moreover, the 
PARADISE framework selects in the final model 
only discourse-based parameters ignoring pa-
rameters that do not use the discourse structure 
(certainty and correctness unigrams are ignored). 

Our significant correlations also suggest ways 
we should modify our system. For example, the 
PopUp–Incorrect negative correlations suggest 
that after a failed learning opportunity the system 
should not give out the correct answer but en-
gage in a secondary remediation subdialogue 
specially tailored for these situations. 

In the future, we plan to test the generality of 
our PARADISE model on other corpora and to 
compare models built using our interaction pa-
rameters against models based on parameters 
commonly used in previous work (Möller, 
2005a). Testing if our results generalize to a hu-
man annotation of the discourse structure and 
automated models of certainty and correctness is 
also of importance. We also want to see if our 
results hold for performance metrics based on 
user satisfaction questionnaires; in the new 
ITSPOKE corpus we are currently annotating, 
each student also completed a user satisfaction 
survey (Forbes-Riley and Litman, 2006) similar 
to the one used in the DARPA Communicator 
multi-site evaluation (Walker et al., 2002).  

Our work contributes to both the computa-
tional linguistics domain and the tutoring do-
main. For the computational linguistics research 
community, we show that discourse structure is 
an important information source for SDS per-
formance modeling. Our analysis can be ex-
tended easily to other SDS. First, a similar auto-
matic annotation of the discourse structure can 
be performed in SDS that rely on dialogue man-
agers inspired by the Grosz & Sidner theory of 
discourse (Bohus and Rudnicky, 2003). Second, 
the transition–transition bigram parameters are 
domain independent. Finally, for the other suc-
cessful usage of discourse structure (transition–
student state bigrams) researchers have only to 
identify relevant factors and then combine them 
with the discourse structure information. In our 
case, we show that instead of looking at the user 
state in isolation (Forbes-Riley and Litman, 
2006), combining it with the discourse structure 
transition can generate informative interaction 
parameters. 

For the tutoring research community, we show 
that discourse structure, an important concept in 
computational linguistics theory, can provide 
useful insights regarding the learning process. 
The correlations we observe in our corpus have 
intuitive interpretations (successful/failed learn-
ing opportunities, discovery of deep student 
knowledge gaps, providing relevant tutoring). 
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Abstract

In this paper we address the issue of au-
tomatically assigning information status to
discourse entities. Using an annotated cor-
pus of conversational English and exploit-
ing morpho-syntactic and lexical features,
we train a decision tree to classify entities
introduced by noun phrases as old, medi-
ated, or new. We compare its performance
with hand-crafted rules that are mainly
based on morpho-syntactic features and
closely relate to the guidelines that had
been used for the manual annotation. The
decision tree model achieves an overall ac-
curacy of 79.5%, significantly outperform-
ing the hand-crafted algorithm (64.4%).
We also experiment with binary classifica-
tions by collapsing in turn two of the three
target classes into one and retraining the
model. The highest accuracy achieved on
binary classification is 93.1%.

1 Introduction

Information structure is the way a speaker or
writer organises known and new information in
text or dialogue. Information structure has been
the subject of numerous and very diverse linguistic
studies (Halliday, 1976; Prince, 1981; Hajičová,
1984; Vallduvı́, 1992; Lambrecht, 1994; Steed-
man, 2000, for instance), thus also yielding a
wide range of terms and definitions (see (Vallduvı́,

∗The work reported in this paper was carried out while
the author was a research fellow at the Institute for Com-
municating and Collaborative Systems of the University
of Edinburgh, United Kingdom, and was supported by a
Scottish Enterprise Edinburgh-Stanford Link grant (265000-
3102-R36766).

1992; Kruijff-Korbayová and Steedman, 2003) for
a discussion). In the present study, we adopt the
term “Information Status”, following the defini-
tion employed for the annotation of the corpus we
use for our experiments (Nissim et al., 2004). In-
formation status describes to which degree a dis-
course entity is available to the hearer, in terms
of the speaker’s assumptions about the hearer’s
knowledge and beliefs. Although there is a fine
line in the distinction between Information Sta-
tus and Information Structure, it is fair to say that
whereas the latter models wider discourse coher-
ence, the former focuses mainly on the local level
of discourse entities. Section 2 provides more de-
tails on how this notion is encoded in our corpus.

Information status has generated large interest
among researchers because of its complex interac-
tion with other linguistic phenomena, thus affect-
ing several Natural Language Processing tasks.
Since it correlates with word order and pitch ac-
cent (Lambrecht, 1994; Hirschberg and Nakatani,
1996), for instance, incorporating knowledge on
information status would be helpful for natural
language generation, and in particular text-to-
speech systems. Stöber and colleagues, for ex-
ample, ascribe to the lack of such information the
lower performance of text-to-speech compared to
concept-to-speech generation, where such knowl-
edge could be made directly available to the sys-
tem (Stöber et al., 2000).

Another area where information status can play
an important role is anaphora resolution. A major
obstacle in the resolution of definite noun phrases
with full lexical heads is that only a small pro-
portion of them is actually anaphoric (ca. 30%
(Vieira and Poesio, 2000)). Therefore, in the ab-
sence of anaphoricity information, a resolution
system will try to find an antecedent also for non-
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anaphoric definite noun phrases, thus severely af-
fecting performance. There has been recent in-
terest in determining anaphoricity before perform-
ing anaphora resolution (Ng and Cardie, 2002;
Uryupina, 2003), but results have not been en-
tirely satisfactory. Given that old entities are more
likely to be referred to by anaphors, for instance,
identification of information status could improve
anaphoricity determination.

Postolache et al. (2005) have recently shown
that learning information structure with high ac-
curacy is feasible for Czech. However, there are
yet no studies that explore such a task for English.
Exploiting an existing annotated corpus, in this pa-
per we report experiments on learning a model for
the automatic identification of information status
in English.

2 Data

For our experiments we annotated a portion of the
transcribed Switchboard corpus (Godfrey et al.,
1992), consisting of 147 dialogues (Nissim et al.,
2004).1 In the following section we provide a brief
description of the annotation categories.

2.1 Annotation

Our annotation of information status mainly builds
on (Prince, 1992), and employs a distinction into
old, mediated, and new entities similar to the work
of (Strube, 1998; Eckert and Strube, 2001).

All noun phrases (NPs) were extracted as mark-
able entities using pre-existing parse information
(Carletta et al., 2004). An entity was annotated as
new if it has not been previously referred to and
is yet unknown to the hearer. The tag mediated
was instead used whenever an entity that is newly
mentioned in the dialogue can be inferred by the
hearer thanks to prior or general context.2 Typ-
ical examples of mediated entities are generally
known objects (such as “the sun”, or “the Pope”
(Löbner, 1985)), and bridging anaphors (Clark,
1975; Vieira and Poesio, 2000), where an entity
is related to a previously introduced one. When-
ever an entity was neither new nor mediated, it was
considered as old.

1Switchboard is a collection of spontaneous phone con-
versations, averaging six minutes in length, between speakers
of American English on predetermined topics. A third of the
corpus is syntactically parsed as part of the Penn Treebank
(Marcus et al., 1993)

2This type corresponds to Prince’s (1981; 1992) in-
ferrables.

In order to account for the complexity of the
notion of information status, the annotation also
includes a sub-type classification for old and me-
diated entities that provides a finer-grained dis-
tinction with information on why a given entity is
mediated (e.g., set-relation, bridging) or old (e.g.,
coreference, generic pronouns). In order to test
the feasibility of automatically assigning informa-
tion status to discourse entities, we took a modular
approach and only considered the coarser-grained
distinctions for this first study. Information about
the finer-grained subtypes will be used in future
work.

In addition to the main categories, we used two
more annotation classes: a tag non-applicable,
used for entities that were wrongly extracted in the
automatic selection of markables (e.g. “course” in
“of course”), for idiomatic occurrences, and ex-
pletive uses of “it”; and a tag not-understood to be
applied whenever an annotator did not fully under-
stand the text. Instances annotated with these two
tags, as well as all traces, which were left unanno-
tated, were excluded from all our experiments.

Inter-annotator agreement was measured using
the kappa (K) statistics (Cohen, 1960; Carletta,
1996) on 1,502 instances (three Switchboard dia-
logues) marked by two annotators who followed
specific written guidelines. Given that the task
involves a fair amount of subjective judgement,
agreement was remarkably high. Over the three
dialogues, the annotation yielded K = .845 for
the old/med/new classification (K = .788 when
including the finer-grained subtype distinction).
Specifically, “old” proved to be the easiest to dis-
tinguish, with K = .902; for “med” and “new”
agreement was measured at K = .800 and K =
.794, respectively. A value of K > .76 is usually
considered good agreement. Further details on the
annotation process and corpus description are pro-
vided in (Nissim et al., 2004)

2.2 Setup

We split the 147 dialogues into a training, a de-
velopment and an evaluation set. The training set
contains 40,865 NPs distributed over 94 dialogues,
the development set consists of 23 dialogues for a
total of 10,565 NPs, and the evaluation set com-
prises 30 dialogues with 12,624 NPs. Instances
were randomised, so that occurrences of NPs from
the same dialogue were possibly split across the
different sets.
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Table 1 reports the distribution of classes for
the training, development and evaluation sets. The
distributions are similar, with a majority of old en-
tities, followed by mediated entities, and lastly by
new ones.

Table 1: Information status distribution of NPs in
training, development and evaluation sets

TRAIN DEV EVAL
old 19730 (48.3%) 5181 (49.0%) 6049 (47.9%)
med 15184 (37.1%) 3762 (35.6%) 4644 (36.8%)
new 5951 (14.6%) 1622 (15.4%) 1931 (15.3%)
total 40865 (100%) 10565 (100%) 12624 (100%)

3 Classification with hand-crafted rules

The target classes for our classification experi-
ments are the annotation tags: old, mediated, and
new. As baseline, we could take a simple “most-
frequent-class” assignment that would classify all
entities as old, thus yielding an accuracy of 47.9%
on the evaluation set (see Table 1). Although the
“all-old” assumption makes a reasonable baseline,
it would not provide a particularly interesting solu-
tion from a practical perspective, since a dialogue
should also contain not-old information. Thus,
rather than adopting this simple strategy, we de-
veloped a more sophisticated baseline working on
a set of hand-crafted rules.

This hand-crafted algorithm is based on rather
straightforward, intuitive rules, partially reflecting
the instructions specified in the annotation guide-
lines. As shown in Figure 1, the top split is the
NP type: whether the instance to classify is a pro-
noun, a proper noun, or a common noun. The
other information that the algorithm uses is about
complete or partial string overlapping with respect
to the dialogue’s context. For common nouns we
also consider the kind of determiner (definite, in-
definite, demonstrative, possessive, or bare).

In order to obtain the NP type information, we
exploited the pre-existing morpho-syntactic tree-
bank annotation of Switchboard. Whenever the
extraction failed, we assigned a type “other” and
always backed-off these cases to old (the most fre-
quent class in training data). Values for the other
features were obtained by simple pattern matching
and NP extraction.

Evaluation measures The algorithm’s perfor-
mance is evaluated with respect to its general ac-
curacy (Acc): the number of correctly classified
instances over all assignments. Moreover, for each

case NP is a pronoun

status := old

case NP is a proper noun

if first occurrence then
status := med

else
status := old

endif
case NP is a common noun

if identical string already mentioned then
status := old

else
if partial string already mentioned then

status := med

else
if determiner is def/dem/poss then

status := med

else
status := new

endif
endif

endif
otherwise

status := old

Figure 1: Hand-crafted rule-based algorithm for
the assignment of information status to NPs.

class (c), we report precision (P), recall (R), and f-
score (F) thus calculated:

Pc = correct assignments of c
total assignments of c

Rc = correct assignments of c
total corpus instances of c

Fc = 2PcRc
Pc+Rc

The overall accuracy of the rule-based algo-
rithm is 65.8%. Table 2 shows the results for each
target class in both the development and evaluation
sets. We discuss results on the latter.

Although a very high proportion of old entities
is correctly retrieved (93.5%), this is done with
relatively low precision (66.7%). Moreover, both
precision and recall for the other classes are dis-
appointing. Unsurprisingly, the rules that apply
to common nouns (the most ambiguous with re-
spect to information status) generate a large num-
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Table 2: Per class performance of hand-crafted
rules on the development and evaluation sets

DEV EVAL

P R F P R F
old .677 .932 .784 .667 .935 .779
med .641 .488 .554 .666 .461 .545
new .517 .180 .267 .436 .175 .250

ber of false positives. The rule that predicts an
old entity in case of a full previous mention, for
example, has a precision of only 39.8%. Better,
but not yet satisfactory, is the precision of the rule
that predicts a mediated entity for a common noun
that has a previous partial mention (64.7%). The
worst performing rule is the one that assigns the
most frequent class (old) to entities of syntactic
type “other”, with a precision of 35.4%. To give an
idea of the correlation between NP type and infor-
mation status, in Table 3 we report the distribution
observed in the evaluation set.

Table 3: Distribution of information status over
NP types in the evaluation set

old med new
pronoun 4465 159 13
proper 107 198 27
common 752 2874 1256
other 725 1413 635

4 Learning Information Status

Our starting point for the automatic assignment
of information status are the three already intro-
duced classes: old, mediated and new. Addition-
ally, we experiment with binary classifications, by
collapsing mediated entities in turn with old and
new ones.

For training, developing and evaluating the
model we use the split described in Section 2.2
(see Table 1). Performance is evaluated accord-
ing to overall accuracy and per class precision, re-
call, and f-score as described in Section 3. To train
a C4.5 decision tree model we use the J48 Weka
implementation (Witten and Frank, 2000). The
choice of features to build the tree is described in
the following section.

4.1 Features

The seven features we use are automatically ex-
tracted from the annotated data exploiting pre-
existing morpho-syntactic markup and using sim-

Table 4: Feature set for learning experiments
FEATURE VALUES
full prev mention numeric
mention time {first,second,more}
partial prev mention {yes,no,na}
determiner {bare,def,dem,indef,poss,na}
NP length numeric
grammatical role {subject,subjpass,object,pp,other}
NP type {pronoun,common,proper,other}

ple pattern matching techniques. They are sum-
marised in Table 4.

The choice of features is motivated by the fol-
lowing observations. The information coming
from partial previous mentions is particularly use-
ful for the identification of mediated entities. This
should account specifically for cases of media-
tion via set-relations; for example, “your children”
would be considered a partial previous mention of
“my children” or ”your four children”. The value
“na” stands for ”non-applicable” and is mainly
used for pronouns. Full previous mention is likely
to be a good indicator of old entities. Both full and
partial previous mentions are calculated within
each dialogue without any constraints based on
distance.

NP type and determiner type are expected to be
helpful for all categories, with pronouns, for in-
stance, tending to be old and indefinite NPs being
often new. We included the length of NPs (mea-
sured in number of words) since linguistic studies
have shown that old entities tend to be expressed
with less lexical material (Wasow, 2002). In exper-
iments on the development data we also included
the NP string itself, on the grounds that it might
be of use in cases of general mediated instances
(common knowledge entities), such as “the sun”,
“people”, “Mickey Mouse”, and so on. However,
this feature turned out to negatively affect perfor-
mance, and was not included in the final model.

4.2 Results
With an overall final accuracy of 79.5% on the
evaluation set, C4.5 significantly outperforms the
hand-crafted algorithm (65.8%). Although the
identification of old entities is quite successful
(F=.928), performance is not entirely satisfactory.
This is especially true for the classification of new
entities, for which the final f-score is .320, mainly
due to extremely low recall (.223). Mediated enti-
ties, instead, are retrieved with a fairly low preci-
sion but higher recall. Table 5 summarises preci-
sion, recall, and f-score for each class.
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Table 5: Per class performance of C4.5 on the de-
velopment and evaluation sets

DEV EVAL

P R F P R F
old .935 .911 .923 .941 .915 .928
med .673 .878 .762 .681 .876 .766
new .623 .234 .341 .563 .223 .320

The major confusion in the classification arises
between mediated and new (the most difficult de-
cision to make for human annotators too, see Sec-
tion 2.1), which are often distinguished on the ba-
sis of world knowledge, not available to the classi-
fier. This is clearly shown by the confusion matrix
in Table 6: the highest proportion of mistakes is
due to 1,453 new instances classified as mediated.
Also significant is the wrong assignment of me-
diated tags to old entities. Such behaviour of the
classifier is to be expected, given the ‘in-between’
nature of mediated entities.

Table 6: Confusion matrix for evaluation set.
C=Classifier tag; G=Gold tag

C →
G ↓

old med new

old 5537 452 60
med 303 4066 275
new 47 1453 431

4.3 Classification with two categories only

Given the above observations, we collapsed me-
diated entities in turn with old ones (focusing on
their non-newness) or new ones (enhancing their
non complete givenness), thus reducing the task to
a binary classification.

Since it appears to be more difficult to distin-
guish mediated and new rather than mediated and
old (Table 6), we expect the classifier to perform
better when mediated is binned with new rather
than old. Also, in the case where mediated and old
entities are collapsed into one single class as op-
posed to new ones, the distribution of classes be-
comes highly skewed towards old entities (84.7%)
so that the learner is likely to lack sufficient infor-
mation for identifying new entities.

Table 7 shows the final accuracy for the two bi-
nary classifications (and the three-way one). As
expected, when mediated entities are joint with
new ones, the classifier performs best (93.1%),

with high f-scores for both old and new, and is sig-
nificantly better than the alternative binary classi-
fication (t-test, p < 0.001). Indeed, the old+med
vs new classification is nearly an all-old assign-
ment and its overall final accuracy (85.5%) is not
a significant improvement over the all-old baseline
(84.7%). Results suggest that mediated NPs are
more similar to new than to old entities and might
provide interesting feedback for the theoretical as-
sumptions underlying the corpus annotation.

4.4 Comparison with two categories only

For a fair comparison, we performed a two-way
classification using the hand-crafted algorithm,
which had to be simplified to account for the lack
of a mediated class.

In the case where all mediated instances where
collapsed together with the old ones, the decision
rules are very simple: pronouns, proper nouns, and
common nouns that have been previously fully or
partially mentioned are classified as old; first men-
tion common nouns are new; everything else is
old. Both precision and recall for old instances
are quite high (.868 and .906 respectively), for a
resulting f-score of .887. Conversely, the perfor-
mance on identifying new entities is very poor,
with a precision of .337 and a recall of .227, for
a combined f-score of .271. The overall accuracy
is .803, and this is significantly lower than the per-
formance of C4.5, which achieves an overall accu-
racy of .850 (t-test, p < 0.001).

When mediated entities are collapsed with new
ones, rule-based classification is done again with
a very basic algorithm derived from the rules in
Figure 1: pronouns are old; proper nouns are new
if first mention, old otherwise; common nouns
that have been fully previously mentioned are old,
otherwise new. Everything else is new, which in
the training set is now the most frequent class
(51.7%). The overall accuracy of .849 is signif-
icantly lower than that achieved by C4.5, which
is .931 (t-test, p < 0.001). Differently from the
previous case (mediated collapsed with old), the
performance on each class is comparable, with a
precision, recall and f-score of .863, .815, and .838
for old and of .838, .881, and .859 for new.

5 Discussion

5.1 Influence of training size

In order to assess the contribution of training size
to performance, we experimented with increas-
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Table 7: Overview of accuracy for hand-crafted
rules and C4.5 on three-way and binary classifica-
tions on development and evaluation sets

DEV EVAL

classification rules C4.5 rules C4.5
old vs med vs new .658 .796 .644 .795
old+med vs new .810 .861 .803 .855
old vs med+new .844 .926 .849 .931

ingly larger portions of the training data (from 50
to 30,000 instances). For each training size we ran
the classifier 5 times, each with a different ran-
domly picked set of instances. This was done for
the three-way and the two binary classifications.
Reported results are always averaged over the 5
runs. Figure 2 shows the three learning curves.

Figure 2: Learning curves for three- and two-way
classifications

The curve for the three-way classification shows a
slight constant improvement, though it appears to
reach a plateau after 5,000 instances. The result
obtained training on the full set (40865 instances)
is significantly better only if compared to a train-
ing set of 4,000 or less (t-test, p < 0.05). No other
significant difference in accuracy can be observed.

Increasing the training size over 5,000 instances
when learning to classify old+mediated vs new
leads to a slight improvement due to the learner
being able to identify some new entities. With a
smaller training set the proportion of new entities
is far too small to be of use. However, as said, the
overall final accuracy of 85.5% (see Table 7) does
not significantly improve over the baseline.

Table 8: Performance of leave-one-out and single-
feature classifiers on three-way classification

FEATURE
ACCURACY

removed single
full prev mention .793 .730
mention time .795 .730
partial prev mention .791 .769
determiner .789 .775
NP length .793 .733
gram role .782 .656
NP type .784 .701
full set .795

5.2 Feature contribution
We are also interested in the contribution of each
single feature. Therefore, we ran the classifier
again, leaving out one feature at a time. No sig-
nificant drop or gain was observed in any of the
runs (t-test, p < 0.01), though the worst detri-
ments were yielded by removing the grammati-
cal role and the NP type. These two features,
however, also appear to be the least informative
in single-feature classification experiments, thus
suggesting that such information comes very use-
ful only when combined with other evidence (see
also Section 5.4. All results for leave-one-out and
single-feature classifiers are shown in Table 8.

5.3 Error Analysis
The overwhelming majority of mistakes (1,453,
56.1% of all errors) in the three-way classification
stems from classifying as mediated entities that
are in fact new (Table 6). Significant confusion
arises from proper nouns, as they are annotated as
mediated or new entities, depending on whether
they are generally known (such as names of US
presidents, for example), or domain/community-
specific (such as the name of a local store that only
the speaker knows). This inconsistency in the an-
notation might reflect well the actual status of en-
tities in the dialogues, but it can be misleading for
the classifier.

Another large group of errors is formed by old
entities classified as mediated (452 cases). This is
probably due to the fact that the first node in the
decision tree is the “partial mention” feature (see
Figure 3). The tree correctly captures the fact that
a firstly mentioned entity which has been partially
mentioned before is mediated. An entity that has
a previous partial mention but also a full previous
mention is classified as old only if it is a proper
noun or a pronoun, but as mediated if it is a com-
mon noun. This yields a large number of mis-
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takes, since many common nouns that have been
previously mentioned (both in full and partially)
are in fact old. Another problem with previous
mentions is the lack of restriction in distance: we
consider a previous mention any identical mention
of a given NP anywhere in the dialogue, and we
have no means of checking that it is indeed the
same entity that is referred to. A way to alleviate
this problem might be exploiting speaker turn in-
formation. Using anaphoric chains could also be
of help, but see Section 6.

5.4 Learnt trees meet hand-crafted rules
The learnt trees provide interesting insights on the
intuitions behind the choice of hand-crafted rules.

partial = yes
| full <= 1
| | det = def: med
| | det = indef
| | | length <= 2
| | | | gramm = subj: med
| | | | gramm = subjpassive: new
| | | | gramm = obj: med
| | | | gramm = pp: med
| | | | gramm = other
| | | | | type = proper: med
| | | | | type = common: new
| | | | | type = pronoun: new
| | | | | type = other: med
| | | length > 2: med
| | det = dem
| | | gramm = subj
. . .

Figure 3: Top of C.5, full training set, three classes

Figure 3 shows the top of C4.5 (trained on the full
training set for the three-way classification), which
looks remarkably different from the rules in Fig-
ure 1. We had based our decision of emphasising
the importance of the NP type on the linguistic ev-
idence that different syntactic realisations reflect
different degrees of availability of discourse enti-
ties (Givón, 1983; Ariel, 1990; Grosz et al., 1995).
In the learnt model, however, knowledge about NP
type is only used as subordinate to other features.
This is indeed mirrored in the fact that removing
NP type information from the feature set causes
accuracy to drop, but a classifier building on NP
type alone performs poorly (see Table 8).3 In-
terestingly, though, more informative knowledge
about syntactic form seems to be derived from the
determiner type, which helps distinguish degrees
of oldness among common nouns.

3The NPtype-only classifier assigns old to pronouns and
med to all other types; it never assigns new.

5.5 Naive Bayes model

For additional comparison, we also trained a Naive
Bayes classifier with the same experimental set-
tings. Results are significantly worse than C4.5’s
in all three scenarios (t-test, p < 0.005), with an
accuracy of 74.6% in the three-way classification,
63.3% for old+mediated vs new, and 91.0% for old
vs mediated+new. The latter distribution appears
again to be the easiest to learn.

6 Related Work

To our knowledge, there are no other studies on the
automatic assignment of information status in En-
glish. Recently, (Postolache et al., 2005) have re-
ported experiments on learning information struc-
ture in the Prague TreeBank. The Czech tree-
bank is annotated following the Topic-Focus artic-
ulation theory (Hajičová et al., 1998). The theo-
retical definitions underlying the Prague Treebank
and the corpus we are using are different, with the
former giving a more global picture of informa-
tion structure, and the latter a more entity-specific
one. For this reason, and due to the fact that Pos-
tolache et al.’s experiments are on Czech (with a
freer word order than English), comparing results
is not straightforward.

Their best system (C4.5 decision tree) achieves
an accuracy of 90.69% on the topic/focus identi-
fication task. This result is comparable with the
result we obtain when training and testing on the
corpus where mediated and new entities are not
distinguished (93.1%). Postolache and colleagues
also observe a slowly flattening learning curve af-
ter a very small amount of data (even 1%, in their
case). Therefore, they predict an increase in per-
formance will mainly come from better features
rather than more training data. This is likely to be
true in our case as well, also because our feature
set is currently small and we will further benefit
from incorporating additional features. Postolache
et al. use a larger feature set, which also includes
coreference information. The corpus we use has
manually annotated coreference links. However,
because we see anaphoricity determination as a
task that could benefit from automatic information
status assignment, we decided not to exploit this
information in the current experiments. Moreover,
we did not want our model to rely too heavily on a
feature that is not easy to obtain automatically.
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7 Conclusions and Future Work

We have presented a model for the automatic as-
signment of information status in English. On the
three-way classification into old, mediated, and
new that reflects the corpus annotation tags, the
learnt tree outperforms a hand-crafted algorithm
and achieves an accuracy of 79.5%, with high pre-
cision and recall for old entities, high recall for
mediated entities, and a fair precision, but very
poor recall, for new ones. When we collapsed me-
diated and new entities into one category only op-
posing this to old ones, the classifier performed
with an accuracy of 93.1%, with high f-scores for
both classes. Binning mediated and old entities to-
gether did not produce interesting results, mainly
due to the highly skewed distribution of the result-
ing corpus towards old entities. This suggests that
mediated entities are more similar to new than to
old ones, and might provide interesting feedback
for the theoretical assumptions underlying the an-
notation. Future work will examine specific cases
and investigate how such insights can be used to
make the theoretical framework more accurate.

As the first experiments run on English to learn
information status, we wanted to concentrate on
the task itself and avoid noise introduced by au-
tomatic processing. More realistic settings for in-
tegrating an information status model in a large-
scale NLP system would imply obtaining syntactic
information via parsing rather than directly from
the treebank. Future experiments will assess the
impact of automatic preprocessing of the data.

Results are very promising but there is room for
improvement. First, the syntactic category “other”
is far too large, and finer distinctions must be made
by means of better extraction rules from the trees.
Second, and most importantly, we believe that us-
ing more features will be the main trigger of higher
accuracy. In particular, we plan to use additional
lexical and relational features derived from knowl-
edge sources such as WordNet (Fellbaum, 1998)
and FrameNet (Baker et al., 1998) which should
be especially helpful in distinguishing mediated
from new entities, the most difficult decision to
make. For example, an entity that is linked in
WordNet (within a given depth) and/or FrameNet
to a previously introduced one is more likely to be
mediated than new.

Additionally, we will attempt to exploit dia-
logue turns, since knowing which speaker said
what is clearly very valuable information. In a

similar vein, we will experiment with distance
measures, in terms of turns, sentences, or even
time, for determining when an introduced entity
might stop to be available.

We also plan to run experiments on the auto-
matic classification of old and mediated subtypes
(the finer-grained classification) that is included
in the corpus but that we did not consider for the
present study (see Section 2.1). The major benefit
of this would be a contribution to the resolution of
bridging anaphora.
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Abstract

Citation function is defined as the author’s
reason for citing a given paper (e.g. ac-
knowledgement of the use of the cited
method). The automatic recognition of the
rhetorical function of citations in scientific
text has many applications, from improve-
ment of impact factor calculations to text
summarisation and more informative ci-
tation indexers. We show that our anno-
tation scheme for citation function is re-
liable, and present a supervised machine
learning framework to automatically clas-
sify citation function, using both shallow
and linguistically-inspired features. We
find, amongst other things, a strong re-
lationship between citation function and
sentiment classification.

1 Introduction
Why do researchers cite a particular paper? This
is a question that has interested researchers in
discourse analysis, sociology of science, and in-
formation sciences (library sciences) for decades
(Garfield, 1979; Small, 1982; White, 2004). Many
annotation schemes for citation motivation have
been created over the years, and the question has
been studied in detail, even to the level of in-depth
interviews with writers about each individual cita-
tion (Hodges, 1972).

Part of this sustained interest in citations can
be explained by the fact that bibliometric met-
rics are commonly used to measure the impact of
a researcher’s work by how often they are cited
(Borgman, 1990; Luukkonen, 1992). However, re-
searchers from the field of discourse studies have
long criticised purely quantitative citation analy-
sis, pointing out that many citations are done out
of “politeness, policy or piety” (Ziman, 1968),
and that criticising citations or citations in pass-

ing should not “count” as much as central cita-
tions in a paper, or as those citations where a re-
searcher’s work is used as the starting point of
somebody else’s work (Bonzi, 1982). A plethora
of manual annotation schemes for citation motiva-
tion have been invented over the years (Garfield,
1979; Hodges, 1972; Chubin and Moitra, 1975).
Other schemes concentrate on citation function
(Spiegel-Rüsing, 1977; O’Connor, 1982; Wein-
stock, 1971; Swales, 1990; Small, 1982)). One
of the best-known of these studies (Moravcsik
and Murugesan, 1975) divides citations in running
text into four dimensions: conceptual or opera-
tional use (i.e., use of theory vs. use of technical
method); evolutionary or juxtapositional (i.e., own
work is based on the cited work vs. own work is an
alternative to it); organic or perfunctory (i.e., work
is crucially needed for understanding of citing ar-
ticle or just a general acknowledgement); and fi-
nally confirmative vs. negational (i.e., is the cor-
rectness of the findings disputed?). They found,
for example, that 40% of the citations were per-
functory, which casts further doubt on the citation-
counting approach.

Based on such annotation schemes and hand-
analyzed data, different influences on citation be-
haviour can be determined. Nevertheless, re-
searchers in the field of citation content analysis
do not normally cross-validate their schemes with
independent annotation studies with other human
annotators, and usually only annotate a small num-
ber of citations (in the range of hundreds or thou-
sands). Also, automated application of the annota-
tion is not something that is generally considered
in the field, though White (2004) sees the future of
discourse-analytic citation analysis in automation.

Apart from raw material for bibliometric stud-
ies, citations can also be used for search purposes
in document retrieval applications. In the library
world, printed or electronic citation indexes such
as ISI (Garfield, 1979) serve as an orthogonal
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Following Pereira et al, we measure
word similarity by the relative entropy
or Kulbach−Leibler (KL) distance, bet−
ween the corresponding conditional
distributions.

His notion of similarity
seems to agree with our
intuitions in many cases,
but it is not clear how it
can  be used directly to
construct word classes
and corresponding 
models of association.

Figure 1: A rhetorical citation map

search tool to find relevant papers, starting from a
source paper of interest. With the increased avail-
ability of documents in electronic form in recent
years, citation-based search and automatic citation
indexing have become highly popular, cf. the suc-
cessful search tools Google Scholar and CiteSeer
(Giles et al., 1998).1

But not all search needs are fulfilled by current
citation indexers. Experienced researchers are of-
ten interested in relations between articles (Shum,
1998). They want to know if a certain article crit-
icises another and what the criticism is, or if the
current work is based on that prior work. This
type of information is hard to come by with current
search technology. Neither the author’s abstract,
nor raw citation counts help users in assessing the
relation between articles.

Fig. 1 shows a hypothetical search tool which
displays differences and similarities between a tar-
get paper (here: Pereira et al., 1993) and the pa-
pers that it cites and that cite it. Contrastive links
are shown in grey – links to rival papers and pa-
pers the current paper contrasts itself to. Continu-
ative links are shown in black – links to papers that
use the methodology of the current paper. Fig. 1
also displays the most characteristic textual sen-
tence about each citation. For instance, we can see
which aspect of Hindle (1990) our example paper
criticises, and in which way the example paper’s
work was used by Dagan et al. (1994).

Note that not even the CiteSeer text snippet

1These tools automatically citation-index all scientific ar-
ticles reached by a web-crawler, making them available to
searchers via authors or keywords in the title, and displaying
the citation in context of a text snippet.

can fulfil the relation search need: it is always
centered around the physical location of the ci-
tations, but the context is often not informative
enough for the searcher to infer the relation. In
fact, studies from our annotated corpus (Teufel,
1999) show that 69% of the 600 sentences stat-
ing contrast with other work and 21% of the
246 sentences stating research continuation with
other work do not contain the corresponding cita-
tion; the citation is found in preceding sentences
(which means that the sentence expressing the
contrast or continuation is outside the CiteSeer
snippet). A more sophisticated, discourse-aware
citation indexer which finds these sentences and
associates them with the citation would add con-
siderable value to the researcher’s bibliographic
search (Ritchie et al., 2006b).

Our annotation scheme for citations is based
on empirical work in content citation analysis. It
is designed for information retrieval applications
such as improved citation indexing and better bib-
liometric measures (Teufel et al., 2006). Its 12 cat-
egories mark relationships with other works. Each
citation is labelled with exactly one category. The
following top-level four-way distinction applies:

• Explicit statement of weakness

• Contrast or comparison with other work (4
categories)

• Agreement/usage/compatibility with other
work (6 categories), and

• A neutral category.

In this paper, we show that the scheme can be
reliably annotated by independent coders. We also
report results of a supervised machine learning ex-
periment which replicates the human annotation.

2 An annotation scheme for citations
Our scheme (given in Fig. 2) is adapted from that
of Spiegel-Rüsing (1977) after an analysis of a
corpus of scientific articles in computational lin-
guistics. We avoid sociologically orientated dis-
tinctions (“paying homage to pioneers”), as they
can be difficult to operationalise without deep
knowledge of the field and its participants (Swales,
1986). Our redefinition of the categories aims at
reliably annotation; at the same time, the cate-
gories should be informative enough for the docu-
ment management application sketched in the in-
troduction.
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Category Description
Weak Weakness of cited approach
CoCoGM Contrast/Comparison in Goals or Meth-

ods(neutral)
CoCo- Author’s work is stated to be superior to

cited work
CoCoR0 Contrast/Comparison in Results (neutral)
CoCoXY Contrast between 2 cited methods
PBas Author uses cited work as basis or starting

point
PUse Author uses

tools/algorithms/data/definitions
PModi Author adapts or modifies

tools/algorithms/data
PMot This citation is positive about approach

used or problem addressed (used to mo-
tivate work in current paper)

PSim Author’s work and cited work are similar
PSup Author’s work and cited work are compat-

ible/provide support for each other
Neut Neutral description of cited work, or not

enough textual evidence for above cate-
gories, or unlisted citation function

Figure 2: Annotation scheme for citation function.

Our categories are as follows: One category
(Weak) is reserved for weakness of previous re-
search, if it is addressed by the authors. The next
four categories describe comparisons or contrasts
between own and other work. The difference be-
tween them concerns whether the contrast is be-
tween methods employed or goals (CoCoGM), or
results, and in the case of results, a difference is
made between the cited results being worse than
the current work (CoCo-), or comparable or bet-
ter results (CoCoR0). As well as considering dif-
ferences between the current work and other work,
we also mark citations if they are explicitly com-
pared and contrasted with other work (i.e. not
the work in the current paper). This is expressed
in category CoCoXY. While this is not typically
annotated in the literature, we expect a potential
practical benefit of this category for our applica-
tion, particularly in searches for differences and
rival approaches.

The next set of categories we propose concerns
positive sentiment expressed towards a citation, or
a statement that the other work is actively used
in the current work (which we consider the ulti-
mate praise). We mark statements of use of data
and methods of the cited work, differentiating un-
changed use (PUse) from use with adaptations
(PModi). Work which is stated as the explicit
starting point or intellectual ancestry is marked
with our category PBas. If a claim in the liter-
ature is used to strengthen the authors’ argument,

or vice versa, we assign the category PSup. We
also mark similarity of (an aspect of) the approach
to the cited work (PSim), and motivation of ap-
proach used or problem addressed (PMot).

Our twelfth category, Neut, bundles truly neu-
tral descriptions of cited work with those cases
where the textual evidence for a citation function
was not enough to warrant annotation of that cate-
gory, and all other functions for which our scheme
did not provide a specific category.

Citation function is hard to annotate because it
in principle requires interpretation of author inten-
tions (what could the author’s intention have been
in choosing a certain citation?). One of our most
fundamental principles is thus to only mark explic-
itly signalled citation functions. Our guidelines
explicitly state that a general linguistic phrase such
as “better” or “used by us” must be present; this
increases the objectivity of defining citation func-
tion. Annotators must be able to point to textual
evidence for assigning a particular function (and
are asked to type the source of this evidence into
the annotation tool for each citation). Categories
are defined in terms of certain objective types of
statements (e.g., there are 7 cases for PMot, e.g.
“Citation claims that or gives reasons for why
problem Y is hard”). Annotators can use general
text interpretation principles when assigning the
categories (such as anaphora resolution and par-
allel constructions), but are not allowed to use in-
depth knowledge of the field or of the authors.

Guidelines (25 pages, ∼ 150 rules) describe the
categories with examples, provide a decision tree
and give decision aids in systematically ambigu-
ous cases. Nevertheless, subjective judgement of
the annotators is still necessary to assign a single
tag in an unseen context, because of the many dif-
ficult cases for annotation. Some of these concern
the fact that authors do not always state their pur-
pose clearly. For instance, several earlier studies
found that negational citations are rare (Moravc-
sik and Murugesan, 1975; Spiegel-Rüsing, 1977);
MacRoberts and MacRoberts (1984) argue that the
reason for this is that they are potentially politi-
cally dangerous. In our data we found ample evi-
dence of the “meekness” effect. Other difficulties
concern the distinction of the usage of a method
from statements of similarity between a method
and the own method (i.e., the choice between cat-
egories PSim and PUse). This happens in cases
where authors do not want to admit (or stress)
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that they are using somebody else’s method. An-
other difficult distinction concerns the judgement
of whether the authors continue somebody’s re-
search (i.e., consider their research as intellectual
ancestry, i.e. PBas), or whether they simply use
the work (PUse).

The unit of annotation is a) the full citation (as
recognised by our automatic citation processor on
our corpus), and b) names of authors of cited pa-
pers anywhere in running text outside of a for-
mal citation context (i.e., without date). These
latter are marked up, slightly unusually in com-
parison to other citation indexers, because we be-
lieve they function as important referents compa-
rable in importance to formal citations.2 In prin-
ciple, there are many other linguistic expressions
by which the authors could refer to other people’s
work: pronouns, abbreviations such as “Mueller
and Sag (1990), henceforth M & S”, and names of
approaches or theories which are associated with
particular authors. The fact that in these contexts
citation function cannot be annotated (because it
is not technically feasible to recognise them well
enough) sometimes causes problems with context
dependencies.

While there are unambiguous example cases
where the citation function can be decided on the
basis of the sentence alone, this is not always the
case. Most approaches are not criticised in the
same sentence where they are also cited: it is more
likely that there are several descriptive sentences
about a cited approach between its formal cita-
tion and the evaluative statement, which is often at
the end of the textual segment about this citation.
Nevertheless, the annotator must mark the func-
tion on the nearest appropriate annotation unit (ci-
tation or author name). Our rules decree that con-
text is in most cases constrained to the paragraph
boundary. In rare cases, paper-wide information
is required (e.g., for PMot, we need to know that
a praised approach is used by the authors, infor-
mation which may not be local in the paragraph).
Annotators are thus asked to skim-read the paper
before annotation.

One possible view on this annotation scheme
could consider the first two sets of categories as
“negative” and the third set of categories “posi-
tive”, in the sense of Pang et al. (2002) and Turney
(2002). Authors need to make a point (namely,

2Our citation processor can recognise these after parsing
the citation list.

that they have contributed something which is bet-
ter or at least new (Myers, 1992)), and they thus
have a stance towards their citations. But although
there is a sentiment aspect to the interpretation of
citations, this is not the whole story. Many of our
“positive” categories are more concerned with dif-
ferent ways in which the cited work is useful to the
current work (which aspect of it is used, e.g., just a
definition or the entire solution?), and many of the
contrastive statements have no negative connota-
tion at all and simply state a (value-free) differ-
ence between approaches. However, if one looks
at the distribution of positive and negative adjec-
tives around citations, it is clear that there is a non-
trivial connection between our task and sentiment
classification.

The data we use comes from our corpus of
360 conference articles in computational linguis-
tics, drawn from the Computation and Language
E-Print Archive (http://xxx.lanl.gov/cmp-lg). The
articles are transformed into XML format; head-
lines, titles, authors and reference list items are au-
tomatically marked up. Reference lists are parsed
using regular patterns, and cited authors’ names
are identified. Our citation parser then finds cita-
tions and author names in running text and marks
them up. Ritchie et al. (2006a) report high ac-
curacy for this task (94% of citations recognised,
provided the reference list was error-free). On av-
erage, our papers contain 26.8 citation instances in
running text3. For human annotation, we use our
own annotation tool based on XML/XSLT tech-
nology, which allows us to use a web browser to
interactively assign one of the 12 tags (presented
as a pull-down list) to each citation.

We measure inter-annotator agreement between
three annotators (the three authors), who indepen-
dently annotated 26 articles with the scheme (con-
taining a total of 120,000 running words and 548
citations), using the written guidelines. The guide-
lines were developed on a different set of articles
from the ones used for annotation.

Inter-annotator agreement was Kappa=.72
(n=12;N=548;k=3)4 . This is quite high, consider-
ing the number of categories and the difficulties

3As opposed to reference list items, which are fewer.
4Following Carletta (1996), we measure agreement in

Kappa, which follows the formula K =

P (A)−P (E)
1−P (E)

where
P(A) is observed, and P(E) expected agreement. Kappa
ranges between -1 and 1. K=0 means agreement is only as
expected by chance. Generally, Kappas of 0.8 are considered
stable, and Kappas of .69 as marginally stable, according to
the strictest scheme applied in the field.
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(e.g., non-local dependencies) of the task. The
relative frequency of each category observed in
the annotation is listed in Fig. 3. As expected,
the distribution is very skewed, with more than
60% of the citations of category Neut.5 What
is interesting is the relatively high frequency
of usage categories (PUse, PModi, PBas)
with a total of 18.9%. There is a relatively low
frequency of clearly negative citations (Weak,
CoCo-, total of 4.1%), whereas the neutral–
contrastive categories (CoCoR0, CoCoXY,
CoCoGM) are slightly more frequent at 7.6%.
This is in concordance with earlier annotation
experiments (Moravcsik and Murugesan, 1975;
Spiegel-Rüsing, 1977).

3 Features for automatic recognition of
citation function

This section summarises the features we use for
machine learning citation function. Some of these
features were previously found useful for a dif-
ferent application, namely Argumentative Zoning
(Teufel, 1999; Teufel and Moens, 2002), some are
specific to citation classification.

3.1 Cue phrases
Myers (1992) calls meta-discourse the set of ex-
pressions that talk about the act of presenting re-
search in a paper, rather than the research itself
(which is called object-level discourse). For in-
stance, Swales (1990) names phrases such as “to
our knowledge, no. . . ” or “As far as we aware” as
meta-discourse associated with a gap in the cur-
rent literature. Strings such as these have been
used in extractive summarisation successfully ever
since Paice’s (1981) work.

We model meta-discourse (cue phrases) and
treat it differently from object-level discourse.
There are two different mechanisms: A finite
grammar over strings with a placeholder mecha-
nism for POS and for sets of similar words which
can be substituted into a string-based cue phrase
(Teufel, 1999). The grammar corresponds to 1762
cue phrases. It was developed on 80 papers which
are different to the papers used for our experiments
here.

The other mechanism is a POS-based recog-
niser of agents and a recogniser for specific actions
these agents perform. Two main agent types (the

5Spiegel-Rüsing found that out of 2309 citations she ex-
amined, 80% substantiated statements.

authors of the paper, and everybody else) are mod-
elled by 185 patterns. For instance, in a paragraph
describing related work, we expect to find refer-
ences to other people in subject position more of-
ten than in the section detailing the authors’ own
methods, whereas in the background section, we
often find general subjects such as “researchers in
computational linguistics” or “in the literature”.
For each sentence to be classified, its grammatical
subject is determined by POS patterns and, if pos-
sible, classified as one of these agent types. We
also use the observation that in sentences without
meta-discourse, one can assume that agenthood
has not changed.

20 different action types model the main verbs
involved in meta-discourse. For instance, there is
a set of verbs that is often used when the over-
all scientific goal of a paper is defined. These
are the verbs of presentation, such as “propose,
present, report” and “suggest”; in the corpus we
found other verbs in this function, but with a lower
frequency, namely “describe, discuss, give, intro-
duce, put forward, show, sketch, state” and “talk
about”. There are also specialised verb clusters
which co-occur with PBas sentences, e.g., the
cluster of continuation of ideas (eg. “adopt, agree
with, base, be based on, be derived from, be orig-
inated in, be inspired by, borrow, build on,. . . ”).
On the other hand, the semantics of verbs in Weak
sentences is often concerned with failing (of other
researchers’ approaches), and often contain verbs
such as “abound, aggravate, arise, be cursed, be
incapable of, be forced to, be limited to, . . . ”.

We use 20 manually acquired verb clusters.
Negation is recognised, but too rare to define its
own clusters: out of the 20 × 2 = 40 theoretically
possible verb clusters, only 27 were observed in
our development corpus. We have recently auto-
mated the process of verb–object pair acquisition
from corpora for two types of cue phrases (Abdalla
and Teufel, 2006) and are planning on expanding
this work to other cue phrases.

3.2 Cues Identified by annotators

During the annotator training phase, the anno-
tators were encouraged to type in the meta-
description cue phrases that justify their choice of
category. We went through this list by hand and
extracted 892 cue phrases (around 75 per cate-
gory). The files these cues came from were not
part of the test corpus. We included 12 features
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Neut PUse CoCoGM PSim Weak PMot CoCoR0 PBas CoCoXY CoCo- PModi PSup
62.7% 15.8% 3.9% 3.8% 3.1% 2.2% 0.8% 1.5% 2.9% 1.0% 1.6% 1.1%

Figure 3: Distribution of citation categories

Weak CoCoGM CoCoR0 CoCo- CoCoXY PBas PUse PModi PMot PSim PSup Neut
P .78 .81 .77 .56 .72 .76 .66 .60 .75 .68 .83 .80
R .49 .52 .46 .19 .54 .46 .61 .27 .64 .38 .32 .92
F .60 .64 .57 .28 .62 .58 .63 .37 .69 .48 .47 .86
Percentage Accuracy 0.77
Kappa (n=12; N=2829; k=2) 0.57
Macro-F 0.57

Figure 4: Summary of Citation Analysis results (10-fold cross-validation; IBk algorithm; k=3).

that recorded the presence of cues that our annota-
tors associated with a particular class.

3.3 Other features
There are other features which we use for this
task. We know from Teufel and Moens (2002) that
verb tense and voice should be useful for recogniz-
ing statements of previous work, future work and
work performed in the paper. We also recognise
modality (whether or not a main verb is modified
by an auxiliary, and which auxiliary it is).

The overall location of a sentence containing
a reference should be relevant. We observe that
more PMot categories appear towards the begin-
ning of the paper, as do Weak citations, whereas
comparative results (CoCoR0, CoCoR-) appear
towards the end of articles. More fine-grained lo-
cation features, such as the location within the
paragraph and the section, have also been imple-
mented.

The fact that a citation points to own previous
work can be recognised, as we know who the pa-
per authors are. As we have access to the infor-
mation in the reference list, we also know the last
names of all cited authors (even in the case where
an et al. statement in running text obscures the
later-occurring authors). With self-citations, one
might assume that the probability of re-use of ma-
terial from previous own work should be higher,
and the tendency to criticise lower.

4 Results
Our evaluation corpus for citation analysis con-
sists of 116 articles (randomly drawn from the part
of our corpus which was not used for guideline
development or cue phrase acquisition). The 116
articles contain 2829 citation instances. Each
citation instance was manually tagged as one

Weakness Positive Contrast Neutral
P .80 .75 .77 .81
R .49 .65 .52 .90
F .61 .70 .62 .86

Percentage Accuracy 0.79
Kappa (n=12; N=2829; k=2) 0.59
Macro-F 0.68

Figure 5: Summary of results (10-fold cross-
validation; IBk algorithm; k=3): Top level classes.

Weakness Positive Neutral
P .77 .75 .85
R .42 .65 .92
F .54 .70 .89
Percentage Accuracy 0.83
Kappa (n=12; N=2829; k=2) 0.58
Macro-F 0.71

Figure 6: Summary of results (10-fold cross-
validation; IBk algorithm; k=3): Sentiment Anal-
ysis.

of {Weak, CoCoGM, CoCo-, CoCoR0, CoCoXY,
PBas, PUse, PModi, PMot, PSim, PSup, Neut}.
The papers are then further processed (e.g. to-
kenised and POS-tagged). All other features are
automatically determined (e.g. self-citations are
detected by overlap of citing and cited authors);
then, machine learning is applied to the feature
vectors.

The 10-fold cross-validation results for citation
classification are given in Figure 4, comparing the
system to one of the annotators. Results are given
in three overall measures: Kappa, percentage ac-
curacy, and Macro-F (following Lewis (1991)).
Macro-F is the mean of the F-measures of all
twelve categories. We use Macro-F and Kappa be-
cause we want to measure success particularly on
the rare categories, and because Micro-averaging
techniques like percentage accuracy tend to over-
estimate the contribution of frequent categories in
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heavily skewed distributions like ours6.
In the case of Macro-F, each category is treated

as one unit, independent of the number of items
contained in it. Therefore, the classification suc-
cess of the individual items in rare categories
is given more importance than classification suc-
cess of frequent category items. However, one
should keep in mind that numerical values in
macro-averaging are generally lower (Yang and
Liu, 1999), due to fewer training cases for the rare
categories. Kappa has the additional advantage
over Macro-F that it filters out random agreement
(random use, but following the observed distribu-
tion of categories).

For our task, memory-based learning outper-
formed other models. The reported results use the
IBk algorithm with k = 3 (we used the Weka ma-
chine learning toolkit (Witten and Frank, 2005)
for our experiments). Fig. 7 provides a few ex-
amples from one file in the corpus, along with the
gold standard citation class, the machine predic-
tion, and a comment.

Kappa is even higher for the top level distinc-
tion. We collapsed the obvious similar categories
(all P categories into one category, and all CoCo
categories into another) to give four top level
categories (Weak, Positive, Contrast,
Neutral; results in Fig. 5). Precision for all the
categories is above 0.75, and K=0.59. For con-
trast, the human agreement for this situation was
K=0.76 (n=3,N=548,k=3).

In a different experiment, we grouped the cate-
gories as follows, in an attempt to perform senti-
ment analysis over the classifications:

Old Categories New Category
Weak, CoCo- Negative

PMot, PUse, PBas, PModi, PSim, PSup Positive
CoCoGM, CoCoR0, CoCoXY, Neut Neutral

Thus negative contrasts and weaknesses are
grouped into Negative, while neutral contrasts
are grouped into Neutral. All positive classes
are conflated into Positive.

Results show that this grouping raises results
to a smaller degree than the top-level distinction
did (to K=.58). For contrast, the human agree-
ment for these collapsed categories was K=.75
(n=3,N=548,k=3).

6This situation has parallels in information retrieval,
where precision and recall are used because accuracy over-
estimates the performance on irrelevant items.

5 Conclusion
We have presented a new task: annotation of ci-
tation function in scientific text, a phenomenon
which we believe to be closely related to the over-
all discourse structure of scientific articles. Our
annotation scheme concentrates on weaknesses of
other work, and on similarities and contrast be-
tween work and usage of other work. In this
paper, we present machine learning experiments
for replicating the human annotation (which is re-
liable at K=.72). The automatic result reached
K=.57 (acc=.77) for the full annotation scheme;
rising to Kappa=.58 (acc=.83) for a three-way
classification (Weak, Positive, Neutral).

We are currently performing an experiment to
see if citation processing can increase perfor-
mance in a large-scale, real-world information
retrieval task, by creating a test collection of
researchers’ queries and relevant documents for
these (Ritchie et al., 2006a).
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Abstract

This paper presents a comparative study
of probabilistic treebank parsing of Ger-
man, using the Negra and TüBa-D/Z tree-
banks. Experiments with the Stanford
parser, which uses a factored PCFG and
dependency model, show that, contrary to
previous claims for other parsers, lexical-
ization of PCFG models boosts parsing
performance for both treebanks. The ex-
periments also show that there is a big
difference in parsing performance, when
trained on the Negra and on the TüBa-
D/Z treebanks. Parser performance for the
models trained on TüBa-D/Z are compara-
ble to parsing results for English with the
Stanford parser, when trained on the Penn
treebank. This comparison at least sug-
gests that German is not harder to parse
than its West-Germanic neighbor language
English.

1 Introduction

There have been a number of recent studies on
probabilistic treebank parsing of German (Dubey,
2005; Dubey and Keller, 2003; Schiehlen, 2004;
Schulte im Walde, 2003), using the Negra tree-
bank (Skut et al., 1997) as their underlying data
source. A common theme that has emerged from
this research is the claim that lexicalization of
PCFGs, which has been proven highly beneficial
for other languages1, is detrimental for parsing
accuracy of German. In fact, this assumption
is by now so widely held that Schiehlen (2004)
does not even consider lexicalization as a possible

1For English, see Collins (1999).

parameter and concentrates instead only on tree-
bank transformations of various sorts in his exper-
iments.

Another striking feature of all studies men-
tioned above are the relatively low parsing F-
scores achieved for German by comparison to the
scores reported for English, its West-Germanic
neighbor, using similar parsers. This naturally
raises the question whether German is just harder
to parse or whether it is just hard to parse the Ne-
gra treebank.2

The purpose of this paper is to address pre-
cisely this question by training the Stanford parser
(Klein and Manning, 2003b) and the LoPar parser
(Schmid, 2000) on the two major treebanks
available for German, Negra and TüBa-D/Z, the
Tübingen treebank of written German (Telljohann
et al., 2005). A series of comparative parsing
experiments that utilize different parameter set-
tings of the parsers is conducted, including lexi-
calization and markovization. These experiments
show striking differences in performance between
the two treebanks. What makes this comparison
interesting is that the treebanks are of compara-
ble size and are both based on a newspaper cor-
pus. However, both treebanks differ significantly
in their syntactic annotation scheme. Note, how-
ever, that our experiments concentrate on the orig-
inal (context-free) annotations of the treebank.

The structure of this paper is as follows: sec-
tion 2 discusses three characteristic grammatical
features of German that need to be taken into ac-
count in syntactic annotation and in choosing an
appropriate parsing model for German. Section 3
introduces the Negra and TüBa-D/Z treebanks and

2German is not the first language for which this question
has been raised. See Levy and Manning (2003) for a similar
discussion of Chinese and the Penn Chinese Treebank.
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discusses the main differences between their anno-
tation schemes. Section 4 explains the experimen-
tal setup, sections 5-7 the experiments, and section
8 discusses the results.

2 Grammatical Features of German

There are three distinctive grammatical features
that make syntactic annotation and parsing of Ger-
man particularly challenging: its placement of the
finite verb, its flexible phrasal ordering, and the
presence of discontinuous constituents. These fea-
tures will be discussed in the following subsec-
tions.

2.1 Finite Verb Placement

In German, the placement of finite verbs depends
on the clause type. In non-embedded assertion
clauses, the finite verb occupies the second posi-
tion in the clause, as in (1a). In yes/no questions,
as in (1b), the finite verb appears clause-initially,
whereas in embedded clauses it appears clause fi-
nally, as in (1c).

(1) a. Peter
Peter

wird
will

das
the

Buch
book

gelesen
read

haben.
have

’Peter will have read the book.’
b. Wird

Will
Peter
Peter

das
the

Buch
book

gelesen
have

haben?
read

’Will Peter have read the book?’
c. dass

that
Peter
Peter

das
the

Buch
book

gelesen
read

haben
have

wird.
will

’... that Peter will have read the book.’

Regardless of the particular clause type, any
cluster of non-finite verbs, such asgelesen haben
in (1a) and (1b) orgelesen haben wirdin (1c), ap-
pears at the right periphery of the clause.

The discontinuous positioning of the verbal el-
ements in verb-first and verb-second clauses is the
traditional reason for structuring German clauses
into so-called topological fields (Drach, 1937;
Erdmann, 1886; Höhle, 1986). The positions of
the verbal elements form theSatzklammer(sen-
tence bracket) which divides the sentence into a
Vorfeld (initial field), a Mittelfeld (middle field),
and aNachfeld (final field). The Vorfeld and the
Mittelfeld are divided by thelinke Satzklammer
(left sentence bracket), which is realized by the
finite verb or (in verb-final clauses) by a comple-
mentizer field. Therechte Satzklammer(right sen-
tence bracket) is realized by the verb complex and
consists of verbal particles or sequences of verbs.
This right sentence bracket is positioned between
the Mittelfeld and the Nachfeld. Thus, the theory

of topological fields states the fundamental regu-
larities of German word order.

The topological field structures in (2) for the ex-
amples in (1) illustrate the assignment of topolog-
ical fields for different clause types.

(2) a. �� � �� � Peter� � ��� wird � �� � �� � das
Buch � � �	� �� 
 gelesen haben.� �

b. ��� Wird � �� � �� � Peter� �� � das Buch� �
�	� �� 
 gelesen haben?� �

c. ��� �
 � dass� � �� � �� � Peter� �� � das
Buch � � �	� �� 
 gelesen haben wird.� �

(2a) and (2b) are made up of the following
fields: LK (for: linke Satzklammer) is occupied
by the finite verb. MF (for: Mittelfeld) contains
adjuncts and complements of the main verb. RK
(for: rechte Satzklammer) is realized by the ver-
bal complex (VC). Additionally, (2a) realizes the
topological field VF (for: Vorfeld), which contains
the sentence-initial constituent. The left sentence
bracket (LK) in (2c) is realized by a complemen-
tizer field (CF) and the right sentence bracket (RK)
by a verbal complex (VC) that contains the finite
verbwird.

2.2 Flexible Phrase Ordering

The second noteworthy grammatical feature of
German concerns its flexible phrase ordering. In
(3), any of the three complements and adjuncts
of the main verb(ge)lesencan appear sentence-
initially.

(3) a. Der
The

Mann
man

hat
has

gestern
yesterday

den
the

Roman
novel

gelesen.
read

’The man read the novel yesterday.’

b. Gestern hat der Mann den Roman gelesen

c. Den Roman hat der Mann gestern gelesen

In addition, the ordering of the elements that oc-
cur in the Mittelfeld is also free so that there are
two possible linearizations for each of the exam-
ples in (3a) - (3b), yielding a total of six distinct
orderings for the three complements and adjuncts.

Due to this flexible phrase ordering, the gram-
matical functions of constituents in German, un-
like for English, cannot be deduced from the con-
stituents’ location in the tree. As a consequence,
parsing approaches to German need to be based on
treebank data which contain a combination of con-
stituent structure and grammatical functions – for
parsing and evaluation.
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Figure 1: A sample tree from Negra.

2.3 Discontinuous Constituents

A third characteristic feature of German syntax
that is a challenge for syntactic annotation and
for parsing is the treatment of discontinuous con-
stituents.

(4) Der
The

Mann
man

hat
has

gestern
yesterday

den
the

Roman
novel

gelesen,
read

den
which

ihm
him

Peter
Peter

empfahl.
recommended

’Yesterday the man read the novel which Peter rec-
ommended to him.’

(5) Peter
Peter

soll
is to

dem
the

Mann
man

empfohlen
recommended

haben,
have

den
the

Roman
novel

zu
to

lesen.
read

’Peter is said to have recommended to the man to
read the novel.’

(4) shows an extraposed relative clause which
is separated from its head nounden Romanby the
non-finite verbgelesen. (5) is an example of an
extraposed non-finite VP complement that forms a
discontinuous constituent with its governing verb
empfohlenbecause of the intervening non-finite
auxiliary haben. Such discontinuous structures
occur frequently in both treebanks and are handled
differently in the two annotation schemes, as will
be discussed in more detail in the next section.

3 The Negra and the T̈uBa-D/Z
Treebanks

Both treebanks use German newspapers as their
data source: the Frankfurter Rundschau news-
paper for Negra and the ’die tageszeitung’ (taz)
newspaper for TüBa-D/Z. Negra comprises 20 000
sentences, TüBa-D/Z 15 000 sentences. There is
evidence that the complexity of sentences in both
treebanks is comparable: sentence length as well
as the percentage of clause nodes per sentence is
comparable. In Negra, a sentence is 17.2 words
long, in Tüba-D/Z, 17.5 words. Negra has an av-

erage of 1.4 clause nodes per sentence, TüBa-D/Z
1.5 clause nodes.

Both treebanks use an annotation framework
that is based on phrase structure grammar and that
is enhanced by a level of predicate-argument struc-
ture. Annotation for both was performed semi-
automatically. Despite all these similarities, the
treebank annotations differ in four important as-
pects: 1) Negra does not allow unary branching
whereas TüBa-D/Z does; 2) in Negra, phrases re-
ceive a flat annotation whereas TüBa-D/Z uses
phrase internal structure; 3) Negra uses crossing
branches to represent long-distance relationships
whereas TüBa-D/Z uses a pure tree structure com-
bined with functional labels to encode this infor-
mation; 4) Negra encodes grammatical functions
in a combination of structural and functional la-
beling whereas TüBa-D/Z uses a combination of
topological fields functional labels, which results
in a flatter structure on the clausal level. The two
treebanks also use different notions of grammat-
ical functions: TüBa-D/Z defines 36 grammati-
cal functions covering head and non-head infor-
mation, as well as subcategorization for comple-
ments and modifiers. Negra utilizes 48 grammat-
ical functions. Apart from commonly accepted
grammatical functions, such asSB (subject) or
OA (accusative object), Negra grammatical func-
tions comprise a more extended notion, e.g.RE
(repeated element) orRC (relative clause).

(6) Diese
This

Metapher
metaphor

kann
can

die
the

Freizeitmalerin
amateur painter

durchaus
by all means

auch
also

auf
to

ihr
her

Leben
life

anwenden.
apply.

’The amateur painter can by all means apply this
metaphor also to her life.’

Figure 1 shows a typical tree from the Negra
treebank for sentence (6). The syntactic categories
are shown in circular nodes, the grammatical func-
tions as edge labels in square boxes. A major
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Figure 2: A Negra tree with resolved crossing branches.
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Figure 3: A sample tree from Tüba-D/Z.

phrasal category that serves to structure the sen-
tence as a whole is the verb phrase (VP). It con-
tains non-finite verbs (here:anwenden) together
with their complements (here: the accusative ob-
ject Diese Metapher) and adjuncts (here: the ad-
verb durchausand the PP modifierauch auf ihr
Leben). The subject NP (here:die Freizeitma-
lerin) stands outside the VP and, depending on its
linear position, leads to crossing branches with the
VP. This happens in all cases where the subject
follows the finite verb as in Figure 1. Notice also
that the PP is completely flat and does not contain
an internal NP.

Another phenomenon that leads to the introduc-
tion of crossing branches in the Negra treebank are
discontinuous constituents of the kind illustrated
in section 2.3. Extraposed relative clauses, as in
(4), are analyzed in such a way that the relative
clause constituent is a sister of its head noun in the
Negra tree and crosses the branch that dominates
the intervening non-finite verbgelesen.

The crossing branches in the Negra treebank
cannot be processed by most probabilistic parsing
models since such parsers all presuppose a strictly
context-free tree structure. Therefore the Negra
trees must be transformed into proper trees prior
to training such parsers. The standard approach
for this transformation is to re-attach crossing non-

head constituents as sisters of the lowest mother
node that dominates all constituents in question in
the original Negra tree.

Figure 2 shows the result of this transformation
of the tree in Figure 1. Here, the fronted accusative
objectDiese Metapheris reattached on the clause
level. Crossing branches do not only arise with re-
spect to the subject at the sentence level but also in
cases of extraposition and fronting of partial con-
stituents. As a result, approximately 30% of all
Negra trees contain at least one crossing branch.
Thus, tree transformations have a major impact
on the type of constituent structures that are used
for training probabilistic parsing models. Previous
work, such as Dubey (2005), Dubey and Keller
(2003), and Schiehlen (2004), uses the version of
Negra in which the standard approach to resolving
crossing branches has been applied.

(7) Den
The

vorigen
previous

Sonntag
Sunday

hätte
would have

Frank
Frank

Michael
Michael

Nehr
Nehr

am liebsten
preferably

aus
from

dem
the

Kalender
calendar

gestrichen.
deleted.

’Frank Michael Nehr would rather have deleted the
previous Sunday from the calendar.’

Figure 3 shows the TüBa-D/Z annotation for
sentence (7), a sentence with almost identi-
cal phrasal ordering to sentence (6). Crossing
branches are avoided by the introduction of topo-
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Figure 4: TüBa-D/Z annotation without crossing branches.

logical structures (here: VF, MF and VC) into the
tree. Notice also that compared to the Negra anno-
tation, TüBa-D/Z introduces more internal struc-
ture into NPs and PPs.

(8) Für
For

diese
this

Behauptung
claim

hat
has

Beckmeyer
Beckmeyer

bisher
yet

keinen
no

Nachweis
evidence

geliefert.
provided.

’For this claim, Beckmeyer has not provided evi-
dence yet.’

In TüBa-D/Z, long-distance relationships are
represented by a pure tree structure and specific
functional labels. Figure 4 shows the TüBa-D/Z
annotation for sentence (8). In this sentence,
the prepositional phraseFür diese Behauptungis
fronted. Its functional label (OA-MOD ) provides
the information that it modifies the accusative ob-
ject (OA ) keinen Nachweis.

4 Experimental Setup

The main goals behind our experiments were
twofold: (1) to re-investigate the claim that lex-
icalization is detrimental for treebank parsing of
German, and (2) to compare the parsing results for
the two German treebanks.

To investigate the first issue, the Stanford Parser
(Klein and Manning, 2003b), a state-of-the-art
probabilistic parser, was trained with both lexical-
ized and unlexicalized versions of the two tree-
banks (Experiment I). For lexicalized parsing, the
Stanford Parser provides a factored probabilistic
model that combines a PCFG model with a depen-
dency model.

For the comparison between the two treebanks,
two types of experiments were performed: a
purely constituent-based comparison using both

the Stanford parser and the pure PCFG parser
LoPar (Schmid, 2000) (Experiment II), and an in-
depth evaluation of the three major grammatical
functions subject, accusative object, and dative
object, using the Stanford parser (Experiment III).

All three experiments use gold POS tags ex-
tracted from the treebanks as parser input. All
parsing results shown below are averaged over a
ten-fold cross-validation of the test data. Experi-
ments I and II used versions of the treebanks that
excluded grammatical information, thus only con-
tained constituent labeling. For Experiment III,
all syntactic labels were extended by their gram-
matical function (e.g NX-ON for a subject NP in
TüBa-D/Z or NP-SB for a Negra subject). Experi-
ments I and II included all sentences of a maximal
length of 40 words. Due to memory limitations
(7 GB), Experiment III had to be restricted to sen-
tences of a maximal length of 35 words.

5 Experiment I: Lexicalization

Experiment I investigates the effect of lexicaliza-
tion on parser performance for the Stanford Parser.
The results, summarized in Table 1, show that lex-
icalization improves parser performance for both
the Negra and the TüBa-D/Z treebank in compar-
ison to unlexicalized counterpart models: for la-
beled bracketing, an F-score improvement from
86.48 to 88.88 for TüBa-D/Z and an improve-
ment from 66.92 to 67.13 for Negra. This di-
rectly contradicts the findings reported by Dubey
and Keller (2003) that lexicalization has a nega-
tive effect on probabilistic parsing models for Ger-
man. We therefore conclude that these previous
claims, while valid for particular configurations of
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Negra TüBa-D/Z
precision recall F-score precision recall F-score

Stanford PCFG unlabeled 71.24 72.68 71.95 93.07 89.41 91.20
labeled 66.26 67.59 66.92 88.25 84.78 86.48

Stanford lexicalized unlabeled 71.31 73.12 72.20 91.60 91.21 91.36
labeled 66.30 67.99 67.13 89.12 88.65 88.88

Table 1: The results of lexicalizing German.

Negra TüBa-D/Z
precision recall F-score precision recall F-score

LoPar unlabeled 70.84 72.51 71.67 92.62 88.58 90.56
labeled 65.86 67.41 66.62 87.39 83.57 85.44

Stanford unlabeled 71.24 72.68 71.95 93.07 89.41 91.20
labeled 66.26 67.59 66.92 88.25 84.78 86.48

Stanford + markov unlabeled 74.13 74.12 74.12 92.28 90.90 91.58
labeled 69.96 69.95 69.95 89.86 88.51 89.18

Table 2: A comparison of unlexicalized parsing of Negra and TüBa-D/Z.

parsers and parameters, should not be generalized
to claims about probabilistic parsing of German in
general.

Experiment I also shows considerable differ-
ences in the overall scores between the two tree-
banks, with the F-scores for TüBa-D/Z parsing ap-
proximating scores reported for English, but with
Negra scores lagging behind by an average mar-
gin of appr. 20 points. Of course, it is impor-
tant to note that such direct comparisons with En-
glish are hardly possible due to different annota-
tion schemes, different underlying text corpora,
etc. Nevertheless, the striking difference in parser
performance between the two German treebanks
warrants further attention. Experiments II and III
will investigate this matter in more depth.

6 Experiment II: Different Parsers

The purpose of Experiment II is to rule out the pos-
sibility that the differences in parser performance
for the two German treebanks produced by Ex-
periment I may just be due to using a particular
parser – in this particular case the hybrid PCFG
and dependency model of the Stanford parser. Af-
ter all, Experiment I also yielded different results
concerning the received wisdom about the utility
of lexicalization from previously reported results.
In order to obtain a broader experimental base, un-
lexicalized models of the Stanford parser and the
pure PCFG parser LoPar were trained on both tree-
banks. In addition we experimented with two dif-
ferent parameter settings of the Stanford parser,

one with and one without markovization. The ex-
periment with markovization used parent informa-
tion (v=1) and a second order Markov model for
horizontal markovization (h=2). The results, sum-
marized in Table 2, show that parsing results for all
unlexicalized experiments show roughly the same
20 point difference in F-score that were obtained
for the lexicalized models in Experiment I. We
can therefore conclude that the difference in pars-
ing performance is robust across two parsers with
different parameter settings, such as lexicalization
and markovization.

Experiment II also confirms the finding of Klein
and Manning (2003a) and of Schiehlen (2004) that
horizontal and vertical markovization has a pos-
itive effect on parser performance. Notice also
that markovization with unlexicalized grammars
yields almost the same improvement as lexicaliza-
tion does in Experiment I.

7 Experiment III: Grammatical
Functions

In Experiments I and II, only constituent structure
was evaluated, which is highly annotation depen-
dent. It could simply be the case that the TüBa-
D/Z annotation scheme contains many local struc-
tures that can be easily parsed by a PCFG model
or the hybrid Stanford model. Moreover, such
easy to parse structures may not be of great im-
portance when it comes to determining the cor-
rect macrostructure of a sentence. To empirically
verify such a conjecture, a separate evaluation of
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Negra TüBa-D/Z
lab. prec. lab. rec. lab. F-score lab. prec. lab. rec. lab. F-score

without gramm. functions 69.96 69.95 69.95 89.86 88.51 89.18
all gramm. functions 47.20 56.43 51.41 75.73 74.93 75.33
subjects 52.50 58.02 55.12 66.82 75.93 71.08
accusative objects 35.14 36.30 35.71 43.84 47.31 45.50
dative objects 8.38 3.58 5.00 24.46 9.96 14.07

Table 3: A comparison of unlexicalized, markovized parsingof constituent structure and grammatical
functions in Negra and TüBa-D/Z.

parser performance for different constituent types
would be necessary. However, even such an eval-
uation would only be meaningful if the annotation
schemes agree on the defining characteristics of
such constituent types. Unfortunately, this is not
the case for the two treebanks under considera-
tion. Even for arguably theory-neutral constituents
such as NPs, the two treebanks differ considerably.
In the Negra annotation scheme, single word NPs
directly project from the POS level to the clausal
level, while in TüBa-D/Z, they project by a unary
rule first to an NP. An extreme case of this Negra
annotation is shown in Figure 5 for sentence (9).
Here, all the phrases are one word phrases and are
thus projected directly to the clause level.

(9) Moran
Moran

ist
is

längst
already

weiter.
further

’Moran is already one step ahead.’

There is an even more important motivation
for not focusing on the standard constituent-based
parseval measures – at least when parsing Ger-
man. As discussed earlier in section 2.2, obtain-
ing the correct constituent structure for a German
sentence will often not be sufficient for determin-
ing its intended meaning. Due to the word order
freeness of phrases, a given NP in any one po-
sition may in principle fulfill different grammat-
ical functions in the sentence as a whole. There-
fore grammatical functions need to be explicitly
marked in the treebank and correctly assigned dur-
ing parsing. Since both treebanks encode gram-

matical functions, this information is available for
parsing and can ultimately lead to a more mean-
ingful comparison of the two treebanks when used
for parsing.

The purpose of Experiment III is to investigate
parser performance on the treebanks when gram-
matical functions are included in the trees. For
these experiments, the unlexicalized, markovized
PCFG version of the Stanford parser was used,
with markovization parameters v=1 and h=2, as
in Experiment II. The results of this experiment
are shown in Table 3. The comparison of the ex-
periments with (line 2) and without grammatical
functions (line 1) confirms the findings of Dubey
and Keller (2003) that the task of assigning cor-
rect grammatical functions is harder than mere
constituent-based parsing. When evaluating on all
grammatical functions, the results for Negra de-
crease from 69.95 to 51.41, and for TüBa-D/Z
from 89.18 to 75.33. Notice however, that the rela-
tive differences between Negra and TüBa-D/Z that
were true for Experiments I and II remain more or
less constant for this experiment as well.

In order to get a clearer picture of the quality
of the parser output for each treebank, it is im-
portant to consider individual grammatical func-
tions. As discussed in section 3, the overall in-
ventory of grammatical functions is different for
the two treebanks. We therefore evaluated those
grammatical functions separately that are crucial
for determining function-argument structure and
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that are at the same time the most comparable for
the two treebanks. These are the functions of sub-
ject (encoded asSB in Negra and asON in TüBa-
D/Z), accusative object (OA ), and dative object
(DA in Negra andOD in TüBa-D/Z). Once again,
the results are consistently better for TüBa-D/Z
(cf. lines 3-5 in Table 3), with subjects yielding
the highest results (71.08 vs. 55.12 F-score) and
dative objects the lowest results (14.07 vs. 5.00).
The latter results must be attributed to data sparse-
ness, dative object occur only appr. 1 000 times
in each treebank while subjects occur more than
15 000 times.

8 Discussion

The experiments presented in sections 5-7 show
that there is a difference in results of appr. 20%
between Negra and TüBa-D/Z. This difference is
consistent throughout, i.e. with different parsers,
under lexicalization and markovization. These re-
sults lead to the conjecture that the reasons for
these differences must be sought in the differences
in the annotation schemes of the two treebanks.

In section 3, we showed that one of the ma-
jor differences in annotation is the treatment of
discontinuous constituents. In Negra, such con-
stituents are annotated via crossing branches,
which have to be resolved before parsing. In such
cases, constituents are extracted from their mother
constituents and reattached at higher constituents.
In the case of the discontinuous VP in Figure 1,
it leads to a VP rule with the following daugh-
ters: head (HD ) and modifier (MO ), while the
accusative object is directly attached at the sen-
tence level as a sister of the VP. This conversion
leads to inconsistencies in the training data since
the annotation scheme requires that object NPs are
daughters of the VP rather than of S. The incon-
sistency introduced by tree conversion are con-
siderable since they cover appr. 30% of all Ne-
gra trees (cf. section 3). One possible explana-
tion for the better performance of Tüba-D/Z might
be that it has more information about the correct
attachment site of extraposed constituents, which
is completely lacking in the context-free version
of Negra. For this reason, Kübler (2005) and
Maier (2006) tested a version of Negra which con-
tained information of the original attachment site
of these discontinuous constituents. In this ver-
sion of Negra, the grammatical functionOA in
Figure 2 would be changed toOA�VP to show

that it was originally attached to the VP. Experi-
ments with this version showed a decrease in F-
score from 52.30 to 49.75. Consequently, adding
this information in a similar way to the encoding
of discontinuous constituents in Tüba-D/Z harms
performance.

By contrast, TüBa-D/Z uses topological fields
as the primary structuring principle, which leads to
a purely context-free annotation of discontinuous
structures. There is evidence that the use of topo-
logical fields is advantageous also for other pars-
ing approaches (Frank et al., 2003; Kübler, 2005;
Maier, 2006).

Another difference in the annotation schemes
concerns the treatment of phrases. Negra phrases
are flat, and unary projections are not annotated.
TüBa-D/Z always projects to the phrasal category
and annotates more phrase-internal structure. The
deeper structures in TüBa-D/Z lead to fewer rules
for phrasal categories, which allows the parser a
more consistent treatment of such phrases. For ex-
ample, the direct attachment of one word subjects
on the clausal level in Negra leads to a high num-
ber of different S rules with different POS tags for
the subject phrase. An empirical proof for the as-
sumption that flat phrase structures and the omis-
sion of unary nodes decrease parsing results is pre-
sented by Kübler (2005) and Maier (2006).

We want to emphasize that our experiments
concentrate on the original context-free annota-
tions of the treebanks. We did not investigate
the influence of treebank refinement in this study.
However, we would like to note that by a com-
bination of suffix analysis and smoothing, Dubey
(2005) was able to obtain an F-score of 85.2 for
Negra. For other work in the area of treebank re-
finement using the German treebanks see Kübler
(2005), Maier (2006), and Ule (2003).

9 Conclusion and Future Work

We have presented a comparative study of proba-
bilistic treebank parsing of German, using the Ne-
gra and TüBa-D/Z treebanks. Experiments with
the Stanford parser, which uses a factored PCFG
and dependency model, show that, contrary to
previous claims for other parsers, lexicalization
of PCFG models boosts parsing performance for
both treebanks. The experiments also show that
there is a big difference in parsing performance,
when trained on the Negra and on the TüBa-D/Z
treebanks. This difference remains constant across
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lexicalized, unlexicalized (also using the LoPar
parser), and markovized models and also extends
to parsing of major grammatical functions. Parser
performance for the models trained on TüBa-D/Z
are comparable to parsing results for English with
the Stanford parser, when trained on the Penn tree-
bank. This comparison at least suggests that Ger-
man is not harder to parse than its West-Germanic
neighbor language English.

Additional experiments with the TüBa-D/Z
treebank are planned in future work. A new re-
lease of the TüBa-D/Z treebank has become avail-
able that includes appr. 22 000 trees, instead of
the release with 15 000 sentences used for the ex-
periments reported in this paper. This new re-
lease also contains morphological information at
the POS level, including case and number. With
this additional information, we expect consider-
able improvement in grammatical function assign-
ment for the functionssubject, accusative object,
anddative object, which are marked by nomina-
tive, accusative, and dative case, respectively.
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Tübingen Treebank of Written German (TüBa-
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Abstract

Discriminative learning methods are
widely used in natural language process-
ing. These methods work best when their
training and test data are drawn from the
same distribution. For many NLP tasks,
however, we are confronted with new
domains in which labeled data is scarce
or non-existent. In such cases, we seek
to adapt existing models from a resource-
rich source domain to a resource-poor
target domain. We introduce structural
correspondence learning to automatically
induce correspondences among features
from different domains. We test our tech-
nique on part of speech tagging and show
performance gains for varying amounts
of source and target training data, as well
as improvements in target domain parsing
accuracy using our improved tagger.

1 Introduction

Discriminative learning methods are ubiquitous in
natural language processing. Discriminative tag-
gers and chunkers have been the state-of-the-art
for more than a decade (Ratnaparkhi, 1996; Sha
and Pereira, 2003). Furthermore, end-to-end sys-
tems like speech recognizers (Roark et al., 2004)
and automatic translators (Och, 2003) use increas-
ingly sophisticated discriminative models, which
generalize well to new data that is drawn from the
same distribution as the training data.

However, in many situations we may have a
source domain with plentiful labeled training data,
but we need to process material from a target do-
main with a different distribution from the source
domain and no labeled data. In such cases, we
must take steps to adapt a model trained on the
source domain for use in the target domain (Roark
and Bacchiani, 2003; Florian et al., 2004; Chelba

and Acero, 2004; Ando, 2004; Lease and Char-
niak, 2005; Daumé III and Marcu, 2006). This
work focuses on using unlabeled data from both
the source and target domains to learn a common
feature representation that is meaningful across
both domains. We hypothesize that a discrimi-
native model trained in the source domain using
this common feature representation will general-
ize better to the target domain.

This representation is learned using a method
we call structural correspondence learning (SCL).
The key idea of SCL is to identify correspon-
dences among features from different domains by
modeling their correlations with pivot features.
Pivot features are features which behave in the
same way for discriminative learning in both do-
mains. Non-pivot features from different domains
which are correlated with many of the same pivot
features are assumed to correspond, and we treat
them similarly in a discriminative learner.

Even on the unlabeled data, the co-occurrence
statistics of pivot and non-pivot features are likely
to be sparse, and we must model them in a com-
pact way. There are many choices for modeling
co-occurrence data (Brown et al., 1992; Pereira
et al., 1993; Blei et al., 2003). In this work we
choose to use the technique of structural learn-
ing (Ando and Zhang, 2005a; Ando and Zhang,
2005b). Structural learning models the correla-
tions which are most useful for semi-supervised
learning. We demonstrate how to adapt it for trans-
fer learning, and consequently the structural part
of structural correspondence learning is borrowed
from it.1

SCL is a general technique, which one can ap-
ply to feature based classifiers for any task. Here,

1Structural learning is different from learning with struc-
tured outputs, a common paradigm for discriminative nat-
ural language processing models. To avoid terminologi-
cal confusion, we refer throughout the paper to a specific
structural learning method, alternating structural optimiza-
tion (ASO) (Ando and Zhang, 2005a).

120



(a) Wall Street Journal
DT JJ VBZ DT NN IN DT JJ NN
The clash is a sign of a new toughness
CC NN IN NNP POS JJ JJ NN .
and divisiveness in Japan ’s once-cozy financial circles .

(b) MEDLINE
DT JJ VBN NNS IN DT NN NNS VBP
The oncogenic mutated forms of the ras proteins are
RB JJ CC VBP IN JJ NN NN .

constitutively active and interfere with normal signal transduction .

Figure 1: Part of speech-tagged sentences from both corpora

we investigate its use in part of speech (PoS) tag-
ging (Ratnaparkhi, 1996; Toutanova et al., 2003).
While PoS tagging has been heavily studied, many
domains lack appropriate training corpora for PoS
tagging. Nevertheless, PoS tagging is an impor-
tant stage in pipelined language processing sys-
tems, from information extractors to speech syn-
thesizers. We show how to use SCL to transfer a
PoS tagger from the Wall Street Journal (financial
news) to MEDLINE (biomedical abstracts), which
use very different vocabularies, and we demon-
strate not only improved PoS accuracy but also
improved end-to-end parsing accuracy while using
the improved tagger.

An important but rarely-explored setting in do-
main adaptation is when we have no labeled
training data for the target domain. We first
demonstrate that in this situation SCL significantly
improves performance over both supervised and
semi-supervised taggers. In the case when some
in-domain labeled training data is available, we
show how to use SCL together with the classifier
combination techniques of Florian et al. (2004) to
achieve even greater performance.

In the next section, we describe a motivating
example involving financial news and biomedical
data. Section 3 describes the structural correspon-
dence learning algorithm. Sections 6 and 7 report
results on adapting from the Wall Street Journal to
MEDLINE. We discuss related work on domain
adaptation in section 8 and conclude in section 9.

2 A Motivating Example

Figure 1 shows two PoS-tagged sentences, one
each from the Wall Street Journal (hereafter WSJ)
and MEDLINE. We chose these sentences for two
reasons. First, we wish to visually emphasize the
difference between the two domains. The vocab-
ularies differ significantly, and PoS taggers suf-
fer accordingly. Second, we want to focus on the

(a) An ambiguous instance

JJ vs. NN
with normal signal transduction

(b) MEDLINE occurrences of
signal, together with pivot
features

the signal required to
stimulatory signal from
essential signal for

(c) Corresponding WSJ
words, together with pivot
features

of investment required
of buyouts from buyers
to jail for violating

Figure 2: Correcting an incorrect biomedical tag.
Corresponding words are in bold, and pivot fea-
tures are italicized

phrase “with normal signal transduction” from the
MEDLINE sentence, depicted in Figure 2(a). The
word “signal” in this sentence is a noun, but a tag-
ger trained on the WSJ incorrectly classifies it as
an adjective. We introduce the notion of pivot fea-
tures. Pivot features are features which occur fre-
quently in the two domains and behave similarly
in both. Figure 2(b) shows some pivot features
that occur together with the word “signal” in our
biomedical unlabeled data. In this case our pivot
features are all of type <the token on the
right>. Note that “signal” is unambiguously a
noun in these contexts. Adjectives rarely precede
past tense verbs such as “required” or prepositions
such as “from” and “for”.

We now search for occurrences of the pivot fea-
tures in the WSJ. Figure 2(c) shows some words
that occur together with the pivot features in the
WSJ unlabeled data. Note that “investment”,
“buy-outs”, and “jail” are all common nouns in the
financial domain. Furthermore, since we have la-
beled WSJ data, we expect to be able to label at
least some of these nouns correctly.

This example captures the intuition behind
structural correspondence learning. We want to
use pivot features from our unlabeled data to put
domain-specific words in correspondence. That is,
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Input: labeled source data {(xt, yt)
T
t=1},

unlabeled data from both domains {xj}

Output: predictor f : X → Y

1. Choose m pivot features. Create m binary
prediction problems, p`(x), ` = 1 . . . m

2. For ` = 1 to m

ŵ` = argmin
w

“

P

j
L(w · xj , p`(xj))+

λ||w||2
”

end

3. W = [ŵ1| . . . |ŵm], [U D V T ] = SVD(W ),
θ = UT

[1:h,:]

4. Return f , a predictor trained

on

(

„»

xt

θxi

–

, yt

«T

t=1

)

Figure 3: SCL Algorithm

we want the pivot features to model the fact that in
the biomedical domain, the word signal behaves
similarly to the words investments, buyouts and
jail in the financial news domain. In practice, we
use this technique to find correspondences among
all features, not just word features.

3 Structural Correspondence Learning

Structural correspondence learning involves a
source domain and a target domain. Both domains
have ample unlabeled data, but only the source do-
main has labeled training data. We refer to the task
for which we have labeled training data as the su-
pervised task. In our experiments, the supervised
task is part of speech tagging. We require that the
input x in both domains be a vector of binary fea-
tures from a finite feature space. The first step of
SCL is to define a set of pivot features on the unla-
beled data from both domains. We then use these
pivot features to learn a mapping θ from the orig-
inal feature spaces of both domains to a shared,
low-dimensional real-valued feature space. A high
inner product in this new space indicates a high de-
gree of correspondence.

During supervised task training, we use both
the transformed and original features from the
source domain. During supervised task testing, we
use the both the transformed and original features
from the target domain. If we learned a good map-
ping θ, then the classifier we learn on the source
domain will also be effective on the target domain.
The SCL algorithm is given in Figure 3, and the
remainder of this section describes it in detail.

3.1 Pivot Features

Pivot features should occur frequently in the un-
labeled data of both domains, since we must esti-
mate their covariance with non-pivot features ac-
curately, but they must also be diverse enough
to adequately characterize the nuances of the su-
pervised task. A good example of this tradeoff
are determiners in PoS tagging. Determiners are
good pivot features, since they occur frequently
in any domain of written English, but choosing
only determiners will not help us to discriminate
between nouns and adjectives. Pivot features cor-
respond to the auxiliary problems of Ando and
Zhang (2005a).

In section 2, we showed example pivot fea-
tures of type <the token on the right>.
We also use pivot features of type <the token
on the left> and <the token in the
middle>. In practice there are many thousands
of pivot features, corresponding to instantiations
of these three types for frequent words in both do-
mains. We choose m pivot features, which we in-
dex with `.

3.2 Pivot Predictors

From each pivot feature we create a binary clas-
sification problem of the form “Does pivot fea-
ture ` occur in this instance?”. One such ex-
ample is “Is <the token on the right>
required?” These binary classification problems
can be trained from the unlabeled data, since they
merely represent properties of the input. If we rep-
resent our features as a binary vector x, we can
solve these problems using m linear predictors.

f`(x) = sgn(ŵ` · x), ` = 1 . . . m

Note that these predictors operate on the original
feature space. This step is shown in line 2 of Fig-
ure 3. Here L(p, y) is a real-valued loss func-
tion for binary classification. We follow Ando and
Zhang (2005a) and use the modified Huber loss.

Since each instance contains features which are
totally predictive of the pivot feature (the feature
itself), we never use these features when making
the binary prediction. That is, we do not use any
feature derived from the right word when solving
a right token pivot predictor.

The pivot predictors are the key element in SCL.
The weight vectors ŵ` encode the covariance of
the non-pivot features with the pivot features. If
the weight given to the z’th feature by the `’th
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pivot predictor is positive, then feature z is posi-
tively correlated with pivot feature `. Since pivot
features occur frequently in both domains, we ex-
pect non-pivot features from both domains to be
correlated with them. If two non-pivot features are
correlated in the same way with many of the same
pivot features, then they have a high degree of cor-
respondence. Finally, observe that ŵ` is a linear
projection of the original feature space onto R.

3.3 Singular Value Decomposition

Since each pivot predictor is a projection onto R,
we could create m new real-valued features, one
for each pivot. For both computational and statis-
tical reasons, though, we follow Ando and Zhang
(2005a) and compute a low-dimensional linear ap-
proximation to the pivot predictor space. Let W

be the matrix whose columns are the pivot pre-
dictor weight vectors. Now let W = UDV T be
the singular value decomposition of W , so that
θ = UT

[1:h,:] is the matrix whose rows are the top
left singular vectors of W .

The rows of θ are the principal pivot predictors,
which capture the variance of the pivot predictor
space as best as possible in h dimensions. Further-
more, θ is a projection from the original feature
space onto R

h. That is, θx is the desired mapping
to the (low dimensional) shared feature represen-
tation. This is step 3 of Figure 3.

3.4 Supervised Training and Inference

To perform inference and learning for the super-
vised task, we simply augment the original fea-
ture vector with features obtained by applying the
mapping θ. We then use a standard discrimina-
tive learner on the augmented feature vector. For
training instance t, the augmented feature vector
will contain all the original features xt plus the
new shared features θxt. If we have designed the
pivots well, then θ should encode correspondences
among features from different domains which are
important for the supervised task, and the classi-
fier we train using these new features on the source
domain will perform well on the target domain.

4 Model Choices

Structural correspondence learning uses the tech-
niques of alternating structural optimization
(ASO) to learn the correlations among pivot and
non-pivot features. Ando and Zhang (2005a) de-
scribe several free paramters and extensions to

ASO, and we briefly address our choices for these
here. We set h, the dimensionality of our low-rank
representation to be 25. As in Ando and Zhang
(2005a), we observed that setting h between 20
and 100 did not change results significantly, and a
lower dimensionality translated to faster run-time.
We also implemented both of the extensions de-
scribed in Ando and Zhang (2005a). The first is
to only use positive entries in the pivot predictor
weight vectors to compute the SVD. This yields
a sparse representation which saves both time and
space, and it also performs better. The second is to
compute block SVDs of the matrix W , where one
block corresponds to one feature type. We used
the same 58 feature types as Ratnaparkhi (1996).
This gave us a total of 1450 projection features for
both semisupervised ASO and SCL.

We found it necessary to make a change to the
ASO algorithm as described in Ando and Zhang
(2005a). We rescale the projection features to al-
low them to receive more weight from a regular-
ized discriminative learner. Without any rescaling,
we were not able to reproduce the original ASO
results. The rescaling parameter is a single num-
ber, and we choose it using heldout data from our
source domain. In all our experiments, we rescale
our projection features to have average L1 norm on
the training set five times that of the binary-valued
features.

Finally, we also make one more change to make
optimization faster. We select only half of the
ASO features for use in the final model. This
is done by running a few iterations of stochas-
tic gradient descent on the PoS tagging problem,
then choosing the features with the largest weight-
variance across the different labels. This cut in
half training time and marginally improved perfor-
mance in all our experiments.

5 Data Sets and Supervised Tagger

5.1 Source Domain: WSJ

We used sections 02-21 of the Penn Treebank
(Marcus et al., 1993) for training. This resulted in
39,832 training sentences. For the unlabeled data,
we used 100,000 sentences from a 1988 subset of
the WSJ.

5.2 Target Domain: Biomedical Text

For unlabeled data we used 200,000 sentences that
were chosen by searching MEDLINE for abstracts
pertaining to cancer, in particular genomic varia-
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company

transaction

investors

officials yourpretty

short-term

political

receptors mutation

assays

lesions functional

transientneuronal

metastatic

WSJ Only

MEDLINE Only

Figure 4: An example projection of word features onto R. Words on the left (negative valued) behave
similarly to each other for classification, but differently from words on the right (positive valued). The
projection distinguishes nouns from adjectives and determiners in both domains.

tions and mutations. For labeled training and test-
ing purposes we use 1061 sentences that have been
annotated by humans as part of the Penn BioIE
project (PennBioIE, 2005). We use the same 561-
sentence test set in all our experiments. The part-
of-speech tag set for this data is a superset of
the Penn Treebank’s including the two new tags
HYPH (for hyphens) and AFX (for common post-
modifiers of biomedical entities such as genes).
These tags were introduced due to the importance
of hyphenated entities in biomedical text, and are
used for 1.8% of the words in the test set. Any
tagger trained only on WSJ text will automatically
predict wrong tags for those words.

5.3 Supervised Tagger

Since SCL is really a method for inducing a set
of cross-domain features, we are free to choose
any feature-based classifier to use them. For
our experiments we use a version of the discrim-
inative online large-margin learning algorithm
MIRA (Crammer et al., 2006). MIRA learns and
outputs a linear classification score, s(x,y;w) =
w · f(x,y), where the feature representation f can
contain arbitrary features of the input, including
the correspondence features described earlier. In
particular, MIRA aims to learn weights so that
the score of correct output, yt, for input xt is
separated from the highest scoring incorrect out-
puts2, with a margin proportional to their Ham-
ming losses. MIRA has been used successfully for
both sequence analysis (McDonald et al., 2005a)
and dependency parsing (McDonald et al., 2005b).

As with any structured predictor, we need to
factor the output space to make inference tractable.
We use a first-order Markov factorization, allow-
ing for an efficient Viterbi inference procedure.

2We fix the number of high scoring incorrect outputs to 5.

6 Visualizing θ

In section 2 we claimed that good representations
should encode correspondences between words
like “signal” from MEDLINE and “investment”
from the WSJ. Recall that the rows of θ are pro-
jections from the original feature space onto the
real line. Here we examine word features under
these projections. Figure 4 shows a row from
the matrix θ. Applying this projection to a word
gives a real value on the horizontal dashed line
axis. The words below the horizontal axis occur
only in the WSJ. The words above the axis occur
only in MEDLINE. The verticle line in the mid-
dle represents the value zero. Ticks to the left or
right indicate relative positive or negative values
for a word under this projection. This projection
discriminates between nouns (negative) and adjec-
tives (positive). A tagger which gives high pos-
itive weight to the features induced by applying
this projection will be able to discriminate among
the associated classes of biomedical words, even
when it has never observed the words explicitly in
the WSJ source training set.

7 Empirical Results

All the results we present in this section use the
MIRA tagger from Section 5.3. The ASO and
structural correspondence results also use projec-
tion features learned using ASO and SCL. Sec-
tion 7.1 presents results comparing structural cor-
respondence learning with the supervised baseline
and ASO in the case where we have no labeled
data in the target domain. Section 7.2 gives results
for the case where we have some limited data in
the target domain. In this case, we use classifiers
as features as described in Florian et al. (2004).
Finally, we show in Section 7.3 that our SCL PoS
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(a)

100  500  1k 5k 40k
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Results for 561 MEDLINE Test Sentences
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(b) Accuracy on 561-sentence test set
Words

Model All Unknown
Ratnaparkhi (1996) 87.2 65.2

supervised 87.9 68.4
semi-ASO 88.4 70.9

SCL 88.9 72.0

(c) Statistical Significance (McNemar’s)
for all words

Null Hypothesis p-value
semi-ASO vs. super 0.0015

SCL vs. super 2.1 × 10−12

SCL vs. semi-ASO 0.0003

Figure 5: PoS tagging results with no target labeled training data
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Results for 561 MEDLINE Test Sentences

40k−SCL
40k−super
1k−SCL
1k−super
nosource

(b) 500 target domain training sentences
Model Testing Accuracy

nosource 94.5

1k-super 94.5
1k-SCL 95.0

40k-super 95.6
40k-SCL 96.1

(c) McNemar’s Test (500 training sentences)
Null Hypothesis p-value

1k-super vs. nosource 0.732

1k-SCL vs. 1k-super 0.0003

40k-super vs. nosource 1.9 × 10−12

40k-SCL vs. 40k-super 6.5 × 10−7

Figure 6: PoS tagging results with no target labeled training data

tagger improves the performance of a dependency
parser on the target domain.

7.1 No Target Labeled Training Data

For the results in this section, we trained a
structural correspondence learner with 100,000
sentences of unlabeled data from the WSJ and
100,000 sentences of unlabeled biomedical data.
We use as pivot features words that occur more
than 50 times in both domains. The supervised
baseline does not use unlabeled data. The ASO
baseline is an implementation of Ando and Zhang
(2005b). It uses 200,000 sentences of unlabeled
MEDLINE data but no unlabeled WSJ data. For
ASO we used as auxiliary problems words that oc-
cur more than 500 times in the MEDLINE unla-
beled data.

Figure 5(a) plots the accuracies of the three
models with varying amounts of WSJ training
data. With one hundred sentences of training
data, structural correspondence learning gives a
19.1% relative reduction in error over the super-
vised baseline, and it consistently outperforms
both baseline models. Figure 5(b) gives results
for 40,000 sentences, and Figure 5(c) shows cor-
responding significance tests, with p < 0.05 be-
ing significant. We use a McNemar paired test for
labeling disagreements (Gillick and Cox, 1989).
Even when we use all the WSJ training data avail-
able, the SCL model significantly improves accu-
racy over both the supervised and ASO baselines.

The second column of Figure 5(b) gives un-
known word accuracies on the biomedical data.
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Of thirteen thousand test instances, approximately
three thousand were unknown. For unknown
words, SCL gives a relative reduction in error of
19.5% over Ratnaparkhi (1996), even with 40,000
sentences of source domain training data.

7.2 Some Target Labeled Training Data

In this section we give results for small amounts of
target domain training data. In this case, we make
use of the out-of-domain data by using features of
the source domain tagger’s predictions in training
and testing the target domain tagger (Florian et al.,
2004). Though other methods for incorporating
small amounts of training data in the target domain
were available, such as those proposed by Chelba
and Acero (2004) and by Daumé III and Marcu
(2006), we chose this method for its simplicity and
consistently good performance. We use as features
the current predicted tag and all tag bigrams in a
5-token window around the current token.

Figure 6(a) plots tagging accuracy for varying
amounts of MEDLINE training data. The two
horizontal lines are the fixed accuracies of the
SCL WSJ-trained taggers using one thousand and
forty thousand sentences of training data. The five
learning curves are for taggers trained with vary-
ing amounts of target domain training data. They
use features on the outputs of taggers from sec-
tion 7.1. The legend indicates the kinds of features
used in the target domain (in addition to the stan-
dard features). For example, “40k-SCL” means
that the tagger uses features on the outputs of an
SCL source tagger trained on forty thousand sen-
tences of WSJ data. “nosource” indicates a tar-
get tagger that did not use any tagger trained on
the source domain. With 1000 source domain sen-
tences and 50 target domain sentences, using SCL
tagger features gives a 20.4% relative reduction
in error over using supervised tagger features and
a 39.9% relative reduction in error over using no
source features.

Figure 6(b) is a table of accuracies for 500 tar-
get domain training sentences, and Figure 6(c)
gives corresponding significance scores. With
1000 source domain sentences and 500 target do-
main sentences, using supervised tagger features
gives no improvement over using no source fea-
tures. Using SCL features still does, however.

7.3 Improving Parser Performance

We emphasize the importance of PoS tagging in a
pipelined NLP system by incorporating our SCL

100  500  1k 5k 40k
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62

66

70

74

78

82

Dependency Parsing for 561 Test Sentences

Number of WSJ Training Sentences

A
cc

ur
ac

y

supervised
SCL
gold

Figure 7: Dependency parsing results using differ-
ent part of speech taggers

tagger into a WSJ-trained dependency parser and
and evaluate it on MEDLINE data. We use the
parser described by McDonald et al. (2005b). That
parser assumes that a sentence has been PoS-
tagged before parsing. We train the parser and PoS
tagger on the same size of WSJ data.

Figure 7 shows dependency parsing accuracy on
our 561-sentence MEDLINE test set. We parsed
the sentences using the PoS tags output by our
source domain supervised tagger, the SCL tagger
from subsection 7.1, and the gold PoS tags. All
of the differences in this figure are significant ac-
cording to McNemar’s test. The SCL tags consis-
tently improve parsing performance over the tags
output by the supervised tagger. This is a rather in-
direct method of improving parsing performance
with SCL. In the future, we plan on directly incor-
porating SCL features into a discriminative parser
to improve its adaptation properties.

8 Related Work

Domain adaptation is an important and well-
studied area in natural language processing. Here
we outline a few recent advances. Roark and Bac-
chiani (2003) use a Dirichlet prior on the multi-
nomial parameters of a generative parsing model
to combine a large amount of training data from a
source corpus (WSJ), and small amount of train-
ing data from a target corpus (Brown). Aside
from Florian et al. (2004), several authors have
also given techniques for adapting classification to
new domains. Chelba and Acero (2004) first train
a classifier on the source data. Then they use max-
imum a posteriori estimation of the weights of a
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maximum entropy target domain classifier. The
prior is Gaussian with mean equal to the weights
of the source domain classifier. Daumé III and
Marcu (2006) use an empirical Bayes model to es-
timate a latent variable model grouping instances
into domain-specific or common across both do-
mains. They also jointly estimate the parameters
of the common classification model and the do-
main specific classification models. Our work fo-
cuses on finding a common representation for fea-
tures from different domains, not instances. We
believe this is an important distinction, since the
same instance can contain some features which are
common across domains and some which are do-
main specific.

The key difference between the previous four
pieces of work and our own is the use of unlabeled
data. We do not require labeled training data in
the new domain to demonstrate an improvement
over our baseline models. We believe this is essen-
tial, since many domains of application in natural
language processing have no labeled training data.
Lease and Charniak (2005) adapt a WSJ parser
to biomedical text without any biomedical tree-
banked data. However, they assume other labeled
resources in the target domain. In Section 7.3 we
give similar parsing results, but we adapt a source
domain tagger to obtain the PoS resources.

To the best of our knowledge, SCL is the first
method to use unlabeled data from both domains
for domain adaptation. By using just the unlabeled
data from the target domain, however, we can view
domain adaptation as a standard semisupervised
learning problem. There are many possible ap-
proaches for semisupservised learning in natural
language processing, and it is beyond the scope
of this paper to address them all. We chose to
compare with ASO because it consistently outper-
forms cotraining (Blum and Mitchell, 1998) and
clustering methods (Miller et al., 2004). We did
run experiments with the top-k version of ASO
(Ando and Zhang, 2005a), which is inspired by
cotraining but consistently outperforms it. This
did not outperform the supervised method for do-
main adaptation. We speculate that this is because
biomedical and financial data are quite different.
In such a situation, bootstrapping techniques are
likely to introduce too much noise from the source
domain to be useful.

Structural correspondence learning is most sim-
ilar to that of Ando (2004), who analyzed a

situation with no target domain labeled data.
Her model estimated co-occurrence counts from
source unlabeled data and then used the SVD of
this matrix to generate features for a named en-
tity recognizer. Our ASO baseline uses unlabeled
data from the target domain. Since this consis-
tently outperforms unlabeled data from only the
source domain, we report only these baseline re-
sults. To the best of our knowledge, this is the first
work to use unlabeled data from both domains to
find feature correspondences.

One important advantage that this work shares
with Ando (2004) is that an SCL model can be
easily combined with all other domain adaptation
techniques (Section 7.2). We are simply induc-
ing a feature representation that generalizes well
across domains. This feature representation can
then be used in all the techniques described above.

9 Conclusion

Structural correspondence learning is a marriage
of ideas from single domain semi-supervised
learning and domain adaptation. It uses unla-
beled data and frequently-occurring pivot features
from both source and target domains to find corre-
spondences among features from these domains.
Finding correspondences involves estimating the
correlations between pivot and non-pivot feautres,
and we adapt structural learning (ASO) (Ando and
Zhang, 2005a; Ando and Zhang, 2005b) for this
task. SCL is a general technique that can be ap-
plied to any feature-based discriminative learner.

We showed results using SCL to transfer a PoS
tagger from the Wall Street Journal to a corpus
of MEDLINE abstracts. SCL consistently out-
performed both supervised and semi-supervised
learning with no labeled target domain training
data. We also showed how to combine an SCL
tagger with target domain labeled data using the
classifier combination techniques from Florian et
al. (2004). Finally, we improved parsing perfor-
mance in the target domain when using the SCL
PoS tagger.

One of our next goals is to apply SCL directly
to parsing. We are also focusing on other po-
tential applications, including chunking (Sha and
Pereira, 2003), named entity recognition (Florian
et al., 2004; Ando and Zhang, 2005b; Daumé III
and Marcu, 2006), and speaker adaptation (Kuhn
et al., 1998). Finally, we are investigating more
direct ways of applying structural correspondence
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learning when we have labeled data from both
source and target domains. In particular, the la-
beled data of both domains, not just the unlabeled
data, should influence the learned representations.
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Abstract

Integer Linear Programming has recently
been used for decoding in a number of
probabilistic models in order to enforce
global constraints. However, in certain ap-
plications, such as non-projective depen-
dency parsing and machine translation,
the complete formulation of the decod-
ing problem as an integer linear program
renders solving intractable. We present an
approach which solves the problem in-
crementally, thus we avoid creating in-
tractable integer linear programs. This ap-
proach is applied to Dutch dependency
parsing and we show how the addition
of linguistically motivated constraints can
yield a significant improvement over state-
of-the-art.

1 Introduction

Many inference algorithms require models to
make strong assumptions of conditional indepen-
dence between variables. For example, the Viterbi
algorithm used for decoding in conditional ran-
dom fields requires the model to be Markovian.
Strong assumptions are also made in the case of
McDonald et al.’s (2005b) non-projective depen-
dency parsing model. Here attachment decisions
are made independently of one another1. However,
often such assumptions can not be justified. For
example in dependency parsing, if a subject has
already been identified for a given verb, then the
probability of attaching a second subject to the
verb is zero. Similarly, if we find that one coor-
dination argument is a noun, then the other argu-

1If we ignore the constraint that dependency trees must be
cycle-free (see sections 2 and 3 for details).

ment cannot be a verb. Thus decisions are often
co-dependent.

Integer Linear Programming (ILP) has recently
been applied to inference in sequential condi-
tional random fields (Roth and Yih, 2004), this
has allowed the use of truly global constraints
during inference. However, it is not possible to
use this approach directly for a complex task like
non-projective dependency parsing due to the ex-
ponential number of constraints required to pre-
vent cycles occurring in the dependency graph.
To model all these constraints explicitly would re-
sult in an ILP formulation too large to solve effi-
ciently (Williams, 2002). A similar problem also
occurs in an ILP formulation for machine transla-
tion which treats decoding as the Travelling Sales-
man Problem (Germann et al., 2001).

In this paper we present a method which extends
the applicability of ILP to a more complex set of
problems. Instead of adding all the constraints we
wish to capture to the formulation, we first solve
the program with a fraction of the constraints. The
solution is then examined and, if required, addi-
tional constraints are added. This procedure is re-
peated until all constraints are satisfied. We apply
this dependency parsing approach to Dutch due
to the language’s non-projective nature, and take
the parser of McDonald et al. (2005b) as a starting
point for our model.

In the following section we introduce depen-
dency parsing and review previous work. In Sec-
tion 3 we present our model and formulate it as
an ILP problem with a set of linguistically mo-
tivated constraints. We include details of an in-
cremental algorithm used to solve this formula-
tion. Our experimental set-up is provided in Sec-
tion 4 and is followed by results in Section 5 along
with runtime experiments. We finally discuss fu-
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Figure 1: A Dutch dependency tree for “I’ll come
at twelve and then you’ll get what you deserve”

ture research and potential improvements to our
approach.

2 Dependency Parsing

Dependency parsing is the task of attaching words
to their arguments. Figure 1 shows a dependency
graph for the Dutch sentence “I’ll come at twelve
and then you’ll get what you deserve” (taken from
the Alpino Corpus (van der Beek et al., 2002)). In
this dependency graph the verb “kom” is attached
to its subject “ik”. “kom” is referred to as the head
of the dependency and “ik” as its child. In labelled
dependency parsing edges between words are la-
belled with the relation captured. In the case of
the dependency between “kom” and “ik” the label
would be “subject”.

In a dependency tree every token must be the
child of exactly one other node, either another to-
ken or the dummy root node. By definition, a de-
pendency tree is free of cycles. For example, it
must not contain dependency chains such as “en”
→ “kom”→ “ik”→ “en”. For a more formal def-
inition see previous work (Nivre et al., 2004).

An important distinction between dependency
trees is whether they are projective or non-
projective. Figure 1 is an example of a projec-
tive dependency tree, in such trees dependencies
do not cross. In Dutch and other flexible word or-
der languages such as German and Czech we also
encounter non-projective trees, in these cases the
trees contain crossing dependencies.

Dependency parsing is useful for applications
such as relation extraction (Culotta and Sorensen,
2004) and machine translation (Ding and Palmer,
2005). Although less informative than lexicalised
phrase structures, dependency structures still cap-
ture most of the predicate-argument information
needed for applications. It has the advantage of be-
ing more efficient to learn and parse.

McDonald et al. (2005a) introduce a depen-
dency parsing framework which treats the task as
searching for the projective tree that maximises
the sum of local dependency scores. This frame-

Figure 2: An incorrect partial dependency tree.
The verb “krijg” is incorrectly coordinated with
the preposition “om”.

work is efficient and has also been extended to
non-projective trees (McDonald et al., 2005b). It
provides a discriminative online learning algo-
rithm which when combined with a rich feature set
reaches state-of-the-art performance across multi-
ple languages.

However, within this framework one can only
define features over single attachment decisions.
This leads to cases where basic linguistic con-
straints are not satisfied (e.g. verbs with two sub-
jects or incompatible coordination arguments). An
example of this for Dutch is illustrated in Figure 2
which was produced by the parser of McDonald
et al. (2005b). Here the parse contains a coordi-
nation of incompatible word classes (a preposition
and a verb).

Our approach is able to include additional con-
straints which forbid configurations such as those
in Figure 2. While McDonald and Pereira (2006)
address the issue of local attachment decisions by
defining scores over attachment pairs, our solution
is more general. Furthermore, it is complementary
in the sense that we could formulate their model
using ILP and then add constraints.

The method we present is not the only one that
can take global constraints into account. Deter-
ministic dependency parsing (Nivre et al., 2004;
Yamada and Matsumoto, 2003) can apply global
constraints by conditioning attachment decisions
on the intermediate parse built. However, for effi-
ciency a greedy search is used which may produce
sub-optimal solutions. This is not the case when
using ILP.

3 Model

Our underlying model is a modified labelled ver-
sion2 of McDonald et al. (2005b):

s(x,y) =
∑

(i,j,l)∈y

s(i, j, l)

=
∑

(i,j,l)∈y

w · f(i, j, l)

2Note that this is not described in the McDonald papers
but implemented in his software.

130



where x is a sentence, y is a set of labelled de-
pendencies, f(i, j, l) is a multidimensional fea-
ture vector representation of the edge from token
i to token j with label l and w the correspond-
ing weight vector. For example, a feature f101 in f

could be:

f101(i, j, l) =











1 if t(i) = “en” ∧ p(j) = V
∧l = “coordination”

0 otherwise

where t(i) is the word at token i and p(j) the part-
of-speech tag at token j.

Decoding in this model amounts to finding the
y for a given x that maximises s(x,y):

y′ = arg max
y

s(x,y)

while fulfilling the following constraints:

T1 For every non-root token in x there exists ex-
actly one head; the root token has no head.

T2 There are no cycles.

Thus far, the formulation follows McDonald
et al. (2005b) and corresponds to the Maximum
Spanning Tree (MST) problem. In addition to T1
and T2, we include a set of linguistically moti-
vated constraints:

A1 Heads are not allowed to have more than one
outgoing edge labelled l for all l in a set of
labels U .

C1 In a symmetric coordination there is exactly
one argument to the right of the conjunction
and at least one argument to the left.

C2 In an asymmetric coordination there are no ar-
guments to the left of the conjunction and at
least two arguments to the right.

C3 There must be at least one comma between
subsequent arguments to the left of a sym-
metric coordination.

C4 Arguments of a coordination must have com-
patible word classes.

P1 Two dependencies must not cross if one of
their labels is in a set of labels P .

A1 covers constraints such as “there can only
be one subject” if U contains “subject” (see Sec-
tion 4.4 for more details of U ). C1 applies to

configurations which contain conjunctions such as
“en”,“of” or “maar” (“and”, “or” and “but”). C2
will rule-out settings where a conjunction such as
“zowel” (translates as “both”) having arguments
to its left. C3 forces coordination arguments to
the left of a conjunction to have commas in be-
tween. C4 avoids parses in which incompatible
word classes are coordinated, such as nouns and
verbs. Finally, P1 allows selective projective pars-
ing: we can, for instance, forbid the crossing of
“Noun-Determiner” dependencies if we add the
corresponding label type to P (see Section 4.4 for
more details of P ) . If we extend P to contain all
labels we forbid any type of crossing dependen-
cies. This corresponds to projective parsing.

3.1 Decoding

McDonald et al. (2005b) use the Chu-Liu-
Edmonds (CLE) algorithm to solve the maxi-
mum spanning tree problem. However, global con-
straints cannot be incorporated into the CLE algo-
rithm (McDonald et al., 2005b). We alleviate this
problem by presenting an equivalent Integer Lin-
ear Programming formulation which allows us to
incorporate global constraints naturally.

Before giving full details of our formulation
we first introduce some of the concepts of lin-
ear and integer linear programming (for a more
thorough introduction see Winston and Venkatara-
manan (2003)).

Linear Programming (LP) is a tool for solving
optimisation problems in which the aim is to max-
imise (or minimise) a given linear function with
respect to a set of linear constraints. The func-
tion to be maximised (or minimised) is referred
to as the objective function. A number of decision
variables are under our control which exert influ-
ence on the objective function. Specifically, they
have to be optimised in order to maximise (or min-
imise) the objective function. Finally, a set of con-
straints restrict the values that the decision vari-
ables can take. Integer Linear Programming is an
extension of linear programming where all deci-
sion variables must take integer values.

There are several explicit formulations of the
MST problem as an integer linear program in the
literature (Williams, 2002). They are based on
the concept of eliminating subtours (cycles), cuts
(disconnections) or requiring intervertex flows
(paths). However, in practice these formulations
cause long solve times — as the first two meth-
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Algorithm 1 Incremental Integer Linear Program-
ming

C ← Bx

repeat
y← solve(C, Ox, Vx)
W ← violated(y, Ix)
C ← C ∪W

until V = ∅
return y

ods yield an exponential number of constraints.
Although the latter scales cubically, it produces
non-fractional solutions in its relaxed version; this
causes long runtimes for the branch and bound al-
gorithm (Williams, 2002) commonly used in inte-
ger linear programming. We found out experimen-
tally that dependency parsing models of this form
do not converge on a solution after multiple hours
of solving, even for small sentences.

As a workaround for this problem we follow an
incremental approach akin to the work of Warme
(1998). Instead of adding constraints which forbid
all possible cycles in advance (this would result
in an exponential number of constraints) we first
solve the problem without any cycle constraints.
The solution is then examined for cycles, and if
cycles are found we add constraints to forbid these
cycles; the solver is then run again. This process
is repeated until no more violated constraints are
found. The same procedure is used for other types
of constraints which are too expensive to add in
advance (e.g. the constraints of P1).

Algorithm 1 outlines our approach. For a sen-
tence x, Bx is the set of constraints that we add
in advance and Ix are the constraints we add in-
crementally. Ox is the objective function and Vx

is a set of variables including integer declarations.
solve(C, O, V ) maximises the objective function
O with respect to the set of constraints C and vari-
ables V . violated(y, I) inspects the proposed so-
lution (y) and returns all constraints in I which are
violated.

The number of iterations required in this ap-
proach is at most polynomial with respect to the
number of variables (Grötschel et al., 1981). In
practice, this technique converges quickly (less
than 20 iterations in 99% of approximately 12,000
sentences), yielding average solve times of less
than 0.5 seconds.

Our approach converges quickly due to the
quality of the scoring function. Its weights have

been trained on cycle free data, thus it is more
likely to guide the search to a cycle free solution.

In the following section we present the objec-
tive function Ox, variables Vx and linear con-
straints Bx and Ix needed for parsing x using Al-
gorithm 1.

3.1.1 Variables

Vx contains a set of binary variables to represent
labelled edges:

ei,j,l ∀i ∈ 0..n, j ∈ 1..n,

l ∈ bestk(i, j)

where n is the number of tokens and the index 0
represents the root token. bestk(i, j) is the set of k

labels with highest s(i, j, l). ei,j,l equals 1 if there
is a edge (i.e., a dependency) with the label l be-
tween token i (head) and j (child), 0 otherwise. k

depends on the type of constraints we want to add.
For the plain MST problem it is sufficient to set
k = 1 and only take the best scoring label for each
token pair. However, if we want a constraint which
forbids duplicate subjects we need to provide ad-
ditional labels to fall back on.

Vx also contains a set of binary auxiliary vari-
ables:

di,j ∀i ∈ 0..n, j ∈ 1..n

which represent the existence of a dependency be-
tween tokens i and j. We connect these to the ei,j,l

variables by the constraint:

di,j =
∑

l∈bestk(i,j)

ei,j,l

3.1.2 Objective Function

Given the above variables our objective function
Ox can be represented as (using a suitable k):

∑

i,j

∑

l∈bestk(i,j)

s(i, j, l) · ei,j,l

3.1.3 Base Constraints

We first introduce a set of base constraints Bx

which we add in advance.

Only One Head (T1) Every token has exactly
one head:

∑

i

di,j = 1

for non-root tokens j > 0 in x. An exception is
made for the artificial root node:

∑

i

di,0 = 0
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Label Uniqueness (A1) To enforce uniqueness
of children with labels in U we augment our model
with the constraint:

∑

j

ei,j,l ≤ 1

for every token i in x and label l in U .

Symmetric Coordination (C1) For each con-
junction token i which forms a symmetric coor-
dination we add:

∑

j<i

di,j ≥ 1

and
∑

j>i

di,j = 1

Asymmetric Coordination (C2) For each con-
junction token i which forms an asymmetric coor-
dination we add:

∑

j<i

di,j = 0

and
∑

j>i

di,j ≥ 2

3.1.4 Incremental Constraints

Now we present the set of constraints Ix we add
incrementally. The constraints are chosen based on
the two criteria: (1) adding them to the base con-
straints (those added in advance) would result in
an extremely large program, and (2) it must be ef-
ficient to detect whether the constraint is violated
in y.

No Cycles (T2) For every possible cycle c for
the sentence x we have a constraint which forbids
the case where all edges in c are active simultane-
ously:

∑

(i,j)∈c

di,j ≤ |c| − 1

Comma Coordination (C3) For each symmet-
ric conjunction token i which forms a symmetric
coordination and each set of tokens A in x to the
left of i with no comma between each pair of suc-
cessive tokens we add:

∑

a∈A

di,a ≤ |A| − 1

which forbids configurations where i has the argu-
ment tokens A.

Compatible Coordination Arguments (C4)
For each conjunction token i and each set of to-
kens A in x with incompatible POS tags, we add a
constraint to forbid configurations where i has the
argument tokens A.

∑

a∈A

di,a ≤ |A| − 1

Selective Projective Parsing (P1) For each pair
of triplets (i, j, l1) and (m, n, l2) we add the con-
straint:

ei,j,l1 + em,n,l2 ≤ 1

if l1 or l2 is in P .

3.2 Training

For training we use single-best MIRA (McDon-
ald et al., 2005a). This is an online algorithm that
learns by parsing each sentence and comparing
the result with a gold standard. Training is com-
plete after multiple passes through the whole cor-
pus. Thus we decode using the Chu-Liu-Edmonds
(CLE) algorithm due to its speed advantage over
ILP (see Section 5.2 for a detailed comparison of
runtimes).

The fact that we decode differently during train-
ing (using CLE) and testing (using ILP) may de-
grade performance. In the presence of additional
constraints weights may be able to capture other
aspects of the data.

4 Experimental Set-up

Our experiments were designed to answer the fol-
lowing questions:

1. How much do our additional constraints help
improve accuracy?

2. How fast is our generic inference method in
comparison with the Chu-Liu-Edmonds algo-
rithm?

3. Can approximations be used to increase the
speed of our method while remaining accu-
rate?

Before we try to answer these questions we briefly
describe our data, features used, settings for U and
P in our parametric constraints, our working envi-
ronment and our implementation.
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4.1 Data

We use the Alpino treebank (van der Beek et al.,
2002), taken from the CoNLL shared task of mul-
tilingual dependency parsing3. The CoNLL data
differs slightly from the original Alpino treebank
as the corpus has been part-of-speech tagged using
a Memory-Based-Tagger (Daelemans et al., 1996).
It consists of 13,300 sentences with an average
length of 14.6 tokens. The data is non-projective,
more specifically 5.4% of all dependencies are
crossed by at least one other dependency. It con-
tains approximately 6000 sentences more than the
Alpino corpus used by Malouf and van Noord
(2004).

The training set was divided into a 10% devel-
opment set (dev) while the remaining 90% is used
as a training and cross-validation set (cross). Fea-
ture sets, constraints and training parameters were
selected through training on cross and optimising
against dev.

Our final accuracy scores and runtime eval-
uations were acquired using a nine-fold cross-
validation on cross

4.2 Environment and Implementation

All our experiments were conducted on a Intel
Xeon with 3.8 Ghz and 4Gb of RAM. We used
the open source Mixed Integer Programming li-
brary lp solve4 to solve the Integer Linear Pro-
grams. Our code ran in Java and called the JNI-
wrapper around the lp solve library.

4.3 Feature Sets

Our feature set was determined through experi-
mentation with the development set. The features
are based upon the data provided within the Alpino
treebank. Along with POS tags the corpus contains
several additional attributes such as gender, num-
ber and case.

Our best results on the development set were
achieved using the feature set of McDonald et al.
(2005a) and a set of features based on the addi-
tional attributes. These features combine the at-
tributes of the head with those of the child. For
example, if token i has the attributes a1 and a2,
and token j has the attribute a3 then we created
the features (a1 ∧ a3) and (a2 ∧ a3).

3For details see http://nextens.uvt.nl/
˜conll.

4The software is available from http://www.
geocities.com/lpsolve.

4.4 Constraints

All the constraints presented in Section 3 were
used in our model. The set U of unique labels
constraints contained su, obj1, obj2, sup, ld, vc,
predc, predm, pc, pobj1, obcomp and body. Here
su stands for subject and obj1 for direct object (for
full details see Moortgat et al. (2000)).

The set of projective labels P contained cnj,
for coordination dependencies; and det, for de-
terminer dependencies. One exception was added
for the coordination constraint: dependencies can
cross when coordinated arguments are verbs.

One drawback of hard deterministic constraints
is the undesirable effect noisy data can cause. We
see this most prominently with coordination argu-
ment compatibility. Words ending in “en” are typ-
ically wrongly tagged and cause our coordination
argument constraint to discard correct coordina-
tions. As a workaround we assigned words ending
in “en” a wildcard POS tag which is compatible
with all POS tags.

5 Results

In this section we report our results. We not only
present our accuracy but also provide an empiri-
cal evaluation of the runtime behaviour of this ap-
proach and show how parsing can be accelerated
using a simple approximation.

5.1 Accuracy

An important question to answer when using
global constraints is: How much of a performance
boost is gained when using global constraints?

We ran the system without any linguistic con-
straints as a baseline (bl) and compared it to a
system with the additional constraints (cnstr). To
evaluate our systems we use the accuracy over la-
belled attachment decisions:

LAC =
Nl

Nt

where Nl is the number of tokens with correct
head and label and Nt is the total number of to-
kens. For completeness we also report the unla-
belled accuracy:

UAC =
Nu

Nt

where Nu is the number of tokens with correct
head.
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LAC UAC LC UC
bl 84.6% 88.9% 27.7% 42.2%
cnstr 85.1% 89.4% 29.7% 43.8%

Table 1: Labelled (LAC) and unlabelled (UAC) ac-
curacy using nine-fold cross-validation on cross

for baseline (bl) and constraint-based (constr) sys-
tem. LC and UC are the percentages of sentences
with 100% labelled and unlabelled accuracy, re-
spectively.

Table 1 shows our results using nine-fold cross-
validation on the cross set. The baseline system
(no additional constraints) gives an unlabelled ac-
curacy of 84.6% and labelled accuracy of 88.9%.
When we add our linguistic constraints the per-
formance increases by 0.5% for both labelled and
unlabelled accuracy. This increase is significant
(p < 0.001) according to Dan Bikel’s parse com-
parison script and using the Sign test (p < 0.001).

Now we give a little insight into how our results
compare with the rest of the community. The re-
ported state-of-the-art parser of Malouf and van
Noord (2004) achieves 84.4% labelled accuracy
which is very close numerically to our baseline.
However, they use a subset of the CoNLL Alpino
treebank with a higher average number of tokens
per sentences and also evaluate control relations,
thus results are not directly comparable. We have
also run our parser on the relatively small (approx-
imately 400 sentences) CoNNL test data. The best
performing system (McDonald et al. 2006; note:
this system is different to our baseline) achieves
79.2% labelled accuracy while our baseline sys-
tem achieves 78.6% and our constrained version
79.8%. However, a significant difference is only
observed between our baseline and our constraint-
based system.

Examining the errors produced using the dev
set highlight two key reasons why we do not see
a greater improvement using our constraint-based
system. Firstly, we cannot improve on coordina-
tions that include words ending with “en” based on
the workaround present in Section 4.4. This prob-
lem can only be solved by improving POS taggers
for Dutch or by performing POS tagging within
the dependency parsing framework.

Secondly, our system suffers from poor next
best solutions. That is, if the best solution violates
some constraints, then we find the next best solu-
tion is typically worse than the best solution with

violated constraints. This appears to be a conse-
quence of inaccurate local score distributions (as
opposed to inaccurate best local scores). For ex-
ample, suppose we attach two subjects, t1 and t2,
to a verb, where t1 is the actual subject while t2
is meant to be labelled as object. If we forbid this
configuration (two subjects) and if the score of la-
belling t1 object is higher than that for t2 being
labelled subject, then the next best solution will
label t1 incorrectly as object and t2 incorrectly as
subject. This is often the case, and thus results in a
drop of accuracy.

5.2 Runtime Evaluation

We now concentrate on the runtime of our method.
While we expect a longer runtime than using the
Chu-Liu-Edmonds as in previous work (McDon-
ald et al., 2005b), we are interested in how large
the increase is.

Table 2 shows the average solve time (ST) for
sentences with respect to the number of tokens in
each sentence for our system with constraints (cn-
str) and the Chu-Liu-Edmonds (CLE) algorithm.
All solve times do not include feature extraction
as this is identical for all systems. For cnstr we
also show the number of sentences that could not
be parsed after two minutes, the average number
of iterations and the average duration of the first
iteration.

The results show that parsing using our generic
approach is still reasonably fast although signifi-
cantly slower than using the Chu-Liu-Edmonds al-
gorithm. Also, only a small number of sentences
take longer than two minutes to parse. Thus, in
practice we would not see a significant degrada-
tion in performance if we were to fall back on the
CLE algorithm after two minutes of solving.

When we examine the average duration of the
first iteration it appears that the majority of the
solve time is spent within this iteration. This could
be used to justify using the CLE algorithm to find
a initial solution as starting point for the ILP solver
(see Section 6).

5.3 Approximation

Despite the fact that our parser can parse all sen-
tences in a reasonable amount of time, it is still sig-
nificantly slower than the CLE algorithm. While
this is not crucial during decoding, it does make
discriminative online training difficult as training
requires several iterations of parsing the whole
corpus.
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Tokens 1-10 11-20 21-30 31-40 41-50 >50
Count 5242 4037 1835 650 191 60
Avg. ST (CLE) 0.27ms 0.98ms 3.2ms 7.5ms 14ms 23ms
Avg. ST (cnstr) 5.6ms 52ms 460ms 1.5s 7.2s 33s
ST > 120s (cnstr) 0 0 0 0 3 3
Avg. # iter. (cnstr) 2.08 2.87 4.48 5.82 8.40 15.17
Avg. ST 1st iter. (cnstr) 4.2ms 37ms 180ms 540ms 1.3s 2.6s

Table 2: Runtime evaluation for different sentence lengths. Average solve time (ST) for our system
with constraints (constr), the Chu-Liu-Edmonds algorithm (CLE), number of sentences with solve times
greater than 120 seconds, average number of iterations and first iteration solve time.

q=5 q=10 all CLE
LAC 84.90% 85.11% 85.14% 85.14%
ST 351s 760s 3640s 20s

Table 3: Labelled accuracy (LAC) and total solve
time (ST) for the cross dataset using varying q val-
ues and the Chu-Liu-Edmonds algorithm (CLE)

Thus we investigate if it is possible to speed up
our inference using a simple approximation. For
each token we now only consider the q variables
in Vx with the highest scoring edges. For exam-
ple, if we set q = 2 the set of variables for a to-
ken j will contain two variables, either both for
the same head i but with different labels (variables
ei,j,l1 and ei,j,l2) or two distinct heads i1 and i2
(variables ei1,j,l1 and ei2,j,l2) where labels l1 and
l2 may be identical.

Table 3 shows the effect of different q values
on solve time for the full corpus cross (roughly
12,000 sentences) and overall accuracy. We see
that solve time can be reduced by 80% while only
losing a marginal amount of accuracy when we set
q to 10. However, we are unable to reach the 20
seconds solve time of the CLE algorithm. Despite
this, when we add the time for preprocessing and
feature extraction, the CLE system parses a cor-
pus in around 15 minutes whereas our system with
q = 10 takes approximately 25 minutes5. When
we view the total runtime of each system we see
our system is more competitive.

6 Discussion

While we have presented significant improve-
ments using additional constraints, one may won-

5Even when caching feature extraction during training
McDonald et al. (2005a) still takes approximately 10 minutes
to train.

der whether the improvements are large enough
to justify further research in this direction; espe-
cially since McDonald and Pereira (2006) present
an approximate algorithm which also makes more
global decisions. However, we believe that our ap-
proach is complementary to their model. We can
model higher order features by using an extended
set of variables and a modified objective function.
Although this is likely to increase runtime, it may
still be fast enough for real world applications. In
addition, it will allow exact inference, even in the
case of non-projective parsing. Also, we argue that
this approach has potential for interesting exten-
sions and applications.

For example, during our runtime evaluations we
find that a large fraction of solve time is spent in
the first iteration of our incremental algorithm. Af-
ter the first iteration the solver uses its last state to
efficiently search for solutions in the presence of
new constraints. Some solvers allow the specifica-
tion of an initial solution as a starting point, thus it
is expected that significant improvements in terms
of speed can be made by using the CLE algorithm
to provide an initial solution.

Our approach uses a generic algorithm to solve
a complex task. Thus other applications may ben-
efit from it. For instance, Germann et al. (2001)
present an ILP formulation of the Machine Trans-
lation (MT) decoding task in order to conduct ex-
act inference. However, their model suffers from
the same type of exponential blow-up we observe
when we add all our cycle constraints in advance.
In fact, the constraints which cause the exponential
explosion in their graphically formulation are of
the same nature as our cycle constraints. We hope
that the incremental approach will allow exact MT
decoding for longer sentences.
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7 Conclusion

In this paper we have presented a novel ap-
proach for inference using ILP. While previous ap-
proaches which use ILP for decoding have solved
each integer linear program in one run, we incre-
mentally add constraints and solve the resulting
program until no more constraints are violated.
This allows us to efficiently use ILP for depen-
dency parsing and add constraints which provide
a significant improvement over the current state-
of-the-art parser (McDonald et al., 2005b) on the
Dutch Alpino corpus (see bl row in Table 1).

Although slower than the baseline approach,
our method can still parse large sentences (more
than 50 tokens) in a reasonable amount of time
(less than a minute). We have shown that pars-
ing time can be significantly reduced using a
simple approximation which only marginally de-
grades performance. Furthermore, we believe that
the method has potential for further extensions and
applications.
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Abstract

This paper describes our attempt at
NomBank-based automatic Semantic Role
Labeling (SRL). NomBank is a project at
New York University to annotate the ar-
gument structures for common nouns in
the Penn Treebank II corpus. We treat
the NomBank SRL task as a classifica-
tion problem and explore the possibility
of adapting features previously shown use-
ful in PropBank-based SRL systems. Var-
ious NomBank-specific features are ex-
plored. On test section 23, our best sys-
tem achieves F1 score of 72.73 (69.14)
when correct (automatic) syntactic parse
trees are used. To our knowledge, this
is the first reported automatic NomBank
SRL system.

1 Introduction

Automatic Semantic Role Labeling (SRL) sys-
tems, made possible by the availability of Prop-
Bank (Kingsbury and Palmer, 2003; Palmer et
al., 2005), and encouraged by evaluation ef-
forts in (Carreras and Marquez, 2005; Litkowski,
2004), have been shown to accurately determine
the argument structure of verb predicates.

A successful PropBank-based SRL system
would correctly determine that “Ben Bernanke”
is the subject (labeled as ARG0 in PropBank) of
predicate “replace”, and “Greenspan” is the object
(labeled as ARG1):

• Ben Bernanke replaced Greenspan as Fed
chair.

• Greenspan was replaced by Ben Bernanke as
Fed chair.

The recent release of NomBank (Meyers et al.,
2004c; Meyers et al., 2004b), a databank that an-
notates argument structure for instances of com-
mon nouns in the Penn Treebank II corpus, made
it possible to develop automatic SRL systems that
analyze the argument structures of noun predi-
cates.

Given the following two noun phrases and one
sentence, a successful NomBank-based SRL sys-
tem should label “Ben Bernanke” as the subject
(ARG0) and “Greenspan” as the object (ARG1)
of the noun predicate “replacement”.

• Greenspan’s replacement Ben Bernanke

• Ben Bernanke’s replacement of Greenspan

• Ben Bernanke was nominated as Greenspan’s
replacement.

The ability to automatically analyze the argu-
ment structures of verb and noun predicates would
greatly facilitate NLP tasks like question answer-
ing, information extraction, etc.

This paper focuses on our efforts at building
an accurate automatic NomBank-based SRL sys-
tem. We study how techniques used in building
PropBank SRL system can be transferred to de-
veloping NomBank SRL system. We also make
NomBank-specific enhancements to our baseline
system. Our implemented SRL system and exper-
iments are based on the September 2005 release of
NomBank (NomBank.0.8).

The rest of this paper is organized as follows:
Section 2 gives an overview of NomBank, Sec-
tion 3 introduces the Maximum Entropy classifica-
tion model, Section 4 introduces our features and
feature selection strategy, Section 5 explains the
experimental setup and presents the experimen-
tal results, Section 6 compares NomBank SRL to
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Figure 1: A sample sentence and its parse tree la-
beled in the style of NomBank

PropBank SRL and discusses possible future re-
search directions.

2 Overview of NomBank

The NomBank (Meyers et al., 2004c; Meyers
et al., 2004b) annotation project originated from
the NOMLEX (Macleod et al., 1997; Macleod et
al., 1998) nominalization lexicon developed under
the New York University Proteus Project. NOM-
LEX lists 1,000 nominalizations and the corre-
spondences between their arguments and the ar-
guments of their verb counterparts. NomBank
frames combine various lexical resources (Meyers
et al., 2004a), including an extended NOMLEX
and PropBank frames, and form the basis for anno-
tating the argument structures of common nouns.

Similar to PropBank, NomBank annotation is
made on the Penn TreeBank II (PTB II) corpus.
For each common noun in PTB II that takes argu-
ments, its core arguments are labeled with ARG0,
ARG1, etc, and modifying arguments are labeled
with ARGM-LOC to denote location, ARGM-
MNR to denote manner, etc. Annotations are
made on PTB II parse tree nodes, and argument
boundaries align with the span of parse tree nodes.

A sample sentence and its parse tree labeled
in the style of NomBank is shown in Figure 1.
For the nominal predicate “replacement”, “Ben
Bernanke” is labeled as ARG0 and “Greenspan
’s” is labeled as ARG1. There is also the special
label “Support” on “nominated” which introduces
“Ben Bernanke” as an argument of “replacement”.
The support construct will be explained in detail in
Section 4.2.3.

We are not aware of any NomBank-based auto-
matic SRL systems. The work in (Pradhan et al.,

2004) experimented with an automatic SRL sys-
tem developed using a relatively small set of man-
ually selected nominalizations from FrameNet and
Penn Chinese TreeBank. The SRL accuracy of
their system is not directly comparable to ours.

3 Model training and testing

We treat the NomBank-based SRL task as a clas-
sification problem and divide it into two phases:
argument identification and argument classifica-
tion. During the argument identification phase,
each parse tree node is marked as either argument
or non-argument. Each node marked as argument
is then labeled with a specific class during the
argument classification phase. The identification
model is a binary classifier , while the classifica-
tion model is a multi-class classifier.

Opennlp maxent1, an implementation of Maxi-
mum Entropy (ME) modeling, is used as the clas-
sification tool. Since its introduction to the Natural
Language Processing (NLP) community (Berger
et al., 1996), ME-based classifiers have been
shown to be effective in various NLP tasks. ME
modeling is based on the insight that the best
model is consistent with the set of constraints im-
posed and otherwise as uniform as possible. ME
models the probability of labell given inputx as
in Equation 1. fi(l, x) is a feature function that
maps labell and inputx to either 0 or 1, while the
summation is over alln feature functions and with
λi as the weight parameter for each feature func-
tion fi(l, x). Zx is a normalization factor. In the
identification model, labell corresponds to either
“argument” or “non-argument”, and in the classi-
fication model, labell corresponds to one of the
specific NomBank argument classes. The classifi-
cation output is the labell with the highest condi-
tional probabilityp(l|x).

p(l|x) =
exp(

∑n
i=1 λifi(l, x))
Zx

(1)

To train the ME-based identification model,
training data is gathered by treating each parse tree
node that is an argument as a positive example and
the rest as negative examples. Classification train-
ing data is generated from argument nodes only.

During testing, the algorithm of enforcing non-
overlapping arguments by (Toutanova et al., 2005)
is used. The algorithm maximizes the log-
probability of the entire NomBank labeled parse

1http://maxent.sourceforge.net/
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tree. Specifically, assuming we only have two
classes “ARG” and “NONE”, the log-probability
of a NomBank labeled parse tree is defined by
Equation 2.

Max(T ) = max

{
NONE(T ) +

∑
(Max(child))

ARG(T ) +
∑

(NONETree(child))

(2)

Max(T ) is the maximum log-probability of a
treeT ,NONE(T ) andARG(T ) are respectively
the log-probability of assigning label “NONE”
and “ARG” by our argument identification model
to tree nodeT , child ranges through each of
T ’s children, andNONETree(child) is the log-
probability of each node that is dominated by node
child being labeled as “NONE”. Details are pre-
sented in Algorithm 1.

Algorithm 1 Maximizing the probability of an
SRL tree

Input p{syntactic parse tree}
Input m{argument identification model, assigns each con-
stituent in the parse tree log likelihood of being a semantic
argument}
Output score{maximum log likelihood of the parse tree p
with arguments identified using model m}

MLParse(p, m)
if parsep is a leaf nodethen

returnmax(Score(p,m,ARG), Score(p,m,NONE))
else
MLscore = 0
for each nodeci in Children(p) do
MLscore +=MLParse(ci,m)

end for
NONEscore = 0
for each nodeci in Children(p) do
NONEscore +=NONETree(ci,m)

end for
return max(Score(p,m,NONE)+MLscore,
Score(p,m,ARG)+NONEscore)

end if

NONETree(p,m)
NONEscore = Score(p,m,NONE)
if parsep is a leaf nodethen

returnNONEscore
else

for each nodeci in Children(p) do
NONEscore +=NONETree(ci,m)

end for
returnNONEscore

end if

Subroutine:
Children(p) returns the list of children nodes of p.
Score(p,m, state) returns the log likelihood assigned by
modelm, for parsep with state. state is either ARG or
NONE.

NomBank sections 02-21 are used as training

data, section 24 and 23 are used as development
and test data, respectively.

3.1 Training data preprocessing

Unlike PropBank annotation which does not con-
tain overlapping arguments (in the form of parse
tree nodes domination) and does not allow pred-
icates to be dominated by arguments, NomBank
annotation in the September 2005 release contains
such cases. In NomBank sections 02-21, about
0.6% of the argument nodes dominate some other
argument nodes or the predicate. To simplify our
task, during training example generation, we ig-
nore arguments that dominate the predicate. We
also ignore arguments that are dominated by other
arguments, so that when argument domination oc-
curs, only the argument with the largest word span
is kept. We donot perform similar pruning on the
test data.

4 Features and feature selection

4.1 Baseline NomBank SRL features

Table 1 lists the baseline features we adapted from
previous PropBank-based SRL systems (Pradhan
et al., 2005; Xue and Palmer, 2004). For ease
of description, related features are grouped, with
a specific individual feature given individual ref-
erence name. For example, feature b11FW in
the group b11 denotes the first word spanned by
the constituent and b13LH denotes the left sis-
ter’s head word. We also experimented with vari-
ous feature combinations, inspired by the features
used in (Xue and Palmer, 2004). These are listed
as features b31 to b34 in Table 1.

Suppose the current constituent under identifi-
cation or classification is “NP-Ben Bernanke” in
Figure 1. The instantiations of the baseline fea-
tures in Table 1 for this example are presented in
Table 2. The symbol “NULL” is used to denote
features that fail to instantiate.

4.2 NomBank-specific features

4.2.1 NomBank predicate morphology and
class

The “NomBank-morph” dictionary provided by
the current NomBank release maps the base form
of a noun to various morphological forms. Be-
sides singular-plural noun form mapping, it also
maps base nouns to hyphenated and compound
nouns. For example, “healthcare” and “medical-
care” both map to “care”. For NomBank SRL fea-
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Baseline Features (Pradhan et al., 2005)
b1 predicate: stemmed noun
b2 subcat: grammar rule that expands the predicate’s

parent
b3 phrase type: syntactic category of the constituent
b4 head word: syntactic head of the constituent
b5 path: syntactic path from the constituent to the

predicate
b6 position: to the left or right of the predicate
b11 first or last word/POS spanned by the constituent

(b11FW, b11LW, b11FP, b11LP)
b12 phrase type of the left or right sister (b12L, b12R)
b13 left or right sister’s head word/POS (b13LH,

b13LP, b13RH, b13RP)
b14 phrase type of parent
b15 parent’s head word or its POS (b15H, b15P)
b16 head word of the constituent if its parent has phrase

type PP
b17 head word or POS tag of the rightmost NP node, if

the constituent is PP (b17H, b17P)
b18 phrase type appended with the length of path
b19 temporal keyword, e.g., ”Monday”
b20 partial path from the constituent to the lowest com-

mon ancestor with the predicate
b21 projected path from the constituent to the highest

NP dominating the predicate
Baseline Combined Features (Xue and Palmer, 2004)
b31 b1 & b3
b32 b1 & b4
b33 b1 & b5
b34 b1 & b6

Table 1: Baseline features for NomBank SRL

tures, we use this set of more specific mappings
to replace the morphological mappings based on
WordNet. Specifically, we replace feature b1 in
Table 1 with feature a1 in Table 3.

The current NomBank release also contains
the “NOMLEX-PLUS” dictionary, which con-
tains the class of nominal predicates according to
their origin and the roles they play. For exam-
ple, “employment” originates from the verb “em-
ploy” and is classified as “VERB-NOM”, while
the nouns “employer” and “employee” are classi-
fied as “SUBJECT” and “OBJECT” respectively.
Other classes include “ADJ-NOM” for nominal-
ization of adjectives and “NOM-REL” for rela-
tional nouns. The class of a nominal predicate is
very indicative of the role of its arguments. We
would expect a “VERB-NOM” predicate to take
both ARG0 and ARG1, while an “OBJECT” pred-
icate to take only ARG0. We incorporated the
class of nominal predicates as additional features
in our NomBank SRL system. We add feature a2
in Table 3 to use this information.

Baseline Features (Pradhan et al., 2005)
b1 replacement
b2 NP→ NP NN
b3 NP
b4 Bernanke
b5 NP↑S↓VP↓VP↓PP↓NP↓NN
b6 left
b11 Ben, Bernanke, NNP, NNP
b12 NULL, VP
b13 NULL, NULL, was, VBD
b14 S
b15 was, VBD
b16 NULL
b17 NULL, NULL
b18 NP-7
b19 NULL
b20 NP↑S
b21 NP↑S↓VP↓VP↓PP↓NP
Baseline Combined Features (Xue and Palmer, 2004)
b31 replacement & NP
b32 replacement & Bernanke
b33 replacement & NP↑S↓VP↓VP↓PP↓NP↓NN
b34 replacement & left

Table 2: Baseline feature instantiations, assuming
the current constituent is “NP-Ben Bernanke” in
Figure 1.

Additional Features Based on NomBank
a1 Nombank morphed noun stem
a2 Nombank nominal class
a3 identical to predicate?
a4 a DEFREL noun?
a5 whether under the noun phrase headed by the pred-

icate
a6 whether the noun phrase headed by the predicate

is dominated by a VP node or has neighboring VP
nodes

a7 whether there is a verb between the constituent and
the predicate

Additional Combined Features
a11 a1 & a2
a12 a1 & a3
a13 a1 & a5
a14 a3 & a4
a15 a1 & a6
a16 a1 & a7
Additional Features of Neighboring Arguments
n1 for each argument already classified, b3-b4-b5-b6-

r, where r is the argument class, otherwise b3-b4-
b5-b6

n2 backoff version of n1, b3-b6-r or b3-b6

Table 3: Additional NomBank-specific features
for NomBank SRL

4.2.2 DEFREL relational noun predicate

About 14% of the argument node instances in
NomBank sections 02-21 are identical to their
nominal predicate nodes. Most of these nominal
predicates are DEFREL relational nouns (Mey-
ers et al., 2004c). Examples of DEFREL rela-
tional nouns include “employee”, “participant”,
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and “husband”, where the nominal predicate itself
takes part as an implied argument.

We include in our classification features an indi-
cator of whether the argument coincides with the
nominal predicate. We also include a feature test-
ing if the argument is one of the DEFREL nouns
we extracted from NomBank training sections 02-
21. These two features correspond to a3 and a4 in
Table 3.

4.2.3 Support verb

Statistics show that almost 60% of the argu-
ments of nominal predicates occur locally inside
the noun phrase headed by the nominal pred-
icate. For the cases where an argument ap-
pears outside the local noun phrase, over half of
these arguments are introduced by support verbs.
Consider our example “Ben Bernanke was nomi-
nated as Greenspan’s replacement.”, the argument
“Ben Bernanke” is introduced by the support verb
“nominate”. The arguments introduced by sup-
port verbs can appear syntactically distant from
the nominal predicate.

To capture the location of arguments and the
existence of support verbs, we add features in-
dicating whether the argument is under the noun
phrase headed by the predicate, whether the noun
phrase headed by the predicate is dominated by
a VP phrase or has neighboring VP phrases, and
whether there is a verb between the argument and
the predicate. These are represented as features
a5, a6, and a7 in Table 3. Feature a7 was also pro-
posed by the system in (Pradhan et al., 2004).

We also experimented with various feature
combinations, inspired by the features used
in (Xue and Palmer, 2004). These are listed as
features a11 to a16 in Table 3.

4.2.4 Neighboring arguments

The research of (Jiang et al., 2005; Toutanova et
al., 2005) has shown the importance of capturing
information of the global argument frame in order
to correctly classify the local argument.

We make use of the features{b3,b4,b5,b6} of
the neighboring arguments as defined in Table 1.
Arguments are classified from left to right in the
textual order they appear. For arguments that are
already labeled, we also add their argument class
r. Specifically, for each argument to the left of the
current argument, we have a feature b3-b4-b5-b6-
r. For each argument to the right of the current
argument, the feature is defined as b3-b4-b5-b6.

We extract features in a window of size 7, centered
at the current argument. We also add a backoff
version (b3-b6-r or b3-b6) of this specific feature.
These additional features are shown as n1 and n2
in Table 3.

Suppose the current constituent under identi-
fication or classification is “NP-Ben Bernanke”.
The instantiations of the additional features in Ta-
ble 3 are listed in Table 4.

Additional Features based on NomBank
a1 replacement
a2 VERB-NOM
a3 no
a4 no
a5 no
a6 yes
a7 yes
Additional Combined Features
a11 replacement & VERB-NOM
a12 replacement & no
a13 replacement & no
a14 no & no
a15 replacement & yes
a16 replacement & yes
Additional Features of Neighboring Arguments
n1 NP-Greenspan-NP↑NP↓NN-left
n2 NP-left

Table 4: Additional feature instantiations, assum-
ing the current constituent is “NP-Ben Bernanke”
in Figure 1.

4.3 Feature selection

Features used by our SRL system are automati-
cally extracted from PTB II parse trees manually
labeled in NomBank. Features from Table 1 and
Table 3 are selected empirically and incremen-
tally according to their contribution to test accu-
racy on the development section 24. The feature
selection process stops when adding any of the
remaining features fails to improve the SRL ac-
curacy on development section 24. We start the
selection process with the basic set of features
{b1,b2,b3,b4,b5,b6}. The detailed feature selec-
tion algorithm is presented in Algorithm 2.

Features for argument identification and argu-
ment classification are independently selected. To
select the features for argument classification, we
assume that all arguments have been correctly
identified.

After performing greedy feature selection, the
baseline set of features selected for identification
is {b1-b6, b11FW, b11LW, b12L, b13RH, b13RP,
b14, b15H, b18, b20, b32-b34}, and the baseline
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Algorithm 2 Greedy feature selection
Input Fcandidate{set of all candidate features}
Output Fselect{set of selected features}
Output Mselect{selected model}

Initialize:
Fselect = {b1, b2, b3, b4, b5, b6}
Fcandidate = AllFeatures− Fselect
Mselect = Train(Fselect)
Eselect = Evaluate(Mselect, DevData)
loop

for each featurefi in Fcandidate do
Fi = Fselect

⋃
fi

Mi = Train(Fi)
Ei = Evaluate(Mi, DevData)

end for
Emax = Max(Ei)
if Emax > Eselect then
Fselect = Fselect

⋃
fmax

Mselect = Mmax

Eselect = Emax
Fcandidate = Fcandidate − fmax

end if
if Fcandidate == φ orEmax ≤ Eselect then

return Fselect,Mselect

end if
end loop

Subroutine:
Evaluate(Model,Data) returns the accuracy score by
evaluating Model on Data.
Train(FeatureSet) returns maxent model trained on the
given feature set.

set of features selected for classification is{b1-b6,
b11, b12, b13LH, b13LP, b13RP, b14, b15, b16,
b17P, b20, b31-b34}. Note that features in{b19,
b21} are not selected. For the additional features
in Table 3, greedy feature selection chose{a1, a5,
a6, a11, a12, a14} for the identification model and
{a1, a3, a6, a11, a14, a16, n1, n2} for the classifi-
cation model.

5 Experimental results

5.1 Scores on development section 24

After applying the feature selection algorithm in
Section 4.3, the SRL F1 scores on development
section 24 are presented in Table 5. We sepa-
rately present the F1 score for identification-only
and classification-only model. We also apply the
classification model on the output of the identifica-
tion phase (which may contain erroneously identi-
fied arguments in general) to obtain the combined
accuracy. During the identification-only and com-
bined identification and classification testing, the
tree log-probability maximization algorithm based
on Equation 2 (and its extension to multi-classes)
is used. During the classification-only testing, we

identification classification combined
baseline 80.32 84.86 69.70

additional 80.55 87.31 70.12

Table 5: NomBank SRL F1 scores on develop-
ment section 24, based on correct parse trees

identification classification combined
baseline 82.33 85.85 72.20

additional 82.50 87.80 72.73

Table 6: NomBank SRL F1 scores on test section
23, based on correct parse trees

classify each correctly identified argument using
the classification ME model. The “baseline” row
lists the F1 scores when only the baseline fea-
tures are used, and the “additional” row lists the
F1 scores when additional features are added to
the baseline features.

5.2 Testing on section 23

The identification and classification models based
on the chosen features in Section 4.3 are then ap-
plied to test section 23. The resulting F1 scores
are listed in Table 6. Using additional features, the
identification-only, classification-only, and com-
bined F1 scores are 82.50, 87.80, and 72.73, re-
spectively.

Performing chi-square test at the level of sig-
nificance 0.05, we found that the improvement of
the classification model using additional features
compared to using just the baseline features is sta-
tistically significant, while the corresponding im-
provements due to additional features for the iden-
tification model and the combined model are not
statistically significant.

The improved classification accuracy due to the
use of additional features does not contribute any
significant improvement to the combined identifi-
cation and classification SRL accuracy. This is due
to the noisy arguments identified by the inadequate
identification model, since the accurate determi-
nation of the additional features (such as those of
neighboring arguments) depends critically on an
accurate identification model.

5.3 Using automatic syntactic parse trees

So far we have assumed the availability of cor-
rect syntactic parse trees during model training
and testing. We relax this assumption by using
the re-ranking parser presented in (Charniak and
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Johnson, 2005) to automatically generate the syn-
tactic parse trees for both training and test data.

The F1 scores of our best NomBank SRL sys-
tem, when applied to automatic syntactic parse
trees, are 66.77 for development section 24 and
69.14 for test section 23. These F1 scores are for
combined identification and classification, with
the use of additional features. Comparing these
scores with those in Table 5 and Table 6, the usage
of automatic parse trees lowers the F1 accuracy by
more than 3%. The decrease in accuracy is ex-
pected, due to the noise introduced by automatic
syntactic parsing.

6 Discussion and future work

6.1 Comparison of the composition of
PropBank and NomBank

Counting the number of annotated predicates, the
size of the September 2005 release of NomBank
(NomBank.0.8) is about 83% of PropBank release
1. Preliminary consistency tests reported in (Mey-
ers et al., 2004c) shows that NomBank’s inter-
annotator agreement rate is about 85% for core
arguments and lower for adjunct arguments. The
inter-annotator agreement for PropBank reported
in (Palmer et al., 2005) is above 0.9 in terms of the
Kappa statistic (Sidney and Castellan Jr., 1988).
While the two agreement measures are not di-
rectly comparable, the current NomBank.0.8 re-
lease documentation indicates that only 32 of the
most frequently occurring nouns in PTB II have
been adjudicated.

We believe the smaller size of NomBank.0.8
and the potential noise contained in the current re-
lease of the NomBank data may partly explain our
lower SRL accuracy on NomBank, especially in
the argument identification phase, as compared to
the published accuracies of PropBank-based SRL
systems.

6.2 Difficulties in NomBank SRL

The argument structure of nominalization phrases
is less fixed (i.e., more flexible) than the argument
structure of verbs. Consider again the example
given in the introduction, we find the following
flexibility in forming grammatical NomBank ar-
gument structures for “replacement”:

• The positions of the arguments are flexi-
ble, so that “Greenspan’s replacement Ben
Bernanke”, ”Ben Bernanke’s replacement of
Greenspan” are both grammatical.

• Arguments can be optional, so that
“Greenspan’s replacement will assume
the post soon”, “The replacement Ben
Bernanke will assume the post soon”, and
“The replacement will assume the post soon”
are all grammatical.

With the verb predicate “replace”, except for
“Greenspan was replaced”, there is no freedom of
forming phrases like “Ben Bernanke replaces” or
simply “replaces” without supplying the necessary
arguments to complete the grammatical structure.

We believe the flexible argument structure of
NomBank noun predicates contributes to the lower
automatic SRL accuracy as compared to that of the
PropBank SRL task.

6.3 Integrating PropBank and NomBank
SRL

Work in (Pustejovsky et al., 2005) discussed the
possibility of merging various Treebank annota-
tion efforts including PropBank, NomBank, and
others. Future work involves studying ways
of concurrently producing automatic PropBank
and NomBank SRL, and improving the accuracy
by exploiting the inter-relationship between verb
predicate-argument and noun predicate-argument
structures.

Besides the obvious correspondence between a
verb and its nominalizations, e.g., “replace” and
“replacement”, there is also correspondence be-
tween verb predicates in PropBank and support
verbs in NomBank. Statistics from NomBank sec-
tions 02-21 show that 86% of the support verbs in
NomBank are also predicate verbs in PropBank.
When they coincide, they share 18,250 arguments
of which 63% have the same argument class in
PropBank and NomBank.

Possible integration approaches include:

• Using PropBank data as augmentation to
NomBank training data.

• Using re-ranking techniques (Collins, 2000)
to jointly improve PropBank and NomBank
SRL accuracy.

7 Conclusion

We have successfully developed a statistical
NomBank-based SRL system. Features that were
previously shown to be effective in PropBank SRL
are carefully selected and adapted for NomBank
SRL. We also proposed new features to address
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the special predicate-argument structure in Nom-
Bank data. To our knowledge, we presented the
first result in statistical NomBank SRL.
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Abstract 

Complex tasks like question answering 
need to be able to identify events in text 
and the relations among those events. We 
show that this event identification task 
and a related task, identifying the seman-
tic class of these events, can both be for-
mulated as classification problems in a 
word-chunking paradigm. We introduce a 
variety of linguistically motivated fea-
tures for this task and then train a system 
that is able to identify events with a pre-
cision of 82% and a recall of 71%. We 
then show a variety of analyses of this 
model, and their implications for the 
event identification task. 

1 Introduction 

Research in question answering, machine transla-
tion and other fields has shown that being able to 
recognize the important entities in a text is often 
a critical component of these systems. Such en-
tity information gives the machine access to a 
deeper level of semantics than words alone can 
provide, and thus offers advantages for these 
complex tasks. Of course, texts are composed of 
much more than just sets of entities, and archi-
tectures that rely solely on word and entity-based 
techniques are likely to have difficulty with tasks 
that depend more heavily on event and temporal 
relations. Consider a question answering system 
that receives the following questions: 

• Is Anwar al-Sadat still the president of 
Egypt? 

• How did the linking of the Argentinean 
peso to the US dollar in 1991 contribute to 
economic crisis of Argentina in 2003? 

Processing such questions requires not only 
knowing what the important people, places and 
other entities are, but also what kind of events 
they are involved in, the roles they play in those 
events, and the relations among those events. 
Thus, we suggest that identifying such events in 
a text should play an important role in systems 
that attempt to address questions like these. 

Of course, to identify events in texts, we must 
define what exactly it is we mean by “event”. In 
this work, we adopt a traditional linguistic defini-
tion of an event that divides words into two as-
pectual types: states and events. States describe 
situations that are static or unchanging for their 
duration, while events describe situations that 
involve some internal structure. For example, 
predicates like know and love would be states 
because if we know (or love) someone for a pe-
riod of time, we know (or love) that person at 
each point during the period. Predicates like run 
or deliver a sermon would be events because 
they are built of smaller dissimilar components: 
run includes raising and lowering of legs and 
deliver a sermon includes the various tongue 
movements required to produce words. 

To better explain how we approach the task of 
identifying such events, we first discuss some 
past work on related tasks. Then we briefly dis-
cuss the characteristics of the TimeBank, a cor-
pus containing event-annotated data. Next we 
present our formulation of event identification as 
a classification task and introduce the linguistic 
features that serve as input to the algorithm. Fi-
nally, we show the results of STEP (our “System 
for Textual Event Parsing”) which applies these 
techniques to the TimeBank data. 

2 Related Efforts 

Such aspectual distinctions have been alive and 
well in the linguistic literature since at least the 
late 60s (Vendler, 1967). However, the use of the 
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term event in natural language processing work 
has often diverged quite considerably from this 
linguistic notion. In the Topic Detection and 
Tracking (TDT) task, events were sets of docu-
ments that described “some unique thing that 
happens at some point in time” (Allan et. al., 
1998). In the Message Understanding Confer-
ence (MUC), events were groups of phrases that 
formed a template relating participants, times 
and places to each other (Marsh and Per-
zanowski, 1997). In the work of Filatova and 
Hatzivassiloglou (2003), events consisted of a 
verb and two named-entities occurring together 
frequently across several documents on a topic. 

Several recent efforts have stayed close to the 
linguistic definition of events. One such example 
is the work of Siegel and McKeown (2000) 
which showed that machine learning models 
could be trained to identify some of the tradi-
tional linguistic aspectual distinctions. They 
manually annotated the verbs in a small set of 
texts as either state or event, and then used a va-
riety of linguistically motivated features to train 
machine learning models that were able to make 
the event/state distinction with 93.9% accuracy.  

Another closely related effort was the Evita 
system, developed by Saurí et. al. (2005). This 
work considered a corpus of events called 
TimeBank, whose annotation scheme was moti-
vated largely by the linguistic definitions of 
events. Saurí et. al. showed that a linguistically 
motivated and mainly rule-based algorithm could 
perform well on this task. 

Our work draws from both the Siegel and 
McKeown and Saurí et. al. works. We consider 
the same TimeBank corpus as Saurí et. al., but 
apply a statistical machine learning approach 
akin to that of Siegel and McKeown. We demon-
strate that combining machine learning tech-
niques with linguistically motivated features can 
produce models from the TimeBank data that are 
capable of making a variety of subtle aspectual 
distinctions. 

3 Events in the TimeBank 

TimeBank (Pustejovsky, et. al. 2003b) consists 
of just under 200 documents containing 70,000 
words; it is drawn from news texts from a variety 
of different domains, including newswire and 
transcribed broadcast news. These documents are 
annotated using the TimeML annotation scheme 
(Pustejovsky, et. al. 2003a), which aims to iden-
tify not just times and dates, but events and the 
temporal relations between these events. 

Of interest here are the EVENT annotations, 
of which TimeBank 1.1 has annotated 8312. 
TimeBank annotates a word or phrase as an 
EVENT if it describes a situation that can “hap-
pen” or “occur”, or if it describes a “state” or 
“circumstance” that “participate[s] in an opposi-
tion structure in a given text” (Pustejovsky, et. al. 
2003b). Note that the TimeBank events are not 
restricted to verbs; nouns and adjectives denote 
events as well. 

The TimeBank definition of event differs in a 
few ways from the traditional linguistic defini-
tion of event. TimeBank EVENTs include not 
only the normal linguistic events, but also some 
linguistic states, depending on the contexts in 
which they occur. For example1, in the sentence 
None of the people on board the airbus survived 
the crash the phrase on board would be consid-
ered to describe an EVENT because that state 
changes in the time span covered by the text. Not 
all linguistic states become TimeBank EVENTs 
in this manner, however. For example, the state 
described by New York is on the east coast holds 
true for a time span much longer than the typical 
newswire document and would therefore not be 
labeled as an EVENT. 

In addition to identifying which words in the 
TimeBank are EVENTs, the TimeBank also pro-
vides a semantic class label for each EVENT. 
The possible labels include OCCURRENCE, 
PERCEPTION, REPORTING, ASPECTUAL, 
STATE, I_STATE, I_ACTION, and MODAL, 
and are described in more detail in (Pustejovsky, 
et. al. 2003a). 

We consider two tasks on this data: 

(1) Identifying which words and phrases are 
EVENTs, and 

(2) Identifying their semantic classes. 

The next section describes how we turn these 
tasks into machine learning problems. 

4 Event Identification as Classification 

We view event identification as a classification 
task using a word-chunking paradigm similar to 
that used by Carreras et. al. (2002). For each 
word in a document, we assign a label indicating 
whether the word is inside or outside of an event. 
We use the standard B-I-O formulation of the 
word-chunking task that augments each class 
label with an indicator of whether the given word 

                                                 
1 These examples are derived from (Pustejovsky, et. al. 
2003b) 
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is (B)eginning, (I)nside or (O)utside of a chunk 
(Ramshaw & Marcus, 1995). So, for example, 
under this scheme, sentence (1) would have its 
words labeled as in Table 1. 

(1) The company’s sales force 
[EVENT(I_ACTION) applauded] the 
[EVENT(OCCURRENCE) shake up] 

The two columns of labels in Table 1 show how 
the class labels differ depending on our task. If 
we’re interested only in the simple event identi-
fication task, it’s sufficient to know that ap-
plauded and shake both begin events (and so 
have the label B), up is inside an event (and so 
has the label I), and all other words are outside 
events (and so have the label O). These labels are 
shown in the column labeled Event Label. If in 
addition to identifying events, we also want to 
identify their semantic classes, then we need to 
know that applauded begins an intentional action 
event (B_I_ACTION), shake begins an occur-
rence event (B_OCCURRENCE), up is inside an 
occurrence event (I_OCCURRENCE), and all 
other words are outside of events (O). These la-
bels are shown in the column labeled Event Se-
mantic Class Label. Note that while the eight 
semantic class labels in the TimeBank could po-
tentially introduce as many as 8 • 2 + 1 = 17 
chunk labels, not all types of events appear as 
multi-word phrases, so we see only 13 of these 
labels in our data. 

5 Classifier Features 

Having cast the problem as a chunking task, our 
next step is to select and represent a useful set of 
features. In our case, since each classification 
instance is a word, our features need to provide 
the information that we deem important for rec-
ognizing whether a word is part of an event or 

not. We consider a number of such features, 
grouped into feature classes for the purposes of 
discussion. 

5.1 Text feature 

This feature is just the textual string for the word. 

5.2 Affix features 

These features attempt to isolate the potentially 
important subsequences of characters in the 
word.  These are intended to identify affixes that 
have a preference for different types of events. 

Affixes: These features identify the first three 
and four characters of the word, and the last three 
and four characters of the word. 

Nominalization suffix: This feature indicates 
which of the suffixes typically associated with 
nominalizations – ing(s), ion(s), ment(s), and 
nce(s) – the word ends with. This overlaps with 
the Suffixes feature, but allows the classifier to 
more easily treat nominalizations specially. 

5.3 Morphological features 

These features identify the various morphologi-
cal variants of a word, so that, for example, the 
words resist, resisted and resistance can all be 
identified as the same basic event type. 

Morphological stem: This feature gives the base 
form of the word, so for example, the stem of 
assisted is assist and the stem of investigations is 
investigation.  Stems are identified with a lookup 
table from the University of Pennsylvania of 
around 300,000 words. 

Root verb: This feature gives the verb from 
which the word is derived. For example, assis-
tance is derived from assist and investigation is 
derived from investigate.  Root verbs are identi-
fied with an in-house lookup table of around 
5000 nominalizations. 

5.4 Word class features 

These features attempt to group the words into 
different types of classes.  The intention here is 
to identify correlations between classes of words 
and classes of events, e.g. that events are more 
likely to be expressed as verbs or in verb phrases 
than they are as nouns. 

Part-of-speech: This feature contains the word’s 
part-of-speech based on the Penn Treebank tag 
set. Part-of-speech tags are assigned by the MX-
POST maximum-entropy based part-of-speech 
tagger (Ratnaparkhi, 1996). 

Word Event Label Event Semantic 
Class Label 

The O O 
company O O 
’s O O 
sales O O 
force O O 
applauded B B_I_ACTION 
the O O 
shake B B_OCCURRENCE 
up I I_OCCURRENCE 
. O O 

Table 1: Event chunks for sentence (1) 

148



Syntactic-chunk label: The value of this feature 
is a B-I-O style label indicating what kind of 
syntactic chunk the word is contained in, e.g. 
noun phrase, verb phrase, or prepositional 
phrase. These are assigned using a word-
chunking SVM-based system trained on the 
CoNLL-2000 data2 (which uses the lowest nodes 
of the Penn TreeBank syntactic trees to break 
sentences into base phrases). 

Word cluster: This feature indicates which verb 
or noun cluster the word is a member of. The 
clusters were derived from the co-occurrence 
statistics of verbs and their direct objects, in the 
same manner as Pradhan et. al. (2004). This pro-
duced 128 clusters (half verbs, half nouns) cover-
ing around 100,000 words. 

5.5 Governing features 

These features attempt to include some simple 
dependency information from the surrounding 
words, using the dependency parses produced by 
Minipar3.  These features aim to identify events 
that are expressed as phrases or that require 
knowledge of the surrounding phrase to be iden-
tified. 

Governing light verb: This feature indicates 
which, if any, of the light verbs be, have, get, 
give, make, put, and take governs the word. This 
is intended to capture adjectival predicates such 
as may be ready, and nominal predicates such as 
make an offer, where ready and offer should be 
identified as events. 

Determiner type: This feature indicates the type 
of determiner a noun phrase has. If the noun 
phrase has an explicit determiner, e.g. a, the or 
some, the value of this feature is the determiner 
itself. We use the determiners themselves as fea-
ture values here because they form a small, 
closed class of words. For open-class determiner-
like modifiers, we instead group them into 
classes.  For noun phrases that are explicitly 
quantified, like a million dollars, the value is 
CARDINAL, while for noun phrases modified 
by other possessive noun phrases, like Bush's 
real objectives, the value is GENITIVE. For 
noun phrases without a determiner-like modifier, 
the value is PROPER_NOUN, BARE_PLURAL 
or BARE_SINGULAR, depending on the noun 
type. 

                                                 
2 http://cnts.uia.ac.be/conll2000/ 
3 http://www.cs.ualberta.ca/~lindek/minipar.htm 

Subject determiner type: This feature indicates 
for a verb the determiner type (as above) of its 
subject. This is intended to distinguish generic 
sentences like Cats have fur from non-generics 
like The cat has fur.  

5.6 Temporal features 

These features try to identify temporal relations 
between words.  Since the duration of a situation 
is at the core of the TimeBank definition of 
events, features that can get at such information 
are particularly relevant. 

Time chunk label: The value of this feature is a 
B-I-O label indicating whether or not this word is 
contained in a temporal annotation. The temporal 
annotations are produced by a word-chunking 
SVM-based system trained on the temporal ex-
pressions (TIMEX2 annotations) in the TERN 
2004 data4.  In addition to identifying expres-
sions like Monday and this year, the TERN data 
identifies event-containing expressions like the 
time she arrived at her doctor's office. 

Governing temporal: This feature indicates 
which kind of temporal preposition governs the 
word. Since the TimeBank is particularly inter-
ested in which events start or end within the time 
span of the document, we consider prepositions 
likely to indicate such a change of state, includ-
ing after, before, during, following, since, till , 
until and while. 

Modifying temporal: This feature indicates 
which kind of temporal expression modifies the 
word. Temporal expressions are recognized as 
above, and the type of modification is either the 
preposition that joins the temporal annotation to 
the word, or ADVERBIAL for any non-
preposition modification. This is intended to cap-
ture that modifying temporal expressions often 
indicate event times, e.g. He ran the race in an 
hour. 

5.7 Negation feature 

This feature indicates which negative particle, 
e.g. not, never, etc., modifies the word. The idea 
is based Siegel and McKeown’s (2000) findings 
which suggested that in some corpora states oc-
cur more freely with negation than events do. 

5.8 WordNet hypernym features 

These features indicate to which of the WordNet 
noun and verb sub-hierarchies the word belongs. 

                                                 
4 http://timex2.mitre.org/tern.html 
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Rather than include all of the thousands of dif-
ferent sub-hierarchies in WordNet, we first se-
lected the most useful candidates by looking at 
the overlap with WordNet and our training data. 
For each hierarchy in WordNet, we considered a 
classifier that labeled all words in that hierarchy 
as events, and all words outside of that hierarchy 
as non-events5. We then evaluated these classifi-
ers on our training data, and selected the ten with 
the highest F-measures. This resulted in selecting 
the following synsets: 

• noun: state 

• noun: psychological feature 

• noun: event 

• verb: think, cogitate, cerebrate 

• verb: move, displace 

• noun: group, grouping 

• verb: act, move 

• noun: act, human action, human activity 

• noun: abstraction 

• noun: entity 

The values of the features were then whether or 
not the word fell into the hierarchy defined by 
each one of these roots. Note that since there are 
no WordNet senses labeled in our data, we ac-
cept a word as falling into one of the above hier-
archies if any of its senses fall into that hierar-
chy. 

6 Classifier Parameters 

The features described in the previous section 
give us a way to provide the learning algorithm 
with the necessary information to make a classi-
fication decision. The next step is to convert our 
training data into sets of features, and feed these 
classification instances to the learning algorithm. 
For the learning task, we use the TinySVM6 sup-
port vector machine (SVM) implementation in 
conjunction with YamCha7 (Kudo & Matsumoto, 
2001), a suite for general-purpose chunking. 

YamCha has a number of parameters that de-
fine how it learns. The first of these is the win-
dow width of the “sliding window” that it uses. 

                                                 
5 We also considered the reverse classifiers, which classi-
fied all words in the hierarchy as non-events and all words 
outside the hierarchy as events. 
6 http://chasen.org/~taku/software/TinySVM/ 
7 http://chasen.org/~taku/software/yamcha/ 

A sliding window is a way of including some of 
the context when the classification decision is 
made for a word. This is done by including the 
features of preceding and following words in 
addition to the features of the word to be classi-
fied. To illustrate this, we consider our earlier 
example, now augmented with some additional 
features in Table 2. 

To classify up in this scenario, we now look 
not only at its features, but at the features of 
some of the neighboring words. For example, if 
our window width was 1, the feature values we 
would use for classification would be those in the 
outlined box, that is, the features of shake, up 
and the sentence final period. Note that we do 
not include the classification labels for either up 
or the period since neither of these classifications 
is available at the time we try to classify up. Us-
ing such a sliding window allows YamCha to 
include important information, like that up is 
preceded by shake and that shake was identified 
as beginning an event. 

In addition to the window width parameter, 
YamCha also requires values for the following 
three parameters: the penalty for misclassifica-
tion (C), the kernel’s polynomial degree, and the 
method for applying binary classifiers to our 
multi-class problem, either pair-wise or one-vs-
rest. In our experiments, we chose a one-vs-rest 
multi-class scheme to keep training time down, 
and then tried different variations of all the other 
parameters to explore a variety of models. 

7 Baseline Models 

To be able to meaningfully evaluate the models 
we train, we needed to establish a reasonable 
baseline. Because the majority class baseline 
would simply label every word as a non-event, 
we introduce two baseline models that should be 
more reasonable: Memorize and Sim-Evita. 

Word POS Stem Label 
The DT the O 
company NN company O 
’s POS ’s O 
sales NNS sale O 
force NN force O 
applauded VBD applaud B 
The DT the O 
shake NN shake B 
up RP up  
. . .  

Table 2: A window of word features 
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The Memorize baseline is essentially a lookup 
table – it memorizes the training data. This sys-
tem assigns to each word the label with which it 
occurred most frequently in the training data, or 
the label O (not an event) if the word never oc-
curred in the training data. 

The Sim-Evita model is our attempt to simu-
late the Evita system (Saurí et. al. 2005). As part 
of its algorithm, Evita includes a check that de-
termines whether or not a word occurs as an 
event in TimeBank. It performs this check even 
when evaluated on TimeBank, and thus though 
Evita reports 74% precision and 87% recall, 
these numbers are artificially inflated because the 
system was trained and tested on the same cor-
pus. Thus we cannot directly compare our results 
to theirs. Instead, we simulate Evita by taking the 
information that it encodes as rules, and encod-
ing this instead as features which we provide to a 
YamCha-based system. 

Saurí et. al. (2005) provides a description of 
Evita’s rules, which, according to the text, are 
based on information from lexical stems, part of 
speech tags, syntactic chunks, weak stative 
predicates, copular verbs, complements of copu-
lar predicates, verbs with bare plural subjects and 
WordNet ancestors. We decided that the follow-
ing features most fully covered the same infor-
mation: 

• Text 

• Morphological stem 

• Part-of-speech 

• Syntactic-chunk label 

• Governing light verb 

• Subject determiner type 

• WordNet hypernyms 

We also decided that since Evita does not con-
sider a word-window around the word to be clas-
sified, we should set our window size parameter 
to zero. 

Because our approximation of Evita uses a 
feature-based statistical machine learning algo-
rithm instead of the rule-based Evita algorithm, it 
cannot predict how well Evita would perform if 
it had not used the same data for training and 
testing. However, it can give us an approxima-
tion of how well a model can perform using in-
formation similar to that of Evita. 

8 Results 

Having decided on our feature space, our learn-
ing model, and the baselines to which we will 
compare, we now describe the results of our 
models on the TimeBank. We selected a strati-
fied sample of 90% of the TimeBank data for a 
training set, and reserved the remaining 10% for 
testing8. 

We consider three evaluation measures: preci-
sion, recall and F-measure. Precision is defined 
as the number of B and I labels our system iden-
tifies correctly, divided by the total number of B 
and I labels our system predicted. Recall is de-
fined as the number of B and I labels our system 
identifies correctly, divided by the total number 
of B and I labels in the TimeBank data. F-
measure is defined as the geometric mean of pre-
cision and recall9. 

To determine the best parameter settings for 
the models, we performed cross-validations on 
our training data, leaving the testing data un-
touched. We divided the training data randomly 
into five equally-sized sections. Then, for each 
set of parameters to be evaluated, we determined 
a cross-validation F-measure by averaging the F-
measures of five runs, each tested on one of the 
training data sections and trained on the remain-
ing training data sections. We selected the pa-
rameters of the model that had the best cross-
validation F-measure on the training data as the 
parameters for the rest of our experiments. For 
the simple event identification model this se-
lected a window width of 2, polynomial degree 
of 3 and C value of 0.1, and for the event and 
class identification model this selected a window 
width of 1, polynomial degree of 1 and C value 
0.1. For the Sim-Evita simple event identification 
model this selected a degree of 2 and C value of 
0.01, and for the Sim-Evita event and class iden-
tification model, this selected a degree of 1 and C 
value of 1.0. 

Having selected the appropriate parameters for 
our learning algorithm, we then trained our SVM 
models on the training data. Table 3 presents the 
results of these models on the test data. Our 
model (named STEP above for “System for Tex-

                                                 
8 The testing documents were: 
APW19980219.0476, APW19980418.0210, 
NYT19980206.0466, PRI19980303.2000.2550, 
ea980120.1830.0071, and the wsj_XXXX_orig documents 
numbered 0122, 0157, 0172, 0313, 0348, 0541, 0584, 0667, 
0736, 0791, 0907, 0991 and 1033. 
9 

RP

RP
F

+
⋅⋅= 2  
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tual Event Parsing”) outperforms both baselines 
on both tasks. For simple event identification, the 
main win over both baselines is an increased re-
call. Our model achieves a recall of 70.6%, about 
5% better than our simulation of Evita, and 
nearly 15% better than the Memorize baseline. 
For event and class identification, the win is 
again in recall, though to a lesser degree. Our 
system achieves a recall of 51.2%, about 5% bet-
ter than Sim-Evita, and 10% better than Memo-
rize. On this task, we also achieve a precision of 
66.7%, about 10% better than the precision of 
Sim-Evita. This indicates that the model trained 
with no context window and using the Evita-like 
feature set was at a distinct disadvantage over the 
model which had access to all of the features. 

Table 4 and Table 5 show the results of our 
systems on various sub-tasks, with the “%” col-
umn indicating what percent of the events in the 
test data each subtask contained. Table 4 shows 
that in both tasks, we do dramatically better on 
verbs than on nouns, especially as far as recall is 
concerned. This is relatively unsurprising – not 
only is there more data for verbs (59% of event 
words are verbs, while only 28% are nouns), but 
our models generally do better on words they 

have seen before, and there are many more nouns 
we have not seen than there are verbs. 

Table 5 shows how well we did individually 
on each type of label. For simple event identifi-
cation (the top two rows) we can see that we do 
substantially better on B labels than on I labels, 
as we would expect since 92% of event words 
are labeled B. The label-wise performance for 
the event and class identification (the bottom 
seven rows) is more interesting. Our best per-
formance is actually on Reporting event words, 
even though the data is mainly Occurrence event 
words. One reason for this is that instances of the 
word said make up about 60% of Reporting 
event words in the TimeBank. The word said is 
relatively easy to get right because it comes with 
by far the most training data10, and because it is 
almost always an event: 98% of the time in the 
TimeBank, and 100% of the time in our test data. 

To determine how much each of the feature 
sets contributed to our models we also performed 
a pair of ablation studies. In each ablation study, 
we trained a series of models on successively 
fewer feature sets, removing the least important 
feature set each time. The least important feature 
set was determined by finding out which feature 
set’s removal caused the smallest drop in F-
measure. The result of this process was a list of 
our feature sets, ordered by importance. These 
lists are given for both tasks in Table 6, along 
with the precision, recall and F-measures of the 
various corresponding models.  Each row in 
Table 6 corresponds to a model trained on the 
feature sets named in that row and all the rows 
below it.  Thus, on the top row, no feature sets 
have been removed, and on the bottom row only 
one feature set remains. 

                                                 
10 The word “said” has over 600 instances in TimeBank. 
The word with the next most instances has just over 200 

 Event Identification Event and Class Identification 
Model Precision Recall F Precision Recall F  
Memorize 0.806 0.557 0.658 0.640 0.413 0.502  
Sim-Evita 0.812 0.659 0.727 0.571 0.459 0.509  
STEP 0.820 0.706 0.759 0.667 0.512 0.579  

Table 3: Overall results for both tasks 

 Event Identification Event and Class Identification 
 % Precision Recall F % Precision Recall F 
Verbs 59 0.864 0.903 0.883 59 0.714 0.701 0.707 
Nouns 28 0.729 0.432 0.543 28 0.473 0.261 0.337 

Table 4: Results by word class for both tasks 

 % Precision Recall F 
B 92 0.827 0.737 0.779 
I 8 0.679 0.339 0.452 
B Occurrence 44 0.633 0.727 0.677 
B State 14 0.519 0.136 0.215 
B Reporting 11 0.909 0.779 0.839 
B Istate 10 0.737 0.378 0.500 
B Iaction 10 0.480 0.174 0.255 
I State 7 0.818 0.173 0.286 
B Aspectual 3 0.684 0.684 0.684 

Table 5: Results by label 
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So, for example, in the simple event identifica-
tion task, we see that the Governing, Negation, 
Affix and WordNet features are hurting the clas-
sifier somewhat – a model trained without these 
features performs at an F-measure of 0.772, more 
than 1% better than a model including these fea-
tures. In contrast, we can see that for the event 
and semantic class identification task, the Word-
Net and Affix features are actually among the 
most important, with only the Word class fea-
tures accompanying them in the top three. These 
ablation results suggest that word class, textual, 
morphological and temporal information is most 
useful for simple event identification, and affix, 
WordNet and negation information is only really 
needed when the semantic class of an event must 
also be identified. 

The last thing we investigated was the effect 
of additional training data. To do so, we trained 
the model on increasing fractions of the training 
data, and measured the classification accuracy on 

the testing data of each of the models thus 
trained. The resulting graph is shown in Figure 1. 
The Majority line indicates the classifier accu-
racy when the classifier always guesses majority 
class, that is, (O)utside of an event. We can see 
from the two learning curves that even with only 
the small amount of data available in the 
TimeBank, our models are already reaching the 
level part of the learning curve at somewhere 
around 20% of the data. This suggests that, 
though additional data may help somewhat in the 
data sparseness problem, substantial further pro-
gress on this task will require new, more descrip-
tive features. 

9 Conclusions 

In this paper, we showed that statistical machine 
learning techniques can be successfully applied 
to the problem of identifying fine-grained events 
in a text. We formulated this task as a statistical 
classification task using a word-chunking para-
digm, where words are labeled as beginning, in-
side or outside of an event. We introduced a va-
riety of relevant linguistically-motivated fea-
tures, and showed that models trained in this way 
could perform quite well on the task, with a pre-
cision of 82% and a recall of 71%. This method 
extended to the task of identifying the semantic 
class of an event with a precision of 67% and a 
recall of 51%. Our analysis of these models indi-
cates that while the simple event identification 
task can be approached with mostly simple text 
and word-class based features, identifying the 
semantic class of an event requires features that 
encode more of the semantic context of the 
words. Finally, our training curves suggest that 
future research in this area should focus primar-
ily on identifying more discriminative features. 

Event Identification  Event and Class Identification 
Feature set Precision Recall F  Feature set Precision Recall F 
Governing 0.820 0.706 0.759  Governing 0.667 0.512 0.579 
Negation 0.824 0.713 0.765  Temporal 0.675 0.513 0.583 
Affix 0.826 0.715 0.766  Negation 0.672 0.510 0.580 
WordNet 0.818 0.723 0.768  Morphological 0.670 0.509 0.579 
Temporal 0.820 0.729 0.772  Text 0.671 0.505 0.576 
Morphological 0.816 0.727 0.769  WordNet 0.679 0.497 0.574 
Text 0.816 0.697 0.752  Word class 0.682 0.474 0.559 
Word class 0.719 0.677 0.697  Affix 0.720 0.421 0.531 

Table 6: Ablations for both tasks. For each task, the least important feature sets appear at the top of the 
table, and most important feature sets appear at the bottom. For each row, the precision, recall and F-
measure indicate the scores of a model trained with only the feature sets named in that row and the 
rows below it. 
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Abstract

This paper describes an extremely lexi-
calized probabilistic model for fast and
accurate HPSG parsing. In this model,
the probabilities of parse trees are de-
fined with only the probabilities of select-
ing lexical entries. The proposed model
is very simple, and experiments revealed
that the implemented parser runs around
four times faster than the previous model
and that the proposed model has a high
accuracy comparable to that of the previ-
ous model for probabilistic HPSG, which
is defined over phrase structures. We
also developed a hybrid of our probabilis-
tic model and the conventional phrase-
structure-based model. The hybrid model
is not only significantly faster but also sig-
nificantly more accurate by two points of
precision and recall compared to the pre-
vious model.

1 Introduction

For the last decade, accurate and wide-coverage
parsing for real-world text has been intensively
and extensively pursued. In most of state-of-the-
art parsers, probabilistic events are defined over
phrase structures because phrase structures are
supposed to dominate syntactic configurations of
sentences. For example, probabilities were de-
fined over grammar rules in probabilistic CFG
(Collins, 1999; Klein and Manning, 2003; Char-

niak and Johnson, 2005) or over complex phrase
structures of head-driven phrase structure gram-
mar (HPSG) or combinatory categorial grammar
(CCG) (Clark and Curran, 2004b; Malouf and van
Noord, 2004; Miyao and Tsujii, 2005). Although
these studies vary in the design of the probabilistic
models, the fundamental conception of probabilis-
tic modeling is intended to capture characteristics
of phrase structures or grammar rules. Although
lexical information, such as head words, is known
to significantly improve the parsing accuracy, it
was also used to augment information on phrase
structures.

Another interesting approach to this problem
was using supertagging (Clark and Curran, 2004b;
Clark and Curran, 2004a; Wang and Harper, 2004;
Nasr and Rambow, 2004), which was originally
developed for lexicalized tree adjoining grammars
(LTAG) (Bangalore and Joshi, 1999). Supertag-
ging is a process where words in an input sen-
tence are tagged with ‘supertags,’ which are lex-
ical entries in lexicalized grammars, e.g., elemen-
tary trees in LTAG, lexical categories in CCG,
and lexical entries in HPSG. Supertagging was,
in the first place, a technique to reduce the cost
of parsing with lexicalized grammars; ambiguity
in assigning lexical entries to words is reduced
by the light-weight process of supertagging be-
fore the heavy process of parsing. Bangalore and
Joshi (1999) claimed that if words can be assigned
correct supertags, syntactic parsing is almost triv-
ial. What this means is that if supertags are cor-
rectly assigned, syntactic structures are almost de-
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termined because supertags include rich syntac-
tic information such as subcategorization frames.
Nasr and Rambow (2004) showed that the accu-
racy of LTAG parsing reached about 97%, assum-
ing that the correct supertags were given. The
concept of supertagging is simple and interesting,
and the effects of this were recently demonstrated
in the case of a CCG parser (Clark and Curran,
2004a) with the result of a drastic improvement in
the parsing speed. Wang and Harper (2004) also
demonstrated the effects of supertagging with a
statistical constraint dependency grammar (CDG)
parser. They achieved accuracy as high as the
state-of-the-art parsers. However, a supertagger it-
self was used as an external tagger that enumerates
candidates of lexical entries or filters out unlikely
lexical entries just to help parsing, and the best
parse trees were selected mainly according to the
probabilistic model for phrase structures or depen-
dencies with/without the probabilistic model for
supertagging.

We investigate an extreme case of HPSG pars-
ing in which the probabilistic model is defined
with only the probabilities of lexical entry selec-
tion; i.e., the model is never sensitive to charac-
teristics of phrase structures. The model is simply
defined as the product of the supertagging proba-
bilities, which are provided by the discriminative
method with machine learning features of word
trigrams and part-of-speech (POS) 5-grams as de-
fined in the CCG supertagging (Clark and Curran,
2004a). The model is implemented in an HPSG
parser instead of the phrase-structure-based prob-
abilistic model; i.e., the parser returns the parse
tree assigned the highest probability of supertag-
ging among the parse trees licensed by an HPSG.
Though the model uses only the probabilities of
lexical entry selection, the experiments revealed
that it was as accurate as the previous phrase-
structure-based model. Interestingly, this means
that accurate parsing is possible using rather sim-
ple mechanisms.

We also tested a hybrid model of the su-
pertagging and the previous phrase-structure-
based probabilistic model. In the hybrid model,
the probabilities of the previous model are mul-
tiplied by the supertagging probabilities instead
of a preliminary probabilistic model, which is in-
troduced to help the process of estimation by fil-
tering unlikely lexical entries (Miyao and Tsujii,
2005). In the previous model, the preliminary

probabilistic model is defined as the probability
of unigram supertagging. So, the hybrid model
can be regarded as an extension of supertagging
from unigram to n-gram. The hybrid model can
also be regarded as a variant of the statistical CDG
parser (Wang, 2003; Wang and Harper, 2004), in
which the parse tree probabilities are defined as
the product of the supertagging probabilities and
the dependency probabilities. In the experiments,
we observed that the hybrid model significantly
improved the parsing speed, by around three to
four times speed-ups, and accuracy, by around two
points in both precision and recall, over the pre-
vious model. This implies that finer probabilistic
model of lexical entry selection can improve the
phrase-structure-based model.

2 HPSG and probabilistic models

HPSG (Pollard and Sag, 1994) is a syntactic the-
ory based on lexicalized grammar formalism. In
HPSG, a small number of schemata describe gen-
eral construction rules, and a large number of
lexical entries express word-specific characteris-
tics. The structures of sentences are explained us-
ing combinations of schemata and lexical entries.
Both schemata and lexical entries are represented
by typed feature structures, and constraints repre-
sented by feature structures are checked withuni-
fication.

An example of HPSG parsing of the sentence
“Spring has come” is shown in Figure 1. First,
each of the lexical entries for “has” and “come”
is unified with a daughter feature structure of the
Head-Complement Schema. Unification provides
the phrasal sign of the mother. The sign of the
larger constituent is obtained by repeatedly apply-
ing schemata to lexical/phrasal signs. Finally, the
parse result is output as a phrasal sign that domi-
nates the sentence.

Given a setW of words and a setF of feature
structures, an HPSG is formulated as a tuple,G =
〈L,R〉, where

L = {l = 〈w,F 〉|w ∈ W, F ∈ F} is a set of
lexical entries, and

R is a set of schemata; i.e.,r ∈ R is a partial
function:F × F → F .

Given a sentence, an HPSG computes a set of
phrasal signs, i.e., feature structures, as a result of
parsing. Note that HPSG is one of the lexicalized
grammar formalisms, in which lexical entries de-
termine the dominant syntactic structures.
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Figure 1: HPSG parsing.

Previous studies (Abney, 1997; Johnson et al.,
1999; Riezler et al., 2000; Malouf and van Noord,
2004; Kaplan et al., 2004; Miyao and Tsujii, 2005)
defined a probabilistic model of unification-based
grammars including HPSG as alog-linear model
or maximum entropy model(Berger et al., 1996).
The probability that a parse resultT is assigned to
a given sentencew = 〈w1, . . . , wn〉 is

phpsg(T |w) =
1

Zw
exp

(∑
u

λufu(T )

)

Zw =
∑

T ′
exp

(∑
u

λufu(T ′)

)
,

whereλu is a model parameter,fu is a feature
function that represents a characteristic of parse
treeT , andZw is the sum over the set of all pos-
sible parse trees for the sentence. Intuitively, the
probability is defined as the normalized product
of the weightsexp(λu) when a characteristic cor-
responding tofu appears in parse resultT . The
model parameters,λu, are estimated using numer-
ical optimization methods (Malouf, 2002) to max-
imize the log-likelihood of the training data.

However, the above model cannot be easily es-
timated because the estimation requires the com-
putation of p(T |w) for all parse candidates as-
signed to sentencew. Because the number of
parse candidates is exponentially related to the
length of the sentence, the estimation is intractable
for long sentences. To make the model estimation
tractable, Geman and Johnson (Geman and John-
son, 2002) and Miyao and Tsujii (Miyao and Tsu-
jii, 2002) proposed a dynamic programming algo-
rithm for estimatingp(T |w). Miyao and Tsujii
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COMPS <>
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SUBJ  <   >
COMPS <>
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SUBJ  <   >
COMPS <   >
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head-comp
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1
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head-comp, 1, 0,
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HEAD  verb
SUBJ  <NP>
COMPS <VP>

HEAD  verb
SUBJ  <NP>
COMPS <>

flex= <spring, NN,                    > 
HEAD  noun
SUBJ  <>
COMPS <>

Figure 2: Example of features.

(2005) also introduced apreliminary probabilistic
modelp0(T |w) whose estimation does not require
the parsing of a treebank. This model is intro-
duced as a reference distribution of the probabilis-
tic HPSG model; i.e., the computation of parse
trees given low probabilities by the model is omit-
ted in the estimation stage. We have

(Previous probabilistic HPSG)

phpsg′(T |w) = p0(T |w)
1

Zw
exp

(∑
u

λufu(T )

)

Zw =
∑

T ′
p0(T ′|w) exp

(∑
u

λufu(T ′)

)

p0(T |w) =
n∏

i=1

p(li|wi),

whereli is a lexical entry assigned to wordwi in T
andp(li|wi) is the probability of selecting lexical
entryli for wi.

In the experiments, we compared our model
with the probabilistic HPSG model of Miyao and
Tsujii (2005). The features used in their model are
combinations of the feature templates listed in Ta-
ble 1. The feature templatesfbinary and funary

are defined for constituents at binary and unary
branches,froot is a feature template set for the
root nodes of parse trees, andflex is a feature tem-
plate set for calculating the preliminary probabilis-
tic model. An example of features applied to the
parse tree for the sentence “Spring has come” is
shown in Figure 2.

157



fbinary =

〈
r, d, c,
spl, syl, hwl, hpl, hll,
spr, syr, hwr, hpr, hlr

〉

funary = 〈r, sy, hw, hp, hl〉
froot = 〈sy, hw, hp, hl〉
flex = 〈wi, pi, li〉

combinations of feature templates forfbinary

〈r, d, c, hw, hp, hl〉, 〈r, d, c, hw, hp〉, 〈r, d, c, hw, hl〉,
〈r, d, c, sy, hw〉, 〈r, c, sp, hw, hp, hl〉, 〈r, c, sp, hw, hp〉,
〈r, c, sp, hw, hl〉, 〈r, c, sp, sy, hw〉, 〈r, d, c, hp, hl〉,
〈r, d, c, hp〉, 〈r, d, c, hl〉, 〈r, d, c, sy〉, 〈r, c, sp, hp, hl〉,
〈r, c, sp, hp〉, 〈r, c, sp, hl〉, 〈r, c, sp, sy〉

combinations of feature templates forfunary

〈r, hw, hp, hl〉, 〈r, hw, hp〉, 〈r, hw, hl〉, 〈r, sy, hw〉,
〈r, hp, hl〉, 〈r, hp〉, 〈r, hl〉, 〈r, sy〉

combinations of feature templates forfroot

〈hw, hp, hl〉, 〈hw, hp〉, 〈hw, hl〉,
〈sy, hw〉, 〈hp, hl〉, 〈hp〉, 〈hl〉, 〈sy〉

combinations of feature templates forflex

〈wi, pi, li〉, 〈pi, li〉

r name of the applied schema
d distance between the head words of the daughters

c
whether a comma exists between daughters
and/or inside daughter phrases

sp number of words dominated by the phrase
sy symbol of the phrasal category
hw surface form of the head word
hp part-of-speech of the head word
hl lexical entry assigned to the head word
wi i-th word
pi part-of-speech forwi

li lexical entry forwi

Table 1: Features.

3 Extremely lexicalized probabilistic
models

In the experiments, we tested parsing with the pre-
vious model for the probabilistic HPSG explained
in Section 2 and other three types of probabilis-
tic models defined with the probabilities of lexi-
cal entry selection. The first one is the simplest
probabilistic model, which is defined with only
the probabilities of lexical entry selection. It is
defined simply as the product of the probabilities
of selecting all lexical entries in the sentence; i.e.,
the model does not use the probabilities of phrase
structures like the previous models.

Given a set of lexical entries,L, a sentence,
w = 〈w1, . . . , wn〉, and the probabilistic model
of lexical entry selection,p(li ∈ L|w, i), the first
model is formally defined as follows:

(Model 1)

pmodel1(T |w) =

n∏
i=1

p(li|w, i),

where li is a lexical entry assigned to wordwi

in T andp(li|w, i) is the probability of selecting
lexical entryli for wi.

The second model is defined as the product of
the probabilities of selecting all lexical entries in
the sentence and the root node probability of the
parse tree. That is, the second model is also de-
fined without the probabilities on phrase struc-
tures:

(Model 2)

pmodel2(T |w) =

1

Zmodel2
pmodel1(T |w) exp




∑
u

(fu∈froot)

λufu(T )




Zmodel2 =

∑
T ′

pmodel1(T
′|w) exp




∑
u

(fu∈froot)

λufu(T ′)


 ,

whereZmodel2 is the sum over the set of all pos-
sible parse trees for the sentence.

The third model is a hybrid of model 1 and the
previous model. The probabilities of the lexical
entries in the previous model are replaced with the
probabilities of lexical entry selection:

(Model 3)

pmodel3(T |w) =

1

Zmodel3
pmodel1(T |w) exp

(∑
u

λufu(T )

)

Zmodel3 =

∑
T ′

pmodel1(T
′|w) exp

(∑
u

λufu(T ′)

)
.

In this study, the same model parameters used
in the previous model were used for phrase struc-
tures.

The probabilities of lexical entry selection,
p(li|w, i), are defined as follows:

(Probabilistic Model of Lexical Entry Selection)

p(li|w, i) =
1

Zw
exp

(∑
u

λufu(li,w, i)

)
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fexlex =

〈
wi−1, wi, wi+1,
pi−2, pi−1, pi, pi+1, pi+2

〉

combinations of feature templates
〈wi−1〉, 〈wi〉, 〈wi+1〉,
〈pi−2〉, 〈pi−1〉, 〈pi〉, 〈pi+1〉, 〈pi+2〉, 〈pi+3〉,
〈wi−1, wi〉, 〈wi, wi+1〉,
〈pi−1, wi〉, 〈pi, wi〉, 〈pi+1, wi〉,
〈pi, pi+1, pi+2, pi+3〉, 〈pi−2, pi−1, pi〉,
〈pi−1, pi, pi+1〉, 〈pi, pi+1, pi+2〉
〈pi−2, pi−1〉, 〈pi−1, pi〉, 〈pi, pi+1〉, 〈pi+1, pi+2〉

Table 2: Features for the probabilities of lexical
entry selection.

procedureParsing(〈w1, . . . , wn〉, 〈L, R〉, α, β, κ, δ, θ)
for i = 1 to n

foreachF ′ ∈ {F |〈wi, F 〉 ∈ L}
p =

∑
u

λufu(F ′)
π[i− 1, i] ← π[i− 1, i] ∪ {F ′}
if (p > ρ[i− 1, i, F ′]) then

ρ[i− 1, i, F ′] ← p
LocalThresholding(i− 1, i,α, β)

for d = 1 to n
for i = 0 to n− d

j = i + d
for k = i + 1 to j − 1

foreachFs ∈ φ[i, k], Ft ∈ φ[k, j], r ∈ R
if F = r(Fs, Ft) has succeeded

p = ρ[i, k, Fs] + ρ[k, j, Ft] +
∑

u
λufu(F )

π[i, j] ← π[i, j] ∪ {F}
if (p > ρ[i, j, F ]) then

ρ[i, j, F ] ← p
LocalThresholding(i, j,κ, δ)

GlobalThresholding(i, n, θ)

procedure IterativeParsing(w, G, α0, β0, κ0, δ0, θ0, ∆α, ∆β, ∆κ,
∆δ, ∆θ, αlast, βlast, κlast, δlast, θlast)

α ← α0; β ← β0; κ ← κ0; δ ← δ0; θ ← θ0;
loop while α ≤ αlastandβ ≤ βlastandκ ≤ κlastandδ ≤ δlast

andθ ≤ θlast
call Parsing(w, G, α, β, κ, δ, θ)
if π[1, n] 6= ∅ then exit
α ← α + ∆α; β ← β + ∆β;
κ ← κ + ∆κ; δ ← δ + ∆δ; θ ← θ + ∆θ;

Figure 3: Pseudo-code of iterative parsing for
HPSG.

Zw =
∑

l′
exp

(∑
u

λufu(l′,w, i)

)
,

whereZw is the sum over all possible lexical en-
tries for the wordwi. The feature templates used
in our model are listed in Table 2 and are word
trigrams and POS 5-grams.

4 Experiments

4.1 Implementation

We implemented the iterative parsing algorithm
(Ninomiya et al., 2005) for the probabilistic HPSG
models. It first starts parsing with a narrow beam.
If the parsing fails, then the beam is widened, and
parsing continues until the parser outputs results
or the beam width reaches some limit. Though

the probabilities of lexical entry selection are in-
troduced, the algorithm for the presented proba-
bilistic models is almost the same as the original
iterative parsing algorithm.

The pseudo-code of the algorithm is shown in
Figure 3. In the figure, theπ[i, j] represents
the set of partial parse results that cover words
wi+1, . . . , wj , andρ[i, j, F ] stores the maximum
figure-of-merit (FOM) of partial parse resultF
at cell (i, j). The probability of lexical entry
F is computed as

∑
u λufu(F ) for the previous

model, as shown in the figure. The probability
of a lexical entry for models 1, 2, and 3 is com-
puted as the probability of lexical entry selection,
p(F |w, i). The FOM of a newly created partial
parse,F , is computed by summing the values of
ρ of the daughters and an additional FOM ofF if
the model is the previous model or model 3. The
FOM for models 1 and 2 is computed by only sum-
ming the values ofρ of the daughters; i.e., weights
exp(λu) in the figure are assigned zero. The terms
κ andδ are the thresholds of the number of phrasal
signs in the chart cell and the beam width for signs
in the chart cell. The termsα andβ are the thresh-
olds of the number and the beam width of lexical
entries, andθ is the beam width for global thresh-
olding (Goodman, 1997).

4.2 Evaluation

We evaluated the speed and accuracy of parsing
with extremely lexicalized models by using Enju
2.1, the HPSG grammar for English (Miyao et al.,
2005; Miyao and Tsujii, 2005). The lexicon of
the grammar was extracted from Sections 02-21 of
the Penn Treebank (Marcus et al., 1994) (39,832
sentences). The grammar consisted of 3,797 lex-
ical entries for 10,536 words1. The probabilis-
tic models were trained using the same portion of
the treebank. We used beam thresholding, global
thresholding (Goodman, 1997), preserved iterative
parsing (Ninomiya et al., 2005) and other tech-

1An HPSG treebank is automatically generated from the
Penn Treebank. Those lexical entries were generated by ap-
plying lexical rules to observed lexical entries in the HPSG
treebank (Nakanishi et al., 2004). The lexicon, however, in-
cluded many lexical entries that do not appear in the HPSG
treebank. The HPSG treebank is used for training the prob-
abilistic model for lexical entry selection, and hence, those
lexical entries that do not appear in the treebank are rarely
selected by the probabilistic model. The ‘effective’ tag set
size, therefore, is around 1,361, the number of lexical entries
without those never-seen lexical entries.
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No. of tested sentences Total No. of Avg. length of tested sentences
≤ 40 words ≤ 100 words sentences ≤ 40 words ≤ 100 words

Section 23 2,162 (94.04%) 2,299 (100.00%) 2,299 20.7 22.2
Section 24 1,157 (92.78%) 1,245 (99.84%) 1,247 21.2 23.0

Table 3: Statistics of the Penn Treebank.

Section 23 (≤ 40 + Gold POSs) Section 23 (≤ 100 + Gold POSs)
LP LR UP UR Avg. time LP LR UP UR Avg. time

(%) (%) (%) (%) (ms) (%) (%) (%) (%) (ms)
previous model 87.65 86.97 91.13 90.42 468 87.26 86.50 90.73 89.93 604
model 1 87.54 86.85 90.38 89.66 111 87.23 86.47 90.05 89.27 129
model 2 87.71 87.02 90.51 89.80 109 87.38 86.62 90.17 89.39 130
model 3 89.79 88.97 92.66 91.81 132 89.48 88.58 92.33 91.40 152

Section 23 (≤ 40 + POS tagger) Section 23 (≤ 100 + POS tagger)
LP LR UP UR Avg. time LP LR UP UR Avg. time

(%) (%) (%) (%) (ms) (%) (%) (%) (%) (ms)
previous model 85.33 84.83 89.93 89.41 509 84.96 84.25 89.55 88.80 674
model 1 85.26 84.31 89.17 88.18 133 85.00 84.01 88.85 87.82 154
model 2 85.37 84.42 89.25 88.26 134 85.08 84.09 88.91 87.88 155
model 3 87.66 86.53 91.61 90.43 155 87.35 86.29 91.24 90.13 183

Table 4: Experimental results for Section 23.

niques for deep parsing2. The parameters for beam
searching were determined manually by trial and
error using Section 22:α0 = 4, ∆α = 4, αlast =
20, β0 = 1.0,∆β = 2.5, βlast = 11.0, δ0 =
12,∆δ = 4, δlast = 28, κ0 = 6.0, ∆κ =
2.25, κlast = 15.0, θ0 = 8.0, ∆θ = 3.0, and
θlast = 20.0. With these thresholding parame-
ters, the parser iterated at most five times for each
sentence.

We measured the accuracy of the predicate-
argument relations output of the parser. A
predicate-argument relation is defined as a tu-
ple 〈σ,wh, a, wa〉, whereσ is the predicate type
(e.g., adjective, intransitive verb),wh is the head
word of the predicate,a is the argument label
(MODARG, ARG1, ..., ARG4), andwa is the
head word of the argument. Labeled precision
(LP)/labeled recall (LR) is the ratio of tuples cor-
rectly identified by the parser3. Unlabeled pre-
cision (UP)/unlabeled recall (UR) is the ratio of
tuples without the predicate type and the argu-
ment label. This evaluation scheme was the
same as used in previous evaluations of lexicalized
grammars (Hockenmaier, 2003; Clark and Cur-

2Deep parsing techniques include quick check (Malouf
et al., 2000) and large constituent inhibition (Kaplan et al.,
2004) as described by Ninomiya et al. (2005), but hybrid
parsing with a CFG chunk parser was not used. This is be-
cause we did not observe a significant improvement for the
development set by the hybrid parsing and observed only a
small improvement in the parsing speed by around 10 ms.

3When parsing fails, precision and recall are evaluated,
although nothing is output by the parser; i.e., recall decreases
greatly.

ran, 2004b; Miyao and Tsujii, 2005). The ex-
periments were conducted on an AMD Opteron
server with a 2.4-GHz CPU. Section 22 of the
Treebank was used as the development set, and
the performance was evaluated using sentences of
≤ 40 and 100 words in Section 23. The perfor-
mance of each parsing technique was analyzed us-
ing the sentences in Section 24 of≤ 100 words.
Table 3 details the numbers and average lengths of
the tested sentences of≤ 40 and 100 words in Sec-
tions 23 and 24, and the total numbers of sentences
in Sections 23 and 24.

The parsing performance for Section 23 is
shown in Table 4. The upper half of the table
shows the performance using the correct POSs in
the Penn Treebank, and the lower half shows the
performance using the POSs given by a POS tag-
ger (Tsuruoka and Tsujii, 2005). The left and
right sides of the table show the performances for
the sentences of≤ 40 and≤ 100 words. Our
models significantly increased not only the pars-
ing speed but also the parsing accuracy. Model
3 was around three to four times faster and had
around two points higher precision and recall than
the previous model. Surprisingly, model 1, which
used only lexical information, was very fast and
as accurate as the previous model. Model 2 also
improved the accuracy slightly without informa-
tion of phrase structures. When the automatic POS
tagger was introduced, both precision and recall
dropped by around 2 points, but the tendency to-
wards improved speed and accuracy was again ob-
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Figure 4: F-score versus average parsing time for sentences in Section 24 of≤ 100 words.

served.
The unlabeled precisions and recalls of the pre-

vious model and models 1, 2, and 3 were signifi-
cantly different as measured using stratified shuf-
fling tests (Cohen, 1995) with p-values< 0.05.
The labeled precisions and recalls were signifi-
cantly different among models 1, 2, and 3 and
between the previous model and model 3, but
were not significantly different between the previ-
ous model and model 1 and between the previous
model and model 2.

The average parsing time and labeled F-score
curves of each probabilistic model for the sen-
tences in Section 24 of≤ 100 words are graphed in
Figure 4. The superiority of our models is clearly
observed in the figure. Model 3 performed sig-
nificantly better than the previous model. Models
1 and 2 were significantly faster with almost the
same accuracy as the previous model.

5 Discussion

5.1 Supertagging

Our probabilistic model of lexical entry selection
can be used as an independent classifier for select-
ing lexical entries, which is called the supertag-
ger (Bangalore and Joshi, 1999; Clark and Curran,
2004b). The CCG supertagger uses a maximum
entropy classifier and is similar to our model.

We evaluated the performance of our probabilis-
tic model as a supertagger. The accuracy of the re-
sulting supertagger on our development set (Sec-
tion 22) is given in Table 5 and Table 6. The test
sentences were automatically POS-tagged. Re-
sults of other supertaggers for automatically ex-

test data accuracy (%)
HPSG supertagger 22 87.51
(this paper)
CCG supertagger 00/23 91.70 / 91.45
(Curran and Clark, 2003)
LTAG supertagger 22/23 86.01 / 86.27
(Shen and Joshi, 2003)

Table 5: Accuracy of single-tag supertaggers. The
numbers under “test data” are the PTB section
numbers of the test data.

γ tags/word word acc. (%) sentence acc. (%)
1e-1 1.30 92.64 34.98
1e-2 2.11 95.08 46.11
1e-3 4.66 96.22 51.95
1e-4 10.72 96.83 55.66
1e-5 19.93 96.95 56.20

Table 6: Accuracy of multi-supertagging.

tracted lexicalized grammars are listed in Table 5.
Table 6 gives the average number of supertags as-
signed to a word, the per-word accuracy, and the
sentence accuracy for several values ofγ, which is
a parameter to determine how many lexical entries
are assigned.

When compared with other supertag sets of au-
tomatically extracted lexicalized grammars, the
(effective) size of our supertag set, 1,361 lexical
entries, is between the CCG supertag set (398 cat-
egories) used by Curran and Clark (2003) and the
LTAG supertag set (2920 elementary trees) used
by Shen and Joshi (2003). The relative order based
on the sizes of the tag sets exactly matches the or-
der based on the accuracies of corresponding su-
pertaggers.
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5.2 Efficacy of extremely lexicalized models

The implemented parsers of models 1 and 2 were
around four times faster than the previous model
without a loss of accuracy. However, what sur-
prised us is not the speed of the models, but
the fact that they were as accurate as the previ-
ous model, though they do not use any phrase-
structure-based probabilities. We think that the
correct parse is more likely to be selected if the
correct lexical entries are assigned high probabil-
ities because lexical entries include specific infor-
mation about subcategorization frames and syn-
tactic alternation, such as wh-movement and pas-
sivization, that likely determines the dominant
structures of parse trees. Another possible rea-
son for the accuracy is the constraints placed by
unification-based grammars. That is, incorrect
parse trees were suppressed by the constraints.

The best performer in terms of speed and ac-
curacy was model 3. The increased speed was,
of course, possible for the same reasons as the
speeds of models 1 and 2. An unexpected but
very impressive result was the significant improve-
ment of accuracy by two points in precision and
recall, which is hard to attain by tweaking param-
eters or hacking features. This may be because
the phrase structure information and lexical in-
formation complementarily improved the model.
The lexical information includes more specific in-
formation about the syntactic alternation, and the
phrase structure information includes information
about the syntactic structures, such as the dis-
tances of head words or the sizes of phrases.

Nasr and Rambow (2004) showed that the accu-
racy of LTAG parsing reached about 97%, assum-
ing that the correct supertags were given. We ex-
emplified the dominance of lexical information in
real syntactic parsing, i.e., syntactic parsing with-
out gold-supertags, by showing that the proba-
bilities of lexical entry selection dominantly con-
tributed to syntactic parsing.

The CCG supertagging demonstrated fast and
accurate parsing for the probabilistic CCG (Clark
and Curran, 2004a). They used the supertag-
ger for eliminating candidates of lexical entries,
and the probabilities of parse trees were calcu-
lated using the phrase-structure-based model with-
out the probabilities of lexical entry selection. Our
study is essentially different from theirs in that the
probabilities of lexical entry selection have been
demonstrated to dominantly contribute to the dis-

ambiguation of phrase structures.
We have not yet investigated whether our results

can be reproduced with other lexicalized gram-
mars. Our results might hold only for HPSG be-
cause HPSG has strict feature constraints and has
lexical entries with rich syntactic information such
as wh-movement.

6 Conclusion

We developed an extremely lexicalized probabilis-
tic model for fast and accurate HPSG parsing.
The model is very simple. The probabilities of
parse trees are defined with only the probabili-
ties of selecting lexical entries, which are trained
by the discriminative methods in the log-linear
model with features of word trigrams and POS 5-
grams as defined in the CCG supertagging. Ex-
periments revealed that the model achieved im-
pressive accuracy as high as that of the previous
model for the probabilistic HPSG and that the im-
plemented parser runs around four times faster.
This indicates that accurate and fast parsing is pos-
sible using rather simple mechanisms. In addi-
tion, we provided another probabilistic model, in
which the probabilities for the leaf nodes in a parse
tree are given by the probabilities of supertag-
ging, and the probabilities for the intermediate
nodes are given by the previous phrase-structure-
based model. The experiments demonstrated not
only speeds significantly increased by three to four
times but also impressive improvement in parsing
accuracy by around two points in precision and re-
call.

We hope that this research provides a novel ap-
proach to deterministic parsing in which only lex-
ical selection and little phrasal information with-
out packed representations dominates the parsing
strategy.
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Abstract

We proposea conditional randomfield-
basedmethodfor supertagging,and ap-
ply it to the task of learning new lexi-
cal itemsfor HPSG-basedprecisiongram-
mars of English and Japanese. Us-
ing apseudo-likelihoodapproximationwe
are able to scale our model to hun-
dredsof supertagsand tens-of-thousands
of training sentences. We show that
it is possible to achieve start-of-the-art
results for both languagesusing maxi-
mally language-independentlexical fea-
tures.Further, weexploretheperformance
of themodelsat thetype-andtoken-level,
demonstratingtheir superiorperformance
whencomparedto a unigram-basedbase-
line and a transformation-basedlearning
approach.

1 Introduction

Overrecentyears,therehasbeena resurgenceof
interestin the useof precisiongrammarsin NLP
tasks,due to advancesin parsingalgorithm de-
velopment,grammardevelopmenttools and raw
computationalpower (Oepenet al., 2002b). Pre-
cision grammars are defined as implemented
grammarsof naturallanguagewhich capturefine-
grainedlinguistic distinctions,andaregenerative
in the senseof distinguishingbetweengrammat-
ical and ungrammaticalinputs (or at least have
somein-built notion of linguistic “markedness”).
Additional characteristicsof precisiongrammars
arethat theyarefrequentlybidirectional,andout-
put a rich semanticabstractionfor each span-
ning parseof the input string. Examplesinclude
DELPH-IN grammarssuchastheEnglishResource
Grammar(Flickinger, 2002;Uszkoreit,2002),the
variousPARGRAM grammars(Butt et al., 1999),
andtheEdinburgh CCG parser(Boset al., 2004).

Due to their linguistic complexity, precision
grammarsaregenerallyhand-constructedandthus
restricted in size and coverage. Attempts to
(semi-)automatetheprocessof expandingthecov-
erageof precisiongrammarshave focusedon ei-
ther: (a) constructionalcoverage,e.g.in the form
of errormining for constructionalexpansion(van
Noord,2004;ZhangandKordoni,2006),or relax-
ationof lexico-grammaticalconstraintsto support
partialand/orrobustparsing(Riezleretal., 2002);
or (b) lexical coverage,e.g.in bootstrappingfrom
a pre-existing grammarand lexicon to learnnew
lexical items(Baldwin,2005a).Our particularin-
terestin this paperis in the latter of thesetwo,
that is the developmentof methodsfor automati-
cally expandingthelexicalcoverageof anexisting
precisiongrammar, or morebroadlydeep lexical
acquisition (DLA hereafter). In this, we follow
Baldwin (2005a)in assuminga semi-maturepre-
cision grammarwith a fixed inventoryof lexical
types,basedon which we learnnew lexical items.
For the purposesof this paper, we focus specif-
ically on supertaggingas the mechanismfor hy-
pothesisingnew lexical items.

Supertagging canbedefinedasthe processof
applyingasequentialtaggerto thetaskof predict-
ing the lexical type(s)associatedwith eachword
in an input string, relative to a givengrammar. It
wasfirst introducedasa meansof reducingparser
ambiguity by Bangaloreand Joshi(1999) in the
context of theLTAG formalism,andhassincebeen
appliedin a similar context within the CCG for-
malism(ClarkandCurran,2004).In bothof these
cases,supertaggingprovidesthemeansto perform
a beamsearchover theplausiblelexical itemsfor
a given string context,and ideally reducespars-
ing complexity without sacrificing parseraccu-
racy. An alternateapplicationof supertaggingis
in DLA, in postulatingnovel lexical items with
which to populatethe lexicon of a given gram-
marto boostparsercoverage.This cantakeplace
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either: (a) off-line for the purposesof rounding
out thecoverageof a staticlexicon, in which case
wearegenerallyinterestedin globallymaximising
precisionover a given corpusandhencepredict-
ing thesinglemostplausiblelexical typefor each
word token(off-line DLA: Baldwin (2005b));or
(b) on thefly for a giveninput stringto temporar-
ily expandlexicalcoverageandachieveaspanning
parse,in whichcaseweareinterestedin maximis-
ing recall by producinga (possiblyweighted)list
of lexicalitemhypothesesto runpastthegrammar
(on-line DLA: ZhangandKordoni (2005)). Our
immediateinterestin this paperis in the first of
thesetasks,althoughwe would ideally like to de-
velopanoff-line methodwhichis trivially portable
to thesecondtaskof on-lineDLA.

In this research, we focus particularly on
the GrammarMatrix-basedDELPH-IN family of
grammars(Benderet al., 2002), which includes
grammarsof English,Japanese,Norwegian,Mod-
ern Greek,Portugueseand Korean. The Gram-
mar Matrix is a framework for streamliningand
standardisingHPSG-basedmultilingual grammar
development.Onepropertyof GrammarMatrix-
basedgrammarsis that they arestrongly lexical-
ist and adhereto a highly constrainedlexicon-
grammarinterfacevia a unique (terminal) lexi-
cal type for eachlexical item. As such, lexical
itemcreationin any of theGrammarMatrix-based
grammars,irrespective of language,consistspre-
dominantly of predicting the appropriatelexical
type for eachlexical item, relative to the lexical
hierarchyfor the correspondinggrammar. In this
samespirit of standardisationand multilingual-
ity, the aim of this researchis to develop max-
imally language-independentsupertaggingmeth-
odswhichcanbeappliedto anyGrammarMatrix-
basedgrammarwith the minimum of effort. Es-
sentially, we hopeto provide the grammarengi-
neerwith the meansto semi-automaticallypopu-
late thelexiconof a semi-maturegrammar, hence
acceleratingthepaceof lexicon developmentand
producinga resourceof sufficient coverageto be
practicallyusefulin NLP tasks.

The contributions of this paperare the devel-
opment of a pseudo-likelihoodconditional ran-
dom field-basedmethodof supertagging,which
we then apply to the task of off-line DLA for
grammarsof bothEnglishandJapanesewith only
minor language-specificadaptation.We show the
supertaggerto outperform previously-proposed

supertagger-basedDLA methods.
The remainderof this paper is structuredas

follows. Section 2 outlines past work relative
to this research,and Section3 reviews the re-
sourcesused in our supertaggingexperiments.
Section4 outlinestheproposedsupertaggermodel
and reviews previous researchon supertagger-
basedDLA. Section5 thenoutlinestheset-upand
resultsof our evaluation.

2 Past Research

Accordingto Baldwin (2005b),researchon DLA
falls into the two categoriesof in vitro methods,
wherewe leveragea secondarylanguageresource
to generateanabstractionof thewordswehopeto
learnlexical itemsfor, andin vivomethods,where
the target resourcethat we arehopingto perform
DLA relative to is useddirectly to performDLA.
Supertaggingis an instanceof in vivo DLA, asit
operatesdirectly over datataggedwith thelexical
typesystemfor theprecisiongrammarof interest.

Researchon supertaggingwhich is relevant to
thispaperincludestheworkof Baldwin(2005b)in
training a transformation-basedlearnerover data
taggedwith ERG lexical types. We discussthis
methodin detail in Section5.2 andreplicatethis
methodover our Englishdataset for direct com-
parabilitywith this previousresearch.

As mentionedabove, other work on supertag-
ging hastendedto view it asa meansof driving
a beamsearchto prune the parsersearchspace
(Bangaloreand Joshi, 1999; Clark and Curran,
2004). In supertagging,token-level annotations
(gold-standard,automatically-generatedor other-
wise) for a given DLR are used to train a se-
quentialtagger, akin to trainingaPOStaggerover
POS-taggeddatatakenfrom thePennTreebank.

One relatedin vivo approachto DLA targeted
specificallyat precisiongrammarsis that of Fou-
vry (2003). Fouvry usesthe grammarto guide
theprocessof learninglexical itemsfor unknown
words,by generatingunderspecifiedlexical items
for all unknown words and parsingwith them.
Syntactico-semanticinteractionbetweenunknown
wordsandpre-existinglexical itemsduring pars-
ing providesinsight into the natureof eachun-
known word. By combiningsuchfragmentsof in-
formation,it is possibleto incrementallyarrive at
a consolidatedlexical entryfor thatword. Thatis,
theprecisiongrammaritself drivesthe incremen-
tal learningprocesswithin a parsingcontext.
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An alternateapproachis to compileout a setof
word templatesfor eachlexical type(with theim-
portantqualificationthat theydo not rely on pre-
processingof any form), andcheckfor corpusoc-
currencesof an unknown word in suchcontexts.
That is, the morphological,syntacticand/or se-
manticpredictionsimplicit in eachlexical typeare
madeexplicit in theform of templateswhich rep-
resentdistinguishinglexical contextsof that lexi-
cal type.This approachhasbeenshown to bepar-
ticularly effective over web data,wherethe sheer
sizeof thedataprecludesthepossibilityof linguis-
tic preprocessingbut at thesametime ameliorates
theeffectsof datasparsenessinherentin any lexi-
calisedDLA approach(LapataandKeller, 2004).

Other work on DLA (e.g. Korhonen(2002),
Joanisand Stevenson(2003), Baldwin (2005a))
hastendedto takean in vitro DLA approach,in
extrapolatingaway from a DLR to corpusor web
data,andanalysingoccurrencesof wordsthrough
the conduit of an externalresource(e.g. a sec-
ondaryparseror POStagger). In vitro DLA can
alsotaketheform of resourcetranslation,in map-
ping oneDLR ontoanotherto arrive at thelexical
informationin thedesiredformat.

3 Task and Resources

In this section,we outline the resourcestargeted
in this research,namely the English Resource
Grammar (ERG: Flickinger (2002), Copestake
andFlickinger (2000))andtheJACY grammarof
Japanese(SiegelandBender, 2002).Notethatour
choiceof theERGandJACY astestbedsfor exper-
imentationin thispaperis somewhatarbitrary, and
that we could equally run experimentsover any
GrammarMatrix-basedgrammarfor which there
is treebankdata.

Both the ERG and JACY are implemented
open-source broad-coverage precision Head-
driven Phrase Structure Grammars (HPSGs:
Pollard andSag(1994)). A lexical item in each
of the grammarsconsistsof a unique identifier,
a lexical type (a leaf type of a type hierarchy),
an orthography, and a semanticrelation. For
example,in theEnglishgrammar, thelexical item
for thenoundog is simply:

dog_n1 := n_-_c_le &
[ STEM < "dog" >,
SYNSEM [ LKEYS.KEYREL.PRED "_dog_n_1_rel" ] ].

in which the lexical type of n - c le encodes
the fact that dog is a noun which doesnot sub-
categorisefor anyotherconstituentsandwhich is

countable,"dog" specifiesthe lexical stem,and
" dog n 1 rel" introducesanadhocpredicate
namefor the lexical item to usein constructinga
semanticrepresentation.In thecontextof theERG
andJACY, DLA equatesto learningthe rangeof
lexical typesagivenlexemeoccurswith, andgen-
eratinga singlelexical item for each.

Recentdevelopmentof theERGandJACY has
beentightly coupledwith treebankannotation,and
all majorversionsof bothgrammarsaredeployed
over a common set of dynamically-updateable
treebankdata to help empirically trace the evo-
lution of the grammarandretrainparseselection
models(Oepenet al., 2002a;Bond et al., 2004).
Thisservesasasourceof trainingandtestdatafor
building our supertaggers,asdetailedin Table1.

In translatingour treebankdatainto a form that
canbeunderstoodby asupertagger, multiwordex-
pressions(MWEs)poseaslightproblem.Boththe
ERG andJACY includemultiword lexical items,
which caneitherbe strictly continuous (e.g.hot
line) or optionally discontinuous (e.g. transitive
English verb particle constructions,suchas pick
upasin Kim pickedthebookup).

Strictly continuouslexical items aredescribed
by way of a single whitespace-delimitedlexical
stem (e.g. STEM < "hot line" >). When
facedwith instancesof this lexical item, the su-
pertaggermustperformtwo roles: (1) predictthat
the wordshot and line combinetogetherto form
a single lexeme,and (2) predict the lexical type
associatedwith the lexeme. This is performed
in a single step through the introduction of the
ditto lexical type,which indicatesthat thecur-
rentwordcombines(possiblyrecursively)with the
left-adjacentword to form a single lexeme,and
sharesthesamelexical type.This taggingconven-
tion is basedon that used,e.g., in the CLAWS7
part-of-speechtagset.

Optionally discontinuouslexical itemsareless
of aconcern,asselectionof eachof thediscontin-
uous“components”is donevia lexical types.E.g.
in the caseof pick up, the lexical entry looks as
follows:

pick_up_v1 := v_p-np_le &
[ STEM < "pick" >,

SYNSEM [ LKEYS [ --COMPKEY _up_p_sel_rel,
KEYREL.PRED "_pick_v_up_rel" ] ] ].

in which"pick" selectsfor the up p sel rel
predicate,whichin turnis associatedwith thestem
"up" andlexical typep prtcl le. In termsof
lexical tagmark-up,we cantreattheseasseparate
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ERG JACY
GRAMMAR

Language English Japanese
Lexemes 16,498 41,559

Lexical items 26,297 47,997
Lexical types 915 484

Strictly continuousMWEs 2,581 422
OptionallydiscontinuousMWEs 699 0

Proportionof lexemeswith morethanonelexical item 0.29 0.14
Averagelexical itemsperlexeme 1.59 1.16

TREEBANK

Trainingsentences 20,000 40,000
Trainingwords 215,015 393,668
Testsentences 1,013 1,095

Testwords 10,781 10,669

Table 1. Make-up of the English Resource Grammar (ERG) and JACY grammars and treebanks

tagsandleavethesupertaggerto modelthemutual
inter-dependencebetweentheselexical types.

For detailedstatisticsof thecompositionof the
two grammars,seeTable1.

For morphological processing(including to-
kenisationand lemmatisation),we use the pre-
existing machinery provided with each of the
grammars.In the caseof the ERG, this consists
of a finite statemachinewhich feedsinto lexical
rules;in thecaseof JACY, segmentationandlem-
matisationis basedon a combinationof ChaSen
(Matsumotoet al., 2003)and lexical rules. That
is, we are able to assumethat the Japanesedata
hasbeenpre-segmentedin aform compatiblewith
JACY, as we are able to replicatethe automatic
pre-processingthatit uses.

4 Suppertagging

The DLA strategy we adopt in this researchis
basedon supertagging,which is a simple in-
stanceof sequentialtaggingwith a larger, more
linguistically-diversetagsetthanis conventionally
thecase,e.g.,with part-of-speechtagging.Below,
we describethepseudo-likelihoodCRFmodelwe
baseour supertaggeron and outline the feature
spacefor thetwo grammars.

4.1 Pseudo-likelihood CRF-based
Supertagging

CRFsareundirectedgraphicalmodelswhich de-
fine a conditional distribution over a label se-
quencegiven an observation sequence.Herewe
use CRFs to model sequencesof lexical types,
whereeachinput word in a sentenceis assigned
a singletag.

The joint probability densityof a sequencela-
belling, � (a vectorof lexical types),giventhein-

putsentence,� , is givenby:

����� ��� �
	������� ��������� ����� ��� �"! �$#&% �'! � � ��	( � � ��	 (1)

wherewe makea first orderMarkov assumption
over the label sequence.Here � rangesover the
word indicesof the input sentence( � ), ) ranges
over the model’s features,and *+�-, � �/. arethe
model parameters(weightsfor their correspond-
ing features). The featurefunctions

�0�
are pre-

definedreal-valuedfunctionsover the input sen-
tencecoupledwith thelexical typelabelsoverad-
jacent“times” (= sentencelocations)� . Thesefea-
ture functionsareunconstrained,andmay repre-
sentoverlappingandnon-independentfeaturesof
the data. The distribution is globally normalised
by the partition function,

( �1� ��	 , which sumsout
thenumeratorin (1) for everypossiblelabelling:

( �1� ��	1�32
4 5�6� 2 � 2 � � �7�8� ��� �9! �$#&% �9! � � ��	
We usea linear chainCRF, which is encodedin
thefeaturefunctionsof (1).

The parametersof the CRF are usually esti-
matedfrom a fully observedtraining sample,by
maximising the likelihood of these data. I.e.*;:=<>�@?BA"CEDF? � � �0���HG 	 , where G �I, � � � �
	 .
is thecompletesetof trainingdata.

However, ascalculating
( �1� ��	 hascomplexity

quadraticin thenumberof labels,we needto ap-
proximate�8��� ��� ��	 in orderto scaleour modelto
hundredsof lexical types and tens-of-thousands
of training sentences.Here we usethe pseudo-
likelihoodapproximation�0J <� (Li, 1994)in which
the marginals for a nodeat time � arecalculated
with its neighbournodes’labelsfixedto thoseob-
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FEATURE DESCRIPTION

WORD CONTEXT FEATURES�����������
	���������
& � ����

lexeme+ label�  ���
& �  ���

wordunigram+ label����������
& �  ���

previouswordunigram+ label� "!#� ���
& �  ���

nextwordunigram+ label�  ���
&
� ���� �%$

& �  ���
previouswordbigram+ label�  ���

&
� "! � ��$

& �  ���
nextwordbigram+ label� &�#�'���

& �  ��(
cliquelabelpair

LEXICAL FEATURES)+* �",#�.-/	"�0�� & �  ��� 1
-gramprefix + label24365 �+-7	��  ���%�

& �  ��� 1
-gramsuffix + label869;:.<&=;>?:.2 	��@4A4B�C&� & �  ���

wordcontainselementof characterset
B'C

+ label

Table 2. Extracted feature types for the CRF model

servedin thetrainingdata:D J <� ��E9� � �"� 	 � 2 � � � � �0� ��� �GF! �$#&% �0E"� ��	H �0� �H�'�IE"�GF! ��J % � �
	 	 (2)

� J <� � ��� �
	 � K � ���� � D J <� � � � � � �"� 	 	�ML � D J <� ��N � � � � 	"	 (3)

where O� � is the lexical type label observed in the
trainingdataand N rangesover the labelset. This
approximationremoves the needto calculatethe
partitionfunction,thusreducingthecomplexityto
be linear in the numberof labelsandtraining in-
stances.

Becausemaximum likelihood estimatorsfor
log-linear modelshave a tendencyto overfit the
training sample(ChenandRosenfeld,1999),we
definea prior distribution over the modelparam-
etersandderive a maximuma posteriori (MAP)
estimate,* :QP J # J < �I?�A"CEDF? � � �8J <� ��G 	 ��� * 	 .
Weuseazero-meanGaussianprior, with theprob-

ability density function �SR/� � � 	UT 5�6�
VGWYX[Z\]�^ Z\/_ .

This yields a log-pseudo-likelihoodobjective
functionof:`

J < � 2a 4.b c6d�e.fhgji C � J <� � ��� ��	
H 2 � g"i C � R � � � 	 (4)

In order to train the model, we maximize(4).
While the log-pseudo-likelihoodcannotbe max-
imisedfor theparameters,* , in closedform, it is
aconvex function,andthusweresortto numerical
optimisationto find the globally optimal parame-
ters. We useL-BFGS, an iterative quasi-Newton
optimisation method, which performs well for
traininglog-linearmodels(Malouf, 2002;Shaand

Pereira,2003). EachL-BFGS iteration requires
theobjectivevalueandits gradientwith respectto
themodelparameters.

As we cannotobservelabel valuesfor the test
datawe must use �0�1� ��� ��	 when decoding. The
Viterbi algorithm is used to find the maximum
posteriorprobabilityalignmentfor testsentences,��k ��?BA C DF? � 4 �0��� ��� ��	 .
4.2 CRF features

One of the strengthsof the CRF model is that
it supportsthe use of a large number of non-
independentandoverlappingfeaturesof theinput
sentence.Table2 lists theword context andlexi-
cal featuresusedby theCRFmodel(sharedacross
bothgrammars).

Word contextfeatureswereextractedfrom the
wordsandlexemesof the sentenceto be labelled
combinedwith a proposedlabel. A clique label
pair featurewasalsousedto modelsequencesof
lexical types.

For the lexical features,we generatea feature
for the unigram,bigramandtrigram prefixesand
suffixesof eachword (e.g. for bottles, we would
generatethe prefixesb, bo andbot, and the suf-
fixess, esand les); for wordsin the testdata,we
generatea featureonly if that feature-valueis at-
testedin the training data. We additionally test
eachword for the existenceof one or more ele-
mentsof a rangeof charactersets lnm . In thecase
of English,we focuson five charactersets:upper
caseletters,lower caseletters,numbers,punctua-
tion andhyphens.For the Japanesedata,we em-
ploy six charactersets: Romanletters,hiragana,
katakana,kanji, (Arabic) numeralsand punctua-
tion. For example,oqpsrqt “mouldy” would be
flaggedascontainingkatakanacharacter(s),kanji
character(s)andhiraganacharacter(s)only. Note
that the only language-dependentcomponentof
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ERG JACY
ACC ACC � PREC REC F-SCORE ACC ACC � PREC REC F-SCORE

Baseline 0.802 0.053 0.184 0.019 0.034 0.866 0.592 0.680 0.323 0.438
FNTBL 0.915 0.236 0.370 0.038 0.068 — — — — —
CRF

�������
0.911 0.427 0.339 0.053 0.092 0.920 0.816 0.548 0.414 0.471

CRF
!����	�

0.917 0.489 0.509 0.059 0.105 0.932 0.827 0.696 0.424 0.527

Table 3. Results of supertagging for the ERG and JACY (best result in each column in bold)

the lexical featuresis the charactersets, which
requireslittle or no specialistknowledgeof the
language. Note also that for languageswith in-
fixing, suchasTagalog, we may want to include

 -graminfixesin additionto 
 -gramprefixesand
suffixes. Hereagain,however, thedecisionabout
whatrangeof affixesis appropriatefor agivenlan-
guagerequiresonly superficialknowledgeof its
morphology.

5 Evaluation

Evaluationis basedon the treebankdataassoci-
atedwith eachgrammar, anda randomtraining–
test split of 20,000training sentencesand 1,013
testsentencesin thecaseof theERG,and40,000
training sentencesand1,095testsentencesin the
caseof theJACY. This split is fixed for all models
tested.

Given that the goal of this researchis to ac-
quirenovel lexical items,our primary focusis on
the performanceof the different modelsat pre-
dicting thelexical typeof any lexical itemswhich
occuronly in the testdata(which may be either
novel lexemesor previously-seenlexemesoccur-
ring with a novel lexical type). As such,we iden-
tify all unknown lexical itemsin the testdataand
evaluateaccordingto: token accuracy (the pro-
portion of unknown lexical items which arecor-
rectly tagged:ACC � ); type precision (thepropor-
tion of correctlyhypothesisedunknown lexicalen-
tries: PREC); type recall (theproportionof gold-
standardunknown lexicalentriesfor whichweget
a correctprediction:REC); andtype F-score (the
harmonicmeanof type precisionandtype recall:
F-SCORE). Wealsomeasuretheoverall token ac-
curacy (ACC) acrossall wordsin thetestdata,ir-
respectiveof whetherthey representknown or un-
known lexical items.

5.1 Baseline: Unigram Supertagger

As a baselinemodel,we usea simpleunigramsu-
pertaggertrainedbasedon maximum likelihood
estimationover the relevant training data,i.e. the
tag �� for eachtokeninstanceof a givenword �

is predictedby:

��� ��?BA"C�DF? �� ����� � � 	
In the instancethat � was not observedin the
training data,we backoff to the majority lexical
typein thetrainingdata.

5.2 Benchmark: fnTBL

In order to benchmarkour resultswith the CRF
models,we reimplementedthesupertaggermodel
proposedby Baldwin (2005b)which simply takes
FNTBL 1.1 (Ngai and Florian, 2001) off the
shelf andtrainsit over our particulartraining set.
FNTBL is a transformation-basedlearnerthat is
distributedwith pre-optimisedPOStaggingmod-
ulesfor EnglishandotherEuropeanlanguagesthat
canbe redeployedover the taskof supertagging.
Following Baldwin (2005b), the only modifica-
tions we make to the default English POS tag-
gingmethodologyare:(1) to setthedefaultlexical
typesfor singularcommonand propernounsto
n - c le andn - pn le, respectively; and (2)
reducethe thresholdscorefor lexical andcontext
transformationrulesto 1. It is importantto realise
that,unlikeourproposedmethod,theEnglishPOS
taggerimplementationin FNTBL hasbeenfine-
tunedto theEnglishPOStask,andincludesa rich
setof lexical templatesspecificto English.

Notethatwereonly ableto run FNTBL overthe
Englishdata,asencodingissueswith theJapanese
proved insurmountable.We arethusonly ableto
compareresultsover theEnglish,althoughthis is
expectedto be representative of the relative per-
formanceof themethods.

5.3 Results

The resultsfor the baseline,benchmarkFNTBL
methodfor Englishandour proposedCRF-based
supertaggerarepresentedin Table3, for eachof
the ERG andJACY. In orderto gaugethe impact
of the lexical featureson the performanceof our
CRF-basedsupertagger, we ran the supertagger
first without lexical features(CRF

#������
) andthen

with thelexical features(CRF
J������

).
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The first finding of note is that the proposed
modelsurpassesboth thebaselineandFNTBL in
all cases. If we look to token accuracyfor un-
known lexical types,theCRF is far andaway the
superiormethod,a result which is somewhat di-
minishedbut still markedfor type-level precision,
recallandF-score.Recallthat for thepurposesof
this paper, our primary interestis in how success-
fully we areable to learnnew lexical items,and
in this sensetheCRFappearsto havea clearedge
over the othermodels. It is alsoimportantto re-
call thatourresultsoverbothEnglishandJapanese
have beenachieved with only the bareminimum
of lexical featureengineering,whereasthoseof
FNTBL arehighly optimised.

Comparingthe results for the CRF with and
without lexical features(CRF�

�����
), the lexical

featuresappearto have a strongbearingon type
precision in particular, for both the ERG and
JACY.

Looking to therawnumbers,thetype-level per-
formancefor all methodsis far from flattering.
However, it is entirely predictablethat the over-
all tokenaccuracyshouldbe considerablyhigher
thanthetokenaccuracyfor unknown lexicalitems.
A breakdown of type precisionandrecall for un-
known words acrossthe major word classesfor
Englishsuggeststhat theCRF

J������
supertaggeris

mostadeptat learningnominalandadjectival lex-
ical items(with anF-scoreof 0.671and0.628,re-
spectively), and hasthe greatestdifficulties with
verbsandadverbs(with an F-scoreof 0.333and
0.395,respectively). In thecaseof Japanese,con-
jugatingadjectivesandverbspresenttheleastdif-
ficulty (with an F-scoreof 0.933 and 0.886, re-
spectively), and non-conjugatingadjectives and
adverbsareconsiderablyharder(with an F-score
of 0.396and0.474,respectively).

It is encouragingto note that type precisionis
higherthantyperecallin all cases(aphenomenon
that is especiallynoticeablefor the ERG),asthis
meansthatwhile we arenot producingthefull in-
ventoryof lexical itemsfor a given lexeme,over
half of the lexical itemsthatwe producearegen-
uine(with CRF

J������
). Thissuggeststhatit should

bepossibleto presentthegrammardeveloperwith
a relatively low-noisesetof automaticallylearned
lexical itemsfor themto manuallycurateandfeed
into thelexiconproper.

Onefinal point of interestis the ability of the
CRF to identify multiword expressions(MWEs).

There were no unknown multiword expressions
in either the English or Japanesedata,suchthat
we canonly evaluatethe performanceof the su-
pertaggerat identifyingknown MWEs. In thecase
of English,CRF

J������
identifiedstrictlycontinuous

MWEs with anaccuracyof 0.758,andoptionally
discontinuousMWEs (i.e. verbparticleconstruc-
tions)with anaccuracyof 0.625.ForJapanese,the
accuracy is considerablylower, at 0.536for con-
tinuousMWEs (recalling that therewere no op-
tionally discontinuousMWEs in JACY).

6 Conclusion

In this paper we have explored a method for
learningnew lexical items for HPSG-basedpre-
cision grammars through supertagging. Our
pseudo-likelihoodconditionalrandomfield-based
approachprovides a principled way of learning
a supertaggerfrom tens-of-thousandsof training
sentencesandwith hundredsof possibletags.

We achieve start-of-the-art results for both
English and Japanesedata sets with a largely
language-independentfeatureset.Our modelalso
achievesperformanceat thetype-andtoken-level,
over differentword classesandat multiword ex-
pressionidentification,superiorto a probabilistic
baselineanda transformationbasedlearningap-
proach.
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Abstract

Semantic lexical matching is a prominent
subtask within text understanding applica-
tions. Yet, it is rarely evaluated in a di-
rect manner. This paper proposes a def-
inition for lexical reference which cap-
tures the common goals of lexical match-
ing. Based on this definition we created
and analyzed a test dataset that was uti-
lized to directly evaluate, compare and im-
prove lexical matching models. We sug-
gest that such decomposition of the global
semantic matching task is critical in order
to fully understand and improve individual
components.

1 Introduction

A fundamental task for text understanding ap-
plications is to identify semantically equivalent
pieces of text. For example, Question Answer-
ing (QA) systems need to match corresponding
parts in the question and in the answer passage,
even though such parts may be expressed in dif-
ferent terms. Summarization systems need to rec-
ognize (redundant) semantically matching parts
in multiple sentences that are phrased differently.
Other applications, such as information extraction
and retrieval, face pretty much the same seman-
tic matching task. The degree of semantic match-
ing found is typically factored into systems’ scor-
ing and ranking mechanisms. The recently pro-
posed framework of textual entailment (Dagan et
al., 2006) attempts to formulate the generic seman-
tic matching problem in an application indepen-
dent manner.

The most commonly implemented semantic
matching component addresses the lexical level.

At this level the goal is to identify whether the
meaning of a lexical item of one text is expressed
also within the other text. Typically, lexical match-
ing models measure the degree of literal lexical
overlap, augmented with lexical substitution cri-
teria based on resources such as Wordnet or the
output of statistical similarity methods (see Sec-
tion 2). Many systems apply semantic matching
only at the lexical level, which is used to approx-
imate the overall degree of semantic matching be-
tween texts. Other systems incorporate lexical
matching as a component within more complex
models that examine matching at higher syntactic
and semantic levels.

While lexical matching models are so promi-
nent within semantic systems they are rarely eval-
uated in a direct manner. Typically, improve-
ments to a lexical matching model are evaluated by
their marginal contribution to overall system per-
formance. Yet, such global and indirect evaluation
does not indicate the absolute performance of the
model relative to the sheer lexical matching task
for which it was designed. Furthermore, the indi-
rect application-dependent evaluation mode does
not facilitate improving lexical matching models
in an application dependent manner, and does not
allow proper comparison of such models which
were developed (and evaluated) by different re-
searchers within different systems.

This paper proposes a generic definition for the
lexical matching task, which we term lexical ref-
erence. This definition is application indepen-
dent and enables annotating test datasets that eval-
uate directly lexical matching models. Conse-
quently, we created a dataset annotated for lexical
reference, using a sample of sentence pairs (text-
hypothesis) from the 1st Recognising Textual En-
tailment dataset. Further analysis identified sev-
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eral sub-types of lexical reference, pointing at the
many interesting cases where lexical reference is
derived from a complete context rather than from
a particular matching lexical item.

Next, we used the lexical reference dataset to
evaluate and compare several state-of-the-art ap-
proaches for lexical matching. Having a direct
evaluation task enabled us to capture the actual
performance level of these models, to reveal their
relative strengths and weaknesses, and even to
construct a simple combination of two models that
outperforms all the original ones. Overall, we sug-
gest that it is essential to decompose global se-
mantic matching and textual entailment tasks into
proper subtasks, like lexical reference. Such de-
composition is needed in order to fully understand
the behavior of individual system components and
to guide their future improvements.

2 Background

2.1 Term Matching

Thesaurus-based term expansion is a commonly
used technique for enhancing the recall of NLP

systems and coping with lexical variability. Ex-
pansion consists of altering a given text (usu-
ally a query) by adding terms of similar meaning.
WordNet is commonly used as a source of related
words for expansion. For example, many QA sys-
tems perform expansion in the retrieval phase us-
ing query related words based on WordNet’s lexi-
cal relations such as synonymy or hyponymy (e.g
(Harabagiu et al., 2000; Hovy et al., 2001)). Lex-
ical similarity measures (e.g. (Lin, 1998)) have
also been suggested to measure semantic similar-
ity. They are based on the distributional hypothe-
sis, suggesting that words that occur within similar
contexts are semantically similar.

2.2 Textual Entailment

The Recognising Textual Entailment (RTE-1) chal-
lenge (Dagan et al., 2006) is an attempt to promote
an abstract generic task that captures major seman-
tic inference needs across applications. The task
requires to recognize, given two text fragments,
whether the meaning of one text can be inferred
(entailed) from another text. Different techniques
and heuristics were applied on the RTE-1 dataset
to specifically model textual entailment. Interest-
ingly, a number of works (e.g. (Bos and Mark-
ert, 2005; Corley and Mihalcea, 2005; Jijkoun and
de Rijke, 2005; Glickman et al., 2006)) applied or

utilized lexical based word overlap measures. Var-
ious word-to-word similarity measures where ap-
plied, including distributional similarity (such as
(Lin, 1998)), web-based co-occurrence statistics
and WordNet based similarity measures (such as
(Leacock et al., 1998)).

2.3 Paraphrase Acquisition

A substantial body of work has been dedicated to
learning patterns of semantic equivalency between
different language expressions, typically consid-
ered as paraphrases. Recently, several works ad-
dressed the task of acquiring paraphrases (semi-)
automatically from corpora. Most attempts were
based on identifying corresponding sentences in
parallel or ‘comparable’ corpora, where each cor-
pus is known to include texts that largely corre-
spond to texts in another corpus (e.g. (Barzilay
and McKeown, 2001)). Distributional Similarity
was also used to identify paraphrase patterns from
a single corpus rather than from a comparable
set of corpora (Lin and Pantel, 2001). Similarly,
(Glickman and Dagan, 2004) developed statistical
methods that match verb paraphrases within a reg-
ular corpus.

3 The Lexical Reference Dataset

3.1 Motivation and Definition

One of the major observations of the 1st Recog-
nizing Textual Entailment (RTE-1) challenge re-
ferred to the rich structure of entailment modeling
systems and the need to evaluate and optimize in-
dividual components within them. When building
such a compound system it is valuable to test each
component directly during its development, rather
than indirectly evaluating the component’s perfor-
mance via the behavior of the entire system. If
given tools to evaluate each component indepen-
dently researchers can target and perfect the per-
formance of the subcomponents without the need
of building and evaluating the entire end-to-end
system.

A common subtask, addressed by practically all
participating systems in RTE-1, was to recognize
whether each lexical meaning in the hypothesis is
referenced by some meaning in the corresponding
text. We suggest that this common goal can be
captured through the following definition:

Definition 1 A word w is lexically referenced by
a text t if there is an explicit or implied reference
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from a set of words in t to a possible meaning of
w.

Lexical reference may be viewed as a natural ex-
tension of textual entailment for sub-sentential hy-
potheses such as words. In this work we fo-
cus on words meanings, however this work can
be directly generalized to word compounds and
phrases. A concrete version of detailed annotation
guidelines for lexical reference is presented in the
next section.1 Lexical Reference is, in some sense,
a more general notion than paraphrases. If the text
includes a paraphrase for w then naturally it does
refer to w’s meaning. However, a text need not
include a paraphrase for the concrete meaning of
the referenced word w, but only an implied refer-
ence. Accordingly, the referring part might be a
large segment of the text, which captures informa-
tion different than w’s meaning, but still implies a
reference to w as part of the text’s meaning.

It is typically a necessary, but not sufficient,
condition for textual entailment that the lexical
concepts in a hypothesis h are referred in a given
text t. For example, in order to infer from a text
the hypothesis “a dog bit a man,” it is a neces-
sary that the concepts of dog, bite and man must
be referenced by the text, either directly or in an
implied manner. However, for proper entailment
it is further needed that the right relations would
hold between these concepts2. Therefore lexical
entailment should typically be a component within
a more complex entailment modeling (or semantic
matching) system.

3.2 Dataset Creation and Annotation Process
We created a lexical reference dataset derived
from the RTE-1 development set by randomly
choosing 400 out of the 567 text-hypothesis exam-
ples. We then created sentence-word examples for
all content words in the hypotheses which do not
appear in the corresponding sentence and are not
a morphological derivation of a word in it (since a
simple morphologic module could easily identify
these cases). This resulted in a total of 708 lexi-
cal reference examples. Two annotators annotated
these examples as described in the next section.

1These terms should not be confused with the use of lex-
ical entailment in WordNet, which is used to describe an en-
tailment relationship between verb lexical types, nor with the
related notion of reference in classical linguistics, generally
describing the relation between nouns or pronouns and ob-
jects that are named by them (Frege, 1892)

2or quoting the known journalism saying – “Dog bites
man” isn’t news, but “Man bites dog” is.

Taking the same approach as of the RTE-1 dataset
creation (Dagan et al., 2006), we limited our ex-
periments to the resulting 580 examples that the
two annotators agreed upon3.

3.2.1 Annotation guidelines
We asked two annotators to annotate the

sentence-word examples according to the follow-
ing guidelines. Given a sentence and a target word
the annotators were asked to decide whether the
target word is referred by the sentence (true) or
not (false). Annotators were guided to mark the
pair as true in the following cases:
Word: if there is a word in the sentence which,
in the context of the sentence, implies a meaning
of the target word (e.g. a synonym or hyponym),
or which implies a reference to the target word’s
meaning (e.g. blind→see, sight). See examples 1-
2 in Table 1 where the word that implies the refer-
ence is emphasized in the text. Note that in exam-
ple 2 murder is not a synonym of died nor does it
share the same meaning of died; however it is clear
from its presence in the sentence that it refers to a
death. Also note that in example 8 although home
is a possible synonym for house, in the context of
the text it does not appear in that meaning and the
example should be annotated as false.
Phrase: if there is a multi-word independent ex-
pression in the sentence that implies the target (im-
plication in the same sense that a Word does). See
examples 3-4 in Table 1.
Context: if there is a clear reference to the mean-
ing of the target word by the overall meaning of
some part(s) of the sentence (possibly all the sen-
tence), though it is not referenced by any single
word or phrase. The reference is derived from the
complete context of the relevant sentence part. See
examples 5-7 in Table 1.

If there is no reference from the sentence to
the target word the annotators were instructed to
choose false. In example 9 in Table 1 the target
word “HIV-positive” should be considered as one
word that cannot be broken down from its unit and
although both the general term “HIV status” and
the more specific term “HIV negative” are referred
to, the target word cannot be understood or derived
from the text. In example 10 although the year
1945 may refer to a specific war, there is no ”war”
either specifically or generally understood by the
text.

3dataset avaiable at http://ir-srv.cs.biu.ac.
il:64080/emnlp06_dataset.zip
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ID TEXT TARGET VALUE
1 Oracle had fought to keep the forms from being released. document word
2 The court found two men guilty of murdering Shapour Bakhtiar. died word
3 The new information prompted them to call off the search. cancelled phrase
4 Milan, home of the famed La Scala opera house,. . . located phrase
5 Successful plaintiffs recovered punitive damages in Texas discrimination cases 53 legal context
6 Recreational marijuana smokers are no more likely to develop oral cancer than nonusers. risk context
7 A bus ticket cost nowadays 5.2 NIS whereas last year it cost 4.9. increase context
8 Pakistani officials announced that two South African men in their custody had confessed to

planning attacks at popular tourist spots in their home country.
house false

9 For women who are HIV negative or who do not know their HIV status, breastfeeding should
be promoted for six months.

HIV-positive false

10 On Feb. 1, 1945, the Polish government made Warsaw its capital, and an office for urban
reconstruction was set up.

war false

Table 1: Lexical Reference Annotation Examples

3.2.2 Annotation results

We measured the agreement on the lexical refer-
ence binary task (in which Word, Phrase and Con-
text are conflated to true). The resulting kappa
statistic of 0.63 is regarded as substantial agree-
ment (Landis and Koch, 1997). The resulting
dataset is not balanced in terms of true and false
examples and a straw-baseline for accuracy is
0.61, representing a system which predicts all ex-
amples as true.

3.3 Dataset Analysis

In a similar manner to (Bar-Haim et al., 2005; Van-
derwende et al., 2005) we investigated the rela-
tionship between lexical reference and textual en-
tailment. We checked the performance of a textual
entailment system which relies solely on an ideal
lexical reference component which makes no mis-
takes and asserts that a hypothesis is entailed from
a text if and only if all content words in the hypoth-
esis are referred in the text. Based on the lexical
reference dataset annotations, such an “ideal” sys-
tem would obtain an accuracy of 74% on the cor-
responding subset of the textual entailment task.
The corresponding precision is 68% and a recall
of 82%. This is significantly higher than the re-
sults of the best performing systems that partici-
pated in the challenge on the RTE-1 test set. This
suggests that lexical reference is a valuable sub-
task for entailment. Interestingly, a similar entail-
ment system based on a lexical reference compo-
nent which doesn’t account for the contextual lex-
ical reference (i.e. all Context annotations are re-
garded as false) would achieve an accuracy of only
63% with 41% precision and a recall of 63%. This
suggests that lexical reference in general and con-
textual entailment in particular, play an important

(though not sufficient) role in entailment recogni-
tion.

Further, we wanted to investigate the validity
of the assumption that for entailment relationship
to hold all content words in the hypothesis must
be referred by the text. We examined the exam-
ples in our dataset which were derived from text-
hypothesis pairs that were annotated as true (en-
tailing) in the RTE dataset. Out of 257 such exam-
ples only 34 were annotated as false by both anno-
tators. Table 2 lists a few such examples in which
entailment at whole holds, however, there exists a
word in the hypothesis (highlighted in the table)
which is not lexically referenced by the text. In
many cases, the target word was part of a non com-
positional compound in the hypothesis, and there-
fore should not be expected to be referenced by
the text (see examples 1-2). This finding indicates
that the basic assumption is a reasonable approxi-
mation for entailment. We could not have revealed
this fact without the dataset for the subtask of lex-
ical reference.

4 Lexical Reference Models

The lexical reference dataset facilitates qualita-
tive and quantitative comparison of various lexical
models. This section describes four state-of-the-
art models that can be applied to the lexical refer-
ence task. The performance of these models was
tested and analyzed, as described in the next sec-
tion, using the lexical reference dataset. All mod-
els assign a [0, 1] score to a given pair of text t
and target word u which can be interpreted as the
confidence that u is lexically referenced in t.
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ID TEXT HYPOTHESIS ENTAIL-
MENT

REFER-
ENCE

1 Iran is said to give up al Qaeda members. Iran hands over al Qaeda members. true false
2 It would help the economy by putting people

back to work and more money in the hands of
consumers.

More money in the hands of consumers
means more money can be spent to get the
economy going.

true false

3 The Securities and Exchange Commission’s
new rule to beef up the independence of mutual
fund boards represents an industry defeat.

The SEC’s new rule will give boards inde-
pendence.

true false

4 Texas Data Recovery is also successful at re-
trieving lost data from notebooks and laptops,
regardless of age, make or model.

In the event of a disaster you could use Texas
Data Recovery and you will have the capabil-
ity to restore lost data.

true false

Table 2: examples demonstrating cases when lexical entailment does not correlate with entailment. Tar-
get word is shown in bold.

4.1 WordNet

Following the common practice in NLP applica-
tions (see Section 2.1) we evaluated the perfor-
mance of a straight-forward utilization of Word-
Net’s lexical information. Our wordnet model first
lemmatizes the text and target word. It then as-
signs a score of 1 if the text contains a synonym,
hyponym or derived form of the target word and a
score of 0 otherwise.

4.2 Similarity

As a second measure we used the distributional
similarity measure of (Lin, 1998). For a text t and
a word u we assign the max similarity score as fol-
lows:

similarity(t, u) = max
v∈t

sim(u, v) (1)

where sim(u, v) is the similarity score for u and
v4.

4.3 Alignment model

(Glickman et al., 2006) was among the top scor-
ing systems on the RTE-1 challenge and supplies a
probabilistically motivated lexical measure based
on word co-occurrence statistics. It is defined for
a text t and a word u as follows:

align(t, u) = max
v∈t

P(u|v) (2)

where P(u|v) is simply the co-occurrence proba-
bility – the probability that a sentence containing v
also contains u. The co-occurrence statistics were
collected from the Reuters Corpus Volume 1.

4the scores were obtained from the following online re-
source: http://www.cs.ualberta.ca/˜lindek/
downloads.htm

4.4 Baysean model
(Glickman et al., 2005) provide a contextual mea-
sure which takes into account the whole context
of the text rather than from a single word in the
text as do the previous models. This model is
the only model which addresses contextual refer-
ence rather than just word-to-word matching. The
model is based on a Naı̈ve Bayes text classification
approach in which corpus sentences serve as doc-
uments and the class is the reference of the target
word u. Sentences containing the word u are used
as positive examples while all other sentences are
considered as negative examples. It is defined for
a text t and a word u as follows:

bayes(t, u) =
P(u)

∏
v∈t P(v|u)n(v,t)

P(¬u)
∏

v∈t P(v|¬u)n(v,t)+P(u)
∏

v∈t P(v|u)n(v,t)

(3)
where n(w, t) is the number of times word w ap-
pears in t, P(u) is the probability that a sentence
contains the word u and P(v|¬u) is the probability
that a sentence NOT containing u contains v. In
order to reduce data size and to account for zero
probabilities we applied smoothing and informa-
tion gain based feature selection on the data prior
to running the model. The co-occurrence prob-
abilities were collected from sentences from the
Reuters corpus in a similar manner to the align-
ment model.

4.5 Combined Model
The WordNet and Bayesian models are derived
from quite different motivations. One would ex-
pect the WordNet model to be better in identify-
ing the word-to-word explicit reference examples
while the Bayesian model is expected to model the
contextualy implied references. For this reason we
tried to combine forces by evaluating a naı̈ve linear
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interpolation of the two models (by simply averag-
ing the score of the two models). This model have
not been previously suggested and to the best of
our knowledge this type of combination is novel.

5 Empirical Evaluation and Analysis

5.1 Results

In order to evaluate the scores produced by the
various models as a potential component in an en-
tailment system we compared the recall-precision
graphs. In addition we compared the average pre-
cision which is a single number measure equiv-
alent to the area under an uninterpolated recall-
precision curve and is commonly used to evaluate
a systems ranking ability (Voorhees and Harman,
1999). On our dataset an average precision greater
than 0.65 is better than chance at the 0.05 level
and an average precision greater than 0.66 is sig-
nificant at the 0.01 level.

Figure 1 compares the average precision and
recall-precision results for the various models. As
can be seen, the combined wordnet+bayes model
performs best. In terms of average precision,
the similarity and wordnet models are comparable
and are slightly better than bayes. The alignment
model, however, is not significantly better than
random guessing. The recall-precision figure indi-
cates that the baysian model succeeds to rank quite
well both within the the positively scored wordnet
examples and within the negatively scored word-
net examples and thus resulting in improved av-
erage precision of the combined model. A better
understanding of the systems’ performance is evi-
dent from the following analysis.

5.2 Analysis

Table 3 lists a few examples from the lexical refer-
ence dataset along with their gold-standard anno-
tation and the Bayesian model score. Manual in-
spection of the data shows that the Bayesian model
commonly assigns a low score to correct examples
which have an entailing trigger word or phrase in
the sentence but yet the context of the sentence as a
whole is not typical for the target hypothesized en-
tailed word. For example, in example 5 the entail-
ing phrase ‘set in place’ and in example 6 the en-
tailing word ‘founder’ do appear in the text how-
ever the contexts of the sentences are not typical
news domain contexts of issued or founded. An in-
teresting future work would be to change the gen-
erative story and model to account for such cases.

The WordNet model identified a matching word
in the text for 99 out of the 580 examples. This
corresponds to a somewhat low recall of 25% and
a quite high precision of 90%. Table 4 lists typical
mistakes of the wordnet model. Examples 1-3 are
false positive examples in which there is a word
in the text (emphasized in the table) which is a
synonym or hyponym of the target word for some
sense in WordNet, however in the context of the
text it is not of such a sense. Examples 4-6 show
false negative examples, in which the annotators
identified a trigger word in the text (emphasized
in the table) but yet it or no other word in the text
is a synonym or hyponym of the target word.

5.3 Subcategory analysis

word phrase context false
word 178 16 59 32
phrase 4 12 9 4
context 15 5 56 25
false 24 5 38 226

Table 5: inter-annotator confusion matrix for the
auxiliary annotation.

As seen above, the combined model outper-
forms the others since it identifies both word-
to-word lexical reference as well as context-to-
word lexical reference. These are quite different
cases. We asked the annotators to state the sub-
category when they annotated an example as true
(as described in the annotation guidelines in Sec-
tion 3.2.1). The Word subcategory corresponds
to a word-to-word match and Phrase and Context
subcategories correspond to more than one word
to word match. As can be expected, the agreement
on such a task resulted in a lower Kappa of 0.5
which corresponds to moderate agreement (Landis
and Koch, 1997). the confusion matrix between
the two annotators is presented in Table 5. This de-
composition enables the evaluation of the strength
and weakness of different lexical reference mod-
ules, free from the context of the bigger entailment
system.

We used the subcategories dataset to test the
performances of the different models. Table 6
lists for each subcategory the recall of correctly
identified examples for each model’s 25% recall
level. The table shows that the wordnet and simi-
larity models’ strength is in identifying examples
where lexical reference is triggered by a dominant
word in the sentence. The bayes model, however,

177



Figure 1: comparison of average precision (left) and recall-precision (right) results for the various models

id text token annotation score
1 QNX Software Systems Ltd., a leading provider of real-time software and ser-

vices to the embedded computing market, is pleased to announce the appoint-
ment of Mr. Sachin Lawande to the position of vice president, engineering ser-
vices.

named PHRASE 0.98

2 NIH’s FY05 budget request of $28.8 billion includes $2 billion for the National
Institute of General Medical Sciences, a 3.4-percent increase, and $1.1 billion
for the National Center for Research Resources, and a 7.2-percent decrease from
FY04 levels.

reduced WORD 0.91

3 Pakistani officials announced that two South African men in their custody had
confessed to planning attacks at popular tourist spots in their home country.

security CONTEXT 0.80

4 With $549 million in cash as of June 30, Google can easily afford to make
amends.

shares FALSE 0.03

5 In the year 538, Cyrus set in place a policy which demanded the return of the
various gods to their proper places.

issued PHRASE 7e-4

6 The black Muslim activist said that he had relieved Muhammad of his duties
”until he demonstrates that he is willing to conform to the manner of representing
Allah and the honorable Elijah Muhammad (founder of the Nation of Islam)”.

founded WORD 3e-6

Table 3: A sample from the lexical reference dataset along with the Bayesian model’s score

id text token annotation
1 Kerry hit Bush hard on his conduct on the war in Iraq shot FALSE
2 Pakistani officials announced that two South African men in their custody had confessed to

planning attacks at popular tourist spots in their home country
forces FALSE

3 It would help the economy by putting people back to work and more money in the hands of
consumers

get FALSE

4 Eating lots of foods that are a good source of fiber may keep your blood glucose from rising
too fast after you eat

sugar WORD

5 Hippos do come into conflict with people quite often human WORD
6 Weinstock painstakingly reviewed dozens of studies for evidence of any link between sun-

screen use and either an increase or decrease in melanoma
cancer WORD

Table 4: A few erroneous examples of WordNet model

is better at identifying phrase and context exam-
ples. The combined WordNet and Bayesian mod-
els’ strength can be explained by the quite dif-
ferent behaviors of the two models - the Word-
Net model seems to be better in identifying the
word-to-word explicit reference examples while
the Bayesian model is better in modeling the con-

textual implied references.

6 Conclusions

This paper proposed an explicit task definition for
lexical reference. This task captures directly the
goal of common lexical matching models, which
typically operate within more complex systems
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method word disagreement phrase/context
wordnet 38% 9% 17%
similarity 39% 7% 17%
bayes 22% 21% 37%

Table 6: Breakdown of recall of correctly identi-
fied example types at an overall system’s recall of
25%. Disagreement refers to examples for which
the annotators did not agree on the subcategory an-
notation (word vs. phrase/context).

that address more complex tasks. This defini-
tion enabled us to create an annotated dataset for
the lexical reference task, which provided insights
into interesting sub-classes that require different
types of modeling. The dataset enabled us to
make a direct evaluation and comparison of lexical
matching models, reveal insightful differences be-
tween them, and create a simple improved model
combination. In the long run, we believe that
the availability of such datasets will facilitate im-
proved models that consider the various sub-cases
of lexical reference, as well as applying supervised
learning to optimize model combination and per-
formance.
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Abstract 

This paper demonstrates two methods to 

improve the performance of instance-

based learning (IBL) algorithms for the 

problem of Semantic Role Labeling 

(SRL).  Two IBL algorithms are utilized: 

k-Nearest Neighbor (kNN), and Priority 

Maximum Likelihood (PML) with a 

modified back-off combination method.  

The experimental data are the WSJ23 and 

Brown Corpus test sets from the CoNLL-

2005 Shared Task.  It is shown that ap-

plying the Tree-Based Predicate-

Argument Recognition Algorithm 

(PARA) to the data as a preprocessing 

stage allows kNN and PML to deliver F1: 

68.61 and 71.02 respectively on the 

WSJ23, and F1: 56.96 and 60.55 on the 

Brown Corpus; an increase of 8.28 in F1 

measurement over the most recent pub-

lished PML results for this problem 

(Palmer et al., 2005).  Training times for 

IBL algorithms are very much faster than 

for other widely used techniques for SRL 

(e.g. parsing, support vector machines, 

perceptrons, etc); and the feature reduc-

tion effects of PARA yield testing and 

processing speeds of around 1.0 second 

per sentence for kNN and 0.9 second per 

sentence for PML respectively, suggest-

ing that IBL could be a more practical 

way to perform SRL for NLP applica-

tions where it is employed; such as real-

time Machine Translation or Automatic 

Speech Recognition. 

1 Introduction 

The proceedings from CoNLL2004 and 

CoNLL2005 detail a wide variety of approaches 

to Semantic Role Labeling (SRL).  Many re-

search efforts utilize machine learning (ML) ap-

proaches; such as support vector machines (Mo-

schitti et al., 2004; Pradhan et al., 2004), percep-

trons (Carreras et al., 2004), the SNoW learning 

architecture (Punyakanok et al., 2004), EM-

based clustering (Baldewein et al., 2004), trans-

formation-based learning (Higgins, 2004), mem-

ory-based learning (Kouchnir, 2004), and induc-

tive learning (Surdeanu et al., 2003).  This paper 

compares two instance-based learning ap-

proaches, kNN and PML.  The PML method 

used here utilizes a modification of the backoff 

lattice method used by Gildea & Jurafsky (2002) 

to use a set of basic features—specifically, the 

features employed for learning in this paper are 

Predicate (pr), Voice (vo), Phrase Type (pt), Dis-

tance (di), Head Word (hw), Path (pa), Preposi-

tion in a PP (pp), and an “Actor” heuristic.   

The general approach presented here is an 

example of memory-based learning.  Many 

existing SRL systems are also memory-based 

(Bosch et al., 2004;Kouchnir, 2004), 

implemented using TilMBL software 

(http://ilk.kub.nl/software.html) with advanced 

methods such as Feature Weighting, and so forth.  

This paper measures the performance of kNN 

and PML for comparison in terms of accuracy 

and processing speed, both against each other 

and against previously published results. 

2 Related Work 

Features 
Most of the systems outlined in CoNLL2004 and 

CoNLL2005 utilize as many as 30 features for 

learning approaches to SRL.  The research pre-

sented here uses only seven of these: 
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Figure 1.  Illustration of path “NP↑S↓VP↓VBD” 

from a constituent “The officer” to the predicate “came” 

. 
Predicate – the given predicate lemma 

Voice – whether the predicate is realized as an 

active or passive construction (Pradhan et al., 

2004, claim approximately 11% of the sentences in 

PropBank use a passive instantiation) 

Phrase Type – the syntactic category (NP, PP, S, 

etc.) of the phrase corresponding to the semantic 

argument 

Distance – the relative displacement from the 

predicate, measured in intervening constituents 

(negative if the constituent appears prior to the 

predicate, positive if it appears after it) 

Head Word – the syntactic head of the phrase, 

calculated by finding the last noun of a Noun 

Phrase 

Path – the syntactic path through the parse tree, 

from the parse constituent to the predicate being 

classified (for example, in Figure 1, the path from 

Arg0 – “The officer“ to the predicate “came“, is 

represented with the string NP↑S↓VP↓VBD” 

represent upward and downward movements in the 

tree respectively) 

Preposition – the preposition of an argument in a 

PP, such as “during”, “at”, “with”, etc (for exam-

ple, in Figure 1, the preposition for the PP with 

Argm-Loc label is “to”).  

 

In addition, an actor heuristic is adopted: where 

an instance can be labeled as A0 (actor) only if 

the argument is a subject before the predicate in 

active voice, or if the preposition “by” appears 

prior to this argument but after the predicate in a 

passive voice sentence.  For example, if there is a 

set of labels, A0 (subject or actor) V (active) A0 

(non actor), then the latter “A0” after V is 

skipped and labeled to another suitable role by 

this heuristic; such as the label with the second 

highest probability for this argument according 

to the PML estimate, or with the second shortest 

distance estimate by kNN. 

2.1 k Nearest Neighbour (kNN) Algorithm 

One instance-based learning algorithm is k-

Nearest Neighbour (kNN), which is suitable 

when 1) instances can be mapped to 

points/classifications in n-dimensional feature 

dimension, 2) fewer than 20 features are utilized, 

and 3) training data is sufficiently abundant.  

One advantage of kNN is that training is very 

fast; one disadvantage is it is generally slow at 

testing.  The implementation of kNN is described 

as following 

1. Instance base: 
All the training data is stored in a format 

similar to Bosch et al., (2004)—specifically, 

“Role, Predicate, Voice, Phrase type, Dis-

tance, Head Word, Path”.  As an example in-

stance, the second argument of a predicate 

“take” in the training data is stored as: 
A0 take active NP –1 classics NP↑S↓VP↓VBD 

This format maps each argument to six fea-

ture dimensions + one classification.  

2. Distance metric (Euclidean distance) is de-

fined as: 

D(xi, xj) = √√√√Σ(ar(xi))-ar(xj))
2   

where r=1 to n (n = number of different clas-

sifications), and ar(x) is the r-th feature of in-

stance x.  If instances xi and xj  are identical, 

then D(xi , xj )=0 otherwise D(xi , xj ) repre-

sents the vector distance between xi and xj . 

3. Classification function 

Given a query/test instance xq to be classified, 

let x1, ... xk denote the k instances from the 

training data that are nearest to xq.  The clas-

sification function is  

F^(xq) <- argmaxΣδ(v,f(xi)) 

where i =1 to k,  v =1 to m (m = size of train-

ing data), δ(a,b)=1 if a=b, 0 otherwise; and 

v denotes a semantic role for each instance 

of training data. 

Computational complexity for kNN is linear, 

such that TkNN -> O( m * n ), which is propor-

tional to the product of the number of features (m) 

and the number of training instances (n). 

2.2 Priority Maximum Likelihood (PML) 

Estimation 

Gildea & Jurafsky (2002), Gildea & Hocken-

maier (2003) and Palmer et al., (2005) use a sta-

tistical approach based on Maximum Likelihood 

method for SRL, with different backoff combina-

 

Predicate Arg0 

Argm-LOC 
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P(r | hw, pt, pre ,pp) P(r | pt, pa, pr, pp) P(r | pt, di, vo, pr, pp) 

 

 

P(r | hw, pr, pp) P(r | pt, pr, pp) 

    

       P(r | pr, pp)    Local 

   

    Global 

P(r | hw, pp)   P(r | pt, di, vo, pp) 

tion methods in which selected probabilities are 

combined with linear interpolation.  The prob-

ability estimation or Maximum Likelihood is 

based on the number of known features available.  

If the full feature set is selected the probability is 

calculated by    

P (r | pr, vo, pt, di, hw, pa, pp) =  

# (r, pr, vo, pt, di, hw, pa, pp)  / 

 # (pr, vo, pt, di, hw, pa, pp) 

 

Gildea & Jurafsky (2002) claims “there is a 

trade-off between more-specific distributions, 

which have higher accuracy but lower coverage, 

and less-specific distributions, which have lower 

accuracy but higher coverage” and that the se-

lection of feature subsets is exponential; and that 

selection of combinations of different feature 

subsets is doubly exponential, which is NP-

complete.  Gildea & Jurafsky (2002) propose the 

backoff combination in a linear interpolation for 

both coverage and precision.   Following their 

lead, the research presented here uses Priority 

Maximum Likelihood Estimation modified from 

the backoff combination as follows: 

P
’
 ( r | pr, vo, pt, di, hw, pa, pp) = 

 λ1*P(r | pr, pp) +λ2*P(r | pt, pr, pp) + 

λ3*P(r | pt, pa, pr, pp) + λ4*P(r | pt, di, 

vo, pp) + λ5*P(r | pt, di, vo, pr, pp) + 

λ6*P(r | hw, pp) + λ7*P(r | hw, pr, pp) 

+ λ8*P(r | hw, pt, pr, pp)  

where Σiλi = 1. 

Figure 2 depicts a graphic organization of the 

priority combination with more-specific distribu-

tion toward the top, similar to Palmer et al. (2005) 

but adding another preposition feature.  The 

backoff lattice is consulted to calculate probabili-

ties for whichever subset of features is available 

to combine.  As Gildea & Jurasksy (2002) state, 

“the less-specific distributions were used only 

when no data were present for any more-specific 

distribution.  Thus, the distributions selected are 

arranged in a cut across the lattice representing 

the most-specific distributions for which data are 

available.” 

 

 

 

 

 

 

 

 

Figure 2. Combination of Priority Estimation for 

PML system originated from Gildea et al., (2002) 

The classification decision is made by the fol-

lowing calculation for each argument in a sen-

tence: argmax r1 .. n P(r1…n | f1,..n) This approach is 

described in more detail in Gildea and Jurasky 

(2002).   

The computational complexity of PML is hard to 

calculate due to the many different distributions 

at each priority level.  In Figure 2, the two calcu-

lations P(r | hw, pp), and P(r | pt, di, vo, pp) be-

long to the global search, while the rest belong to 

a local search which can reduce the computa-

tional complexity.  Examination of the details of 

execution time (described in the results section 

of this paper) show that a plot of the execution 

time exhibits logarithmic characteristics, imply-

ing that the computational complexity for PML 

is log-linear, such that TPML -> O( m * log n ) 

where m denotes the size of features and n de-

notes the size of training data. 

2.3 Predicate-Argument Recognition Algo-

rithm (PARA) 

Lin & Smith (2005; 2006) describe a tree-based 

predicate-argument recognition algorithm 

(PARA).  PARA simply finds all boundaries for 

given predicates by browsing input parse-trees, 

such as given by Charniak’s parser or hand-

corrected parses.  There are three major types of 

phrases including given predicates, which are VP, 

NP, and PP.  Boundaries can be recognized 

within boundary areas or from the top levels of 

clauses (as in Xue & Palmer, 2004). Figure 3 

shows the basic algorithm of PARA, and more 

details can be found in Lin & Smith (2006).  The 

best state-of-the-art ML technique using the 

same syntactic information (Moschitti, 2005) 

only just outperforms a preliminary version of 

PARA in F1 from 80.72 to 81.52 for boundary 

recognition tasks.  But PARA is much faster than 

all other existing techniques, and is therefore 

used for preprocessing in this study to minimize 

query time when applying instance-based learn-

ing to SRL.  The computational complexity of 

PARA is constant. 

3 System Architecture 

There are two stages to this system: the building 

stage (comparable to training for inductive sys-

tems) and testing (or classification).  The build-

ing stage shown in Figure 4 just stores all feature 

representations of training instances in memory 

without any calculations.  All instances are 

stored in memory in the format described earlier, 

denoting {Role (r), Predicate (pr), Voice (vo), 
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Phrase Type (pt), Path (pa), Distance (di), Head 

Word (hw), Preposition in a PP (pp) }. Figure 5 

characterizes the testing stage, where new in-

stances are classified by matching their feature 

representation to all instances in memory in or-

der to find the most similar instances.  There are 

two tasks during the testing stage: Argument 

Identification (or Boundary recognition) per-

formed by PARA, and Argument Classification 

(or Role Labeling) performed using either kNN 

or PML.  This approach is thus a “lazy learning” 

strategy applied to SRL because no calculations 

occur during the building stage. 

4 Data, Evaluation, and Parsers 

The research outlined here uses the dataset re-

leased by the CoNLL-05 Shared Task 

(http://www.lsi.upc.edu/~srlconll/soft.html).  It 

includes several Wall Street Journal sections 

with parse-trees from both Charniak’s (2000) 

parser and Collins’ (1999) parser.  These sections 

are also part of the PropBank corpus 

(http://www.cis.upenn.edu/~treebank).  WSJ sec-

tions 20 and 21 (with Charniak’s parses) were 

used as test data.  PARA operates directly on the 

parse tree.  Evaluation is carried out using preci-

sion, recall and F1 measures of assignment-

accuracy of predicated arguments.  Precision (p) 

is the proportion of arguments predicated by the 

system that are correct.  Recall (r) is the propor-

tion of correct arguments in the dataset that are 

predicated by the system.    

Finally, the F1 measure computes the harmonic 

mean of precision and recall, such that F1 =2*p*r 

/ (p+r), and is the most commonly used primary 

measure when comparing different SRL systems.  

For consistency, the performance of PARA for 

boundary recognition is tested using the official 

evaluation script from CoNLL 2005, srl-eval.pl 

(http://www.lsi.upc.edu/~srlconll/soft.html) in all 

experiments presented in this paper.  Related sta-

tistics of training data and testing data are out-

lined in Table 1.  The average number of predi-

cates in a sentence for WSJ02-21 is 2.27, and 

each predicate comes with an average of 2.64 

arguments. 

 

Create_Boundary(predicate, tree)  

If the phrase type of the predicate == VP  

- find the boundary area ( the closest S clause) 

- find NP before predicate 

- If there is no NP, then find the closest NP from Ancestors. 

- find if WHNP in it’s siblings of the boundary area,  

if found  // for what, which, that , who,… 

-  if the word of the first WP’s family is “what” then   

- add WHNP to boundary list  

else // not what, such as who which,… 

 - find the closest NP from Ancestors 

   - add the NP to the boundary list and add 

  this WHNP to boundary list as reference of NP 

 

   -  add valid boundaries of the rest of constituents to boundary list. 

 

If phrase type of the predicate  ==NP 

- find the boundary area ( the NP clause) 

- find RB(POS) before predicate and add to boundary list. 

- Add this predicate to boundary list. 

- Add the rest of word group after the predicate and before the end of the NP clause as a 

whole boundary to boundary list. 

 

If phrase type of the predicate  ==PP 

- find the boundary area ( the PP clause) 

- find the closet NP from Ancestors if the lemma of the predicate is “include”, and add 

this NP to boundary list.(special for PropBank) 

- Add this predicate to boundary list. 

-  

Add the rest of children of this predicate to boundary list or add one closest NP outside the boundary 

area to boundary list if there is no child after this predicate. 

 

Figure 3. Outline of the Predicate Argument Recognition Algorithm (PARA) 
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Figure 4. Illustration of System Architecture for 

the building stage 

 

 

 

 

 

 

 

 

Figure 5. Illustration of System Architecture for 

the testing stage 

5 Experiments and Results 

Experimental results were obtained for part of 

the Brown corpus (the part provided by CoNLL-

2005) and for Wall Street Journal (WSJ) 

Sections 21, 23, and 24 using different training 

data sets (WSJ 21, WSJ 15 to 18, and WSJ 02 to 

21) shown in Table 1.  There are two tasks, Role 

classification with known arguments as input, 

and Boundary recognition & Role classification 

with gold (hand-corrected) parses or auto 

(Charniak’s) parses.  In addition, execution speed, 

the learning curve, and some further results for 

exploration of kNN and PML are also included 

below. 

5.1 WSJ 24 with known arguments 

Table 2 shows the results from kNN and PML 

with known boundaries/arguments (i.e. the sys-

tems are given the correct arguments for role 

classification).  All training datasets (WSJ02-21) 

include Charniak’s parse trees.   The table shows 

that PML achieves F1: 2.69 better than kNN. 

5.2 Features & Heuristic on WSJ 24 with 

known arguments 

Table 3 shows the contribution of each feature 

and the actor heuristic by excluding one feature 

or heuristic.  It indicates that Head Word, Prepo-

sition, and Distance are the three features that 

contribute most to system accuracy, and the addi-

tional Actor heuristic is fourth. Path, Phrase type 

and Voice are the three features contibuting the 

least for both classification algorithms. 

 

 W02-21 W15-18 W21 W23 W24 Brown 

Sent 39,832 8,936 1,671 2,416 1,346 426 

Tok 950,028 211,727 40,039 56,684 32,853 7,159 

Pred 90,750 19,098 3,627 5,267 3,248 804 

Verb 3,101 1,838 855 982 860 351 

Args 239,858 50,182 9,598 14,077 8,346 2,177 

Table 1. Counts on the data sets used in this pa-

per from CoNLL 2005 Shared Task 

 

Known Boundary on WSJ 24 

Algorithm P R F1 Lacc 

kNN 83.71 83.73 83.72 85.03 

PML 86.29 86.52 86.41 87.20 

Table 2.  Illustration of results by kNN (k=1) 

and PML on WSJ Section 24 with known argu-

ments 

5.3 Learning Curve 

Table 4 shows that performance improves as 

more training data is provided; and that PML 

outperforms kNN by about F1:2.8 on average for 

WSJ 24 for the three different training sets, 

mainly because the backoff lattice improves both 

recall and precision.  The table shows that it is 

not always beneficial to include all features for 

labeling all roles. While P(r | hw, pt, pre, pp) is 

mainly for adjunctive roles (e.g. AM-TMP), P(r | 

pt, di, vo, pr, pp) is mainly for core roles (e.g. A0). 

5.4 Performance of Execution Time 

Building (or training) time is about 2.5 minutes 

for both PML and kNN, whereas it takes any-

where from about 10 hours to 60 hours for other 

ML-based architectures (according to the data 

presented by McCracken http://www.lsi.upc.es/ 

~srlconll/st05/slides/mccracken.pdf).  Table 5 

shows average execution time (in seconds) per 

sentence for the two algorithms.  PML runs 

faster than kNN when all 20 training datasets are 

used (i.e. WSJ 02 to 21).  A graphic illustration 

of execution speed is shown in Figure 6.  The 

simulation formulas for PML and kNN are “y = 

0.1734Ln(x) - 0.9046” and “y = 2.441*10-5 
x + 

0.0129” respectively.  “x” denotes numbers of 

training sentences, and “y” denotes second per 

sentence related to “x” training sentences.  The 

execution time for PML is about 8 times longer 

than kNN for 1.7k training sentences, but PML 

ultimately runs faster than kNN on all 39.8K 

training sentences (and, extrapolating from the 

graph in Figure 6, on any larger datasets).  Thus 

PML seems generally more suitable for large 

training data. 

 

 

Input 
Instance 

retriever 
Instance 

Base 

Input PARA 

Instance 
Base 

Role  

Classifier 

 

Output
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Training sets  KNN PML 

WSJ 21  0.050 0.396 

WSJ 15 - 18  0.241 0.687 

WSJ 02 - 21  1.000 0.941 

Table 5.  Illustration of results for execution 

time by kNN and PML on WSJ 24 with known 

arguments 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

Figure 6.  Curve of execution time for kNN (k=1) 

and PML on WSJ 24 with known arguments 

 

5.5 WSJ 24 with Gold parses and PARA 

Table 6 shows performance for both systems 

when gold (hand-corrected) parses are supplied 

and PARA preprocessing is employed.  Com-

pared to the results in Table 4, the performance 

on the combined training sets (WSJ 02 to 21) 

drops F1:9.24 and Lacc (label accuracy):2.4 for 

kNN; and drops F1:8.02 and Lacc:0.66 for PML 

respectively.  This may indicate that PML is 

more error tolerant in labeling accuracy.  How-

ever, both systems perform worse due largely to 

an idiosyncratic problem in the PARA-

preprocessor when dealing with hand-corrected 

parses—ultimately due to a particular parsing 

error.  

5.6 WSJ 24 with Charniak’s parses and 

PARA 

Table 7 shows the performance of both systems 

using auto-parsing (i.e. Charniak’s parser) and 

PARA argument recognition.  Compared to the 

results in Table 4, the performance on all training 

sets (WSJ 02 to 21) drops F1:17.25 and 

Lacc:0.65 for kNN, and F1:16.78 and Lacc:-0.78 

(i.e. increasing Lacc) for PML respectively.  

Both systems drop a lot in F1 due to errors 

caused by the auto-parser (in particular errors 

relating to punctuation), whose effects are subse-

quently exacerbated by PARA.  Even so, the la-

bel accuracy (Lacc) is more or less similar be-

cause the training dataset are parsed by 

Charniak’s parser instead of gold parses. 

5.7 WSJ 23 with Charniak’s parses and 

PARA 

Table 8 shows the results for WSJ 23, where the 

performance of PML exceeds kNN by about 

F1:3.8.  WSJ 23 is used as a comparison dataset 

in SRL.  More comparisons with other systems 

are shown in Table 12. 

5.8 Brown corpus with Charniak’s parses 

and PARA 

Table 9 shows the results when moving to a dif-

ferent language domain—the Brown corpus.  

Both systems drop a lot in F1 .  Compared to WSJ 

23, MPL drops 10.47 in F1 and kNN, 11.65 in F1. 

These drops are caused partially by PARA, and 

partially by classifiers.  PARA in Lin & Smith 

(2006) drops about 3.1 in F1 when moving to the 

Brown Corpus; but more research is required to 

uncover the cause. 

5.9 Further results on kNN with all training 

data  

Table 10 shows different results for various val-

ues of k in kNN.  Both systems, GP (gold-parse) 

& PARA and CP (Charniak’s parse) & PARA, 

perform best (as measured by F1) when K is set 

as one.  But when the system is labeling a known 

argument, selection of k=5 is better in terms of 

both F1 and Label accuracy (Lacc). 

5.10 Further results on PML with all train-

ing data 

Table 11 shows results for PML with different 

methods of calculating probabilities.  “L+G” 

means the basic probability distribution (from 

Figure 2).  “L only” and “G only” mean all prob-

ability is calculated only as either “local” or 

“global”, respectively.  “L>>G” means that 

probabilities are calculated globally only when 

the local probability is zero.  “L only” is the fast-

est approach, and “G only” the slowest (about 

five seconds per sentence). Both are poor in per-

formance.  “L+G” has the best result and 

“L>>G” is rated as intermediate in performance 

and execution time. 

5.11 Comparison with other systems 

Table 12 shows results from other existing sys-

tems.  In the second row (PARA+PML) is 

trained on all datasets (WSJ 02 to 21) for the 

“BR+RL” task (to recognize argument bounda-

ries and label arguments) on the test data WSJ 23, 

with an improvement of F1:8.28 in comparison to 

the result of Palmer et al., (2005) given in the 
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first row.  The basic kNN in the fourth row, 

trained by four datasets (WSJ 15 to 18 in CoNLL 

2004) for the RL” task (to label arguments by 

giving the known arguments) on the test data 

WSJ 21, increases F1:6.68 compared to the result 

of Kouchnir (2004) in the third row.  Execution 

time for our own re-implementation of Palmer 

(2005) is about 3.785 sec per sentence. Instead of 

calculating each node in a parse tree like the 

Palmer (2005) model, PARA+PML can only fo-

cus on essential nodes from the output of PARA, 

which helps to reduce the execution time as 

0.941 second per sentence. Execution time by 

Palmer (2005) is about 4 times longer than 

PARA+PML on the same machine (n.b. execu-

tion times are for a computer running Linux on a 

P4 2.6GHz CPU with 1G MBRAM).   

More details from different systems and combi-

nations of systems are described in the proceed-

ings of CoNLL-2005. 

 

 

   kNN   k=1   PML    

 P R F1 P R F1 

ALL 83.71 83.73 83.72 86.29 86.52 86.41 

- Voice 81.69 81.60 81.64 85.64 85.90 85.77 

- Phrase Type 82.79 82.79 82.79 85.68 85.96 85.82 

- Distance 76.53 76.42 76.47 83.76 83.97 83.86 

- Head Word 78.26 78.05 78.15 81.84 81.96 81.90 

- Path 83.67 83.63 83.65 85.44 85.72 85.58 

- Preposition 79.40 79.29 79.33 82.02 82.12 82.07 

       

- Actor 80.38 80.64 80.51 84.74 85.01 84.81 

Table 3.  Illustration of contribution for each feature and the Actor heuristic by kNN (k=1) and PML 

on WSJ 24 with known arguments 

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  76.76 77.02 76.89 78.03  79.20 79.26 79.23 80.40 

WSJ 15 - 18  80.40 80.18 80.29 81.85  83.61 83.70 83.66 84.61 

WSJ 02 - 21  83.71 83.73 83.72 85.03  86.29 86.52 86.41 87.20 

Table 4.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24 

with known arguments 

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  67.96 67.90 67.93 75.61  70.51 70.57 70.54 78.17 

WSJ 15 - 18  72.42 72.25 72.34 80.66  75.64 75.62 75.63 83.55 

WSJ 02 - 21  74.48 74.48 74.48 82.63  78.39 78.40 78.39 86.54 

Table 6.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24 

with gold (Hand corrected) parses and PARA  

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  61.05 60.90 60.98 77.45  63.75 63.43 63.59 80.70 

WSJ 15 - 18  64.66 64.11 64.38 82.13  67.55 67.15 67.35 85.23 

WSJ 02 - 21  66.62 66.32 66.47 84.38  69.81 69.45 69.63 87.98 

Table 7.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 24 

with Charniak’s parses and PARA 

    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  62.87 62.55 62.71 78.85  64.94 64.49 64.71 81.31 

WSJ 15 - 18  66.66 65.96 66.31 83.60  69.05 68.52 68.79 86.14 

WSJ 02 - 21  68.92 68.31 68.61 86.20  71.24 70.79 71.02 88.77 

Table 8.  Illustration of results with different training datasets by kNN (k=1) and PML on WSJ 23 

with Charniak’s parses and PARA  
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    kNN   k=1      PML      

Training sets  P R F1 Lacc  P R F1 Lacc 

WSJ 21  52.56 51.40 51.97 67.70  55.17 53.88 54.52 70.15 

WSJ 15 - 18  55.58 54.20 54.88 71.56  59.10 57.56 58.32 75.53 

WSJ 02 - 21  57.71 56.22 56.96 74.14  61.26 59.85 60.55 78.26 

Table 9.  Illustration of results with different training datasets by kNN (k=1) and PML on Brown Cor-

pus with Charniak’s parses and PARA 

 

 Known boundary  GP & PARA  CP & PARA 

K F1 Lacc  F1 Lacc  F1 Lacc 

1 83.72 85.03  74.48 82.63  66.47 84.38 

3 83.67 85.13  74.33 82.70  65.94 84.03 

5 83.89 85.16  74.14 82.28  65.89 83.81 

7 83.27 84.66  73.43 81.59  65.52 83.54 

9 82.86 84.25  73.00 81.22  65.13 82.99 

Table 10.  Illustration of results by kNN with different K values on WSJ 24 with known arguments, 

Gold (Hand-corrected) parses & PARA and Charniak’s parses & PARA  

 

 Known boundary on WSJ 24 

Method P R F1 Lacc T (Sec/Sen) 

L+G 86.29 86.52 86.41 87.20 0.941 

L only 80.78 80.73 80.76 81.70 0.027 

G only 75.60 76.35 75.97 77.52 5.094 

L>>G 82.44 82.42 82.43 83.29 0.128 

Table 11.  Illustration of results by PML with different methods on WSJ 24 with known arguments 

 

System Train Test Tasks P R F1 Lacc T 

Palmer (2005) W02-21 W23 BR+RL 68.60 57.80 62.74 81.70 3.785  

PARA+PML W02-21 W23 BR+RL 71.24 70.79 71.02 88.77 0.941 

         

Kouchnir (2004) W15-18 W21 RL 75.71 74.60 75.15   

kNN W15-18 W21 RL 81.86 81.79 81.83 83.57 0.242 

Table 12.  Illustration of results for different tasks by different systems and training datasets on differ-

ent testing datasets  

6 Summary and Remarks 

This paper has shown that basic syntactic infor-

mation is useful for Semantic role labeling using 

instance-based learning techniques.  Specifically, 

the following have been demonstrated: 

1. It is possible to achieve acceptable F1 

scores with considerably faster execution 

times (compared to Gildea & Jurasky, 2002) 

for the Semantic role labeling problem us-

ing the Priority Maximum Likelihood in-

stance-based learning algorithm and the 

Tree-based Predicate-Argument Algorithm 

(PARA) as a preprocessing step, without 

any training given a state-of-the-art parser 

such as Charniak’s parser.  The overall per-

formance on WSJ 23 dataset is 71.02 in F1 

score.  Performance drops to 60.55 for the 

Brown corpus, but this appears to be simi-

lar to performance drops experienced by 

other systems reported in CoNLL-2005. 

2. F1 performance is better for PML than for 

kNN, where the computational complexity 

for PML is O( m * log n ) as opposed to 

O( m * n ) for kNN, where m denotes the 

number of features and n denotes the num-

ber of training instances. 

3. Execution time for the instance-based 

learning presented here is about four times 

faster for SRL than the comparable ap-

proach used by Palmer, (2005).  That is, 

PARA plays an important role reducing the 

overhead during classification when using 

instance-based learning.   

4. Using PARA, and other modifications such 

as the preposition feature and Actor heuris-

tic, improves the accuracy of both kNN and 

PML in comparison to similar approaches.   
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5. The best system developed for this paper 

(PML & PARA) is still outperformed by 

some of the best systems from CoNLL-

2005 when it comes to accuracy, but it is 

much simpler and is many orders-of-

magnitude faster at delivering acceptable 

performance.  

With the latest revised and optimized PML, the 

performance on WSJ 23 is 71.22 in F1, and the 

speed is 0.623 second per sentence with 3.0G 

CPU and 1 G RAM.  Koomen et al. (2006), with 

more than 25 features, achieved the best results 

reported in CoNLL2005 on WSJ 24; but PML’s 

performance (using PARA as a preprocessor, and 

seven features) achieves an F1 measure 5.10 less 

than Kooman’s system (74.76) on WSJ 24 utilis-

ing Charniak-1 parses, and 4.07 less when using 

Kooman’s test result (WSJ 23) as known-

boundary input.  In this experiment, with the Ac-

tor heuristic, PML delivers better accuracy for 

A0 (89.96%) than Kooman’s (88.22%), but the 

recall (83.53%) is 4.35 % lower than Kooman’s 

(87.88%).  There are some spaces to improve 

PML such as low accuracy on AM-MOD, and 

AM-NEG, and duplicate core roles, and forth.  

Future work will investigate using more features, 

new heuristics and/or other ML approaches to 

improve the performance of instance-based 

learning algorithms at the SRL task. 
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Abstract

We consider the problem of constructing
a directed acyclic graph that encodes tem-
poral relations found in a text. The unit of
our analysis is a temporal segment, a frag-
ment of text that maintains temporal co-
herence. The strength of our approach lies
in its ability to simultaneously optimize
pairwise ordering preferences and global
constraints on the graph topology. Our
learning method achieves 83% F-measure
in temporal segmentation and 84% accu-
racy in inferring temporal relations be-
tween two segments.

1 Introduction

Understanding the temporal flow of discourse is
a significant aspect of text comprehension. Con-
sequently, temporal analysis has been a focus of
linguistic research for quite some time. Tem-
poral interpretation encompasses levels ranging
from the syntactic to the lexico-semantic (Re-
ichenbach, 1947; Moens and Steedman, 1987)
and includes the characterization of temporal dis-
course in terms of rhetorical structure and prag-
matic relations (Dowty, 1986; Webber, 1987; Pas-
sonneau, 1988; Lascarides and Asher, 1993).

Besides its linguistic significance, temporal
analysis has important practical implications. In
multidocument summarization, knowledge about
the temporal order of events can enhance both the
content selection and the summary generation pro-
cesses (Barzilay et al., 2002). In question an-
swering, temporal analysis is needed to determine
when a particular event occurs and how events re-
late to each other. Some of these needs can be
addressed by emerging technologies for temporal

analysis (Wilson et al., 2001; Mani et al., 2003;
Lapata and Lascarides, 2004; Boguraev and Ando,
2005).

This paper characterizes the temporal flow of
discourse in terms of temporal segments and their
ordering. We define a temporal segment to be
a fragment of text that does not exhibit abrupt
changes in temporal focus (Webber, 1988). A seg-
ment may contain more than one event or state, but
the key requirement is that its elements maintain
temporal coherence. For instance, a medical case
summary may contain segments describing a pa-
tient’s admission, his previous hospital visit, and
the onset of his original symptoms. Each of these
segments corresponds to a different time frame,
and is clearly delineated as such in a text.

Our ultimate goal is to automatically construct
a graph that encodes ordering between temporal
segments. The key premise is that in a coherent
document, temporal progression is reflected in a
wide range of linguistic features and contextual
dependencies. In some cases, clues to segment or-
dering are embedded in the segments themselves.
For instance, given a pair of adjacent segments,
the temporal adverb next day in the second seg-
ment is a strong predictor of a precedence relation.
In other cases, we can predict the right order be-
tween a pair of segments by analyzing their rela-
tion to other segments in the text. The interaction
between pairwise ordering decisions can easily be
formalized in terms of constraints on the graph
topology. An obvious example of such a con-
straint is prohibiting cycles in the ordering graph.
We show how these complementary sources of in-
formation can be incorporated in a model using
global inference.

We evaluate our temporal ordering algorithm on
a corpus of medical case summaries. Temporal
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analysis in this domain is challenging in several re-
spects: a typical summary exhibits no significant
tense or aspect variations and contains few abso-
lute time markers. We demonstrate that humans
can reliably mark temporal segments and deter-
mine segment ordering in this domain. Our learn-
ing method achieves 83% F-measure in temporal
segmentation and 84% accuracy in inferring tem-
poral relations between two segments.

Our contributions are twofold:
Temporal Segmentation We propose a fully

automatic, linguistically rich model for temporal
segmentation. Most work on temporal analysis
is done on a finer granularity than proposed here.
Our results show that the coarse granularity of our
representation facilitates temporal analysis and is
especially suitable for domains with sparse tempo-
ral anchors.

Segment Ordering We introduce a new method
for learning temporal ordering. In contrast to ex-
isting methods that focus on pairwise ordering, we
explore strategies for global temporal inference.
The strength of the proposed model lies in its abil-
ity to simultaneously optimize pairwise ordering
preferences and global constraints on graph topol-
ogy. While the algorithm has been applied at the
segment level, it can be used with other temporal
annotation schemes.

2 Related Work

Temporal ordering has been extensively studied
in computational linguistics (Passonneau, 1988;
Webber, 1988; Hwang and Schubert, 1992; Las-
carides and Asher, 1993; Lascarides and Ober-
lander, 1993). Prior research has investigated
a variety of language mechanisms and knowl-
edge sources that guide interpretation of tempo-
ral ordering, including tense, aspect, temporal ad-
verbials, rhetorical relations and pragmatic con-
straints. In recent years, the availability of an-
notated corpora, such as TimeBank (Pustejovsky
et al., 2003), has triggered the use of machine-
learning methods for temporal analysis (Mani et
al., 2003; Lapata and Lascarides, 2004; Boguraev
and Ando, 2005). Typical tasks include identifica-
tion of temporal anchors, linking events to times,
and temporal ordering of events.

Since this paper addresses temporal ordering,
we focus our discussion on this task. Existing or-
dering approaches vary both in terms of the or-
dering unit — it can be a clause, a sentence or

an event — and in terms of the set of ordering
relations considered by the algorithm. Despite
these differences, most existing methods have the
same basic design: each pair of ordering units (i.e.,
clauses) is abstracted into a feature vector and a
supervised classifier is employed to learn the map-
ping between feature vectors and their labels. Fea-
tures used in classification include aspect, modal-
ity, event class, and lexical representation. It is im-
portant to note that the classification for each pair
is performed independently and is not guaranteed
to yield a globally consistent order.

In contrast, our focus is on globally optimal
temporal inference. While the importance of
global constraints has been previously validated
in symbolic systems for temporal analysis (Fikes
et al., 2003; Zhou et al., 2005), existing corpus-
based approaches operate at the local level. These
improvements achieved by a global model moti-
vate its use as an alternative to existing pairwise
methods.

3 TDAG: A representation of temporal
flow

We view text as a linear sequence of temporal
segments. Temporal focus is retained within a
segment, but radically changes between segments.
The length of a segment can range from a single
clause to a sequence of adjacent sentences. Fig-
ure 1 shows a sample of temporal segments from
a medical case summary. Consider as an example
the segment S13 of this text. This segment de-
scribes an examination of a patient, encompassing
several events and states (i.e., an abdominal and
neurological examination). All of them belong to
the same time frame, and temporal order between
these events is not explicitly outlined in the text.

We represent ordering of events as a temporal
directed acyclic graph (TDAG). An example of the
transitive reduction1 of a TDAG is shown in Fig-
ure 1. Edges in a TDAG capture temporal prece-
dence relations between segments. Because the
graph encodes an order, cycles are prohibited. We
do not require the graph to be fully connected — if
the precedence relation between two nodes is not
specified in the text, the corresponding nodes will
not be connected. For instance, consider the seg-
ments S5 and S7 from Figure 1, which describe
her previous tests and the history of eczema. Any

1The transitive reduction of a graph is the smallest graph
with the same transitive closure.
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S1 S12 S13 S14
S2 S10 S6

S8

S4
S3 S5

S7

S9S11

S1 A 32-year-old woman was admitted to the hospital because of left subcostal pain...
S2 The patient had been well until four years earlier,
S5 Three months before admission an evaluation elsewhere included an ultrasonographic ex-

amination, a computed tomographic (CT) scan of the abdomen...
S7 She had a history of eczema and of asthma...
S8 She had lost 18 kg in weight during the preceding 18 months.

S13 On examination the patient was slim and appeared well. An abdominal examination re-
vealed a soft systolic bruit... and a neurologic examination was normal...

Figure 1: An example of the transitive reduction of a TDAG for a case summary. A sample of segments
corresponding to the nodes marked in bold is shown in the table.

order between the two events is consistent with our
interpretation of the text, therefore we cannot de-
termine the precedence relation between the seg-
ments S5 and S7.

In contrast to many existing temporal represen-
tations (Allen, 1984; Pustejovsky et al., 2003),
TDAG is a coarse annotation scheme: it does not
capture interval overlap and distinguishes only a
subset of commonly used ordering relations. Our
choice of this representation, however, is not ar-
bitrary. The selected relations are shown to be
useful in text processing applications (Zhou et al.,
2005) and can be reliably recognized by humans.
Moreover, the distribution of event ordering links
under a more refined annotation scheme, such as
TimeML, shows that our subset of relations cov-
ers a majority of annotated links (Pustejovsky et
al., 2003).

4 Method for Temporal Segmentation

Our first goal is to automatically predict shifts
in temporal focus that are indicative of segment
boundaries. Linguistic studies show that speakers
and writers employ a wide range of language de-
vices to signal change in temporal discourse (Best-
gen and Vonk, 1995). For instance, the presence of
the temporal anchor last year indicates the lack of
temporal continuity between the current and the
previous sentence. However, many of these pre-
dictors are heavily context-dependent and, thus,
cannot be considered independently. Instead of
manually crafting complex rules controlling fea-
ture interaction, we opt to learn them from data.

We model temporal segmentation as a binary

classification task. Given a set of candidate bound-
aries (e.g., sentence boundaries), our task is to se-
lect a subset of the boundaries that delineate tem-
poral segment transitions. To implement this ap-
proach, we first identify a set of potential bound-
aries. Our analysis of the manually-annotated cor-
pus reveals that boundaries can occur not only be-
tween sentences, but also within a sentence, at the
boundary of syntactic clauses. We automatically
segment sentences into clauses using a robust sta-
tistical parser (Charniak, 2000). Next, we encode
each boundary as a vector of features. Given a
set of annotated examples, we train a classifier2 to
predict boundaries based on the following feature
set:

Lexical Features Temporal expressions, such
as tomorrow and earlier, are among the strongest
markers of temporal discontinuity (Passonneau,
1988; Bestgen and Vonk, 1995). In addition to
a well-studied set of domain-independent tempo-
ral markers, there are a variety of domain-specific
temporal markers. For instance, the phrase ini-
tial hospital visit functions as a time anchor in the
medical domain.

To automatically extract these expressions, we
provide a classifier with n-grams from each of the
candidate sentences preceding and following the
candidate segment boundary.

Topical Continuity Temporal segmentation is
closely related to topical segmentation (Chafe,
1979). Transitions from one topic to another may
indicate changes in temporal flow and, therefore,

2BoosTexter package (Schapire and Singer, 2000).
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identifying such transitions is relevant for tempo-
ral segmentation.

We quantify the strength of a topic change
by computing a cosine similarity between sen-
tences bordering the proposed segmentation. This
measure is commonly used in topic segmenta-
tion (Hearst, 1994) under the assumption that
change in lexical distribution corresponds to topi-
cal change.

Positional Features Some parts of the docu-
ment are more likely to exhibit temporal change
than others. This property is related to patterns in
discourse organization of a document as a whole.
For instance, a medical case summary first dis-
cusses various developments in the medical his-
tory of a patient and then focuses on his current
conditions. As a result, the first part of the sum-
mary contains many short temporal segments. We
encode positional features by recording the rela-
tive position of a sentence in a document.

Syntactic Features Because our segment
boundaries are considered at the clausal level,
rather than at the sentence level, the syntax sur-
rounding a hypothesized boundary may be indica-
tive of temporal shifts. This feature takes into ac-
count the position of a word with respect to the
boundary. For each word within three words of
the hypothesized boundary, we record its part-of-
speech tag along with its distance from the bound-
ary. For example, NNP+1 encodes the presence
of a proper noun immediately following the pro-
posed boundary.

5 Learning to Order Segments

Our next goal is to automatically construct a graph
that encodes ordering relations between tempo-
ral segments. One possible approach is to cast
graph construction as a standard binary classifica-
tion task: predict an ordering for each pair of dis-
tinct segments based on their attributes alone. If
a pair contains a temporal marker, like later, then
accurate prediction is feasible. In fact, this method
is commonly used in event ordering (Mani et al.,
2003; Lapata and Lascarides, 2004; Boguraev and
Ando, 2005). However, many segment pairs lack
temporal markers and other explicit cues for order-
ing. Determining their relation out of context can
be difficult, even for humans. Moreover, by treat-
ing each segment pair in isolation, we cannot guar-
antee that all the pairwise assignments are consis-
tent with each other and yield a valid TDAG.

Rather than ordering each pair separately, our
ordering model relies on global inference. Given
the pairwise ordering predictions of a local clas-
sifier3, our model finds a globally optimal assign-
ment. In essence, the algorithm constructs a graph
that is maximally consistent with individual order-
ing preferences of each segment pair and at the
same time satisfies graph-level constraints on the
TDAG topology.

In Section 5.2, we present three global inference
strategies that vary in their computational and lin-
guistic complexity. But first we present our under-
lying local ordering model.

5.1 Learning Pairwise Ordering

Given a pair of segments (i, j), our goal is to as-
sign it to one of three classes: forward, backward,
and null (not connected). We generate the train-
ing data by using all pairs of segments (i, j) that
belong to the same document, such that i appears
before j in the text.

The features we consider for the pairwise order-
ing task are similar to ones used in previous re-
search on event ordering (Mani et al., 2003; Lapata
and Lascarides, 2004; Boguraev and Ando, 2005).
Below we briefly summarize these features.

Lexical Features This class of features cap-
tures temporal markers and other phrases indica-
tive of order between two segments. Represen-
tative examples in this category include domain-
independent cues like years earlier and domain-
specific markers like during next visit. To automat-
ically identify these phrases, we provide a classi-
fier with two sets of n-grams extracted from the
first and the second segments. The classifier then
learns phrases with high predictive power.

Temporal Anchor Comparison Temporal an-
chors are one of the strongest cues for the order-
ing of events in text. For instance, medical case
summaries use phrases like two days before ad-
mission and one day before admission to express
relative order between events. If the two segments
contain temporal anchors, we can determine their
ordering by comparing the relation between the
two anchors. We identified a set of temporal an-
chors commonly used in the medical domain and
devised a small set of regular expressions for their
comparison.4 The corresponding feature has three

3The perceptron classifier.
4We could not use standard tools for extraction and analy-

sis of temporal anchors as they were developed on the news-
paper corpora, and are not suitable for analysis of medical
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values that encode preceding, following and in-
compatible relations.

Segment Adjacency Feature Multiple studies
have shown that two subsequent sentences are
likely to follow a chronological progression (Best-
gen and Vonk, 1995). To encode this information,
we include a binary feature that captures the adja-
cency relation between two segments.

5.2 Global Inference Strategies for Segment
Ordering

Given the scores (or probabilities) of all pairwise
edges produced by a local classifier, our task is
to construct a TDAG. In this section, we describe
three inference strategies that aim to find a con-
sistent ordering between all segment pairs. These
strategies vary significantly in terms of linguistic
motivation and computational complexity. Exam-
ples of automatically constructed TDAGs derived
from different inference strategies are shown in
Figure 2.

5.2.1 Greedy Inference in Natural Reading
Order (NRO)

The simplest way to construct a consistent
TDAG is by adding segments in the order of their
appearance in a text. Intuitively speaking, this
technique processes segments in the same order
as a reader of the text. The motivation underly-
ing this approach is that the reader incrementally
builds temporal interpretation of a text; when a
new piece of information is introduced, the reader
knows how to relate it to already processed text.

This technique starts with an empty graph and
incrementally adds nodes in order of their appear-
ance in the text. When a new node is added, we
greedily select the edge with the highest score that
connects the new node to the existing graph, with-
out violating the consistency of the TDAG. Next,
we expand the graph with its transitive closure.
We continue greedily adding edges and applying
transitive closure until the new node is connected
to all other nodes already in the TDAG. The pro-
cess continues until all the nodes have been added
to the graph.

5.2.2 Greedy Best-first Inference (BF)

Our second inference strategy is also greedy. It
aims to optimize the score of the graph. The score
of the graph is computed by summing the scores of

text (Wilson et al., 2001).

its edges. While this greedy strategy is not guar-
anteed to find the optimal solution, it finds a rea-
sonable approximation (Cohen et al., 1999).

This method begins by sorting the edges by their
score. Starting with an empty graph, we add one
edge at a time, without violating the consistency
constraints. As in the previous strategy, at each
step we expand the graph with its transitive clo-
sure. We continue this process until all the edges
have been considered.

5.2.3 Exact Inference with Integer Linear
Programming (ILP)

We can cast the task of constructing a globally
optimal TDAG as an optimization problem. In
contrast to the previous approaches, the method
is not greedy. It computes the optimal solu-
tion within the Integer Linear Programming (ILP)
framework.

For a document with N segments, each pair of
segments (i, j) can be related in the graph in one
of three ways: forward, backward, and null (not
connected). Let si→j , si←j , and si=j be the scores
assigned by a local classifier to each of the three
relations respectively. Let Ii→j , Ii←j , and Ii=j

be indicator variables that are set to 1 if the corre-
sponding relation is active, or 0 otherwise.

The objective is then to optimize the score of a
TDAG by maximizing the sum of the scores of all
edges in the graph:

max

N
X

i=1

N
X

j=i+i

si→jIi→j + si←jIi←j + si=jIi=j (1)

subject to:

Ii→j , Ii←j , Ii=j ∈ {0, 1} ∀ i, j = 1, . . . N, i < j (2)

Ii→j + Ii←j + Ii=j = 1 ∀ i, j = 1, . . . N, i < j (3)

We augment this basic formulation with two more
sets of constraints to enforce validity of the con-
structed TDAG.

Transitivity Constraints The key requirement
on the edge assignment is the transitivity of the
resulting graph. Transitivity also guarantees that
the graph does not have cycles. We enforce tran-
sitivity by introducing the following constraint for
every triple (i, j, k):

Ii→j + Ij→k − 1 ≤ Ii→k (4)

If both indicator variables on the left side of the
inequality are set to 1, then the indicator variable
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on the right side must be equal to 1. Otherwise, the
indicator variable on the right can take any value.

Connectivity Constraints The connectivity
constraint states that each node i is connected to
at least one other node and thereby enforces con-
nectivity of the generated TDAG. We introduce
these constraints because manually-constructed
TDAGs do not have any disconnected nodes. This
observation is consistent with the intuition that the
reader is capable to order a segment with respect
to other segments in the TDAG.

(

i−1∑

j=1

Ii=j +

N∑

j=i+1

Ij=i) < N − 1 (5)

The above constraint rules out edge assignments
in which node i has null edges to the rest of the
nodes.

Solving ILP Solving an integer linear program
is NP-hard (Cormen et al., 1992). Fortunately,
there exist several strategies for solving ILPs. We
employ an efficient Mixed Integer Programming
solver lp solve5 which implements the Branch-
and-Bound algorithm. It takes less than five sec-
onds to decode each document on a 2.8 GHz Intel
Xeon machine.

6 Evaluation Set-Up

We first describe the corpora used in our experi-
ments and the results of human agreement on the
segmentation and the ordering tasks. Then, we in-
troduce the evaluation measures that we use to as-
sess the performance of our model.

6.1 Corpus Characteristics

We applied our method for temporal ordering to
a corpus of medical case summaries. The medical
domain has been a popular testbed for methods for
automatic temporal analyzers (Combi and Shahar,
1997; Zhou et al., 2005). The appeal is partly due
to rich temporal structure of these documents and
the practical need to parse this structure for mean-
ingful processing of medical data.

We compiled a corpus of medical case sum-
maries from the online edition of The New Eng-
land Journal of Medicine.6 The summaries are
written by physicians of Massachusetts General

5
http://groups.yahoo.com/group/lp_solve

6
http://content.nejm.org

Hospital. A typical summary describes an admis-
sion status, previous diseases related to the cur-
rent conditions and their treatments, family his-
tory, and the current course of treatment. For
privacy protection, names and dates are removed
from the summaries before publication.

The average length of a summary is 47 sen-
tences. The summaries are written in the past
tense, and a typical summary does not include in-
stances of the past perfect. The summaries do
not follow a chronological order. The ordering of
information in this domain is guided by stylistic
conventions (i.e., symptoms are presented before
treatment) and the relevance of information to the
current conditions (i.e., previous onset of the same
disease is summarized before the description of
other diseases).

6.2 Annotating Temporal Segmentation

Our approach for temporal segmentation requires
annotated data for supervised training. We first
conducted a pilot study to assess the human agree-
ment on the task. We employed two annotators to
manually segment a portion of our corpus. The an-
notators were provided with two-page instructions
that defined the notion of a temporal segment and
included examples of segmented texts. Each an-
notator segmented eight summaries which on av-
erage contained 49 sentences. Because annotators
were instructed to consider segmentation bound-
aries at the level of a clause, there were 877 po-
tential boundaries. The first annotator created 168
boundaries, while the second — 224 boundaries.
We computed a Kappa coefficient of 0.71 indicat-
ing a high inter-annotator agreement and thereby
confirming our hypothesis about the reliability of
temporal segmentation.

Once we established high inter-annotator agree-
ment on the pilot study, one annotator seg-
mented the remaining 52 documents in the cor-
pus.7 Among 3,297 potential boundaries, 1,178
(35.7%) were identified by the annotator as seg-
ment boundaries. The average segment length is
three sentences, and a typical document contains
around 20 segments.

6.3 Annotating Temporal Ordering

To assess the inter-annotator agreement, we asked
two human annotators to construct TDAGs from

7It took approximately 20 minutes to segment a case sum-
mary.
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five manually segmented summaries. These sum-
maries consist of 97 segments, and their transi-
tive closure contain a total of 1,331 edges. We
computed the agreement between human judges
by comparing the transitive closure of the TDAGs.
The annotators achieved a surprisingly high agree-
ment with a Kappa value of 0.98.

After verifying human agreement on this task,
one of the annotators constructed TDAGs for an-
other 25 summaries.8 The transitive reduction of
a graph contains on average 20.9 nodes and 20.5
edges. The corpus consists of 72% forward, 12%
backward and 16% null segment edges inclusive
of edges induced by transitive closure. At the
clause level, the distribution is even more skewed
— forward edges account for 74% edges, equal for
18%, backward for 3% and null for 5%.

6.4 Evaluation Measures

We evaluate temporal segmentation by consider-
ing the ratio of correctly predicted boundaries.
We quantify the performance using F-measure, a
commonly used binary classification metric. We
opt not to use the Pk measure, a standard topical
segmentation measure, because the temporal seg-
ments are short and we are only interested in the
identification of the exact boundaries.

Our second evaluation task is concerned with
ordering manually annotated segments. In these
experiments, we compare an automatically gener-
ated TDAG against the annotated reference graph.
In essence, we compare edge assignment in the
transitive closure of two TDAGs, where each edge
can be classified into one of the three types: for-
ward, backward, or null.

Our final evaluation is performed at the clausal
level. In this case, each edge can be classified into
one of the four classes: forward, backward, equal,
or null. Note that the clause-level analysis allows
us to compare TDAGs based on the automatically
derived segmentation.

7 Results

We evaluate temporal segmentation using leave-
one-out cross-validation on our corpus of 60 sum-
maries. The segmentation algorithm achieves a
performance of 83% F-measure, with a recall of
78% and a precision of 89%.

8It took approximately one hour to build a TDAG for each
segmented document.

To evaluate segment ordering, we employ leave-
one-out cross-validation on 30 annotated TDAGs
that overall contain 13,088 edges in their transi-
tive closure. In addition to the three global in-
ference algorithms, we include a majority base-
line that classifies all edges as forward, yielding
a chronological order.

Our results for ordering the manually annotated
temporal segments are shown in Table 1. All infer-
ence methods outperform the baseline, and their
performance is consistent with the complexity of
the inference mechanism. As expected, the ILP
strategy, which supports exact global inference,
achieves the best performance — 84.3%.

An additional point of comparison is the accu-
racy of the pairwise classification, prior to the ap-
plication of global inference. The accuracy of the
local ordering is 81.6%, which is lower than that
of ILP. The superior performance of ILP demon-
strates that accurate global inference can further
refine local predictions. Surprisingly, the local
classifier yields a higher accuracy than the two
other inference strategies. Note, however, the local
ordering procedure is not guaranteed to produce a
consistent TDAG, and thus the local classifier can-
not be used on its own to produce a valid TDAG.

Table 2 shows the ordering results at the clausal
level. The four-way classification is computed
using both manually and automatically generated
segments. Pairs of clauses that belong to the same
segment stand in the equal relation, otherwise they
have the same ordering relation as the segments to
which they belong.

On the clausal level, the difference between the
performance of ILP and BF is blurred. When eval-
uated on manually-constructed segments, ILP out-
performs BF by less than 1%. This unexpected re-
sult can be explained by the skewed distribution of
edge types — the two hardest edge types to clas-
sify (see Table 3), backward and null, account only
for 7.4% of all edges at the clause level.

When evaluated on automatically segmented
text, ILP performs slightly worse than BF. We hy-
pothesize that this result can be explained by the
difference between training and testing conditions
for the pairwise classifier: the classifier is trained
on manually-computed segments and is tested on
automatically-computed ones, which negatively
affects the accuracy on the test set. While all
the strategies are negatively influenced by this dis-
crepancy, ILP is particularly vulnerable as it relies
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Algorithm Accuracy
Integer Linear Programming (ILP) 84.3
Best First (BF) 78.3
Natural Reading Order (NRO) 74.3
Baseline 72.2

Table 1: Accuracy for 3-way ordering classifica-
tion over manually-constructed segments.

Algorithm Manual Seg. Automatic Seg.
ILP 91.9 84.8
BF 91.0 85.0
NRO 87.8 81.0
Baseline 73.6 73.6

Table 2: Results for 4-way ordering classification
over clauses, computed over manually and auto-
matically generated segments.

on the score values for inference. In contrast, BF
only considers the rank between the scores, which
may be less affected by noise.

We advocate a two-stage approach for temporal
analysis: we first identify segments and then order
them. A simpler alternative is to directly perform
a four-way classification at the clausal level using
the union of features employed in our two-stage
process. The accuracy of this approach, however,
is low — it achieves only 74%, most likely due
to the sparsity of clause-level representation for
four-way classification. This result demonstrates
the benefits of a coarse representation and a two-
stage approach for temporal analysis.

8 Conclusions

This paper introduces a new method for temporal
ordering. The unit of our analysis is a temporal
segment, a fragment of text that maintains tem-
poral coherence. After investigating several infer-
ence strategies, we concluded that integer linear
programming and best first greedy approach are
valuable alternatives for TDAG construction.

In the future, we will explore a richer set of con-
straints on the topology on the ordering graph. We
will build on the existing formal framework (Fikes
et al., 2003) for the verification of ordering con-
sistency. We are also interested in expanding our
framework for global inference to other temporal
annotation schemes. Given a richer set of temporal
relations, the benefits from global inference can be
even more significant.

Algorithm Forward Backward Null
ILP 92.5 45.6 76.0
BF 91.4 42.2 74.7
NRO 87.7 43.6 66.4

Table 3: Per class accuracy for clause classifica-
tion over manually computed segments.

Acknowledgments

The authors acknowledge the support of the Na-
tional Science Foundation and National Institute
of Health (CAREER grant IIS-0448168, grant IIS-
0415865). Thanks to Terry Koo, Igor Malioutov,
Zvika Marx, Benjamin Snyder, Peter Szolovits,
Luke Zettlemoyer and the anonymous reviewers
for their helpful comments and suggestions. Any
opinions, findings, conclusions or recommenda-
tions expressed above are those of the authors and
do not necessarily reflect the views of the NSF or
NIH.

References

James F. Allen. 1984. Towards a general theory of
action and time. Artificial Intelligence, 23(2):123–
154.

Regina Barzilay, Noemie Elhadad, and Kathleen McK-
eown. 2002. Inferring strategies for sentence order-
ing in multidocument news summarization. Journal
of Artificial Intelligence Research, 17:35–55.

Yves Bestgen and Wietske Vonk. 1995. The role
of temporal segmentation markers in discourse pro-
cessing. Discourse Processes, 19:385–406.

Branimir Boguraev and Rie Kubota Ando. 2005.
Timeml-compliant text analysis for temporal reason-
ing. In Proceedings of IJCAI, pages 997–1003.

Wallace Chafe. 1979. The flow of thought and the
flow of language. In Talmy Givon, editor, Syntax
and Semantics: Discourse and Syntax, volume 12,
pages 159–182. Academic Press.

Eugene Charniak. 2000. A maximum-entropy-
inspired parser. In Proceedings of the NAACL, pages
132–139.

William Cohen, Robert Schapire, and Yoram Singer.
1999. Learning to order things. Journal of Artificial
Intelligence, 10:243–270.

Carlo Combi and Yuval Shahar. 1997. Temporal rea-
soning and temporal data maintenance in medicine:
Issues and challenges. Computers in Biology and
Medicine, 27(5):353–368.

196



Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. 1992. Intoduction to Algorithms.
The MIT Press.

David R. Dowty. 1986. The effects of aspectual class
on the temporal structure of discourse: Semantics or
Pragmatics? Linguistics and Philosophy, 9:37–61.

R. Fikes, J. Jenkins, and G. Frank. 2003. A system
architecture and component library for hybrid rea-
soning. Technical report, Stanford University.

Marti Hearst. 1994. Multi-paragraph segmentation of
expository text. In Proceedings of the ACL, pages
9–16.

Chung Hee Hwang and Lenhart K. Schubert. 1992.
Tense trees as the ”fine structure” of discourse. In
Proceedings of the ACL, pages 232–240.

Mirella Lapata and Alex Lascarides. 2004. Inferring
sentence-internal temporal relations. In Proceedings
of HLT-NAACL, pages 153–160.

Alex Lascarides and Nicholas Asher. 1993. Tem-
poral interpretation, discourse relations, and com-
monsense entailment. Linguistics and Philosophy,
16:437–493.

Alex Lascarides and John Oberlander. 1993. Temporal
connectives in a discourse context. In Proceeding of
the EACL, pages 260–268.

Inderjeet Mani, Barry Schiffman, and Jianping Zhang.
2003. Inferring temporal ordering of events in news.
In Proceeding of HLT-NAACL, pages 55–57.

Mark Moens and Mark J. Steedman. 1987. Temporal
ontology in natural language. In Proceedings of the
ACL, pages 1–7.

Rebecca J. Passonneau. 1988. A computational model
of the semantics of tense and aspect. Computational
Linguistics, 14(2):44–60.

James Pustejovsky, Patrick Hanks, Roser Sauri,
Andrew See, David Day, Lissa Ferro, Robert
Gaizauskas, Marcia Lazo, Andrea Setzer, and Beth
Sundheim. 2003. The timebank corpus. Corpus
Linguistics, pages 647–656.

Hans Reichenbach. 1947. Elements of Symbolic Logic.
Macmillan, New York, NY.

Robert E. Schapire and Yoram Singer. 2000. Boostex-
ter: A boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168.

Bonnie L. Webber. 1987. The interpretation of tense
in discourse. In Proceedings of the ACL, pages 147–
154.

Bonnie L. Webber. 1988. Tense as discourse anaphor.
Computational Linguistics, 14(2):61–73.

George Wilson, Inderjeet Mani, Beth Sundheim, and
Lisa Ferro. 2001. A multilingual approach to anno-
tating and extracting temporal information. In Pro-
ceedings of the ACL 2001 Workshop on Temporal
and Spatial Information Processing, pages 81–87.

Li Zhou, Carol Friedman, Simon Parsons, and George
Hripcsak. 2005. System architecture for temporal
information extraction, representation and reason-
ing in clinical narrative reports. In Proceedings of
AMIA, pages 869–873.

197



��� ���

���

���

��� �
	�� ��

���

��	

�
	�	

�
	��

���

�
	�� �
	��

(a) Reference TDAG
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(b) ILP generated TDAG with an accuracy of 84.6%
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(b) BF generated TDAG with an accuracy of 71.4%; NRO produces the same graph for this example.

S1 A 32-year-old woman was admitted to the hospital because of left subcostal pain. . .

S2 The patient had been well until four years earlier,
S3 when she began to have progressive, constant left subcostal pain, with an intermittent in-

crease in the temperature to 39.4◦C, anorexia, and nausea. The episodes occurred approxi-
mately every six months and lasted for a week or two;

S4 they had recently begun to occur every four months.
S5 Three months before admission an evaluation elsewhere included an ultrasonographic ex-

amination, a computed tomographic (CT) scan of the abdomen. . .

S6 Because of worsening pain she came to this hospital.
S7 The patient was an unemployed child-care worker. She had a history of eczema and of

asthma. . .
S8 She had lost 18 kg in weight during the preceding 18 months.
S9 Her only medications were an albuterol inhaler, which was used as needed,

S10 and an oral contraceptive, which she had taken during the month before admission.
S11 There was no history of jaundice, dark urine, light stools, intravenous drug abuse, hyper-

tension, diabetes mellitus, tuberculosis, risk factors for infection with the human immunod-
eficiency virus, or a change in bowel habits. She did not smoke and drank little alcohol.

S12 The temperature was 36.5◦C, the pulse was 68, and the respirations were 16. . .

S13 On examination the patient was slim and appeared well. . . An abdominal examination re-
vealed a soft systolic bruit. . . and a neurologic examination was normal. . .

S14 A diagnostic procedure was performed.

(d) An example of a case summary

Figure 2: Examples of automatically constructed TDAGs with the reference TDAG and text.
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Abstract 

In this paper, we present a weakly super-
vised learning approach for spoken lan-
guage understanding in domain-specific 
dialogue systems. We model the task of 
spoken language understanding as a suc-
cessive classification problem. The first 
classifier (topic classifier) is used to iden-
tify the topic of an input utterance. With 
the restriction of the recognized target 
topic, the second classifier (semantic 
classifier) is trained to extract the corre-
sponding slot-value pairs. It is mainly 
data-driven and requires only minimally 
annotated corpus for training whilst re-
taining the understanding robustness and 
deepness for spoken language. Most im-
portantly, it allows the employment of 
weakly supervised strategies for training 
the two classifiers. We first apply the 
training strategy of combining active 
learning and self-training (Tur et al., 
2005) for topic classifier. Also, we pro-
pose a practical method for bootstrapping 
the topic-dependent semantic classifiers 
from a small amount of labeled sentences. 
Experiments have been conducted in the 
context of Chinese public transportation 
information inquiry domain. The experi-
mental results demonstrate the effective-
ness of our proposed SLU framework 
and show the possibility to reduce human 
labeling efforts significantly. 

1 Introduction 

Spoken Language Understanding (SLU) is one of 
the key components in spoken dialogue systems.  
Its task is to identify the user’s goal and extract 

from the input utterance the information needed 
to complete the query. Traditionally, there are 
mainly two mainstreams in the SLU researches: 
knowledge-based approaches, which are based 
on robust parsing or template matching tech-
niques (Sneff, 1992; Dowding et al., 1993; Ward 
and Issar, 1994); and data-driven approaches, 
which are generally based on stochastic models 
(Pieraccini and Levin, 1993; Miller et al., 1995). 
Both approaches have their drawbacks, however. 
The former approach is cost-expensive to de-
velop since its grammar development is time-
consuming, laboursome and requires linguistic 
skills. It is also strictly domain-dependent and 
hence difficult to be adapted to new domains. On 
the other hand, although addressing such draw-
backs associated with knowledge-based ap-
proaches, the latter approach often suffers the 
data sparseness problem and hence needs a fully 
annotated corpus in order to reliably estimate an 
accurate model. More recently, some new varia-
tion methods are proposed through certain trade-
offs, such as the semi-automatically grammar 
learning approach (Wang and Acero, 2001) and 
Hidden Vector State (HVS) model (He and 
Young, 2005). The two methods require only 
minimally annotated data (only the semantic 
frames are annotated). 

This paper proposes a novel weakly super-
vised spoken language understanding approach. 
Our SLU framework mainly includes two suc-
cessive classifiers: topic classifier and semantic 
classifier. The main advantage of the proposed 
approach is that it is mainly data-driven and re-
quires only minimally annotated corpus for train-
ing whilst retaining the understanding robustness 
and deepness for spoken language. In particular, 
the two classifiers are trained using weakly su-
pervised strategies: the former one is trained 
through the combination of active learning and 
self-training (Tur et al., 2005), and the latter one 
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is trained using a practical bootstrapping tech-
nique. 

2 The System Architecture 

The semantic representation of an application 
domain is usually defined in terms of the 
semantic frame, which contains a frame type 
representing the topic of the input sentence, and 
some slots representing the constraints the query 
goal has to satisfy. Then, the goal of the SLU 
system is to translate an input utterance into a 
semantic frame. Besides the two key components, 
i.e., topic classifier and semantic classifier, our 
system also contains a preprocessor and a slot-
value merger. Figure 1 illustrates the overall 
system architecture. It also describes the whole 
SLU procedure using an example sentence. 
 

Preprocessor

Please tell me how can I
go from the people's
square to the bund by bus

Topic
classification

Semantic
classification

Slot-value merger

Please tell me how can
I go from [location]1 to
[location]2 by [bus]

Please tell me how can
I go from [location]1 to
[location]2 by [bus]
FRAME:  ShowRoute

FRAME:  ShowRoute
[location]1:  ShowRoute.[route].[origin]
[location]2:  ShowRoute.[route].[destination]
[bus]: ShowRoute.[route].[transport_type]

FRAME: ShowRoute
SLOTS: [route].[origin] = the people's square

[route].[destination] = the bund
              [route].[transport_type] = bus

I
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Figure 1: The System architecture1 

2.1 The Preprocessor 

Usually, the preprocessor is to look for the sub-
strings in a sentence that correspond to a seman-
tic class or matching a regular expression and to 
replace them with the class label, e.g., “Huashan 
Road” and “1954” are replaced with two class 
labels [road_name] and [number] respectively. In 
our system, the preprocessor can recognize more 
complex word sequences, e.g., “1954 Huashan 
Road” can be recognized as [address] through 
matching a rule like “[address] Æ [number] 
[road_name]”. The preprocessor is implemented 
with a local chart parser, which is a variation of 
the robust parser introduced in (Wang, 1999). 
The robust local parser can skip noise words in 
the sentence, which ensures that the system has 
the low level robustness. For example, “1954 of 
the Huashan Road)” can also be recognized as 
                                                 
1 Because the length is limited, in this paper we only illus-
trate all the example sentences in English, which are Chi-
nese sentences, in fact. 

[address] by skipping the words “of the”. How-
ever, the robust local parser possibly skips the 
words in the sentence by mistake and produces 
an incorrect class label. To avoid this side-effect, 
this local parser exploits an embedded decision 
tree for pruning, of which the details can be seen 
in (Wu et al., 2005). According to our experience, 
it is fairly easy for a general developer with good 
understanding of the application to author the 
small grammar used by the local chart parser and 
annotate the training cases for the embedded de-
cision tree. The work can be finished in several 
hours. 

2.2 Topic Classification 

Given the representation of semantic frame, topic 
classification can be regarded as identifying the 
frame type. It is suited to be dealt using pattern 
recognition techniques. The application of statis-
tical pattern techniques to topic classification can 
improve the robustness of the whole understand-
ing system. Also, in our system, topic classifica-
tion can greatly reduce the search space and 
hence improve the performance of subsequent 
semantic classification. For example, the total 
number of slots into which the concept [location] 
can be filled in all topics is 33 and the corre-
sponding maximum number of slots in a single 
topic is decreased to 10. 

Many statistical pattern recognition techniques 
have been applied to similar tasks, such as Naïve 
Bayes, N-Gram and Support Vector Machines 
(SVMs) (Wang et al., 2002). According to the 
literature (Wang et al., 2002) and our experi-
ments, the SVMs showed the best performance 
among many other statistical classifiers. Also, it 
has been showed that active learning can be ef-
fectively applied to the SVMs (Schohn and Cohn, 
2000; Tong and Koller, 2000). Therefore, we 
choose the SVMs as the topic classifier. We re-
sorted to the LIBSVM toolkit (Chang and Lin, 
2001) to construct the SVMs for our experiments. 
Following the practice in (Wang et al., 2002), the 
SVMs use a binary valued features vector. If the 
simplest feature (Chinese character) is used, each 
query is converted into a feature vector 

1 | |, , chch ch ch=< >JJK
JJK

…  ( | |ch
JJK  is the total number of 

Chinese characters occur in the corpus) with bi-
nary valued elements: 1 if a given Chinese char-
acter is in this input sentence or 0 otherwise. Due 
to the existence of the preprocessor, we can also 
include semantic class labels (e.g., [location]) as 
features for topic classification. Intuitively, the 
class label features are more informative than the 
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Chinese character features. At the same time, 
including class labels as features can also relieve 
the data sparseness problem. 

2.3 Topic-dependent Semantic Classifica-
tion 

The job of semantic classification is to assign the 
concepts with the most likely slots. It can also be 
modeled as a classification problem since the 
number of possible slot names for each concept 
is limited. Let’s consider the example sentence in 
Figure 1. After the preprocessing and topic clas-
sification, we get the preprocessed result “Please 
tell me how can I go from [location]1 to [loca-
tion]2 by [bus]?” and the topic ShowRoute. We 
have to work out which slots are to be filled with 
the values such as [location]2. The first clue is 
the surrounding literal context. Intuitively, we 
can infer that it is a [destination] since a [destina-
tion] indicator “to” is before it. If [location]1 has 
already been recognized as a [origin], it is an-
other clue to imply that  [location]2  is a [destina 
tion]. Since initially the slot context is not avail-
able, the slot context is only employed for the 
semantic re-classification, which will be de-
scribed in latter section. 

To learn the topic-dependent semantic classi-
fiers, the training sentences need to be annotated 
against the semantic frame. Our annotating sce-
nario is relatively simple and can be performed 
by general developers. For example, for the sen-
tence “Please tell me how can I go from the peo-
ple’s square to the bund by bus?”, the annotated 
results are like the following: 
 
 
 
 
 
 
The corresponding slot names can be automati-
cally extracted from the domain model. A do-
main model is usually a hierarchical structure of 
the relevant concepts in the application domain. 
For every occurrence of a concept in the domain 
model graph, we list all the concept names along 
the path from the root to its occurrence position 
and regard their concatenation as a slot name. 
Thus, the slot name is not flat since it inherits the 
hierarchy from the domain model. 

With provision of the annotated data, we can 
collect all the literal and slot context features re-
lated to each concept. The examples of features 
for the concept [location] are illustrated as fol-
lows:  
(1) to within the –3 windows 

(2) from _ to  
(3) ShowRoute.[route].[origin] within the 2±  
windows 
The former two are literal context features. Fea-
ture (1) is a context-word that tends to indicate 
ShowRoute.[route].[destination]. Feature (2) is a 
collocation that checks for the pattern “from” 
and “to” immediately before and after the con-
cept [location] respectively, and tends to indicate 
ShowRoute.[route].[origin]. The third one is a 
slot context feature, which tends to imply the 
target concept [location] is of type Show-
Route.[route].[destination]. In nature, these fea-
tures are equivalent to the rules in the semantic 
grammar used by the robust rule-based parser. 
For example, the feature (2) has the same func-
tion as the semantic rule “[origin] Æ from [loca-
tion] to”. The advantage of our approach is that 
we can automatically learn the semantic “rules” 
from the training data rather than manually au-
thoring them. Also, the learned “rules” are intrin-
sically robust since they may involves gaps, for 
example, feature (1) allows skipping some noise 
words between “to” and [location]. 

The next problem is how to apply these fea-
tures when predicting a new case since the active 
features for a new case may make opposite pre-
dictions. One simple and effective strategy is 
employed by the decision list (Rivest, 1987), i.e., 
always applying the strongest features. In a deci-
sion list, all the features are sorted in order of 
descending confidence. When a new target con-
cept is classified, the classifier runs down the list 
and compares the features against the contexts of 
the target concept. The first matched feature is 
applied to make a predication. Obviously, how to 
measure the confidence of features is a very im-
portant issue for the decision list. We use the 
metric described in (Yarowsky, 1994; Golding, 
1995). Provided that 1( | ) 0P s f >  for all i : 

( ) max ( | )ii
confidence f P s f=                 (1) 

This value measures the extent to which the con-
text is unambiguously correlated with one par-
ticular slot is . 

2.4 Slot-value merging and semantic re-
classification 

The slot-value merger is to combine the slots 
assigned to the concepts in an input sentence. 
Another simultaneous task of the slot-value 
merger is to check the consistency among the 
identified slot-values. Since the topic-dependent 
classifiers corresponding to different concepts 

FRAME: ShowRoute 
Slots:   [route].[origin].[location].( the people’s square)

[route].[destination].[location].(the bund) 
[route].[transport_type].[by_bus].(bus) 
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are training and running independently, it possi-
bly results in inconsistent predictions.  Consider-
ing the preprocessed word sequence “Please tell 
me how can I go from [location]1 to [location]2 
by [bus]” , they are semantically clashed if [loca-
tion]1 and [location]2 are both classified as 
ShowRoute.[route].[origin]. To relieve this prob-
lem, we can use the semantic classifier based on 
the slot context feature. We apply the context 
features like, for example, “Show-
Route.[route].[origin] within the k±  windows”, 
which tends to imply Show-
Route.[route].[destination]. The literal contexts 
reflect the local lexical semantic dependency. 
The slot contexts, however, are good at capturing 
the long distance dependency. Therefore, when 
the slot-value merger finds that two or more slot-
value pairs clash, it first anchors the one with the 
highest confidence. Then, it extracts the slot con-
texts for the other concepts and passes them to 
the semantic classification module for re-
classification. If the re- classification results still 
clash, the dialog system can involve the user in 
an interactive dialog for clarity. 

The idea of semantic classification and re-
classification can be understood as follows: it 
first finds the concept or slot islands (like partial 
parsing) and then links them together. This 
mechanism is well-suited for SLU since the spo-
ken utterance usually consists of several phrases 
and noises (restart, repeats and filled pauses, etc) 
are most often between them (Ward and Issar, 
1994). Especially, this phenomena and the out-
of-order structures are very frequent in the spo-
ken Chinese utterances. 

3 Weakly Supervised Training of the 
Topic Classifier and Topic-dependent 
Semantic Classifiers 

As stated before, to train the classifiers for topic 
identification and slot-filling, we need to label 
each sentence in the training set against the se-
mantic frame. Although this annotating scenario 
is relatively minimal, the labeling process is still 
time-consuming and costly. Meanwhile unla-
beled sentences are relatively easy to collect. 
Therefore, to reduce the cost of labeling training 
utterances, we employ weakly supervised tech-
niques for training the topic and semantic classi-
fiers. 

The weakly supervised training of the two 
classifiers is successive. Assume that a small 
amount of seed sentences are manually labeled 
against the semantic frame. We first exploit the 

labeled frame types (e.g. ShowRoute) of the 
seed sentences to train a topic classifier through 
the combination of active learning and self-
training. The resulting topic classifier is used to 
label the remaining training sentences with the 
corresponding topic, which are not selected by 
active learning. Then, we use all the sentences 
annotated against the semantic frame (including 
the seed sentences and sentences labeled by ac-
tive learning) and the remaining training 
sentences labeled the topic to train the semantic 
classifiers using a practical bootstrapping tech-
nique. 

3.1 Combining Active Learning and Self-
training for Topic Classification 

We employ the strategy of combining active 
learning and self-training for training the topic 
classifier, which was firstly proposed in (Tur et 
al., 2005) and applied to a similar task.  

One way to reduce the number of labeling ex-
amples is active learning, which have been ap-
plied in many domains (McCallum and Nigam, 
1998; Tang et al., 2002; Tur et al., 2005). Usu-
ally, the classifier is trained by randomly sam-
pling the training examples. However, in active 
learning, the classifier is trained by selectively 
sampling the training examples (Cohn et al., 
1994). The basic idea is that the most informa-
tive ones are selected from the unlabeled exam-
ples for a human to label. That is to say, this 
strategy tries to always select the examples, 
which will have the largest improvement on per-
formance, and hence minimizes the human label-
ing effort whilst keeping performance (Tur et al., 
2005). According to the strategy of determining 
the informative level of an example, the active 
learning approaches can be divided into two 
categories: uncertainty-based and committee-
based. Here, we employ the uncertainty-based 
strategy for selective sampling. It is assumed that 
a small amount of labeled examples is initially 
available, which is used to train a basic classifier. 
Then the classifier is applied to the unannotated 
examples. Typically the most unconfident exam-
ples are selected for a human to label and then 
added to the training set. The classifier is re-
trained and the procedure is repeated until the 
system performance converges. 

Another alternative for reducing human label-
ing effort is self-training. In self-training, an ini-
tial classifier is built using a small amount of 
annotated examples. The classifier is then used to 
label the unannotated training examples. The 
examples with classification confidence scores 
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over a certain threshold, together with their pre-
dicted labels, are added to the training set to re-
train the classifier. This procedure repeated until 
the system performance converges. 

These two strategies are complementary and 
hence can be combined. The combination strat-
egy is quite straightforward for pool-based train-
ing. At each iteration, the current classifier is 
applied to the examples in the current pool. The 
most unconfident examples in the pool are se-
lected by active learning and labeled by a human. 
The remaining examples in the pool are auto-
matically labeled by the current classifier. Then, 
these two parts of labeled examples are both 
added into the training set and used for retraining 
the classifier. Since the LIBSVM toolkit pro-
vides the class probability, we directly use the 
class probability as the confidence score. Our 
dynamic pool-based (the pool size is n ) algo-
rithm of combining active learning and self-
training for training the topic classifier is as fol-
lows: 
1. Given a small amount of human-labeled 

training set 
tS  ( n  sentences) and a larger 

amount of unlabeled set uS , build the initial 
classifier using tS . 

2. While labelers/ sentences are available 
(a) Get n  unlabeled sentences from uS  
(b) Apply the current classifier to n  unla-

beled sentences 
(c) Select m  examples which are most in-

formative to the current classifier and 
manually label the selected m  exam-
ples 

(d) Add the m  human-labeled examples 
and the remaining n m−  machine-
labeled examples to the training set 

tS  
(e) Train a new classifier on all labeled ex-

amples 

3.2 Bootstrapping the Topic-dependent 
Semantic Classifiers 

Bootstrapping refers to a problem of inducing a 
classifier given a small set of labeled data and a 
large set of unlabeled data (Abney, 2002). It has 
been applied to problems such as word-sense 
disambiguation (Yarowsky, 1995), web-page 
classification (Blum and Mitchell, 1998), named-
entity recognition (Collins and Singer, 1999) and 
automatic construction of semantic lexicon 
(Thelen and Riloff, 2003). The key to the boot-
strapping methods is to exploit the redundancy in 
the unlabeled data (Collins and Singer, 1999). 

Thus, many language processing problems can 
be dealt using the bootstrapping methods since 
language is highly redundant (Yarowsky, 1995). 
The semantic classification problem here also 
exhibits the redundancy. In the example “Please 
tell me how can I go from [location]1 to [loca-
tion]2 by [bus]?”, there are multiple literal con-
text features which all indicate that [location]1 is 
of type ShowRoute.[route].[origin], such as:  
(1) from within the –1 windows; 
(2) from _ to ; 
(3) to within the +1 windows. 
If the [location]2 has already be recognized as 
ShowRoute.[route].[destination], thus the slot 
context feature “ShowRoute.[route].[origin] 
within the 2±  windows” is also a strong evi-
dence that [location]1 is of type Show-
Route.[route].[origin]. That is to say, the literal 
context and slot context features above effec-
tively overdetermine the slot of a concept in the 
input sentence. Especially, the literal and slot 
context features can be seen as two natural 
“views” of an example from the respective of 
“Co-Training” (Blum and Mitchell, 1998). Our 
bootstrapping algorithm exploits the property of 
redundancy to incrementally identify the features 
for assigning slots of a concept, given a few an-
notated seed sentences. 

The bootstrapping algorithm is performed on 
each topic iT  ( 1 i n≤ ≤ , n  is the number of 
topic) as follows:  
1. For each concept jC  in iT  (1 j m≤ ≤ , m is 

the number of concepts appears in the sen-
tences of topic iT ): 

(1.1) Build the two initial classifiers based on 
literal and slot context features respec-
tively using a small amount of labeled 
seed sentences. 

(1.2) Apply the current classifier based on the 
literal context feature to the remaining 
unlabeled concepts in the training sen-
tences belong to topic iT . Keep those 
classified slots with confidence score 
above a certain threshold (In this paper, 
the threshold is fixed on 0.5). 

2. Check the consistency of the classified slots 
in each sentence. If some slots in a sentence 
clashed, take the one with the highest confi-
dence score among them and leave the others 
unlabeled.  

3. For each concept jC in iT , apply the current 
classifier based on the slot context to the re-
sidual unlabeled concepts. Keep those classi-
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fied slots with confidence score above a cer-
tain threshold. Repeat Step 3. 

4. Augment the new classified cases into the 
training set and retrain the two classifiers 
based on literal and slot context features re-
spectively.  

5. If new slots are classified from the training 
data, return to step 2. Otherwise, repeat 2-5 
to label training data and keep all new classi-
fied slots regardless of the confidence score. 
Train the two final semantic classifiers based 
on the literal and context features respec-
tively using the new labeled training data. 

4 Experiments and Results 

4.1 Data Collection and Experimental Set-
ting 

Our experiments were carried out in the context 
of Chinese public transportation information in-
quiry domain. We collected two kinds of corpus 
for our domain using different ways. Firstly, a 
natural language corpus was collected through a 
specific website which simulated a dialog system. 
The user can conduct some mixed-initiative con-
versational dialogues with it by typing Chinese 
queries. Then we collected 2,286 natural lan-
guage utterances through this way. It was divided 
into two parts: the training set contained 1,800 
sentences (TR), and the test set contained 486 
sentences (TS1). Also, a spoken language corpus 
was collected through the deployment of a pre-
liminary version of telephone-based dialog sys-
tem, of which the speech recognizer is based on 
the speaker-independent Chinese dictation sys-
tem of IBM ViaVoice Telephony and the SLU 
component is a robust rule-based parser. The 
spoken utterances corpus contained 363 spoken 
utterances. Then we obtained two test set from 
this corpus: one consisted of the recognized text 
(TS2); the other consisted of the corresponding 
transcription (TS3). The Chinese character error 
rate and concept error rate of TS2 are 35.6% and 
41.1% respectively. We defined ten types of 
topic for our domain: ListStop, ShowFare, 
ShowRoute, ShowRouteTime, etc. The first 
corpus covers all the ten topic types and the sec-
ond corpus only covers four topic types. The to-
tal number of Chinese characters appear in the 
data set is 923. All the sentences were annotated 
against the semantic frame. In our experiments, 
the topic classifier and semantic classifiers were 
trained on the natural language training set (TR) 
and tested on three test sets (TS1, TS2 and TS3). 

The performance of topic classification and 
semantic classification are measured in terms of 
topic error rate and slot error rate respectively. 
Topic performance is measured by comparing 
the topic of a sentence predicated by the topic 
classifier with the reference topic. The slot error 
rate is measured by counting the insertion, dele-
tion and substitution errors between the slots 
generated by our system and these in the refer-
ence annotation. 

4.2 Supervised Training Experiments 

Firstly, in order to validate the effectiveness of 
our proposed SLU system using successive 
learners, we compared our system with a rule-
based robust semantic parser. The parsing algo-
rithm of this parser is same as the local chart 
parser used by the preprocessor. The handcrafted 
grammar for this semantic parser took a linguis-
tic expert one month to develop, which consists 
of 798 rules (except the lexical rules for named 
entities such as [loc_name]). In our SLU system, 
we first use the SVMs to identify the topic and 
then apply the semantic classifier (decision list) 
related to the identified topic to assign the slots 
to the concepts. The SVMs used the augmented 
binary features (923 Chinese characters and 20 
semantic class labels). A general developer inde-
pendently annotated the TR set against the se-
mantic frame, which took only four days. 
Through feature extraction from the TR set and 
feature pruning, we obtained 2,259 literal context 
features and 369 slot context features for 20 
kinds of concepts in our domain. Table 1 Shows 
that our SLU method has better performance 
than the rule-based robust parser in both topic 
classification and slot identification. Due to the 
high concept error rate of recognized utterances, 
the performance of semantic classification on the 
TS2 is relatively poor. However, if considering 
only the correctly identified concepts on TS2, the 
slot error rate is 9.2%. Note that, since the TS2 
(recognized speech) covers only four types of 
topic but TS1 (typed utterance) covers ten topics, 
the topic error on the TS2 (recognized speech) is 
lower than that on TS1. 

Table 1 also compares our system with the 
two-stage classification with the reversed order. 
Another alternative for our system is to reverse 
the two main processing stages, i.e., finding the 
roles for the concepts prior to identifying the 
topic. For instance, in the example sentence in 
Fig.1, the concept (e.g., [location]) in the pre-
processed sequence is first recognized as slots 
(e.g., [route].[origin]) before topic classification. 
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Therefore, the slots like [route].[origin] can be 
included as features for topic classification, 
which is deeper than the concepts like [location] 
and potential to achieve improvement on per-
formance of topic classification. This strategy 
was adopted in some previous works (He and 
Young, 2003; Wutiwiwatchai and Furui, 2003). 
However, the results indicate that, at least in our 
two-stage classification formwork, the strategy 
of identifying the topic before assigning the slots 
to the concepts is more optimal. According to 
our error analysis, the unsatisfied performance of 
the reversed two-stage classification system can 
be explained as follows:  (1) Since the semantic 
classification is performed on all topics, the 
search space is much bigger and the ambiguities 
increase. This deteriorates the performance of 
semantic classification. (2) In the case that the 
slots and Chinese characters are included as fea-
tures, the topic classifier relies heavily on the slot 
features. Then, the errors of semantic classifica-
tion have serious negative effect on the topic 
classification. 
 
Table 1: Performance comparsion of the rule-
based robust semantic parser, the reversed two-
stage classification system and our SLU systems 
(TER: Topic Error Rate; SER: Slot Error Rate; 
DL: Decision List) 

TS1 TS2 TS3 
 TER 

(%)   
SER 
( %) 

TER 
(%)   

SER  
( %) 

TER
(%) 

SER  
( %)

Rule-based se-
mantic parser 6.8  11.6 4.1  47.9 3.0 5.4

Reversed two-
stage classifica-

tion system 
4.9 11.1 3.6 47.4 2.5 4.9

Our system 2.9   8.4 2.2   45.6 1.4  4.6
 

4.3 Weakly Supervised Training 
Experiments 

4.3.1 Active Learning and Self-training Ex-
periments for Topic Classification 

In order to evaluate the performance of active 
learning and self-training, we compared three 
sampling strategies: random sampling, active 
learning only, active learning and self-training. 
At each iteration of pool-based active learning 
and self-training, we get 200 sentences (i.e., the 
pool size is set as 200) and select 50 most uncon-
fident sentences from them for manually labeling 
and exploit the remaining sentences using self-
training. All the experiments were repeated ten 
times with different randomly selected seed sen-
tences and the results were averaged. Figure 1 

plots the learning curves of three strategies 
trained on TR and tested on the TS1 set. It is evi-
dent that active learning significantly reduces the 
need for labeled data. For instance, it requires 
1600 examples if they are randomly chosen to 
achieve a topic error rate of 3.2% on TS1, but 
only 600 actively selected examples, a saving of 
62.5%. The strategy of combing active learning 
and self-training can further improve the per-
formance of topic classification compared with 
active learning only with the same amount of 
labeled data. 
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Figure 2: Learning curves using different sam-
pling strategies. 
 

We also evaluated the performance of topic 
classification using active learning and self-
training with the pool size of 200 on the three 
test sets. Table 2 shows that active learning and 
self-training with the pool size of 200 achieves 
almost the same performance on three test sets as 
random sampling, but requires only 33.3% data. 

 
Table 2: The topic error rate using active learn-
ing and self-training with pool size of 200 on the 
three test sets (AL: Active Learning) 

 TS1 
(%) 

TS2 
(%) 

TS3 
(%) 

Labeled 
Sent.(#) 

Random 2.9 2.2 1.4 1,800 
AL 3.2 2.5 1.7 600 

AL & self-training 2.9 2.5 1.4 600 
 
4.3.2 Bootstrapping Experiments for Se-

mantic Classification 
As stated before, the bootstrapping procedure 
begins with a small amount of sentences anno-
tated against the semantic frame, which is the 
initial seed sentence or annotated by active learn-
ing, and the remaining training sentences, the 
topics of which are machine-labeled by the re-
sulting topic classifier. For example, in the 
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weakly supervised training scenario with the 
pool size of 200, the active learning and self-
training procedure ran 8 iterations. At each itera-
tion, 50 sentences were selected by active learn-
ing. So the total number of labeled sentences is 
600. We compared our bootstrapping methods 
with supervised training for semantic classifica-
tion. We tried two bootstrapping methods: using 
only the literal context features (Bootstrapping 1) 
and using the literal and slot context features 
(Bootstrapping 2). If the step 4 of the bootstrap-
ping algorithm in Section 3.2 is canceled, the 
new bootstrapping variation corresponds to 
Bootstrapping 2. Also, we repeated the experi-
ments ten times with different labeled sentences 
and the results were averaged. Figure 3 plots the 
learning curves of bootstrapping and supervised 
training with different number of labeled sen-
tences on the TS1 set. The results indicate that 
bootstrapping methods can effectively make use 
of the unlabeled data to improve the semantic 
classification performance. In particular, the 
learning curve of bootstrapping 1 achieves more 
significant improvement than the curve of boot-
strapping 2. It can be explained as follows: in-
cluding the slot context features further increases 
the redundancy of data and hence corrects the 
initial misclassified cases by the semantic classi-
fier using only literal context features or provides 
new cases. 

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0 100 200 300 400 500 600 700

Number of labeled sentences

Sl
ot
 
e
r
ro

r
 
r
a
t
e

Supervised
training
Bootstrapping 1

Bootstrapping 2

Figure 3: Learning curves of bootstrapping meth-
ods for semantic classification on TS1. 
 

Finally, we compared two SLU systems 
through weakly supervised and supervised 
training respectively. The supervised one was 
trained using all the annotated sentences in TR 
(1800 sentences). In the weakly supervised 
training scenario (the pool size is still 200), The 
topic classifier and semantic classifiers were both 

trained using only 600 labeled sentences. Table 3 
shows that the weakly supervised scenario 
achieves comparable performance to the super-
vised one, but requires only 33.3% labeled data. 

 
Table 3: Performance comparison of two SLU 
systems through weakly supervised and super-
vised training on the three test sets (TER: Topic 
Error Rate; SER: Slot Error Rate) 

TS1 TS2 TS3 
 TER 

(%)  
SER 
(%)

TER  
(%)   

SER 
(%) 

TER 
(%)  

SER
(%)

Supervised 2.9  8.4 2.2   45.6 1.4  4.6
Weakly  

Supervised 2.9 9.7 2.5 44.8 1.4 5.7

 

5 Conclusion and Future work 

We have presented a new SLU framework using 
two successive classifiers. The proposed frame-
work exhibits the advantages as follows. 
z It has good robustness on processing spoken 

language: (1) The preprocessor provides the 
low level robustness. (2) It inherits the ro-
bustness of topic classification using statis-
tical pattern recognition techniques. It can 
also make use of topic classification to 
guide slot filling. (3) The strategy of first 
finding the concepts or slot islands and then 
linking them is suited for processing spoken 
language. 

z It also keeps the understanding deepness: (1) 
The class of semantic classification is the 
slot name, which inherits the hierarchy from 
the domain model. (2) The semantic re-
classification mechanism ensures the consis-
tency among the identified slot-value pairs. 

z It is mainly data-driven and requires only 
minimally annotated corpus for training. 
Most importantly, our proposed SLU 
framework allows the employment of 
weakly supervised strategies for training the 
two classifiers, which can reduce the cost of 
annotating labeled sentences. 

The future work includes further evaluation of 
our approach in other application domains and 
languages. We also plan to integrate this under-
standing system into a whole dialog system. 
Then, high level knowledges, such as the dialog 
context, can also be included as the features of 
topic and semantic classifiers. Moreover, cur-
rently, the topics are manually defined through 
examination of the example sentences by human. 
Then, it is worthwhile to investigate how to ap-
propriately define topics and the probability of 
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exploiting the sentence clustering techniques to 
facilitate the topic (frame) designment. 
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Abstract

We analyze humorous spoken conversa-
tions from a classic comedy television
show, FRIENDS, by examining acoustic-
prosodic and linguistic features and their
utility in automatic humor recognition.
Using a simple annotation scheme, we au-
tomatically label speaker turns in our cor-
pus that are followed bylaughs as hu-
morous and the rest as non-humorous.
Our humor-prosody analysis reveals sig-
nificant differences in prosodic character-
istics (such as pitch, tempo, energy etc.)
of humorous and non-humorous speech,
even when accounted for the gender and
speaker differences. Humor recognition
was carried out using standard supervised
learning classifiers, and shows promising
results significantly above the baseline.

1 Introduction

As conversational systems are becoming preva-
lent in our lives, we notice an increasing need for
adding social intelligence in computers. There has
been a considerable amount of research on incor-
porating affect (Litman and Forbes-Riley, 2004)
(Alm et al., 2005) (D’Mello et al., 2005) (Shroder
and Cowie, 2005) (Klein et al., 2002) and person-
ality (Gebhard et al., 2004) in computer interfaces,
so that, for instance, user frustrations can be rec-
ognized and addressed in a graceful manner. As
(Binsted, 1995) correctly pointed out, one way to
alleviate user frustrations, and to make human-
computer interaction more natural, personal and
interesting for the users, is to model HUMOR.

Research in computational humor is still in
very early stages, partially because humorous lan-

guage often uses complex, ambiguous and incon-
gruous syntactic and semantic expressions (At-
tardo, 1994) (Mulder and Nijholt, 2002) which re-
quire deep semantic interpretation. Nonetheless,
recent studies have shown a feasibility of auto-
matically recognizing (Mihalcea and Strapparava,
2005) (Taylor and Mazlack, 2004) and generating
(Binsted and Ritchie, 1997) (Stock and Strappar-
ava, 2005) humor in computer systems. The state
of the art research in computational humor (Bin-
sted et al., 2006) is, however, limited to text (such
as humorousone-liners, acronyms or wordplays),
and to our knowledge, there has been no work to
date on automatic humor recognition in spoken
conversations.

Before we can model humor in real application
systems, we must first analyze features that char-
acterize humor. Computational approaches to hu-
mor recognition so far primarily rely on lexical
and stylistic cues such as alliteration, antonyms,
adult slang (Mihalcea and Strapparava, 2005). The
focus of our study is, on the other hand, on ana-
lyzing acoustic-prosodic cues (such as pitch, in-
tensity, tempo etc.) in humorous conversations
and testing if these cues can help us to auto-
matically distinguish between humorous and non-
humorous (normal) utterances in speech. We hy-
pothesize that not only the lexical content but
also the prosody (or how the content is expressed)
makes humorous expressionshumorous.

The following sections describe our data collec-
tion and pre-processing, followed by the discus-
sion of various acoustic-prosodic as well as other
types of features used in our humorous-speech
analysis and classification experiments. We then
present our experiments, results, and finally end
with conclusions and future work.
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2 FRIENDS Corpus

(Scherer, 2003) discuss a number of pros and cons
of using real versusacted data, in the context of
emotional speech analysis. His main argument is
that while real data offers natural expressions of
emotions, it is not only hard to collect (due to eth-
ical issues) but also very challenging to annotate
and analyze, as there are very few instances of
strong expressions and the rest are often very sub-
tle. Acted data (also referred to asportrayed or
simulated), on the other hand, offers ample of pro-
totypical examples, although these are criticized
for not beingnatural at times. To achieve some
balance between naturalness and strength/number
of humorous expressions, we decided to use di-
alogs from a comedy television show FRIENDS,
which provides classical examples of casual, hu-
morous conversations between friends who often
discuss very real-life issues, such as job, career,
relationships etc.

We collected a total of 75 dialogs (scenes) from
six episodes of FRIENDS, four from Season I
(Monica Gets a New Roommate, The One with
Two Parts: Part 1 and 2, All the Poker) and two
from Season II (Ross Finds Out, The Prom Video),
all available onThe Best of Friends Volume I
DVD. This gave us approximately 2 hrs of audio.
Text transcripts of these episodes were obtained
from: http://www.friendscafe.org/scripts.shtml,
and were used to extract lexical features (used later
in classification).

Figure 1 shows an excerpt from one of the di-
alogs in our corpus.

3 Audio Segmentation and Annotation

We segmented each audio file (manually) by mark-
ing speaker turn boundaries, using Wavesurfer
(http://www.speech.kth.se/wavesurfer). We apply
a fairly straightforward annotation scheme to au-
tomatically identify humorous and non-humorous
turns in our corpus. Speaker turns that are fol-
lowed by artificial laughs are labeled asHumor-
ous, and all the rest asNon-Humorous. For ex-
ample, in the dialog excerpt shown in figure 1,
turns 3, 7, 9, 11 and 16 are marked ashumor-
ous, whereas turns 1, 2, 5, 6, 13, 14, 15 are
marked asnon-humorous. Artificial laughs, si-
lences longer than 1 second and segments of au-
dio that contain purely non-verbal sounds (such
as phone rings, door bells, music etc.) were ex-
cluded from the analysis. By considering only

[1] Rachel: Guess what?
[2] Ross: You got a job?
[3] Rachel: Are you kidding? I am trained for
nothing!
[4] <Laughter>
[5] Rachel: I was laughed out of twelve inter-
views today.
[6] Chandler: And yet you’re surprisingly up-
beat.
[7] Rachel: You would be too if you found John
and David boots on sale, fifty percent off!
[8] <Laughter>
[9] Chandler: Oh, how well you know me...
[10] <Laughter>
[11] Rachel: They are my new, I don’t need a job,
I don’t need my parents, I got great boots, boots!
[12] <Laughter>
[13] Monica: How’d you pay for them?
[14] Rachel: Uh, credit card.
[15] Monica: And who pays for that?
[16] Rachel: Um... my... father.
[17] <Laughter>

Figure 1: Dialog Excerpt

speaker turns that are followed by laughs as hu-
morous, we also automatically eliminate cases of
pure visual comedy where humor is expressed us-
ing only gestures or facial expressions. In short,
non-verbal sounds or silences followed by laughs
are not treated as humorous. Henceforth, by
turn, we mean proper speaker turns (and not non-
verbal turns). We currently do not apply any spe-
cial filters to remove non-verbal sounds or back-
ground noise (other than laughs) that overlap with
speaker turns. However, if artificial laughs overlap
with a speaker turn (there were only few such in-
stances), the speaker turn is chopped by marking a
turn boundary exactly before/after the laughs be-
gin/end. This is to ensure that our prosody anal-
ysis is fair and does not catch any cues from the
laughs. In other words, we make sure that our
speaker turns areclean and not garbled by laughs.

After segmentation, we got a total of 1629
speaker turns, of which 714 (43.8%) are humor-
ous, and 915 (56.2%) are non-humorous. We also
made sure that there is a 1-to-1 correspondence be-
tween speaker turns in text transcripts that were
obtained online and our audio segments, and cor-
rected few cases where there was a mis-match (due
to turn-chopping or errors in online transcripts).
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Figure 2: Audio Segmentation, Transcription and Feature Extraction using Wavesurfer

4 Speaker Distributions

There are 6main actors/speakers (3 male and 3 fe-
male) in this show, along with a number of (in our
data 26) guest actors who appear briefly and rarely
in some of our dialogs. As the number of guest
actors is quite large, and their individual contribu-
tion is less than 5% of the turns in our data, we
decided to group all the guest actors together in
oneGUEST class.

As these areacted (not real) conversations,
there were only few instances of speaker turn-
overlaps, where multiple speakers speak together.
These turns were given a speaker labelMULTI. Ta-
ble 1 shows the total number of turns and humor-
ous turns for each speaker, along with their per-
centages in braces. Percentages for the Humor col-
umn show, out of the total (714) humorous turns,
how many are by each speaker. As one can notice,
the distribution of turns is fairly balanced among
the six main speakers. We also notice that even
though each guest actors’ individual contribution
is less than 5% in our data, their combined contri-
bution is fairly large, almost 16% of the total turns.

Table 2 shows that the six main actors together
form a total of 83% of our data. Also, of the to-
tal 714 humorous turns, 615 (86%) turns are by
the main actors. To study if prosody of humor dif-
fers across males and females, we also grouped
the main actors into two gender classes. Table
2 shows that the gender distribution is fairly bal-

Speaker #Turns(%) #Humor (%)
Chandler (M) 244 (15) 163 (22.8)

Joey (M) 153 (9.4) 57 (8)
Monica (F) 219 (13.4) 74 (10.4)
Phoebe (F) 180 (11.1) 104 (14.6)
Rachel (F) 273 (16.8) 90 (12.6)
Ross (M) 288 (17.7) 127 (17.8)

GUEST (26) 263 (16.1) 95 (13.3)
MULTI 9 (0.6) 4 (0.6)

Table 1: Speaker Distribution

anced among the main actors, with 50.5% male
and 49.5% female turns. We also see that of the
685 male turns, 347 turns (almost 50%) are hu-
morous, and of the 672 female turns, 268 (ap-
proximately 40%) are humorous. Guest actors and
multi-speaker turns are not considered in the gen-
der analysis.

Speaker #Turns #Humor
Male 685 347

(50.5% of Main) (50.6% of Male)
Female 672 268

(49.5% Of Main) (39.9% of Female)
Total 1357 615
Main (83.3% of Total) (86.1% of Humor)

Table 2: Gender Distribution for Main Actors
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5 Features

Literature in emotional speech analysis (Liscombe
et al., 2003)(Litman and Forbes-Riley, 2004)
(Scherer, 2003)(Ang et al., 2002) has shown that
prosodic features such as pitch, energy, speak-
ing rate (tempo) are useful indicators of emotional
states, such as joy, anger, fear, boredom etc. While
humor is not necessarily considered as an emo-
tional state, we noticed that most humorous ut-
terances in our corpus (and also in general) often
make use of hyper-articulations, similar to those
found in emotional speech.

For this study, we use a number of acoustic-
prosodic as well as some non acoustic-prosodic
features as listed below:

Acoustic-Prosodic Features:� Pitch (F0): Mean, Max, Min, Range, Stan-
dard Deviation� Energy (RMS): Mean, Max, Min, Range,
Standard Deviation� Temporal: Duration, Internal Silence, Tempo

Non Acoustic-Prosodic Features:� Lexical� Turn Length (#Words)� Speaker

Our acoustic-prosodic features make use of
the pitch, energy and temporal information in
the speech signal, and are computed using
Wavesurfer. Figure 2 shows Wavesurfer’s energy
(dB), pitch (Hz), and transcription (.lab) panes.
The transcription interface shows text correspond-
ing to the dialog turns, along with the turn bound-
aries. All features are computed at the turn level,
and essentially measure the mean, maximum, min-
imum, range (maximum-minimum) and standard
deviation of the feature value (F0 or RMS) over
the entire turn (ignoring zeroes). Duration is mea-
sured in terms of time in seconds, from the be-
ginning to the end of the turn including pauses
(if any) in between. Internal silence is measured
as the percentage of zero F0 frames, and essen-
tially account for the amount of silence in the turn.
Tempo is computed as the total number of sylla-
bles divided by the duration of the turn. For com-
puting the number of syllables per word, we used
the General Inquirer database (Stone et al., 1966).

Our lexical features are simply all words (alpha-
numeric strings including apostrophes and stop-
words) in the turn. The value of these features is
integral and essentially counts the number of times
a word is repeated in the turn. Although this indi-
rectly accounts for alliterations, in the future stud-
ies, we plan to use morestylistic lexical features
like (Mihalcea and Strapparava, 2005).

Turn length is measured as the number of words
in the turn. For our classification study, we con-
sider eight speaker classes (6 Main actors, 1 for
Guest and Multi) as shown in table 1, whereas for
the gender study, we consider only two speaker
categories (male and female) as shown in table 2.

6 Humor-Prosody Analysis

Feature Humor Non-Humor

Mean-F0 206.9 208.9
Max-F0* 299.8 293.5
Min-F0* 121.1 128.6

Range-F0* 178.7 164.9
StdDev-F0 41.5 41.1

Mean-RMS* 58.3 57.2
Max-RMS* 76.4 75
Min-RMS* 44.2 44.6

Range-RMS* 32.16 30.4
StdDev-RMS* 7.8 7.5

Duration* 3.18 2.66
Int-Sil* 0.452 0.503
Tempo* 3.21 3.03
Length* 10.28 7.97

Table 3: Humor Prosody: Mean feature values for
Humor and Non-Humor groups

Table 3 shows mean values of various acoustic-
prosodic features over all speaker turns in our data,
across humor and non-humor groups. Features
that have statistically (p<=0.05 as per indepen-
dent samples t-test) different values across the two
groups are marked with asterisks. As one can
see, all features except Mean-F0 and StdDev-F0
show significant differences across humorous and
non-humorous speech. Table 3 shows that humor-
ous turns in our data are longer, both in terms of
the time duration and the number of words, than
non-humorous turns. We also notice that humor-
ous turns have smaller internal silence, and hence
rapid tempo. Pitch (F0) and energy (RMS) fea-
tures have higher maximum, but lower minimum
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values, for humorous turns. This in turn gives
higher values for range and standard deviation for
humor compared to the non-humor group. This re-
sult is somewhat consistent with previous findings
of (Liscombe et al., 2003) who found that most of
these features are largely associated with positive
and active emotional states such as happy, encour-
aging, confident etc. which are likely to appear in
our humorous turns.

7 Gender Effect on Humor-Prosody

To analyze prosody of humor across two genders,
we conducted a 2-way ANOVA test, using speaker
gender (male/female) and humor (yes/no) as our
fixed factors, and each of the above acoustic-
prosodic features as a dependent variable. The
test tells us the effect of humor on prosody ad-
justed for gender, the effect of gender on prosody
adjusted for humor and also the effect of interac-
tion between gender and humor on prosody (i.e.
if the effect of humor on prosody differs accord-
ing to gender). Table 4 shows results of 2-way
ANOVA, where Y shows significant effects, and
N shows non-significant effects. For example, the
result for tempo shows that tempo differs signifi-
cantly only across humor and non-humor groups,
but not across the two gender groups, and that
there is no effect of interaction between humor
and gender on tempo. As before, all features ex-
cept Mean-F0 and StdDev-F0 show significant dif-
ferences across humor and no-humor conditions,
even when adjusted for gender differences. The
table also shows that all features except inter-
nal silence and tempo show significant differences
across two genders, although only pitch features
(Max-F0, Min-F0, and StdDev-F0) show the ef-
fect of interaction between gender and humor. In
other words, the effect of humor on these pitch fea-
tures is dependent on gender. For instance, if male
speakers raise their pitch while expressing humor,
female speakers might lower. To confirm this,
we computed means values of various features for
males and females separately (See Tables 5 and
6). These tables indeed suggest that male speak-
ers show higher values for pitch features (Mean-
F0, Min-F0, StdDev-F0), while expressing humor,
whereas females show lower. Also for male speak-
ers, differences in Min-F0 and Min-RMS values
are not statistically significant across humor and
non-humor groups, whereas for female speakers,
features Mean-F0, StdDev-F0 and tempo do not

show significant differences across the two groups.
One can also notice that the differences in the
mean pitch feature values (specifically Mean-F0,
Max-F0 and Range-F0) between humor and non-
humor groups are much higher for males than for
females.

In summary, our gender analysis shows that al-
though most acoustic-prosodic features are differ-
ent for males and females, the prosodic style of ex-
pressing humor by male and female speakers dif-
fers only along some pitch-features (both in mag-
nitude and direction).

Feature Humor Gender Humor
x Gender

Mean-F0 N Y N
Max-F0 Y Y Y
Min-F0 Y Y Y

Range-F0 Y Y N
StdDev-F0 N Y Y

Mean-RMS Y Y N
Max-RMS Y Y N
Min-RMS Y Y N

Range-RMS Y Y N
StdDev-RMS Y Y N

Duration Y Y N
Int-Sil Y N N
Tempo Y N N
Length Y Y N

Table 4: Gender Effect on Humor Prosody: 2-Way
ANOVA Results

8 Speaker Effect on Humor-Prosody

We then conducted similar ANOVA test to account
for the speaker differences, i.e. by considering hu-
mor (yes/no) and speaker (8 groups as shown in ta-
ble 1) as our fixed factors and each of the acoustic-
prosodic features as a dependent variable for a 2-
Way ANOVA. Table 7 shows results of this analy-
sis. As before, the table shows the effect of humor
adjusted for speaker, the effect of speaker adjusted
for humor and also the effect of interaction be-
tween humor and speaker, on each of the acoustic-
prosodic features. According to table 7, we no
longer see the effect of humor on features Min-
F0, Mean-RMS and Tempo (in addition to Mean-
F0 and StdDev-F0), in presence of the speaker
variable. Speaker, on the other hand, shows sig-
nificant effect on prosody for all features. But
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Feature Humor Non-Humor

Mean-F0* 188.14 176.43
Max-F0* 276.94 251.7

Min-F0 114.54 113.56
Range-F0* 162.4 138.14

StdDev-F0* 37.83 34.27

Mean-RMS* 57.86 56.4
Max-RMS* 75.5 74.21

Min-RMS 44.04 44.12
Range-RMS* 31.46 30.09

StdDev-RMS* 7.64 7.31

Duration* 3.1 2.57
Int-Sil* 0.44 0.5
Tempo* 3.33 3.1
Length* 10.27 8.1

Table 5: Humor Prosody for Male Speakers

surprisingly, again only pitch features Mean-F0,
Max-F0 and Min-F0 show the interaction effect,
suggesting that the effect of humor on these pitch
features differs from speaker to speaker. In other
words, different speakers use different pitch varia-
tions while expressing humor.

9 Humor Recognition by Supervised
Learning

We formulate our humor-recognition experiment
as a classical supervised learning problem, by
automatically classifying spoken turns into hu-
mor and non-humor groups, using standard ma-
chine learning classifiers. We used the decision
tree algorithm ADTree from Weka, and ran a
10-fold cross validation experiment on all 1629
turns in our data1. The baseline for these ex-
periments is 56.2% for the majority class (non-
humorous). Table 8 reports classification results
for six feature categories: lexical alone, lexical +
speaker, prosody alone, prosody + speaker, lexical
+ prosody and lexical + prosody + speaker (all).
Numbers in braces show the number of features
in each category. There are total 2025 features
which include 2011 lexical (all word types plus
turn length), 13 acoustic-prosodic and 1 for the
speaker information. FeatureLength was included
in the lexical feature group, as it counts the num-
ber of lexical items (words) in the turn.

1We also tried other classifiers like Naive Bayes and Ad-
aBoost, although since the results were equivalent to ADTree,
we do not report those here.

Feature Humor Non-Humor

Mean-F0 235.79 238.75
Max-F0* 336.15 331.14
Min-F0* 133.63 143.14

Range-F0* 202.5 188
StdDev-F0 46.33 46.6

Mean-RMS* 58.44 57.64
Max-RMS* 77.33 75.57
Min-RMS* 44.08 44.74

Range-RMS* 33.24 30.83
StdDev-RMS* 8.18 7.59

Duration* 3.35 2.8
Int-Sil* 0.47 0.51
Tempo 3.1 3.1

Length* 10.66 8.25

Table 6: Humor Prosody for Female Speakers

All results are significantly above the baseline
(as measured by a pair-wise t-test) with the best
accuracy of 64% (8% over the baseline) obtained
using all features. We notice that the classifica-
tion accuracy improves on adding speaker infor-
mation to both lexical and prosodic features. Al-
though these results do not show a strong evidence
that prosodic features are better than lexical, it is
interesting to note that the performance of just a
few (13) prosodic features is comparable to that
of 2011 lexical features. Figure 3 shows the deci-
sion tree produced by the classifier in 10 iterations.
Numbers indicate the order in which the nodes are
created, and indentations mark parent-child rela-
tions. We notice that the classifier primarily se-
lected speaker and prosodic features in the first
10 iterations, whereas lexical features were se-
lected only in the later iterations (not shown here).
This seems consistent with our original hypothe-
sis that speech features are better at discriminating
between humorous and non-humorous utterances
in speech than lexical content.

Although (Mihalcea and Strapparava, 2005) ob-
tained much higher accuracies using lexical fea-
tures alone, it might be due to the fact that our data
is homogeneous in the sense that both humorous
and non-humorous turns are extracted from the
same source, and involve same speakers, which
makes the two groups highly alike and hence chal-
lenging to distinguish. To make sure that the
lower accuracy we get is not simply due to using
smaller data compared to (Mihalcea and Strappar-
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Feature Humor Speaker Humor
x Speaker

Mean-F0 N Y Y
Max-F0 Y Y Y
Min-F0 N Y Y

Range-F0 Y Y N
StdDev-F0 N Y N

Mean-RMS N Y N
Max-RMS Y Y N
Min-RMS Y Y N

Range-RMS Y Y N
StdDev-RMS Y Y N

Duration Y Y N
Int-Sil Y Y N
Tempo N Y N
Length Y Y N

Table 7: Speaker Effect on Humor Prosody: 2-
Way ANOVA Results

Feature -Speaker +Speaker
Lex 61.14 (2011) 63.5 (2012)

Prosody 60 (13) 63.8 (14)
Lex + Prosody 62.6 (2024) 64 (2025)

Table 8: Humor Recognition Results (% Correct)

ava, 2005), we looked at the learning curve for the
classifier (see figure 4) and found that the classi-
fier performance is not sensitive to the amount of
data.

Table 9 shows classification results by gender,
using all features. For the male group, the base-
line is 50.6%, as the majority classhumor is 50.6%
(See Table 2). For females, the baseline is 60%
(for non-humorous) as only 40% of the female
turns are humorous.

Gender Baseline Classifier
Male 50.6 64.63

Female 60.1 64.8

Table 9: Humor Recognition Results by Gender

As Table 9 shows, the performance of the classi-
fier is somewhat consistent cross-gender, although
for male speakers, the relative improvement is
much higher (14% above the baseline), than for
females (only 5% above the baseline). Our earlier
observation (from tables 5 and 6) that differences
in pitch features between humor and non-humor

j (1)SPEAKER = chandler: 0.469j (1)SPEAKER != chandler: -0.083j j (4)SPEAKER = phoebe: 0.373j j (4)SPEAKER != phoebe: -0.064j (2)DURATION< 1.515: -0.262j j (5)SILENCE< 0.659: 0.115j j (5)SILENCE>= 0.659: -0.465j j (8)SD F0< 9.919: -1.11j j (8)SD F0>= 9.919: 0.039j (2)DURATION>= 1.515: 0.1j j (3)MEAN RMS< 56.117: -0.274j j (3)MEAN RMS>= 56.117: 0.147j j j (7)come< 0.5: -0.056j j j (7)come>= 0.5: 0.417j j (6)SD F0< 57.333: 0.076j j (6)SD F0>= 57.333: -0.285j j (9)MAX RMS< 86.186: 0.011j j j (10)MIN F0< 166.293: 0.047j j j (10)MIN F0>= 166.293: -0.351j j (9)MAX RMS>= 86.186: -0.972
Legend: +ve = humor, -ve = non-humor

Figure 3: Decision Tree (only the first 10 iterations
are shown)

groups are quite higher for males than for females,
may explain why we see higher improvement for
male speakers.

10 Conclusions

In this paper, we presented our experiments on
humor-prosody analysis and humor recognition
in spoken conversations, collected from a clas-
sic television comedy, FRIENDS. Using a sim-
ple automated annotation scheme, we labeled
speaker turns in our corpus that are followed
by artificial laughs as humorous, and the rest as
non-humorous. We then examined a number of
acoustic-prosodic features based on pitch, energy
and temporal information in the speech signal,
that have been found useful by previous studies in
emotion recognition.

Our prosody analysis revealed that humorous
and non-humorous turns indeed show significant
differences in most of these features, even when
accounted for the speaker and gender differences.
Specifically, we found that humorous turns tend
to have higher tempo, smaller internal silence, and
higher peak, range and standard deviation for pitch
and energy, compared to non-humorous turns.

On the humor recognition task, our classifier
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Figure 4: Learning Curve: %Accuracy versus
%Fraction of Data

achieved the best performance when acoustic-
prosodic features were used in conjunction with
lexical and other types of features, and in all ex-
periments attained the accuracy statistically signif-
icant over the baseline. While prosody of humor
shows some differences due to gender, the perfor-
mance on the humor recognition task is equiva-
lent for males and females, although the relative
improvement over the baseline is much higher for
males than for females.

Our current study focuses only on lexical and
speech features, primarily because these features
can be computed automatically. In the future, we
plan to explore more sophisticated semantic and
pragmatic features such as incongruity, ambiguity,
expectation-violation etc. We also like to inves-
tigate if our findings generalize to other types of
corpora besides TV-show dialogs.
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Abstract

In this paper we describe a novel dis-
tributed language model forN -best list
re-ranking. The model is based on the
client/server paradigm where each server
hosts a portion of the data and provides
information to the client. This model al-
lows for using an arbitrarily large corpus
in a very efficient way. It also provides
a natural platform for relevance weighting
and selection. We applied this model on
a 2.97 billion-word corpus and re-ranked
theN -best list from Hiero, a state-of-the-
art phrase-based system. Using BLEU as a
metric, the re-ranked translation achieves
a relative improvement of 4.8%, signifi-
cantly better than the model-best transla-
tion.

1 Introduction

Statistical language modeling has been widely
used in natural language processing applications
such as Automatic Speech Recognition (ASR),
Statistical Machine Translation (SMT) (Brown et
al., 1993) and Information Retrieval (IR) (Ponte
and Croft, 1998).

Conventional n-gram language modeling
counts the frequency of all then-grams in a
corpus and calculates the conditional probabilities
of a word given its history ofn − 1 words
P (wi|wi−1

i−n+1). As the corpus size increases,
building a high order language model offline
becomes very expensive if it is still possible
(Goodman, 2000).

In this paper, we describe a new approach of
language modeling using a distributed comput-
ing paradigm. Distributed language modeling can

make use of arbitrarily large training corpora and
provides a natural way for language model adap-
tation.

We applied the distributed LM to the task of re-
ranking theN -best list in statistical machine trans-
lation and achieved significantly better translation
quality when measured by the BLEU metric (Pap-
ineni et al., 2001).

2 N -best list re-ranking

When translating a source language sentencef
into English, the SMT decoder first builds a trans-
lation lattice over the source words by applying the
translation model and then explores the lattice and
searches for an optimal path as the best translation.
The decoder uses different models, such as the
translation model,n-gram language model, fertil-
ity model, and combines multiple model scores to
calculate the objective function value which favors
one translation hypothesis over the other (Och et
al., 2004).

Instead of outputting the top hypothesise(1)

based on the decoder model, the decoder can out-
put N (usuallyN = 1000) alternative hypotheses
{e(r)|r = 1, . . . , N} for one source sentence and
rank them according to their model scores.

Figure 1 shows an example of the output from a
SMT system. In this example, alternative hypoth-
esise(2) is a better translations thane(1) according
to the reference (Ref) although its model score is
lower.

SMT models are not perfect, it is unavoidable
to have a sub-optimal translation output as the
model-best by the decoder. The objective ofN -
best list re-ranking is then to re-rank the trans-
lation hypotheses using features which are not
used during decoding so that better translations
can emerge as “optimal” translations. Our exper-
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f : �, 2001#�)ûI9]Ôâ{/G��

Ref: Since the terrorist attacks on the United States in 2001

e(1): since 200 year , the united states after the terrorist
attacks in the incident

e(2): since 2001 after the incident of the terrorist attacks on
the united states

e(3): since the united states 2001 threats of terrorist attacks
after the incident

e(4): since 2001 the terrorist attacks after the incident

e(5): since 200 year , the united states after the terrorist
attacks in the incident

Figure 1: An example ofN -best list.

iments (section 5.1) have shown that the oracle-
best translation from a typicalN -best list could be
6 to 10 BLEU points better than the model-best
translation.

In this paper we use the distributed language
model on very large data to re-rank theN -best list.

2.1 Sentence likelihood

The goal of a language model is to determine
the probability, or in general the “likelihood” of
a word sequencew1 . . . wm (wm

1 for short) given
some training data. The standard language model-
ing approach breaks the sentence probability down
into:

P (wm
1 ) =

∏

i

P (wi|wi−1
1 ) (1)

Under the Markov or higher order Markov process
assumption that only the closestn− 1 words have
real impact on the choice ofwi, equation 1 is ap-
proximated to:

P (wm
1 ) =

∏

i

P (wi|wi−1
i−n+1) (2)

The probability of a word given its history can be
approximated with the maximum likelihood esti-
mate (MLE) without any smoothing:

P (wi|wi−1
i−n+1) ≈

C(wi
i−n+1)

C(wi−1
i−n+1)

(3)

In addition to the standardn-gram probability
estimation, we propose 3 sentence likelihood met-
rics.

• L0: Number ofn-grams matched.

The simplest metric for sentence likelihood is
to count how manyn-grams in this sentence
can be found in the corpus.

L0(wm
1 ) =

∑
i,j
i≤j

δ(wj
i ) (4)

δ(wj
i ) =

{
1 : C(wj

i ) > 0
0 : C(wj

i ) = 0
(5)

For example,L0 for sentence in figure 2 is 52
because 52n-grams have non-zero counts.

• Ln
1 : Average interpolatedn-gram conditional

probability.

Ln
1 (wm

1 ) =

(
m∏

i=1

n∑

k=1

λkP (wi|wi−1
i−k+1)

) 1
m

(6)

P (wi|wi−1
i−k+1) is approximated from then-

gram counts (Eq. 3) without any smoothing.
λk is the weight fork-gram conditional prob-
ability,

∑
λk = 1.

Ln
1 is similar to the standardn-gram LM

except the probability is averaged over the
words in the sentence to prevent shorter sen-
tences being favored unfairly.

• L2: Sum ofn-gram’s non-compositionality

For each matchedn-gram, we consider all
the possibilities to cut/decompose it into two
shortn-grams, for example “the terrorist at-
tacks on the united states” could be decom-
posed into (“the”, “terrorist attacks on the
united states”) or (“the terrorist”, “attacks
on the united states”), ... , or (“the ter-
rorist attacks on the united”, “states”). For
each cut, calculate the point-wise mutual in-
formation (PMI) between the two shortn-
grams. The one with the minimal PMI
is the most “natural” cut for thisn-gram.
The PMI over the natural cut quantifies the
non-compositionalityInc of an n-gram wj

i .
The higher the value ofInc(w

j
i ) the more

likely wj
i is a meaningful constituent, in other

words, it is less likely thatwj
i is composed

from two shortn-grams just by chance (Ya-
mamoto and Church, 2001).

DefineL2 formally as:

L2(wm
1 ) =

∑
i,j
i≤j

Inc(w
j
i ) (7)
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Inc(w
j
i ) =





min
k

I(wk
i ; wj

k+1) : C(wj
i ) > 0

0 : C(wj
i ) = 0

(8)

I(wk
i ; wj

k+1) = log
P (wj

i )
P (wk

i )P (wj
k+1)

(9)

3 Distributed language model

The fundamental information required to calculate
the likelihood of a sentence is the frequency ofn-
grams in the corpus. In conventional LM train-
ing, all the counts are collected from the corpusD
and saved to disk for probability estimation. When
the size ofD becomes large and/orn is increased
to capture more context, the count file can be too
large to be processed.

Instead of collectingn-gram counts offline, we
indexD using a suffix array (Manber and Myers,
1993) and count the occurrences ofwi

i−n+1 in D
on the fly.

3.1 Calculaten-gram frequency using suffix
array

For a corpusD with N words, locating all the oc-
currences ofwi

i−n+1 takesO(logN ). Zhang and
Vogel (2005) introduce a search algorithm which
locates all them(m + 1)/2 embeddedn-grams in
a sentence ofm words withinO(m · logN ) time.

Figure 2 shows the frequencies of all the embed-
dedn-grams in sentence “since 2001 after the in-
cident of the terrorist attacks on the united states”
matched against a 26 million words corpus. For
example, unigram “after” occurs4.43×104 times,
trigram “after the incident” occurs 106 times. The
longestn-gram that can be matched is the 8-gram
“of the terrorist attacks on the united states” which
occurs 7 times in the corpus.

3.2 Client/Server paradigm

To load the corpus and its suffix array index into
the memory, each word token needs 8 bytes. For
example, if the corpus has 50 million words,
400MB memory is required. For the English1 Gi-
gaWord2 corpus which has 2.7 billion words, the

1Though we used English data for our experiments in this
paper, the approach described here is language independent.

2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?
catalogId=LDC2005T12

total memory required is 22GB. It is practically
impossible to fit such data into the memory of any
single machine.

To make use of the large amount of data, we
developed a distributed client/server architecture
for language modeling. Client/server is the most
common paradigm of distributed computing at
present (Leopold, 2001). The paradigm describes
an asymmetric relationship between two type of
processes, of which one is the client, and the other
is the server. The server process manages some re-
sources and offers a service which can be used by
other processes. The client is a process that needs
the service in order to accomplish its task. It sends
a request to the server and asks for the execution
of a task that is covered by the service.

We split the large corpusD into d non-
overlapping chunks. One can easily verify that for
anyn-gramwi

i−n+1 the count of its occurrences in
D is the sum of its occurrences in all the chunks,
i.e.,

C(wi
i−n+1)|D =

∑

d

C(wi
i−n+1)|Dd (10)

Each server3 loads one chunk of the corpus with
its suffix array index. The client sends an English
sentencew1 . . . wm to each of the servers and re-
quests for the count information of all then-grams
in the sentence. The client collects the count infor-
mation from all the servers, sums up the counts for
eachn-gram and then calculates the likelihood of
the sentence.

The client communicates with the servers via
TCP/IP sockets. In our experiments, we used
150 servers running on 26 computers to serve one
client. Multiple clients can be served at the same
time if needed. The process of collecting counts
and calculating the sentence probabilities takes
about 1 to 2ms for each English sentence (average
length 23.5 words). With this architecture, we can
easily make use of larger corpora by adding addi-
tional data servers. In our experiments, we used all
the 2.7 billion word data in the English Gigaword
corpus without any technical difficulties.

3A server is a special program that provides services to
client processes. It runs on a physical computer but the con-
cept of server should not be confused with the actual machine
that runs it. In practice, one computer usually hosts multiple
servers at the same time.
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n since 2001 after the incident of the terrorist attacks on the united states

1 2.19×104 7559 4.43×104 1.67×106 2989 6.9×105 1.67×106 6160 9278 2.7×105 1.67×106 5.1×104 3.78×104

2 165 105 1.19×104 1892 34 2.07×105 807 1398 1656 5.64×104 3.72×104 3.29×104

3 6 56 106 6 3 162 181 216 545 605 2.58×104

4 0 0 0 1 0 35 67 111 239 424
5 0 0 0 0 0 15 34 77 232
6 0 0 0 0 0 10 23 76
7 0 0 0 0 0 7 23
8 0 0 0 0 0 7

Figure 2: Frequencies of all the embeddedn-grams in sentence “since 2001 after the incident of the
terrorist attacks on the united states.”

4 “More data is better data” or
“Relevant data is better data”

Although statistical systems usually improve with
more data, performance can decrease if additional
data does not fit the test data. There have been
debates in the data-driven NLP community as to
whether “more data is better data” or “relevant
data is better data”. ForN -best list re-ranking, the
question becomes: “should we use all the data to
re-rank the hypotheses for one source sentence, or
select some corpus chunks that are believed to be
relevant to this sentence?”

Various relevance measures are proposed in
(Iyer and Ostendorf, 1999) including content-
based relevance criteria and style-based criteria. In
this paper, we use a very simple relevance metric.
Define corporaDd’s relevance to a source sentence
ft as:

R(Dd, ft) =
N∑

r=1

L0(e
(r)
t )|Dd (11)

R(Dd, ft) estimates how well a corpusDd can
cover then-grams in theN -best list of a source
sentence. The higher the coverage, the more rele-
vantDd is.

In the distributed LM architecture, the client
first sendsN translations offt to all the servers.
From the returnedn-gram matching information,
client calculatesR(Dd, ft) for each server, and
choose the most relevant (e.g., 20) servers forft.
The n-gram counts returned from these relevant
servers are summed up for calculating the likeli-
hood offt. One could also assign weights to then-
gram counts returned from different servers during
the summation so that the relevant data has more
impact than the less-relevant ones.

5 Experiments

We used theN -best list generated by the Hiero
SMT system (Chiang, 2005). Hiero is a statis-
tical phrase-based translation model that uses hi-
erarchical phrases. The decoder uses a trigram

language model trained with modified Kneser-Ney
smoothing (Kneser and Ney, 1995) on a 200 mil-
lion words corpus. The 1000-best list was gen-
erated on 919 sentences from the MT03 Chinese-
English evaluation set.

All the data from the English Gigaword corpus
plus the English side of the Chinese-English bilin-
gual data available from LDC are used. The 2.97
billion words data is split into 150 chunks, each
has about 20 million words. The original order
is kept so that each chunk contains data from the
same news source and a certain period of time.
For example, chunkXinhua2003has all the Xin-
hua News data from year 2003 andNYT9499038
has the last 20 million words from the New York
Times 1994-1999 corpus. One could split the
data into larger(smaller) chunks which will require
less(more) servers. We choose 20 million words as
the size for each chunk because it can be loaded by
our smallest machine and it is a reasonable granu-
larity for selection.

In total, 150 corpus information servers run on
26 machines connected by the standard Ethernet
LAN. One client sends each English hypothesis
translations to all 150 servers and uses the returned
information to re-rank. The whole process takes
about 600 seconds to finish.

We use BLEU scores to measure the transla-
tion accuracy. A bootstrapping method is used to
calculate the 95% confidence intervals for BLEU
(Koehn, 2004; Zhang and Vogel, 2004).

5.1 Oracle score of theN -best list

Because of thespurious ambiguity, there are only
24,612 unique hypotheses in the1000-best list, on
average 27 per source sentence. This limits the po-
tential of N -best re-ranking.Spurious ambiguity
is created by the decoder where two hypotheses
generated from different decoding path are con-
sidered different even though they have identical
word sequences. For example, “the terrorist at-
tacks on the united states” could be the output of
decoding path [the terrorist attacks][on the united
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states] and [the terrorist attacks on] [the united
states].

We first calculate the oracle score from theN -
best list to verify that there are alternative hypothe-
ses better than the model-best translation. The or-
acle best translations are created by selecting the
hypothesis which has the highest sentence BLEU
score for each source sentence. Yet a critical prob-
lem with BLEU score is that it is a function of
the entire test set and does not give meaningful
scores for single sentences. We followed the ap-
proximation described in (Collins et al., 2005) to
get around this problem. Given a test set withT
sentences,N hypotheses are generated for each
source sentenceft. Denotee(r)

t as ther-th ranked

hypothesis forft. e(1)
t is the model-best hypoth-

esis for this sentence. The baseline BLEU scores
are calculated based on the model-best translation
set{e(1)

t |t = 1, . . . , T}.
Define the BLEU sentence-level gain fore(r)

t

as:

GBLEUe(r)
t =

BLEU{e(1)
1 , e(1)

2 , . . . , e(r)
t , . . . , e(r)

T }
− BLEU{e(1)

1 , e(1)
2 , . . . , e(1)

t , . . . , e(r)
T }

GBLEUe(r)
t calculates the gain if we switch the

model-best hypothesise(1)
t usinge(r)

t for sentence
ft and keep the translations for the rest of the test
set untouched.

With the estimated sentence level gain for each
hypothesis, we can construct the oracle best trans-
lation set by selecting the hypotheses with the
highest BLEU gain for each sentence. Oracle best

BLEU translation set is:{e(r∗t )
t |t = 1, . . . , T}

wherer∗t = arg maxr GBLEUe(r)
t .

Model-best

Score Confidence Interval
Oracle

BLEU 31.44 [30.49, 32.33] 37.48

Table 1: BLEU scores for the model-best and
oracle-best translations.

Table 1 shows the BLEU score of the approxi-
mated oracle best translation. The oracle score is
7 points higher than the model-best scores even
though there are only 27 unique hypotheses for

each sentence on average. This confirms our ob-
servation that there are indeed better translations
in theN -best list.

5.2 Training standard n-gram LM on large
data for comparison

Besides comparing the distributed language model
re-ranked translations with the model-best transla-
tions, we also want to compare the distributed LM
with the the standard3-gram and4-gram language
models on theN -best list re-ranking task.

Training a standardn-gram model for a 2.9 bil-
lion words corpora is much more complicated and
tedious than setting up the distributed LM. Be-
cause of the huge size of the corpora, we could
only manage to train a test-set specificn-gram LM
for this experiment.

First, we split the corpora into smaller chunks
and generaten-gram count files for each chunk.
Each count file is then sub-sampled to entries
where all the words are listed in the vocabulary
of theN -best list (5,522 word types). We merge
all the sub-sampled count files into one and train
the standard language model based on it.

We manage to train a3-gram LM using the
2.97 billion-word corpus. Resulting LM requires
2.3GB memory to be loaded for the re-ranking ex-
periment.

A 4-gram LM for thisN -best list is of 13 GB
in size and can not be fit into the memory. We
split theN -best list into 9 parts to reduce the vo-
cabulary size of each subN -best list to be around
1000 words. The4-gram LM tailored for each sub
N -best list is around 1.5 to 2 GB in size.

Training higher order standardn-gram LMs
with this method requires even more partitions of
theN -best list to get smaller vocabularies. When
the vocabulary becomes too small, the smoothing
could fail and results in unreliable LM probabili-
ties.

Adapting the standardn-gram LM for each in-
dividual source sentence is almost infeasible given
our limited computing resources. Thus we do not
have equivalentn-gram LMs to be compared with
the distributed LM for conditions where the most
relevant data chunks are used to re-rank theN -best
list for a particular source sentence.

5.3 Results

Table 2 lists results of the re-ranking experiments
under different conditions. The re-ranked trans-
lation improved the BLEU score from 31.44 to
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32.64, significantly better than the model-best
translation.

Different metrics are used under the same data
situation for comparison.L0, though extremely
simple, gives quite nice results onN -best list re-
ranking. With only one corpus chunk (the most
relevant one) for each source sentence,L0 im-
proved the BLEU score to 32.22. We suspect that
L0 works well because it is inline with the nature
of BLEU score. BLEU measures the similarity be-
tween the translation hypothesis and human refer-
ence by counting how manyn-grams in MT can
be found in the references.

Instead of assigning weights 1 to all the
matchedn-grams inL0, L2 weights eachn-gram
by its non-compositionality. For all data condi-
tions,L2 consistently gives the best results.

Metric familyL1 is close to the standardn-gram
LM probability estimation. Because no smoothing
is used,L3

1 performance (32.00) is slightly worse
than the standard3-gram LM result (32.22). On
the other hand, increasing the length of the history
in L1 generally improves the performance.

Figure 3 shows the BLEU score of the re-ranked
translation when using different numbers of rele-
vant data chunks for each sentence. The selected
data chunks may differ for each sentences. For
example, the 2 most relevant corpora for sentence
1 areXinhua2002andXinhua2003while for sen-
tence 2APW2003AandNYT2002Dare more rel-
evant. When we use the most relevant data chunk
(about 20 million words) to re-rank theN -best list,
36 chunks of data will be used at least once for
919 different sentences, which accounts for about
720 million words in total. Thus thex-axis in fig-
ure 3 should not be interpreted as the total amount
of data used but the number of the most relevant
corpora used for each sentence.

All three metrics in figure 3 show that using
all data together (150 chunks, 2.97 billion words)
does not give better discriminative powers than us-
ing only some relevant chunks. This supports our
argument in section 4 that relevance selection is
helpful in N -best list re-ranking. In some cases
the re-rankedN -best list has a higher BLEU score
after adding a supposedly “less-relevant” corpus
chunk and a lower BLEU score after adding a
“more-relevant” chunk. This indicates that the rel-
evance measurement (Eq. 11) is not fully reflect-
ing the real “relevance” of a data chunk for a sen-
tence. With a better relevance measurement one

 32.15

 32.2

 32.25

 32.3

 32.35

 32.4

 32.45

 32.5

 32.55

 32.6

 32.65

 32.7

 0  20  40  60  80  100  120  140  160

B
le

u 
S

co
re

Number of corpus chunks used for each source sentence (*20M=corpus size used)

"L0"
"L1"
"L2"

Figure 3: BLEU score of the re-ranked best hy-
pothesis vs. the number of the most relevant cor-
pus chunks used to re-rank then-best list for each
sentences.L0: number ofn-grams matched;L1:
average interpolatedn-gram conditional probabil-
ity; L2: sum ofn-grams’ non-compositionality.

would expect to see the curves in figure 3 to be
much smoother.

6 Related work and discussion

Yamamoto and Church (2001) used suffix arrays
to compute the frequency and location of ann-
gram in a corpus. The frequencies are used to find
“interesting” substrings which have high mutual
information.

Soricut et al. (2002) build a Finite State Ac-
ceptor (FSA) to compactly represent all possible
English translations of a source sentence accord-
ing to the translation model. All sentences in a
big monolingual English corpus are then scanned
by this FSA and those accepted by the FSA are
considered as possible translations for the source
sentence. The corpus is split into hundreds of
chunks for parallel processing. All the sentences
in one chunk are scanned by the FSA on one pro-
cessor. Matched sentences from all chunks are
then used together as possible translations. The
assumption of this work that possible translations
of a source sentence can be found as exact match
in a big monolingual corpus is weak even for very
large corpus. This method can easily fail to find
any possible translation and return zero proposed
translations.

Kirchhoff and Yang (2005) used a factored3-
gram model and a4-gram LM (modified KN
smoothing) together with seven system scores to
re-rank an SMTN -best. They improved the
translation quality of their best baseline (Spanish-
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# of Relevant Chunks per. Sent 1 2 5 10 20 150

3-gram KN 32.22 32.08
4-gram KN 32.22 32.53

L0 32.27 32.38 32.40 32.47 32.51 32.48

L3
1 32.00 32.14 32.14 32.15 32.16

L4
1 32.18 32.36 32.28 32.44 32.41

L5
1 32.21 32.33 32.35 32.41 32.37

L6
1 32.19 32.22 32.37 32.45 32.40 32.41

L7
1 32.22 32.29 32.37 32.44 32.40

L2 32.29 32.52 32.61 32.55 32.64 32.56

Table 2: BLEU scores of the re-ranked translations. Baseline score = 31.44

English) from BLEU 30.5 to BLEU 31.0.
Iyer and Ostendorf (1999) select and weight

data to train language modeling for ASR. The data
is selected based on its relevance for a topic or the
similarity to data known to be in the same domain
as the test data. Each additional document is clas-
sified to be in-domain or out-of-domain accord-
ing to cosine distance with TF-IDF term weights,
POS-tag LM and a 3-gram word LM.n-gram
counts from the in-domain and the additionally se-
lected out-of-domain data are then combined with
an weighting factor. The combined counts are
used to estimate a LM with standard smoothing.

Hildebrand et al. (2005) use information re-
trieval to select relevant data to train adapted trans-
lation and language models for an SMT system.

Si et al. (2002) use unigram distribution simi-
larity to select the document collection which is
most relevant to the query documents. Their work
is mainly focused on information retrieval appli-
cation.

7 Conclusion and future work

In this paper, we presented a novel distributed
language modeling solution. The distributed LM
is capable of using an arbitrarily large corpus
to estimate then-gram probability for arbitrarily
long histories. We applied the distributed lan-
guage model toN -best re-ranking and improved
the translation quality by 4.8% when evaluated by
the BLEU metric. The distributed LM provides a
flexible architecture for relevance selection, which
makes it possible to select data for each individual
test sentence. Our experiments have shown that
relevant data has better discriminative power than
using all the data.

We will investigate different relevance weight-

ing schemes to better combinen-gram statistics
from different data sources. We are planning to
integrate the distributed LM in the statistical ma-
chine translation decoder in the near future.
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Abstract

We develop admissible A* search heuris-
tics for synchronous parsing with Inver-
sion Transduction Grammar, and present
results both for bitext alignment and for
machine translation decoding. We also
combine the dynamic programming hook
trick with A* search for decoding. These
techniques make it possible to find opti-
mal alignments much more quickly, and
make it possible to find optimal transla-
tions for the first time. Even in the pres-
ence of pruning, we are able to achieve
higher BLEU scores with the same amount
of computation.

1 Introduction

The Inversion Transduction Grammar (ITG) of
Wu (1997) is a syntactically motivated algorithm
for producing word-level alignments of pairs of
translationally equivalent sentences in two lan-
guages. The algorithm builds a synchronous parse
tree for both sentences, and assumes that the trees
have the same underlying structure but that the or-
dering of constituents may differ in the two lan-
guages. ITG imposes constraints on which align-
ments are possible, and these constraints have
been shown to be a good match for real bitext data
(Zens and Ney, 2003).

A major motivation for the introduction of ITG
was the existence of polynomial-time algorithms
both for alignment and translation. Alignment,
whether for training a translation model using EM
or for finding the Viterbi alignment of test data,
is O(n6) (Wu, 1997), while translation (decod-
ing) is O(n7) using a bigram language model, and
O(n11) with trigrams. While polynomial-time al-
gorithms are a major improvement over the NP-
complete problems posed by the alignment models
of Brown et al. (1993), the degree of these polyno-

mials is high, making both alignment and decod-
ing infeasible for realistic sentences without very
significant pruning. In this paper, we explore use
of the “hook trick” (Eisner and Satta, 1999; Huang
et al., 2005) to reduce the asymptotic complexity
of decoding, and the use of heuristics to guide the
search.

Our search heuristics are a conservative esti-
mate of the outside probability of a bitext cell in
the complete synchronous parse. Some estimate
of this outside probability is a common element
of modern statistical (monolingual) parsers (Char-
niak et al., 1998; Collins, 1999), and recent work
has developed heuristics that are admissible for A*
search, guaranteeing that the optimal parse will
be found (Klein and Manning, 2003). We extend
this type of outside probability estimate to include
both word translation and n-gram language model
probabilities. These measures have been used to
guide search in word- or phrase-based MT sys-
tems (Wang and Waibel, 1997; Och et al., 2001),
but in such models optimal search is generally not
practical even with good heuristics. In this paper,
we show that the same assumptions that make ITG
polynomial-time can be used to efficiently com-
pute heuristics which guarantee us that we will
find the optimal alignment or translation, while
significantly speeding the search.

2 Inversion Transduction Grammar

An Inversion Transduction Grammar can generate
pairs of sentences in two languages by recursively
applying context-free bilingual production rules.
Most work on ITG has focused on the 2-normal
form, which consists of unary production rules
that are responsible for generating word pairs:

X → e/f
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and binary production rules in two forms that are
responsible for generating syntactic subtree pairs:

X → [Y Z]

and
X → 〈Y Z〉

The rules with square brackets enclosing the
right hand side expand the left hand side symbol
into the two symbols on the right hand side in the
same order in the two languages, whereas the rules
with pointed brackets expand the left hand side
symbol into the two right hand side symbols in re-
verse order in the two languages.

3 A* Viterbi Alignment Selection

A* parsing is a special case of agenda-based chart
parsing, where the priority of a node X[i, j] on the
agenda, corresponding to nonterminal X spanning
positions i through j, is the product of the node’s
current inside probability with an estimate of the
outside probability. By the current inside proba-
bility, we mean the probability of the so-far-most-
probable subtree rooted on the node X[i, j], with
leaves being iwj , while the outside probability is
the highest probability for a parse with the root
being S[0, N ] and the sequence 0wiXjwn forming
the leaves. The node with the highest priority is re-
moved from the agenda and added to the chart, and
then explored by combining with all of its neigh-
boring nodes in the chart to update the priorities
of the resulting nodes on the agenda. By using
estimates close to the actual outside probabilities,
A* parsing can effectively reduce the number of
nodes to be explored before putting the root node
onto the chart. When the outside estimate is both
admissible and monotonic, whenever a node is put
onto the chart, its current best inside parse is the
Viterbi inside parse.

To relate A* parsing with A* search for find-
ing the lowest cost path from a certain source
node to a certain destination node in a graph, we
view the forest of all parse trees as a hypergraph.
The source node in the hypergraph fans out into
the nodes of unit spans that cover the individual
words. From each group of children to their par-
ent in the forest, there is a hyperedge. The destina-
tion node is the common root node for all the parse
trees in the forest. Under the mapping, a parse is a
hyperpath from the source node to the destination
node. The Viterbi parse selection problem thus be-
comes finding the lowest-cost hyperpath from the

source node to the destination node. The cost in
this scenario is thus the negative of log probabil-
ity. The inside estimate and outside estimate natu-
rally correspond to the ĝ and ĥ for A* searching,
respectively.

A stochastic ITG can be thought of as a stochas-
tic CFG extended to the space of bitext. A node in
the ITG chart is a bitext cell that covers a source
substring and a target substring. We use the no-
tion of X[l, m, i, j] to represent a tree node in ITG
parse. It can potentially be combined with any
bitext cells at the four corners, as shown in Fig-
ure 1(a).

Unlike CFG parsing where the leaves are fixed,
the Viterbi ITG parse selection involves finding
the Viterbi alignment under ITG constraint. Good
outside estimates have to bound the outside ITG
Viterbi alignment probability tightly.

3.1 A* Estimates for Alignment

Under the ITG constraints, each source language
word can be aligned with at most one target lan-
guage word and vice versa. An ITG constituent
X[l, m, i, j] implies that the words in the source
substring in the span [l, m] are aligned with the
words in the target substring [i, j]. It further im-
plies that the words outside the span [l, m] in the
source are aligned with the words outside the span
[i, j] in the target language. Figure 1(b) displays
the tic-tac-toe pattern for the inside and outside
components of a particular cell. To estimate the
upper bound of the ITG Viterbi alignment proba-
bility for the outside component with acceptable
complexity, we need to relax the ITG constraint.
Instead of ensuring one-to-one in both directions,
we use a many-to-one constraint in one direction,
and we relax all constraints on reordering within
the outside component.

The many-to-one constraint has the same dy-
namic programming structure as IBM Model 1,
where each target word is supposed to be trans-
lated from any of the source words or the NULL
symbol. In the Model 1 estimate of the outside
probability, source and target words can align us-
ing any combination of points from the four out-
side corners of the tic-tac-toe pattern. Thus in
Figure 1(b), there is one solid cell (correspond-
ing to the Model 1 Viterbi alignment) in each col-
umn, falling either in the upper or lower outside
shaded corner. This can be also be thought of as
squeezing together the four outside corners, creat-
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Figure 1: (a) A bitext cell X[l, m, i, j] (shaded) for ITG parsing. The inside cell can be combined with
adjacent cells in the four outside corners (lighter shading) to expand into larger cells. One possible
expansion to the lower left corner is displayed. (b) The tic-tac-toe pattern of alignments consistent with
a given cell. If the inner box is used in the final synchronous parse, all other alignments must come
from the four outside corners. (c) Combination of two adjacent cells shown with region for new outside
heuristic.

ing a new cell whose probability is estimated using
IBM Model 1. In contrast, the inside Viterbi align-
ment satisfies the ITG constraint, implying only
one solid cell in each column and each row. Math-
ematically, our Model 1 estimate for the outside
component is:

hM1(l, m, i, j) =
∏

t<i,
t>j

max
s<l,
s>m

P (ft, es)

This Model 1 estimate is admissible. Maximiz-
ing over each column ensures that the translation
probability for each target word is greater than or
equal to the corresponding word translation prob-
ability under the ITG constraint. Model 1 virtually
assigns a probability of 1 for deleting any source
word. As a product of word-to-word translation
probabilities including deletions and insertions,
the ITG Viterbi alignment probability cannot be
higher than the product of maximal word-to-word
translation probabilities using the Model 1 esti-
mate.

The Model 1 estimate is also monotonic, a prop-
erty which is best understood geometrically. A
successor state to cell (l, m, i, j) in the search is
formed by combining the cell with a cell which
is adjacent at one of the four corners, as shown
in Figure 1(c). Of the four outside corner regions
used in calculating the search heuristic, one will
be the same for the successor state, and three will
be a subset of the old corner region. Without
loss of generality, assume we are combining a cell
(m, n, j, k) that is adjacent to (l, m, i, j) to the up-

per right. We define

HM1(l, m, i, j) = − log hM1(l, m, i, j)

as the negative log of the heuristic in order to cor-
respond to an estimated cost or distance in search
terminology. Similarly, we speak of the cost of a
chart entry c(X[l, m, i, j]) as its negative log prob-
ability, and the cost of a cell c(l, m, i, j) as the
cost of the best chart entry with the boundaries
(l, m, i, j). The cost of the cell (m, n, j, k) which
is being combined with the old cell is guaranteed
to be greater than the contribution of the columns
j through k to the heuristic HM1(l, m, i, j). The
contribution of the columns k through N to the
new heuristic HM1(l, n, i, k) is guaranteed to be
greater in cost than their contribution to the old
heuristic. Thus,

HM1(l, m, i, j) ≤ c(m, n, j, k) + c(X → Y Z)

+ HM1(l, n, i, k)

meaning that the heuristic is monotonic or consis-
tent.

The Model 1 estimate can be applied in both
translation directions. The estimates from both
directions are an upper bound of the actual ITG
Viterbi probability. By taking the minimum of the
two, we can get a tighter upper bound.

We can precompute the Model 1 outside esti-
mate for all bitext cells before parsing starts. A
naı̈ve implementation would take O(n6) steps of
computation, because there are O(n4) cells, each
of which takes O(n2) steps to compute its Model 1
probability. Fortunately, exploiting the recursive
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Figure 2: The region within the dashed lines is the translation hypothesis X[i, j, u, v]. The word sequence
on the top is the Viterbi translation of the sentence on the bottom. Wide range word order change may
happen.

nature of the cells, we can compute values for the
inside and outside components of each cell using
dynamic programming in O(n4) time (Zhang and
Gildea, 2005).

4 A* Decoding

The of ITG decoding algorithm of Wu (1996) can
be viewed as a variant of the Viterbi parsing al-
gorithm for alignment selection. The task of stan-
dard alignment is to find word level links between
two fixed-order strings. In the decoding situation,
while the input side is a fixed sequence of words,
the output side is a bag of words to be linked with
the input words and then reordered. Under the ITG
constraint, if the target language substring [i, j] is
translated into s1 in the source language and the
target substring [j, k] is translated into s2, then s1

and s2 must be consecutive in the source language
as well and two possible orderings, s1s2 and s2s1,
are allowed. Finding the best translation of the
substring of [i, k] involves searching over all pos-
sible split points j and two possible reorderings
for each split. In theory, the inversion probabilities
associated with the ITG rules can do the job of re-
ordering. However, a language model as simple as
bigram is generally stronger. Using an n-gram lan-
guage model implies keeping at least n−1 bound-
ary words in the dynamic programming table for a
hypothetical translation of a source language sub-
string. In the case of a bigram ITG decoder, a
translation hypothesis for the source language sub-
string [i, j] is denoted as X[i, j, u, v], where u and
v are the left boundary word and right boundary
word of the target language counterpart.

As indicated by the similarity of parsing item
notation, the dynamic programming property of

the Viterbi decoder is essentially the same as the
bitext parsing for finding the underlying Viterbi
alignment. By permitting translation from the null
target string of [i, i] into source language words as
many times as necessary, the decoder can translate
an input sentence into a longer output sentence.
When there is the null symbol in the bag of candi-
date words, the decoder can choose to translate a
word into null to decrease the output length. Both
insertions and deletions are special cases of the bi-
text parsing items.

Given the similarity of the dynamic program-
ming framework to the alignment problem, it is
not surprising that A* search can also be ap-
plied in a similar way. The initial parsing items
on the agenda are the basic translation units:
X[i, i + 1, u, u], for normal word-for-word trans-
lations and deletions (translations into nothing),
and also X[i, i, u, u], for insertions (translations
from nothing). The goal item is S[0, N, 〈s〉, 〈/s〉],
where 〈s〉 stands for the beginning-of-sentence
symbol and 〈/s〉 stands for the end-of-sentence
symbol. The exploration step of the A* search
is to expand the translation hypothesis of a sub-
string by combining with neighboring translation
hypotheses. When the outside estimate is admis-
sible and monotonic, the exploration is optimal
in the sense that whenever a hypothesis is taken
from the top of the agenda, it is a Viterbi transla-
tion of the corresponding target substring. Thus,
when S[0, N, 〈s〉, 〈/s〉] is added to the chart, we
have found the Viterbi translation for the entire
sentence.
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β(X[i, j, u, v]) = max
{

β〈〉(X[i, j, u, v]), β[](X[i, j, u, v])
}

β[](X[i, j, u, v]) = max
k,v1,u2,Y,Z

[

β(Y [i, k, u, v1]) · β(Z[k, j, u2, v]) · P (X → [Y Z]) · Plm(u2 | v1)
]

= max
k,u2,Y,Z

[

max
v1

[

β(Y [i, k, u, v1]) · Plm(u2 | v1)
]

· P (X → [Y Z]) · β(Z[k, j, u2, v])

]

Figure 3: Top: An ITG decoding constituent can be built with either a straight or an inverted rule.
Bottom: An efficient factorization for straight rules.

4.1 A* Estimates for Translation

The key to the success of A* decoding is an out-
side estimate that combines word-for-word trans-
lation probabilities and n-gram probabilities. Fig-
ure 2 is the picture of the outside translations
and bigrams of a particular translation hypothesis
X[i, j, u, v].

Our heuristic involves precomputing two val-
ues for each word in the input string, involving
forward- and backward-looking language model
probabilities. For the forward looking value hf at
input position n, we take a maximum over the set
of words Sn that the input word tn can be trans-
lated as:

hf (n) = max
s∈Sn

[

Pt(s | tn) max
s′∈S

Plm(s′ | s)

]

where:
S =

⋃

n

Sn

is the set of all possible translations for all words
in the input string. While hf considers lan-
guage model probabilities for words following s,
the backward-looking value hb considers language
model probabilities for s given possible preceding
words:

hb(n) = max
s∈Sn

[

Pt(s | tn) max
s′∈S

Plm(s | s′)

]

Our overall heuristic for a partial translation
hypothesis X[i, j, u, v] combines language model
probabilities at the boundaries of the input sub-
string with backward-looking values for the pre-
ceding words, and forward-looking values for the
following words:

h(i, j, u, v) =

[

max
s∈S

Plm(u | s)

] [

max
s∈S

Plm(s | v)

]

·
∏

n<i,
n>j

max [hb(n), hf (n)]

Because we don’t know whether a given input

word will appear before or after the partial hypoth-
esis in the final translation, we take the maximum
of the forward and backward values for words out-
side the span [i, j].

4.2 Combining the Hook Trick with A*

The hook trick is a factorization technique for dy-
namic programming. For bilexical parsing, Eis-
ner and Satta (1999) pointed out we can reduce
the complexity of parsing from O(n5) to O(n4)
by combining the non-head constituents with the
bilexical rules first, and then combining the resul-
tant hook constituents with the head constituents.
By doing so, the maximal number of interactive
variables ranging over n is reduced from 5 to 4.
For ITG decoding, we can apply a similar factor-
ization trick. We describe the bigram-integrated
decoding case here, and refer to Huang et al.
(2005) for more detailed discussion. Figure 3
shows how to decompose the expression for the
case of straight rules; the same method applies to
inverted rules. The number of free variables on the
right hand side of the second equation is 7: i, j, k,
u, v, v1, and u2.1 After factorization, counting the
free variables enclosed in the innermost max oper-
ator, we get five: i, k, u, v1, and u2. The decompo-
sition eliminates one free variable, v1. In the out-
ermost level, there are six free variables left. The
maximum number of interacting variables is six
overall. So, we reduced the complexity of ITG de-
coding using bigram language model from O(n7)
to O(n6). If we visualize an ITG decoding con-
stituent Y extending from source language posi-
tion i to k and target language boundary words u
and v1 with a diagram:

Y
i k

u v1

1
X , Y , and Z range over grammar nonterminals, of which

there are a constant number.
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Figure 4: Speed of various techniques for finding the optimal alignment.

the hook corresponding to the innermost max op-
erator in the equation can be visualized as follows:

Y
i k

u u2

with the expected language model state u2 “hang-
ing” outside the target language string.

The trick is generic to the control strategies of
actual parsing, because the hooks can be treated
as just another type of constituent. Building hooks
is like applying special unary rules on top of non-
hooks. In terms of of outside heuristic for hooks,
there is a slight difference from that for non-hooks:

h(i, j, u, v) =

[

max
s∈S

Plm(s | v)

]

·
∏

n<i,
n>j

max [hb(n), hf (n)]

That is, we do not need the backward-looking es-
timate for the left boundary word u.

5 Experiments

We tested the performance of our heuristics for
alignment on a Chinese-English newswire corpus.
Probabilities for the ITG model were trained using
Expectation Maximization on a corpus of 18,773
sentence pairs with a total of 276,113 Chinese
words and 315,415 English words. For EM train-
ing, we limited the data to sentences of no more
than 25 words in either language. Here we present
timing results for finding the Viterbi alignment of
longer sentences using this fixed translation model
with different heuristics. We compute alignments
on a total of 117 test sentences, which are broken
down by length as shown in Table 1.

Length # sentences
0-9 5

10–19 26
20–29 29
30–39 22
40–49 24
50–59 10

60 1

Table 1: Length of longer sentence in each pair
from test data.

method time speedup
full 815s –

uniform 547s 1.4
ibm1encn 269s 3.0
ibm1sym 205s 3.9

Table 2: Total time for each alignment method.

Results are presented both in terms of time and
the number of arcs added to the chart before the
optimal parse is found. Full refers to exhaus-
tive parsing, that is, building a complete chart
with all n4 arcs. Uniform refers to a best-first
parsing strategy that expands the arcs with the
highest inside probability at each step, but does
not incorporate an estimate of the outside proba-
bility. Ibm1encn denotes our heuristic based on
IBM model 1, applied to translations from English
to Chinese, while ibm1sym applies the Model 1
heuristic in both translation directions and takes
the minimum. The factor by which times were de-
creased was found to be roughly constant across
different length sentences. The alignment times
for the entire test set are shown in Table 2, the
best heuristic is 3.9 times faster than exhaustive
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dynamic programming.
We did our ITG decoding experiments on the

LDC 2002 MT evaluation data set for translation
of Chinese newswire sentences into English. The
evaluation data set has 10 human translation refer-
ences for each sentence. There are a total of 371
Chinese sentences of no more than 20 words in
the data set. These sentences are the test set for
our different versions of ITG decoders using both
a bigram language model and a trigram language
model. We evaluate the translation results by com-
paring them against the reference translations us-
ing the BLEU metric. The word-for-word transla-
tion probabilities are from the translation model
of IBM Model 4 trained on a 160-million-word
English-Chinese parallel corpus using GIZA++.
The language model is trained on a 30-million-
word English corpus. The rule probabilities for
ITG are from the same training as in the alignment
experiments described above.

We compared the BLEU scores of the A* de-
coder and the ITG decoder that uses beam ratio
pruning at each stage of bottom-up parsing. In the
case of bigram-integrated decoding, for each input
word, the best 2 translations are put into the bag of
output words. In the case of trigram-integrated de-
coding, top 5 candidate words are chosen. The A*
decoder is guaranteed to find the Viterbi transla-
tion that maximizes the product of n-grams prob-
abilities, translation probabilities (including inser-
tions and deletions) and inversion rule probabili-
ties by choosing the right words and the right word
order subject to the ITG constraint.

Figure 5 (left) demonstrates the speedup ob-

Decoder Combinations BLEU
BI-UNIFORM 8.02M 14.26
BI-HOOK-A* 2.10M 14.26

BI-HOOK-A*-BEAM 0.40M 14.43
BI-CYK-BEAM 0.20M 14.14

Table 3: Decoder speed and BLEU scores for bi-
gram decoding.

Decoder Cbns BLEU
TRI-A*-BEAM(10−3) 213.4M 17.83
TRI-A*-BEAM(10−2) 20.7M 17.09

TRI-CYK-BEAM(10−3) 21.2M 16.86

Table 4: Results for trigram decoding.

tained through the hook trick, the heuristic, and
pruning, all based on A* search. Table 3 shows the
improvement of BLEU score after applying the A*
algorithm to find the optimal translation under the
model. Figure 5 (right) investigates the relation-
ship between the search effort and BLEU score for
A* and bottom-up CYK parsing, both with prun-
ing. Pruning for A* works in such a way that we
never explore a low probability hypothesis falling
out of a certain beam ratio of the best hypothesis
within the bucket of X[i, j, ∗, ∗], where ∗ means
any word. Table 4 shows results for trigram-
integrated decoding. However, due to time con-
straint, we have not explored time/performance
tradeoff as we did for bigram decoding.

The number of combinations in the table is
the average number of hyperedges to be explored
in searching, proportional to the total number of
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computation steps.

6 Conclusion

A* search for Viterbi alignment selection under
ITG is efficient using IBM Model 1 as an outside
estimate. The experimental results indicate that
despite being a more relaxed word-for-word align-
ment model than ITG, IBM Model 1 can serve
as an efficient and reliable approximation of ITG
in terms of Viterbi alignment probability. This is
more true when we apply Model 1 to both trans-
lation directions and take the minimum of both.
We have also tried to incorporate estimates of bi-
nary rule probabilities to make the outside esti-
mate even sharper. However, the further improve-
ment was marginal.

We are able to find the ITG Viterbi translation
using our A* decoding algorithm with an outside
estimate that combines outside bigrams and trans-
lation probabilities for outside words. The hook
trick gave us a significant further speedup; we be-
lieve this to be the first demonstrated practical ap-
plication of this technique.

Interestingly, the BLEU score for the opti-
mal translations under the probabilistic model is
lower than we achieve with our best bigram-
based system using pruning. However, this sys-
tem makes use of the A* heuristic, and our
speed/performance curve shows that the heuris-
tic allows us to achieve higher BLEU scores with
the same amount of computation. In the case of
trigram integrated decoding, there is 1 point of
BLEU score improvement by moving from a typ-
ical CYK plus beam search decoder to a decoder
using A* plus beam search.

However, without knowing what words will ap-
pear in the output language, a very sharp outside
estimate to further bring down the number of com-
binations is difficult to achieve.

The brighter side of the move towards optimal
decoding is that the A* search strategy leads us
to the region of the search space that is close to
the optimal result, where we can more easily find
good translations.
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Abstract
This paper proposes a statistical, tree-
to-tree model for producing translations.
Two main contributions are as follows:
(1) a method for the extraction of syn-
tactic structures with alignment informa-
tion from a parallel corpus of translations,
and (2) use of a discriminative, feature-
based model for prediction of these target-
language syntactic structures—which we
call aligned extended projections, or
AEPs. An evaluation of the method on
translation from German to English shows
similar performance to the phrase-based
model of Koehn et al. (2003).

1 Introduction

Phrase-based approaches (Och and Ney, 2004)
to statistical machine translation (SMT) have re-
cently achieved impressive results, leading to sig-
nificant improvements in accuracy over the origi-
nal IBM models (Brown et al., 1993). However,
phrase-based models lack a direct representation
of syntactic information in the source or target lan-
guages; this has prompted several researchers to
consider various approaches that make use of syn-
tactic information.

This paper describes a framework fortree-to-
tree based statistical translation. Our goal is to
learn a model that maps parse trees in the source
language to parse trees in the target language.
The model is learned from a corpus of transla-
tion pairs, where each sentence in the source or
target language has an associated parse tree. We
see two major benefits of tree-to-tree based trans-
lation. First, it is possible to explicitly model the
syntax of the target language, thereby improving
grammaticality. Second, we can build a detailed
model of the correspondence between the source
and target parse trees, with the aim of constructing
translations that preserve the meaning of source
language sentences.

Our translation framework involves a process

where the target-language parse tree is broken
down into a sequence of clauses, and each clause
is then translated separately. A central concept we
introduce in the translation of clauses is that of an
aligned extended projection(AEP). AEPs are de-
rived from the concept of anextended projection
in lexicalized tree adjoining grammars (LTAG)
(Frank, 2002), with the addition of alignment in-
formation that is based on work in synchronous
LTAG (Shieber and Schabes, 1990). A key con-
tribution of this paper is a method for learning
to map German clauses to AEPs using a feature-
based model with a perceptron learning algorithm.

We performed experiments on translation from
German to English on the Europarl data set. Eval-
uation in terms of both BLEU scores and human
judgments shows that our system performs sim-
ilarly to the phrase-based model of Koehn et al.
(2003).

1.1 A Sketch of the Approach

This section provides an overview of the transla-
tion process. We will use the German sentencewir
wissen daß das haupthemmnis der vorhersehbare
widerstand der hersteller waras a running exam-
ple. For this example we take the desired transla-
tion to bewe know that the main obstacle has been
the predictable resistance of manufacturers.

Translation of a German sentence proceeds in
the following four steps:

Step 1: The German sentence is parsed and then
broken down into separate parse structures for a
sequence of clauses. For example, the German ex-
ample above is broken into a parse structure for
the clausewir wissenfollowed by a parse struc-
ture for the subordinate clausedaß. . .war. Each
of these clauses is then translated separately, using
steps 2–3 below.

Step 2: An aligned extended projection(AEP)
is predicted for each German clause. To illustrate
this step, consider translation of the second Ger-
man clause, which has the following parse struc-
ture:
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s-oc kous-cp daß
np-sb1 art das

nn haupthemmnis
np-pd2 art der

adja vorhersehbare
nn widerstand
np-ag art der

nn hersteller
vafin-hd war

Note that we use the symbols1 and 2 to identify
the two modifiers (arguments or adjuncts) in the
clause, in this case a subject and an object.

A major part of the AEP is a parse-tree frag-
ment, that is similar to a TAG elementary tree (see
also Figure 2):

SBAR

that S

NP VP

V

has

VP

V

been

NP

Following the work of Frank (2002), we will refer
to a structure like this as anextended projection
(EP). The EP encapsulates the core syntactic struc-
ture in the English clause. It contains the main
verbbeen, as well as the function wordsthat and
has. It also contains a parse tree “spine” which has
the main verbbeenas one of its leaves, and has the
clause labelSBARas its root. In addition, it spec-
ifies positions for arguments in the clause—in this
case NPs corresponding to the subject and object.

An AEP contains an EP, as well asalignment
information about where the German modifiers
should be placed in the extended projection. For
example, the AEP in this case would contain the
tree fragment shown above, together with an align-
ment specifying that the modifiers1 and 2 from
the German parse will appear in the EP as subject
and object, respectively.

Step 3: The German modifiers are translated
and placed in the appropriate positions within the
AEP. For example, the modifiersdas haupthemm-
nis and der vorhersehbare widerstand der her-
steller would be translated asthe main obstacle,
and the predictable resistance of manufacturers,
respectively, and then placed into the subject and
object positions in the AEP.

Step 4: The individual clause translations are
combined to give a final translation. For example,
the translationswe knowandthat the main obsta-
cle has been. . . would be concatenated to givewe
know that the main obstacle has been. . ..

The main focus of this paper will be Step 2: the
prediction of AEPs from German clauses. AEPs
are detailed structural objects, and their relation-
ship to the source-language clause can be quite
complex. We use a discriminative feature-based
model, trained with the perceptron algorithm, to
incrementally predict the AEP in a sequence of
steps. At each step we define features that allow
the model to capture a wide variety of dependen-
cies within the AEP itself, or between the AEP and
the source-language clause.

1.2 Motivation for the Approach

Our approach to tree-to-tree translation is mo-
tivated by several observations. Breaking the
source-language tree into clauses (Step 1) consid-
erably simplifies the difficult problem of defining
an alignment between source and target trees. Our
impression is that high-quality translations can be
produced in a clause-by-clause fashion.1 The use
of a feature-based model for AEP prediction (Step
2) allows us to capture complex syntactic corre-
spondences between English and German, as well
as grammaticality constraints on the English side.

In this paper, we implement the translation of
modifiers (Step 3) with the phrase-based system
of Koehn et al. (2003). The modifiers in our data
set are generally small chunks of text such as NPs,
PPs, and ADJPs, which by definition do not in-
clude clauses or verbs. In our approach, we use
the phrase-based system to generaten-best lists of
candidate translations and then rerank the trans-
lations based on grammaticality, i.e., using crite-
ria that judge how well they fit the position in the
AEP. In future work, we might use finite state ma-
chines in place of a reranking approach, or recur-
sively apply the AEP approach to the modifiers.

Stitching translated clauses back together (Step
4) is a relatively simple task: in a substantial ma-
jority of cases, the German clauses are not embed-
ded, but instead form a linear sequence that ac-
counts for the entire sentence. In these cases we
can simply concatenate the English clause trans-
lations to form the full translation. Embedded
clauses in German are slightly more complicated,
but it is not difficult to form embedded structures
in the English translations.

Section 5.2 of this paper describes the features

1Note that we do not assume that all of the translations
in the training data have been produced in a clause-by-clause
fashion. Rather, we assume that good translations for test
examples can be produced in this way.
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we use for AEP prediction in translation from
German to English. Many of the features of the
AEP prediction model are specifically tuned to the
choice of German and English as the source and
target languages. However, it should be easy to
develop new feature sets to deal with other lan-
guages or treebanking styles. We see this as one
of the strengths of the feature-based approach.

In the work presented in this paper, we focus on
the prediction of clausal AEPs, i.e., AEPs associ-
ated with main verbs. One reason for this is that
clause structures are particularly rich and com-
plex from a syntactic perspective. This means that
there should be considerable potential in improv-
ing translation quality if we can accurately predict
these structures. It also means that clause-level
AEPs are a good test-bed for the discriminative
approach to AEP prediction; future work may con-
sider applying these methods to other structures
such as NPs, PPs, ADJPs, and so on.

2 Related Work
There has been a substantial amount of previous
work on approaches that make use of syntactic in-
formation in statistical machine translation. Wu
(1997) and Alshawi (1996) describe early work on
formalisms that make use of transductive gram-
mars; Graehl and Knight (2004) describe meth-
ods for training tree transducers. Melamed (2004)
establishes a theoretical framework for general-
ized synchronous parsing and translation. Eisner
(2003) discusses methods for learning synchro-
nized elementary tree pairs from a parallel corpus
of parsed sentences. Chiang (2005) has recently
shown significant improvements in translation ac-
curacy, using synchronous grammars. Riezler and
Maxwell (2006) describe a method for learning
a probabilistic model that maps LFG parse struc-
tures in German into LFG parse structures in En-
glish.

Yamada and Knight (2001) and Galley et al.
(2004) describe methods that make use of syn-
tactic information in the target language alone;
Quirk et al. (2005) describe similar methods that
make use of dependency representations. Syntac-
tic parsers in the target language have been used
as language models in translation, giving some
improvement in accuracy (Charniak et al., 2001).
The work of Gildea (2003) involves methods that
make use of syntactic information in both the
source and target languages.

Other work has attempted to incorporate syntac-
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NP-A VP
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know

SBAR-A

SBAR-A

IN

that

S

NP-A VP

V

has
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V
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NP

D
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N
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Figure 1: Extended projections for the verbsknowandbeen,
and for the nounobstacle. The EPs were taken from the parse
tree for the sentenceWe know that the main obstacle has been
the predictable resistance of manufacturers.

tic information through reranking approaches ap-
plied ton-best output from phrase-based systems
(Och et al., 2004). Another class of approaches
has shown improvements in translation through re-
ordering, where source language strings are parsed
and then reordered, in an attempt to recover a word
order that is closer to the target language (Collins
et al., 2005; Xia and McCord, 2004).

Our approach is closely related to previous
work on synchronous tree adjoining grammars
(Shieber and Schabes, 1990; Shieber, 2004), and
the work on TAG approaches to syntax described
by Frank (2002). A major departure from previous
work on synchronous TAGs is in our use of a dis-
criminative model that incrementally predicts the
information in the AEP. Note also that our model
may include features that take into account any
part of the German clause.

3 A Translation Architecture Based on
Aligned Extended Projections

3.1 Background: Extended Projections (EPs)

Extended projections (EPs) play a crucial role in
the lexicalized tree adjoining grammar (LTAG)
(Joshi, 1985) approach to syntax described by
Frank (2002). In this paper we focus almost ex-
clusively on extended projections associated with
main verbs; note, however, that EPs are typically
associated with all content words (nouns, adjec-
tives, etc.). As an example, a parse tree for the
sentencewe know that the main obstacle has been
the predictable resistance of manufacturerswould
make use of EPs for the wordswe, know, main, ob-
stacle, been, predictable, resistance, andmanufac-
turers. Function words (in this sentencethat, the,
has, andof) do not have EPs; instead, as we de-
scribe shortly, each function word is incorporated
in an EP of some content word.

Figure 1 has examples of EPs. Each one is
an LTAG elementary tree which contains a sin-
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gle content word as one of its leaves. Substitution
nodes (such asNP-A or SBAR-A) in the elemen-
tary trees specify the positions of arguments of the
content words. Each EP may contain one or more
function words that are associated with the con-
tent word. For verbs, these function words include
items such as modal verbs and auxiliaries (e.g.,
should and has); complementizers (e.g.,that);
and wh-words (e.g.,which). For nouns, function
words include determiners and prepositions.

Elementary trees corresponding to EPs form the
basic units in the LTAG approach described by
Frank (2002). They are combined to form a full
parse tree for a sentence using the TAG operations
of substitution and adjunction. For example, the
EP forbeenin Figure 1 can be substituted into the
SBAR-A position in the EP forknow; the EP for
obstaclecan be substituted into the subject posi-
tion of the EP forbeen.

3.2 Aligned Extended Projections (AEPs)
We now build on the idea of extended projections
to give a detailed description of AEPs. Figure 2
shows examples of German clauses paired with the
AEPs found in training data.2 The German clause
is assumed to haven (wheren ≥ 0) modifiers. For
example, the first German parse in Figure 2 has
two arguments, indexed as1 and2. Each of these
modifiers must either have a translation in the cor-
responding English clause, or must be deleted.

An AEP consists of the following parts:

STEM: A string specifying the stemmed form
of the main verb in the clause.

SPINE: A syntactic structure associated with
the main verb. The structure has the symbolV
as one of its leaf nodes; this is the position of
the main verb. It includes higher projections of
the verb such as VPs, Ss, and SBARs. It also in-
cludes leaf nodesNP-A in positions correspond-
ing to noun-phrase arguments (e.g., the subject
or object) of the main verb. In addition, it may
contain leaf nodes labeled with categories such
asWHNPor WHADVPwhere a wh-phrase may be
placed. It may include leaf nodes corresponding
to one or more complementizers (common exam-
ples beingthat, if, so that, and so on).

VOICE: One of two alternatives,active or
passive , specifying the voice of the main verb.

2Note that in this paper we consider translation from Ger-
man to English; in the remainder of the paper we takeEnglish
to be synonymous with the target language in translation and
Germanto be synonymous with the source language.

SUBJECT: This variable can be one of three
types. If there is no subject position in theSPINE
variable, then the value forSUBJECTis NULL.
Otherwise,SUBJECTcan either be a string, for
examplethere,3 or an index of one of then modi-
fiers in the German clause.

OBJECT: This variable is similar toSUBJECT,
and can also take three types:NULL, a specific
string, or an index of one of then German modi-
fiers. It is alwaysNULL if there is no object posi-
tion in theSPINE; it can never be a modifier index
that has already been assigned toSUBJECT.

WH: This variable is alwaysNULL if there is no
wh-phrase position within theSPINE; it is always
a non-empty string (such aswhich, or in which) if
a wh-phrase position does exist.

MODALS: This is a string of verbs that consti-
tute the modals that appear within the clause. We
useNULL to signify an absence of modals.

INFL: The inflected form of the verb.

MOD(i): There are n modifier variables
MOD(1), MOD(2), . . ., MOD(n) that spec-
ify the positions for German arguments that have
not already been assigned to theSUBJECTor
OBJECTpositions in the spine. Each variable
MOD(i) can take one of five possible values:

• null : This value is chosen if and only if
the modifier has already been assigned to the
subject or object position.

• deleted : This means that a translation of
thei’th German modifier is not present in the
English clause.

• pre-sub : The modifier appears after any
complementizers or wh-phrases, but before
the subject of the English clause.

• post-sub : The modifier appears after the
subject of the English clause, but before the
modals.

• in-modals : The modifier appears after the
first modal in the sequence of modals, but be-
fore the second modal or the main verb.

• post-verb : The modifier appears some-
where after the main verb.

3This happens in the case where there exists a subject in
the English clause which is not aligned to a modifier in the
German clause. See, for instance, the second example in Fig-
ure 2.
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German Clause English AEP

s-oc kous-cp daß
np-sb1 art das

nn haupthemmnis
np-pd2 art der

adja vorhersehbare
nn widerstand
np-ag art der

nn hersteller
vafin-hd war

Paraphrase: that [np-sb the
main obstacle] [np-pd the
predictable resistance of man-
ufacturers] was

STEM: be
SPINE:
SBAR-A IN that

S NP-A
VP V

NP-A

VOICE: active
SUBJECT: 1

OBJECT: 2

WH: NULL
MODALS: has
INFL: been
MOD1: null
MOD2: null

s pp-mo1 appr zwischen
piat beiden
nn gesetzen

vvfin-hd bestehen
adv-mo2 also
np-sb3 adja erhebliche

adja rechtliche
$, ,
adja praktische
kon und
adja wirtschaftliche
nn unterschiede

Paraphrase:[pp-mo between
the two pieces of legislation]
exist so [np-sb significant
legal, practical and economic
differences]

STEM: be
SPINE:
S NP-A

VP V
NP-A

VOICE: active
SUBJECT: “there”
OBJECT: 3

WH: NULL
MODALS: NULL
INFL: are
MOD1: post-verb
MOD2: pre-sub
MOD3: null

s-rc prels-sb die
vp pp-mo1 appr an

pdat jenem
nn tag

pp-mo2 appr in
ne tschernobyl

vvpp-hd gez̈undet
vafin-hd wurde

Paraphrase:which [pp-mo on
that day] [pp-mo in cher-
nobyl] released were

STEM: release
SPINE:
SBAR WHNP

SG-A VP V

VOICE: passive
SUBJECT: NULL
OBJECT: NULL
WH: which
MODALS: was
INFL: released
MOD1: post-verb
MOD2: post-verb

Figure 2: Three examples of German parse trees, together
with their aligned extended projections (AEPs) in the train-
ing data. Note that in the second example the correspondence
between the German clause and its English translation is not
entirely direct. The subject in the English is the expletive
there; the subject in the German clause becomes the object
in English. This is a typical pattern for the German verb
bestehen. The German PPzwischen ...appears at the start
of the clause in German, but is post-verbal in the English.
The modifieralso—whose English translation isso—is in an
intermediate position in the German clause, but appears in the
pre-subject position in the English clause.

4 Extracting AEPs from a Corpus

A crucial step in our approach is the extraction
of training examples from a translation corpus.
Each training example consists of a German clause
paired with an English AEP (see Figure 2).

In our experiments, we used the Europarl cor-
pus (Koehn, 2005). For each sentence pair from
this data, we used a version of the German parser
described by Dubey (2005) to parse the German
component, and a version of the English parser
described by Collins (1999) to parse the English
component. To extract AEPs, we perform the fol-
lowing steps:

NP and PP Alignment To align NPs and PPs,
first all German and English nouns, personal
and possessive pronouns, numbers, and adjectives
are identified in each sentence and aligned using
GIZA++ (Och and Ney, 2003). Next, each NP in
an English tree is aligned to an NP or PP in the
corresponding German tree in a way that isconsis-
tentwith the word-alignment information. That is,
the words dominated by the English node must be
aligned only to words dominated by the German
node, and vice versa. Note that if there is more
than one German node that is consistent, then the
one rooted at the minimal subtree is selected.

Clause alignment, and AEP Extraction The
next step in the training process is to identify
German/English clause pairs which are transla-
tions of each other. We first break each English
or German parse tree into a set of clauses; see
Appendix A for a description of how we iden-
tify clauses. We retain only those training ex-
amples where the English and German sentences
have the same number of clauses. For these re-
tained examples, define the English sentence to
contain the clause sequence〈e1, e2, . . . , en〉, and
the German sentence to contain the clause se-
quence〈g1, g2, . . . , gn〉. The clauses are ordered
according to the position of their main verbs in
the original sentence. We createn candidate pairs
〈(e1, g1), (e2, g2), . . . , (en, gn)〉 (i.e., force a one-
to-one correspondence between the two clause se-
quences). We then discard any clause pairs(e, g)
which are inconsistent with the NP/PP alignments
for that sentence.4

4A clause pair is inconsistent with the NP/PP alignments
if it contains an NP/PP on either the German or English side
which is aligned to another NP/PP which is not within the
clause pair.
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Note that this method is deliberately conserva-
tive (i.e., high precision, but lower recall), in that it
discards sentence pairs where the English/German
sentences have different numbers of clauses. In
practice, we have found that the method yields a
large number of training examples, and that these
training examples are of relatively high quality.
Future work may consider improved methods for
identifying clause pairs, for example methods that
make use of labeled training examples.

An AEP can then be extracted from each
clause pair. The EP for the English clause is
first extracted, giving values for all variables ex-
cept forSUBJECT, OBJECT, andMOD(1), . . . ,
MOD(n). The values for theSUBJECT, OBJECT,
andMOD(i) variables are derived from the align-
ments between NPs/PPs, and an alignment of
other clauses (ADVPs, ADJPs, etc.) derived from
GIZA++ alignments. If the English clause has a
subject or object which is not aligned to a German
modifier, then the value forSUBJECTor OBJECT
is taken to be the full English string.

5 The Model
5.1 Beam search and the perceptron

In this section we describe linear history-based
models with beam search, and the perceptron al-
gorithm for learning in these models. These meth-
ods will form the basis for our model that maps
German clauses to AEPs.

We have a training set ofn examples,(xi, yi)
for i = 1 . . . n, where eachxi is a German parse
tree, and eachyi is an AEP. We follow previous
work on history-based models, by representing
eachyi as a series ofN decisions〈d1, d2, . . . dN 〉.
In our approach,N will be a fixed number for any
inputx: we take theN decisions to correspond to
the sequence of variablesSTEM, SPINE, . . .,
MOD(1), MOD(2), . . ., MOD(n) described
in section 3. Eachdi is a member of a setDi
which specifies the set of allowable decisions at
the i’th point (for example,D2 would be the set
of all possible values forSPINE). We assume a
function ADVANCE(x, 〈d1, d2, . . . , di−1〉) which
maps an inputx together with a prefix of decisions
d1 . . . di−1 to a subset ofDi. ADVANCE is a func-
tion that specifies which decisions are allowable
for a past history〈d1, . . . , di−1〉 and an inputx. In
our case the ADVANCE function implements hard
constraints on AEPs (for example, the constraint
that theSUBJECTvariable must beNULL if no
subject position exists in theSPINE). For any in-

put x, a well-formeddecision sequence forx is a
sequence〈d1, . . . , dN 〉 such that fori = 1 . . . n,
di ∈ ADVANCE(x, 〈d1, . . . , di−1〉). We define
GEN(x) to be the set of all decision sequences (or
AEPs) which are well-formed forx.

The model that we will use is a
discriminatively-trained, feature-based model. A
significant advantage to feature-based mod-
els is their flexibility: it is very easy to
sensitize the model to dependencies in the
data by encoding new features. To define a
feature-based model, we assume a function
φ̄(x, 〈d1, . . . , di−1〉, di) ∈ Rd which maps a deci-
siondi in context(x, 〈d1, . . . , di−1〉) to a feature
vector. We also assume a vectorᾱ ∈ Rd of param-
eter values. We define thescorefor any partial or
complete decision sequencey = 〈d1, d2, . . . , dm〉
paired withx as:

SCORE(x, y) = Φ(x, y) · ᾱ (1)

where Φ(x, y) =
∑m
i=1 φ̄(x, 〈d1, . . . , di−1〉, di).

In particular, given the definitions above, the out-
put structureF (x) for an inputx is the highest–
scoring well–formed structure forx:

F (x) = arg max
y∈GEN(x)

SCORE(x, y) (2)

To decode with the model we use a beam-search
method. The method incrementally builds an AEP
in the decision orderd1, d2, . . . , dN . At each
point, a beam contains the topM highest–scoring
partial paths for the firstm decisions, whereM
is taken to be a fixed number. The score for any
partial path is defined in Eq. 1. The ADVANCE
function is used to specify the set of possible deci-
sions that can extend any given path in the beam.

To train the model, we use the averaged per-
ceptron algorithm described by Collins (2002).
This combination of the perceptron algorithm with
beam-search is similar to that described by Collins
and Roark (2004).5 The perceptron algorithm is a
convenient choice because it converges quickly —
usually taking only a few iterations over the train-
ing set (Collins, 2002; Collins and Roark, 2004).

5.2 The Features of the Model
The model’s features allow it to capture depen-
dencies between the AEP and the German clause,
as well as dependencies between different parts
of the AEP itself. The features included in̄φ

5Future work may consider alternative algorithms, such
as those described by Daumé and Marcu (2005).
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1 main verb
2 any verb in the clause
3 all verbs, in sequence
4 spine
5 tree
6 preterminal label of left-most child of subject
7 terminal label of left-most child of subject
8 suffix of terminal label of right-most child of subject
9 preterminal label of left-most child of object
10 terminal label of left-most child of object
11 suffix of terminal label of right-most child of object
12 preterminal label of the negation wordnicht (not)
13 is either of the stringses gibt(there is/are)

or es gab(there was/were) present?
14 complementizers and wh-words
15 labels of all wh-nonterminals
16 terminal labels of all wh-words
17 preterminal label of a verb in first position
18 terminal label of a verb in first position
19 terminal labels of all words in any relative pronoun

under a PP
20 are all of the verbs at the end?
21 nonterminal label of the root of the tree
22 terminal labels of all words constituting the subject
23 terminal labels of all words constituting the object
24 the leaves dominated by each node in the tree
25 each node in the context of a CFG rule
26 each node in the context of the RHS of a CFG rule
27 each node with its left and right sibling
28 the number of leaves dominated by each node

in the tree

Table 1: Functions of the German clause used for making
features in the AEP prediction model.

can consist of any function of the decision history
〈d1, . . . , di−1〉, the current decisiondi, or the Ger-
man clause. In defining features over AEP/clause
pairs, we make use of some basic functions which
look at the German clause and the AEP (see Ta-
bles 1 and 2). We use various combinations of
these basic functions in the prediction of each de-
cisiondi, as described below.

STEM: Features for the prediction ofSTEM
conjoin the value of this variable with each of the
functions in lines 1–13 of Table 1. For example,
one feature is the value ofSTEMconjoined with
the main verb of the German clause. In addition,
φ̄ includes features sensitive to the rank of a can-
didate stem in an externally-compiled lexicon.6

SPINE: Spine prediction features make use of
the values of the variablesSPINE andSTEMfrom
the AEP, as well as functions of the spine in lines
1–7 of Table 2, conjoined in various ways with
the functions in lines 4, 12, and 14–21 of Table 1.
Note that the functions in Table 2 allow us to look

6The lexicon is derived from GIZA++ and provides, for a
large number of German main verbs, a ranked list of possible
English translations.

1 does theSPINE have a subject?
2 does theSPINE have an object?
3 does theSPINE have any wh-words?
4 the labels of any complementizer nonterminals

in theSPINE
5 the labels of any wh-nonterminals in theSPINE
6 the nonterminal labelsSQor SBARQin theSPINE
7 the nonterminal label of the root of theSPINE
8 the grammatical category of the finite verbal form

INFL (i.e., infinitive, 1st-, 2nd-, or 3rd-person pres,
pres participle, sing past, plur past, past participle)

Table 2: Functions of the English AEP used for making fea-
tures in the AEP prediction model.

at substructure in the spine. For instance, one of
the features forSPINE is the labelSBARQor SQ,
if it exists in the candidate spine, conjoined with
a verbal preterminal label if there is a verb in the
first position of the German clause. This feature
captures the fact that German yes/no questions be-
gin with a verb in the first position.

VOICE: Voice features in general combine val-
ues ofVOICE, SPINE, andSTEM, with the func-
tions in lines 1–5, 22, and 23 of Table 1.

SUBJECT: Features used for subject prediction
make use of the AEP variablesVOICEandSTEM.
In addition, if the value ofSUBJECTis an index
i (see section 3), then̄φ looks at the nontermi-
nal label of the German node indexed byi as well
as the surrounding context in the German clausal
tree. Otherwise,̄φ looks at the value ofSUBJECT.
These basic features are combined with the func-
tions in lines 1, 3, and 24–27 of Table 1.

OBJECT: We make similar features to those for
the prediction ofSUBJECT. In addition, φ̄ can
look at the value predicted forSUBJECT.

WH: Features forWHlook at the values ofWH
andSPINE, conjoined with the functions in lines
1, 15, and 19 of Table 1.

MODALS: For the prediction ofMODALS, φ̄
looks atMODALS, SPINE, andSTEM, conjoined
with the functions in lines 2–5 and 12 of Table 1.

INFL: The features forINFL include the values
of INFL , MODALS, andSUBJECT, andVOICE,
and the function in line 8 of Table 2.

MOD(i): For the MOD(i) variables, φ̄ looks
at the value ofMODALS, SPINE and the current
MOD(i) , as well as the nonterminal label of the
root node of the German modifier being placed,
and the functions in lines 24 and 28 of Table 1.
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6 Deriving Full Translations

As we described in section 1.1, the translation of a
full German sentence proceeds in a series of steps:
a German parse tree is broken into a sequence of
clauses; each clause is individually translated; and
finally, the clause-level translations are combined
to form the translation for a full sentence. The first
and last steps are relatively straightforward. We
now show how the second step is achieved—i.e.,
how AEPs can be used to derive English clause
translations from German clauses.

We will again use the following translation
pair as an example:daß das haupthemmnis der
vorhersehbare widerstand der hersteller war./that
the main obstacle has been the predictable resis-
tance of manufacturers.

First, an AEP like the one at the top of Fig-
ure 2 is predicted. Then, for each German mod-
ifier which does not have the valuedeleted , an
English translation is predicted. In the example,
the modifiersdas haupthemmnisandder vorherse-
hbare widerstand der herstellerwould be trans-
lated tothe main obstacle, andthe predictable re-
sistance of manufacturers, respectively.

A number of methods could be used for trans-
lation of the modifiers. In this paper, we use the
phrase-based system of Koehn et al. (2003) to
generaten-best translations for each of the mod-
ifiers, and we then use a discriminative rerank-
ing algorithm (Bartlett et al., 2004) to choose be-
tween these modifiers. The features in the rerank-
ing model can be sensitive to various properties of
the candidate English translation, for example the
words, the part-of-speech sequence or the parse
tree for the string. The reranker can also take into
account the original German string. Finally, the
features can be sensitive to properties of the AEP,
such as the main verb or the position in which the
modifier appears (e.g., subject, object,pre-sub ,
post-verb , etc.) in the English clause. See
Appendix B for a full description of the features
used in the modifier translation model. Note that
the reranking stage allows us to filter translation
candidates which do not fit syntactically with the
position in the English tree. For example, we can
parse the members of then-best list, and then learn
a feature which strongly disprefers prepositional
phrases if the modifier appears in subject position.

Finally, the full string is predicted. In our
example, the AEP variablesSPINE, MODALS,
and INFL in Figure 2 give the ordering<that

SUBJECT has been OBJECT>. The AEP
and modifier translations would be combined
to give the final English string. In gen-
eral, any modifiers assigned topre-sub ,
post-sub , in-modals or post-verb are
placed in the corresponding position within the
spine. For example, the second AEP in Fig-
ure 2 has a spine with ordering<SUBJECT
are OBJECT>; modifiers 1 and 2 would be
placed in positionspre-sub andpost-verb ,
giving the ordering <MOD2 SUBJECT are
OBJECT MOD1>. Note that modifiers assigned
post-verb are placed after the object. If mul-
tiple modifiers appear in the same position (e.g.,
post-verb ), then they are placed in the order
seen in the original German clause.

7 Experiments
We applied the approach to translation from Ger-
man to English, using the Europarl corpus (Koehn,
2005) for our training data. This corpus contains
over 750,000 training sentences; we extracted over
441,000 training examples for the AEP model
from this corpus, using the method described in
section 4. We reserved 35,000 of these training
examples as development data for the model. We
used a set of features derived from the those de-
scribed in section 5.2. This set was optimized us-
ing the development data through experimentation
with several different feature subsets.

Modifiers within German clauses were trans-
lated using the phrase-based model of Koehn et
al. (2003). We first generatedn-best lists for each
modifier. We then built a reranking model—see
section 6—to choose between the elements in the
n-best lists. The reranker was trained using around
800 labeled examples from a development set.

The test data for the experiments consisted of
2,000 sentences, and was the same test set as that
used by Collins et al. (2005). We use the model
of Koehn et al. (2003) as a baseline for our ex-
periments. The AEP-driven model was used to
translate all test set sentences where all clauses
within the German parse tree contained at least
one verb and there was no embedding of clauses—
there were 1,335 sentences which met these crite-
ria. The remaining 665 sentences were translated
with the baseline system. This set of 2,000 trans-
lations had a BLEU score of 23.96. The baseline
system alone achieved a BLEU score of 25.26 on
the same set of 2,000 test sentences. We also ob-
tained judgments from two human annotators on
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100 randomly-drawn sentences on which the base-
line and AEP-based outputs differed. For each ex-
ample the annotator viewed the reference transla-
tion, together with the two systems’ translations
presented in a random order. Annotator 1 judged
62 translations to be equal in quality, 16 transla-
tions to be better under the AEP system, and 22
to be better for the baseline system. Annotator 2
judged 37 translations to be equal in quality, 32 to
be better under the baseline, and 31 to be better
under the AEP-based system.

8 Conclusions and Future Work
We have presented an approach to tree-to-
tree based translation which models a new
representation—aligned extended projections—
within a discriminative, feature-based framework.
Our model makes use of an explicit representation
of syntax in the target language, together with con-
straints on the alignments between source and tar-
get parse trees.

The current system presents many opportuni-
ties for future work. For example, improve-
ment in accuracy may come from a tighter in-
tegration of modifier translation into the over-
all translation process. The current method—
using ann-best reranking model to select the best
candidate—chooses each modifier independently
and then places it into the translation. We in-
tend to explore an alternative method that com-
bines finite-state machines representing then-best
output from the phrase-based system with finite-
state machines representing the complementiz-
ers, verbs, modals, and other substrings of the
translation derived from the AEP. Selecting mod-
ifiers using this representation would correspond
to searching the finite-state network for the most
likely path. A finite-state representation has many
advantages, including the ability to easily incorpo-
rate ann-gram language model.

Future work may also consider expanded defi-
nitions of AEPs. For example, we might consider
AEPs that include larger chunks of phrase struc-
ture, or we might consider AEPs that contain more
detailed information about the relative ordering of
modifiers. There is certainly room for improve-
ment in the accuracy with which AEPs are pre-
dicted in our data; the feature-driven approach al-
lows a wide range of features to be tested. For ex-
ample, it would be relatively easy to incorporate a
syntactic language model (i.e., a prior distribution
over AEP structures) induced from a large amount

of English monolingual data.

Appendix A: Identification of Clauses

In the English parse trees, we identify clauses as
follows. Any non-terminal labeled by the parser
of (Collins, 1999) asSBARor SBAR-A is labeled
as a clause root. Any node labeled by the parser as
S or S-A is also labeled as the root of a clause, un-
less it is directly dominated by a non-terminal la-
beledSBARor SBAR-A. Any node labeledSGor
SG-A by the parser is labeled as a clause root, un-
less (1) the node is directly dominated bySBARor
SBAR-A; or (2) the node is directly dominated by
a VP, and the node is directly preceded by a verb
(POS tag beginning withV) or modal (POS tag be-
ginning with M). Any node labeledVP is marked
as a clause root if (1) the node is not directly dom-
inated by aVP, S, S-A , SBAR, SBAR-A, SG, or
SG-A; or (2) the node is directly preceded by a
coordinating conjunction (i.e., a POS tag labeled
asCC).

In German parse trees, we identify any nodes
labeled asS or CS as clause roots. In addition,
we mark any node labeled asVP as a clause root,
provided that (1) it is preceded by a coordinating
conjunction, i.e., a POS tag labeled asKON; or (2)
it has one of the functional tags-mo, -re or -sb .

Appendix B: Reranking Modifier
Translations

Then-best reranking model for the translation of
modifiers considers a list of candidate translations.
We hand-labeled 800 examples, marking the ele-
ment in each list that would lead to the best trans-
lation. The features of then-best reranking algo-
rithm are combinations of the basic features in Ta-
bles 3 and 4.

Each list contained then-best translations pro-
duced by the phrase-based system of Koehn et al.
(2003). The lists also contained a supplementary
candidate “DELETED”, signifying that the mod-
ifier should be deleted from the English transla-
tion. In addition, each candidate derived from the
phrase-based system contributed one new candi-
date to the list signifying that the first word of
the candidate should be deleted. These additional
candidates were motivated by our observation that
the optimal candidate in then-best list produced
by the phrase-based system often included an un-
wanted preposition at the beginning of the string.
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1 candidate string
2 should the first word of the candidate be deleted?
3 POS tag of first word of candidate
4 POS tag of last word of candidate
5 top nonterminal of parse of candidate
6 modifier deleted from English translation?
7 first candidate onn-best list
8 first word of candidate
9 last word of candidate
10 rank of candidate inn-best list
11 is there punctuation at the beginning, middle,

or end of the string?
12 if the first word of the candidate should be deleted,

what is the string that is deleted?
13 if the first word of the candidate should be deleted,

what is the POS tag of the word that is deleted?

Table 3: Functions of the candidate modifier translations used
for making features in then-best reranking model.

1 the position of the modifier (0–4) in AEP
2 main verb
3 voice
4 subject prediction
5 German input string

Table 4: Functions of the German input string and predicted
AEP output used for making features in then-best reranking
model.
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H. Dauḿe III and D. Marcu. 2005. Learning as search op-
timization: approximate large margin methods for struc-
tured prediction.ICML 05.

A. Dubey. 2005. What to do when lexicalization fails: pars-
ing German with suffix analysis and smoothing.ACL 05.

J. Eisner. 2003. Learning non-isomorphic tree mappings for
machine translation.ACL 03, Companion Volume.

R. Frank. 2002.Phrase Structure Composition and Syntactic
Dependencies. Cambridge, MA: MIT Press.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule?HLT-NAACL 04.

D. Gildea. 2003. Loosely tree-based alignment for machine
translation.ACL 03.

J. Graehl and K. Knight. 2004. Training tree transducers.
NAACL-HLT 04.

A. Joshi. 1985. How much context-sensitivity is necessary
for characterizing structural descriptions – tree-adjoining
grammar. Cambridge University Press.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical phrase
based translation.HLT-NAACL 03.

P. Koehn. 2005. Europarl: A parallel corpus for statistical
machine translation.MT Summit 05.

I. D. Melamed 2004. Statistical machine translation by pars-
ing. ACL 04.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada,
A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain,
Z. Jin, D. Radev. 2004. A smorgasbord of features for
statistical machine translation.HLT/NAACL 04

F. J. Och and H. Ney. 2004. The alignment template ap-
proach to statistical machine translation.Computational
Linguistics, 30(4):417–449.

F. J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models.Computational Lin-
guistics, 29(1):19–51.

C. Quirk, A. Menezes, and C. Cherry. 2005. Depen-
dency tree translation: syntactically informed phrasal
SMT. EACL 05.

S. Riezler and J. Maxwell. 2006. Grammatical machine
translation. InNLT-NAACL 06.

S. Shieber. 2004. Synchronous grammars as tree transduc-
ers. InProceedings of the Seventh International Workshop
on Tree Adjoining Grammar and Related Formalisms.

S. Shieber and Y. Schabes. 1990. Synchronous tree-
adjoining grammars. InProceedings of the 13th Interna-
tional Conference on Computational Linguistics.

D. Wu. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora.Computational
Linguistics, 23(3):377–403.

F. Xia and M. McCord. 2004. Improving a statistical MT
system with automatically learned rewrite patterns.COL-
ING 04.

K. Yamada and K. Knight. 2001. A syntax-based statistical
translation model.ACL 01.

241



Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP 2006), pages 242–249,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Modeling Impression in Probabilistic Transliteration into Chinese

LiLi Xu ∗ Atsushi Fujii
Graduate School of Library,

Information and Media Studies
University of Tsukuba

1-2 Kasuga, Tsukuba, 305-8550, Japan
fujii@slis.tsukuba.ac.jp

Tetsuya Ishikawa
The Historiographical Institute

The University of Tokyo
3-1 Hongo 7-chome, Bunkyo-ku

Tokyo, 133-0033, Japan
ishikawa@hi.u-tokyo.ac.jp

Abstract

For transliterating foreign words into Chi-
nese, the pronunciation of a source word
is spelled out with Kanji characters. Be-
cause Kanji comprises ideograms, an indi-
vidual pronunciation may be represented
by more than one character. However,
because different Kanji characters convey
different meanings and impressions, char-
acters must be selected carefully. In this
paper, we propose a transliteration method
that models both pronunciation and im-
pression, whereas existing methods do not
model impression. Given a source word
and impression keywords related to the
source word, our method derives possible
transliteration candidates and sorts them
according to their probability. We evalu-
ate our method experimentally.

1 Introduction

Reflecting the rapid growth of science, technology,
and economies, new technical terms and product
names have progressively been created. These
new words have also been imported into different
languages. There are three fundamental methods
for importing foreign words into a language.

In the first method—translation—the meaning
of the source word in question is represented by
an existing or new word in the target language.

In the second method—transliteration—the
pronunciation of the source word is represented by
using the phonetic alphabet of the target language,
such as Katakana in Japanese and Hangul in Ko-
rean.

∗ This work was done when the first author was a grad-
uate student at University of Tsukuba, who currently works
for Hitachi Construction Machinery Co., Ltd.

In the third method, the source word is spelled
out as it is. However, the misuse of this method
decreases the understandability and readability of
the target language.

While translation is time-consuming, requiring
selection of an existing word or generation of a
new word that correctly represents the meaning of
the source word, transliteration can be performed
rapidly. However, the situation is complicated for
Chinese, where a phonetic alphabet is not used and
Kanji is used to spell out both conventional Chi-
nese words and foreign words.

Because Kanji comprises ideograms, an in-
dividual pronunciation can potentially be repre-
sented by more than one character. However, if
several Kanji strings are related to the same pro-
nunciation of the source word, their meanings will
be different and will therefore convey different im-
pressions.

For example, “Coca-Cola” can be represented
by different Kanji strings in Chinese. The offi-
cial transliteration is “ ”, which comprises
“ (tasty)” and “ (pleasant)”, and is there-
fore associated with a positive connotation.

However, there are a number of Kanji strings
that represent similar pronunciations to that of
“Coca-Cola”, but which are associated with in-
appropriate impressions for a beverage, such as
“ ”. This word includes “ ”, which is
associated with choking.

Therefore, Kanji characters must be selected
carefully during transliteration into Chinese. This
is especially important when foreign companies
intend to introduce their names and products into
China.

In this paper, we propose a method that models
both impression and pronunciation for translitera-
tion into Chinese.
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Section 2 surveys previous research into auto-
matic transliteration, in order to clarify the mean-
ing and contribution of our research. Section 3
elaborates on our transliteration method. Section 4
evaluates the effectiveness of our method.

2 Related Work

In a broad sense, the term “transliteration” has
been used to refer to two tasks.

The first task is transliteration in the strict
sense, which creates new words in a target lan-
guage (Haizhou et al., 2004; Wan and Verspoor,
1998).

The second task is back-transliteration (Fujii
and Ishikawa, 2001; Jeong et al., 1999; Knight
and Graehl, 1998; Qu et al., 2003), which iden-
tifies the source word corresponding to an exist-
ing transliterated word. Back-transliteration is in-
tended mainly for cross-lingual information re-
trieval and machine translation.

Both transliteration tasks require methods that
model pronunciation in the source and target lan-
guages.

However, by definition, in back-transliteration,
the word in question has already been transliter-
ated and the meaning or impression of the source
word does not have to be considered. Thus, back-
transliteration is outside the scope of this paper.

In the following, we use the term “translitera-
tion” to refer to transliteration in the strict sense.

Existing transliteration methods for Chi-
nese (Haizhou et al., 2004; Wan and Verspoor,
1998) aim to spell out foreign names of people
and places, and do not model impression.

However, as exemplified by “Coca-Cola” in
Section 1, the impression of words needs to be
modeled in the transliteration of proper names,
such as companies and products. The contribu-
tion of our research is to incorporate a model of
impression into automatic transliteration.

3 Methodology

3.1 Overview

Figure 1 shows our transliteration method, which
models both pronunciation and impression when
transliterating foreign words into Chinese. We
will explain the entire process of our translitera-
tion method in terms of Figure 1.

The input for our method is twofold. First, a
source word to be transliterated into Chinese is re-
quested. Second, one or more words that describe

source word Impression keyword(s)

pronunciation model impression model

ranked list of transliteration candidates

ranking candidates

(safeguard)

(another person)

(live)

(nutrition)

(bitamin)

, , , , , …

…

Transliteration candidates Kanji characters

Figure 1: Overview of our transliteration method
for Chinese.

the impression of the source word, which we call
“impression keywords”, are requested. Currently,
impression keywords must be provided manually
in Chinese. The output of our method is one or
more Kanji strings.

In an example scenario using our method, a user
has a good command of Chinese and intends to
introduce something (e.g., a company or product)
into China. It is reasonable to assume that this user
can provide one or more Chinese impression key-
words to associate with the target object.

Using the pronunciation model, the source word
is converted into a set of Kanji strings whose pro-
nunciation is similar to that of the source word.
Each of these Kanji strings is a transliteration can-
didate.

Currently, we use Japanese Katakana words as
source words, because Katakana words can easily
be converted into pronunciations using the Latin
alphabet. However, in principle, any language that
uses phonetic script can be a source language for
our method. In Figure 1, the Katakana word “bita-
min (vitamin)” is used as an example source word.

Using the impression model, impression key-
words are converted into a set of Kanji characters.
A simple implementation is to segment each im-
pression keyword into characters.

However, because it is difficult for a user to pro-
vide an exhaustive list of appropriate keywords
and characters, our impression model derives char-
acters that are not included in the impression key-
words.

Because of the potentially large number of se-
lected candidates, we need to rank the candidates.
We model both pronunciation and impression in
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a probabilistic framework, so that transliteration
candidates are sorted according to their probabil-
ity score.

Transliteration candidates that include many
characters derived from the impression model are
preferred. In other words, the Kanji characters
derived via the impression model are used to re-
rank the candidates derived via the pronunciation
model.

We elaborate on our probabilistic transliteration
model in Section 3.2. We then discuss the pronun-
ciation and impression models in Sections 3.3 and
3.4, respectively.

3.2 Probabilistic Transliteration Model

Given a romanized Japanese Katakana wordR
and a set of impression keywordsW , our pur-
pose is to select the Kanji stringK that maxi-
mizesP (K|R,W ), which is evaluated as shown
in Equation (1), using Bayes’ theorem.

P (K|R,W ) = P (R,W |K) · P (K)
P (R,W )

≈ P (R|K) · P (W |K) · P (K)
P (R,W )

∝ P (R|K) · P (W |K) · P (K)
(1)

In the second line of Equation (1), we assume the
conditional independence ofR andW givenK.
In the third line, we omitP (R,W ), which is in-
dependent ofK. This does not affect the rela-
tive rank of Kanji strings, when ranked in terms
of P (K|R,W ).

In Figure 1, R and W are “bitamin” and
“ ”, respectively, and aK
candidate is “ ”.

If a user intends to select more than one Kanji
string, thoseKs associated with higher probabili-
ties should be selected.

As shown in Equation (1),P (K|R,W ) can
be approximated by the product ofP (R|K),
P (W |K), andP (K). We call these three factors
the pronunciation, impression, and language mod-
els, respectively.

The language model,P (K), models the proba-
bility of K irrespective ofR andW . In probabilis-
tic natural language processing,P (K) is usually
realized by a word or character N-gram model, and
therefore aK that appears frequently in a corpus
is assigned a high probability.

However, because our purpose is to generate
new words, the use of statistics obtained from ex-

isting corpora is not effective. Therefore, we con-
siderP (K) to be constant for everyK.

In summary,P (K|R,W ) is approximated by a
product ofP (R|K) andP (W |K). The quality of
our transliteration method will depend on the im-
plementation of the pronunciation and impression
models.

3.3 Pronunciation Model

The pronunciation model,P (R|K), models the
probability that a roman representationR is se-
lected, given a Kanji stringK.

In Japanese, the Hepburn andKunrei systems
are commonly used for romanization purposes.
We use the Hepburn system. We use Pinyin as
a representation for Kanji characters. We decom-
poseK into Kanji characters and associateK with
R on a character-by-character basis. We calculate
P (R|K) as shown in Equation (2).

P (R|K) ≈ P (R|Y ) · P (Y |K)

≈
N∏

i=1

P (ri|yi) ·
N∏

j=1

P (yj |kj)
(2)

Y denotes the Pinyin strings representing the pro-
nunciation ofK. ki denotes a single Kanji char-
acter. ri and yi denote substrings ofR and Y ,
respectively.R, Y , andK are decomposed into
the same number of elements, namelyN . We cal-
culateP (ri|yi) andP (yi|ki) as shown in Equa-
tion (3).

P (ri|yi) = F (ri, yi)∑
r

F (r, yi)

P (yi|ki) = F (yi, ki)∑
y

F (y, ki)

(3)

F (x, y) denotes the co-occurrence frequency ofx
andy. We need the co-occurrence frequencies of
ri andyi and the co-occurrence frequencies ofyi
andki in order to calculateP (R|K).

We used a bilingual dictionary comprising 1 140
Katakana words, most of which are technical
terms and proper nouns, and their transliterations
into Chinese, which are annotated with Pinyin. We
manually corresponded 151 pairs of Katakana and
roman characters on a mora-by-mora basis, and
romanized Katakana characters in the dictionary
automatically.

We obtained 1 140 tuples, of the form
< R, Y,K >. Because the number of tuples was

244



manageable, we obtained the element-by-element
R, Y , andK correspondences manually. Finally,
we calculatedF (ri, yi) andF (yi, ki).

If there are many tuples, and the process of man-
ual correspondence is expensive, we can automate
the process as performed in existing transliteration
methods, such as the EM algorithm (Knight and
Graehl, 1998) or DP matching (Fujii and Ishikawa,
2001).

The above calculations are performed off-line.
In the online process, we consider all possible seg-
mentations of a single Katakana word. For exam-
ple, the romanized Katakana word “bitamin (vi-
tamin)” corresponds to two Pinyin strings and is
segmented differently, as follows:

• bi-ta-min: wei-ta-ming,

• bi-ta-mi-n: wei-ta-mi-an.

3.4 Impression Model

The impression model,P (W |K), models the
probability thatW is selected as a set of impres-
sion keywords, given Kanji stringK. As in the
calculation ofP (R|K) in Equation (2), we de-
composeW andK into elements, in calculating
P (W |K).
W is decomposed into a set of words,wi, and

K is decomposed into a set of Kanji characters,kj .
We calculateP (W |K) as a product ofP (wi|kj),
which is the probability thatwi is selected as an
impression keyword givenkj .

However, unlike Equation (2), the numbers of
wi andkj derived fromW andK are not always
the same, because users are allowed to provide an
arbitrary number of impression keywords. There-
fore, for eachkj we select thewi that maximizes
P (wi|kj) and approximateP (W |K) as shown in
Equation (4).

P (W |K) ≈
∏

j

max
wi

P (wi|kj) (4)

Figure 2 shows an example in which the four Chi-
nese words in the “wi” column are also used in
Figure 1.

We calculateP (wi|kj) by Equation (5).

P (wi|kj) =
F (wi, kj)∑
w

F (w, kj)
(5)

As in Equation (3), F (x, y) denotes the co-
occurrence frequency ofx andy.

0.6

0.1

0.40.3

0.5

0.6

0.1

0.40.3

0.5

iw jk

Figure 2: Example calculation ofP (W |K).

In summary, we need co-occurrences of each
word and character in Chinese.

These co-occurrences can potentially be col-
lected from existing language resources, such as
corpora in Chinese.

However, it is desirable to collect anassociation
between a word and a character, not simply their
co-occurrence in corpora. Therefore, we used
a dictionary of Kanji in Chinese, in which each
Kanji character entry is explained via sentences,
and often exemplified by one or more words that
include that character.

We selected 599 entry characters that are often
used to spell out foreign words. Then we collected
the frequencies with which each word is used to
explain each entry character.

Because Chinese sentences lack lexical seg-
mentation, we used SuperMorpho1 to perform a
morphological analysis of explanation sentences
and example words. As a result, 16 943 word types
were extracted. We used all of these words to cal-
culate the co-occurrence frequencies, irrespective
of the parts of speech.

Table 1 shows examples of Kanji characters,
Chinese words, and their co-occurrence frequen-
cies in the dictionary.

However,P (wi|kj) cannot be calculated for the
Kanji characters not modeled in our method (i.e.,
the Kanji characters not included in the 599 entry
characters). Thus, for smoothing purposes, we ex-
perimentally setP (wi|kj) at 0.001 for thosekj not
modeled.

4 Experiments

4.1 Method

We evaluated our transliteration method experi-
mentally. Because the contribution of our research
is the incorporation of the impression model in a
transliteration method, we used a method that uses
only the pronunciation model as a control.

1http://www.omronsoft.com/
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Table 1: Example of characters, words, and their
co-occurrence frequencies.

jk  
iw  ),( ji kwF  jk  

iw  ),( ji kwF  jk  
iw  ),( ji kwF  

39 3 2 

8 2 1 

4 43 5 

4 2 2 

2 2 51 

1 2 5 

2 2 3 

2 4 11 

2 2 2 

3 1 7 

1 2 5 

 

From a Japanese–Chinese dictionary, we se-
lected 210 Katakana words that had been translit-
erated into Chinese, and used these Katakana
words as test words. Each test word can be clas-
sified into one of the following five categories:
products, companies, places, persons, or general
words. Details of the categories of test inputs are
shown in Table 2.

Three Chinese graduate students who had a
good command of Japanese served as assessors
and produced reference data. None of the asses-
sors was an author of this paper. The assessors
performed the same task for the same test words
independently, in order to enhance the objectivity
of the results.

We produced the reference data via the follow-
ing procedure.

First, for each test word, each assessor pro-
vided one or more impression keywords in Chi-
nese. We did not restrict the number of impression
keywords per test word, which was determined by
each assessor.

If an assessor provided more than one impres-
sion keyword for a single test word, he/she was
requested to sort them in order of preference, so
that we could investigate the effect of the number
of impression keywords on the evaluation results,
by changing the number of top keywords used for
transliteration purposes.

We provided the assessors with the descriptions
for the test words from the source dictionary, so
that the assessors could understand the meaning
of each test word.

Second, for each test word, we applied the con-
trol method and our method independently, which
produced two lists of ranked transliteration candi-
dates. Because the impression keywords provided
by the assessors were used only in our method, the

Table 2: Categories of test words.
 

Example word 
Category # Words 

Japanese Chinese English 

Product 63   Audi 

Company 49   Epson 

Place 36   Ohio 

Person 21   Chopin 

General 41   angel 

ranked list produced by the control was the same
for all assessors.

Third, for each test word, each assessor identi-
fied one or more correct transliterations, according
to their impression of the test word. It was impor-
tant not to reveal to the assessors which method
produced which candidates.

By these means, we selected the top 100
transliteration candidates from the two ranked lists
for the control and our method. We merged these
candidates, removed duplications, and sorted the
remaining candidates by the character code.

As a result, the assessors judged the correctness
of up to 200 candidates for each test word. How-
ever, for some test words, assessors were not able
to find correct transliterations in the candidate list.

The resultant reference data was used to eval-
uate the accuracy of a test method in ranking
transliteration candidates. We used the average
rank of correct answers in the list as the evalua-
tion measure. If more than one correct answer was
found for a single test word, we first averaged the
ranks of these answers and then averaged the ranks
over the test words.

Although we used the top 100 candidates for
judgment purposes, the entire ranked list was used
to evaluate each method. Therefore, the average
rank of correct answers can potentially be over
100. The average number of candidates per test
word was 31 779.

Because our method uses the impression model
to re-rank the candidates produced by the pronun-
ciation model, the lists for the control and our
method comprise the same candidates. Therefore,
it is fair to compare these two methods by the av-
erage rank of the correct answers.

For each test word, there is more than one type
of “correct answer”, as follows:

(a) transliteration candidates judged as correct
by the assessors independently (translitera-
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tion candidates judged as correct by at least
one assessor);

(b) transliteration candidates judged as correct
by all assessors;

(c) transliterations defined in the source dictio-
nary.

In (a), the coverage of correct answers is the
largest, whereas the objectivity of the judgment is
the lowest.

In (c), the objectivity of the judgment is the
largest, whereas the coverage of correct answers
is the lowest. Although for each Katakana word
the source dictionary gives only one transliteration
that is commonly used, there are a number of ap-
propriate out-of-dictionary transliterations.

In (b), where the assessors did not disagree
about the correctness, the coverage of correctness
and the objectivity are both middle ranked.

Because none of the above answer types is per-
fect, we used all three types independently.

4.2 Results and Analyses

Tables 3–5 show the results of comparative exper-
iments using the answer types (a)–(c) above, re-
spectively.

In Tables 3–5, the column “# of test words” de-
notes the number of test words for which at least
one correct answer exists. While the values in the
second column of Table 3 are different depending
on the assessor, in Tables 4 and 5 the values of the
second column are the same for all assessors.

The columns “Avg. # of KW” and “Avg. # of
answers” denote the number of impression key-
words and the number of correct answers per test
word, respectively. While the values in the fourth
column of Table 3 are different depending on the
assessor, in Tables 4 and 5 the values of the fourth
column are the same for all assessors.

In Tables 4 and 5, the average rank of correct an-
swers for the control is the same for all assessors.
However, the average rank of correct answers for
our method is different depending on the assessor,
because the impression keywords used depended
on the assessor.

The two columns in “Avg. rank” denote the av-
erage ranks of correct answers for the control and
for our method, respectively. Looking at Tables 3–
5, it can be seen that our method outperformed the
control in ranking transliteration candidates, irre-
spective of the assessor and the answer type.

The average rank of correct answers for our
method in Table 5 was lower than those in Tables 3
and 4. One reason is that the correct answers in the
source dictionary are not always related to the im-
pression keywords provided by the assessors.

Table 6 presents the results in Table 3 on a
category-by-category basis. Because the results
were similar for answer types (b) and (c), we show
only the answer type (a) results, for the sake of
conciseness. Looking at Table 6, it can be seen
that our method outperformed the control in rank-
ing transliteration candidates, irrespective of the
category of test words.

Our method was effective for transliterating
names of places and people, although these types
of words are usually transliterated independently
of their impressions, compared with the names of
products and companies.

One reason is that, in the dictionary of Kanji
used to produce the impression model, the expla-
nation of an entry sometimes includes a phrase,
such as “this character is often used for a person’s
name”. Assessors provided the word “person” in
Chinese as an impression keyword for a number
of person names. As a result, transliteration can-
didates that included characters typically used for
a person’s name were highly ranked.

It may be argued that, because the impression
model was produced using Kanji characters that
are often used for transliteration purposes, the im-
pression model could possibly rank correct an-
swers better than the pronunciation model. How-
ever, the pronunciation model was also produced
from Kanji characters used for transliteration pur-
poses.

Figure 3 shows the distribution of correct an-
swers for different ranges of ranks, using answer
type (a). The number of correct answers in the top
10 for our method is approximately twice that of
the control. In addition, by our method, most of
the correct answers can be found in the top 100
candidates. Because the results were similar for
answer types (b) and (c), we show only the answer
type (a) results, for the sake of conciseness.

As explained in Section 4.1, for each test word,
the assessors were requested to sort the impression
keywords in order of preference. We analyzed the
relation between the number of impression key-
words used for the transliteration and the average
rank of correct answers, by varying the threshold
for the number of top impression keywords used.
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Table 3: Results obtained with answer type (a).

Avg. rank
Assessor # of test words Avg. # of KW Avg. # of answers Control Our method

A 205 5.1 3.8 706 82
B 204 5.8 3.8 728 44
C 199 3.5 2.6 1 130 28

Avg. 203 4.8 3.4 855 51

Table 4: Results obtained with answer type (b).

Avg. rank
Assessor # of test words Avg. # of KW Avg. # of answers Control Our method

A 108 5.1 1.1 297 22
B 108 5.8 1.1 297 23
C 108 3.5 1.1 297 18

Avg. 108 4.8 1.1 297 21

Table 5: Results obtained with answer type (c).

Avg. rank
Assessor # of test words Avg. # of KW Avg. # of answers Control Our method

A 210 5.1 1 1 738 260
B 210 5.8 1 1 738 249
C 210 3.5 1 1 738 103

Avg. 210 4.8 1 1 738 204

Table 6: Results obtained with answer type (a) on a category-by-category basis.

Avg. rank
Category # of test words Avg. # of KW Avg. # of answers Control Our method
Product 144 4.8 3.5 1 527 64
Company 186 4.7 3.6 742 54
Place 102 4.8 3.7 777 46
Person 61 5.0 3.4 766 51
General 115 4.7 2.6 280 38

Avg. 122 4.8 3.4 818 51

Figure 3: Distribution of average rank for correct answers.
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Table 7 shows the average rank of correct an-
swers for different numbers of impression key-
words, on an assessor-by-assessor basis. By com-
paring Tables 3 and 7, we see that even if a sin-
gle impression keyword was provided, the average
rank of correct answers was higher than that for
the control. In addition, the average rank of correct
answers was generally improved by increasing the
number of impression keywords.

Finally, we investigated changes in the rank of
correct answers caused by our method. Table 8
shows the results, in which “Higher” and “Lower”
denote the number of correct answers whose ranks
determined by our method were higher or lower,
respectively, than those determined by the control.

For approximately 30% of the correct answers,
our method decreased the control’s rank. Errors
were mainly caused by correct answers containing
Kanji characters that were not modeled in the im-
pression model. Although we used a smoothing
technique for characters not in the model, the re-
sult was not satisfactory. To resolve this problem,
the number of characters in the impression model
should be increased.

In summary, our method, which uses both the
impression and pronunciation models, ranked cor-
rect transliterations more highly than a method
that used only the pronunciation model. We con-
clude that the impression model is effective for
transliterating foreign words into Chinese. At the
same time, we concede that there is room for im-
provement in the impression model.

5 Conclusion

For transliterating foreign words into Chinese, the
pronunciation of a source word is spelled out with
Kanji characters. Because Kanji characters are
ideograms, a single pronunciation can be repre-
sented by more than one character. However, be-
cause different Kanji characters convey different
meanings and impressions, characters must be se-
lected carefully.

In this paper, we proposed a transliteration
method that models both pronunciation and im-
pression, compared to existing methods that do
not model impression. Given a source word and
impression keywords related to the source word,
our method derives possible transliteration candi-
dates, and sorts them according to their probabil-
ity. We showed the effectiveness of our method
experimentally.

Table 7: Relation between the number of impres-
sion keywords and average rank of correct answers
with answer type (a).

# of KW
Assessor 1 2 3

A 103 94 92
B 64 60 52
C 113 73 34

Table 8: Changes in ranks of correct answers
caused by our method.

Avg. rank
Answer type # of answers Higher Lower

(a) 2 070 1 431 639
(b) 360 250 110
(c) 630 422 208

Future work will include collecting impression
keywords automatically, and adapting the lan-
guage model to the category of source words.
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Abstract

In this paper we investigate unsuper-
vised name transliteration using compara-
ble corpora, corpora where texts in the two
languages deal in some of the same top-
ics — and therefore share references to
named entities — but are not translations
of each other. We present two distinct
methods for transliteration, one approach
using an unsupervised phonetic translit-
eration method, and the other using the
temporal distribution of candidate pairs.
Each of these approaches works quite
well, but by combining the approaches
one can achieve even better results. We
believe that the novelty of our approach
lies in the phonetic-based scoring method,
which is based on a combination of care-
fully crafted phonetic features, and empiri-
cal results from the pronunciation errors of
second-language learners of English. Un-
like previous approaches to transliteration,
this method can in principle work with any
pair of languages in the absence of a train-
ing dictionary, provided one has an esti-
mate of the pronunciation of words in text.

1 Introduction

As a part of a on-going project on multilingual
named entity identification, we investigate unsu-
pervised methods for transliteration across lan-
guages that use different scripts. Starting from
paired comparable texts that are about the same
topic, but are not in general translations of each
other, we aim to find the transliteration correspon-
dences of the paired languages. For example, if
there were an English and Arabic newspaper on
the same day, each of the newspapers would likely
contain articles about the same important inter-
national events. From these comparable articles

across the two languages, the same named enti-
ties such as persons and locations would likely be
found. For at least some of the English named
entities, we would therefore expect to find Ara-
bic equivalents, many of which would in fact be
transliterations.

The characteristics of transliteration differ ac-
cording to the languages involved. In particular,
the exact transliteration of say, an English name
is highly dependent on the language since this will
be influenced by the difference in the phonological
systems of the language pairs. In order to show the
reliability of a multi-lingual transliteration model,
it should be tested with a variety of different lan-
guages. We have tested our transliteration meth-
ods with three unrelated target languages — Ara-
bic, Chinese and Hindi, and a common source lan-
guage — English. Transliteration from English to
Arabic and Chinese is complicated (Al-Onaizan
and Knight, 2002). For example, while Arabic or-
thography has a conventional way of writing long
vowels using selected consonant symbols — ba-
sically <w>, <y> and <?>, in ordinary text
short vowels are rarely written. When transliter-
ating English names there is the option of repre-
senting the vowels as either short (i.e. unwrit-
ten) or long (i.e. written with one of the above
three mentioned consonant symbols). For exam-
ple London is transliterated as

���� ���� lndn, with no

vowels; Washington often as
����
	 ��������� wSnjTwn,

with <w> representing the final <o>. Transliter-
ations in Chinese are very different from the orig-
inal English pronunciation due to the limited syl-
lable structure and phoneme inventory of Chinese.
For example, Chinese does not allow consonant
clusters or coda consonants except [n, N], and this
results in deletion, substitution of consonants or
insertion of vowels. Thus while a syllable initial
/d/ may surface as in Baghdad ����� ba-ge-da,
note that the syllable final /d/ is not represented.
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Hindi transliteration is not well-studied, but it is
in principle easier than Arabic and Chinese since
Hindi phonotactics is much more similar to that of
English.

2 Previous Work

Named entity transliteration is the problem of pro-
ducing, for a name in a source language, a set
of one or more transliteration candidates in a tar-
get language. Previous work — e.g. (Knight and
Graehl, 1998; Meng et al., 2001; Al-Onaizan and
Knight, 2002; Gao et al., 2004) — has mostly as-
sumed that one has a training lexicon of translit-
eration pairs, from which one can learn a model,
often a source-channel or MaxEnt-based model.

Comparable corpora have been studied exten-
sively in the literature — e.g.,(Fung, 1995; Rapp,
1995; Tanaka and Iwasaki, 1996; Franz et al.,
1998; Ballesteros and Croft, 1998; Masuichi et
al., 2000; Sadat et al., 2004), but transliteration
in the context of comparable corpora has not been
well addressed. The general idea of exploiting
time correlations to acquire word translations from
comparable corpora has been explored in several
previous studies — e.g., (Fung, 1995; Rapp, 1995;
Tanaka and Iwasaki, 1996). Recently, a Pearson
correlation method was proposed to mine word
pairs from comparable corpora (Tao and Zhai,
2005); this idea is similar to the method used in
(Kay and Roscheisen, 1993) for sentence align-
ment. In our work, we adopt the method proposed
in (Tao and Zhai, 2005) and apply it to the problem
of transliteration; note that (Tao and Zhai, 2005)
compares several different metrics for time corre-
lation, as we also note below — and see (Sproat et
al., 2006).

3 Transliteration with Comparable
Corpora

We start from comparable corpora, consisting of
newspaper articles in English and the target lan-
guages for the same time period. In this paper, the
target languages are Arabic, Chinese and Hindi.
We then extract named-entities in the English text
using the named-entity recognizer described in (Li
et al., 2004), which is based on the SNoW machine
learning toolkit (Carlson et al., 1999). To perform
transliteration, we use the following general ap-
proach: 1 Extract named entities from the English
corpus for each day; 2 Extract candidates from the
same day’s newspapers in the target language; 3

For each English named entity, score and rank the
target-language candidates as potential transliter-
ations. We apply two unsupervised methods —
time correlation and pronunciation-based methods
— independently, and in combination.

3.1 Candidate scoring based on
pronunciation

Our phonetic transliteration score uses a standard
string-alignment and alignment-scoring technique
based on (Kruskal, 1999) in that the distance is de-
termined by a combination of substitution, inser-
tion and deletion costs. These costs are computed
from a language-universal cost matrix based on
phonological features and the degree of phonetic
similarity. (Our technique is thus similar to other
work on phonetic similarity such as (Frisch, 1996)
though details differ.) We construct a single cost
matrix, and apply it to English and all target lan-
guages. This technique requires the knowledge of
the phonetics and the sound change patterns of the
language, but it does not require a transliteration-
pair training dictionary. In this paper we assume
the WorldBet transliteration system (Hieronymus,
1995), an ASCII-only version of the IPA.

The cost matrix is constructed in the following
way. All phonemes are decomposed into stan-
dard phonological features. However, phonolog-
ical features alone are not enough to model the
possible substution/insertion/deletion patterns of
languages. For example, /h/ is more frequently
deleted than other consonants, whereas no single
phonological feature allows us to distinguish /h/
from other consonants. Similarly, stop and frica-
tive consonants such as /p, t, k, b, d, g, s, z/ are
frequently deleted when they appear in the coda
position. This tendency is very salient when the
target languages do not allow coda consonants or
consonant clusters. So, Chinese only allows [n,
N] in coda position, and stop consonants in coda
position are frequently lost; Stanford is translit-
erated as sitanfu, with the final /d/ lost. Since
phonological features do not consider the posi-
tion in the syllable, this pattern cannot be cap-
tured by conventional phonological features alone.
To capture this, an additional feature “deletion
of stop/fricative consonant in the coda position”
is added. We base these observations, and the
concomitant pseudofeatures on pronunciation er-
ror data of learners of English as a second lan-
guage, as reported in (Swan and Smith, 2002). Er-
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rors in second language pronunciation are deter-
mined by the difference in the phonological sys-
tem of learner’s first and second language. The
same substitution/deletion/insertion patterns in the
second language learner’s errors appear also in
the transliteration of foreign names. For exam-
ple, if the learner’s first language does not have
a particular phoneme found in English, it is sub-
stituted by the most similar phoneme in their first
language. Since Chinese does not have /v/, it is
frequently substituted by /w/ or /f/. This sub-
stitution occurs frequently in the transliteration
of foreign names in Chinese. Swan & Smith’s
study covers 25 languages, and includes Asian
languages such as Thai, Korean, Chinese and
Japanese, European languages such as German,
Italian, French, and Polish and Middle Eastern
languages such as Arabic and Farsi. Frequent sub-
stitution/insertion/deletion patterns of phonemes
are collected from these data. Some examples are
presented in Table 1.

Twenty phonological features and 14 pseud-
ofeatures are used for the construction of the cost
matrix. All features are classified into 5 classes.
There are 4 classes of consonantal features —
place, manner, laryngeality and major (conso-
nant, sonorant, syllabicity), and a separate class
of vocalic features. The purpose of these classes
is to define groups of features which share the
same substitution/insertion/deletion costs. For-
mally, given a class C, and a cost CC , for each
feature f ∈ C, CC defines the cost of substitut-
ing a different value for f than the one present in
the source phoneme. Among manner features, the
feature continuous is classified separately, since
the substitution between stop and fricative con-
sonants is very frequent; but between, say, nasals
and fricatives such substitution is much less com-
mon. The cost for frequent sound change pat-
terns should be low. Based on our intuitions, our
pseudofeatures are classified into one or another
of the above-mentioned five classes. The substitu-
tion/deletion/insertion cost for a pair of phonemes
is the sum of the individual costs of the features
which are different between the two phonemes.
For example, /n/ and /p/ are different in sonorant,
labial and coronal features. Therefore, the substi-
tution cost of /n/ for /p/ is the sum of the sonorant,
labial and coronal cost (20+10+10 = 40). Features
and associated costs are shown in Table 2. Sam-
ple substitution, insertion, and deletion costs for

/g/ are presented in Table 3.
The resulting cost matrix based on these prin-

ciples is then used to calculate the edit distance
between two phonetic strings. Pronunciations for
English words are obtained using the Festival text-
to-speech system (Taylor et al., 1998), and the tar-
get language words are automatically converted
into their phonemic level transcriptions by various
language-dependent means. In the case of Man-
darin Chinese this is based on the standard pinyin
transliteration system. For Arabic this is based
on the orthography, which works reasonably well
given that (apart from the fact that short vowels
are no represented) the script is fairly phonemic.
Similarly, the pronunciation of Hindi can be rea-
sonably well-approximated based on the standard
Devanagari orthographic representation. The edit
cost for the pair of strings is normalized by the
number of phonemes. The resulting score ranges
from zero upwards; the score is used to rank can-
didate transliterations, with the candidate having
the lowest cost being considered the most likely
transliteration. Some examples of English words
and the top three ranking candidates among all of
the potential target-language candidates are given
in Table 4.1 Starred entries are correct.

3.2 Candidate scoring based on time
correlation

Names of the same entity that occur in different
languages often have correlated frequency patterns
due to common triggers such as a major event. For
example, the 2004 tsunami disaster was covered
in news articles in many different languages. We
would thus expect to see a peak of frequency of
names such as Sri Lanka, India, and Indonesia in
news articles published in multiple languages in
the same time period. In general, we may expect
topically related names in different languages to
tend to co-occur together over time. Thus if we
have comparable news articles over a sufficiently
long time period, it is possible to exploit such cor-
relations to learn the associations of names in dif-
ferent languages.

The idea of exploiting time correlation has been
well studied. We adopt the method proposed in
(Tao and Zhai, 2005) to represent the source name
and each name candidate with a frequency vector
and score each candidate by the similarity of the

1We describe candidate selection for each of the target
languages later.
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Input Output Position
D D, d, z everywhere
T T, t, s everywhere
N N, n, g everywhere

p/t/k deletion coda

Table 1: Substitution/insertion/deletion patterns for phonemes based on English second-language
learner’s data reported in (Swan and Smith, 2002). Each row shows an input phoneme class, possi-
ble output phonemes (including null), and the positions where the substitution (or deletion) is likely to
occur.

Class Feature Cost

Major features and Consonant Del consonant 20
sonorant

consonant deletion
Place features and Vowel Del coronal 10

vowel del/ins
stop/fricative consonant del at coda position

h del/ins
Manner features nasal 5

dorsal feature for palatal consonants
Vowel features and Exceptions vowel height 3

vowel place
exceptional

Manner/ Laryngeal features continuous 1.5
voicing

Table 2: Examples of features and associated costs. Pseudofeatures are shown in boldface. Exceptional
denotes a situation such as the semivowel [j] substituting for the affricate [dZ]. Substitutions between
these two sounds actually occur frequently in second-language error data.

two frequency vectors. This is very similar to the
case in information retrieval where a query and a
document are often represented by a term vector
and documents are ranked by the similarity be-
tween their vectors and the query vector (Salton
and McGill, 1983). But the vectors are very dif-
ferent and should be constructed in quite differ-
ent ways. Following (Tao and Zhai, 2005), we
also normalize the raw frequency vector so that
it becomes a frequency distribution over all the
time points. In order to compute the similarity be-
tween two distribution vectors ~x = (x1, ..., xT )
and ~y = (y1, ..., yT ), the Pearson correlation co-
efficient was used in (Tao and Zhai, 2005). We
also consider two other commonly used measures
– cosine (Salton and McGill, 1983), and Jensen-
Shannon divergence (Lin, 1991), though our re-
sults show that Pearson correlation coefficient per-
forms better than these two other methods. Since
the time correlation method and the phonetic cor-

respondence method exploit distinct resources, it
makes sense to combine them. We explore two ap-
proaches to combining these two methods, namely
score combination and rank combination. These
will be defined below in Section 4.2.

4 Experiments

We evaluate our algorithms on three compara-
ble corpora: English/Arabic, English/Chinese, and
English/Hindi. Data statistics are shown in Ta-
ble 5.

From each data set in Table 5, we picked out all
news articles from seven randomly selected days.
We identified about 6800 English names using the
entity recognizer from (Carlson et al., 1999), and
chose the most frequent 200 names as our English
named entity candidates. Note that we chose the
most frequent names because the reliability of the
statistical correlation depends on the size of sam-
ple data. When a name is rare in a collection,
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Source Target Cost Target Cost

g g 0 r 40.5
kh 2.5 e 44.5

cCh 5.5 del 24
tsh 17.5 ins 20
N 26.5

Table 3: Substitution/deletion/insertion costs for /g/.

English Candidate
Script Worldbet

Philippines 1
���� � � � � �� f l b y n

*2 �� � � ��
	 � � � � �� f l b y n y t

3 � � �� � � � � � �� f l b y n a

Megawati *1  ���� �� � m h a f th

2 � ���  �� � �� � � ��� m i j a w a t a

3  � �� ��� � �� m a k w z a

English Candidate
Script Romanization Worldbet

Belgium *1 ������ �"!$# beljiyam b e l j i y a m
2 ���%'&(# beraham b e 9 a h a m
3 ) *+%'# phoram ph o 9 a m

Paraguay 1 ,+��%.-/! paricay p a 9 i c a y
*2 ,0+%'1�2�3� pairaagve p a i 9 a g v e

3 �5476 �+8:9 bhir.egii bh i rr e g i

English Candidate
Script Pinyin Worldbet

Angola *1 ;=<?> an-ge-la a n k & l a
1 ; �=> an-ge-la a n k & l a
2 @ �=> a-ge-la a k & l a

Megawati *1 A=B?C?D me-jia-wa-ti m & i cC j a w a t i
2 E?F=G mi-jie-ji m i cC j & u cC i
3 HJI"D?K ma-ha-ti-er m a x a t i & r

Table 4: Examples of the three top candidates in the transliteration of English/Arabic, English/Hindi and
English/Chinese. The second column is the rank.

one can either only use the phonetic model, which
does not depend on the sample size; or else one
must expand the data set and hope for more oc-
currence. To generate the Hindi and Arabic can-
didates, all words from the same seven days were
extracted. The words were stemmed all possible
ways using simple hand-developed affix lists: for
example, given a Hindi word c1c2c3, if both c3 and
c2c3 are in our suffix and ending list, then this sin-
gle word generates three possible candidates: c1,
c1c2, and c1c2c3. In contrast, Chinese candidates
were extracted using a list of 495 characters that
are frequently used for foreign names (Sproat et
al., 1996). A sequence of three or more such char-
acters from the list is taken as a possible name.
The number of candidates for each target language
is presented in the last column of Table 5.

We measured the accuracy of transliteration
by Mean Reciprocal Rank (MRR), a measure
commonly used in information retrieval when

there is precisely one correct answer (Kantor and
Voorhees, 2000).

We attempted to create a complete set of an-
swers for 200 English names in our test set, but
a small number of English names do not seem to
have any standard transliteration in the target lan-
guage according to the resources that we looked
at, and these names we removed from the evalua-
tion set. Thus, we ended up having a list of less
than 200 English names, shown in the second col-
umn of Table 6 (All). Furthermore some correct
transliterations are not found in our candidate list
for the second language, for two reasons: (1) The
answer does not occur at all in the target news arti-
cles; (Table 6 # Missing 1) (2) The answer is there,
but our candidate generation method has missed it.
(Table 6 # Missing 2) Thus this results in an even
smaller number of candidates to evaluate (Core);
this smaller number is given in the fifth column
of Table 6. We compute MRRs on the two sets
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Languages News Agency Period # days # Words # Cand.
Eng/Arab Xinhua/Xinhua 08/06/2001–11/07/2001 150 12M/1.8M 12466
Eng/Chin Xinhua/Xinhua 08/06/2001– 11/07/2001 150 12M/21M 6291
Eng/Hind Xinhua/Naidunia 08/01/1997–08/03/1998 380 24M/5.5M 10169

Table 5: Language-pair datasets.

Language # All # missing 1 # missing 2 # Core
Arabic 192 113 9 70
Chinese 186 83 1 82
Hindi 147 82 0 62

Table 6: Number of evaluated English NEs.

of candidates — those represented by the count
in column 2, and the smaller set represented by
the count in column 5; we term the former MRR
“AllMRR” and the latter “CoreMRR”.2 It is worth
noting that the major reason for not finding a can-
didate transliteration of an English name in the tar-
get language is almost always because it is really
not there, rather than because our candidate gen-
eration method has missed it. Presumably this re-
flects the fact that the corpora are merely compa-
rable, rather than parallel. But the important point
is that the true performance of the system would
be closer to what we report below for CoreMRR,
if we were working with truly parallel data where
virtually all source language names would have
target-language equivalents.

4.1 Performance of phonetic method and
time correlation method

The performance of the phonetic method and the
time correlation method are reported in Table 7,
top and middle panels, respectively. In addition to
the MRR scores, we also report another metric —
CorrRate, namely the proportion of times the first
candidate is the correct one.

Each of the two methods has advantages and
disadvantages. The time correlation method relies
more on the quality of the comparable corpora.
It is perhaps not surprising that the time correla-
tion method performs the best on English/Chinese,
since these data come from the same source
(Xinhua). Because the English and Hindi cor-
pora are from different new agencies (Xinhua and
Naidunia), the method performs relatively poorly.
On the other hand, the phonetic method is less af-
fected by corpus quality, but is sensitive to differ-

2We are aware that the resulting test set is very small,
but we believe that it is large enough to demonstrate that the
method is effective.

ences between languages. As discussed in the in-
troduction, Hindi is relatively easy, and so we see
the best MRR scores there. The performance is
worse on Chinese and Arabic. It makes sense then
to consider combining the two methods.

4.2 Method combination

In this section, we evaluate the performance of
such a combination. We first use the phonetic
method to filter out unlikely candidates, and then
apply both the phonetic method and the time cor-
relation method to rank the candidates.

We explore two combination methods: score
combination and rank combination. In score com-
bination, since the scores of two methods are not
on the same scale, we first normalize them into the
range [0,1] where the 1 is the best transliteration
score and 0 the worst. Given a phonetic score p

and a time correlation score t on the same translit-
eration pairs, the final combination score f would
be: f = α× p+ (1−α)× t, where α ∈ [0, 1] is a
linear combination parameter. For the rank combi-
nation, we take the unnormalized rankings of each
candidate pair by the two methods and combine as
follows: rcombined = α× rp +(1−α)× rt, where
rp and rt are the phonetic and temporal rankings,
respectively.

The bottom panel of Table 7 shows the
CoreMRR scores for these combination methods.
In the second and third column, we repeat the pho-
netic and time correlation scores for ease of com-
parison. The fourth column and the sixth column
represent the combination results with α = 0.5
for both combination methods. The fifth column
and the last column are the best MRR scores that
we can achieve through tuning α’s. Score combi-
nation, in particular, significantly outperforms the
individual phonetic and time correlation methods
alone.

Figure 1 plots the performance for all three lan-
guages with a variety of α’s for the score combi-
nation method. Note that a higher α puts more
weight on the phonetic model. As we have noted
above, favoring the phonetic model is an advan-
tage in our English/Hindi evaluation where the
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Language AllMRR ALLCorrRate CoreMRR CoreCorrRate
Arabic 0.226 0.120 0.599 0.320
Chinese 0.281 0.203 0.637 0.462
Hindi 0.309 0.259 0.727 0.610

Language AllMRR AllCorrRate CoreMRR CoreCorrRate
Arabic 0.246 0.164 0.676 0.450

Chinese 0.363 0.292 0.824 0.662
Hindi 0.212 0.158 0.499 0.372

Language Phonetic Time ScoreComb ScoreComb RankComb RankComb
Correlation α = 0.5 best α α = 0.5 best α

Arabic 0.599 0.676 0.733 0.788 0.733 0.754
Chinese 0.637 0.824 0.864 0.875 0.811 0.843
Hindi 0.727 0.499 0.749 0.761 0.689 0.765

Table 7: MRRs and CorrRate for the pronunciation method (top) and time correlation method (middle).
The bottom table shows the scores for the combination (CoreMRR).
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Figure 1: CoreMRR scores with different α values
using score combination. A higher α puts more
weight on the phonetic model.

phonetic correspondence between the two lan-
guages is fairly close, but the data sources are
quite different; whereas for Arabic and Chinese
we observe the opposite tendency. This sug-
gests that one can balance the α scores accord-
ing to whether one trusts one’s data source versus
whether one trusts in the similarity of the two lan-
guages’ phonotactics.3

3A reviewer notes that we have not compared our method
to state-of-the-art supervised transliteration models. This
is true, but in the absence of a common evaluation set for
transliteration, such a comparison would be meaningless.
Certainly there are no standard databases, so far as we know,
for the three language pairs we have been considering.

5 Conclusions and Future Work

In this paper we have discussed the problem of
name transliteration as one component of a system
for finding matching names in comparable cor-
pora. We have proposed two unsupervised meth-
ods for transliteration, one that is based on care-
fully designed measures of phonetic correspon-
dence and the other that is based on the temporal
distribution of words. We have shown that both
methods yield good results, and that even better
results can be achieved by combining the methods.

One particular area that we will continue to
work on is phonetic distance. We believe our
hand-assigned costs are a reasonable starting point
if one knows nothing about the particular pair
of languages in question. However one could
also train such costs, either from an existing
list of known transliterations, or as part of an
iterative bootstrapping method as, for example,
in Yarowsky and Wicentowski’s (2000) work on
morphological induction.

The work we report is ongoing and is part of a
larger project on multilingual named entity recog-
nition and transliteration. One of the goals of this
project is to develop tools and resources for under-
resourced languages. Insofar as the techniques we
have proposed have been shown to work on three
language pairs involving one source language (En-
glish) and three unrelated and quite different target
languages, one can reasonably claim that the tech-
niques are language-independent. Furthermore, as
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the case of Hindi shows, even with data from com-
pletely different news agencies we are able to ex-
tract useful correspondences.
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Abstract

The increasing flow of information be-
tween languages has led to a rise in the fre-
quency of non-native or loan words, where
terms of one language appear transliter-
ated in another. Dealing with such out
of vocabulary words is essential for suc-
cessful cross-lingual information retrieval.
For example, techniques such as stemming
should not be applied indiscriminately to
all words in a collection, and so before any
stemming, foreign words need to be iden-
tified. In this paper, we investigate three
approaches for the identification of foreign
words in Arabic text: lexicons, language
patterns, and n-grams and present that re-
sults show that lexicon-based approaches
outperform the other techniques.

1 Introduction

Arabic words are derived from roots having three,
four, or, in rare instances, five characters. The
derivation process consistently follows patterns
that are based on the three letter verb

�É �ª�	̄ (/faÝala/
to do)1. Each root word matches a base pattern.
Characters are added at the beginning, the mid-
dle, or end of the root, but the base characters that
match the pattern remain unchanged.

The pronunciation of Arabic characters is as-
sociated with short vowels; these are represented
by diacritics, and attached to other characters to
show how the characters should be pronounced.
An Arabic character can be pronounced in several
different ways. For example, the letterH. with the

1We represent phonetics using the International Pho-
netic Alphabet (http://www.arts.gla.ac.uk/IPA/
ipachart.html)

diacritic Fatha �H. is pronounced /ba/, with the dia-

critic KasraH.� is pronounced /bI/, and with having

the diacritic Damma �H. is pronounced /bU/. Di-
acritics are not shown in general written Arabic,
and the reader must rely on the context to deter-
mine the implicit diacritics and therefore the pro-
nunciation of each word. For example, the wordI. ë 	X can represent�I. �ë �	X (/Dahaba/ = went), �I. �ë �	X
(/Dahab/ = gold).

Pure Arabic words follow restricted rules in
their construction to keep them short and easy
to pronounce. Their sounds usually follow the
CVCV pattern, where C stands for a consonant
and V stands for a Vowel. An Arabic word never
has two consecutive consonants nor four consecu-
tive vowels (Al-Shanti, 1996).

Foreign words are words that are borrowed from
other languages. Some are remodelled to con-
form with Arabic word paradigms, and become
part of the Arabic lexicon; others are transliterated
into Arabic as they are pronounced by different
Arabic speakers, with some segmental and vowel
changes. The latter are called Out-Of-Vocabulary
(OOV) words as they are not found in a standard
Arabic lexicon. Such OOV words are increas-
ingly common due to the inflow of information
from foreign sources, and include terms that are
either new and have yet to be translated into native
equivalents, or proper nouns that have had their
phonemes replaced by Arabic ones. Examples in-
clude words such as�HQ 	«PAÓ /margrIt/ (Margaret)

or �º	JJ
Ë /linIks/ (Linux). This process often re-
sults in different Arabic spellings for the same
word.

Current Arabic Information Retrieval (AIR)
systems do not handle the problem of retriev-
ing the different versions of the same foreign
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word (Abdelali et al., 2004), and instead typically
retrieve only the documents containing the same
spelling of the word as used in the query.

One solution to this problem has been used in
cross-lingual information retrieval, where OOV
words in the query are transliterated into their pos-
sible equivalents. Transliterating terms in English
queries into multiple Arabic equivalents using an
English-Arabic dictionary has been shown to have
a positive impact on retrieval results (Abduljaleel
and Larkey, 2003). However, we are aware of no
work on handling OOV terms in Arabic queries.

For this, proper identification of foreign words
is essential. Otherwise, query expansion for such
words is not likely to be effective: many Ara-
bic words could be wrongly expanded, resulting
in long queries with many false transliterations of
Arabic words. Furthermore, proper identification
of foreign words would be helpful because such
words could then be treated differently using tech-
niques such as approximate string matching (Zo-
bel and Dart, 1995).

In this paper, we examine possible techniques
to identify foreign words in Arabic text. In the
following sections we categorise and define for-
eign words in Arabic, and follow in section 2 with
a discussion of possible different approaches that
can identify them in Arabic text. In section 3 we
present an initial evaluation of these approaches,
and describe improvements in section 4 that we
then explore in a second experiment in section 5.
We discuss results in section 6 and finally con-
clude our work in section 7.

1.1 Foreign words in Arabic

Arabic has many foreign words, with varying lev-
els of assimilation into the language. Words bor-
rowed from other languages usually have different
style in writing and construction, and Arabic lin-
guists have drawn up rules to identify them. For
example, any root Arabic word that has four or
more characters should have one or more of the
“Dalaga” letters (

	¬, P, �, 	à, È, H. ). Those that
have no such letters are considered foreign (Al-
Shanti, 1996). However, while such rules could
be useful for linguistic purposes, they have limited
application in Information Retrieval (IR); based on
rules, many foreign words that have long been ab-
sorbed into the language and are spelled consis-
tently would be considered to be OOV. From the
IR perspective, foreign words can be split into two

����J
 	̄ñ��
ÊJ
Ó ���
�JJ
 	®J
�ñÊJ
Ó ����J
 	® ��ñÊJ
Ó����J
 	®J
�ñJ
ÊÓ ����J
 	®J
��
ÊJ
Ó ����J
 	®J
 ��ñÊJ
Ó����J
 	®��
ñÊJ
Ó ����J
 	®J
�ÊJ
Ó ����J
 	®J
 ���
ÊÓ����J
 	̄ñ�ÊJ
Ó ����J
 	̄ñJ
�ñÊJ
Ó ����J
 	® ���
ÊJ
Ó����J
 	®J
�ñJ
ÊJ
Ó ���J
 	®J
�ñÊJ
Ó ���� 	®J
 ���
ÊJ
Ó����J
 	̄ñ�ñJ
ÊÓ ���J
 	̄ñ�ñÊJ
Ó ����J
 	®K
 	PñÊJ
Ó����J
 	®�ñJ
ÊÓ ���J
 	®J
 ��ñÊJ
Ó ����J
 	̄ 	PñÊJ
Ó����J
 	̄ñ�ñÊJ
Ó ���
�J 	®J
�ñÊJ
Ó ����J
 	®J
�ñÊJ
Ó���
�JJ
 	®�ñÊJ
Ó ����J
 	®�ñÊJ
Ó ���� 	®J
�ñÊJ
Ó���
�J 	®�ñÊJ
Ó
Table 1: Different spelling versions for the name
Milosevic

general categories: translated and transliterated.

Translated: These are foreign words that are
modified or remodelled to conform with Ara-
bic word paradigms; they are well assimi-
lated into Arabic, and are sometimes referred
to as Arabicised words (Aljlayl and Frieder,
2002). This process includes changes in the
structure of the borrowed word, including
segmental and vowel changes, and the addi-
tion, deletion, and modification of stress pat-
terns (Al-Qinal, 2002). This category of for-
eign words usually has a single spelling ver-
sion that is used consistently. Examples in-
clude words such as	àA�J��. (/bUstæn/ = gar-

den), h. QK. (/bUrZ/ = tower), ñK
X�P (/ræduU/ =

radio), and
�éÊJ. 	J�̄ (/qUnbula = bomb).

Transliterated: Words in this category are
transliterated into Arabic by replacing
phonemes with their nearest Arabic equiv-
alents. Although Arabic has a broad sound
system that contains most phonemes used in
other languages, not all phonemes have Ara-
bic equivalents. In practice, such phonemes
may be represented in different ways by dif-
ferent persons, resulting in several spelling
versions for the same foreign word. For
example, we observed 28 transliterated
versions for the name of the former Serbian
leader (Milosevic) in the TREC 2002 Arabic
collection; these are shown in Table 1.

Transliteration has become more common than
translation due to the need for instant access to
new foreign terms. It can take considerable time
for a new foreign term to be included in reference
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dictionaries. However, users often need to imme-
diately use a particular term, and cannot wait un-
til a standard form of the word is created; news
agencies form an important category of such users.
This transliteration process often results in multi-
ple spellings in common usage.

1.2 Related work

In the context of information retrieval, most work
on foreign words in Arabic has been based on
transliteration, and carried out under machine
translation and cross-lingual information retrieval
(CLIR) tasks, where English queries are used to
search for Arabic documents, or vice versa. This
often involves the use of a bilingual dictionary to
translate queries and transliterate OOV words into
their equivalents in Arabic.

Expanding a foreign word to its possible vari-
ants in a query has been shown to increase the pre-
cision of search results (Abduljaleel and Larkey,
2003). However, OOV words in the query are
easily recognised based on English rules and an
English-Arabic dictionary: capitalised words are
marked as nouns, and the remaining words are
translated using the dictionary. Words not found in
the dictionary are marked as OOV and are translit-
erated into probable Arabic forms. In contrast, we
aim to identify foreign words as a within Arabic
text which is made difficult by the absence of such
easily perceptible difference.

Stalls and Knight (1998) describe research to
determine the original foreign word from its Ara-
bic version; this is known asback transliteration.
However, rather than using automatic methods to
identify foreign words, they used a list of 2 800
names to test the accuracy of the back translit-
eration algorithm. Of these, only 900 names
were successfully transliterated to their source
names. While this approach can be used to iden-
tify transliterated foreign words, its effectiveness
is not known on normal Arabic words as only
names were used to test the algorithm.

Jeong et al. (1999) used statistical differ-
ences in syllable unigram and bigram patterns
between pure Korean words and foreign words
to identify foreign words in Korean documents.
This approach was later enhanced by Kang and
Choi (2002) to incorporate word segmentation.

A related area is language identification, where
statistics derived from a language model are used
to automatically identify languages (Dunning,

1994). Using N-gram counting produces good ac-
curacy for long strings with 50 or more charac-
ters, and moderately well with 10-character-long
strings. It is unclear how well this approach would
work on individual words with five characters on
average.

2 Identifying foreign words

We categorise three general approaches for recog-
nising foreign words in Arabic text:

Arabic lexicon

OOV words can be easily captured by checking
whether they exist in an Arabic lexicon. However,
the lexicon is unlikely to include all Arabic words,
while at the same time it could contain some for-
eign words. Moreover, this approach will identify
misspelled Arabic words as foreign.

Arabic patterns system

Arabic uses a pattern system to derive words
from their roots. Roots are three, four or some-
times five letters long. The reference pattern

�É� �ª��	̄
(/faÝala/ = to do) is often used to represent three-
letter root words. For example, the word

��I� �j��K.
(/bË Ta/ = searched) can be represented by this pat-
tern through mapping��K. to ��	̄ , � �j� to � �ª�, and

��I�
to

�É�.
Many stems can be generated from this root us-

ing standard patterns. For instance,
�É«� A�	̄ (/fæÝIl/ =

doer) , and
�É �ª �	®�K
 (/yfÝlU/ = is doing) are two dif-

ferent patterns that respectively represent the ac-
tive participle, and present tense verb from the pat-
tern

�É� �ª��	̄ . By placing the appropriate core letters
and adding additional letters in each pattern, we
can generate words such as

��Ik� A�K. (/bæËIT/ = re-

searcher),
��I �j��. �K
 (/ybËTU/ = does search) respec-

tively. New words can further accept prefixes and
suffixes.

We can recognise whether a word is an Ara-
bic or foreign word by reversing the process and
testing the different patterns. If, after all pos-
sible affixes have been removed, the remaining
stem matches an Arabic pattern, the word is likely
to be an Arabic word. For example, to check

whether the word
��Ik� A�J. �Ë � �ð (/walbæËIT/ = and the

researcher) is a foreign word, we first remove the
prefixesð and �Ë � to get the stem

��Ik� A�K. ; we find

that this word matches the pattern
�É«� A�	̄ — it has

the same length, and the letterA� is in the same po-
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sition — and conclude that it is therefore an Arabic
word. Note that we must perform this determina-
tion without relying on diacritics.

This approach is not perfect, as general Arabic
text does not include explicit diacritics; if parts of
a foreign word match a pattern, it will be marked
as being Arabic. Similarly, misspelled words may
be classified as foreign words if no matching pat-
tern is found.

N-gram approach

Transliterated foreign words exhibit construc-
tion patterns that are often different from Arabic
patterns. By counting the N-grams of a sample of
foreign words, a profile can be constructed to iden-
tify similar words. This approach has been used
in language identification, although it is reported
to have only moderate effectiveness in identifying
short strings (Cavnar and Trenkle, 1994; Dunning,
1994).

2.1 Resources

For the lexicon approach, we used three lexicons:
the Khoja root lexicon (Khoja and Garside, 1999),
the Buckwalter Lexicon (Buckwalter, 2002), and
the Microsoft office 2003 lexicon (Microsoft Cor-
poration, 2002).

The Khoja stemmer has an associated com-
pressed language dictionary that contains well-
known roots. The stemmer strips prefixes and suf-
fixes and matches the remaining stem with a list of
Arabic patterns. If a match is found, the root is ex-
tracted and checked against the dictionary of root
words. If no entry is found, the word is considered
to be a non-Arabic word. We call this the Khoja
Lexicon Approach (KLA).

The Buckwalter morphological analyser is a
lexicon that uses three tables and an algorithm to
check possible affixes. The algorithm checks a
word and analyses its possible prefixes and suf-
fixes to determine possible segmentation for an
Arabic word. If the algorithm fails to find any
possible segmentation, the word is considered not
found in the lexicon. We name this approach the
Buckwalter Lexicon Approach (BLA).

The Microsoft office lexicon is the one used in
the Microsoft Office 2003 spell-checker. We test
whether an Arabic word is found in this lexicon,
and classify those that are not in the lexicon to be
foreign words. We call this approach the Office
Lexicon Approach (OLA).

ÉÊª 	̄ � ZCª 	̄ � ÈCª 	̄ � �éÊª 	̄ � É«ñª 	̄ �ÉËñª 	̄ � ÉJ
ª 	̄ � Éª 	®�J��� ÉJ
«A 	®�K ÈAª 	®�K�éÊª 	®�K ÉÊª 	®�K �éÊ«A 	̄ Èñ«A 	̄ BAª 	̄ÉËAª 	̄ úÍAª 	̄ ÉJ
Ë Aª 	̄ �éÊª 	̄ �é<Êª 	̄CJ
ª 	̄ �éÊJ
ª 	̄ ÉJ
«�ñ 	̄ É«AJ
 	̄ ÉJ
«AJ
 	̄�éÊ«A 	®Ó �éË Aª 	®Ó Cª 	®Ó �éÊª 	®Ó ÉÊª 	®ÓÉª 	®�K Èñª 	̄ � �éË Aª 	̄ �éËñª 	̄ ÉÊª 	®�JÓÉJ
ª 	®Ó CJ
ª 	®Ó
Table 2: Patterns added to the Khoja modified
stemmer to implement the KPA approach

To use Arabic patterns, we modified the Khoja
stemmer to check whether there is a match be-
tween a word and a list of patterns after stemming
without further checking against the root dictio-
nary. If there is no match, the word is considered
a foreign word. This approach is similar to the ap-
proach used by Taghva et al. (2005). We adopted
the patterns of the Khoja stemmer and added 37
patterns compiled from Arabic grammar books,
these are shown in Table 2. We call these ap-
proaches the Khoja Pattern Approach (KPA), and
Modified Khoja Pattern Approach (MKP) respec-
tively. A word is also considered to be an Arabic
word if the remaining stem has three or fewer let-
ters.

We evaluate the effectiveness of the n-gram
method in two ways. First, we extend the n-gram
text categorisation method presented by Cavnar
and Trenkle (1994). The method uses language
profiles where, for each language, all n-grams that
occur in a training corpus are sorted in order of
decreasing frequency of occurrence, for n ranging
from 1 to 5. To classify a textt, we build its n-
gram frequency profile, and compute the distance
between each n-gram in the text and in each lan-
guage profilelj . The total distance is computed by
summing up all differences between the position
of the n-gram in the text profile and the position of
the same n-gram in the language profile:

Dj =
Ni∑

i=1

|
rank(ti, text)

Ni

−
rank(ti, lj)

Nj

|

whereDj is the total distance between a textt with
Ni n-grams, and a language profilelj with Nj n-
grams; andrank is the position of the n-gram in
the frequency-sorted list of all n-grams for either
the text or language profile.

In our work, we build two language profiles, one

261



for native Arabic words and another for foreign
words. We compare the n-grams in each word in
our list against these two profiles. If the total dis-
tance between the word and the foreign words pro-
file is smaller than the total distance between the
word and the Arabic words profile, then it is clas-
sified as a foreign word. As the two language pro-
files are not in same size, we compute the relative
position of each n-gram by dividing its position in
the list by the number of the n-grams in the lan-
guage profile. We call this approach the n-gram
approach (NGR).

We also tried a simpler approach based on the
construction of two trigram models: one from
Arabic words, and another from foreign words.
The probability that a string is a foreign word is
determined by comparing the frequency of its tri-
grams with each language model. A word is con-
sidered foreign if the sum of the relative frequency
of its trigrams in the foreign words profile is higher
than the sum of the relative frequency of its tri-
grams in the Arabic words profile. We call this
approach trigram (TRG).

3 Training Experiments

In this section, we describe how we formed a
development data set using Arabic text from the
Web, and how we evaluated and improved tech-
niques for identification of foreign words.

3.1 Data

To form our development data set, we crawled the
Arabic web sites of the Al-Jazeera news channel1,
the Al-Anwar2 and El-Akhbar3 newspapers. A list
of 285 482 Arabic words was extracted. After re-
moving Arabic stop words such as pronouns and
prepositions, the list had 246 281 Arabic words
with 25 492 unique words.

In the absence of diacritics, we decided to re-
move words with three or fewer characters, as
these words could be interpreted as being either
Arabic or foreign in different situations. For ex-
ample, the wordú
G. (/bi/) could be interpreted as

the Arabic word meaning “in me”, or the English
letter B. After this step, 24 218 unique words re-
mained.

We examined these words and categorised each
of them either as Arabic word (AW), or a translit-

1http://www.aljazeera.net
2http://www.alanwar.com
3http://www.elkhabar.com

erated foreign word (FW). We also had to clas-
sify some terms as misspelled Arabic word (MW).
We used the Microsoft Office spell-checker as a
first-pass filter to identify misspelled words, and
then manually inspected each word to identify any
that were actually correct; the spell-checker fails
to recognise some Arabic words, especially those
with some complex affixes. The list also had some
local Arabic dialect spellings that we chose to
classify as misspelled.

The final list had three categories: 22 295 cor-
rect Arabic words, 1 218 foreign words and 705
misspelled words.

To build language models for the trigram
approaches (NRG and TRG), we used the
TREC 2001 Arabic collection (Gey and Oard,
2001). We manually selected 3 046 foreign words
out of the OOV words extracted from the col-
lection using the Microsoft office spell-checker.
These foreign words are transliterated foreign
words. We built the Arabic language model us-
ing 100 000 words extracted from the TREC col-
lection using the same spell-checker. However, we
excluded any word that could be a proper noun, to
avoid involving foreign words. We used an algo-
rithm to exclude any word that does not accept the
suffix haa (é�), as transliterated proper nouns can
not accept Arabic affixes.

3.2 Evaluation

We measure the accuracy of each approach by ex-
amining the number of foreign words correctly
identified, and the number of incorrect classifica-
tions. The precision of each approach is calculated
as the ratio of correctly identified foreign words
to the total number of words identified as foreign
The latter could be correct or misspelled Arabic
words identified as foreign plus the actual foreign
words identified. The recall is calculated as the
ratio of correctly identified foreign words to the
number of words marked manually as foreign. Al-
though there is generally a compromise between
precision and recall, we consider precision to be
more important, since incorrectly classifying Ara-
bic words as foreign would be more likely to harm
general retrieval performance. The left-hand side
of Table 3 shows the results of our experiments.
We have included the MW results to illustrate the
effects of misspelled words on each approach

The results show that the n-gram approach
(NGR) has the highest precision, while the
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AW MW FW
Appr. # # # R P
OLA 614 698 1 017 0.834 0.437
BLA 384 404 628 0.515 0.443
KLA 1 732 215 745 0.612 0.277
KPA 1 034 135 590 0.480 0.340
MKP 940 126 573 0.470 0.350
NGR 718 95 726 0.596 0.471
TRG 1 591 118 737 0.605 0.301

AW MW FW
Appr. # # # R P
OLA 145 248 866 0.711 0.687
BLA 88 149 534 0.438 0.693
KLA 420 83 642 0.527 0.508
KPA 302 52 520 0.430 0.590
MKP 269 51 507 0.416 0.613
NGR 411 69 669 0.549 0.582
TRG 928 85 642 0.527 0.387

Table 3: Identification of foreign words: initial results (left) and results after improvements (right)

lexicon-based OLA approach gives the highest re-
call. The pattern approaches (KPA) and (MKP)
perform well compared to the combination of pat-
terns and the root lexicon (KLA), although the
latter produces higher recall. There is a slight
improvement in precision when adding more pat-
terns, but recall is sightly reduced. The KLA ap-
proach produces the poorest precision, but has bet-
ter recall rate than the NGR approach.

The results show that many Arabic native words
are mistakenly caught in the foreign words net.
Our intention is to handle foreign words differ-
ently from Arabic native words. Our approach
is based on normalising the different forms of the
same foreign word to one form at the index level
rather than expanding the foreign word to its possi-
ble variants at the query level. Retrieval precision
will be negatively affected by incorrect classifica-
tion of native and foreign words. Consequently,
we consider that keeping the proportion of false
positives — correct Arabic words identified as for-
eign (precision) — low to be more important than
correctly identifying a higher number of foreign
words (recall).

Some of the Arabic words categorised as for-
eign are in fact misspelled; we believe that these
have limited effect on retrieval precision, and there
is limited value in identifying such words in a
query unless the retrieval system incorporates a
correction process.

4 Enhanced rules

To reduce the false identification rate of foreign
words, we analysed the lists of foreign words, cor-
rect Arabic words identified as foreign, and Arabic
misspelled words identified as foreign. We noticed
that some Arabic characters rarely exist in translit-
erated foreign words, and used these to separate
Arabic words — correctly or incorrectly spelled

Letter count letter count letter countø
 3 839 � 632 h 2� 3 599 X 559 ¨ 2ð 2 453 �� 514 � 1	à 1 660 h. 458 Z 0� 1 587 	P 334 ð 0�H 1 544 è 171
� 0P 1 244 p 84 � 0¼ 1 070 �H 23
Æ� 0H. 900

�� 20 	� 0È 863   12 	  0	¬ 769 ø 7 ø 0	̈
728

	X 3
�è 0

Table 4: Frequency of Arabic letters in a sample
of 3 046 foreign words

– from true foreign words. Table 4 shows the
count of each character in the sample of 3 046 for-
eign words; foreign words tend to have vowels in-
serted between consonants to maintain the CVCV
paradigm. We also noticed that most of translit-
erated foreign words do not start with the definite
article �Ë �, or end with the Taa Marbuta

�é�. Foreign
words also rarely end with two Arabic suffixes.

We also noticed that lexicon based approaches
fail to recognise some correct Arabic words for the
following reasons:

• Words with the letter� (Alef) with or with-

out the diacritics Hamza (
�, �), or the diacritic

Madda (
Æ�) are not recognised as correct in

many cases. Many words are also categorised
incorrectly if the Hamza is wrongly placed
above or below the initial Alef or the Madda
is absent. In modern Arabic text, the Alef of-
ten appears without the Hamza diacritic and
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the Madda is sometimes dropped.

• Correct Arabic words are not recognised with
particular suffixes. For example, words that
have the object suffix, such as the suffixAê�
in Aêº	KñÒÊªK
 (/yUÝalImunakaha/ = they teach
it to you).

• Some Arabic words are compound words,
written attached to each other most of the
time. For example, compound nouns such asPXA�®Ë �YJ.« (/ÝbdulqadIr/), although composed
of two words that are individually identi-
fied as being correct, are flagged as incorrect
when combined.

• Some common typographical shortcuts result
in words being written without white space
between them. Where a character that always
terminates a word (for example

�è ) is found
in the apparent middle of a word, it is clear
that this problem has occurred.

From these observations, we constructed the
following rules. Whenever one of the following
conditions is met, a word is not classified as for-
eign:

1. the word contains any of the Arabic charac-
ters:ø, Z, 	X, h, �, ð,

�, �, Æ�, 	 , 	�, ø,
�è;

2. the word starts with the definite article (�Ë �);
3. the word has more than one Arabic suffix

(pronouns attached at the end of the word);

4. the word has no vowels between the second
and penultimate character (inclusive); or

5. the word contains one of the strings:
�è, ø,Z, � �, ÈAK
, È�P, È� 	P, È�X, È� 	X, È�ð, È��, and when

split into two parts at the first character of any
sequence, the first part is three characters or
longer, and the second part is four characters
or longer.

The right-hand side of Table 3 shows the im-
provements achieved using these rules. It can
be seen that they have a large positive impact.
Overall, OLA performs the best, with precision
at 69% and recall at 71%. Figure 1 shows
the precision obtained before and after applying
these rules. Improvement is consistent across
all approaches, with an increase in precision be-
tween 10% and 25%.

OLA BLA KLA KPA MKP NRG TRG

Approach

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Before
After

Figure 1: Precision of different approaches before
and after Improvements

5 Verification Experiments

To verify our results, we used another data set
of similar size to the first to verify our approach.
We collected a list of 23 466 unique words from
the Dar-al-Hayat newspaper4. Words, and classi-
fied and marked words in the same way as for the
first data set (described in Section 3.1). We de-
termined this new set to comprise 22 800 Arabic
words (AW), 536 Foreign words (FW), and 130
Misspelled words (MW). Table 5 shows the initial
results and improvements using the enhanced rules
obtained by each approach using this data set.

The results on this unseen data are relatively
consistent with the previous experiment, but pre-
cision in this sample is expectedly lower.

6 Discussion

We have seen that foreign words are not easily
recognised in Arabic text, and a large number of
Arabic words are affected when we try to exclude
foreign words.

We found the lexicon approach to be the best
in identifying foreign words. However, current
lexicons are relatively small, and the variety of
Arabic inflection makes it very difficult to include
all correct word forms. Furthermore, current lex-
icons include many foreign words; for example
when using OLA approach, 1 017 foreign words
out of 1 218 are OOV, indicating that about 200
foreign words are present in that lexicon. The
pattern approach is more efficient but the lack
of diacritics in general written Arabic makes it
very difficult to precisely match a pattern with a

4http://www.daralhayat.com
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AW MW FW
Appr. # # # R P
OLA 1 189 112 417 0.777 0.242
BLA 780 96 267 0.498 0.234
KLA 1 684 55 312 0.582 0.152
KPA 992 29 238 0.440 0.189
MKP 901 26 231 0.431 0.199
NGR 740 22 286 0.533 0.272
TRG 1 655 19 308 0.575 0.155

AW MW FW
Appr. # # # R P
OLA 302 38 307 0.572 0.474
BLA 149 33 184 0.343 0.502
KLA 350 16 216 0.403 0.371
KPA 238 9 166 0.310 0.402
MKP 202 8 162 0.302 0.435
NGR 401 8 245 0.457 0.374
TRG 972 11 235 0.438 0.193

Table 5: Identification of foreign words on the test set: initial results (left) and results after improvements
(right)

word, resulting in many foreign words being in-
correctly identified as Arabic. Passing the list of
all 3 046 manually judged foreign words to the
pattern approach, some 2 017 words of this list
were correctly judged as foreign, and about one
third (1 029) were incorrectly judged to be Ara-
bic. The n-gram method produced reasonable pre-
cision compared to the lexicon-based methods. In
contrast, TRG had the worst results. This could
be due to the limited size of the training corpus.
However, we expect that improvements to this ap-
proach will remain limited due to the fact that
many Arabic and foreign words share the same
trigrams. It is clear that all the approaches are im-
proved dramatically when applying the enhance-
ment rules. The improvements of the NGR wasn’t
as equal as other approaches. This is because some
of the rules are implicitly applied within the n-
gram approach. The lack of diacritics also makes
it very difficult to distinguish between certain for-
eign and Arabic words. For example, without dia-

critics, the word 	á�
�J 	�J
Ê¿ could be 	á�
�J���	J��J
Ê���» (/klIn-tUn/ = Clinton), or 	á��J
 ����	J��J
Ê��¿ (/kalinatin/ = as two
date trees). The pronunciation is different in the
two cases, but only context or diacritics can make
it clear which word is being used.

7 Conclusion

Identifying foreign words in Arabic text is an im-
portant problem for cross-lingual information re-
trieval, since commonly-used techniques such as
stemming should not be applied indiscriminately
to all words in a collection.

We have presented three approaches for identi-
fying foreign words in Arabic text: lexicons, pat-
terns, and n-grams. We have presented results
that show that the lexicon approach outperforms
the other approaches, and have described improve-

ments to minimise the false identification of for-
eign words. These rules result in improved preci-
sion, but have a small negative impact on recall.
Overall, the results are relatively low for practical
applications, and more work is needed to deal with
this problem. As foreign words are characterised
by having different versions, an algorithm that col-
lapse those versions to one form could be useful
in identifying foreign words. We are presently ex-
ploring algorithms to normalise foreign words in
Arabic text. This will allow us to identify nor-
malised forms for foreign words and use a single
consistent version for indexing and retrieval.
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Abstract

In this paper we propose a machine-
learning approach to paragraph boundary
identification which utilizes linguistically
motivated features. We investigate the re-
lation between paragraph boundaries and
discourse cues, pronominalization and in-
formation structure. We test our algorithm
on German data and report improvements
over three baselines including a reimple-
mentation of Sporleder & Lapata’s (2006)
work on paragraph segmentation. An
analysis of the features’ contribution sug-
gests an interpretation of what paragraph
boundaries indicate and what they depend
on.

1 Introduction

Our work is concerned with multi-document sum-
marization, namely with the merging of multiple
documents about the same topic taken from the
web. We view summarization as extraction of im-
portant sentences from the text. As a consequence
of the merging process the layout of the documents
is lost. In order to create the layout of the out-
put, the document structure (Power et al., 2003)
has to be regenerated. One aspect of this struc-
ture is of particular importance for our work: the
paragraph structure. In web documents paragraph
boundaries are used to anchor figures and illustra-
tions, so that the figures are always aligned with
the same paragraph even when the font size or the
window size is changed. Since we want to include
figures in the generated summaries, paragraph seg-
mentation is an important subtask in our applica-
tion.

Besides multi-document summarization of web
documents, paragraph boundary identification

(PBI) could be useful for a number of different ap-
plications, such as producing the layout for tran-
scripts provided by speech recognizers and opti-
cal character recognition systems, and determin-
ing the layout of documents generated for output
devices with different screen size.

Though related to the task of topic segmenta-
tion which stimulated a large number of studies
(Hearst, 1997; Choi, 2000; Galley et al., 2003,
inter alia), paragraph segmentation has not been
thoroughly investigated so far. We explain this by
the fact that paragraphs are considered a stylistic
phenomenon and that there is no unanimous opin-
ion on what the function of the paragraph is. Some
authors (Irmscher (1972) as cited by Stark (1988))
suggest that paragraph structure is arbitrary and
can not be determined based solely on the prop-
erties of the text. Still, psycholinguistic studies
report that humans agree, at least to some extent,
on placing boundaries between paragraphs. These
studies also note that paragraph boundaries are in-
formative and make the reader perceive paragraph-
initial sentences as being important (Stark, 1988).
In contrast to topic segmentation, paragraph seg-
mentation has the advantage that large amounts of
annotated data are readily availabe for supervised
learning.

In this paper we describe our approach to para-
graph segmentation. Previous work (Sporleder &
Lapata, 2004; 2006) mainly focused on superficial
and easily obtainable surface features like punctu-
ation, quotes, distance and words in the sentence.
Their approach was claimed to be domain- and
language-independent. Our hypothesis, however,
is that linguistically motivated features, which we
compute automatically, provide a better paragraph
segmentation than Sporleder & Lapata’s surface
ones, though our approach may loose some of the
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domain-independence. We test our hypothesis on
a corpus of biographies downloaded from the Ger-
man Wikipedia1. The results we report in this pa-
per indicate that linguistically motivated features
outperform surface features significantly. It turned
out that pronominalization and information struc-
ture contribute to the determination of paragraph
boundaries while discourse cues have a negative
effect.

The paper is organized as follows: First, we de-
scribe related work in Section 2, then in Section
3 our data is introduced. The baselines, the ma-
chine learners, the features and the experimental
setup are given in Section 4. Section 5 reports and
discusses the results.

2 Related Work

Compared to other text segmentation tasks, e.g.
topic segmentation, PBI has received relatively lit-
tle attention. We are aware of three studies which
approach the problem from different perspectives.
Bolshakov & Gelbukh (2001) assume that split-
ting text into paragraphs is determined by text co-
hesion: The link between a paragraph initial sen-
tence and the preceding context is weaker than the
links between sentences within a paragraph. They
evaluate text cohesion using a database of collo-
cations and semantic links and insert paragraph
boundaries where the cohesion is low.

The algorithm of Sporleder & Lapata (2004,
2006) uses surface, syntactic and language model
features and is applied to three different languages
and three domains (fiction, news, parliament).
This study is of particular interest to us since one
of the languages the algorithm is tested on is Ger-
man. They investigate the impact of different fea-
tures and data size, and report results significantly
better than a simple baseline. However, their re-
sults vary considerably between the languages and
the domains. Also, the features determined impor-
tant is different for each setting. So, it may be
possible that Sporleder & Lapata do not provide
conclusive results.

Genzel (2005) considers lexical and syntactic
features and reports accuracy obtained from En-
glish fiction data as well as from the WSJ corpus.
He points out that lexical coherence and structural
features turn out to be the most useful for his algo-
rithm. Unfortunately, the only evaluation measure
he provides is accuracy which, for the PBI task,

1http://de.wikipedia.org

does not describe the performance of a system suf-
ficiently.

In comparison to the mentioned studies, our
goal is to examine the influence of cohesive fea-
tures on the choice of paragraph boundary inser-
tion. Unlike Bolshakov & Gelbukh (2001), who
have similar motivation but measure cohesion by
collocations, we explore the role of discourse cues,
pronominalization and information structure.

The task of topic segmentation is closely related
to the task of paragraph segmentation. If there
is a topic boundary, it is very likely that it coin-
cides with a paragraph boundary. However, the
reverse is not true and one topic can extend over
several paragraphs. So, if determined reliably,
topic boundaries could be used as high precision,
low recall predictors for paragraph boundaries.
Still, there is an important difference: While work
on topic segmentation mainly depends on content
words (Hearst, 1997) and relations between them
which are computed using lexical chains (Galley
et al., 2003), paragraph segmentation as a stylistic
phenomenon may depend equally likely on func-
tion words. Hence, paragraph segmentation is
a task which encompasses the traditional borders
between content and style.

3 Data

The data we used is a collection of biographies
from the German version of Wikipedia. We se-
lected all biographies under the Wikipedia cate-
gories of physicists, chemists, mathematicians and
biologists and obtained 970 texts with an average
length of 20 sentences and 413,776 tokens in total.

Although our corpus is substantially smaller
than the German corpora of Sporleder & Lapata
(2006), it should be big enough for a fair com-
parison between their algorithm and the algorithm
proposed here. Having investigated the effect of
the training size, Sporleder & Lapata (2006) came
to the conclusion that their system performs well
being trained on a small data set. In particular,
the learning curve for German shows an improve-
ment of only about 2% when the amount of train-
ing data is increased from 20%, which in case of
German fiction approximately equals 370,000 to-
kens, to 100%.

Fully automatic preprocessing in our system
comprises the following stages: First, a list of peo-
ple of a certain Wikipedia category is taken and
for every person an article is extracted The text
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training development test
tokens 347,763 39,228 19,943
sentences 15,583 1,823 922
paragraphs 5,323 654 362

Table 1: Number of tokens and sentences per set

is purged from Wiki tags and comments, the in-
formation on subtitles and paragraph structure is
preserved. Second, sentence boundaries are iden-
tified with a Perl CPAN module2 whose perfor-
mance we improved by extending the list of abbre-
viations and modifying the output format. Next,
the sentences are split into tokens. The TnT tag-
ger (Brants, 2000) and the TreeTagger (Schmid,
1997) are used for tagging and lemmatizing. Fi-
nally, the texts are parsed with the CDG depen-
dency parser (Foth & Menzel, 2006). Thus, the
text is split on three levels: paragraphs, sentences
and tokens, and morphological and syntactic in-
formation is provided.

A publicly available list of about 300 discourse
connectives was downloaded from the Internet site
of the Institute for the German Language3 (Insti-
tut für Deutsche Sprache, Mannheim) and slightly
extended. These are identified in the text and an-
notated automatically as well. Named entities are
classified according to their type using informa-
tion from Wikipedia: person, location, organiza-
tion or undefined. Given the peculiarity of our cor-
pus, we are able to identify all mentions of the bi-
ographee in the text by simple string matching. We
also annotate different types of referring expres-
sions (first, last, full name) and resolve anaphora
by linking personal pronouns to the biographee
provided that they match in number and gender.

The annotated corpus is split into training
(85%), development (10%) and testing (5%) sets.
Distribution of data among the three sets is pre-
sented in Table 1. Sentences which serve as sub-
titles in a text are filtered out because they make
identifying a paragraph boundary for the follow-
ing sentence trivial.

4 Experiments

4.1 Machine Learners

The PBI task was reformulated as a binary classifi-
cation problem: every training instance represent-

2http://search.cpan.org/˜holsten/Lingua-DE-Sentence-
0.07/Sentence.pm

3http://hypermedia.ids-mannheim.de/index.html

ing a sentence was classified either as paragraph-
initial or not.

We used two machine learners: BoosTexter
(Schapire & Singer, 2000) and TiMBL (Daele-
mans et al., 2004). BoosTexter was developed
for text categorization, and combines simple rules
(decision stumps) in a boosting manner. Sporleder
& Lapata used this learner because it has the abil-
ity to combine many only moderately accurate
hypotheses. TiMBL is a memory-based learner
which classifies every test instance by finding the
most similar examples in the training set, hence it
does not abstract from the data and is well suited
to handle features with many values, e.g. the list
of discourse cues. For both classifiers, all experi-
ments were run with the default settings.

4.2 Baselines

We compared the performance of our algorithm
against three baselines. The first one (distance)
trivially inserts a paragraph break after each third
sentence, which is the average number of sen-
tences in a paragraph. The second baseline (Gal-
ley) hypothesizes that paragraph breaks coincide
with topic boundaries and utilizes Galley et al.’s
(2003) topic boundary identification tool LCseg.
The third baseline (Sporleder) is a reimplementa-
tion of Sporleder & Lapata’s 2006 algorithm with
the following features:

Word and Sentence Distancesfrom the current
sentence to the previous paragraph break;

Sentence LengthandRelative Position (relPos)
of the sentence in a text;

Quotes encodes whether this and the previous
sentences contain a quotation, and whether
the quotation is continued in the current sen-
tence or not;

Final Punctuation of the previous sentence;

Words – the first(word1), the first two(word2),
the first three and all words from the sen-
tence;

Parsed has positive value in case the sentence is
parsed, negative otherwise;

Number of S, VP, NP and PP nodes in the sen-
tence;

Signature is the sequence of PoS tags with and
without punctuation;
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Children of Top-Level Nodes are two features
representing the sequence of syntactic labels
of the children of the root of the parse tree
and the children of the highest S-node;

Branching Factor features express the average
number of children of S, VP, NP and PP
nodes in the parse;

Tree Depth is the average length of the path from
the root to the leaves;

Per-word Entropy is a feature based on Gen-
zel & Charniak’s (2003) observation that
paragraph-initial sentences have lower en-
tropy than non-initial ones;

Sentence Probability according to a language
model computed from the training data;

Character-level n-gram models are built using
the CMU toolkit (Clarkson & Rosenfeld,
1997).

Since the parser we used produces dependency
trees as an output, we could not distinguish be-
tween such features aschildren of the root of the
tree andchildren of the top-level S-node. Apart
from this minor change, we reimplemented the al-
gorithm in every detail.

4.3 Our Features

For our algorithm we first selected the features of
Sporleder & Lapata’s (2006) system which per-
formed best on the development set. These are
relative position, the first and the first two words
(relPos, word1, word2). Quote and final punctu-
ation features, which were particularly helpful in
Sporleder & Lapata’s experiments on the German
fiction data, turned out to be superfluous given the
infrequency of quotations and the prevalent use of
the period as sentence delimiter in our data.

We experimented withtext cohesionfeatures as-
suming that the paragraph structure crucially de-
pends on cohesion and that paragraph breaks are
likely to occur between sentences where cohesive
links are weak. In order to estimate the degree of
cohesion, we looked at lexical cohesion, pronom-
inalization, discourse cues and information struc-
ture.

4.3.1 Lexical Cohesion

nounOver, verbOver: Similar to Sporleder &
Lapata (2006), we introduced an overlap fea-
ture, but measured the degree of overlap as

a number of common noun and verb lem-
mas between two adjacent sentences. We pre-
ferred lemmas over words in order to match
all possible forms of the same word in Ger-
man.

LCseg: Apart from the overlap, a boolean feature
based on LCseg (Galley et al., 2003) marked
whether the tool suggests that a new topic be-
gins with the current sentence. This feature,
relying on lexical chains, was supposed to
provide more fine-grained information on the
degree of similarity between two sentences.

4.3.2 Pronominalization

As Stark (1988) points out, humans tend to in-
terpret over-reference as a clue for the beginning
of a new paragraph: In a sentence, if a non-
pronominal reference is preferred over a pronom-
inal one where the pronoun would be admissi-
ble, humans are likely to mark this sentence as a
paragraph-initial one. In order to check whether
over-reference indeed correlates with paragraph-
initial sentences, we described the way the bi-
ographee is referred to in the current and the pre-
vious sentences.

prevSPerson, currSPerson:This feature4 with
the valuesNA, biographee, otherindicates
whether there is a reference to the biographee
or some other person in the sentence.

prevSRE, currSRE: This feature describes the
biographee’s referring expression and has
three possible values:NA, name, pronoun.

Although our annotation distinguishes between
first, last and full names, we found out that, for
the PBI task, the distinction is spurious and unify-
ing these three under the same category improves
the results.

REchange: Since our classifiers assume feature
independence and can not infer the informa-
tion on the change in referring expression, we
explicitly encoded that information by merg-
ing the values of the previous feature for the
current and the preceding sentences into one,
which has nine possible values (name-name,
NA-name, pronoun-name, etc.).

4PrefixesprevS-, currS- stand for the previous and the
current sentences respectively.
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4.3.3 Discourse Cues

The intuition behind these features is that cue
words and phrases are used to signal the relation
between the current sentence and the preceding
sentence or context (Mann & Thompson, 1988).
Such connectives asendlich (finally), abgesehen
davon (apart from that), danach (afterwards)ex-
plicitly mark a certain relation between the sen-
tence they occur in and the preceding context. We
hypothesize that the relations which hold across
paragraph boundaries should differ from those
which hold within paragraphs and that the same is
true for the discourse cues. Absence of a connec-
tive is supposed to be informative as well, being
more typical for paragraph-initial sentences.

Three features describe the connective of the
current sentence. Another three features describe
the one from the preceding sentence.

prevSCue, currSCue: This feature is the con-
nective itself (NA in case of none).

prevSCueClass, currSCueClass:This feature
represents the semantic class of the cue word
or phrase as assigned by the IDS Mannheim.
There are 25 values, includingNA in case
of no connective, altogether, with the most
frequent values beingtemporal, concessive,
conclusive, etc.

prevSProCue, currSProCue: The third binary
feature marks whether the connective is
proadverbial or not (NA if there is no connec-
tive). Being anaphors, proadverbials, such as
deswegen (because of that), darüber (about
that) explicitly link a sentence to the preced-
ing one(s).

4.3.4 Information Structure

Information structure, which is in German to a
large extent expressed by word order, provides
additional clues to the degree of connectedness
between two sentences. In respect to the PBI
task, Stark (1988) reports that paragraph-initial
sentences are oftentheme-markingwhich means
that the subject of such sentences is not the first
element. Given the lower frequency of paragraph-
initial sentences, this feature can not be considered
reliable, but in combination with others it provides
an additional clue. In German, the first element
best corresponds to theprefield (Vorfeld) – nor-
mally, the single constituent placed before the fi-
nite verb in the main clause.

currSVF encodes whether the constituent in
the prefield is aNP, PP, ADV, CARD, or
Sub.Clause. Values different fromNP un-
ambiguously represent theme-marking sen-
tences, whereas theNP value may stand for
both: theme-marking as well as not theme-
marking sentence.

4.4 Discussion

Note, that we did not exclude text-initial sentences
from the study because the encoding we used does
not make such cases trivial for classification. Al-
though some of the features refer to the previous
sentence, none of them has to be necessarily re-
alized and therefore none of them explicitly indi-
cates the absence of the preceding sentence. For
example, the labelNAappears in cases where there
is no discourse cue in the preceding sentence as
well as in cases where there is no preceding sen-
tence. The same holds for all other features pre-
fixed withprevS-.

Another point concerns the use of
pronominalization-based features. Sporleder
& Lapata (2006) waive using such features be-
cause they consider pronominalization dependent
on the paragraph structure and not the other
way round. At the same time they mention
speech and optical character recognition tasks
as possible application domains for the PBI.
There, pronouns are already given and need
not be regenerated, hence for such applications
features which utilize pronouns are absolutely
appropriate. Unlike the recognition tasks, for
multi-document summarization both decisions
have to be made, and the order of the two tasks
is not self-evident. The best decision would
probably be to decide simultaneously on both
using optimization methods (Roth & Yih, 2004;
Marciniak & Strube, 2005). Generating pronouns
before inserting boundaries seems as reasonable
as doing it the other way round.

4.5 Feature Selection

We determine the relevant feature set and evaluate
which features from this set contribute most to the
performance of the system by the following pro-
cedures.

First, we follow an iterative algorithm similar
to the wrapper approach for feature selection (Ko-
havi & John, 1997) using the development data
and TiMBL. The feature subset selection algo-
rithm performs a hill-climbing search along the
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Feature set F-measure
all 58.85%
–prevSCue 0.78%
–currSCue 0.32%
–currSCueClass 0.38%
–prevSCueClass 0.37%
–prevSProCue 1.02%
best 61.72%

Table 2: Removed features

Feature set F-measure
relPos, word1, word2 48.06%
+currSRE +10.50%
+currSVF +0.49%
+currSPerson +0.57%
+prevSPerson +1.32%
best 60.94%

Table 3: Best features

feature space. We start with a model based on all
available features. Then we train models obtained
by removing one feature at a time. We choose the
worst performing feature, namely the one whose
removal gives the largest improvement based on
the F-measure, and remove it from the model. We
then train classifiers removing each of the remain-
ing features separately from the enhanced model.
The process is iteratively run as long as significant
improvement is observed.

To measure the contribution of the relevant fea-
tures we start with the three best features from
Sporleder & Lapata (2006) (see Section 4.3) and
train TiMBL combining the current feature set
with each feature in turn. We then choose the best
performing feature based on the F-measure and
add it to the model. We iterate the process until
all features are added to the three-feature system.

Thus, we optimize the default setting and obtain
the information on what the paragraph structure
crucially depends.

5 Results

Having trained our algorithm on the development
data, we then determined the optimal feature com-
bination and finally evaluated the performance on
the previously unseen test data.

Table 2 and Table 3 present the ranking of the
least and of the most beneficial features respec-
tively. Somewhat surprising to us, Table 2 shows

that basicallyall features capturing information on
discourse cues actually worsened the performance
of the classifier. The bad performance of the
prevSCueand currSCuefeatures may be caused
by their extreme sparseness. To test these fea-
tures reasonably, we plan to increase the data set
size by an order of magnitude. Then, at least, it
should be possible to determine which discourse
cues, if any, are correlated with paragraph bound-
aries. The bad performance of theprevSCueClass
andcurrSCueClassfeatures may be caused by the
categorization provided by the IDS. This question
also requires further investigation, maybe with a
different categorization.

Table 3 also provides interesting insights in the
feature set. First, with only the three features
relPos, word1and word2 the baseline performs
almost as well as the full feature set used by
Sporleder & Lapata. Then, as expected,currSRE
provides the largest gain in performance, fol-
lowed bycurrSVF, currSPersonandprevSPerson.
This result confirms our hypothesis that linguisti-
cally motivated features capturing information on
pronominalization and information structure play
an important role in determining paragraph seg-
mentation.

The results of our system and the baselines
for different classifiers (BT stands for BoosTex-
ter and Ti for TiMBL) are summarized in Table
4. Accuracy is calculated by dividing the num-
ber of matches over the total number of test in-
stances. Precision, recall and F-measure are ob-
tained by considering true positives, false positives
and false negatives. The latter metric, WindowDiff
(Pevzner & Hearst, 2002), is supposed to over-
come the disadvantage of the F-measure which pe-
nalizes near misses as harsh as more serious mis-
takes. The value of WindowDiff varies between 0
and 1, where a lesser count corresponds to better
performance.

The significance of our results was computed
using the� � test. All results are significantly
better (on the� � � �� � level or below) than
both baselines and the reimplemented version of
Sporleder & Lapata’s (2006) algorithm whose per-
formance on our data is comparable to what the
authors reported on their corpus of German fic-
tion. Interestingly, TiMBL does much better than
BoosTexter on Sporleder & Lapata’s feature set.
Apparently, Sporleder & Lapata’s presupposition,
that they would rely on many weak hypotheses,
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Accuracy Precision Recall F-measure WindowDiff
distance 52.16 37.98 31.88 34.66 .426
Galley 56.83 43.04 26.15 32.54 .416
development
SporlederBT 71.96 80.15 30.46 44.15 .327
SporlederTi 62.36 48.65 62.89 54.86 .338
all BT 74.93 72.10 50.67 59.52 .286
all Ti 70.54 59.81 57.91 58.85 .302
bestTi 73.39 64.73 58.97 61.72 .280
test
SporlederBT 68.76 80.15 28.61 42.16 .341
SporlederTi 60.62 50.46 59.67 54.68 .345
all BT 72.12 71.31 50.13 58.88 .286
all Ti 67.13 59.14 56.40 57.74 .303
bestTi 68.00 60.46 56.67 58.50 .302

Table 4: Results for the development and test sets with the two classifiers

does not hold. This is also confirmed by the results
reported in Table 3 where only three of their fea-
tures perform surprisingly strong. In contrast, on
our feature set TiMBL and BoosTexter perform al-
most equally. However, BoosTexter achieves in all
cases a much higher precision which is preferable
over the higher recall provided by TiMBL.

6 Conclusion

In this paper, we proposed a novel approach to
paragraph boundary identification based on lin-
guistic features such as pronominalization, dis-
course cues and information structure. The results
are significantly higher than all baselines and a
reimplementation of Sporleder & Lapata’s (2006)
system and achieve an F-measure of about 59%.

We investigated to what extent the paragraph
structure is determined by each of the three fac-
tors and came to the conclusion that it crucially
depends on the use of pronouns and information
structure. Surprisingly, discourse cues did not turn
out to be useful for this task and even negatively
affected the results which we explain by the ex-
tremely sparseness of the cues in our data.

It turned out that the best results could be
achieved by a combination of surface features (rel-
Pos, word1, word2) and features capturing text
cohesion. This indicates that paragraph bound-
ary identification requires features usually used for
style analysis and ones describing cohesive rela-
tions. Therefore, paragraph boundary identifica-
tion is in fact a task which crosses the borders be-
tween content and style.

An obvious limitation of our study is that we
trained and tested the algorithm on one-genre do-
main where pronouns are used extensively. Ex-
perimenting with different genres should shed
light on whether our features are in fact domain-
dependent. In the future, we also want to ex-
periment with a larger data set for determining
whether discourse cues really do not correlate with
paragraph boundaries. Then, we will move on
towards multi-document summarization, the ap-
plication which motivates the research described
here.
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Abstract

In this paper we describe a coreference
resolution method that employs a classi-
fication and a clusterization phase. In a
novel way, the clusterization is produced
as a graph cutting algorithm, in which
nodes of the graph correspond to the men-
tions of the text, whereas the edges of the
graph constitute the confidences derived
from the coreference classification. In ex-
periments, the graph cutting algorithm for
coreference resolution, called BESTCUT,
achieves state-of-the-art performance.

1 Introduction

Recent coreference resolution algorithms tackle
the problem of identifying coreferent mentions of
the same entity in text as a two step procedure: (1)
a classification phase that decides whether pairs of
noun phrases corefer or not; and (2) a clusteriza-
tion phase that groups together all mentions that
refer to the same entity. Anentity is an object or
a set of objects in the real world, while amen-
tion is a textual reference to an entity1. Most of
the previous coreference resolution methods have
similar classification phases, implemented either
as decision trees (Soon et al., 2001) or as maxi-
mum entropy classifiers (Luo et al., 2004). More-
over, these methods employ similar feature sets.
The clusterization phase is different across current
approaches. For example, there are several linking
decisions for clusterization. (Soon et al., 2001) ad-
vocate the link-first decision, which links a men-
tion to its closest candidate referent, while (Ng and
Cardie, 2002) consider instead the link-best deci-
sion, which links a mention to its most confident

1This definition was introduced in (NIST, 2003).

candidate referent. Both these clustering decisions
are locally optimized. In contrast, globally opti-
mized clustering decisions were reported in (Luo
et al., 2004) and (DaumeIII and Marcu, 2005a),
where all clustering possibilities are considered by
searching on a Bell tree representation or by us-
ing theLearning as Search Optimization (LaSO)
framework (DaumeIII and Marcu, 2005b) respec-
tively, but the first search is partial and driven by
heuristics and the second one only looks back in
text. We argue that a more adequate clusterization
phase for coreference resolution can be obtained
by using a graph representation.

In this paper we describe a novel representa-
tion of the coreference space as an undirected
edge-weighted graph in which the nodes repre-
sent all the mentions from a text, whereas the
edges between nodes constitute the confidence
values derived from the coreference classification
phase. In order to detect the entities referred in
the text, we need to partition the graph such that
all nodes in each subgraph refer to the same entity.
We have devised a graph partitioning method for
coreference resolution, called BESTCUT, which is
inspired from the well-known graph-partitioning
algorithm Min-Cut (Stoer and Wagner, 1994).
BESTCUT has a different way of computing the
cut weight than Min-Cut and a different way of
stopping the cut2. Moreover, we have slightly
modified the Min-Cut procedures. BESTCUT re-
places the bottom-up search in a tree representa-
tion (as it was performed in (Luo et al., 2004))
with the top-down problem of obtaining the best
partitioning of a graph. We start by assuming that
all mentions refer to a single entity; the graph cut
splits the mentions into subgraphs and the split-

2Whenever a graph is split in two subgraphs, as defined in
(Cormen et al., 2001), a cut of the graph is produced.
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ting continues until each subgraph corresponds to
one of the entities. The cut stopping decision has
been implemented as anSVM-based classification
(Cortes and Vapnik, 1995).

The classification and clusterization phases as-
sume that all mentions are detected. In order to
evaluate our coreference resolution method, we
have (1) implemented a mention detection proce-
dure that has the novelty of employing information
derived from the word senses of common nouns as
well as selected lexico-syntactic information; and
(2) used a maximum entropy model for corefer-
ence classification. The experiments conducted on
MUC andACE data indicate state-of-the-art results
when compared with the methods reported in (Ng
and Cardie, 2002) and (Luo et al., 2004).

The remainder of the paper is organized as fol-
lows. In Section 2 we describe the coreference
resolution method that uses the BESTCUT cluster-
ization; Section 3 describes the approach we have
implemented for detecting mentions in texts; Sec-
tion 4 reports on the experimental results; Section
5 discusses related work; finally, Section 6 sum-
marizes the conclusions.

2 BESTCUT Coreference Resolution

For each entity type (PERSON, ORGANIZATION,
LOCATION, FACILITY or GPE3) we create a graph
in which the nodes represent all the mentions
of that type in the text, the edges correspond to
all pairwise coreference relations, and the edge
weights are the confidences of the coreference re-
lations. We will divide this graph repeatedly by
cutting the links between subgraphs until a stop
model previously learned tells us that we should
stop the cutting. The end result will be a partition
that approximates the correct division of the text
into entities.

We consider this graph approach to clustering a
more accurate representation of the relations be-
tween mentions than a tree-based approach that
treats only anaphora resolution, trying to connect
mentions with candidate referents that appear in
text before them. We believe that a correct reso-
lution has to tackle cataphora resolution as well,
by taking into account referents that appear in the
text after the anaphors. Furthermore, we believe
that a graph representation of mentions in a text is
more adequate than a tree representation because
the coreference relation is symmetrical in addi-

3Entity types as defined by (NIST, 2003).

tion to being transitive. A greedy bottom-up ap-
proach does not make full use of this property. A
graph-based clusterization starts with a complete
overall view of all the connections between men-
tions, therefore local errors are much less proba-
ble to influence the correctness of the outcome. If
two mentions are strongly connected, and one of
them is strongly connected with the third, all three
of them will most probably be clustered together
even if the third edge is not strong enough, and that
works for any order in which the mentions might
appear in the text.

2.1 Learning Algorithm

The coreference confidence values that become
the weights in the starting graphs are provided by
a maximum entropy model, trained on the train-
ing datasets of the corpora used in our experi-
ments. For maximum entropy classification we
used amaxent4 tool. Based on the data seen, a
maximum entropy model (Berger et al., 1996) of-
fers an expression (1) for the probability that there
exists coreferenceC between a mentionmi and a
mentionmj .

P (C|mi,mj) =
e(

∑
k

λkgk(mi,mj ,C))

Z(mi,mj)
(1)

where gk(mi,mj , C) is a feature andλk is its
weight;Z(mi,mj) is a normalizing factor.

We created the training examples in the same
way as (Luo et al., 2004), by pairing all men-
tions of the same type, obtaining their feature
vectors and taking the outcome (coreferent/non-
coreferent) from the key files.

2.2 Feature Representation

We duplicated the statistical model used by (Luo
et al., 2004), with three differences. First, no fea-
ture combination was used, to prevent long run-
ning times on the large amount ofACE data. Sec-
ond, through an analysis of the validation data, we
implemented seven new features, presented in Ta-
ble 1. Third, as opposed to (Luo et al., 2004), who
represented all numerical features quantized, we
translated each numerical feature into a set of bi-
nary features that express whether the value is in
certain intervals. This transformation was neces-
sary because our maximum entropy tool performs
better on binary features. (Luo et al., 2004)’s fea-
tures were not reproduced here from lack of space;
please refer to the relevant paper for details.

4http://homepages.inf.ed.ac.uk/s0450736/maxenttoolkit.html
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Category Feature name Feature description

lexical head-match true if the two heads are identical
type-pair for each mention: name→ its type, noun→ NOUN , pronoun→ its spelling
name-alias true if a mention is an alias of the other one

syntactic same-governing-category true if both mentions are covered by the same type of node, e.g. NP,VP, PP
path the parse tree path fromm2 to m1

coll-comm true if either mention collocates with a communication verb
grammatical gn-agree true if the two mentions agree in gender and number

Table 1: The added features for the coreference model.

2.3 Clusterization Method: BESTCUT

We start with five initial graphs, one for each en-
tity type, each containing all the mentions of that
type and their weighted connections. This initial
division is correct because no mentions of differ-
ent entity types will corefer. Furthermore, by do-
ing this division we avoid unnecessary confusion
in the program’s decisions and we decrease its run-
ning time. Each of these initial graphs will be cut
repeatedly until the resulting partition is satisfac-
tory. In each cut, we eliminate from the graph the
edges between subgraphs that have a very weak
connection, and whose mentions are most likely
not part of the same entity.

Formally, the graph model can be defined as fol-
lows. LetM = {mi : 1..n} be n mentions in the
document andE = {ej : 1..m} be m entities. Let
g : M → E be the map from a mentionmi ∈ M

to an entityej ∈ E. Let c : MxM → [0, 1] be the
confidence the learning algorithm attaches to the
coreference between two mentionsmi,mj ∈ M .
Let T = {tk : 1..p} be the set of entity types
or classes. Then we attach to each entity classtk
an undirected, edge-weighted graphGk(Vk, Ek),
whereVk = {mi|g(mi).type = tk} and Ek =
{(mi,mj , c(mi,mj))|mi,mj ∈ Vk}.

The partitioning of the graph is based at each
step on the cut weight. As a starting point, we
used the Min-Cut algorithm, presented and proved
correct in (Stoer and Wagner, 1994). In this simple
and efficient method, the weight of the cut of a
graph into two subgraphs is the sum of the weights
of the edges crossing the cut. The partition that
minimizes the cut weight is the one chosen. The
main procedure of the algorithm computes cuts-
of-the-phase repeatedly and selects the one with
the minimum cut value (cut weight). We adapted
this algorithm to our coreference situation.

To decide the minimum cut (from here on called
the BESTCUT), we use as cut weight the number
of mentions that are correctly placed in their set.
The method for calculating the correctness score is

presented in Figure 1. The BESTCUT at one stage
is the cut-of-the-phase with the highest correctness
score.

cut-weight(Graph G, Cut C = (S,T))
1 corrects-avg ← corrects-max ← 0
2 foreach m ∈ G.V
3 if m ∈ S.V then setm ← S
4 else setm ← T
7 if avgn∈setm.V,n6=mweight(m,n) >

avgn∈G.V \setm.V weight(m,n)
6 then corrects-avg++
7 if maxn∈setm.V,n6=mweight(m,n) >

maxn∈G.V \setm.V weight(m,n)
8 then corrects-max++
9 return (corrects-avg +

corrects-max) / 2

Figure 1: Computing the cut-weight.

An additional learning model was trained to de-
cide if cutting a set of mentions is better or worse
than keeping the mentions together. The model
was optimized to maximize theECM-F score5. We
will denote byS the larger part of the cut andT
the smaller one.C.E is the set of edges crossing
the cut, andG is the current graph before the cut.
S.V andT.V are the set of vertexes inS and in
T , respectively.S.E is the set of edges fromS,
while T.E is the set of edges fromT . The features
for stopping the cut are presented in Table 2. The
model was trained using 10-fold cross-validation
on the training set. In order to learn when to stop
the cut, we generated a list of positive and nega-
tive examples from the training files. Each train-
ing example is associated with a certain cut(S, T ).
Since we want to learn a stop function, the positive
examples must be examples that describe when the
cut must not be done, and the negative examples
are examples that present situations when the cut
must be performed. Let us consider that the list
of entities from a text isE = {ej : 1..m} with
ej = {mi1 ,mi2 , ...mik} the list of mentions that
refer toej . We generated a negative example for
each pair(S = {ei}, T = {ej}) with i 6= j –
each entity must be separated from any other en-

5As introduced by (Luo et al., 2004).
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Feature name Feature description

st-ratio |S.V |/|T.V | – the ratio between the cut
parts

ce-ratio |C.E|/|G.E| – the proportion of the cut
from the entire graph

c-min min(C.E) – the smallest edge crossing
the cut

c-max max(C.E) – the largest edge crossing
the cut

c-avg avg(C.E) – the average of the edges
crossing the cut

c-hmean hmean(C.E) – the harmonic mean of
the edges crossing the cut

c-hmeax hmeax(C.E) – a variant of the har-
monic mean. hmeax(C.E) = 1 −
hmean(C.E′) where each edge from
E′ has the weight equal to 1 minus the
corresponding edge fromE

lt-c-avg-ratio how many edges from the cut are less
than the average of the cut (as a ratio)

lt-c-hmean-
ratio

how many edges from the cut are less
than the harmonic mean of the cut (as a
ratio)

st-avg avg(S.E + T.E) – the average of the
edges from the graph when the edges
from the cut are not considered

g-avg avg(G.E) – the average of the edges
from the graph

st-wrong-avg-
ratio

how many vertexes are in the wrong part
of the cut using the average measure for
the ‘wrong’ (as a ratio)

st-wrong-
max-ratio

how many vertexes are in the wrong part
of the cut using the max measure for the
‘wrong’ (as a ratio)

lt-c-avg-ratio
< st-lt-c-avg-
ratio

1 if r1 < r2, 0 otherwise;r1 is the ratio
of the edges fromC.E that are smaller
than the average of the cut;r2 is the ratio
of the edges fromS.E + T.E that are
smaller than the average of the cut

g-avg > st-
avg

1 if theavg(G.E) > avg(S.E + T.E),
and 0 otherwise

Table 2: The features for stopping the cut.

tity. We also generated negative examples for all
pairs(S = {ei}, T = E \ S) – each entity must
be separated from all the other entities considered
together. To generate positive examples, we simu-
lated the cut on a graph corresponding to a single
entity ej . Every partial cut of the mentions ofej

was considered as a positive example for our stop
model.

We chose not to include pronouns in the BEST-
CUT initial graphs, because, since most features
are oriented towards Named Entities and common
nouns, the learning algorithm (maxent) links pro-
nouns with very high probability to many possi-
ble antecedents, of which not all are in the same
chain. Thus, in the clusterization phase the pro-
nouns would act as a bridge between different en-
tities that should not be linked. To prevent this,
we solved the pronouns separately (at the end of

BESTCUT(Graph Gi)
1 entities.clear()
2 queue.push back(Gi)
3 while not queue.empty()
4 G ← queue.pop front()
5 (S,T) ← ProposeCut(G)
6 if StopTheCut(G,S,T)
7 then
8 entities.add(NewEntity(G))
9 else

10 queue.push back(S)
11 queue.push back(T)
12 return entities

Figure 2: The general algorithm for BESTCUT.

the BESTCUT algorithm) by linking them to their
antecedent with the best coreference confidence.

Figure 2 details the main procedure of the
BESTCUT algorithm. The algorithm receives as
input a weighted graph having a vertex for each
mention considered and outputs the list of entities
created. In each stage, a cut is proposed for all
subgraphs in the queue. In case StopTheCut de-
cides that the cut must be performed on the sub-
graph, the two sides of the cut are added to the
queue (lines 10-11); if the graph is well connected
and breaking the graph in two parts would be a
bad thing, the current graph will be used to cre-
ate a single entity (line 8). The algorithm ends
when the queue becomes empty. ProposeCut (Fig-

ProposeCut(Graph G)
1 while |G.V | > 1
2 (S,T) ← ProposeCutPhase(G)
3 if the cut-of-the-phase (S,T)

is-lighter than the current
best cut (Sb, Tb)

4 then store the cut-of-the-phase
as (Sb, Tb)

5 return (Sb, Tb)

Figure 3: The algorithm for ProposeCut.

ure 3) returns a cut of the graph obtained with
an algorithm similar to the Min-Cut algorithm’s
procedure called MinimumCut. The differences
between our algorithm and the Min-Cut proce-
dure are thatthe most tightly connected vertex
in each step of the ProposeCutPhase procedure,z,
is found using expression 2:

z = argmaxy 6∈Awa(A, y) (2)

wherewa(A, y) = 1
|A|

∑
x∈A w(x, y), and theis-

lighter test function uses the correctness score
presented before: the partial cut with the larger
correctness score is better. The ProposeCutPhase
function is presented in Figure 4.
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ProposeCutPhase(Graph G)
1 A ← {G.V.first}
2 while |A| < |G.V |
3 last ← the most tightly

connected vertex
4 add last to A
5 store the cut-of-the-phase and

shrink G by merging the two
vertexes added last

6 return (G.V \ {last}, last)

Figure 4: The algorithm for ProposeCutPhase.

2.4 An Example

Let us consider an example of how the BESTCUT

algorithm works on two simple sentences (Fig-
ure 5). The entities present in this example are:
{Mary1, the girl5} and {a brother2, John3, The
boy4}. Since they are all PERSONs, the algorithm

Mary1 hasa brother2, John3. The boy4 is older than

the girl5.

Figure 5: An example.
will be applied on a single graph, corresponding to
the class PERSONand composed of all these men-
tions.

The initial graph is illustrated in Figure 6, with
the coreference relation marked through a differ-
ent coloring of the nodes. Each node number cor-
responds to the mention with the same index in
Figure 5.
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Figure 6: The initial graph

The strongest confidence score is betweena
brother2 and John3, because they are connected
through an apposition relation. The graph was
simplified by eliminating the edges that have an
insignificant weight, e.g. the edges betweenJohn3
andthe girl5 or betweenMary1 anda brother2.

Function BESTCUT starts with the whole graph.
The first cut of the phase, obtained by function
ProposeCutPhase, is the one in Figure 7.a. This
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Figure 7: Cuts-of-the-phase

cut separates node 2 from the rest of the graph.
In calculating the score of the cut (using the algo-
rithm from Figure 1), we obtain an average num-
ber of three correctly placed mentions. This can
be verified intuitively on the drawing: mentions
1, 2 and 5 are correctly placed, while 3 and 4 are
not. The score of this cut is therefore 3. The sec-
ond, the third and the fourth cuts of the phase, in
Figures 7.b, 7.c and 7.d, have the scores 4, 5 and
3.5 respectively. An interesting thing to note at
the fourth cut is that the score is no longer an in-
teger. This happens because it is calculated as an
average betweencorrects-avg = 4and corrects-
max = 3. The methods disagree about the place-
ment of mention 1. The average of the outgo-
ing weights of mention 1 is 0.225, less than 0.5
(the default weight assigned to a single mention)
therefore the first method declares it is correctly
placed. The second considers only the maximum;
0.6 is greater than 0.5, so the mention appears to
be more strongly connected with the outside than
the inside. As we can see, the contradiction is be-
cause of the uneven distribution of the weights of
the outgoing edges.

The first proposed cut is the cut with the great-
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FACILITY ORGANIZATION PERSON LOCATION GPE

POWER#9

PERSON#1 PEOPLE#1

CHARACTER#1

...

expert#1

Peter_Pan#2

womankind#1

population#1

homeless#2

.........

... ...
...

......

Frankenstein#2 oil_tycoon#1worker#1

Figure 8: Part of the hierarchy containing 42 WordNet equivalent concepts for the five entity types, with
all their synonyms and hyponyms. The hierarchy has 31,512 word-sense pairs in total

est score, which is Cut3 (Figure 7.c). Because this
is also the correct cut, all cuts proposed after this
one will be ignored– the machine learning algo-
rithm that was trained when to stop a cut will al-
ways declare against further cuts. In the end, the
cut returned by function BESTCUT is the correct
one: it divides mentionsMary1 andthe girl5 from
mentionsa brother2, John3 andThe boy4.

3 Mention Detection

Because our BESTCUT algorithm relies heavily
on knowing entity types, we developed a method
for recognizing entity types for nominal mentions.
Our statistical approach uses maximum entropy
classification with a few simple lexical and syn-
tactic features, making extensive use of WordNet
(Fellbaum, 1998) hierarchy information. We used
the ACE corpus, which is annotated with men-
tion and entity information, as data in a super-
vised machine learning method to detect nominal
mentions and their entity types. We assigned six
entity types: PERSON, ORGANIZATION, LOCA-
TION, FACILITY , GPEandUNK (for those who are
in neither of the former categories) and two gener-
icity outcomes: GENERIC and SPECIFIC. We
only considered the intended value of the mentions
from the corpus. This was motivated by the fact
that we need to classify mentions according to the
context in which they appear, and not in a general
way. Only contextual information is useful further
in coreference resolution. We have experimentally
discovered that the use of word sense disambigua-
tion improves the performance tremendously (a
boost in score of 10%), therefore all the features
use the word senses from a previously-applied
word sense disambiguation program, taken from
(Mihalcea and Csomai, 2005).

For creating training instances, we associated

an outcome to each markable (NP) detected in the
training files: the markables that were present in
the key files took their outcome from the key file
annotation, while all the other markables were as-
sociated with outcomeUNK. We then created a
training example for each of the markables, with
the feature vector described below and as target
function the outcome. The aforementioned out-
come can be of three different types. The first type
of outcome that we tried was the entity type (one
member of the set PERSON, ORGANIZATION, LO-
CATION, FACILITY , GPE and UNK); the second
type was the genericity information (GENERIC or
SPECIFIC), whereas the third type was a combi-
nation between the two (pairwise combinations
of the entity types set and the genericity set, e.g.
PERSON SPECIFIC).

The feature set consists of WordNet features,
lexical features, syntactic features and intelligent
context features, briefly described in Table 3. With
the WordNet features we introduce theWordNet
equivalent concept. A WordNet equivalent con-
cept for an entity type is a word-sense pair from
WordNet whose gloss is compatible with the def-
inition of that entity type. Figure 8 enumerates a
few WordNet equivalent concepts for entity class
PERSON (e.g. CHARACTER#1), with their hier-
archy of hyponyms (e.g. Frankenstein#2). The
lexical feature is useful because some words are
almost always of a certain type (e.g.“com-
pany”). The intelligent context set of features
are an improvement on basic context features that
use the stems of the words that are within a win-
dow of a certain size around the word. In addi-
tion to this set of features, we created more fea-
tures by combining them into pairs. Each pair
contains two features from two different classes.
For instance, we will have features like:is-a-
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Category Feature name Feature description

WordNet is-a-TYPE true if the mention is of entity type TYPE; five features
WN-eq-concept-hyp true if the mention is in hyponym set ofWN-eq-concept; 42 features
WN-eq-concept-syn true if the mention is in synonym set ofWN-eq-concept; 42 features

lexical stem-sense pair between the stem of the word and theWN sense of the word by theWSD

syntactic pos part of speech of the word by thePOStagger
is-modifier true if the mention is a modifier in another noun phrase
modifier-to-TYPE true if the mention is a modifier to a TYPE mention
in-apposition-with TYPE of the mention our mention is in apposition with

intelligent context all-mods the nominal, adjectival and pronominal modifiers in the mention’s parse tree
preps the prepositions right before and after the mention’s parsetree

Table 3: The features for the mention detection system.

PERSON∼in-apposition-with(PERSON).
All these features apply to the “true head” of

a noun phrase, i.e. if the noun phrase is a parti-
tive construction (“five students”, “a lot of com-
panies”, “a part of the country”), we extract the
“true head”, the whole entity that the part was
taken out of (“students”, “companies”, “coun-
try” ), and apply the features to that “true head”
instead of the partitive head.

For combining the mention detection module
with the BESTCUT coreference resolver, we also
generated classifications for Named Entities and
pronouns by using the same set of features minus
the WordNet ones (which only apply to nominal
mentions). For the Named Entity classifier, we
added the featureNamed-Entity-typeas obtained
by the Named Entity Recognizer. We generated
a list of all the markable mentions and their en-
tity types and presented it as input to the BEST-
CUT resolver instead of the list of perfect men-
tions. Note that this mention detection does not
contain complete anaphoricity information. Only
the mentions that are a part of the five consid-
ered classes are treated as anaphoric and clus-
tered, while theUNK mentions are ignored, even
if an outside anaphoricity classifier might catego-
rize some of them as anaphoric.

4 Experimental Results

The clusterization algorithms that we imple-
mented to evaluate in comparison with our method
are (Luo et al., 2004)’s Belltree and Link-Best
(best-first clusterization) from (Ng and Cardie,
2002). The features used were described in section
2.2. We experimented on theACE Phase 2 (NIST,
2003) andMUC6 (MUC-6, 1995) corpora. Since
we aimed to measure the performance of corefer-
ence, the metrics used for evaluation are theECM-
F (Luo et al., 2004) and theMUC P, R andF scores
(Vilain et al., 1995).

In our first experiment, we tested the three
coreference clusterization algorithms on the
development-test set of theACE Phase 2 corpus,
first on true mentions (i.e. the mentions annotated
in the key files), then on detected mentions (i.e.
the mentions output by our mention detection sys-
tem presented in section 3) and finally without any
prior knowledge of the mention types. The results
obtained are tabulated in Table 4. As can be ob-
served, when it has prior knowledge of the men-
tion types BESTCUT performs significantly bet-
ter than the other two systems in theECM-F score
and slightly better in theMUC metrics. The more
knowledge it has about the mentions, the better it
performs. This is consistent with the fact that the
first stage of the algorithm divides the graph into
subgraphs corresponding to the five entity types. If
BESTCUT has no information about the mentions,
its performance ranks significantly under the Link-
Best and Belltree algorithms inECM-F and MUC

R. Surprisingly enough, the Belltree algorithm, a
globally optimized algorithm, performs similarly
to Link-Best in most of the scores.

Despite not being as dramatically affected as
BESTCUT, the other two algorithms also decrease
in performance with the decrease of the mention
information available, which empirically proves
that mention detection is a very important module
for coreference resolution. Even with anF-score
of 77.2% for detecting entity types, our mention
detection system boosts the scores of all three al-
gorithms when compared to the case where no in-
formation is available.

It is apparent that theMUC score does not vary
significantly between systems. This only shows
that none of them is particularly poor, but it is not
a relevant way of comparing methods– theMUC

metric has been found too indulgent by researchers
((Luo et al., 2004), (Baldwin et al., 1998)). The
MUC scorer counts the common links between the
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MUC score
Clusterization algorithm Mentions ECM-F% MUC P% MUC R% MUC F%

BESTCUT key 82.7 91.1 88.2 89.63
detected 73.0 88.3 75.1 81.17
undetected 41.2 52.0 82.4 63.76

Belltree(Luo et al., 2004) key 77.9 88.5 89.3 88.90
detected 70.8 86.0 76.6 81.03
undetected 52.6 40.3 87.1 55.10

Link-Best(Ng and Cardie, 2002) key 77.9 88.0 90.0 88.99
detected 70.7 85.1 77.3 81.01
undetected 51.6 39.6 88.5 54.72

Table 4: Comparison of results between three clusterization algorithms onACE Phase 2. The learning
algorithms aremaxentfor coreference andSVM for stopping the cut in BESTCUT. In turn, we obtain
the mentions from the key files, detect them with our mention detection algorithm or do not use any
information about them.

annotation keys and the system output, while the
ECM-F metric aligns the detected entities with the
key entities so that the number of common men-
tions is maximized. TheECM-F scorer overcomes
two shortcomings of theMUC scorer: not consid-
ering single mentions and treating every error as
equally important (Baldwin et al., 1998), which
makes theECM-F a more adequate measure of
coreference.

Our second experiment evaluates the impact
that the different categories of our added features
have on the performance of the BESTCUT sys-
tem. The experiment was performed with a max-
ent classifier on theMUC6 corpus, which was pri-
orly converted intoACE format, and employed
mention information from the key annotations.

MUC score
Model ECM-F% P% R% F%

baseline 78.3 89.5 91.5 90.49
+grammatical 78.4 89.2 92.5 90.82
+lexical 83.1 92.4 91.6 92.00
+syntactic 85.1 92.7 92.4 92.55

Table 5: Impact of feature categories on BEST-
CUT on MUC6. Baseline system has the (Luo et
al., 2004) features. The system was tested on key
mentions.

From Table 5 we can observe that the lexi-
cal features (head-match, type-pair, name-alias)
have the most influence on theECM-F and MUC

scores, succeeded by the syntactic features (same-
governing-category, path, coll-comm). Despite
what intuition suggests, the improvement the
grammatical featuregn-agreebrings to the system
is very small.

5 Related Work

It is of interest to discuss why our implementa-
tion of the Belltree system (Luo et al., 2004) is
comparable in performance to Link-Best (Ng and
Cardie, 2002). (Luo et al., 2004) do the clus-
terization through a beam-search in the Bell tree
using either a mention-pair or an entity-mention
model, the first one performing better in their ex-
periments. Despite the fact that the Bell tree is a
complete representation of the search space, the
search in it is optimized for size and time, while
potentially losing optimal solutions– similarly to
a Greedy search. Moreover, the fact that the two
implementations are comparable is not inconceiv-
able once we consider that (Luo et al., 2004) never
compared their system to another coreference re-
solver and reported their competitive results on
true mentions only.

(Ng, 2005) treats coreference resolution as a
problem of ranking candidate partitions generated
by a set of coreference systems. The overall per-
formance of the system is limited by the perfor-
mance of its best component. The main differ-
ence between this approach and ours is that (Ng,
2005)’s approach takes coreference resolution one
step further, by comparing the results of multiple
systems, while our system is a single resolver; fur-
thermore, he emphasizes the global optimization
of ranking clusters obtained locally, whereas our
focus is on globally optimizing the clusterization
method inside the resolver.

(DaumeIII and Marcu, 2005a) use theLearning
as Search Optimizationframework to take into ac-
count the non-locality behavior of the coreference
features. In addition, the researchers treat men-
tion detection and coreference resolution as a joint
problem, rather than a pipeline approach like we
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do. By doing so, it may be easier to detect the
entity type of a mention once we have additional
clues (expressed in terms of coreference features)
about its possible antecedents. For example, label-
ing Washingtonas a PERSON is more probable af-
ter encounteringGeorge Washingtonpreviously in
the text. However, the coreference problem does
not immediately benefit from the joining.

6 Conclusions

We have proposed a novel coreference clusteri-
zation method that takes advantage of the effi-
ciency and simplicity of graph algorithms. The
approach is top-down and globally optimized, and
takes into account cataphora resolution in addition
to anaphora resolution. Our system compares fa-
vorably to two other implemented coreference sys-
tems and achieves state-of-the-art performance on
theACE Phase 2 corpus on true and detected men-
tions. We have also briefly described our mention
detection system whose output we used in con-
junction with the BESTCUT coreference system to
achieve better results than when no mention infor-
mation was available.
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Abstract

This paper presents a method of automat-
ically constructing information extraction
patterns on predicate-argument structures
(PASs) obtained by full parsing from a
smaller training corpus. Because PASs
represent generalized structures for syn-
tactical variants, patterns on PASs are ex-
pected to be more generalized than those
on surface words. In addition, patterns
are divided into components to improve
recall and we introduce a Support Vector
Machine to learn a prediction model using
pattern matching results. In this paper, we
present experimental results and analyze
them on how well protein-protein interac-
tions were extracted from MEDLINE ab-
stracts. The results demonstrated that our
method improved accuracy compared to a
machine learning approach using surface
word/part-of-speech patterns.

1 Introduction

One primitive approach to Information Extrac-
tion (IE) is to manually craft numerous extrac-
tion patterns for particular applications and this
is presently one of the main streams of biomedi-
cal IE (Blaschke and Valencia, 2002; Koike et al.,
2003). Although such IE attempts have demon-
strated near-practical performance, the same sets
of patterns cannot be applied to different kinds of
information. A real-world task requires several
kinds of IE, thus manually engineering extraction
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patterns, which is tedious and time-consuming
process, is not really practical.

Techniques based on machine learning (Zhou et
al., 2005; Hao et al., 2005; Bunescu and Mooney,
2006) are expected to alleviate this problem in
manually crafted IE. However, in most cases, the
cost of manually crafting patterns is simply trans-
ferred to that for constructing a large amount of
training data, which requires tedious amount of
manual labor to annotate text.

To systematically reduce the necessary amount
of training data, we divided the task of construct-
ing extraction patterns into a subtask that general
natural language processing techniques can solve
and a subtask that has specific properties accord-
ing to the information to be extracted. The former
subtask is of full parsing (i.e. recognizing syntactic
structures of sentences), and the latter subtask is of
constructing specific extraction patterns (i.e. find-
ing clue words to extract information) based on the
obtained syntactic structures.

We adopted full parsing from various levels
of parsing, because we believe that it offers the
best utility to generalize sentences into normal-
ized syntactic relations. We also divided patterns
into components to improve recall and we intro-
duced machine learning with a Support Vector
Machine (SVM) to learn a prediction model us-
ing the matching results of extraction patterns. As
an actual IE task, we extracted pairs of interacting
protein names from biomedical text.

2 Full Parsing

2.1 Necessity for Full Parsing

A technique that many previous approaches have
used is shallow parsing (Koike et al., 2003; Yao
et al., 2004; Zhou et al., 2005). Their assertion is
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Distance Count (%) Sum (%)
−1 54 5.0 5.0
0 8 0.7 5.7
1 170 15.7 21.4
2–5 337 31.1 52.5
6–10 267 24.6 77.1
11– 248 22.9 100.0

Distance −1 means protein word has been annotated as in-
teracting with itself (e.g. “actin polymerization”). Distance 0
means words of the interacting proteins are directly next to
one another. Multi-word protein names are concatenated as
long as they do not cross tags to annotate proteins.

Table 1: Distance between Interacting Proteins

that shallow parsers are more robust and would be
sufficient for IE. However, their claims that shal-
low parsers are sufficient, or that full parsers do
not contribute to application tasks, have not been
fully proved by experimental results.

Zhou et al. (2005) argued that most informa-
tion useful for IE derived from full parsing was
shallow. However, they only used dependency
trees and paths on full parse trees in their experi-
ment. Such structures did not include information
of semantic subjects/objects, which full parsing
can recognize. Additionally, most relations they
extracted from the ACE corpus (Linguistic Data
Consortium, 2005) on broadcasts and newswires
were within very short word-distance (70% where
two entities are embedded in each other or sep-
arated by at most one word), and therefore shal-
low information was beneficial. However, Table 1
shows that the word distance is long between in-
teracting protein names annotated on the AImed
corpus (Bunescu and Mooney, 2004), and we have
to treat long-distance relations for information like
protein-protein interactions.

Full parsing is more effective for acquiring gen-
eralized data from long-length words than shallow
parsing. The sentences at left in Figure 1 exem-
plify the advantages of full parsing. The gerund
“activating” in the last sentence takes a non-local
semantic subject “ENTITY1”, and shallow parsing
cannot recognize this relation because “ENTITY1”
and “activating” are in different phrases. Full pars-
ing, on the other hand, can identify both the sub-
ject of the whole sentence and the semantic subject
of “activating” have been shared.

2.2 Predicate-argument Structures

We applied Enju (Tsujii Laboratory, 2005a) as
a full parser which outputs predicate-argument
structures (PASs). PASs are well normalized

forms that represent syntactic relations. Enju
is based on Head-driven Phrase Structure Gram-
mar (Sag and Wasow, 1999), and it has been
trained on the Penn Treebank (PTB) (Marcus et
al., 1994) and a biomedical corpus, the GENIA
Treebank (GTB) (Tsujii Laboratory, 2005b). We
used a part-of-speech (POS) tagger trained on the
GENIA corpus (Tsujii Laboratory, 2005b) as a
preprocessor for Enju. On predicate-argument re-
lations, Enju achieved 88.0% precision and 87.2%
recall on PTB, and 87.1% precision and 85.4% re-
call on GTB.

The illustration at right in Figure 1 is a PAS
example, which represents the relation between
“activate”, “ENTITY1” and “ENTITY2” of all sen-
tences to the left. The predicate and its argu-
ments are words converted to their base forms,
augmented by their POSs. The arrows denote
the connections from predicates to their arguments
and the types of arguments are indicated as arrow
labels, i.e., ARGn (n = 1, 2, . . .), MOD. For ex-
ample, the semantic subject of a transitive verb is
ARG1 and the semantic object is ARG2.

What is important here is, thanks to the strong
normalization of syntactic variations, that we can
expect that the construction algorithm for extract-
ing patterns that works on PASs will need a much
smaller training corpus than those working on
surface-word sequences. Furthermore, because of
the reduced diversity of surface-word sequences at
the PAS level, any IE system at this level should
demonstrate improved recall.

3 Related Work

Sudo et al. (2003), Culotta and Sorensen (2004)
and Bunescu and Mooney (2005) acquired sub-
structures derived from dependency trees as ex-
traction patterns for IE in general domains. Their
approaches were similar to our approach using
PASs derived from full parsing. However, one
problem with their systems is that they could
not treat non-local dependencies such as seman-
tic subjects of gerund constructions (discussed in
Section 2), and thus rules acquired from the con-
structions were partial.

Bunescu and Mooney (2006) also learned ex-
traction patterns for protein-protein interactions
by SVM with a generalized subsequence kernel.
Their patterns are sequences of words, POSs, en-
tity types, etc., and they heuristically restricted
length and word positions of the patterns. Al-
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ENTITY1 recognizes and activates ENTITY2.
ENTITY2 activated by ENTITY1 are not well characterized.
The herpesvirus encodes a functional ENTITY1 that activates human ENTITY2.
ENTITY1 can functionally cooperate to synergistically activate ENTITY2.
The ENTITY1 plays key roles by activating ENTITY2.

ENTITY1/NN activate/VB ENTITY2/NNARG1 ARG2
Figure 1: Syntactical Variations of “activate”

though they achieved about 60% precision and
about 40% recall, these heuristic restrictions could
not be guaranteed to be applied to other IE tasks.

Hao et al. (2005) learned extraction patterns
for protein-protein interactions as sequences of
words, POSs, entity tags and gaps by dynamic
programming, and reduced/merged them using a
minimum description length-based algorithm. Al-
though they achieved 79.8% precision and 59.5%
recall, sentences in their test corpus have too
many positive instances and some of the pat-
terns they claimed to have been successfully con-
structed went against linguistic or biomedical in-
tuition. (e.g. “ENTITY1 and interacts with EN-
TITY2” should be replaced by a more general pat-
tern because they aimed to reduce the number of
patterns.)

4 Method

We automatically construct patterns to extract
protein-protein interactions from an annotated
training corpus. The corpus needs to be tagged to
denote which protein words are interacting pairs.

We follow five steps in constructing extraction
patterns from the training corpus. (1) Sentences
in the training corpus are parsed into PASs and
we extract raw patterns from the PASs. (2) We
divide the raw patterns to generate both combi-
nation and fragmental patterns. Because obtained
patterns include inappropriate ones (wrongly gen-
erated or too general), (3) we apply both kinds of
patterns to PASs of sentences in the training cor-
pus, (4) calculate the scores for matching results
of combination patterns, and (5) make a prediction
model with SVM using these matching results and
scores.

We extract pairs of interacting proteins from a
target text in the actual IE phase, in three steps.
(1) Sentences in the target corpus are parsed into
PASs. (2) We apply both kinds of extraction pat-
terns to these PASs and (3) calculate scores for
combination pattern matching. (4) We use the pre-
diction model to predict interacting pairs.

ENTITY1 ENTITY2CD4/NN protein/NN interact/VBwith/IN polymorphic/JJ region/NN of/INMHCII/NNMOD ARG1 ARG1 ARG2 ARG1 ARG2
ARG1

Parsing Result

Raw Pattern

CD4 protein interacts with polymorphic regions of MHCII .ENTITY1 ENTITY2Sentence in Training Corpus

protein/NN interact/VBwith/IN region/NN of/INMOD ARG1 ARG1 ARG2 ARG1 ARG2

(1) (2) (3) (4) (5) (6)p0p0 p1p1 p2p2 p3p3 p4p4 p5p5 p6p6
ENTITY2/NNENTITY1/NN

Figure 2: Extraction of Raw Pattern

4.1 Full Parsing and Extraction of Raw
Patterns

As the first step in both the construction phase and
application phase of extraction patterns, we parse
sentences into PASs using Enju.1 We label all
PASs of the protein names as protein PASs.

After parsing, we extract the smallest set of
PASs, which connect words that denote interact-
ing proteins, and make it a raw pattern. We take
the same method to extract and refine raw patterns
as Yakushiji et al. (2005). Connecting means we
can trace predicate-argument relations from one
protein word to the other in an interacting pair.
The procedure to obtain a raw pattern (p0, . . . , pn)
is as follows:
predicate(p): PASs that have p as their argument
argument(p): PASs that p has as its arguments

1. pi = p0 is the PAS of a word correspondent
to one of interacting proteins, and we obtain
candidates of the raw pattern as follows:

1-1. If pi is of the word of the other interact-
ing protein, (p0, . . . , pi) is a candidate
of the raw pattern.

1-2. If not, make pattern candidates
for each pi+1 ∈ predicate(pi) ∪
argument(pi) − {p0, . . . , pi} by
returning to 1-1.

2. Select the pattern candidate of the smallest
set as the raw pattern.

1Before parsing, we concatenate each multi-word protein
name into the one word as long as the concatenation does not
cross name boundaries.
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3. Substitute variables (ENTITY1, ENTITY2) for
the predicates of PASs correspondent to the
interacting proteins.

The lower part of Figure 2 shows an example
of the extraction of a raw pattern. “CD4” and
“MHCII” are words representing interacting pro-
teins. First, we set the PAS of “CD4” as p0.
argument(p0) includes the PAS of “protein”, and
we set it as p1 (in other words, tracing the arrow
(1)). Next, predicate(p1) includes the PAS of “in-
teract” (tracing the arrow (2) back), so we set it
as p2. We continue similarly until we reach the
PAS of “MHCII” (p6). The result of the extracted
raw pattern is the set of p0, . . . , p6 with substitut-
ing variables ENTITY1 and ENTITY2 for “CD4”
and “MHCII”.

There are some cases where an extracted raw
pattern is not appropriate and we need to re-
fine it. One case is when unnecessary coordi-
nations/parentheses are included in the pattern,
e.g. two interactions are described in a combined
representation (“ENTITY1 binds this protein and
ENTITY2”). Another is when two interacting pro-
teins are connected directly by a conjunction or
only one protein participates in an interaction. In
such cases, we refine patterns by unfolding of co-
ordinations/parentheses and extension of patterns,
respectively. We have omitted detailed explana-
tions because of space limitations. The details are
described in the work of Yakushiji et al. (2005).

4.2 Division of Patterns
Division for generating combination patterns is
based on observation of Yakushiji et al. (2005) that
there are many cases where combinations of verbs
and certain nouns form IE patterns. In the work
of Yakushiji et al. (2005), we divided only patterns
that include only one verb. We have extended the
division process to also treat nominal patterns or
patterns that include more than one verb.

Combination patterns are not appropriate for
utilizing individual word information because they
are always used in rather strictly combined ways.
Therefore we have newly introduced fragmental
patterns which consist of independent PASs from
raw patterns, in order to use individual word infor-
mation for higher recall.

4.2.1 Division for Generating Combination
Patterns

Raw patterns are divided into some compo-
nents and the components are combined to con-

ENTITY1/NN protein/NN interact/VBwith/IN region/NNof/INENTITY2/NNMOD ARG1 ARG1 ARG2 ARG1 ARG2

*/VBwith/INARG1ARG2*/NN
ENTITY/NN protein/NNMOD region/NN of/INENTITY/NNARG1 ARG2

interact/VBARG1
=

*/NN
*/VBARG1*/NN=

$X

$X
Main

Prep
Entity Entity

Entity
MainEntity Main

Main

Entity

Raw Pattern
Combination Pattern

Figure 3: Division of Raw Pattern into Combina-
tion Pattern Components (Entity-Main-Entity)

struct combination patterns according to types of
the division. There are three types of division of
raw patterns for generating combination patterns.
These are:

(a) Two-entity Division
(a-1) Entity-Main-Entity Division
(a-2) Main-Entity-Entity Division

(b) Single-entity Division, and
(c) No Division (Naive Patterns).

Most raw patterns, where entities are at both
ends of the patterns, are divided into Entity-Main-
Entity. Main-Entity-Entity are for the cases where
there are PASs other than entities at the ends of
the patterns (e.g. “interaction between ENTITY1
and ENTITY2”). Single-entity is a special Main-
Entity-Entity for interactions with only one partic-
ipant (e.g. “ENTITY1 dimerization”).

There is an example of Entity-Main-Entity divi-
sion in Figure 3. First, the main component from
the raw pattern is the syntactic head PAS of the
raw pattern. If the raw pattern corresponds to a
sentence, the syntactic head PAS is the PAS of the
main verb. We underspecify the arguments of the
main component, to enable them to unify with the
PASs of any words with the same POSs. Next, if
there are PASs of prepositions connecting to the
main component, they become prep components.
If there is no PAS of a preposition next to the main
component on the connecting link from the main
component to an entity, we make the pseudo PAS
of a null preposition the prep component. The left
prep component ($X) in Figure 3 is a pseudo PAS
of a null preposition. We also underspecify the ar-
guments of prep components. Finally, the remain-
ing two parts, which are typically noun phrases, of
the raw pattern become entity components. PASs
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corresponding to the entities of the original pair
are labeled as only unifiable with the entities of
other pairs.

Main-Entity-Entity division is similar, except
we distinguish only one prep component as a
double-prep component and the PAS of the coor-
dinate conjunction between entities becomes the
coord component. Single-entity division is simi-
lar to Main-Entity-Entity division and the differ-
ence is that single-entity division produces no co-
ord and one entity component. Naive patterns are
patterns without division, where no division can be
applied (e.g. “ENTITY1/NN in/IN complexes/NN
with/IN ENTITY2/NN”).

All PASs on boundaries of components are la-
beled to determine which PAS on a boundary of
another component can be unified. Labels are rep-
resented by subscriptions in Figure 3. These re-
strictions on component connection are used in the
step of constructing combination patterns.

Constructing combination patterns by combin-
ing components is equal to reconstructing orig-
inal raw patterns with the original combination
of components, or constructing new raw patterns
with new combinations of components. For exam-
ple, an Entity-Main-Entity pattern is constructed
by combination of any main, any two prep and any
two entity components. Actually, this construction
process by combination is executed in the pattern
matching step. That is, we do not off-line con-
struct all possible combination patterns from the
components and only construct the combination
patterns that are able to match the target.

4.2.2 Division for Generating Fragmental
Patterns

A raw pattern is splitted into individual PASs
and each PAS becomes a fragmental pattern. We
also prepare underspecified patterns where one or
more of the arguments of the original are under-
specified, i.e., are able to match any words of
the same POSs and the same label of protein/not-
protein. We underspecify the PASs of entities in
fragmental patterns to enable them to unify with
any PASs with the same POSs and a protein la-
bel, although in combination patterns we retain the
PASs of entities as only unifiable with entities of
pairs. This is because fragmental patterns are de-
signed to be less strict than combination patterns.

4.3 Pattern Matching

Matching of combination patterns is executed as
a process to match and combine combination pat-
tern components according to their division types
(Entity-Main-Entity, Main-Entity-Entity, Single-
entity and No Division). Fragmental matching is
matching all fragmental patterns to PASs derived
from sentences.

4.4 Scoring for Combination Matching

We next calculate the score of each combination
matching to estimate the adequacy of the combina-
tion of components. This is because new combina-
tion of components may form inadequate patterns.
(e.g. “ENTITY1 be ENTITY2” can be formed of
components from “ENTITY1 be ENTITY2 recep-
tor”.) Scores are derived from the results of com-
bination matching to the source training corpus.

We apply the combination patterns to the train-
ing corpus, and count pairs of True Positives (TP)
and False Positives (FP). The scores are calculated
basically by the following formula:

Score = TP/(TP + FP ) + α× TP

This formula is based on the precision of the pat-
tern on the training corpus, i.e., an estimated pre-
cision on a test corpus. α works for smoothing,
that is, to accept only patterns of large TP when
FP = 0. α is set as 0.01 empirically. The formula
is similar to the Apriori algorithm (Agrawal and
Srikant, 1995) that learns association rules from a
database. The first term corresponds to the confi-
dence of the algorithm, and the second term corre-
sponds to the support.

For patterns where TP = FP = 0, which
are not matched to PASs in the training corpus
(i.e., newly produced by combinations of com-
ponents), we estimates TP ′ and FP ′ by using
the confidence of the main and entity compo-
nents. This is because main and entity components
tend to contain pattern meanings, whereas prep,
double-prep and coord components are rather
functional. The formulas to calculate the scores
for all cases are:

Score =

8

>

>

>

>

>

<

>

>

>

>

>

:

TP/(TP + FP ) + α× TP

(TP + FP ̸= 0)

TP ′/(TP ′ + FP ′)

(TP = FP = 0, TP ′ + FP ′ ̸= 0)

0 (TP = FP = TP ′ = FP ′ = 0)
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Combination Pattern
(1) Combination of components in combination

matching
(2) Main component in combination matching
(3) Entity components in combination matching
(4) Score for combination matching (SCORE)
Fragmental Pattern
(5) Matched fragmental patterns
(6) Number of PASs of example that are not matched

in fragmental matching
Raw Pattern
(7) Length of raw pattern derived from example

Table 2: Features for SVM Learning of Prediction
Model

TP ′ =
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main + TP ′
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entity2)

(for Two-entity, Single-entity)

0 (for Naive)

FP ′ = (similar to TP ′ but TP ′
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TPmain:two/(TPmain:two + FPmain:two)
 

TPmain:two + FPmain:two ̸= 0,

for Two-entity

!

TPmain:single/(TPmain:single + FPmain:single)
 

TPmain:single + FPmain:single ̸= 0,

for Single-entity

!

0 (other cases)

TP ′
entityi =

8
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TPentityi/(TPentityi + FPentityi)
“

TPentityi + FPentityi ̸= 0
”

0 (other cases)

FP ′
x =

„

similar to TP ′
x but TP ′

y in the
numerators is replaced by FP ′

y
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• TP : number of TPs by the combination of components
• TPmain:two: sum of TPs by two-entity combinations

that include the same main component
• TPmain:single: sum of TPs by single-entity combina-

tions that include the same main component
• TPentityi: sum of TPs by combinations that include

the same entity component which is not the straight en-
tity component

• FPx: similar to TPx but TP is replaced by FP

The entity component “ENTITY/NN”, which
only consists of the PAS of an entity, adds no infor-
mation to combinations of components. We call
this component a straight entity component and
exclude its effect from the scores.

4.5 Construction of Prediction Model
We use an SVM to learn a prediction model to de-
termine whether a new protein pair is interacting.
We used SV M light (Joachims, 1999) with an rbf
kernel, which is known as the best kernel for most
tasks. The prediction model is based on the fea-
tures of Table 2.
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Figure 4: Results of IE Experiment

ENTITY1FGF-2/NN bind well to FGFR1 but interact/VB with/INpoorly/RB ENTITY2KGFR/NNARG1 ARG1 ARG2
Figure 5: Example Demonstrating Advantages of
Full Parsing

5 Results and Discussion

5.1 Experimental Results on the AImed
Corpus

To evaluate extraction patterns automatically con-
structed with our method, we used the AImed cor-
pus, which consists of 225 MEDLINE (U.S. Na-
tional Library of Medicine, 2006) abstracts (1969
sentences) annotated with protein names and
protein-protein interactions, for the training/test
corpora. We used tags for the protein names given.

We measured the accuracy of the IE task using
the same criterion as Bunescu and Mooney (2006),
who used an SVM to construct extraction patterns
on word/POS/type sequences from the AImed cor-
pus. That is, an extracted interaction from an ab-
stract is correct if the proteins are tagged as inter-
acting with each other somewhere in that abstract
(document-level measure).

Figure 4 plots our 10-fold cross validation and
the results of Bunescu and Mooney (2006). The
line ALL represents results when we used all fea-
tures for SVM learning. The line SCORE repre-
sents results when we extracted pairs with higher
combination matching scores than various thresh-
old values. And the line ERK represents results
by Bunescu and Mooney (2006).

The line ALL obtained our best overall F-
measure 57.3%, with 71.8% precision and 48.4%
recall. Our method was significantly better than
Bunescu and Mooney (2006) for precision be-
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tween 50% and 80%. It also needs to be noted
that SCORE, which did not use SVM learning
and only used the combination patterns, achieved
performance comparable to that by Bunescu and
Mooney (2006) for the precision range from 50%
to 80%. And for this range, introducing the frag-
mental patterns with SVM learning raised the re-
call. This range of precision is practical for the
IE task, because precision is more important than
recall for significant interactions that tend to be
described in many abstracts (as shown by the
next experiment), and too-low recall accompa-
nying too-high precision requires an excessively
large source text.

Figure 5 shows the advantage of introducing
full parsing. “FGF-2” and “KGFR” is an interact-
ing protein pair. The pattern “ENTITY1 interact
with ENTITY2” based on PASs successfully ex-
tracts this pair. However, it is difficult to extract
this pair with patterns based on surface words, be-
cause there are 5 words between “FGF-2” and “in-
teract”.

5.2 Experimental Results on Abstracts of
MEDLINE

We also conducted an experiment to extract in-
teracting protein pairs from a large amount of
biomedical text, i.e. about 14 million titles and
8 million abstracts in MEDLINE. We constructed
combination patterns from all 225 abstracts of the
AImed corpus, and calculated a threshold value
of combination scores that produced about 70%
precision and 30% recall on the training corpus.
We extracted protein pairs with higher combi-
nation scores than the threshold value. We ex-
cluded single-protein interactions to reduce time
consumption and we used a protein name recog-
nizer in this experiment2.

We compared the extracted pairs with a man-
ually curated database, Reactome (Joshi-Tope et
al., 2005), which published 16,564 human pro-
tein interaction pairs as pairs of Entrez Gene
IDs (U.S. National Library of Medicine, 2006).
We converted our extracted protein pairs into pairs
of Entrez Gene IDs by the protein name recog-
nizer.3 Because there may be pairs missed by Re-

2Because protein names were recognized after the pars-
ing, multi-word protein names were not concatenated.

3Although the same protein names are used for humans
and other species, these are considered to be human proteins
without checking the context. This is a fair assumption be-
cause Reactome itself infers human interaction events from
experiments on model organisms such as mice.

Total 89
Parsing Error/Failure 35

(Related to coordinations) (14)
Lack of Combination Pattern Component 33
Requiring Anaphora Resolution 9
Error in Prediction Model 8
Requiring Attributive Adjectives 5
Others 10

More than one cause can occur in one error, thus the sum of
all causes is larger than the total number of False Negatives.

Table 3: Causes of Error for FNs

actome or pairs that our processed text did not in-
clude, we excluded extracted pairs of IDs that are
not included in Reactome and excluded Reactome
pairs of IDs that do not co-occur in the sentences
of our processed text.

After this postprocessing, we found that we had
extracted 7775 human protein pairs. Of them, 155
pairs were also included in Reactome ([a] pseudo
TPs) and 7620 pairs were not included in Reac-
tome ([b] pseudo FPs). 947 pairs of Reactome
were not extracted by our system ([c] pseudo False
Negatives (FNs)). However, these results included
pairs that Reactome missed or those that only co-
occurred and were not interacting pairs in the text.
There may also have been errors with ID assign-
ment.

To determine such cases, a biologist investi-
gated 100 pairs randomly selected from pairs of
pseudo TPs, FPs and FNs retaining their ratio of
numbers. She also checked correctness of the as-
signed IDs. 2 pairs were selected from pseudo
TPs, 88 pairs were from pseudo FPs and 10 pairs
were from pseudo FNs. The biologist found that
57 pairs were actual TPs (2 pairs of pseudo TPs
and 55 pairs of pseudo FPs) and 32 pairs were ac-
tual FPs of the pseudo FPs. Thus, the precision
was 64.0% in this sample set. Furthermore, even
if we assume that all pseudo FNs are actual FNs,
the recall can be estimated by actual TPs / (actual
TPs + pseudo FNs) × 100 = 83.8%.

These results mean that the recall of an IE sys-
tem for interacting proteins is improved for a large
amount of text even if it is low for a small corpus.
Thus, this justifies our assertion that a high degree
of precision in the low-recall range is important.

5.3 Error Analysis

Tables 3 and 4 list causes of error for FNs/FPs on
a test set of the AImed corpus using the predic-
tion model with the best F-measure with all the
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Total 35
Requiring Attributive Adjectives 13
Corpus Error 11
Error in Prediction Model 5
Requiring Negation Words 2
Parsing Error 1
Others 3
Table 4: Causes of Error for FPs

features. Different to Subsection 5.1, we individ-
ually checked each occurring pair of interacting
proteins. The biggest problems were parsing er-
ror/failure, lack of necessary patterns and learning
of inappropriate patterns.

5.3.1 Parsing Error

As listed in Table 3, 14 (40%) of the 35 pars-
ing errors/failures were related to coordinations.
Many of these were caused by differences in the
characteristics of the PTB/GTB, the training cor-
pora for Enju, and the AImed Corpus. For ex-
ample, Enju failed to obtain the correct structure
for “the ENTITY1 / ENTITY1 complex” because
words in the PTB/GTB are not segmented with
“/” and Enju could not be trained on such a case.
One method to solve this problem is to avoid seg-
menting words with “/” and introducing extraction
patterns based on surface characters, such as “EN-
TITY1/ENTITY2 complex”.

Parsing errors are intrinsic problems to IE meth-
ods using parsing. However, from Table 3, we can
conclude that the key to gaining better accuracy
is refining of the method with which the PAS pat-
terns are constructed (there were 46 related FNs)
rather than improving parsing (there were 35 FNs).

5.3.2 Lack of Necessary Patterns and
Learning of Inappropriate Patterns

There are two different reasons causing the
problems with the lack of necessary patterns and
the learning of inappropriate patterns: (1) the
training corpus was not sufficiently large to sat-
urate IE accuracy and (2) our method of pattern
construction was too limited.

Effect of Training Corpus Size To investigate
whether the training corpus was large enough to
maximize IE accuracy, we conducted experiments
on training corpora of various sizes. Figure 6 plots
graphs of F-measures by SCORE and Figure 7
plots the number of combination patterns on train-
ing corpora of various sizes. From Figures 6 and 7,
the training corpus (207 abstracts at a maximum)
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is not large enough. Thus increasing corpus size
will further improve IE accuracy.

Limitation of the Present Pattern Construc-
tion The limitations with our pattern construc-
tion method are revealed by the fact that we
could not achieve a high precision like Bunescu
and Mooney (2006) within the high-recall range.
Compared to theirs, one of our problems is that our
method could not handle attributives. One exam-
ple is “binding property of ENTITY1 to ENTITY2”.
We could not obtain “binding” because the small-
est set of PASs connecting “ENTITY1” and “EN-
TITY2” includes only the PASs of “property”, “of”
and “to”. To handle these attributives, we need dis-
tinguish necessary attributives from those that are
general4 by semantic analysis or bootstrapping.

Another approach to improve our method is to
include local information in sentences, such as
surface words between protein names. Zhao and
Grishman (2005) reported that adding local infor-
mation to deep syntactic information improved IE
results. This approach is also applicable to IE in
other domains, where related entities are in a short

4Consider the case where a source sentence for a pattern is
“ENTITY1 is an important homodimeric protein.” (“homod-
imeric” represents that two molecules of “ENTITY1” interact
with each other.)
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distance like the work of Zhou et al. (2005).

6 Conclusion

We proposed the use of PASs to construct pat-
terns as extraction rules, utilizing their ability to
abstract syntactical variants with the same rela-
tion. In addition, we divided the patterns for gen-
eralization, and used matching results for SVM
learning. In experiments on extracting of protein-
protein interactions, we obtained 71.8% precision
and 48.4% recall on a small corpus and 64.0% pre-
cision and 83.8% recall estimated on a large text,
which demonstrated the obvious advantages of our
method.
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Abstract

How can proteins fold so quickly into their
unique native structures? We show here
that there is a natural analogy between
parsing and the protein folding problem,
and demonstrate that CKY can find the na-
tive structures of a simplified lattice model
of proteins with high accuracy.

1 Introduction

In statistical parsing, the task is to find the most
likely syntactic structure for an input string of
words, given a grammar and a probability model
over the analyses defined by that grammar. Pro-
teins are sequences of amino acids (polypeptide
chains) that form unique, sequence-specific three-
dimensional structures. The structure into which a
particular protein folds has a lower energy than all
other possible structures. In protein structure pre-
diction, the task is thus to find the lowest-energy
physical structure for an input sequence of amino
acids, given a representation of possible structures
and a function that assigns an energy score to these
structures. There is therefore a natural analogy
between these two seemingly unrelated computa-
tional problems. Based on this analogy, we pro-
pose an adaptation of the CKY chart parsing algo-
rithm to protein structure prediction, using a well-
known simplified model of proteins as proof of
concept.

Models of protein folding additionally aim to
explain the process by which this structure for-
mation takes place, and their validity depends not
only on the accuracy of the predicted structures,
but also on their physical plausibility. One com-
mon proposal in the biophysical literature is that
the folding process is hierarchical, and that folding
routes are tree-shaped. CKY provides an explicit
computational recipe to efficiently search (and re-
turn) all possible folding routes. This sets it apart

from existing folding algorithms, which are typi-
cally based on Monte Carlo simulations, and can
only sample one possible trajectory.

Since we believe that there is much scope for
future work in applying statistical parsing tech-
niques to more detailed models of proteins, a sec-
ondary aim of this paper is to provide an introduc-
tion to the research questions that arise in protein
folding to the NLP community.

Proteins are essential components of the cells of
any living organism, and their biological function
(eg. as enzymes that catalyze certain reactions) de-
pends on their three-dimensional structure. How-
ever, genes only specify the linear, sequence of the
amino acids, and the ribosome (the cell’s “pro-
tein factory”) uses this information to assemble
the polypeptide chain. Under “natural” condi-
tions, these polypeptide chains then fold rapidly
and spontaneously into their unique final struc-
tures, or native states. Therefore, protein folding is
often referred to as the second half of the genetic
code, and the ability to predict the native state for
a primary sequence is great practical importance,
eg. in drug design, or in our understanding of the
genome.

Levinthal (1968), who was the first to frame the
folding process as a search problem, showed that
folding cannot be guided by a random, exhaus-
tive search: he argued that a chain of 150 amino
acids has on the order of 10300 possible structures,
but since folding takes only a few seconds, not
more 108 of these structures can be searched. Un-
der the assumption that a better understanding of
the physical folding process will ultimately be re-
quired to design accurate structure prediction tech-
niques, this observation has lead researchers to
try to identify sequence-specific pathways along
which folding may proceed or a general mecha-
nism that makes this process so fast and reliable.

Our aim of understanding the folding process is
different from a number of approaches which have
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used formal grammars to represent the structure
of biological molecules such as RNAs or proteins
(Searls, 2002; Durbin et al., 1998; Chiang, 2004).
These studies have typically focused on a specific
classes of protein folds, and are not generally ap-
plicable yet. Our folding algorithm restricts the
possible order of folding events, but places no ex-
plicit restrictions on the structures it can account
for (other than those imposed by the spatial model
used to represent them, and those that are implied
by the hierarchical nature of the folding process).

2 A brief introduction to protein folding

2.1 Protein structure

The primary structure describes the linear se-
quence of amino acids that are linked via pep-
tide bonds (and form the backbone of the polypep-
tide chain). Each amino acid has one side chain
which branches off the backbone. Proteins con-
tain twenty different kinds of amino acids, which
differ only in the size and chemical properties
of their side-chains. One important distinction
is that between hydrophobic (water-repelling) and
hydrophillic (polar) amino acids.

The secondary structure refers to patterns of lo-
cal structures such as α-helices or β-sheets, which
occur in many different folded structures. These
secondary structure elements often assemble into
larger domains. The tertiary structure represents
the fully folded three-dimensional conformation
of a single-chain protein, and typically consists of
multiple domains. Since proteins in the cell are
surrounded by water, hydrophobic side-chains are
typically inside this structure and in close con-
tact to each other, forming a hydrophobic core,
whereas polar side-chains are more likely to be on
the surface of this structure. This hydrophobic ef-
fect is known to be the main driving force for the
folding process.

Computational models of protein folding often
use a very simplified representation of these struc-
tures. Ultimately, models which explicitly capture
all atoms and their physical interactions are re-
quired to study the folding of real proteins. How-
ever, since such models often require huge compu-
tational resources such as supercomputers or dis-
tributed systems, novel search strategies and other
general properties of the folding problem are usu-
ally first studied with coarse-grained, simplified
representations, such as the HP model (Lau and
Dill, 1989; Dill et al., 1995) used here.

2.2 Folding and thermodynamics

As first shown by Anfinsen (1973), protein folding
is a reversible process: under “denaturing” condi-
tions, proteins typically unfold into a random state
(which still preserves the chain connectivity of the
primary amino acid sequence), and refold again
into their unique native state if the natural folding
conditions are restored. Thus, all the information
that is necessary to determine the folded structure
has to be encoded in the primary sequence. This
is analogous to natural language, where the mean-
ing of sentences such as I drink coffee with milk
vs. I drink coffee with friends is also determined
by their words.

Since folding occurs spontaneously, the native
state has to be the thermodynamically optimal
structure (under folding conditions), ie. the struc-
ture that results in the lowest free energy. The free
energy G � H � TS of a system depends on its en-
ergy H , its entropy S (the amount of disorder in
the system), and the temperature T . A computa-
tional model therefore requires an energy function
φ : Rn � R, which maps n-dimensional vectors that
describe the structure of a polypeptide chain (eg.
in terms of the coordinates of its atoms) to the free
energies of the corresponding structures. The na-
tive state is assumed to be the global minimum of
this function. This is again analogous to statisti-
cal parsing, where the correct analysis is assumed
to be the structure with the highest probability. In
the case of proteins, we can use the laws of physics
to determine the energy function, whereas in lan-
guage, the “energies” have to be estimated from
corpora.1

The energy H of a single protein structure de-
pends essentially on the interactions (contacts) be-
tween side-chains and on the bond angles along
the backbone, whereas the entropy S also depends
on the surrounding solvent (water). It is this im-
pact on S which creates the hydrophobic effect.
For simplicity’s sake most computational models
use an implicit solvent energy function, which cap-
tures the hydrophobic effect by assuming that the
contact energies between hydrophobic side-chains
are particularly favorable. Since bond angles alone
cannot capture the hydrophobic effect (Dill, 1999),
simplified models typically ignore their impact
and represent the energy of a conformation only

1We note, however, that so-called “knowledge-based” or
“statistical potentials”, whose parameters are also estimated
from known structures, are often used as well.
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in terms of the side chain contacts. One par-
ticularly well-known example is the Miyazawa-
Jernigan (1996) energy function, a 20x20 matrix
of contact potentials whose parameters are esti-
mated from the Protein Data Bank, a database of
experimentally verified protein structures. These
simplified energy functions are therefore very sim-
ilar to the bi-lexical dependency models that are
commonly used in statistical parsing.

It is this similarity between inter-residue con-
tacts and word-word dependencies that grammar-
based approaches (Searls, 2002) exploit. The set
of contacts for a given structure can be represented
as a polymer graph, although often only the edges
of this graph are given in the form of a contact map
(a triangular matrix whose entry Cij corresponds
to the contact between the ith and jth residue).
The edges in this graph are inherently undirected.
In α-helices and parallel β-sheets, the edges are
crossing. Although grammars that capture the “de-
pendencies” in specific kinds of protein structures
have been written (Chiang, 2004), it is at present
unclear whether such an approach can be gener-
alized. The difficulty for all approximations to
structural representations (grammar-based or oth-
erwise) lies in accounting for excluded volume or
steric clashes (the fact that no two amino acids can
occupy the same point in space).

The so-called “New View” of protein folding
(Dill and Chan, 1997) assumes that the speed of
the folding process can be explained by the shape
of the energy landscape (ie. the surface of the
energy function for all possible structures of a
given chain). Folding is fastest if the landscape
is funnel-shaped (ie. has no local minima, and
there is a direct downward path from all points to
the native state). If the energy landscape is rugged
(ie. has many local minima) or golf-course shaped
(ie. all structures except for the native state have
the same, high, energy), folding is slow. In the
first case, energetic barriers slow down the fold-
ing process: the chain gets stuck in local minima,
or kinetic traps. Such traps correspond to struc-
tures that contain “incorrect” (non-native) contacts
which have to be broken (thus increasing the en-
ergy) before the native state can be reached. In
the case of a plateau in the landscape, the search
for the native state is slowed down by entropic
barriers, i.e. a situation where a large number of
equivalent structures with the same energy are ac-
cessible. Implicit in the landscape perspective is
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Figure 1: A conformation in the HP model with a
“Greek key” β-sheet (1-17) and α-helix (17-24)

the assumption that folding is a greedy search –
that local moves in the landscape can successfully
identify the global minimum. Not all amino acid
sequences have such landscapes, and in fact, most
random amino acid sequences are unlikely to fold
into a unique structure. This is again similar to
language, where random sequences of words are
also unlikely to form a grammatical sentence.

Computational simulations of the folding pro-
cess are typically based on Monte Carlo or re-
lated techniques. These approaches require an en-
ergy function as well as a “move set” (a set of
rules which describe how one conformation can
be transformed into another). However, since each
individual simulation can only capture the folding
trajectory of a single chain, many runs are typi-
cally required to sample the entire landscape to a
sufficient degree.

2.3 The HP model

The HP model (Lau and Dill, 1989; Dill et al.,
1995) is one of the most simplified protein models.
Here, proteins are short chains that are placed onto
a 2-dimensional square lattice (Figure 1). Each HP
sequence consists of two kinds of monomers, hy-
drophobic (H) and polar (P), and each monomer
is represented as a single bead on a lattice site.
The chain is placed onto the lattice such that each
lattice site is occupied by at most one bead, and
beads that are adjacent in the sequence are on ad-
jacent lattice sites, so that it forms a self-avoiding
walk (SAW) on the lattice. Such lattice models
are commonly used in polymer physics, since they
capture excluded volume effects, and the proper-
ties of such SAWs on different types of lattices are
a well-studied problem in combinatorics.

Each distinct SAW corresponds to one “con-
formation”, or possible structure. The energy of
a conformation is determined by the contacts be-
tween two H monomers i and j that are not adja-
cent in the sequence. Contacts arise if the chain
is in a configuration such that monomers i and j

295



Figure 2: Trees describe folding routes. Tree cuts describe the state of the chain at any point in time.

(i � j) are located on adjacent lattice sites. Each
HH-contact contributes � 1 to the energy. The en-
ergy E

�
c � of a conformation c with n HH con-

tacts is therefore � n. We consider only sequences
that have a single lowest-energy conformation (na-
tive state), since these are the most protein-like.
All unique-folding sequences up to a length of
25 monomers and their natives states are known
(Irbäck and Troein, 2002). In our experiments, we
will concentrate on the set of all unique-folding
HP sequences of length 20, of which there are
24,900. These 20-residue chains have 41,889,578
viable conformations on the 2D lattice.

Despite its simplicity, the HP model is com-
monly used to test protein folding algorithms,
since it captures essential physical properties of
proteins such as chain connectivity and the hy-
drophobic effect, and since finding the lowest en-
ergy conformation is an NP-complete problem
(Crescenzi et al., 1998; Berger and Leighton,
1998), as in real proteins.

3 Folding as hierarchical search

3.1 Evidence for hierarchical folding

There is substantial evidence in the experi-
mental literature (starting with Crippen (1978)
and Rose (1979); but see also Baldwin and
Rose (1999a; 1999b)) that the folding process is
guided by a hierarchical search strategy, whereby
folding begins simultaneously and independently
in different parts of the chain, leading initially
to the formation of local structures which either
grow larger, or assemble with other local struc-
ture. Folded protein structures can typically be
recursively decomposed, and in many proteins,
small, contiguous parts of the chain form near-
native structures during early stages of the folding
process. On the theoretical side, Dill et al. (1993)
demonstrate that local contacts are easiest to form
when the chain is unfolded, and facilitate the sub-
sequent formation of less local contacts, leading
to a “zipping” effect, where small, local structures
grow larger before being assembled.

3.2 Folding routes as trees

Folding routes describe how individual chains
move from the unfolded to the native state. If
protein folding is a recursive, parallel process,
as assumed here, folding routes are trees whose
leaf nodes represent substrings of the primary
sequence, and whose root represents the folded
structure of the entire chain (Figure 2). The nodes
in between the leaves and root correspond to chain
segments whose length lies between that of the
shortest initial segments and the final complete
chain. Folding begins independently and simulta-
neously at each of the leaves, and moves toward
the root. Each internal node of a folding route
tree represents a set of partially folded confor-
mations of the corresponding chain segment that
is found by combining conformations of smaller
pieces formed in previous steps.

Figure 2 also shows that the state of the entire
chain at different stages during the folding pro-
cess is given by a horizontal treecut, a set of nodes
whose segments span the entire chain, but do not
overlap.

Because we assume that folding routes are trees,
contacts between two adjacent segments A and B
can only be formed when A and B are combined to
form their parent C. Our assumption also implies
that in a sequence uvw, contacts between v and w
or between v and u have to be formed before or at
the same time as contacts between u and w.

Trees provide a unified representation of the
growth and assembly process assumed by hierar-
chical folding theories: A growth step corresponds
to a local tree in which a non-terminal node and
a leaf node are combined, whereas an assembly
step corresponds to a local tree in which two non-
terminal nodes are combined.

Folding route trees thus play a very different
role from the traditional phrase structure trees
in natural language, since they represent merely
the process by which the desired structure was
formed, and not the structure itself. This is more
akin to the role of syntactic derivations in for-
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malisms such as CCG (Steedman, 2000): in CCG,
syntactic derivation trees do not constitute an au-
tonomous level of representation, but only specify
how the semantic interpretation of a sentence is
constructed. We will see below that proteins, like
sentences in CCG, have a “flexible” constituent
structure, with multiple folding routes leading to
the native state.

4 Protein folding as chart parsing

Here, we show how the CKY algorithm (Kasami,
1965; Younger, 1967) can be adapted to protein
folding in the HP model. Although we use a
simplified lattice model, our technique is suffi-
ciently general to be applicable to other represen-
tations. As in standard CKY, structures for sub-
strings i ��� j are formed from pairs of previously
identified structures for substrings i ����� k and k

�
1 ��� j,

and, as in standard probabilistic CKY, we use a
pruning strategy akin to Viterbi search, and only
retain the lowest energy structures in each cell.

The complexity of standard CKY is O
�
n3 � G � � ,

where n is the length of the input string and � G �
the “size” of the grammar. Since we do not have
a grammar with a fixed set of nonterminals, which
would allow us to compactly represent all possible
structures for a given substring, the constant factor
� G � is replaced by an exponential factor nc, repre-
senting the number of possible conformations of a
chain of length n. Our pruning strategy captures
the physical assumption that only locally optimal
structures are stable enough not to unfold before
further contacts can be made. With a larger set of
amino acids and a corresponding energy function,
a beam search strategy (with threshold pruning)
may be more appropriate. Pruning is an essential
part of our algorithm – without it, it would amount
to exhaustive enumeration, repeated O

�
n3 � times.

The chart Since only HH contacts contribute
to the energy of a conformation, the dimensions
of the chart are determined by the number of H
monomers in the sequence. We segment every
HP sequence into h substrings that contain one H
each (splitting long substrings of Ps in the mid-
dle). For efficiency reasons, non-empty prefixes
or suffixes of P monomers (eg. in sequences of
the form PPPH ��������� HP) may also be split off as
additional substrings (and are then only combined
with the rest of the chain once the substring from
the first to the last H monomer has been analyzed).
These substrings correspond to the leaf nodes in

the folding trees. Other regimes are also conceiv-
able. Since no adjacent H monomers can form a
contact, up to three consecutive Hs may be kept in
the same substring. While this typically leads to
an increase in efficiency, it comes at a slight cost in
accuracy with our current pruning strategy. Long
substrings of Ps could also be treated as separate
substrings in a manner similar to P pre- and suf-
fixes.

Chart items The items in our chart represent
the lowest-energy conformations that are found
for the corresponding substring. Unlike in stan-
dard CKY, each cell contains the full set of struc-
tures for its substring (which leads to the exponen-
tial worst-case behavior observed above). There-
fore, the chart does not need to be unpacked to
obtain the desired output structure. Backpoint-
ers from items in chart � i ��� j � to pairs of items in
chart � i ��� k � and chart � k �

1 ��� j � represent the folding
route trees, and thus record the history of the fold-
ing process. Each item can only have at most j � i
pairs of backpointers, since it can only be con-
structed from one pair of conformations in each
pair of cells.

Initializing the chart The chart is initialized by
filling the cells chart � i ��� i � which correspond to the
ith substring. Since each initial substring has at
most one H, all its conformations are equivalent
(and the size of chart � i ��� i � is thus exponential in
the length of its substring). This exhaustive enu-
meration can be performed off-line.

Filling the chart As in standard CKY, the in-
ternal cells chart � i ��� j � are filled by combining the
entries of cells chart � i ��� k � and chart � k �

1 ��� j � for
i � k � j. Two conformations l � chart � i ��� k � and
r � chart � i ��� k � are combined like two pieces of a
jigsaw puzzle where the only constraint is that two
pieces may not overlap. That is, we append all (ro-
tational and translational) variants of r to any free
site adjacent to the site of l’s last monomer, and
add all resulting viable conformations c (ie. those
where no two monomers occupy the same lattice
site) into chart � i ��� j � .

With our current pruning strategy, only the
lowest-energy conformations in each cell are kept.

CKY terminates when the top cell, chart � 1 ��� n � ,
is filled. It has succeeded if the top cell contains an
item with only one conformation, the native state.
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Figure 3: The amount of search depends on the shape of the ”chart energy landscapes”

Contact maps as node labels We have also de-
veloped a variant of this algorithm where the en-
tries in a cell correspond to contact maps (sets of
HH-contacts), and where each entry corresponds
in turn to the set of conformations that corresponds
to this contact map. Conformations that have the
same contact map are assumed to be physically
equivalent. While the number of possible contact
maps is also exponential in the length of the sub-
string (Vendruscolo et al., 1999), it is obviously
much smaller than the number of actual conforma-
tions. In our current implementation, the amount
of search required is identical in both variants; but
in extending this approach beyond the lattice, it
may be possible to use a more efficient sampling
approach to speed up the combination of confor-
mations in two cells.

5 Results

5.1 Folding accuracy

With our current pruning strategy, CKY finds the
native state of 96.7% of all 24,900 unique-folding
20mers, confirming our hypothesis that the hierar-
chical greedy search that is implemented in CKY
is a viable strategy. With exhaustive search, the
“conformational search number” (CSN), ie. total
number of conformations searched per sequence
(summed over all cells), corresponds on average to
2.5% of all possible conformations for a sequence
of length 20. We have also explored restrictions
where an initial contact is only allowed between
H monomers whose distance along the backbone
is smaller than or equal to a given threshold ∆. For
∆ � 7, accuracy drops slightly to 95.2%, but the
number of searched conformations corresponds to
only 1% of the search space.

5.2 The chart landscape

Since we employ a beam search strategy, all con-
formations that remain in a cell after pruning have
the same energy level. Therefore, CKY identi-
fies the substring or chart energy landscape of
each sequence, a function f

�
i � j � which maps sub-

strings
�
i � j � to their lowest accessible energy level.

Since the energy of a conformation in the HP
model is determined by the number of HH con-
tacts, f

�
i � j � � f

�
i

�

� j
� � for all i

� � i � j � j
�

. That
is, unlike standard energy functions, f has no lo-
cal minima. As shown in figure 3 (where the size
of the cells is adjusted to reflect the length of the
corresponding substrings), the “slope” of f deter-
mines the amount of search required to fold a se-
quence. Sequence that require little search have a
steep funnel, whereas sequence that require a lot
of search have a flat, golf-course like landscape.
HH contacts impoose constraints on the number of
conformations, therefore a cell with lower energy
will also have fewer entries than a cell with higher
energy that spans a string of the same length. This
is analogous to standard energy landscapes (Dill
and Chan, 1997), where a plateau corrresponds to
an entropic barrier, which requires a lot of search.

5.3 The “constituent structure” of proteins

We can extract the set of all folding routes
(all trees which lead to the native state) from
the chart, visualize the ensemble-averaged “con-
stituent structure” of a chain by coloring each cell
in the (adjusted) chart by the posterior probabil-
ity that native routes go through it (here black:p=1
and white:p=0). A probability of one corresponds
to a structure that has to be formed by all routes,
whereas a probability of zero represents a set of
misfolded structures. Misfolding arises if the low-
est energy structures contain non-native (incor-
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Figure 4: CKY identifies the “constituent structures” of proteins, which correspond to their folding routes

rect) contacts. Since these contacts have to be bro-
ken before the native state can be reached, requir-
ing an uphill step in energy, they correspond to en-
ergetic barriers.

Figure 4 shows the “constituent structure” of
the conformation shown in Figure 1, and one of
its corresponding folding routes. Many sequences
show very specific patterns of folding routes, as in
the example given here, where the β-strands 7-10
and 11-16 and the α-helix from 17-24 “grow” onto
the hairpin from 1-5.

A number of proteins are known to form so-
called “foldons” (Maity et al., 2005). These are
substrings of the chain which can be found in their
near-native conformation before the entire chain is
completely folded. In our parsing perspective on
protein folding, these foldons correspond to nodes
that are shared by sufficiently many native routes
that they can be detected experimentally.

6 Conclusions and future work

This paper has demonstrated that an adaptation
of the CKY chart parsing algorithm can be suc-
ccessfully applied to protein folding in the 2D
HP model, a commonly used simplified lattice
model which captures essential physical and com-
putational properties of the real folding process.
Both syntactic parsing and protein folding algo-
rithms search for the globally optimal structure
for a given input string. And any given sentence
has a large number of possible interpretations, just
as any amino acid sequence has an astronomical
number of possible spatial conformations. There-
fore it is not surprising if similar techniques can
be applied to both tasks. In both cases, it seems
to be possible to exploit locally available infor-
mation with a greedy, hierarchical search strategy,
which starts with local, independent searches for
small substrings (to first determine which small
phrases might make sense, or to find partially sta-

ble peptide structures) and then either: (a) ‘grows’
one substring into a larger substring, or (b) ‘as-
sembles’ two substrings together into a larger sub-
string. More interestingly, in the protein folding
case, such recursive hierarchical search strategies,
which imply tree-shaped folding routes, have been
postulated independently for biological and bio-
physical reasons. This may indicate a deeper, nat-
ural connection between these two processes.

Given that hierarchical search strategies for pro-
tein folding have been proposed in the biologi-
cal literature, our primary interest here has been
the question of whether a greedy, hierarchical
search as implemented in CKY is able to iden-
tify the native state of proteins in the HP model.
The research presented here aims to verify these
predictions with an explicit computational model.
Therefore, we were less concerned with improv-
ing efficiency, and more with the properties of this
algorithm, which we consider a baseline method
upon which more sophisticated techniques such as
best-first parsing (Caraballo and Charniak, 1998)
or A

�

search (Klein and Manning, 2003) may well
be able to improve.

We also plan to adapt this technique to other,
more realistic, representations of proteins, and to
longer sequences. For longer sequences, we will
take advantage of the fact that CKY is easily paral-
lelizable, since any operation which combines the
entries of two cells chart � i ��� k � and chart � k �

1 ��� j � is
completely independent of other parts of the chart.

If the routes by which proteins fold really are
trees, a dynamic programming technique such as
CKY is inherently suited to model this process,
since it is the most efficient way to search all pos-
sible trees. This distinguishes it from more estab-
lished techniques such as Monte Carlo, which can
only follow one trajectory at a time, and require
multiple runs to sample the underlying landscape
to a sufficient degree. What CKY by itself does
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not give us is an accurate prediction of the rates
that govern the folding process, including misfold-
ing and unfolding events. However, we believe
that it is possible to obtain this information from
the chart by extracting all tree cuts (which cor-
resond to the states of the chain at different stages
during the folding process) and calculating folding
rates between them.

Our work is only the beginning of a larger re-
search program: eventually we would like to be
able to model the folding process of real pro-
teins. One aim of this paper was therefore to point
out the fundamental similarities between statisti-
cal parsing and protein folding. We believe that
this is a fertile area for future work where other
natural language processing techniques may also
prove to be useful.
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Abstract

In this work we learn clusters of contex-
tual annotations for non-terminals in the
Penn Treebank. Perhaps the best way
to think about this problem is to contrast
our work with that of Klein and Man-
ning (2003). That research used tree-
transformations to create various gram-
mars with different contextual annotations
on the non-terminals. These grammars
were then used in conjunction with a CKY
parser. The authors explored the space
of different annotation combinations by
hand. Here we try to automate the process
— to learn the “right” combination auto-
matically. Our results are not quite as good
as those carefully created by hand, but they
are close (84.8 vs 85.7).

1 Introduction and Previous Research

It is by now commonplace knowledge that accu-
rate syntactic parsing is not possible given only
a context-free grammar with standard Penn Tree-
bank (Marcus et al., 1993) labels (e.g.,S, NP ,
etc.) (Charniak, 1996). Instead researchers
condition parsing decisions on many other fea-
tures, such as parent phrase-marker, and, fa-
mously, the lexical-head of the phrase (Mager-
man, 1995; Collins, 1996; Collins, 1997; Johnson,
1998; Charniak, 2000; Henderson, 2003; Klein
and Manning, 2003; Matsuzaki et al., 2005) (and
others).

One particularly perspicuous way to view the
use of extra conditioning information is that of
tree-transformation (Johnson, 1998; Klein and
Manning, 2003). Rather than imagining the parser
roaming around the tree for picking up the infor-

mation it needs, we rather relabel the nodes to di-
rectly encode this information. Thus rather than
have the parser “look” to find out that, say, the
parent of someNP is anS, we simply relabel the
NP as anNP [S].

This viewpoint is even more compelling if one
does not intend to smooth the probabilities. For
example, considerp(NP → PRN | NP [S]) If
we have no intention of backing off this probabil-
ity to p(NP → PRN | NP ) we can treatNP [S]
as an uninterpreted phrasal category and run all
of the standard PCFG algorithms without change.
The result is a vastly simplified parser. This is ex-
actly what is done by Klein and Manning (2003).

Thus the “phrasal categories” of our title refer
to these new, hybrid categories, such asNP [S].
We hope to learn which of these categories work
best given that they cannot be made too specific
because that would create sparse data problems.

The Klein and Manning (2003) parser is an un-
lexicalized PCFG with various carefully selected
context annotations. Their model uses some par-
ent annotations, and marks nodes which initiate or
in certain cases conclude unary productions. They
also propose linguistically motivated annotations
for several tags, includingV P , IN , CC,NP and
S. This results in a reasonably accurate unlexical-
ized PCFG parser.

The downside of this approach is that their fea-
tures are very specific, applying different annota-
tions to different treebank nonterminals. For in-
stance, they mark right-recursiveNPs and not
V Ps (i.e., anNP which is the right-most child
of anotherNP ). This is because data sparsity is-
sues preclude annotating the nodes in the treebank
too liberally. The goal of our work is to automate
the process a bit, by annotating with more general
features that apply broadly, and by learning clus-
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ters of these annotations.

Mohri and Roark (2006) tackle this problem by
searching for what they call “structural zeros”or
sets of events which are individually very likely,
but are unlikely to coincide. This is to be con-
trasted with sets of events that do not appear to-
gether simply because of sparse data. They con-
sider a variety of statistical tests to decide whether
a joint event is a structural zero. They mark the
highest scoring nonterminals that are part of these
joint events in the treebank, and use the resulting
PCFG.

Coming to this problem from the standpoint of
tree transformation, we naturally view our work
as a descendent of Johnson (1998) and Klein and
Manning (2003). In retrospect, however, there are
perhaps even greater similarities to that of (Mager-
man, 1995; Henderson, 2003; Matsuzaki et al.,
2005). Consider the approach of Matsuzaki et al.
(2005). They posit a series of latent annotations
for each nonterminal, and learn a grammar using
an EM algorithm similar to the inside-outside al-
gorithm. Their approach, however, requires the
number of annotations to be specified ahead of
time, and assigns the same number of annotations
to each treebank nonterminal. We would like to
infer the number of annotations for each nonter-
minal automatically.

However, again in retrospect, it is in the work of
Magerman (1995) that we see the greatest similar-
ity. Rather than talking about clustering nodes, as
we do, Magerman creates a decision tree, but the
differences between clustering and decision trees
are small. Perhaps a more substantial difference
is that by not casting his problem as one of learn-
ing phrasal categories Magerman loses all of the
free PCFG technology that we can leverage. For
instance, Magerman must use heuristic search to
find his parses and incurs search errors because of
it. We use an efficient CKY algorithm to do ex-
haustive search in reasonable time.

Belz (2002) considers the problem in a man-
ner more similar to our approach. Beginning with
both a non-annotated grammar and a parent anno-
tated grammar, using a beam search they search
the space of grammars which can be attained via
merging nonterminals. They guide the search us-
ing the performance on parsing (and several other
tasks) of the grammar at each stage in the search.
In contrast, our approach explores the space of
grammars by starting with few nonterminals and

splitting them. We also consider a much wider
range of contextual information than just parent
phrase-markers.

2 Background

A PCFG is a tuple(V,M,µ0, R, q : R → [0, 1]),
whereV is a set of terminal symbols;M = {µi}
is a set of nonterminal symbols;µ0 is a start or
root symbol;R is a set of productions of the form
µi → ρ, whereρ is a sequence of terminals and
nonterminals; andq is a family of probability dis-
tributions over rules conditioned on each rule’s
left-hand side.

As in (Johnson, 1998) and (Klein and Man-
ning, 2003), we annotate the Penn treebank non-
terminals with various context information. Sup-
poseµ is a Treebank non-terminal. Letλ = µ[α]
denote the non-terminal category annotated with a
vector of context featuresα. A PCFG is derived
from the trees in the usual manner, with produc-
tion rules taken directly from the annotated trees,
and the probability of an annotated ruleq(λ →

ρ) = C(λ→ρ)
C(λ) whereC(λ → ρ) andC(λ) are the

number of observations of the production and its
left hand side, respectively.

We refer to the grammar resulting from extract-
ing annotated productions directly out of the tree-
bank as the base grammar.

Our goal is to partition the set of annotated non-
terminals into clustersΦ = {φi}. Each possible
clustering corresponds to a PCFG, with the set of
non-terminals corresponding to the set of clusters.
The probability of a production under this PCFG
is

p(φi → φjφk) =
C(φi → φjφk)

C(φi)

where φs ∈ Φ are clusters of annotated non-
terminals and where:

C(φi → φjφk . . .) =
∑

(λi,λj ,λk...)∈φi×φj×φk... C(λi → λjλk . . .)

We refer to the PCFG of some clustering as the
clustered grammar.

2.1 Features

Most of the features we use are fairly standard.
These include the label of the parent and grand-
parent of a node, its lexical head, and the part of
speech of the head.

Klein and Manning (2003) find marking non-
terminals which have unary rewrites to be helpful.
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They also find useful annotating two preterminals
(DT ,RB) if they are the product of a unary pro-
duction. We generalize this via two width features:
the first marking a node with the number of non-
terminals to which it rewrites; the second marking
each preterminal with the width of its parent.

Another feature is the span of a nonterminal, or
the number of terminals it dominates, which we
normalize by dividing by the length of the sen-
tence. Hence preterminals have normalized spans
of 1/(length of the sentence), while the root has a
normalized span of 1.

Extending on the notion of a Base NP, intro-
duced by Collins (1996), we mark any nonter-
minal that dominates only preterminals as Base.
Collins inserts a unary NP over any base NPs with-
out NP parents. However, Klein and Manning
(2003) find that this hurts performance relative to
just marking the NPs, and so our Base feature does
not insert.

We have two features describing a node’s posi-
tion in the expansion of its parent. The first, which
we call the inside position, specifies the nonter-
minal’s position relative to the heir of its parent’s
head, (to the left or right) or whether the nontermi-
nal is the heir. (By “heir” we mean the constituent
donates its head, e.g. the heir of anS is typically
theV P under theS.) The second feature, outside
position, specifies the nonterminal’s position rel-
ative to the boundary of the constituent: it is the
leftmost child, the rightmost child, or neither.

Related to this, we further noticed that several
of Klein & Manning’s (2003) features, such as
markingNPs as right recursive or possessive have
the property of annotating with the label of the
rightmost child (when they are NP and POS re-
spectively). We generalize this by marking all
nodes both with their rightmost child and (an anal-
ogous feature) leftmost child.

We also mark whether or not a node borders
the end of a sentence, save for ending punctuation.
(For instance, in this sentence, all the constituents
with the second “marked” rightmost in their span
would be marked).

Another Klein and Manning (2003) feature we
try includes the temporal NP feature, where TMP
markings in the treebank are retained, and propa-
gated down the head inheritance path of the tree.

It is worth mentioning that all the features here
come directly from the treebank. For instance, the
part of speech of the head feature has values only

from the raw treebank tag set. When a preterminal
cluster is split, this assignment does not change the
value of this feature.

3 Clustering

The input to the clusterer is a set of annotated
grammar productions and counts. Our clustering
algorithm is a divisive one reminiscent of (Martin
et al., 1995). We start with a single cluster for each
Treebank nonterminal and one additional cluster
for intermediate nodes, which are described in sec-
tion 3.2.

The clustering method has two interleaved
parts: one in which candidate splits are generated,
and one in which we choose a candidate split to
enact.

For each of the initial clusters, we generate a
candidate split, and place that split in a prior-
ity queue. The priority queue is ordered by the
Bayesian Information Criterion (BIC), e.g.(Hastie
et al., 2003).

The BIC of a modelM is defined as -2*(log
likelihood of the data according toM ) +dM *(log
number of observations).dM is the number of de-
grees of freedom in the model, which for a PCFG
is the number of productions minus the number
of nonterminals. Thus in this context BIC can be
thought of as optimizing the likelihood, but with a
penalty against grammars with many rules.

While the queue is nonempty, we remove a can-
didate split to reevaluate. Reevaluation is neces-
sary because, if there is a delay between when a
split is proposed and when a split is enacted, the
grammar used to score the split will have changed.
However, we suppose that the old score is close
enough to be a reasonable ordering measure for
the priority queue. If the reevaluated candidate is
no longer better than the second candidate on the
queue, we reinsert it and continue. However, if it
is still the best on the queue, and it improves the
model, we enact the split; otherwise it is discarded.

When a split is enacted, the old cluster is re-
moved from the set of nonterminals, and is re-
placed with the two new nonterminals of the split.
A candidate split for each of the two new clusters
is generated, and placed on the priority queue.

This process of reevaluation, enacting splits,
and generating new candidates continues until the
priority queue is empty of potential splits.

We select a candidate split of a particular cluster
as follows. For each context feature we generate
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Figure 1: A Parent annotated tree.

a potential nominee split. To do this we first par-
tition randomly the values for the feature into two
buckets. We then repeatedly try to move values
from one bucket to the other. If doing so results
in an improvement to the likelihood of the training
data, we keep the change, otherwise we reject it.
The swapping continues until moving no individ-
ual value results in an improvement in likelihood.

Suppose we have a grammar derived from a cor-
pus of a single tree, whose nodes have been anno-
tated with their parent as in Figure 1. The base
productions for this corpus are:

S[ROOT ] → NP [S] V P [S] 1/1
V P [S] → V BD[V P ] NP [V P ] 1/1
NP [S] → NP [NP ] CC[NP ] NP [NP ] 1/1
NP [V P ] → NN [NP ] 1/1
NP [NP ] → NNP [NP ] 2/2

Suppose we are in the initial state, with a single
cluster for each treebank nonterminal. Consider
a potential split of theNP cluster on the par-
ent feature, which in this example has three val-
ues: S, V P , and NP . If the S and V P val-
ues are grouped together in the left bucket, and
theNP value is alone in the right bucket, we get
cluster nonterminalsNPL = {NP [S], NP [V P ]}
andNPR = {NP [NP ]}. The resulting grammar
rules and their probabilities are:

S → NPL V P 1/1
V P → V BD NPL 1/1

NPL → NPR CC NPR 1/2
NPL → NN 1/2
NPR → NNP 2/2

If however, V P is swapped to the right bucket
with NP , the rules become:

S → NPL V P 1/1
V P → V BD NPR 1/1

NPL → NPR CC NPR 1/1
NPR → NN 1/3
NPR → NNP 2/3

The likelihood of the tree in Figure 1 is1/4 under
the first grammar, but only4/27 under the second.
Hence in this case we would reject the swap ofV P
from the right to the left buckets.

The process of swapping continues until no im-
provement can be made by swapping a single
value.

The likelihood of the training data according to
the clustered grammar is

∏

r∈R

p(r)C(r)

for R the set of observed productionsr = φi →
φj . . . in the clustered grammar. Notice that when
we are looking to split a clusterφ, only produc-
tions that contain the nonterminalφ will have
probabilities that change. To evaluate whether a
change increases the likelihood, we consider the
ratio between the likelihood of the new model, and
the likelihood of the old model.

Furthermore, when we move a value from one
bucket to another, only a fraction of the rules will
have their counts change. Suppose we are mov-
ing valuex from the left bucket to the right when
splittingφi. Letφx ⊆ φi be the set of base nonter-
minals inφi that have valuex for the feature being
split upon. Only clustered rules that contain base
grammar rules which use nonterminals inφx will
have their probability change. These observations
allow us to process only a relatively small number
of base grammar rules.

Once we have generated a potential nominee
split for each feature, we select the partitioning
which leads to the greatest improvement in the
BIC as the candidate split of this cluster. This can-
didate is placed on the priority queue.

One odd thing about the above is that in the lo-
cal search phase of the clustering we use likeli-
hood, while in the candidate selection phase we
use BIC. We tried both measures in each phase,
but found that this hybrid measure outperformed
using only one or the other.

3.1 Model Selection

Unfortunately, the grammar that results at the end
of the clustering process seems to overfit the train-
ing data. We resolve this by simply noting period-
ically the intermediate state of the grammar, and
using this grammar to parse a small tuning set (we
use the first 400 sentences of WSJ section 24, and
parse this every 50 times we enact a split). At the
conclusion of clustering, we select the grammar
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Figure 2: (a) A production. (b) The production,
binarized.

with the highest f-score on this tuning set as the
final model.

3.2 Binarization

Since our experiments make use of a CKY
(Kasami, 1965) parser1 we must modify the tree-
bank derived rules so that each expands to at most
two labels. We perform this in a manner simi-
lar to Klein and Manning (2003) and Matsuzaki
et al. (2005) through the creation of intermediate
nodes, as in Figure 2. In this example, the nonter-
minal heir ofA’s head isD, indicated in the figure
by markingD with angled brackets. The square
brackets indicate an intermediate node, and the la-
bels inside the brackets indicate that the node will
eventually be expanded into those labels.

Klein and Manning (2003) employ Collins’
(1999) horizontal markovization to desparsify
their intermediate nodes. This means that given
an intermediate node such as[C 〈D〉EF ] in Fig-
ure 2, we forget those labels which will not be ex-
panded past a certain horizon. Klein and Manning
(2003) use a horizon of two (or less, in some cases)
which means only the next two labels to be ex-
panded are retained. For instance in in this exam-
ple [C 〈D〉EF ] is markovized to[C 〈D〉 . . . F ],
sinceC andF are the next two non-intermediate
labels.

Our mechanism lays out the unmarkovized in-
termediate rules in the same way, but we mostly
use our clustering scheme to reduce sparsity. We
do so by aligning the labels contained in the in-
termediate nodes in the order in which they would
be added when increasing the markovization hori-

1The implementation we use was created by Mark John-
son and used for the research in (Johnson, 1998). It is avail-
able at his homepage.

zon from zero to three. We also always keep
the heir label as a feature, following Klein and
Manning (2003). So for instance,[C 〈D〉EF ]
is represented as having Treebank label “IN-
TERMEDIATE”, and would have feature vector
(D,C,F,E,D),while [〈D〉EF ] would have fea-
ture vector(D,F,E,D,−), where the first item
is the heir of the parent’s head. The “-” in-
dicates that the fourth item to be expanded is
here non-existent. The clusterer would consider
each of these five features as for a single pos-
sible split. We also incorporate our other fea-
tures into the intermediate nodes in two ways.
Some features, such as the parent or grandpar-
ent, will be the same for all the labels in the in-
termediate node, and hence only need to be in-
cluded once. Others, such as the part of speech
of the head, may be different for each label. These
features we align with those of corresponding la-
bel in the Markov ordering. In our running ex-
ample, suppose each child nodeN has part of
speech of its headPN , and we have a parent fea-
ture. Our aligned intermediate feature vectors then
become(A,D,C, PC , F, PF , E, PE ,D, PD) and
(A,D,F, PF , E, PE ,D, PD,−,−). As these are
somewhat complicated, let us explain them by un-
packing the first, the vector for[C 〈D〉EF ]. Con-
sulting Figure 2 we see that its parent isA. We
have chosen to put parents first in the vector, thus
explaining (A, ...). Next comes the heir of the
constituent,D. This is followed by the first con-
stituent that is to be unpacked from the binarized
version,C, which in turn is followed by its head
part-of-speechPC , giving us (A,D,C, PC , ...).
We follow with the next non-terminal to be un-
packed from the binarized node and its head part-
of-speech, etc.

It might be fairly objected that this formulation
of binarization loses the information of whether a
label is to the left, right, or is the heir of the par-
ent’s head. This is solved by the inside position
feature, described in Section 2.1 which contains
exactly this information.

3.3 Smoothing

In order to ease comparison between our work
and that of Klein and Manning (2003), we follow
their lead in smoothing no production probabilities
save those going from preterminal to nonterminal.
Our smoothing mechanism runs roughly along the
lines of theirs.
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LP LR F1 CB 0CB
Klein & Manning 86.3 85.1 85.7 1.31 57.2
Matsuzaki et al. 86.1 86.0 86.1 1.39 58.3

This paper 84.8 84.8 84.8 1.47 57.1

Table 1: Parsing results on final test set (Section
23).

Run LP LR F1 CB 0CB
1 85.3 85.6 85.5 1.29 59.5
2 85.8 85.9 85.9 1.29 59.4
3 85.1 85.5 85.3 1.36 58.0
4 85.3 85.7 85.5 1.30 59.9

Table 2: Parsing results for grammars generated
using clusterer with different random seeds. All
numbers here are on the development test set (Sec-
tion 22).

Preterminal rules are smoothed as follows. We
consider several classes of unknown words, based
on capitalization, the presence of digits or hy-
phens, and the suffix. We estimate the probabil-
ity of a tag T given a word (or unknown class)
W , as p(T | W ) = C(T,W )+hp(T |unk)

C(W )+h
, where

p(T | unk) = C(T, unk)/C(unk) is the prob-
ability of the tag given any unknown word class.
In order to estimate counts of unknown classes,we
let the clusterer see every tree twice: once un-
modified, and once with the unknown class re-
placing each word seen less than five times. The
production probabilityp(W | T ) is thenp(T |
W )p(W )/p(T ) wherep(W ) andp(T ) are the re-
spective empirical distributions.

The clusterer does not use smoothed probabil-
ities in allocating annotated preterminals to clus-
ters, but simply the maximum likelihood estimates
as it does elsewhere. Smoothing is only used in the
parser.

4 Experiments

We trained our model on sections 2-21 of the Penn
Wall Street Journal Treebank. We used the first
400 sentences of section 24 for model selection.
Section 22 was used for testing during develop-
ment, while section 23 was used for the final eval-
uation.

5 Discussion

Our results are shown in Table 1. The first three
columns show the labeled precision, recall and f-
measure, respectively. The remaining two show
the number of crossing brackets per sentence,

and the percentage of sentences with no crossing
brackets.

Unfortunately, our model does not perform
quite as well as those of Klein and Manning (2003)
or Matsuzaki et al. (2005). It is worth noting that
Matsuzaki’s grammar uses a different parse evalu-
ation scheme than Klein & Manning or we do.

We select the parse with the highest probability
according to the annotated grammar. Matsuzaki,
on the other hand, argues that the proper thing to
do is to find the most likely unannotated parse.
The probability of this parse is the sum over the
probabilities of all annotated parses that reduce
to that unannotated parse. Since calculating the
parse that maximizes this quantity is NP hard, they
try several approximations. One is what Klein &
Manning and we do. However, they have a better
performing approximation which is used in their
reported score. They do not report their score
on section 23 using the most-probable-annotated-
parse method. They do however compare the per-
formance of different methods using development
data, and find that their better approximation gives
an absolute improvement in f-measure in the .5-1
percent range. Hence it is probable that even with
their better method our grammar would not out-
perform theirs.

Table 2 shows the results on the development
test set (Section 22) for four different initial ran-
dom seeds. Recall that when splitting a cluster, the
initial partition of the base grammar nonterminals
is made randomly. The model from the second run
was used for parsing the final test set (Section 23)
in Table 1.

One interesting thing our method allows is for
us to examine which features turn out to be useful
in which contexts. We noted for each trereebank
nonterminal, and for each feature, how many times
that nonterminal was split on that feature, for the
grammar selected in the model selection stage. We
ran the clustering with these four different random
seeds.

We find that in particular, the clusterer only
found the head feature to be useful in very spe-
cific circumstances. It was used quite a bit to
split preterminals; but for phrasals it was only
used to splitADJP ,ADV P ,NP ,PP ,V P ,QP ,
andSBAR. The part of speech of the head was
only used to splitNP andV P .

Furthermore, the grandparent tag appears to be
of importance primarily forV P andPP nonter-
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minals, though it is used once out of the four runs
for NPs.

This indicates that perhaps lexical parsers might
be able to make do by only using lexical head and
grandparent information in very specific instances,
thereby shrinking the sizes of their models, and
speeding parsing. This warrants further investiga-
tion.

6 Conclusion

We have presented a scheme for automatically
discovering phrasal categories for parsing with a
standard CKY parser. The parser achieves 84.8%
precision-recall f-measure on the standard test-
section of the Penn WSJ-Treebank (section 23).
While this is not as accurate as the hand-tailored
grammar of Klein and Manning (2003), it is close,
and we believe there is room for improvement.
For starters, the particular clustering scheme is
only one of many. Our algorithm splits clus-
ters along particular features (e.g., parent, head-
part-of-speech, etc.). One alternative would be to
cluster simultaneously on all the features. It is
not obvious which scheme should be better, and
they could be quite different. Decisions like this
abound, and are worth exploring.

More radically, it is also possible to grow many
decision trees, and thus many alternative gram-
mars. We have been impressed by the success of
random-forest methods in language modeling (Xu
and Jelinek, 2004). In these methods many trees
(the forest) are grown, each trying to predict the
next word. The multiple trees together are much
more powerful than any one individually. The
same might be true for grammars.
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Abstract

This paper presents a corpus-based ac-
count of structural priming in human sen-
tence processing, focusing on the role that
syntactic representations play in such an
account. We estimate the strength of struc-
tural priming effects from a corpus of
spontaneous spoken dialogue, annotated
syntactically with Combinatory Catego-
rial Grammar (CCG) derivations. This
methodology allows us to test a range of
predictions that CCG makes about prim-
ing. In particular, we present evidence
for priming between lexical and syntactic
categories encoding partially satisfied sub-
categorization frames, and we show that
priming effects exist both for incremental
and normal-form CCG derivations.

1 Introduction

In psycholinguistics,priming refers to the fact that
speakers prefer to reuse recently encountered lin-
guistic material. Priming effects typically man-
ifest themselves in shorter processing times or
higher usage frequencies for reused material com-
pared to non-reused material. These effects are at-
tested both in language comprehension and in lan-
guage production.Structural primingoccurs when
a speaker repeats a syntactic decision, and has
been demonstrated in numerous experiments over
the past two decades (e.g., Bock, 1986; Branigan
et al., 2000). These experimental findings show
that subjects are more likely to choose, e.g., a
passive voice construction if they have previously
comprehended or produced such a construction.

Recent studies have used syntactically anno-
tated corpora to investigate structural priming.
The results have demonstrated the existence of
priming effects in corpus data: they occur for spe-
cific syntactic constructions (Gries, 2005; Szm-

recsanyi, 2005), consistent with the experimen-
tal literature, but also generalize to syntactic rules
across the board, which repeated more often than
expected by chance (Reitter et al., 2006b; Dubey
et al., 2006). In the present paper, we build on
this corpus-based approach to priming, but focus
on the role of the underlyingsyntactic represen-
tations. In particular, we use priming to evaluate
claims resulting from a particular syntactic theory,
which is a way of testing the representational as-
sumptions it makes.

Using priming effects to inform syntactic the-
ory is a novel idea; previous corpus-based priming
studies have simply worked with uncontroversial
classes of constructions (e.g., passive/active). The
contribution of this paper is to overcome this limi-
tation by defining a computational model of prim-
ing with a clear interface to a particular syntac-
tic framework. The general assumption we make
is that priming is a phenomenon relating to gram-
matical constituents – these constituents determine
the syntactic choices whose repetition can lead to
priming. Crucially, grammatical frameworks dif-
fer in the grammatical constituents they assume,
and therefore predict different sets of priming ef-
fects.

We require the following ingredients to pursue
this approach: a syntactic theory that identifies
a set of constituents, a corpus of linguistic data
annotated according to that syntactic theory, and
a statistical model that estimates the strength of
priming based on a set of external factors. We can
then derive predictions for the influence of these
factors from the syntactic theory, and test them
using the statistical model. In this paper, we use
regression models to quantify structural priming
effects and to verify predictions made by Com-
binatory Categorial Grammar (CCG, Steedman
(2000)), a syntactic framework that has the theo-
retical potential to elegantly explain some of the
phenomena discovered in priming experiments.
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CCG is distinguished from most other gram-
matical theories by the fact that its rules are
type-dependent, rather than structure-dependent
like classical transformations. Such rules adhere
strictly to the constituent condition on rules, i.e.,
they apply to and yield constituents. Moreover,
the syntactic types that determine the applicability
of rules in derivations are transparent to (i.e., are
determined, though not necessarily uniquely, by)
the semantic types that they are associated with.
As a consequence, syntactic types are more ex-
pressive and more numerous than standard parts of
speech: there are around 500 highly frequent CCG
types, against the standard 50 or so Penn Treebank
POS tags. As we will see below, these properties
allow CCG to discard a number of traditional as-
sumptions concerning surface constituency. They
also allow us to make a number of testable pre-
dictions concerning priming effects, most impor-
tantly (a) that priming effects are type-driven and
independent of derivation, and, as a corollary;
(b) that lexical and derived constituents of the
same type can prime each other. These effects are
not expected under more traditional views of prim-
ing as structure-dependent.

This paper is organized as follows: Section 2
explains the relationship between structural prim-
ing and CCG, which leads to a set of specific pre-
dictions, detailed in Section 3. Sections 4 and 5
present the methodology employed to test these
predictions, describing the corpus data and the sta-
tistical analysis used. Section 6 then presents the
results of three experiments that deal with priming
of lexical vs. phrasal categories, priming in incre-
mental vs. normal form derivations, and frequency
effects in priming. Section 7 provides a discussion
of the implications of these findings.

2 Background

2.1 Structural Priming

Previous studies of structural priming (Bock,
1986; Branigan et al., 2000) have made few the-
oretical assumptions about syntax, regardless of
whether the studies were based on planned exper-
iments or corpora. They leverage the fact that al-
ternations such asHe gave Raquel the car keysvs.
He gave the car keys to Raquelare nearly equiva-
lent in semantics, but differ in their syntactic struc-
ture (double object vs. prepositional object). In
such experiments, subjects are first exposed to a
prime, i.e., they have to comprehend or produce

either the double object or the prepositional ob-
ject structure. In the subsequent trial, thetarget,
they are the free to produce or comprehend either
of the two structures, but they tend to prefer the
one that has been primed. In corpus studies, the
frequencies of the alternative constructions can be
compared in a similar fashion (Gries, 2005; Szm-
recsanyi, 2005).

Reitter et al. (2006b) present a different method
to examine priming effects in the general case.
Rather than selecting specific syntactic alterna-
tions, general syntactic units are identified. This
method detects syntactic repetition in corpora and
correlates its probability with the distance between
prime and target, where at great distance, any rep-
etition can be attributed to chance. The size of
the priming effect is then estimated as the differ-
ence between the repetition probability close to
the prime and far away from the prime. This is
a way of factoring out chance repetition (which
is required if we do not deal with syntactic alter-
nations). By relying on syntactic units, the prim-
ing model includes implicit assumptions about the
particular syntactic framework used to annotate
the corpus under investigation.

2.2 Priming and Lexicalized Grammar

Previous work has demonstrated that priming ef-
fects on different linguistic levels are not indepen-
dent (Pickering and Branigan, 1998). Lexical rep-
etition makes repetition on the syntactic level more
likely. For instance, suppose we have two verbal
phrases (prime, target) produced only a few sec-
onds apart. Priming means that the target is more
likely to assume the same syntactic form (e.g., a
passive) as the prime. Furthermore, if the head
verbs in prime and target are identical, experi-
ments have demonstrated a stronger priming ef-
fect. This effect seems to indicate that lexical and
syntactic representations in the grammar share the
same information (e.g., subcategorization infor-
mation), and therefore these representations can
prime each other.

Consequently, we treat subcategorization as
coterminous with syntactic type, rather than as a
feature exclusively associated with lexemes. Such
types determine the context of a lexeme or phrase,
and are determined by derivation. Such an anal-
ysis is exactly what categorial grammars suggest.
The rich set of syntactic types that categories af-
ford may be just sufficient to describe all and only
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the units that can show priming effects during
syntactic processing. That is to say that syntac-
tic priming is categorialtype-priming, rather than
structural priming.

Consistent with this view, Pickering and Brani-
gan (1998) assume that morphosyntactic features
such as tense, aspect or number are represented in-
dependently from combinatorial properties which
specify the contextual requirements of a lexical
item. Property groups are represented centrally
and shared between lexicon entries, so that they
may – separately – prime each other. For ex-
ample, the pre-nominal adjectivered in the red
bookprimes other pre-nominal adjectives, but not
a post-nominal relative clause (the book that’s red)
(Cleland and Pickering, 2003; Scheepers, 2003).

However, if a lexical item can prime a phrasal
constituent of the same type, and vice versa, then
a type-driven grammar formalism like CCG can
provide a simple account of the effect, because
lexical and derived syntactic types have the same
combinatory potential, which is completely spec-
ified by the type, whereas in structure-driven the-
ories, this information is only implicitly given in
the derivational process.

2.3 Combinatory Categorial Grammar

CCG (Steedman, 2000) is a mildly context-
sensitive, lexicalized grammar formalism with a
transparent syntax-semantics interface and a flex-
ible constituent structure that is of particular in-
terest to psycholinguistics, since it allows the con-
struction of incremental derivations. CCG has also
enjoyed the interest of the NLP community, with
high-accuracy wide-coverage parsers(Clark and
Curran, 2004; Hockenmaier and Steedman, 2002)
and generators1 available (White and Baldridge,
2003).

Words are associated with lexical categories
which specify their subcategorization behaviour,
eg. ((S[dcl]\NP)/NP)/NP is the lexical category
for (tensed) ditransitive verbs in English such as
gives or send, which expect twoNP objects to
their right, and oneNP subject to their left. Com-
plex categoriesX/Y or X\Y are functors which
yield a constituent with categoryX, if they are ap-
plied to a constituent with categoryY to their right
(/Y) or to their left (\Y).

Constituents are combined via a small set of
combinatory rule schemata:
Forward Application: X/Y Y ⇒> X

1http://opennlp.sourceforge.net/

Backward Application: Y X\Y ⇒> X
Forward Composition: X/Y Y/Z ⇒B X/Z
Backward Composition: Y\Z X\Y ⇒B X\Z
Backw. Crossed Composition:Y/Z X\Y ⇒B X/Z
Forward Type-raising: X ⇒T T/(T\X)
Coordination: X conj X ⇒Φ X

Function application is the most basic operation
(and used by all variants of categorial grammar):

I saw the man

NP (S\NP)/NP NP
>

S\NP
<

S

Composition (B) and type-raising (T) are neces-
sary for the analysis of long-range dependencies
and for incremental derivations. CCG uses the
same lexical categories for long-range dependen-
cies that arise eg. in wh-movement or coordina-
tion as for local dependencies, and does not re-
quire traces:

the man that I saw

NP (NP\NP)/(S/NP) NP (S\NP)/NP
>T

S/(S\NP)
>B

S/NP
>

NP\NP
I saw and you heard the man

NP (S\NP)/NP conj NP (S\NP)/NP
>T >T

S/(S\NP) S/(S\NP)
>B >B

S/NP S/NP
<Φ>

S/NP
>

S

The combinatory rules of CCG allow multiple,
semantically equivalent, syntactic derivations of
the same sentence. Thisspurious ambiguityis
the result of CCG’s flexible constituent structure,
which can account for long-range dependencies
and coordination (as in the above example), and
also for interaction with information structure.

CCG parsers often limit the use of the combi-
natory rules (in particular: type-raising) to obtain
a single right-branchingnormal form derivation
(Eisner, 1996) for each possible semantic inter-
pretation. Such normal form derivations only use
composition and type-raising where syntactically
necessary (eg. in relative clauses).

3 Predictions

3.1 Priming Effects

We expect priming effects to apply to CCGcat-
egories, which describe the type of a constituent
including the arguments it expects. Under our as-
sumption that priming manifests itself as a ten-
dency for repetition, repetition probability should
be higher for short distances from a prime (see
Section 5.2 for details).
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3.2 Terminal and Non-terminal Categories

In categorial grammar, lexical categories specify
the subcategorization behavior of their heads, cap-
turing local and non-local arguments, and a small
set of rule schemata defines how constituents can
be combined.

Phrasal constituents may have the same cate-
gories as lexical items. For example, the verbsaw
might have the (lexical) category(S\NP)/NP,
which allows it to combine with anNP to the right.
The resulting constituent forsaw Johannawould
be of categoryS\NP – a constituent which expects
an NP (the subject) to its left, and also the lexi-
cal category of an intransitive verb. Similarly, the
constituent consisting of a ditransitive verb and its
object,gives the money, has the same category as
saw. Under the assumption that priming occurs for
these categories, we proceed to test a hypothesis
that follows from the fact that categories merely
encodeunsatisfiedsubcategorized arguments.

Given that a transitive verb has the same cat-
egory as the constituent formed by a ditransitive
verb and its direct object, we would expect that
both categories can prime each other, if they are
cognitive units. More generally, we would expect
that lexical (terminal) and phrasal (non-terminal)
categories of the same syntactic type may prime
each other. The interaction of such conditions with
the priming effect can be quantified in the statisti-
cal model.

3.3 Incrementality of Analyses

Type-raising and composition allow derivations
that are mostly left-branching, orincremental.
Adopting a left-to-right processing order for a sen-
tence is important, if the syntactic theory is to
make psycholinguistically viable predictions (Niv,
1994; Steedman, 2000).

Pickering et al. (2002) present priming experi-
ments that suggest that, in production, structural
dominance and linearization do not take place in
different stages. Their argument involves verbal
phrases with a shifted prepositional object such
as showed to the mechanic a torn overall. At a
dominance-only level, such phrases are equivalent
to non-shifted prepositional constructions(showed
a torn overall to the mechanic), but the two vari-
ants may be differentiated at a linearization stage.
Shifted primes do not prime prepositional objects
in their canonical position, thus priming must oc-
cur at a linearized level, and a separate dominance

level seems unlikely (unless priming is selective).
CCG is compatible with one-stage formulations of
syntax, as no transformation is assumed and cate-
gories encode linearization together with subcate-
gorization.

CCG assumes that the processor may produce
syntactically different, but semantically equivalent
derivations.2 So, while neither the incremental
analysis we generate, nor the normal-form, rep-
resent one single correct derivation, they are two
extremes of a ‘spectrum’ of derivations. We hy-
pothesize that priming effects predicted on the ba-
sis of incremental CCG analyses will be as strong
than those predicted on the basis of their normal-
form equivalents.

4 Corpus Data

4.1 The Switchboard Corpus

The Switchboard (Marcus et al., 1994) corpus con-
tains transcriptions of spoken, spontaneous con-
versation annotated with phrase-structure trees.
Dialogues were recorded over the telephone
among randomly paired North American speak-
ers, who were just given a general topic to talk
about. 80,000 utterances of the corpus have been
annotated with syntactic structure. This portion,
included in the Penn Treebank, has been time-
aligned (per word) in the Paraphrase project (Car-
letta et al., 2004).

Using the same regression technique as em-
ployed here, Reitter et al. (2006b) found a marked
structural priming effect for Penn-Treebank style
phrase structure rules in Switchboard.

4.2 Disfluencies

Speech is often disfluent, and speech repairs are
known to repeat large portions of the preceding
context (Johnson and Charniak, 2004). The orig-
inal Switchboard transcripts contains these disflu-
encies (marked up asEDITED):
( (S >>>(EDITED

(RM (-DFL- \bs [) )
(EDITED
(RM (-DFL- \bs [) )
(CC And)
(, ,)
(IP (-DFL- \bs +) ))

(CC and)
(, ,)
(RS (-DFL- \bs ]) )
(IP (-DFL- \bs +) ))<<<

2Selectional criteria such as information structure and in-
tonation allow to distinguish between semantically different
analyses.
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(CC and)
>>>(RS (-DFL- \bs ]) )<<<
(NP-SBJ (PRP I) )
(VP (VBP guess)

(SBAR (-NONE- 0)
(S (NP-SBJ (DT that) )

(VP (BES ’s)
(SBAR-NOM-PRD

(WHNP-1 (WP what) )
(S (NP-SBJ (PRP I) )

(ADVP (RB really) )
(VP (VBP like)

(NP (-NONE- *T*-1) ))))))))
(. .) (-DFL- E_S) ))

It is unclear to what extent these repetitions
are due to priming rather than simple correc-
tion. In disfluent utterances, we therefore elimi-
nate reparanda and only keep repairs (the portions
marked with>...< are removed). Hesitations (uh,
etc.), and utterances with unfinished constituents
are also ignored.

4.3 Translating Switchboard to CCG

Since the Switchboard annotation is almost iden-
tical to the one of the Penn Treebank, we use a
similar translation algorithm to Hockenmaier and
Steedman (2005). We identify heads, arguments
and adjuncts, binarize the trees, and assign cat-
egories in a recursive top-down fashion. Nonlo-
cal dependencies that arise through wh-movement
and right node raising (*T* and*RNR* traces) are
captured in the resulting derivation. Figure 1 (left)
shows the rightmost normal form CCG derivation
we obtain for the above tree. We then transform
this normal form derivation into the most incre-
mental (i.e., left-branching) derivation possible, as
shown in Figure 1 (right).

This transformation is done by a top-down re-
cursive procedure, which changes each tree of
depth two into an equivalent left-branching anal-
ysis if the combinatory rules allow it. This pro-
cedure is run until no further transformation can
be executed. The lexical categories of both deriva-
tions are identical.

5 Statistical Analysis

5.1 Priming of Categories

CCG assumes a minimal set of combinatory rule
schemata. Much more than in those rules, syntac-
tic decisions are evident from thecategoriesthat
occur in the derivation.

Given the categories for each utterance, we can
identify their repeated use. A certain amount
of repetition will obviously be coincidental. But

structural priming predicts that a target category
will occur more frequently closer to a potential
prime of the same category. Therefore, we can
correlate the probability of repetition with the dis-
tance between prime and target. Generalized Lin-
ear Mixed Effects Models (GLMMs, see next sec-
tion) allow us to evaluate and quantify this corre-
lation.

Every syntactic category is counted as a poten-
tial prime and (almost always) as a target for prim-
ing. Because interlocutors tend to stick to a topic
during a conversation for some time, we exclude
cases of syntactic repetition that are a results of
the repetition of a whole phrase.

Previous work points out that priming is sensi-
tive to frequency (Scheepers (2003) for high/low
relative clause attachments, (Reitter et al., 2006a)
for phrase structure rules). Highly frequent items
do not receive (as much) priming. We include
the logarithm of the raw frequency of the syntac-
tic category in Switchboard (LNFREQ) to approx-
imate the effect that frequency has on accessibility
of the category.

5.2 Generalized Linear Mixed Effects
Regression

We use generalized linear mixed effects regression
models (GLMM, Venables and Ripley (2002)) to
predict a response for a number of given categorial
(‘factor’) or continuous (‘predictor’) explanatory
variables (features). Our data is made up of in-
stances of repetition examples and non-repetition
examples from the corpus. For each target in-
stance of a syntactic categoryc occurring in a
derivation and spanning a constituent that begins
at time t, we look back for possible instances of
constituents with the same category (the prime)
in a time frame of[t − d− 0.5;t − d + 0.5] sec-
onds. If such instances can be found, we have a
positive example of repetition. Otherwise,c is in-
cluded as a data point with a negative outcome.
We do so for a range of different distancesd, com-
monly 1≤ d ≤ 15 seconds.3 For each data point,
we include the logarithm of the distanced between
priming periodandtarget as an explanatory vari-
able LNDIST. (See Reitter et al. (2006b) for a
worked example.)

In order to eliminate cases of lexical repeti-
tion of a phrase, e.g., names or lexicalized noun

3This approach uses a number of data points per target,
looking backwards for primes. The opposite way – looking
forwards for targets – would make similar predictions.
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Figure 1: Two derivations (normal form: left), incremental: right) for the sentence fragmentand I guess
that’s what I really likefrom Switchboard.

phrases, which we consider topic-dependent or in-
stances of lexical priming, we only collect syntac-
tic repetitions with at least one differing word.

Without syntactic priming, we would assume
that there is no correlation between the probabil-
ity that a data point is positive (repetition occurs)
and distanced. With priming, we would expect
that the probability is inversely proportional tod.
Our model uses lnd as predictor LNDIST, since
memory effects usually decay exponentially.

The regression model fitted is then simply a
choice of coefficientsβi , among them one for each
explanatory variablei. βi expresses the contribu-
tion of i to the probability of the outcome event,
that is, in our case, successful priming. The coeffi-
cient of interest is the one for the time correlation,
i.e. βlnDist. It specifies the strength of decay of
repetition probability over time. If no other vari-
ables are present, a model estimates the repetition
probability for a data pointi as

p̂i = β0 +βlnDist lnDISTi

Priming is present if the estimated parameter is
negative, i.e. the repetition probability decreases
with increasing distance between prime and target.

Other explanatory variables, such as ROLE,
which indicates whether priming occurs within a
speaker (production-production priming, PP) or
in between speakers (comprehension-production
priming, CP), receive an interaction coefficient
that adds linearly toβlnDist. Additional interac-
tion variables are included depending on the ex-
perimental question.4

4Lastly, we identify the target utterance in a random fac-
tor in our model, grouping the several measurements (15 for
the different distances from each target) asrepeated measure-
ments, since they depend on the same target category occur-
rence and are partially inter-dependent.

From the data produced, we include all cases
of reptition and a an equal number of randomly
sampled non-repetition cases.5

6 Experiments

6.1 Experiment 1: Priming in Incremental
and Normal-form Derivations

Hypothesis CCG assumes a multiplicity of se-
mantically equivalent derivations with different
syntactic constituent structures. Here, we in-
vestigate whether two of these, the normal-form
and the most incremental derivation, differ in the
strength with which syntactic priming occurs.

Method A joint model was built containing rep-
etition data from both types of derivations. Since
we are only interested in cases where the two
derivations differ, we excluded all constituents
where a string of words was analyzed as a con-
stituent in both derivations. This produced a data
set where the two derivations could be contrasted.

A factor DERIVATION in the model indicates
whether the repetition occurred in a normal-form
(NF) or an incremental derivation (INC).

Results Significant and substantial priming is
present in both types of derivations, for both PP
and CP priming. There is no significant difference
in priming strength between normal-form and
incremental derivations (βlnDist:NF = 0.008, p =
0.95). The logarithm of the raw category fre-
quency is negatively correlated with the priming
strength (βlnDist:lnFreq = 0.151, p < 0.0001. Note
that a negative coefficient for LNDIST indicates

5We trained our models using Penalized Quasi-
Likelihood (Venables and Ripley, 2002). This technique
works best if data is balanced, i.e. we avoid having very rare
positive examples in the data. Experiment 2 was conducted
on a subset of the data.
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CP:NormalForm

PP:NormalForm

CP:Incremental

PP:Incremental

1.0 1.2 1.4 1.6- - - -

Figure 2: Decay effect sizes in Experiment 1
for combinations of comprehension-production or
production-production priming and in incremental
or normal-form derivations. Error bars show (non-
simultaneous) 95% confidence intervals.

decay. The lower this coefficient, the more decay,
hence priming).

If there was no priming of categories for incre-
mentally formed constituents, we would expect to
see a large effect of DERIVATION. In the contrary,
we see no effect at a highp, where the that the
regression method used is demonstrably powerful
enough to detect even small changes in the prim-
ing effect. We conclude that there is no detectable
difference in priming between the two derivation
types. In Fig. 2, we give the estimated priming
effect sizes for the four conditions.6

The result is compatible with CCG’s separation
of derivation structure and the type of the result
of derivation. It is not the derivation structure that
primes, but rather the type of the result. It is also
compatible with the possibility of a non-traditional
constituent structure (such as the incremental anal-
ysis), even though it is clear that neither incremen-
tal nor normal-form derivations necessarily repre-
sent the ideal analysis.

The category sets occurring in both derivation
variants was largely disjunct, making testing for
actual overlap between different derivations im-
possible.

6.2 Experiment 2: Priming between Lexical
and Phrasal Categories

Hypothesis Since CCG categories simply en-
code unsatisfied subcategorization constraints,
constituents which are very different from a tradi-
tional linguistic perspective can receive the same
category. This is, perhaps, most evident in phrasal

6Note that Figures 2 and 3 stem from nested models that
estimate the effect of LNDIST within the four/eight condi-
tions. Confidence intervals will be larger, as fewer data-
points are available than when the overall effect of a single
factor is compared.

CP:lex−lex

PP:lex−lex

CP:lex−phr

PP:lex−phr

CP:phr−lex

PP:phr−lex

CP:phr−phr

PP:phr−phr

−1.0 −1.2 −1.4 −1.6 −1.8 −2.0

Figure 3: Decay effect sizes in Experiment 2,
for combinations of comprehension-production
or production-production priming and lexical or
phrasal primes and targets, e.g. the third bar
denotes the decay in repetition probability of a
phrasal category as prime and a lexical one as
target, where prime and target occurred in utter-
ances by the same speaker. Error bars show (non-
simultaneous) 95% confidence intervals.

and lexical categories (where, e.g., an intransitive
verb is indistinguishable from a verb phrase).

Bock and Loebell (1990)’s experiments suggest
that priming effects are independent of the subcat-
egorization frame. There, an active voice sentence
primed a passive voice one with the same phrase
structure, but a different subcategorization. If we
find priming from lexical to phrasal categories,
then our model demonstrates priming of subcat-
egorization frames.

From a processing point of view, phrasal cat-
egories are distinct from lexical ones. Lexical
categories are bound to the lemma and thereby
linked to the lexicon, while phrasal categories
are the result of a structural composition or de-
composition process. The latter ones represent
temporary states, encoding the syntacticprocess.

Here, we test whether lexical and phrasal cate-
gories can prime each other, and if so, contrast the
strength of these priming effects.

Method We built a model which allowed lex-
ical and phrasal categories to prime each other.
A factor, STRUCTURAL LEVEL was introduced
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to distinguish the four cases: priming in between
phrasal categories and in between lexical ones,
from lexical ones to phrasal ones and from phrasal
ones to lexical ones.

Recall that each data point encodes a possibility
to repeat a CCG category, referring to a particular
instance of a target category at timet and a time
span of duration of one second[t−d−0.5, t−d+
0.5] in which a priming instance of the same cate-
gory could occur. If it occurred at least once, the
data point was counted as a possible example of
priming (response variable: true), otherwise it was
included as a counter-example (response variable:
false). For the target category, its type (lexical or
phrasal) was clear. For the category of the prime,
we included two data points, one for each type,
with a response indicating whether a prime of the
category of such a type occurred in the time win-
dow. We built separate models for incremental and
normal form derivations. Models were fitted to
a balanced subset, including all repetitions and a
randomly sampled subset of non-repetitions.

Results Both the normal-form and the incre-
mental model show qualitatively the same re-
sults. STRUCTURALLEVEL has a significant
influence on priming strength (LN DIST) for
the cases where a lexical item serves as prime
(e.g., normal-form PP:βlnDist:lex−lex = 0.261,
p < 0.0001; βlnDist:lex−phr = 0.166, p < 0.0001;
βlnDist:phr−lex = 0.056, p < 0.05; as compared to
the baselinephr− phr. N.B. higher values denote
less decay & priming). Phrasal categories prime
other phrasal and lexical categories, but there is a
lower priming effect to be seen from lexical cate-
gories. Figure 3 presents the resulting effect sizes.

Albeit significant, we assume the effect of prime
type is attributable to processing differences rather
than the strong difference that would indicate that
there is no priming of, e.g., lexical subcategoriza-
tion frames. As the analysis of effect sizes shows,
we can see priming from and in between both lex-
ical and phrasal categories.

Additionally, there is no evidence suggesting
that, once frequency is taken into account, syntac-
tic processes happening high up in derivation trees
show more priming (see Scheepers 2003).

7 Discussion

We can confirm the syntactic priming effect for
CCG categories. Priming occurs in incremental
as well as in normal-form CCG derivations, and at

different syntactic levels in those derivations: we
demonstrated that priming effects persists across
syntactic stages, from the lowest one (lexical cate-
gories) up to higher ones (phrasal categories). This
is what CCG predicts if priming of categories is
assumed.

Linguistic data is inherently noisy. Annotations
contain errors, and conversions such as the one to
CCG may add further error. However, since noise
is distributed across the corpus, it is unlikely to af-
fect priming effect strength or its interaction with
the factors we used: priming, in this study, is de-
fined asdecayof repetition probability. We see
the lack of control in the collection of a corpus like
Switchboard not only as a challenge, but also as an
advantage: it means that realistic data is present in
the corpus, allowing us to conduct a controlled ex-
periments to validate a claim about a specific the-
ory of competence grammar.

The fact that CCG categories prime could be
explained in a model that includes a basic form
of subcategorization. All categories, if lexical or
phrasal, contain a subcategorization frame, with
only those categories present that have yet to be
satisfied. Our CCG based models make predic-
tions for experimental studies, e.g., that specific
heads with open subcategorization slots (such as
transitive verbs) will be primed by phrases that re-
quire the same kinds of arguments (such as verbal
phrases with a ditransitive verb and an argument).

The models presented take the frequency of the
syntactic category into account, reducing noise,
especially in the conditions with lower numbers
of (positive) reptition examples (e.g., CP and in-
cremental derivations in Experiment 1). Whether
there are significant qualitative and quantitative
differences of PP and CP priming with respect to
choice of derivation type – which would point out
processing differences in comprehension vs. pro-
duction priming – will be a matter of future work.

At this point, we do not explicitly discriminate
different syntactic frameworks. Comparing prim-
ing effects in a corpus annotated in parallel accord-
ing to different theories will be a matter of future
work.

8 Conclusions

We have discussed an empirical, corpus-based ap-
proach to use priming effects in the validation of
general syntactic models. The analysis we pre-
sented is compatible with the reality of a lexical-
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ized, categorial grammar such as CCG as a com-
ponent of the human sentence processor. CCG is
unusual in allowing us to compare different types
of derivational analyses within the same grammar
framework. Focusing on CCG allowed us to con-
trast priming under different conditions, while still
making a statistical and general statement about
the priming effects forall syntactic phenomena
covered by the grammar.
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Abstract

We study unsupervised methods for learn-
ing refinements of the nonterminals in
a treebank. Following Matsuzaki et al.
(2005) and Prescher (2005), we may for
example splitNPwithout supervision into
NP[0] andNP[1], which behave differently.
We first propose to learn a PCFG that adds
such features to nonterminals in such a
way that they respect patterns of linguis-
tic feature passing: each node’s nontermi-
nal features are either identical to, or inde-
pendent of, those of its parent. This lin-
guistic constraint reduces runtime and the
number of parameters to be learned. How-
ever, it did not yield improvements when
training on the Penn Treebank. An orthog-
onal strategy was more successful: to im-
prove the performance of the EM learner
by treebank preprocessing and by anneal-
ing methods that split nonterminals selec-
tively. Using these methods, we can main-
tain high parsing accuracy while dramati-
cally reducing the model size.

1 Introduction

Treebanks never contain enough information; thus
PCFGs estimated straightforwardly from the Penn
Treebank (Bies et al., 1995) work only moderately
well (Charniak, 1996). To address this problem,
researchers have used heuristics to add more infor-
mation. Eisner (1996), Charniak (1997), Collins
(1997), and many subsequent researchers1 anno-
tated every node with lexical features passed up
from its “head child,” in order to more precisely re-
flect the node’s “inside” contents. Charniak (1997)
and Johnson (1998) annotated each node with its
parent and grandparent nonterminals, to more pre-
cisely reflect its “outside” context. Collins (1996)
split the sentence labelS into two versions, repre-
senting sentences with and without subjects. He

1Not to mention earliernon-PCFG lexicalized statistical
parsers, notably Magerman (1995) for the Penn Treebank.

also modified the treebank to contain different la-
bels for standard and for base noun phrases. Klein
and Manning (2003) identified nonterminals that
could valuably be split into fine-grained ones us-
ing hand-written linguistic rules. Their unlexical-
ized parser combined several such heuristics with
rule markovization and reached a performance
similar to early lexicalized parsers.

In all these cases, choosing which nonterminals
to split, and how, was a matter of art. Ideally
such splits would be learned automatically from
the given treebank itself. This would be less costly
and more portable to treebanks for new domains
and languages. One might also hope that the auto-
matically learned splits would be more effective.

Matsuzaki et al. (2005) introduced a model for
such learning: PCFG-LA.2 They used EM to in-
duce fine-grained versions of a given treebank’s
nonterminals and rules. We present models that
similarly learn to propagate fine-grained features
through the tree, but only in certain linguistically
motivated ways. Our models therefore allocate
a supply of free parameters differently, allow-
ing more fine-grained nonterminals but less fine-
grained control over the probabilities of rewriting
them. We also present simple methods for decid-
ing selectively (during training) which nontermi-
nals to split and how.

Section 2 describes previous work in finding
hidden information in treebanks. Section 3 de-
scribes automatically induced feature grammars.
We start by describing the PCFG-LA model, then
introduce new models that use specific agreement
patterns to propagate features through the tree.
Section 4 describes annealing-like procedures for
training latent-annotation models. Section 5 de-
scribes the motivation and results of our experi-
ments. We finish by discussing future work and
conclusions in sections 6–7.

2Probabilistic context-free grammar with latent annota-
tions.
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Citation Observed data Hidden data

Collins (1997) Treebank tree with head child an-
notated on each nonterminal

No hidden data. Degenerate EM
case.

Lari and Young (1990) Words Parse tree
Pereira and Schabes (1992) Words and partial brackets Parse tree
Klein and Manning (2001) Part-of-speech tags Parse tree
Chiang and Bikel (2002) Treebank tree Head child on each nonterminal
Matsuzaki et al. (2005) Treebank tree Integer feature on each nontermi-

nal
INHERIT model (this paper) Treebank tree and head child

heuristics
Integer feature on each nontermi-
nal

Table 1: Observed and hidden data in PCFG grammar learning.

2 Partially supervised EM learning

The parameters of a PCFG can be learned with
or without supervision. In the supervised case,
the complete tree is observed, and the rewrite rule
probabilities can be estimated directly from the
observed rule counts. In the unsupervised case,
only the words are observed, and the learning
method must induce the whole structure above
them. (See Table 1.)

In the partially supervised case we will con-
sider, some part of the tree is observed, and
the remaining information has to be induced.
Pereira and Schabes (1992) estimate PCFG pa-
rameters from partially bracketed sentences, using
the inside-outside algorithm to induce the miss-
ing brackets and the missing node labels. Some
authors define a complete tree as one that speci-
fies not only a label but also a “head child” for
each node. Chiang and Bikel (2002) induces the
missing head-child information; Prescher (2005)
induces both the head-child information and the
latent annotations we will now discuss.

3 Feature Grammars

3.1 ThePCFG-LA Model

Staying in the partially supervised paradigm, the
PCFG-LA model described in Matsuzaki et al.
(2005) observe whole treebank trees, but learn
an “annotation” on each nonterminal token—an
unspecified and uninterpreted integer that distin-
guishes otherwise identical nonterminals. Just as
Collins manually split theS nonterminal label into
S andSGfor sentences with and without subjects,
Matsuzaki et al. (2005) splitS into S[1], S[2], . . . ,
S[L] whereL is a predefined number—but they do
it automatically and systematically, and not only

for S but for every nonterminal. Their partially
supervised learning procedure observes trees that
are fully bracketed and fully labeled, except for
the integer subscript used to annotate each node.
After automatically inducing the annotations with
EM, their resulting parser performs just as well as
one learned from a treebank whose nonterminals
were manually refined through linguistic and error
analysis (Klein and Manning, 2003).

In Matsuzaki’s PCFG-LA model, rewrite rules
take the form

X[α]→ Y [β] Z[γ] (1)

in the binary case, and

X[α]→ w (2)

in the lexical case. The probability of a tree con-
sisting of rulesr1, r2, . . . is given by the probabil-
ity of its root symbol times the conditional prob-
abilities of the rules. The annotated treeT1 in
Fig. 1, for example, has the following probability:

P (T1) = P (ROOT→ S[2])
×P (S[2]→ NP[1] VP[3])
×P (NP[1]→∗ He)
×P (VP[3]→∗ loves cookies )

where, to simplify the notation, we use
P (X → Y Z) to denote the conditional probabil-
ity P (Y Z | X) that a given node with labelX
will have childrenY Z.

Degrees of freedom. We will want to compare
models that have about the same size. Models with
more free parameters have an inherent advantage
on modeling copious data because of their greater
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Figure 1: Treebank tree with annotations.

expressiveness. Models with fewer free parame-
ters are easier to train accurately on sparse data,
as well as being more efficient in space and often
in time. Our question is therefore what can be ac-
complished with a given number of parameters.

How many free parameters in a PCFG-LA

model? Such a model is created by annotating
the nonterminals of a standard PCFG (extracted
from the given treebank) with the various integers
from 1 toL. If the original, “backbone” grammar
hasR3 binary rules of the formX → Y Z, then
the resulting PCFG-LA model hasL3 × R3 such
rules: X[1] → Y [1] Z[1], X[1] → Y [1] Z[2],
X[1]→ Y [2] Z[1], . . . ,X[L]→ Y [L] Z[L]. Sim-
ilarly, if the backbone grammar hasR2 rules of
the formX → Y the PCFG-LA model hasL2 ×
R2 such rules.3 The number ofR1 terminal rules
X → w is just multiplied byL.

The PCFG-LA has as many parameters to learn
as rules: one probability per rule. However, not
all these parameters are free, as there areL × N
sum-to-one constraints, whereN is the number of
backbone nonterminals. Thus we have

L3R3 + L2R2 + LR1 − LN (3)

degrees of freedom.
We note that Goodman (1997) mentioned possi-

ble ways to factor the probability 1, making inde-
pendence assumptions in order to reduce the num-
ber of parameters.

Runtime. Assuming there are no unary rule cy-
cles in the backbone grammar, bottom-up chart
parsing of a length-n sentence at test time takes
time proportional ton3L3R3 + n2L2R2 + nLR1,
by attempting to apply each rule everywhere in the
sentence. (The dominating term comes from equa-
tion (4) of Table 2: we must loop over alln3 triples
i, j, k and allR3 backbone rulesX → Y Z and all

3We use unary rules of this form (e.g. the Treebank’sS→
NP) in our reimplementation of Matsuzaki’s algorithm.

L3 triplesα, β, γ.) As a function ofn andL only,
this isO(n3L3).

At training time, to induce the annotations on
a given backbone tree withn nodes, one can run
a constrained version of this algorithm that loops
over only then triples i, j, k that are consistent
with the given tree (and considers only the single
consistent backbone rule for each one). This takes
time O(nL3), as does the inside-outside version
we actually use to collect expected PCFG-LA rule
counts for EM training.

We now introduce a model that is smaller, and
has a lower runtime complexity, because it adheres
to specified ways of propagating features through
the tree.

3.2 Feature Passing: TheINHERIT Model

Many linguistic theories assume that features get
passed from the mother node to their children or
some of their children. In many cases it is the
head child that gets passed its feature value from
its mother (e.g., Kaplan and Bresnan (1982), Pol-
lard and Sag (1994)). In some cases the feature is
passed to both the head and the non-head child, or
perhaps even to the non-head alone.

Figure 2: Features are passed to different children
at different positions in the tree.

In the example in Fig. 2, the tense feature (pres)
is always passed to the head child (underlined).
How the number feature (sg/pl) is passed depends
on the rewrite rule:S→ NP VPpasses it to both
children, to enforce subject-verb agreement, while
VP→ V NPonly passes it to the head child, since
the objectNPis free not to agree with the verb.

A feature grammar can incorporate such pat-
terns of feature passing. We introduce additional
parameters that define the probability of passing a
feature to certain children. The head child of each
node is given deterministically by the head rules
of (Collins, 1996).
Under the INHERIT model that we propose, the
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Model Runtime and d.f. Simplified equation for inside probabilities (ignores unary rules)

Matsuzaki
et al. (2005)

test:O(n3L3)
train:O(nL3)
d.f.: L3R3 +
L2R2 +LR1−LN

BX[α](i, k) =
X

Y,β,Z,γ,j

P (X[α]→ Y [β] Z[γ]) (4)

×BY [β](i, j)×BZ[γ](j, k)

INHERIT
model
(this paper)

test:O(n3L)
train:O(nL)
d.f.: L(R3 + R2 +
R1) + 3R3 −N

BX[α](i, k) =
X
Y,Z,j

P (X[α]→ Y Z) (5)

×

0B@ P (neither | X,Y, Z) × BY (i, j) × BZ(j, k))
+ P (left | X,Y, Z) × BY [α](i, j) × BZ(j, k))
+ P (right | X,Y, Z) × BY (i, j) × BZ[α](j, k))
+ P (both | X,Y, Z) × BY [α]Y (i, j) × BZ[α](j, k))

1CA
BX(i, j) =

X
α

Pann(α | X)×BX[α](i, j) (6)

P (left | X,Y, Z) =


P (head | X,Y, Z) if Y headsX → Y Z
P (nonhead| X,Y, Z) otherwise (7)

P (right | X,Y, Z) =


P (head | X,Y, Z) if Z headsX → Y Z
P (nonhead| X,Y, Z) otherwise (8)

Table 2: Comparison of the PCFG-LA model with the INHERIT model proposed in this paper. “d.f.”
stands for “degrees of freedom” (i.e., free parameters). TheB terms are inside probabilities; to compute
Viterbi parse probabilities instead, replace summation by maximization. Note the use of the intermediate
quantityBX(i, j) to improve runtime complexity by moving some summations out of the inner loop;
this is an instance of a “folding transformation” (Blatz and Eisner, 2006).

Figure 3: Two passpatterns. Left:T2. The feature
is passed to the head child (underlined). Right:T3.
The feature is passed to both children.

probabilities of treeT2 in Fig. 3 are calculated as
follows, withPann(1 | NP ) being the probability
of annotating an NP with feature 1 if it doesnot
inherit its parent’s feature. TheVP is boldfaced to
indicate that it is the head child of this rule.

P (T2) = P (ROOT→ S[2])
×P (S[2]→ NPVP)
×P (pass to head| S→ NPVP)
×Pann(1 | NP)× P (NP[1]→∗ He)
×P (VP[2]→∗ loves cookies )

TreeT3 in Fig. 3 has the following probability:

P (T3) = P (ROOT→ S[2])
×P (S[2]→ NPVP)
×P (pass to both| S→ NPVP)
×P (NP[2]→∗ He)
×P (VP[2]→∗ loves cookies )

In T2, the subjectNPchose feature 1 or 2 indepen-
dent of its parentS, according to the distribution
Pann(· | NP). In T3, it was constrained to inherit
its parent’s feature 2.

Degrees of freedom. The INHERIT model may
be regarded as containing all the same rules
(see (1)) as the PCFG-LA model. However, these
rules’ probabilities are now collectively deter-
mined by a smaller set of shared parameters.4 That
is because the distribution of the child featuresβ
andγ no longer depends arbitrarily on the rest of
the rule.β is either equal toα, or chosen indepen-
dently of everything butY .

The model needs probabilities forL × R3

binary-rule parameters likeP (S[2]→ NPVP)
above, as well asL × R2 unary-rule andL × R1

lexical-rule parameters. None of these consider
the annotations on the children. They are subject
toL×N sum-to-one constraints.

The model also needs4×R3 passpattern prob-
abilities likeP (pass to head| X → Y Z) above,
with R3 sum-to-one constraints, andL × N non-
inherited annotation parametersPann(α|X), with
N sum-to-one constraints.

Adding these up and canceling the twoL × N
4The reader may find it useful to write out the probability

P (X[α]→ Y [β] Z[γ]) in terms of the parameters described
below. Like equation (5), it isP (X[α]→ Y Z) times a sum
of up to 4 products, corresponding to the 4 passpattern cases.
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terms, the INHERIT model has

L(R3 +R2 +R1) + 3R3 −N (9)

degrees of freedom. Thus for a typical grammar
whereR3 dominates, we have reduced the number
of free parameters from aboutL3R3 to only about
LR3.

Runtime. We may likewise reduce anL3 factor
to L in the runtime. Table 2 shows dynamic pro-
gramming equations for the INHERIT model. By
exercising care, they are able to avoid summing
over all possible values ofβ andγ within the in-
ner loop. This is possible because when they are
not inherited, they do not depend onX,Y, Z, orα.

3.3 Multiple Features

The INHERIT model described above is linguisti-
cally naive in several ways. One problem (see sec-
tion 6 for others) is that each nonterminal has only
a single feature to pass. Linguists, however, usu-
ally annotate each phrase with multiple features.
Our example tree in Fig. 2 was annotated with both
tense and number features, with different inheri-
tance patterns.

As a step up from INHERIT, we propose an
INHERIT2 model where each nonterminal carries
two features. Thus, we will haveL6R3 binary
rules instead ofL3R3. However, we assume that
the two features choose their passpatterns inde-
pendently, and that when a feature is not inher-
ited, it is chosen independently of the other fea-
ture. This keeps the number of parameters down.
In effect, we are defining

P (X[α][ρ]→ Y [β][σ] Z[γ][τ ])
= P (X[α][ρ]→ Y Z)
×P1(β, γ | X[α]→ Y Z)
×P2(σ, τ | X[ρ]→ Y Z)

whereP1 andP2 choose child features as if they
were separate single-feature INHERIT models.

We omit discussion of dynamic programming
speedups for INHERIT2. Empirically, the hope is
that the two features when learned with the EM
algorithm will pick out different linguistic proper-
ties of the constituents in the treebank tree.

4 Annealing-Like Training Approaches

Training latent PCFG models, like training most
other unsupervised models, requires non-convex
optimization. To find good parameter values, it
is often helpful to train a simpler model first and
use its parameters to derive a starting guess for the
harder optimization problem. A well-known ex-
ample is the training of the IBM models for statis-
tical machine translation (Berger et al., 1994).

In this vein, we did an experiment in which we
gradually increasedL during EM training of the
PCFG-LA and INHERIT models. Whenever the
training likelihood began to converge, weman-
ually and globally increasedL, simply doubling
or tripling it (see “clone all” in Table 3 and
Fig. 5). The probability ofX[α] → Y [β]Z[γ]
under the new model was initialized to be pro-
portional to the probability ofX[α mod L] →
Y [β mod L]Z[γ mod L] (whereL refers to the
old L),5 times a random ”jitter” to break symme-
try.

In a second annealing experiment (“clone
some”) we addressed a weakness of the PCFG-
LA and INHERIT models: They give every non-
terminal the same number of latent annotations.
It would seem that different coarse-grained non-
terminals in the original Penn Treebank have dif-
ferent degrees of impurity (Klein and Manning,
2003). There are linguistically many kinds of
NP, which are differentially selected for by vari-
ous contexts and hence are worth distinguishing.
By contrast,-LRB- is almost always realized as
a left parenthesis and may not need further refine-
ment. Our “clone some” annealing starts by train-
ing a model withL=2 to convergence. Then, in-
stead of cloning all nonterminals as in the previ-
ous annealing experiments, we clone only those
that have seemed to benefit most from their previ-
ous refinement. This benefit is measured by the
Jensen-Shannon divergence of the two distribu-
tions P (X[0]→ · · · ) andP (X[1]→ · · · ). The

5Notice that as well as cloningX[α], this procedure mul-
tiplies by 4, 2, and 1 the number of binary, unary, and lex-
ical rules that rewriteX[α]. To leave the backbone gram-
mar unchanged, we should have scaled down the probabili-
ties of such rules by 1/4, 1/2, and 1 respectively. Instead, we
simply scaled them all down by the same proportion. While
this temporarily changes the balance of probability among the
three kinds of rules, EM immediately corrects this balance on
the next training iteration to match the observed balance on
the treebank trees—hence the one-iteration downtick in Fig-
ure 5).
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Jensen-Shannon divergence is defined as

D(q, r) =
1
2

(
D

(
q || q + r

2

)
+D

(
r || q + r

2

))
These experiments are a kind of “poor man’s

version” of the deterministic annealing cluster-
ing algorithm (Pereira et al., 1993; Rose, 1998),
which gradually increases the number of clus-
ters during the clustering process. In determinis-
tic annealing, one starts in principle with a very
large number of clusters, but maximizes likeli-
hood only under a constraint that the joint distri-
butionp(point , cluster) must have very high en-
tropy. This drives all of the cluster centroids to co-
incide exactly, redundantly representing just one
effective cluster. As the entropy is permitted to de-
crease, some of the cluster centroids find it worth-
while to drift apart.6 In future work, we would
like to apply this technique to split nonterminals
gradually, by initially requiring high-entropy parse
forests on the training data and slowly relaxing this
constraint.

5 Experiments

5.1 Setup

We ran several experiments to compare the IN-
HERIT with the PCFG-LA model and look into the
effect of different Treebank preprocessing and the
annealing-like procedures.

We used sections 2–20 of the Penn Treebank 2
Wall Street Journal corpus (Marcus et al., 1993)
for training, section 22 as development set and
section 23 for testing. Following Matsuzaki et al.
(2005), words occurring fewer than 4 times in the
training corpus were replaced by unknown-word
symbols that encoded certain suffix and capitaliza-
tion information.

All experiments used simple add-lambda
smoothing (λ=0.1) during the reestimation step
(M step) of training.

Binarization and Markovization. Before ex-
tracting the backbone PCFG and running the con-
strained inside-outside (EM) training algorithm,
we preprocessed the Treebank using center-parent
binarization Matsuzaki et al. (2005). Besides mak-
ing the rules at most binary, this preprocessing also
helpfully enriched the backbone nonterminals. For

6In practice, each very large group of centroids (effective
cluster) is represented by just two, until such time as those
two drift apart to represent separate effective clusters—then
each is cloned.

all but the first (“Basic”) experiments, we also
enriched the nonterminals with order-1 horizon-
tal and order-2 vertical markovization (Klein and
Manning, 2003).7 Figure 4 shows what a multiple-
child structureX → A B H C D looks like
after binarization and markovization. The bina-
rization process starts at the head of the sentence
and moves to the right, inserting an auxiliary node
for each picked up child, then moving to the left.
Each auxiliary node consists of the parent label,
the direction (L or R) and the label of the child
just picked up.

Figure 4: Horizontal and vertical markovization
and center-parent binarization of the ruleX →
A B H C D whereH is the head child.

Initialization. The backbone PCFG grammar
was read off the altered Treebank, and the initial
annotated grammar was created by creating sev-
eral versions of every rewrite rule. The proba-
bilities of these newly created rules are uniform
and proportional to the original rule, multiplied by
a random epsilon factor uniformly sampled from
[.9999,1.0001] to break symmetry.

5.2 Decoding

To test the PCFG learned by a given method,
we attempted to recover theunannotatedparse
of each sentence in the development set. We
then scored these parses by debinarizing or de-
markovizing them, then measuring their precision
and recall of the labeled constituents from the
gold-standard Treebank parses.

7The vertical markovization was appliedbeforebinariza-
tion. – Matsuzaki et al. (2005) used a markovized grammar
to get a better unannotated parse forest during decoding, but
they did not markovize the training data.
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Figure 5: Loge-likelihood during training. The
two “anneal” curves use the “clone all” method.
We increasedL after iteration 50 and, for the IN-
HERIT model, iteration 110. The downward spikes
in the two annealed cases are due to perturbation
of the model parameters (footnote 5).

An unannotated parse’s probability is the total
probability, under our learned PCFG, of all of its
annotated refinements. This total can be efficiently
computed by the constrained version of the inside
algorithm in Table 2.

How do we obtain the unannotated parse whose
total probability is greatest? It does not suffice to
find the single best annotated parse and then strip
off the annotations. Matsuzaki et al. (2005) note
that the best annotated parse is in fact NP-hard to
find. We use their reranking approximation. A
1000-best list for each sentence in the decoding
set was created by parsing with our markovized
unannotated grammar and extracting the 1000 best
parses using thek-best algorithm 3 described in
Huang and Chiang (2005). Then we chose the
most probable of these 1000 unannotated parses
under our PCFG, first finding the total probability
of each by using the the constrained inside algo-
rithm as explained above.8

5.3 Results and Discussion

Table 3 summarizes the results on development
and test data.9 Figure 5 shows the training log-
likelihoods.

First, markovization of the Treebank leads to

8For the first set of experiments, in which the models were
trained on a simple non-markovized grammar, the 1000-best
trees had to be “demarkovized” before our PCFG was able to
rescore them.

9All results are reported on sentences of 40 words or less.

striking improvements. The “Basic” block of ex-
periments in Table 3 used non-markovized gram-
mars, as in Matsuzaki et al. (2005). The next block
of experiments, introducing markovized gram-
mars, shows a considerable improvement. This
is not simply because markovization increases the
number of parameters: markovization withL = 2
already beats basic models that have much higher
L and far more parameters.

Evidently, markovization pre-splits the labels
in the trees in a reasonable way, so EM has less
work to do. This is not to say that markovization
eliminates the need for hidden annotations: with
markovization, going fromL=1 toL=2 increases
the parsing accuracy even more than without it.

Second, our “clone all” training technique
(shown in the next block of Table 3) did not
help performance and may even have hurt slightly.
Here we initialized theL=2x2 model with the
trainedL=2 model for PCFG-LA, and theL=3x3
model with theL=3 and theL=3x3x3 model with
theL=3x3 model.

Third, our “clone some” training technique ap-
peared to work. On PCFG-LA, theL<2x2 con-
dition (i.e., train withL=2 and then clone some)
matched the performance ofL=4 with 30% fewer
parameters. On INHERIT, L<2x2 beatL=4 with
8% fewer parameters. In these experiments, we
used the average divergence as a threshold:X[0]
andX[1] are split again if the divergence of their
rewrite distributions is higher than average.

Fourth, our INHERIT model was a disappoint-
ment. It generally performed slightly worse than
PCFG-LA when given about as many degrees
of freedom. This was also the case on some
cursory experiments on smaller training corpora.
It is tempting to conclude that INHERIT simply
adopted overly strong linguistic constraints, but
relaxing those constraints by moving to the IN-
HERIT2 model did not seem to help. In our
one experiment with INHERIT2 (not shown in Ta-
ble 3), using 2 features that can each takeL=2
values (d.f.: 212,707) obtains anF1 score of only
83.67—worse than 1 feature takingL=4 values.

5.4 Analysis: What was learned byINHERIT?

INHERIT did seem to discover “linguistic” fea-
tures, as intended, even though this did not im-
prove parse accuracy. We trained INHERIT and
PCFG-LA models (bothL=2, non-markovized)
and noticed the following.
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PCFG-LA INHERIT

L d.f. LP LR F1 L d.f. LP LR F1

B
as

ic 1 24,226 76.99 74.51 75.73 1 35,956 76.99 74.51 75.73
2 72,392 81.22 80.67 80.94 2 60,902 79.42 77.58 78.49
4 334,384 83.53 83.39 83.46 12 303,162 82.41 81.55 81.98
8 2,177,888 85.43 85.05 85.24 80 1,959,053 83.99 83.02 83.50

M
ar

ko
v. 1 41,027 79.95 78.43 79.18 1 88,385 79.95 78.43 79.18

2 132,371 83.85 82.23 83.03
2 178,264 85.70 84.37 85.03 3 176,357 85.04 83.60 84.31

4 220,343 85.30 84.06 84.68
3 506,427 86.44 85.19 85.81 9 440,273 86.16 85.12 85.64
4 1,120,232 87.09 85.71 86.39 26 1,188,035 86.55 85.55 86.05

C
lo

ne
al

l

2 178,264 85.70 84.37 85.03 3 176,357 85.04 83.60 84.31
3x3 440,273 85.99 84.88 85.43

2x2 1,120,232 87.06 85.49 86.27 3x3x3 1,232,021 86.65 85.70 86.17

C
l.s

om
e

2 178,264 85.70 84.37 85.03 2 132,371 83.85 82.23 83.03
<2x2 789,279 87.17 85.71 86.43 <2x2 203,673 85.49 84.45 84.97

<2x2x2 314,999 85.57 84.60 85.08

Table 3: Results on the development set: labeled precision (LP), labeled recall (LR), and their harmonic
mean (F1). “Basic” models are trained on a non-markovized treebank (as in Matsuzaki et al. (2005)); all
others are trained on a markovized treebank. The best model (PCFG-LA with “clone some” annealing,
F1=86.43) has also been decoded on the final test set, reaching P/R=86.94/85.40 (F1=86.17).

We used both models to assign the most-
probable annotations to the gold parses of the de-
velopment set. Under the INHERIT model,NP[0]
vs. NP[1] constituents were 21% plural vs. 41%
plural. Under PCFG-LA this effect was weaker
(30% vs. 39%), although it was significant in both
(Fisher’s exact test,p < 0.001). Strikingly, un-
der the INHERIT model, theNP’s were 10 times
more likely to pass this feature to both children
(Fisher’s,p < 0.001)—just as we would expect
for a number feature, since the determiner and
head noun of anNPmust agree.

The INHERIT model also learned to use feature
value 1 for “tensed auxiliary.” TheVP[1] nonter-
minal was far more likely thanVP[0] to expand as
V VP, whereV represents any of the tensed verb
preterminalsVBZ, VBG, VBN, VBD, VBP. Further-
more, these expansion rules had a very strong pref-
erence for “pass to head,” so that the left child
would also be annotated as a tensed auxiliary, typ-
ically causing it to expand as a form ofbe , have ,
or do . In short, the feature ensured that it was gen-
uine auxiliary verbs that subcategorized forVP′s.

(The PCFG-LA model actually arranged the
same behavior, e.g. similarly preferringVBZ[1] in
the auxiliary expansion ruleVP→ VBZ VP. The

difference is that the PCFG-LA model was able
to express this preference directly without prop-
agating the[1] up to theVPparent. Hence neither
VP[0] nor VP[1] became strongly associated with
the auxiliary rule.)

Many things are equally learned by both mod-
els: They learn the difference between subordinat-
ing conjunctions (while, if) and prepositions (un-
der, after), putting them in distinct groups of the
original IN tag, which typically combine with sen-
tences and noun phrases, respectively. Both mod-
els also split the conjunctionCCinto two distinct
groups: a group of conjunctions starting with an
upper-case letter at the beginning of the sentence
and a group containing all other conjunctions.

6 Future Work: Log-Linear Modeling

Our approach in the INHERIT model made certain
strict independence assumptions, with no backoff.
The choice of a particular passpattern, for exam-
ple, depends on all and only the three nontermi-
nalsX,Y, Z. However, given sparse training data,
sometimes it is advantageous to back off to smaller
amounts of contextual information; the nontermi-
nalX or Y might alone be sufficient to predict the
passpattern.
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A very reasonable framework for handling this
issue is to modelP (X[α]→ Y [β] Z[γ]) with
a log-linear model.10 Feature functions would
consider the values of variously sized, over-
lapping subsets ofX,Y, Z, α, β, γ. For exam-
ple, a certain feature might fire whenX[α] =
NP[1] andZ[γ] = N[2]. This approach can be ex-
tended to the multi-feature case, as in INHERIT2.

Inheritance as in the INHERIT model can then
be expressed by features likeα = β, or α =
β andX = VP. During early iterations, we could
use a prior to encourage a strong positive weight
on these inheritance features, and gradually re-
lax this bias—akin to the “structural annealing” of
(Smith and Eisner, 2006).

When modeling the lexical ruleP (X[α]→ w),
we could use features that consider the spelling
of the wordw in conjunction with the value of
α. Thus, we might learn thatV [1] is particularly
likely to rewrite as a word ending in-s . Spelling
features that are predictable from string context
are important clues to the existence and behavior
of the hidden annotations we wish to induce.

A final remark is that “inheritance” does not
necessarily have to mean thatα = β. It is enough
that α and β should have high mutual informa-
tion, so that one can be predicted from the other;
they do not actually have to be represented by the
same integer. More broadly, we might likeα to
have high mutual information with the pair(β, γ).
One might try using this sort of intuition directly
in an unsupervised learning procedure (Elidan and
Friedman, 2003).

7 Conclusions

We have discussed “informed” techniques for in-
ducing latent syntactic features. Our INHERIT

model tries to constrain the way in which features
are passed through the tree. The motivation for
this approach is twofold: First, we wanted to cap-
ture the linguistic insight that features follow cer-
tain patterns in propagating through the tree. Sec-
ond, we wanted to make it statistically feasible and
computationally tractable to increaseL to higher
values than in the PCFG-LA model. The hope was
that the learning process could then make finer dis-
tinctions and learn more fine-grained information.
However, it turned out that the higher values of
L did not compensate for the perhaps overly con-

10This affects EM training only by requiring a convex op-
timization at the M step (Riezler, 1998).

strained model. The results on English parsing
rather suggest that it is the similarity in degrees of
freedom (e.g., INHERIT with L=3x3x3 and PCFG-
LA with L=2x2) that produces comparable results.

Substantial gains were achieved by using
markovization and splitting only selected nonter-
minals. With these techniques we reach a pars-
ing accuracy similar to Matsuzaki et al. (2005),
but with an order of magnitude less parameters,
resulting in more efficient parsing. We hope to
get more wins in future by using more sophisti-
cated annealing techniques and log-linear model-
ing techniques.
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Abstract

We investigate whether one can determine
from the transcripts of U.S. Congressional
floor debates whether the speeches repre-
sent support of or opposition to proposed
legislation. To address this problem, we
exploit the fact that these speeches occur
as part of a discussion; this allows us to
use sources of information regarding re-
lationships between discourse segments,
such as whether a given utterance indicates
agreement with the opinion expressed by
another. We find that the incorporation
of such information yields substantial im-
provements over classifying speeches in
isolation.

1 Introduction

One ought to recognize that the present
political chaos is connected with the de-
cay of language, and that one can prob-
ably bring about some improvement by
starting at the verbal end.— Orwell,
“Politics and the English language”

We have entered an era where very large
amounts of politically oriented text are now avail-
able online. This includes both official documents,
such as the full text of laws and the proceedings of
legislative bodies, and unofficial documents, such
as postings on weblogs (blogs) devoted to politics.
In some sense, the availability of such data is sim-
ply a manifestation of a general trend of “every-
body putting their records on the Internet”.1 The

1It is worth pointing out that the United States’ Library of
Congress was an extremely early adopter of Web technology:
the THOMAS database (http://thomas.loc.gov) of congres-

online accessibility of politically oriented texts in
particular, however, is a phenomenon that some
have gone so far as to say will have a potentially
society-changing effect.

In the United States, for example, governmen-
tal bodies are providing and soliciting political
documents via the Internet, with lofty goals in
mind: electronic rulemaking(eRulemaking) ini-
tiatives involving the “electronic collection, dis-
tribution, synthesis, and analysis of public com-
mentary in the regulatory rulemaking process”,
may “[alter] the citizen-government relationship”
(Shulman and Schlosberg, 2002). Additionally,
much media attention has been focused recently
on the potential impact that Internet sites may have
on politics2, or at least on political journalism3.
Regardless of whether one views such claims as
clear-sighted prophecy or mere hype, it is obvi-
ously important to help people understand and an-
alyze politically oriented text, given the impor-
tance of enabling informed participation in the po-
litical process.

Evaluative and persuasive documents, such as
a politician’s speech regarding a bill or a blog-
ger’s commentary on a legislative proposal, form a
particularly interesting type of politically oriented
text. People are much more likely to consult such
evaluative statements than the actual text of a bill
or law under discussion, given the dense nature of
legislative language and the fact that (U.S.) bills
often reach several hundred pages in length (Smith
et al., 2005). Moreover, political opinions are ex-

sional bills and related data was launched in January 1995,
when Mosaic was not quite two years old and Altavista did
not yet exist.

2E.g., “Internet injects sweeping change into U.S. poli-
tics”, Adam Nagourney,The New York Times, April 2, 2006.

3E.g., “The End of News?”, Michael Massing,The New
York Review of Books, December 1, 2005.
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plicitly solicited in the eRulemaking scenario.
In the analysis of evaluative language, it is fun-

damentally necessary to determine whether the au-
thor/speaker supports or disapproves of the topic
of discussion. In this paper, we investigate the
following specific instantiation of this problem:
we seek to determine from the transcripts of
U.S. Congressional floor debates whether each
“speech” (continuous single-speaker segment of
text) represents support for or opposition to a pro-
posed piece of legislation. Note that from an ex-
perimental point of view, this is a very convenient
problem to work with because we can automati-
cally determine ground truth (and thus avoid the
need for manual annotation) simply by consulting
publicly available voting records.

Task properties Determining whether or not a
speaker supports a proposal falls within the realm
of sentiment analysis, an extremely active re-
search area devoted to the computational treatment
of subjective or opinion-oriented language (early
work includes Wiebe and Rapaport (1988), Hearst
(1992), Sack (1994), and Wiebe (1994); see Esuli
(2006) for an active bibliography). In particu-
lar, since we treat each individual speech within
a debate as a single “document”, we are consider-
ing a version ofdocument-level sentiment-polarity
classification, namely, automatically distinguish-
ing between positive and negative documents (Das
and Chen, 2001; Pang et al., 2002; Turney, 2002;
Dave et al., 2003).

Most sentiment-polarity classifiers proposed in
the recent literature categorize each document in-
dependently. A few others incorporate various
measures of inter-document similarity between the
texts to be labeled (Agarwal and Bhattacharyya,
2005; Pang and Lee, 2005; Goldberg and Zhu,
2006). Many interesting opinion-oriented docu-
ments, however, can be linked through certain re-
lationships that occur in the context of evaluative
discussions. For example, we may find textual4

evidence of a high likelihood ofagreementbe-

4Because we are most interested in techniques applicable
across domains, we restrict consideration to NLP aspects of
the problem, ignoring external problem-specific information.
For example, although most votes in our corpus were almost
completely along party lines (and despite the fact that same-
party information is easily incorporated via the methods we
propose), we did not use party-affiliation data. Indeed, in
other settings (e.g., a movie-discussion listserv) one may not
be able to determine the participants’ political leanings, and
such information may not lead to significantly improved re-
sults even if it were available.

tween two speakers, such as explicit assertions (“I
second that!”) or quotation of messages in emails
or postings (see Mullen and Malouf (2006) but cf.
Agrawal et al. (2003)). Agreement evidence can
be a powerful aid in our classification task: for ex-
ample, we can easily categorize a complicated (or
overly terse) document if we find within it indica-
tions of agreement with a clearly positive text.

Obviously, incorporating agreement informa-
tion provides additional benefit only when the in-
put documents are relatively difficult to classify
individually. Intuition suggests that this is true
of the data with which we experiment, for several
reasons. First, U.S. congressional debates contain
very rich language and cover an extremely wide
variety of topics, ranging from flag burning to in-
ternational policy to the federal budget. Debates
are also subject to digressions, some fairly natural
and others less so (e.g., “Why are we discussing
this bill when the plight of my constituents regard-
ing this other issue is being ignored?”)

Second, an important characteristic of persua-
sive language is that speakers may spend more
time presenting evidence in support of their po-
sitions (or attacking the evidence presented by
others) than directly stating their attitudes. An
extreme example will illustrate the problems in-
volved. Consider a speech that describes the U.S.
flag as deeply inspirational, and thus contains only
positive language. If the bill under discussion is a
proposed flag-burning ban, then the speech issup-
portive; but if the bill under discussion is aimed at
rescinding an existing flag-burning ban, the speech
may representoppositionto the legislation. Given
the current state of the art in sentiment analysis,
it is doubtful that one could determine the (proba-
bly topic-specific) relationship between presented
evidence and speaker opinion.

Qualitative summary of results The above dif-
ficulties underscore the importance of enhancing
standard classification techniques with new infor-
mation sources that promise to improve accuracy,
such as inter-document relationships between the
documents to be labeled. In this paper, we demon-
strate that the incorporation of agreement model-
ing can provide substantial improvements over the
application of support vector machines (SVMs) in
isolation, which represents the state of the art in
the individual classification of documents. The en-
hanced accuracies are obtained via a fairly primi-
tive automatically-acquired “agreement detector”
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total train test development
speech segments 3857 2740 860 257
debates 53 38 10 5
average number of speech segments per debate72.8 72.1 86.0 51.4
average number of speakers per debate 32.1 30.9 41.1 22.6

Table 1: Corpus statistics.

and a conceptually simple method for integrat-
ing isolated-document and agreement-based in-
formation. We thus view our results as demon-
strating the potentially large benefits of exploiting
sentiment-related discourse-segment relationships
in sentiment-analysis tasks.

2 Corpus

This section outlines the main steps of the process
by which we created our corpus (download site:
www.cs.cornell.edu/home/llee/data/convote.html).

GovTrack (http://govtrack.us) is an independent
website run by Joshua Tauberer that collects pub-
licly available data on the legislative and fund-
raising activities of U.S. congresspeople. Due to
its extensive cross-referencing and collating of in-
formation, it was nominated for a 2006 “Webby”
award. A crucial characteristic of GovTrack from
our point of view is that the information is pro-
vided in a very convenient format; for instance,
the floor-debate transcripts are broken into sepa-
rate HTML files according to the subject of the
debate, so we can trivially derive long sequences
of speeches guaranteed to cover the same topic.

We extracted from GovTrack all available tran-
scripts of U.S. floor debates in the House of Rep-
resentatives for the year 2005 (3268 pages of tran-
scripts in total), together with voting records for all
roll-call votes during that year. We concentrated
on debates regarding “controversial” bills (ones in
which the losing side generated at least 20% of the
speeches) because these debates should presum-
ably exhibit more interesting discourse structure.

Each debate consists of a series ofspeech seg-
ments, where each segment is a sequence of un-
interrupted utterances by a single speaker. Since
speech segments represent natural discourse units,
we treat them as the basic unit to be classified.
Each speech segment was labeled by the vote
(“yea” or “nay”) cast for the proposed bill by the
person who uttered the speech segment.

We automatically discarded those speech seg-

ments belonging to a class of formulaic, generally
one-sentence utterances focused on the yielding
of time on the house floor (for example, “Madam
Speaker, I am pleased to yield 5 minutes to the
gentleman from Massachusetts”), as such speech
segments are clearly off-topic. We also removed
speech segments containing the term “amend-
ment”, since we found during initial inspection
that these speeches generally reflect a speaker’s
opinion on an amendment, and this opinion may
differ from the speaker’s opinion on the underly-
ing bill under discussion.

We randomly split the data into training, test,
and development (parameter-tuning) sets repre-
senting roughly 70%, 20%, and 10% of our data,
respectively (see Table 1). The speech segments
remained grouped by debate, with 38 debates as-
signed to the training set, 10 to the test set, and 5
to the development set; we require that the speech
segments from an individual debate all appear in
the same set because our goal is to examine clas-
sification of speech segments in the context of the
surrounding discussion.

3 Method

The support/oppose classification problem can be
approached through the use of standard classifiers
such as support vector machines (SVMs), which
consider each text unit in isolation. As discussed
in Section 1, however, the conversational nature
of our data implies the existence of various rela-
tionships that can be exploited to improve cumu-
lative classification accuracy for speech segments
belonging to the same debate. Our classification
framework, directly inspired by Blum and Chawla
(2001), integrates both perspectives, optimizing
its labeling of speech segments based on both in-
dividual speech-segment classification scores and
preferences for groups of speech segments to re-
ceive the same label. In this section, we discuss
the specific classification framework that we adopt
and the set of mechanisms that we propose for
modeling specific types of relationships.
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3.1 Classification framework

Let s1, s2, . . . , sn be the sequence of speech seg-
ments within a given debate, and letY and
N stand for the “yea” and “nay” class, respec-
tively. Assume we have a non-negative func-
tion ind(s, C) indicating the degree of preference
that an individual-document classifier, such as an
SVM, has for placing speech-segments in class
C. Also, assume that some pairs of speech seg-
ments haveweighted linksbetween them, where
the non-negativestrength (weight) str(`) for a
link ` indicates the degree to which it is prefer-
able that the linked speech segments receive the
same label. Then, any class assignmentc =
c(s1), c(s2), . . . , c(sn) can be assigned acost

∑
s

ind(s, c(s))+
∑

s,s′: c(s) 6=c(s′)

∑

` between s,s′
str(`),

wherec(s) is the “opposite” class fromc(s). A
minimum-costassignment thus represents an opti-
mum way to classify the speech segments so that
each one tends not to be put into the class that
the individual-document classifier disprefers, but
at the same time, highly associated speech seg-
ments tend not to be put in different classes.

As has been previously observed and exploited
in the NLP literature (Pang and Lee, 2004; Agar-
wal and Bhattacharyya, 2005; Barzilay and Lap-
ata, 2005), the above optimization function, unlike
many others that have been proposed for graph or
set partitioning, can be solvedexactlyin an prov-
ably efficient manner via methods for finding min-
imum cuts in graphs. In our view, the contribution
of our work is the examination of new types of
relationships, not the method by which such re-
lationships are incorporated into the classification
decision.

3.2 Classifying speech segments in isolation

In our experiments, we employed the well-known
classifierSVMlight to obtain individual-document
classification scores, treatingY as the positive
class and using plain unigrams as features.5 Fol-
lowing standard practice in sentiment analysis
(Pang et al., 2002), the input toSVMlight con-
sisted of normalized presence-of-feature (rather
than frequency-of-feature) vectors. Theind value

5SVMlight is available at svmlight.joachims.org. Default
parameters were used, although experimentation with differ-
ent parameter settings is an important direction for future
work (Daelemans and Hoste, 2002; Munson et al., 2005).

for each speech segmentswas based on the signed
distanced(s) from the vector representings to the
trained SVM decision plane:

ind(s,Y) def=





1 d(s) > 2σs;(
1 + d(s)

2σs

)
/2 |d(s)| ≤ 2σs;

0 d(s) < −2σs

whereσs is the standard deviation ofd(s) over all
speech segmentss in the debate in question, and

ind(s,N ) def= 1− ind(s,Y).
We now turn to the more interesting problem of

representing the preferences that speech segments
may have for being assigned to the same class.

3.3 Relationships between speech segments

A wide range of relationships between text seg-
ments can be modeled as positive-strength links.
Here we discuss two types of constraints that are
considered in this work.

Same-speaker constraints: In Congressional
debates and in general social-discourse contexts,
a single speaker may make a number of comments
regarding a topic. It is reasonable to expect that in
many settings, the participants in a discussion may
be convinced to change their opinions midway
through a debate. Hence, in the general case we
wish to be able to express “soft” preferences for all
of an author’s statements to receive the same label,
where the strengths of such constraints could, for
instance, vary according to the time elapsed be-
tween the statements. Weighted links are an ap-
propriate means to express such variation.

However, if we assume that most speakers do
not change their positions in the course of a dis-
cussion, we can conclude that all comments made
by the same speaker must receive the same label.
This assumption holds by fiat for the ground-truth
labels in our dataset because these labels were
derived from the single vote cast by the speaker
on the bill being discussed.6 We can implement
this assumption via links whose weights are essen-
tially infinite. Although one can also implement
this assumption via concatenation of same-speaker
speech segments (see Section 4.3), we view the
fact that our graph-based framework incorporates

6We are attempting to determine whether a speech seg-
ment represents support or not. This differs from the problem
of determining what the speaker’s actual opinion is, a prob-
lem that, as an anonymous reviewer put it, is complicated by
“grandstanding, backroom deals, or, more innocently, plain
change of mind (‘I voted for it before I voted against it’)”.

330



both hard and soft constraints in a principled fash-
ion as an advantage of our approach.

Different-speaker agreements In House dis-
course, it is common for one speaker to make ref-
erence to another in the context of an agreement
or disagreement over the topic of discussion. The
systematic identification of instances of agreement
can, as we have discussed, be a powerful tool for
the development of intelligently selected weights
for links between speech segments.

The problem of agreement identification can be
decomposed into two sub-problems: identifying
references and their targets, and deciding whether
each reference represents an instance of agree-
ment. In our case, the first task is straightfor-
ward because we focused solely on by-name ref-
erences.7 Hence, we will now concentrate on the
second, more interesting task.

We approach the problem of classifying refer-
ences by representing each reference with a word-
presence vector derived from a window of text
surrounding the reference.8 In the training set,
we classify each reference connecting two speak-
ers with a positive or negative label depending on
whether the two voted the same way on the bill un-
der discussion9. These labels are then used to train
an SVM classifier, the output of which is subse-
quently used to create weights onagreement links
in the test set as follows.

Let d(r) denote the distance from the vector
representing referencer to the agreement-detector
SVM’s decision plane, and letσr be the standard
deviation ofd(r) over all references in the debate
in question. We then define the strengthagr of the
agreement linkcorresponding to the reference as:

agr(r) def=





0 d(r) < θagr;
α · d(r)/4σr θagr≤ d(r) ≤ 4σr;
α d(r) > 4σr.

The free parameterα specifies the relative impor-
7One subtlety is that for the purposes of mining agree-

ment cues (butnot for evaluating overall support/oppose
classification accuracy), we temporarily re-inserted into our
dataset previously filtered speech segments containing the
term “yield”, since the yielding of time on the House floor
typically indicates agreement even though the yield state-
ments contain little relevant text on their own.

8We found good development-set performance using the
30 tokens before, 20 tokens after, and the name itself.

9Since we are concerned with references that potentially
represent relationships between speech segments, we ignore
references for which the target of the reference did not speak
in the debate in which the reference was made.

Agreement classifier
(“reference⇒agreement?”)

Devel.
set

Test
set

majority baseline 81.51 80.26
Train: no amdmts;θagr = 0 84.25 81.07
Train: with amdmts;θagr = 0 86.99 80.10

Table 2: Agreement-classifier accuracy, in per-
cent. “Amdmts”=“speech segments containing the
word ‘amendment’”. Recall that boldface indi-
cates results for development-set-optimal settings.

tance of theagr scores. The thresholdθagr con-
trols the precision of the agreement links, in that
values ofθagr greater than zero mean that greater
confidence is required before an agreement link
can be added.10

4 Evaluation

This section presents experiments testing the util-
ity of using speech-segment relationships, evalu-
ating against a number of baselines. All reported
results use values for the free parameterα derived
via tuning on the development set. In the tables,
boldface indicates the development- and test-set
results for thedevelopment-set-optimalparameter
settings, as one would make algorithmic choices
based on development-set performance.

4.1 Preliminaries: Reference classification

Recall that to gather inter-speaker agreement in-
formation, the strategy employed in this paper is
to classify by-name references to other speakers
as to whether they indicate agreement or not.

To train our agreement classifier, we experi-
mented with undoing the deletion of amendment-
related speech segments in the training set. Note
that such speech segments wereneverincluded in
the development or test set, since, as discussed in
Section 2, their labels are probably noisy; how-
ever, including them in thetraining set allows the
classifier to examine more instances even though
some of them are labeled incorrectly. As Table
2 shows, using more, if noisy, data yields bet-
ter agreement-classification results on the devel-
opment set, and so we use that policy in all subse-
quent experiments.11

10Our implementation puts a link between just one arbi-
trary pair of speech segments among all those uttered by a
given pair of apparently agreeing speakers. The “infinite-
weight” same-speaker links propagate the agreement infor-
mation to all other such pairs.

11Unfortunately, this policy leads to inferiortest-setagree-
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Agreement classifier Precision (in percent):
Devel. set Test set

θagr = 0 86.23 82.55
θagr = µ 89.41 88.47

Table 3: Agreement-classifier precision.

An important observation is that precision may
be more important than accuracy in deciding
which agreement links to add: false positives with
respect to agreement can cause speech segments
to be incorrectly assigned the same label, whereas
false negatives mean only that agreement-based
information about other speech segments is not
employed. As described above, we can raise
agreement precision by increasing the threshold
θagr, which specifies the required confidence for
the addition of an agreement link. Indeed, Table
3 shows that we can improve agreement precision
by settingθagr to the (positive) mean agreement
scoreµ assigned by the SVM agreement-classifier
over all references in the given debate12. How-
ever, this comes at the cost of greatly reducing
agreement accuracy (development: 64.38%; test:
66.18%) due to lowered recall levels. Whether
or not better speech-segment classification is ulti-
mately achieved is discussed in the next sections.

4.2 Segment-based speech-segment
classification

Baselines The first two data rows of Table
4 depict baseline performance results. The
#(“support”) − #(“oppos”) baseline is meant
to explore whether the speech-segment classifica-
tion task can be reduced to simple lexical checks.
Specifically, this method uses the signed differ-
ence between the number of words containing the
stem “support” and the number of words contain-
ing the stem “oppos” (returning the majority class
if the difference is 0). No better than 62.67% test-
set accuracy is obtained by either baseline.

Using relationship information Applying an
SVM to classify each speech segment in isolation
leads to clear improvements over the two base-
line methods, as demonstrated in Table 4. When
we impose the constraint that all speech segments
uttered by the same speaker receive the same la-
bel via “same-speaker links”, both test-set and

ment classification. Section 4.5 contains further discussion.
12We elected not to explicitly tune the value ofθagr in or-

der to minimize the number of free parameters to deal with.

Support/oppose classifer
(“speech segment⇒yea?”)

Devel.
set

Test
set

majority baseline 54.09 58.37
#(“support”)−#(“oppos”) 59.14 62.67
SVM [speech segment] 70.04 66.05
SVM + same-speaker links 79.77 67.21
SVM + same-speaker links. . .

+ agreement links,θagr = 0 89.11 70.81
+ agreement links,θagr = µ 87.94 71.16

Table 4: Segment-based speech-segment classifi-
cation accuracy, in percent.

Support/oppose classifer
(“speech segment⇒yea?”)

Devel.
set

Test
set

SVM [speaker] 71.60 70.00
SVM + agreement links. . .

with θagr = 0 88.72 71.28
with θagr = µ 84.44 76.05

Table 5: Speaker-based speech-segment classifica-
tion accuracy, in percent. Here, the initial SVM is
run on the concatenation of all of a given speaker’s
speech segments, but the results are computed
over speech segments (not speakers), so that they
can be compared to those in Table 4.

development-set accuracy increase even more, in
the latter case quite substantially so.

The last two lines of Table 4 show that the
best results are obtained by incorporating agree-
ment information as well. The highest test-set re-
sult, 71.16%, is obtained by using a high-precision
threshold to determine which agreement links to
add. While the development-set results would in-
duce us to utilize the standard threshold value of 0,
which is sub-optimal on the test set, theθagr = 0
agreement-link policy still achieves noticeable im-
provement over not using agreement links (test set:
70.81% vs. 67.21%).

4.3 Speaker-based speech-segment
classification

We use speech segments as the unit of classifica-
tion because they represent natural discourse units.
As a consequence, we are able to exploit relation-
ships at the speech-segment level. However, it is
interesting to consider whether we really need to
consider relationships specifically between speech
segments themselves, or whether it suffices to sim-
ply consider relationships between thespeakers
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of the speech segments. In particular, as an al-
ternative to using same-speaker links, we tried a
speaker-basedapproach wherein the way we de-
termine the initial individual-document classifica-
tion score for each speech segment uttered by a
personp in a given debate is to run an SVM on the
concatenation ofall of p’s speech segments within
that debate. (We also ensure that agreement-link
information is propagated from speech-segment to
speaker pairs.)

How does the use of same-speaker links com-
pare to the concatenation of each speaker’s speech
segments? Tables 4 and 5 show that, not sur-
prisingly, the SVM individual-document classifier
works better on the concatenated speech segments
than on the speech segments in isolation. How-
ever, the effect on overall classification accuracy
is less clear: the development set favors same-
speaker links over concatenation, while the test set
does not.

But we stress that the most important obser-
vation we can make from Table 5 is that once
again, the addition of agreement information leads
to substantial improvements in accuracy.

4.4 “Hard” agreement constraints

Recall that in in our experiments, we created
finite-weight agreement links, so that speech seg-
ments appearing in pairs flagged by our (imper-
fect) agreement detector can potentially receive
different labels. We also experimented withforc-
ing such speech segments to receive the same la-
bel, either through infinite-weight agreement links
or through a speech-segment concatenation strat-
egy similar to that described in the previous sub-
section. Both strategies resulted in clear degrada-
tion in performance on both the development and
test sets, a finding that validates our encoding of
agreement information as “soft” preferences.

4.5 On the development/test set split

We have seen several cases in which the method
that performs best on the development set does
not yield the best test-set performance. However,
we felt that it would be illegitimate to change the
train/development/test sets in a post hoc fashion,
that is, after seeing the experimental results.

Moreover, and crucially, it is very clear that
using agreement information, encoded as prefer-
ences within our graph-based approach rather than
as hard constraints, yields substantial improve-
ments on both the development and test set; this,

we believe, is our most important finding.

5 Related work

Politically-oriented text Sentiment analysis has
specifically been proposed as a key enabling tech-
nology in eRulemaking, allowing the automatic
analysis of the opinions that people submit (Shul-
man et al., 2005; Cardie et al., 2006; Kwon et al.,
2006). There has also been work focused upon de-
termining the political leaning (e.g., “liberal” vs.
“conservative”) of a document or author, where
most previously-proposed methods make no di-
rect use of relationships between the documents to
be classified (the “unlabeled” texts) (Laver et al.,
2003; Efron, 2004; Mullen and Malouf, 2006). An
exception is Grefenstette et al. (2004), who exper-
imented with determining the political orientation
of websites essentially by classifying the concate-
nation of all the documents found on that site.

Others have applied the NLP technologies of
near-duplicate detection and topic-based text cat-
egorization to politically oriented text (Yang and
Callan, 2005; Purpura and Hillard, 2006).

Detecting agreement We used a simple method
to learn to identify cross-speaker references indi-
cating agreement. More sophisticated approaches
have been proposed (Hillard et al., 2003), in-
cluding an extension that, in an interesting re-
versal of our problem, makes use of sentiment-
polarity indicators within speech segments (Gal-
ley et al., 2004). Also relevant is work on the gen-
eral problems of dialog-act tagging (Stolcke et al.,
2000), citation analysis (Lehnert et al., 1990), and
computational rhetorical analysis (Marcu, 2000;
Teufel and Moens, 2002).

We currently do not have an efficient means
to encodedisagreementinformation as hard con-
straints; we plan to investigate incorporating such
information in future work.

Relationships between the unlabeled items
Carvalho and Cohen (2005) consider sequential
relations between different types of emails (e.g.,
between requests and satisfactions thereof) to clas-
sify messages, and thus also explicitly exploit the
structure of conversations.

Previous sentiment-analysis work in different
domains has considered inter-document similar-
ity (Agarwal and Bhattacharyya, 2005; Pang and
Lee, 2005; Goldberg and Zhu, 2006) or explicit
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inter-document references in the form of hyper-
links (Agrawal et al., 2003).

Notable early papers on graph-based semi-
supervised learning include Blum and Chawla
(2001), Bansal et al. (2002), Kondor and Lafferty
(2002), and Joachims (2003). Zhu (2005) main-
tains a survey of this area.

Recently, several alternative, often quite sophis-
ticated approaches tocollective classificationhave
been proposed (Neville and Jensen, 2000; Laf-
ferty et al., 2001; Getoor et al., 2002; Taskar et
al., 2002; Taskar et al., 2003; Taskar et al., 2004;
McCallum and Wellner, 2004). It would be inter-
esting to investigate the application of such meth-
ods to our problem. However, we also believe
that our approach has important advantages, in-
cluding conceptual simplicity and the fact that it is
based on an underlying optimization problem that
is provably and in practice easy to solve.

6 Conclusion and future work

In this study, we focused on very general types
of cross-document classification preferences, uti-
lizing constraints based only on speaker identity
and on direct textual references between state-
ments. We showed that the integration of even
very limited information regarding inter-document
relationships can significantly increase the accu-
racy of support/opposition classification.

The simple constraints modeled in our study,
however, represent just a small portion of the
rich network of relationships that connect state-
ments and speakers across the political universe
and in the wider realm of opinionated social dis-
course. One intriguing possibility is to take ad-
vantage of (readily identifiable) information re-
garding interpersonal relationships, making use of
speaker/author affiliations, positions within a so-
cial hierarchy, and so on. Or, we could even at-
tempt to model relationships between topics or
concepts, in a kind of extension of collaborative
filtering. For example, perhaps we could infer that
two speakers sharing a common opinion on evo-
lutionary biologist Richard Dawkins (a.k.a. “Dar-
win’s rottweiler”) will be likely to agree in a de-
bate centered on Intelligent Design. While such
functionality is well beyond the scope of our cur-
rent study, we are optimistic that we can develop
methods to exploit additional types of relation-
ships in future work.
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Abstract

Combining fine-grained opinion informa-
tion to produce opinion summaries is im-
portant for sentiment analysis applica-
tions. Toward that end, we tackle the
problem of source coreference resolution
– linking together source mentions that re-
fer to the same entity. The partially super-
vised nature of the problem leads us to de-
fine and approach it as the novel problem
of partially supervised clustering. We pro-
pose and evaluate a new algorithm for the
task of source coreference resolution that
outperforms competitive baselines.

1 Introduction

Sentiment analysis is concerned with extracting
attitudes, opinions, evaluations, and sentiment
from text. Work in this area has been motivated
by the desire to provide information analysis ap-
plications in the arenas of government, business,
and politics (e.g. Coglianese (2004)). Addition-
ally, sentiment analysis can augment existing NLP
applications such as question answering, informa-
tion retrieval, summarization, and clustering by
providing information about sentiment (e.g. Stoy-
anov et al. (2005), Riloff et al. (2005)). To date,
research in the area (see Related Work section)
has focused on the problem of extracting senti-
ment both at the document level (coarse-grained
sentiment information), and at the level of sen-
tences, clauses, or individual expressions (fine-
grained sentiment information).

In contrast, our work concerns thesumma-
rization of fine-grained information aboutopin-
ions. In particular, while recent research ef-
forts have shown that fine-grained opinions (e.g.

Riloff and Wiebe (2003), Bethard et al. (2004),
Wiebe and Riloff (2005)) as well as their sources
(e.g. Bethard et al. (2004), Choi et al. (2005),
Kim and Hovy (2005)) can be extracted auto-
matically, little has been done to createopin-
ion summaries, where opinions from the same
source/target are combined, statistics are com-
puted for each source/target and multiple opinions
from the same source to the same target are ag-
gregated. A simple opinion summary is shown in
figure 1.1 We expect that this type of opinion sum-
mary, based on fine-grained opinion information,
will be important for information analysis applica-
tions in any domain where the analysis of opinions
is critical.

This paper addresses the problem of opinion
summarization by considering the creation of sim-
ple opinion summaries like those of figure 1. We
proposesource coreference resolution— the task
of determining which mentions of opinion sources
refer to the same entity — as the primary mecha-
nism for identifying the set of opinions attributed
to each real-world source. For this type of sum-
mary, source coreference resolution constitutes an
integral step in the process of generating full opin-
ion summaries. For example, given the opinion
expressions of figure 1, their polarity, and the asso-
ciated opinion sources and targets, the bulk of the
resulting summary can be produced by recogniz-
ing that source mentions “Zacarias Moussaoui”,
“he”, “my”, and “Mr. Moussaoui” all refer to
the same person; and that source mentions “Mr.
Zerkin” and “Zerkin” refer to the same person.2

1For simplicity, the example summary does not contain
any source/target statistics.

2In addition, the summary would require the closely re-
lated task of target coreference resolution and a means for ag-
gregating the conflicting opinions fromZerkin towardMous-
saoui.
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At first glance, source coreference resolution
appears equivalent to the task of noun phrase
coreference resolution and therefore amenable to
traditional coreference resolution techniques (e.g.
Ng and Cardie (2002), Morton (2000)). We hy-
pothesize in Section 3, however, that the task is
likely to succumb to a better solution by treating
it in the context of a new machine learning set-
ting that we refer to aspartially supervised clus-
tering. In particular, due to high coreference an-
notation costs, data sets that are annotated with
opinion information (like ours) do not typically in-
clude supervisory coreference information forall
noun phrases in a document (as would be required
for the application of traditional coreference reso-
lution techniques), but only for noun phrases that
act as opinion sources (or targets).

As a result, we define the task ofpartially su-
pervised clustering, the goal of which is to learn
a clustering function from a set of partially spec-
ified clustering examples (Section 4). We are not
aware of prior work on the problem of partially
supervised clustering and argue that it differs sub-
stantially from that of semi-supervised clustering.
We propose an algorithm for partially supervised
clustering that extends a rule learner with structure
information and is generally applicable to prob-
lems that fit the partially supervised clustering def-
inition (Section 5). We apply the algorithm to
the source coreference resolution task and evalu-
ate its performance on a standard sentiment analy-
sis data set that includes source coreference chains
(Section 6). We find that our algorithm outper-
forms highly competitive baselines by a consid-
erable margin –B3 score of 83.2 vs. 81.8 and
67.1 vs. 60.9 F1 score for the identification of
positive source coreference links.

2 Related Work

Work relevant to our problem can be split into
three main areas – sentiment analysis, traditional
noun phrase coreference resolution, and super-
vised and weakly supervised clustering. Related
work in the former two areas is summarized briefly
below. Supervised and weakly supervised cluster-
ing approaches are discussed in Section 4.

Sentiment analysis. Much of the relevant re-
search in sentiment analysis addresses sentiment
classification, a text categorization task of extract-
ing opinion at the coarse-grained document level.
The goal in sentiment classification is to assign to

[Source Zacarias Moussaoui] [− complained] at length today
about[Target his own lawyer], telling a federal court jury that
[Target he] was[− more interested in achieving fame than sav-
ing Moussaoui’s life].

Mr. Moussaouisaid he was appearing on the witness stand to
tell the truth. And one part of the truth,[Source he] said, is that
[Target sending him to prison for life] would be “[− a greater
punishment] than being sentenced to death.”

“ [− [Target You] have put your interest ahead of[Source my]
life],” [Source Mr. Moussaoui] told his court-appointed lawyer
Gerald T. Zerkin.

...
But, [Source Mr. Zerkin] pressed[Target Mr. Moussaoui], was
it [− not true] that he told his lawyers earlier not to involve
any Muslims in the defense, not to present any evidence that
might persuade the jurors to spare his life?

...
[Source Zerkin] seemed to be trying to show the jurors
that while [Target the defendant] is generally[+ an honest
individual], his conduct shows[Target he] is [− not stable
mentally], and thus[− undeserving] of [Target the ultimate
punishment].

Moussaoui

Zerkin

prison for life

ultimate punishment

−

−

−

−/ +

Figure 1: Example text containing opinions
(above) and a summary of the opinions (be-
low). Sources and targets of opinions are brack-
eted; opinion expressions are shown in italics and
bracketed with associated polarity, either positive
(+) or negative (-). The underlined phrase will be
explained later in the paper.

a document either positive (“thumbs up”) or nega-
tive (“thumbs down”) polarity (e.g. Das and Chen
(2001), Pang et al. (2002), Turney (2002), Dave
et al. (2003)). Other research has concentrated
on analyzing fine-grained opinions at, or below,
the sentence level. Recent work, for example, in-
dicates that systems can be trained to recognize
opinions and their polarity, strength, and sources
to a reasonable degree of accuracy (e.g. Dave et
al. (2003), Riloff and Wiebe (2003), Bethard et
al. (2004), Wilson et al. (2004), Yu and Hatzivas-
siloglou (2003), Choi et al. (2005), Kim and Hovy
(2005), Wiebe and Riloff (2005)). Our work ex-
tends research on fine-grained opinion extraction
by augmenting the opinions with additional infor-
mation that allows the creation of concise opinion
summaries. In contrast to the opinion extracts pro-
duced by Pang and Lee (2004), our summaries are
not text extracts, but rather explicitly identify and
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characterize the relations between opinions and
their sources.

Coreference resolution. Coreference resolution
is a relatively well studied NLP problem (e.g.
Morton (2000), Ng and Cardie (2002), Iida et al.
(2003), McCallum and Wellner (2003)). Corefer-
ence resolution is defined as the problem of decid-
ing which noun phrases in the text (mentions) re-
fer to the same real world entities (are coreferent).
Generally, successful approaches to coreference
resolution have relied on supervised classification
followed by clustering. For supervised classifica-
tion these approaches learn a pairwise function to
predict whether a pair of noun phrases is corefer-
ent. Subsequently, when making coreference res-
olution decisions on unseen documents, the learnt
pairwise NP coreference classifier is run, followed
by a clustering step to produce the final clusters
(coreference chains) of coreferent NPs. For both
training and testing, coreference resolution algo-
rithms rely on feature vectors for pairs of noun
phrases that encode linguistic information about
the NPs and their local context. Our general ap-
proach to source coreference resolution is inspired
by the state-of-the-art performance of one such ap-
proach to coreference resolution, which relies on a
rule learner and single-link clustering as described
in Ng and Cardie (2002).

3 Source Coreference Resolution

In this section we introduce the problem of source
coreference resolution in the context of opinion
summarization and argue for the need for novel
methods for the task.

The task ofsource coreference resolutionis to
decide which mentions of opinion sources refer to
the same entity. Much like traditional coreference
resolution, we employ a learning approach; how-
ever, our approach differs from traditional coref-
erence resolution in its definition of the learn-
ing task. Motivated by the desire to utilize unla-
beled examples (discussed later), we define train-
ing as an integrated task in which pairwise NP
coreference decisions are learned together with
the clustering function as opposed to treating each
NP pair as a training example. Thus, our train-
ing phase takes as input a set of documents with
manually annotated opinion sources together with
coreference annotations for the sources; it outputs
a classifier that can produce source coreference
chains for previously unseen documents contain-

ing marked (manually or automatically) opinion
sources. More specifically, the source coreference
resolution training phase proceeds through the fol-
lowing steps:

1. Source-to-NP mapping: We preprocess
each document by running a tokenizer, sen-
tence splitter, POS tagger, parser, and an NP
finder. Subsequently, we augment the set of
NPs found by the NP finder with the help of
a system for named entity detection. We then
map the sources to the NPs. Since there is
no one-to-one correspondence, we use a set
of heuristics to create the mapping. More de-
tails about why heuristics are needed and the
process used to map sources to NPs can be
found in Stoyanov and Cardie (2006).

2. Feature vector creation: We extract a fea-
ture vector for every pair of NPs from the pre-
processed corpus. We use the features intro-
duced by Ng and Cardie (2002) for the task
of coreference resolution.

3. Classifier construction: Using the feature
vectors from step 2, we construct a training
set containing one training example per doc-
ument. Each training example consists of the
feature vectors for all pairs of NPs in the doc-
ument, including those that do not map to
sources, together with the available corefer-
ence information for thesource noun phrases
(i.e. the noun phrases to which sources are
mapped). The training instances are pro-
vided as input to a learning algorithm (see
Section 5), which constructs a classifier that
can take the instances associated with a new
(previously unseen) document and produce a
clustering over all NPs in the document.

The testing phase employs steps 1 and 2 as de-
scribed above, but replaces step 3 by a straightfor-
ward application of the learnt classifier. Since we
are interested in coreference information only for
the source NPs, we simply discard the non-source
NPs from the resulting clustering.

The approach to source coreference resolution
described here would be identical to traditional
coreference resolution when provided with train-
ing examples containing coreference information
for all NPs. However, opinion corpora in general,
and our corpus in particular, contain no corefer-
ence information about general NPs. Neverthe-
less, after manual sources are mapped to NPs in
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step 1 above, our approach can rely on the avail-
able coreference information for the source NPs.
Due to the high cost of coreference annotation, we
desire methods that can work in the presence of
only this limited amount of coreference informa-
tion.

A possible workaround the absence of full NP
coreference information is to train a traditional
coreference system only on the labeled part of the
data (indeed that is one of the baselines against
which we compare). However, we believe that
an effective approach to source coreference res-
olution has to utilize the unlabeled noun phrases
because links between sources might be realized
through non-source mentions. This problem is il-
lustrated in figure 1. The underlinedMoussaoui
is coreferent with all of the Moussaoui references
marked as sources, but, because it is used in an
objective sentence rather than as the source of
an opinion, the reference would be omitted from
the Moussaouisource chain. Unfortunately, this
proper noun phrase might be critical in establish-
ing the coreference of the final source referencehe
with the other mentions of the sourceMoussaoui.

As mentioned previously, in order to utilize
the unlabeled data, our approach differs from tra-
ditional coreference resolution, which uses NP
pairs as training instances. We instead follow the
framework of supervised clustering (Finley and
Joachims, 2005; Li and Roth, 2005) and consider
each document as a training example. As in super-
vised clustering, this framework has the additional
advantage that the learning algorithm can consider
the clustering algorithm when making decisions
about pairwise classification, which could lead to
improvements in the classifier. In the next section
we describe our approach to classifier construction
for step 3 and compare our problem to traditional
weakly supervised clustering, characterizing it as
an instance of the novel problem of partially su-
pervised clustering.

4 Partially Supervised Clustering

In our desire to perform effective source corefer-
ence resolution we arrive at the following learning
problem – the learning algorithm is presented with
a set of partially specified examples of clusterings
and acquires a function that can cluster accurately
an unseen set of items, while taking advantage of
the unlabeled information in the examples.

This setting is to be contrasted with semi-

supervised clustering (or clustering with con-
straints), which has received much research at-
tention (e.g. Demiriz et al. (1999), Wagstaff and
Cardie (2000), Basu (2005), Davidson and Ravi
(2005)). Semi-supervised clustering can be de-
fined as the problem of clustering a set of items
in the presence of limited supervisory informa-
tion such as pairwise constraints (e.g. two items
must/cannot be in the same cluster) or labeled
points. In contrast to our setting, in the semi-
supervised case there is no training phase – the
algorithm receives all examples (labeled and un-
labeled) at the same time together with some dis-
tance or cost function and attempts to find a clus-
tering that optimizes a given measure (usually
based on the distance or cost function).

Source coreference resolution might alterna-
tively be approached as a supervised clustering
problem. Traditionally, approaches to supervised
clustering have treated the pairwise link decisions
as a classification problem. These approaches first
learn a distance metric that optimizes the pairwise
decisions; and then follow the pairwise classifica-
tion with a clustering step. However, these tradi-
tional approaches have no obvious way of utilizing
the available unlabeled information.

In contrast, we follow recent approaches to su-
pervised clustering that propose ways to learn
the distance measure in the context of the clus-
tering decisions (Li and Roth, 2005; Finley and
Joachims, 2005; McCallum and Wellner, 2003).
This provides two advantages for the problem of
source coreference resolution. First, it allows the
algorithm to take advantage of the complexity of
the rich structural dependencies introduced by the
clustering problem. Viewed traditionally as a hur-
dle, the structural complexity of clustering may be
beneficial in the partially supervised case. We be-
lieve that provided with a few partially specified
clustering examples, an algorithm might be able
to generalize from the structural dependencies to
infer correctly the whole clustering of the items.
In addition, considering pairwise decisions in the
context of the clustering can arguably lead to more
accurate classifiers.

Unfortunately, none of the supervised cluster-
ing approaches is readily applicable to the partially
supervised case. However, by adapting the for-
mal supervised clustering definition, which we do
next, we can develop approaches to partially su-
pervised clustering that take advantage of the un-
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labeled portions of the data.

Formal definition. For partially supervised
clustering we extend the formal definition of su-
pervised clustering given by Finley and Joachims
(2005). In the fully supervised setting, an al-
gorithm is given a setS of n training examples
(x1, y1), ..., (xn, yn) ∈ X × Y , whereX is the
set of all possible sets of items andY is the set of
all possible clusterings of these sets. For a train-
ing example(x, y), x = {x1, x2, ..., xk} is a set
of k items andy = {y1, y2, ..., yr} is a clustering
of the items inx with eachyi ⊆ x. Addition-
ally, each item can be in no more than one cluster
(∀i, j.yi ∩ yj = ∅) and in the fully supervised case
each item is in at least one cluster (x =

⋃
yi).

The goal of the learning algorithm is to acquire a
functionh : X → Y that can accurately cluster a
(previously unseen) set of items.

In the context of source coreference resolution
the training set contains one example for each doc-
ument. The items in each training example are the
NPs and the clustering over the items is the equiv-
alence relation defined by the coreference infor-
mation. For source coreference resolution, how-
ever, clustering information is unavailable for the
non-source NPs. Thus, to be able to deal with this
unlabeled component of the data we arrive to the
setting of partially supervised clustering, in which
we relax the condition that each item is in at least
one cluster (x =

⋃
yi) and replace it with the con-

dition x ⊇
⋃
yi. The items with no linking infor-

mation (items inx \
⋃
yi) constitute the unlabeled

(unsupervised) component of the partially super-
vised clustering.

5 Structured Rule Learner

We develop a novel method for partially super-
vised clustering, which is motivated by the success
of a rule learner (RIPPER) for coreference resolu-
tion (Ng and Cardie, 2002). We extend RIPPER
so that it can learn rules in the context of single-
link clustering, which both suits our task (i.e. pro-
nouns link to their single antecedent) and has ex-
hibited good performance for coreference resolu-
tion (Ng and Cardie, 2002). We begin with a brief
overview of RIPPER followed by a description of
the modifications that we implemented. For ease
of presentation, we assume that we are in the fully
supervised case. We end this section by describing
the changes for the partially supervised case.

procedure StRip(TrainData){
GrowData, PruneData = Split(TrainData);
//Keep instances from the same document together
while(there are positive uncovered instances){

r = growRule(GrowData);
r = pruneRule(r, PruneData);
DL = relativeDL(Ruleset);
if(DL ≤minDL + d bits)

Ruleset.add(r);
Mark examples covered by r as +;

else
exit loop with Ruleset

}
}
procedure growRule(growData){

r = empty rule;
for(every unused feature f){

if (f is nominal feature){
for(every possible value v of f){

mark all instances that have values of v for f with +;
compute the transitive closure of the positive instances
//(including instances marked + from previous rules);
compute the infoGain for the future/value combination;
}
} else{ //Numeric feature

create one bag for each feature value and split the instances into bags;
do a forward and a backward pass over the bags keeping a running
clustering and compute the information gain for each value;
}
}
add the future/value pair with the best infoGain to r;
growData = growData - all negative instances;
return r;
}
procedure pruneRule(r, pruneData){

for(all antecedents a in the rule){
apply all antecedents in r up to a to pruneData;
compute the transitive closure of the positive instances;
compute A(a) – the accuracy of the rule up to antecedent a;
}
Remove all antecedents after the antecedent for which A(a) is maximum.
}

Figure 2: The StRip algorithm. Additions to RIP-
PER are shown in bold.

5.1 The RIPPER Algorithm

RIPPER (for Repeated Incremental Pruning to
Produce Error Reduction) was introduced by Co-
hen (1995) as an extension of an existing rule
induction algorithm. Cohen (1995) showed that
RIPPER produces error rates competitive with
C4.5, while exhibiting better running times. RIP-
PER consists of two phases – a ruleset is grown
and then optimized.

The ruleset creation phasebegins by ran-
domly splitting the training data into a rule-
growing set (2/3 of the training data) and a pruning
set (the remaining 1/3). A rule is then grown on
the former set by repeatedly adding theantecedent
(the feature value test) with the largest information
gain until the accuracy of the rule becomes 1.0 or
there are no remaining potential antecedents. Next
the rule is applied to the pruning data and any rule-
final sequence that reduces the accuracy of the rule
is removed.

The optimization phaseuses the full training
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set to first grow a replacement rule and a revised
rule for each rule in the ruleset. For each rule,
the algorithm then considers the original rule, the
replacement rule, and the revised rule, and keeps
the rule with the smallest description length in the
context of the ruleset. After all rules are con-
sidered, RIPPER attempts to grow residual rules
that cover data not already covered by the rule-
set. Finally, RIPPER deletes any rules from the
ruleset that reduce the overall minimum descrip-
tion length of the data plus the ruleset. RIPPER
performs two rounds of this optimization phase.

5.2 The StRip Algorithm

The property of partially supervised clustering that
we want to explore is the structured nature of the
decisions. That is, each decision of whether two
items (saya andb) belong to the same cluster has
an implication for all itemsa′ that belong toa’s
cluster and all itemsb′ that belong tob’s cluster.

We target modifications to RIPPER that will al-
low StRip (for Structured RIPPER) to learn rules
that produce good clusterings in the context of
single-link clustering. We extend RIPPER so that
every time it makes a decision about a rule, it con-
siders the effect of the rule on the overall clus-
tering of items (as opposed to considering the in-
stances that the rule classifies as positive/negative
in isolation). More precisely, we precede every
computation of rule performance (e.g. informa-
tion gain or description length) by a transitive clo-
sure (i.e. single link clustering) of the data w.r.t. to
the pairwise classifications. Following the transi-
tive closure, all pairs of items that are in the same
cluster are considered covered by the rule for per-
formance computation.

The StRip algorithm is given in figure 2, with
modifications to the original RIPPER algorithm
shown in bold. Due to space limitations the op-
timization stage of the algorithm is omitted. Our
modifications to the optimization stage of RIPPER
are in the spirit of the rest of the StRip algorithm.

Partially supervised case. So far we described
StRip only for the fully supervised case. We
use a very simple modification to handle the par-
tially supervised setting: we exclude the unla-
beled pairs when computing the performance of
the rules. Thus, the unlabeled items do not count
as correct or incorrect classifications when acquir-
ing or pruning a rule, although they do participate
in the transitive closure. Links in the unlabeled

data are inferred entirely through the indirect links
between items in the labeled component that they
introduce. In the example of figure 1, the two
problematic unlabeled links are the link between
the source mention “he” and the underlined non-
source NP “Mr. Moussaoui” and the link between
the underlined “Mr. Moussaoui” to any source
mention ofMoussaoui. While StRip will not re-
ward any rule (or rule set) that covers these two
links directly, such rules will be rewarded indi-
rectly since they put the sourcehe in the chain for
the sourceMoussaoui.

StRip running time. StRip’s running time is
generally comparable to that of RIPPER. We com-
pute transitive closure by using a Union-Find
structure, which runs in timeO(log∗n), which for
practical purposes can be considered linear (O(n))
3. However, when computing the best information
gain for a nominal feature, StRip has to make a
pass over the data for each value that the feature
takes, while RIPPER can split the data into bags
and perform the computation in one pass.

6 Evaluation and Results

This section describes the source coreference data
set, the baselines, our implementation of StRip,
and the results of our experiments.

6.1 Data set

For evaluation we use the MPQA corpus (Wiebe
et al., 2005).4 The corpus consists of 535 doc-
uments from the world press. All documents in
the collection are manually annotated with phrase-
level opinion information following the annota-
tion scheme of Wiebe et al. (2005). Discussion
of the annotation scheme is beyond the scope of
this paper; for our purposes it suffices to say that
the annotations include the source of each opin-
ion and coreference information for the sources
(e.g. source coreference chains). The corpus con-
tains no additional noun phrase coreference infor-
mation.

For our experiments, we randomly split the data
set into a training set consisting of 400 documents
and a test set consisting of the remaining 135 doc-
uments. We use the same test set for all experi-

3For the transitive closure,n is the number of items in a
document, which isO(

√
k), wherek is the number of NP

pairs. Thus, transitive closure is sublinear in the number of
training instances.

4The MPQA corpus is available at
http://nrrc.mitre.org/NRRC/publications.htm .
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ments, although some learning runs were trained
on 200 training documents (see next Subsection).
The test set contains a total of 4736 source NPs
(average of 35.34 source NPs per document) split
into 1710 total source NP chains (average of 12.76
chains per document) for an average of 2.77 source
NPs per chain.

6.2 Implementation

We implemented the StRip algorithm by modify-
ing JRip – the java implementation of RIPPER in-
cluded in the WEKA toolkit (Witten and Frank,
2000). The WEKA implementation follows the
original RIPPER specification. We changed the
implementation to incorporate the modifications
suggested by the StRip algorithm; we also mod-
ified the underlying data representations and data
handling techniques for efficiency. Also due to ef-
ficiency considerations, we train StRip only on the
200-document training set.

6.3 Competitive baselines

We compare the results of the new method to three
fully supervised baseline systems, each of which
employs the same traditional coreference resolu-
tion approach. In particular, we use the afore-
mentioned algorithm proposed by Ng and Cardie
(2002), which combines a pairwise NP corefer-
ence classifier with single-link clustering.

For one baseline, we train the coreference reso-
lution algorithm on theMPQA srccorpus — the
labeled portion of the MPQA corpus (i.e. NPs
from the source coreference chains) with unla-
beled instances removed.

The second and third baselines investigate
whether the source coreference resolution task can
benefit from NP coreference resolution training
datafrom a different domain. Thus, we train the
traditional coreference resolution algorithm on the
MUC6andMUC7coreference-annotated corpora5

that contain documents similar in style to those in
the MPQA corpus (e.g. newspaper articles), but
emanate from different domains.

For all baselines we targeted the best possi-
ble systems by trying two pairwise NP classifiers
(RIPPER and an SVM in theSVM light imple-
mentation (Joachims, 1998)), many different pa-
rameter settings for the classifiers, two different
feature sets, two different training set sizes (the

5We train each baseline using both the development set
and the test set from the corresponding MUC corpus.

full training set and a smaller training set consist-
ing of half of the documents selected at random),
and three different instance selection algorithms6.
This variety of classifier and training data settings
was motivated by reported differences in perfor-
mance of coreference resolution approaches w.r.t.
these variations (Ng and Cardie, 2002). More de-
tails on the different parameter settings and in-
stance selection algorithms as well as trends in the
performance of different settings can be found in
Stoyanov and Cardie (2006). In the experiments
below we report the best performance of each of
the two learning algorithms on the MPQA test
data.

6.4 Evaluation

In addition to the baselines described above, we
evaluate StRip both with and without unlabeled
data. That is, we train on the MPQA corpus StRip
using either all NPs or just opinion source NPs.

We use theB3 (Bagga and Baldwin, 1998) eval-
uation measure as well as precision, recall, and
F1 measured on the (positive) pairwise decisions.
B3 is a measure widely used for evaluating coref-
erence resolution algorithms. The measure com-
putes the precision and recall for each NP mention
in a document, and then averages them to produce
combined results for the entire output. More pre-
cisely, given a mentioni that has been assigned
to chainci, the precision for mentioni is defined
as the number of correctly identified mentions in
ci divided by the total number of mentions inci.
Recall fori is defined as the number of correctly
identified mentions inci divided by the number of
mentions in the gold standard chain fori.

Results are shown in Table 1. The first six
rows of results correspond to the fully supervised
baseline systems trained on different corpora —
MUC6, MUC7, andMPQA src. The seventh row
of results shows the performance of StRip using
only labeled data. The final row of the table shows
the results for partially supervised learningwith
unlabeled data. The table lists results from the best
performing run for each algorithm.

Performance among the baselines trained on the
MUC data is comparable. However, the two base-
line runs trained on theMPQA srccorpus (i.e. re-
sults rows five and six) show slightly better perfor-
mance on theB3 metric than the baselines trained

6The goal of the instance selection algorithms is to bal-
ance the data, which contains many more negative than posi-
tive instances
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ML Framework Training set Classifier B3 precision recall F1
Fully supervised MUC6 SVM 81.2 72.6 52.5 60.9

RIPPER 80.7 57.4 63.5 60.3
MUC7 SVM 81.7 65.6 55.9 60.4

RIPPER 79.7 71.6 48.5 57.9
MPQA src SVM 81.8 57.5 62.9 60.2

RIPPER 81.8 72.0 52.5 60.6
StRip 82.3 76.5 56.1 64.6

Partially supervised MPQA all StRip 83.2 77.1 59.4 67.1

Table 1: Results for Source Coreference.MPQA srcstands for the MPQA corpus limited to only source
NPs, whileMPQA fullcontains the unlabeled NPs.

on the MUC data, which indicates that for our
task the similarity of the documents in the train-
ing and test sets appears to be more important
than the presence of complete supervisory infor-
mation. (Improvements over the RIPPER runs
trained on the MUC corpora are statistically sig-
nificant7, while improvements over the SVM runs
are not.)

Table 1 also shows that StRip outperforms the
baselines on both performance metrics. StRip’s
performance is better than the baselines when
trained onMPQA src (improvement not statisti-
cally significant,p > 0.20) and even better when
trained on the full MPQA corpus, which includes
the unlabeled NPs (improvement over the base-
lines and the former StRip run statistically signif-
icant). These results confirm our hypothesis that
StRip improves due to two factors: first, consider-
ing pairwise decisions in the context of the clus-
tering function leads to improvements in the clas-
sifier; and, second, StRip can take advantage of
the unlabeled portion of the data.

StRip’s performance is all the more impressive
considering the strength of the SVM and RIPPER
baselines, which which represent the best runs
across the 336 different parameter settings tested
for SVM light and 144 different settings tested for
RIPPER. In contrast, all four of the StRip runs us-
ing the full MPQA corpus (we vary the loss ratio
for false positive/false negative cost) outperform
those baselines.

7 Future Work

Source coreference resolution is only one aspect
of opinion summarization. Additionally, an opin-
ion summarization system will need to handle

7Statistical significance is measured using both a 2-tailed
paired t-test and the Wilcoxon matched-pairs signed-ranks
test (p < 0.05). The two tests agreed on all significance
judgements, so we will not report them separately.

the closely related task of target coreference res-
olution in order to cluster targets of opinions8

and combine multiple conflicting opinions from a
source to the same targets. Furthermore, a fully
automatic opinion summarizer requires automatic
source and opinion extractors. While we antici-
pate that target coreference resolution will be sub-
ject to error rates similar to those of source coref-
erence resolution, incorporating these imperfect
opinions and sources will further impair the per-
formance of the opinion summarizer. We are not
aware of any measure that can be directly used
to assess the goodness of opinion summaries, but
plan to develop such in future work in conjunc-
tion with the development of methods for creating
opinion summaries completely automatically. The
evaluation metrics will likely have to depend on
the task for which the summaries are used.

A limitation of our approach to partially super-
vised clustering is that we do not directly optimize
for the performance measure (e.g.B3). Other ef-
forts in the area of supervised clustering (Finley
and Joachims, 2005; Li and Roth, 2005) have sug-
gested ways to learn distance measures that can
optimize directly for a desired performance mea-
sure. We plan to investigate algorithms that can di-
rectly optimize for complex measures (such asB3)
for the problem of partially supervised clustering.
Unfortunately, a measure as complex asB3 makes
extending existing approaches far from trivial due
to the difficulty of establishing the connection be-
tween individual pairwise decisions (the distance
metric) and the score of the clustering algorithm.
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Abstract

Ranking documents or sentences accord-
ing to both topic and sentiment relevance
should serve a critical function in helping
users when topics and sentiment polari-
ties of the targeted text are not explicitly
given, as is often the case on the web. In
this paper, we propose several sentiment
information retrieval models in the frame-
work of probabilistic language models, as-
suming that a user both inputs query terms
expressing a certain topic and also speci-
fies a sentiment polarity of interest in some
manner. We combine sentiment relevance
models and topic relevance models with
model parameters estimated from training
data, considering the topic dependence of
the sentiment. Our experiments prove that
our models are effective.

1 Introduction

The recent rapid expansion of access to informa-
tion has significantly increased the demands on re-
trieval or classification of sentiment information
from a large amount of textual data. The field of
sentiment classificationhas recently received con-
siderable attention, where the polarities of senti-
ment, such as positive or negative, were identified
from unstructured text (Shanahan et al., 2005).
A number of studies have investigated sentiment
classification at document level, e.g., (Pang et al.,
2002; Dave et al., 2003), and at sentence level,
e.g., (Hu and Liu, 2004; Kim and Hovy, 2004;
Nigam and Hurst, 2005); however, the accuracy
is still less than desirable. Therefore, ranking ac-
cording to the likelihood of containing sentiment
information is expected to serve a crucial func-
tion in helping users. We believe that our work

is the first attempt atsentiment retrievalthat aims
at finding sentences containing information with a
specific sentiment polarity on a certain topic.

Intuitively, the expression of sentiment in text
is dependent on the topic. For example, a nega-
tive view for some voting event may be expressed
using ‘flaw’, while a negative view for some politi-
cian may be expressed using ‘reckless’. Moreover,
sentiment polarities are also dependent on topics
or domains. For example, the adjective ‘unpre-
dictable’ may have a negative orientation in an au-
tomotive review, in a phrase such as ‘unpredictable
steering’, but it could have a positive orientation in
a movie review, in a phrase such as ‘unpredictable
plot’, as mentioned in (Turney, 2002) in the con-
text of his sentiment word detection.

We propose sentiment retrieval models in the
framework of generative language modeling, not
only assuming query terms expressing a certain
topic, but also assuming that the polarity of sen-
timent interest is specified by the user in some
manner, where the topic dependence of the sen-
timent is considered. To the best of our knowl-
edge, there have been no other studies on a re-
trieval model unifying both topic and sentiment,
and further, there have been no other studies on
sentiment retrieval. The sentiment information of-
ten appears as local in a document, and therefore
focusing on finer levels, i.e., sentence or passage
levels rather than document level, is crucial. We
thus experiment on sentiment retrieval at the sen-
tence level in this paper.

The rest of this paper is structured as follows.
Section2 introduces the work related to this study.
Section3 describes a generative model of sen-
timent, which is proposed here as a theoretical
framework for our work. Section4 describes the
task definition and our sentiment retrieval model.
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Section5 explains the data we used for our experi-
ments, and gives our experimental results. Section
6 concludes the paper.

2 Related Work

Some efforts for the TREC Novelty Track were
related to our work. Although some of the topics
used in the Novelty Track in 2003 and 2004 (Sobo-
roff and Harman, 2003; Soboroff, 2004) were re-
lated to opinions, most of the efforts were fo-
cused on topic, such as studies using term dis-
tribution within each sentence, e.g., (Allan et al.,
2003; Losada, 2005; Murdock and Croft, 2005).
Amongst the participants in the TREC Novelty
Track, only (Kim et al., 2004) proposed a method
specialized to opinion-bearing sentence retrieval,
by making use of lists of words with positive or
negative polarities. They aimed to find opinions
on a given topic but did not distinguish or did not
care about sentiment polarities that should be rep-
resented in some sentences (hereafter,opinion re-
trieval). We focus on finding positive views or
negative views according to a given topic and sen-
timent of interest (hereafter,sentiment retrieval).
Our work is the first work on sentiment retrieval,
to the best of our knowledge.

In the context ofsentiment classification, some
researchers have conducted studies on the topic
dependence of sentiment polarities. (Nasukawa
and Yi, 2003) and (Yi et al., 2003) extracted pos-
itive or negative expressions on a given product
name using handmade lexicons. (Engström, 2004)
studied how the topic dependence influences the
accuracy of sentiment classification and attempted
to reduce the influence to improve the accuracy.
(Wilson et al., 2005) investigated how context in-
fluences sentiment polarity at the phrase level in a
corpus, beginning with a predefined list of words
with polarities. Their focus on the phenomena of
topic dependence of sentiment can be shared with
our work; however, their work is not directly re-
lated to ours, because we focus on a different task,
sentiment retrieval, where different approaches are
required.

3 A Generative Model of Sentiment

In this section we will provide a formal underpin-
ning for our approach to sentiment retrieval. The
approach is based on thegenerativeparadigm: we
describe a statistical process that could be viewed,
hypothetically, as a source of every statement of

interest to our system. We stress that this genera-
tive process is to be treated as purely hypothetical;
the process is only intended to reflect those aspects
of human discourse that are pertinent to the prob-
lem of retrieving affectively appropriate and topic-
relevant texts in response to a query posed by our
user.

Before giving a formal specification of our
model, we will provide a high-level overview of
the main ideas. We are trying to model a col-
lection of natural-language statements, some of
which are relevant to a user’s query. In our ex-
periments, these statements are individual sen-
tences, but the model can be applied to textual
chunks of any length. We assume that the con-
tent of an individual statement can be modeled
independently of all other statements in the col-
lection. Each statement consists of some topic-
bearing and some sentiment-bearing words. We
assume that the topic-bearing words represent ex-
changeable samples from some underlying topic
language model. Exchangeability means that the
relative order of the words is irrelevant, but the
words are not independent of each other—the idea
often stated as abag-of-wordsassumption. Sim-
ilarly, sentiment-bearing words are viewed as an
order-invariant ‘bag’, sampled from the underly-
ing sentiment language model. We will explicitly
model dependency between the topic and senti-
ment language models, and will demonstrate that
treating them independently leads to sub-optimal
retrieval performance. When asentiment polarity
value is observed for a given statement, we will
treat it as a ternary variable influencing the topic
and sentiment language models.

We represent a user’s query as just another state-
ment, consisting of topic and sentiment parts, sub-
ject to all the independence assumptions stated
above. We will use the query to estimate the topic
and sentiment language models that are represen-
tative of the user’s interests. Following (Lavrenko
and Croft, 2001), we will use the termrelevance
modelsto describe these models, and will use them
to rank statements in order of their relevance to the
query.

3.1 Definitions

We start by providing a set of definitions that will
be used in the remainder of this section. The task
of our model is togeneratea collection of state-
mentsw1: : :wn. A statementwi is a string of
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wordswi1: : :wini, drawn from a common vocabu-
laryV. We introduce a binary variablebij2fS; Tg
as an indicator of whether the word in thejth po-
sition of theith statement will be a topic word or
a sentiment word. For our purposes,bij is either
provided by a human annotator (manual annota-
tion), or determined heuristically (automatic an-
notation).

The sentiment polarityxi for a given statement
is a discrete random variable with three outcomes:f�1; 0;+1g, representing negative, neutral and
positive polarity values, respectively. As a matter
of convenience we will often denote a statement as
a triplefwsi ;wti; xig, wherewsi contains the sen-
timent words andwti contains the topic words. As
we mentioned above, the user’s query is treated
as just another statement. It will be denoted as
a triple fqs;qt;qxg, corresponding to sentiment
words, topic keywords, and the desired polarity
value. We will usep to denote a unigram lan-
guage model, i.e., a function that assigns a numberp(v)2[0; 1℄ to every wordv in our vocabularyV,
such that�vp(v)=1. The set of all possible un-
igram language models is the probability simplexIP . Similarly, px will denote a distribution over
the three possible polarity values, andIPx is the
corresponding ternary probability simplex. We de-
fine� : IP�IP�IPx![0; 1℄ to be a measure func-
tion that assigns a probability�(p1;p2;px) to a
pair of language modelsp1 andp2 together with a
polarity modelpx.

3.2 Generative model

Using the definitions presented above, and assum-
ing that�() is given, we hypothesize that a new
statementwi containing wordswi1: : :wim with
sentiment polarityxi can be generated according
to the following mechanism.

1. Drawpt;ps andpx from �(�; �; �).
2. Samplexi from a polarity distributionpx(�).
3. For each positionj = 1: : :m:

(a) if bij=T : drawwij frompt(�) ;
(b) if bij=S: drawwij from ps(�) .

The probability of observing the new statementwi1: : :wim under this mechanism is given by:Xpt;ps;px�(pt;ps;px)px(xi) mYj=1(pt(wij) if bij=Tps(wij) otherwise

(1)
The summation in equation (1) goes over all pos-
sible pairs of language modelspt;ps, but we can

avoid integration by specifying a mass function�() that assigns nonzero probabilities to a finite
subset of points inIP�IP�IPx. We accomplish
this by using a nonparametric estimate for�(), the
details of which are provided below.

3.2.1 A nonparametric generative mass
function

We use a nonparametric estimate for�(�; �; �),
which makes our generative model similar to
kernel-baseddensity estimators orParzen-window
classifiers (Silverman, 1986). The primary dif-
ference is that our model operates over discrete
events (strings of words), and accordingly the
mass function is defined over the space of distribu-
tions, rather than directly over the data points. Our
estimate relies on a collection of paired observa-
tionsC = fwti;wsi ; xi : i=1::ng, which represent
statements for which we know which words are
topic words(wti), and which are sentiment words(wsi ). Each of these observations corresponds to
a unique pointpti;psi;pxi in the space of paired
distributionsIP�IP�IPx, defined by the follow-
ing coordinates:pti(v) = �t#(v;wti)=#(wti) + (1��t)tvpsi(v) = �s#(v;wsi )=#(wsi ) + (1��s)svpxi(x) = �x1x=xi + (1��x): (2)

Here,#(v;wti) represents the number of times the
wordv was observed in the topic part of statementi, the length of which is denoted by#(wti). tv
stands for the relative frequency ofv in the topic
part of the collection. The same definitions ap-
ply to the sentiment parameters#(v;wsi ), #(wsi )
andsv. The Boolean indicator function1y returns
one when the predicatey is true and zero other-
wise. Metaparameters�t, �s and�x specify the
amount of Dirichlet smoothing (Zhai and Lafferty,
2001) applied to the topic, sentiment and polarity
estimates respectively; values for these parameters
are determined empirically.

We define�(pt;ps;px) to have mass1n when
its argumentpt;ps;px corresponds to some ob-
servationpti;psi;pxi, and zero otherwise:�(pt;ps;px) = 1n nXi=1 1pt=pti�1ps=psi�1px=pxi :

(3)
Equation (3) maintains empirical dependencies
between the topic language modelpt and the sen-
timent modelps, because we assign nonzero prob-
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ability mass only to pairs of models that actually
co-occurin our observations.

3.2.2 Limitations of the model

Our model represents each statementwi as a
bag of words, or more formally an order-invariant
sequence. This representation is often confused
with word independence, which is a much stronger
assumption. The generative model defined by
equation (1) ignores the relative ordering of the
words, but it does allow arbitrarily strongun-
ordered dependenciesamong them. To illustrate,
consider the probability of observing the words
‘unpredictable’ and ‘plot’ in the same statement.
Suppose we set�t; �s=1 in equation (2), reduc-
ing the effects of smoothing. It should be evi-
dent thatP (unpredictable,plot) will be non-zero
only when the two words actually co-occur in the
training data. By carefully selecting the smoothing
parameters, the model can preserve dependencies
between topic and sentiment words, and is quite
capable of distinguishing the positive sentiment of
‘unpredictable plot’ from the negative sentiment
of ‘unpredictable steering’. On the other hand, the
model does ignore the ordering of the words, so it
will not be able to differentiate the negative phrase
‘gone from good to bad’ from its exact opposite.
Furthermore, our model is not well suited for mod-
eling adjacency effects: the phrase ‘unpredictable
plot’ is treated in the same way as two separate
words, ‘unpredictable’ and ‘plot’, co-occurring in
the same sentence.

3.3 Using the model for retrieval

The generative model presented above can be ap-
plied to sentiment retrieval in the following fash-
ion. We start with a collection of statementsC and
a queryfqs;qt;qxg supplied by the user. We use
the machinery outlined in Section3.2 to estimate
the topic and sentiment relevance models corre-
sponding to the user’s information need, and then
determine which statements in our collection most
closely correspond to these models of relevance.
The topic relevance modelRt and sentiment rele-
vance modelRs are estimated as follows. We as-
sume that our queryqs;qt;qx is a random sample
from a distribution defined by equation (1), and
then for each wordv we estimate the likelihood
thatv would be observed if we sampled one more

topic or sentiment word:Rt(v)=P (qs;qtÆv;qx)P (qs;qt;qx) ; Rs(v)=P (qsÆv;qt;qx)P (qs;qt;qx) :
(4)

Both the numerator and denominator are com-
puted according to equation (1), with the mass
function�() given by equations (3) and (2). We
use the notationqÆv to denote appending wordv
to the stringq. Estimation is done over the train-
ing corpus, which may or may not include numeric
values of sentiment polarity.1 Once we have esti-
mates for the topic and sentiment relevance mod-
els, we can rank testing statementsw by their sim-
ilarity to Rt andRs. We rank statements using
a variation of cross-entropy, which was proposed
by (Zhai, 2002):�Xv Rt(v) logpt(v)+(1��)Xv Rs(v) logps(v):

(5)
Here the summations extend over all wordsv in
the vocabulary,Rt and Rs are given by equa-
tion (4), whilept andps are computed according
to equation (2). A weighting parameter� allows
us to change the balance of topic and sentiment
in the final ranking formula; its value is selected
empirically.

4 Sentiment Retrieval Task

4.1 Task definition

We define two variations of the sentiment retrieval
task. In one, the user supplies us with a numeric
value for the desired polarityqx. In the other,
the user supplies a set ofseed wordsqs, reflect-
ing the desired sentiment. The first task requires
us to have polarity observationsxi in our training
data, while the second does not.

Task with training data:
Input: (1) a set of topic keywordsqt and (2)
a sentiment specificationqx 2 f�1; 1g. In
this case we assumeqs to be the empty
string.

Output: a ranked list of topic-relevant and
sentiment-relevant sentences from the test
data.

Task with seed words:
Input: (1) a set of topic keywordsqt and (2)
a set of sentiment seed wordsqs . In this
case our model ignoresqx andxi.

1When the training corpus does not contain numeric po-
larity valuesxi, we assume�(pt;ps;px)=�(pt;ps) and
forcepx(xi) to be a constant.
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Output: a ranked list of topic-relevant and
sentiment-relevant sentences from the test
data.

In the first task, we split our corpus into three
parts: (i) the training set, which was used for es-
timating the relevance modelsRs andRt; (ii) the
development set, which was used for tuning the
model parameters�t,�s and�; and (iii) the testing
set, from which we retrieved sentences in response
to the query. In the second task, we split the corpus
into two parts: (i) the training set, which was used
for tuning the model parameters; and (ii) the test-
ing set, which was used for constructingRs andRt and from which we retrieved sentences in re-
sponse to queries.2 The testing set was identical
in both tasks. Note that the sentiment relevance
modelRs can be constructed in a topic-dependent
fashion for both tasks.

4.2 Variations of the retrieval model

slm: the retrieval model as described in Sec-
tion 3.3.

lmt: the standard language modeling ap-
proach (Ponte and Croft, 1998; Song and
Croft, 1999) on the topic keywordsqt for the
topic part of the textwt.
lms: the standard language modeling approach
on the sentiment keywordsqs for the senti-
ment part of the textws.
base: the weighted linear combination oflmt
andlms.

rmt: only the topic relevance model was used
for ranking usingqt and forwt .3

rms: only the sentiment relevance model was
used for ranking usingqs and forws.
rmt-base: theslmmodel with� = 1, ignoring
the sentiment relevance model.

rms-base: theslmmodel with� = 0, ignoring
the topic relevance model.

2Because the training set was used for tuning the model
parameters, no development set was required for this task.

3When we use the automatic annotation that is described
in Section5.2.2, we use the whole text instead of the topic
part of the text, for the reasons given in that section. This
treatment is applied to thebase, rmt-base, rms-base, rmt-rms,
rmt-slmandslmmodels that are described in this section for
using the automatic annotation. However, we distinguish the
lmt and rmt models using the topic part of the text and the
lmtf andrmtf models, as baselines, using the whole text, re-
spectively, even in the experiments using the automatic anno-
tation.

rmt-rms: the rmt andrms models are treated
independently.

rmt-slm: the rmt and rms-basemodels are
combined.

lmtf: the standard language modeling ap-
proach usingqt for the nonsplit text, as base-
line.

rmtf: the conventional relevance model was
used for ranking usingqt for the nonsplit text,
as baseline.

lmtsf: the standard language modeling ap-
proach using bothqt andqs for the nonsplit
text, for reference.

rmtsf: the conventional relevance model was
used for ranking using bothqt andqs for the
nonsplit text, for reference.

Note that the relevance models are constructed
using training data for the training-based task, but
are constructed using test data for the seed-based
task, as mentioned in Section4.1. Therefore, the
basemodel is only used for the training data, not
for the test data, in the training-based task, while
it can be performed for the test data in the case of
the seed-based task. Moreover, thelms, lmtsfand
rmtsf models are based on the premise of using
seed words to specify sentiments, and so they are
only applicable to the seed-based task.

In the models described in this subsec-
tion, �t and �s in equation (2) were set to
Dirichlet estimates (Zhai and Lafferty, 2001),#(wti)=(#(wti) + �t) and#(wsi )=(#(wsi ) + �s)
for the relevance modelsRt andRs, respectively,
in equation (4), and were fixed at 0.9 for ranking
as in equation (5) for our experiments in Section5.
Here,�t and�s were selected empirically accord-
ing to the tasks described in Section4.1. The
model parameter� in equation (5) was also se-
lected empirically in the same manner. The num-
ber of ranked documents used in the relevance
modelsRt andRs, in equation (4), was selected
empirically in the same manner as above; how-
ever, we fixed the number of terms used in the rel-
evance models as 1000.

5 Experiments

5.1 Data set and evaluation measure

We used the MPQA Opinion Corpus version
1.2 (Wilson et al., 2005; Wiebe et al., 2005) to
measure the effectiveness of our sentiment re-
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trieval models. We summarize this data set as fol-
lows.� This corpus contains news articles collected

from 187 different foreign and U.S. news
sources from June 2001 to May 2002. The cor-
pus contains 535 documents, a total of 11,114
sentences.� The majority of the articles are on 10 differ-
ent topics, which are labeled at document level,
but, in addition to these, a number of additional
articles were randomly selected from a larger
corpus of 270,000 documents.� Each article was manually annotated using an
annotation scheme for opinions and other pri-
vate states at phrase level. We only used the
annotations for sentiments that included some
attributes such as polarity and strength.

In this data set, the topic relevance for the 10
topics is known at the document level, but un-
known at the sentence level. We assumed that all
the sentences in a relevant document could be con-
sidered relevant to the topic.4

This data set was annotated with sentiment po-
larities at the phrase level, but not explicitly an-
notated at the sentence level. Therefore, we pro-
vided sentiment polarities at the sentence level to
prepare training data and data for evaluation. We
set the sentence-level sentiment polarity equal to
the polarity with the highest strength in each sen-
tence.5

Queries were expressed using the title of one of
the 10 topics and specified as positive or negative.
Thus, we had 20 types of queries for our experi-
ments. Because the supposed relevance judgments
in this setting are imperfect at sentence level, we
usedbpref (Buckley and Voorhees, 2004), in both
the training and testing phases, as it is known to
be tolerant of imperfect judgments. Bpref uses bi-
nary relevance judgments to define the preference
relation (i.e., any relevant document is preferred
over any nonrelevant document for a given topic),
while other measures, such as mean average pre-
cision, depend only on the ranks of the relevant
documents.

4This is a strong assumption to make and may not be true
in all cases. A larger, more complete data set is required to
perform a more detailed analysis, which is left as future work.

5We disregarded ‘neutral’ and ‘both’ if other polarities ap-
peared. We can also set the sentence-level sentiment polarity
according to the presence of polarity in each sentence, but we
did not consider this setting here.

5.2 Extracting sentiment expressions

5.2.1 Using manual annotation

Because the MPQA corpus was annotated with
phrase-level sentiments, we can use these anno-
tations to split a sentence into a topic partwt
and a sentiment partws. The Krovetz stem-
mer (Krovetz, 1993) was applied to the topic part,
the sentiment part and to the query terms6 and, for
the retrieval experiments in Sections5.3 and5.4,
a total of 418 stopwords from a standard stopword
list were removed when they appeared.

5.2.2 Using automatic annotation

In automatic extraction of sentiment expres-
sions in this study, we detected sentiment-bearing
words using lists of words with established polar-
ities. At this stage, topic dependence was not con-
sidered; however, at the stage of sentiment model-
ing, the topic dependence can be reflected, as de-
scribed in Sections3 and4.

We first prepared a list of words indicating sen-
timents. We used Hatzivassiloglou and McKe-
own’s sentiment word list (Hatzivassiloglou and
McKeown, 1997), which consists of 657 positive
and 679 negative adjectives, and The General In-
quirer (Stone et al., 1966), which contains 1621
positive and 1989 negative words.7 By merging
these lists, we obtained 1947 positive and 2348
negative words. After stemming these words in the
same manner as in Section5.2.1, we were left with
1667 positive and 2129 negative words, which we
will use hereafter in this paper.

The sentiment polarities are sometimes sensi-
tive to the structural information, for instance,
a negation expression reverses the following
sentiment polarity. To handle negation, ev-
ery sentiment-bearing word was rewritten with a
‘NEG’ suffix, such as ‘goodNEG’, if an odd num-
ber of negation expressions was found within the
five preceding words in the sentence. To detect
negation expressions, we used a predefined nega-
tion expression list. This negation handling is sim-
ilar to that used in (Das and Chen, 2001; Pang et
al., 2002). We extracted sentiment-bearing expres-
sions using the list of words with established po-

6We used the topic labels attached to the MPQA corpus as
the topic query termsqt in all the experiments in Sections5.3
and5.4.

7We extracted positive and negative words from the Gen-
eral Inquirer basically in the same manner as in (Turney and
Littman, 2003); however, we did not exclude any words, un-
like (Turney and Littman, 2003), where some seed words
were excluded for the evaluation of their work.
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Table 1: Sample probabilities from the sentiment relevance models
Reaction to President Bush’s 2002 presidential election Israeli settlements in

Topic-independent Topic-independent 2002 State of the Union Address in Zimbabwe Gaza and West Bank
w/ manual annot. w/ automatic annot. w/ manual annot. w/ automatic annot. w/ manual annot. w/ automatic annot. w/ manual annot. w/ automatic annot.P (wjQ) w P (wjQ) w P (wjQ) w P (wjQ) w P (wjQ) w P (wjQ) w P (wjQ) w P (wjQ) w
0.047 demand 0.029 state 0.030 support 0.067 state 0.042 support 0.039 support 0.041 ask 0.097 settle
0.031 expect 0.026 support 0.016 promise 0.034 support 0.033 legitimate 0.033 legitimate 0.036 agreed 0.032 peace
0.031 defend 0.014 lead 0.014 call 0.024 call 0.031 free 0.033 lead 0.036 call 0.025 state
0.031 invite 0.013 call 0.014 excellent 0.019 meet 0.029 congratulate 0.025 free 0.033 aim 0.022 secure
0.031 humane 0.013 minister 0.013 goal 0.017 minister 0.028 fair 0.025 fair 0.028 immediate 0.015 call
0.031 safeguard 0.011 right 0.013 express 0.015 promise 0.023 please 0.018 state 0.025 aware 0.014 conflict
0.031 nutritious 0.010 foreign 0.013 best 0.014 white 0.017 confident 0.017 congratulate 0.024 key 0.013 support
0.031 helpful 0.009 hope 0.012 count 0.013 foreign 0.017 call 0.015 call 0.022 expect 0.012 right
0.016 time 0.009 meet 0.012 cooperate 0.012 success 0.012 hopeful 0.015 meet 0.018 justify 0.011 attack
0.016 say 0.008 interest 0.011 proposal 0.011 defense 0.012 express 0.013 unity 0.018 honoure 0.011 minister

0.091 evil 0.037 state 0.065 evil 0.098 state 0.029 flaw 0.028 flaw 0.018 palestinian 0.100 settle
0.080 axis 0.022 evil 0.049 axis 0.051 evil 0.018 condemn 0.026 critic 0.013 protest 0.031 state
0.045 threat 0.015 right 0.022 critic 0.028 critic 0.015 true 0.023 state 0.012 decide 0.019 peace
0.033 qualify 0.015 prison 0.011 prepare 0.017 call 0.014 critic 0.022 opposition 0.011 peace 0.014 secureNEG
0.030 wrote 0.013 critic 0.010 recognize 0.012 interest 0.012 expect 0.019 reject 0.011 fatten 0.013 critic
0.020 particular 0.010 human 0.010 reckless 0.011 move 0.011 reject 0.017 condemn 0.011 believe 0.012 force
0.020 word 0.008 support 0.010 country 0.011 reject 0.011 s 0.016 legal 0.009 plan 0.012 attack
0.018 harsh 0.008 protest 0.009 upset 0.010 slam 0.011 fair 0.015 move 0.009 fear 0.012 war
0.015 reject 0.008 war 0.009 pick 0.010 right 0.011 free 0.015 democratic 0.009 mistake 0.011 believe
0.015 dangerous 0.008 force 0.009 eyesore 0.010 attack 0.010 angry 0.014 support 0.009 continue 0.011 minister

The upper and lower tables correspond to positive and negative sentiments, respectively. The topic-independent
sentiment relevance models (in the left two columns) correspond torms, and the topic-dependent models (in the
rest of the columns) correspond torms-base, which is used forslm.

larities, considering negation, as described above.
Note that we used the list of words with sentiments
to extract sentiment expressions, but we did not
use the predefined sentiments to model sentiment
relevance.

Some expressions are sometimes used to ex-
press a certain topic, such assettlementsin “Is-
raeli settlementsin Gaza and West Bank”; but at
other times are used to express a certain sentiment,
such as the same word in “All parties signed court-
mediated compromisesettlements”. Therefore, we
will use whole sentences to model topic relevance,
while we will use the automatically extracted sen-
timent expressions to model sentiment relevance,
in Sections5.3and5.4.

5.3 Experiments on training-based task

We conducted experiments on the training-based
task described in Section4.1, using either man-
ual annotation as described in Section5.2.1or au-
tomatic annotation as described in Section5.2.2.
Table 1contrasts sample probabilities from topic-
independent sentiment relevance models and those
from topic-dependent sentiment relevance models.
In the left two columns of this table, two sets of
sample probabilities using the topic-independent
model are presented. One was computed from the
manual annotation and the other was computed
from the automatic annotation. In the remain-
ing columns, samples using the topic-dependent
model are shown according to the three topics:
(1) “reaction to President Bush’s 2002 State of
the Union Address”, (2) “2002 presidential elec-

tion in Zimbabwe”, and (3) “Israeli settlements
in Gaza and West Bank”. A number of posi-
tive expressions appeared topic dependent, such
as ‘promise’ (stemmed from ‘promising’ or not)
and ‘support’ for Topic (1), ‘legitimate’ and ‘con-
gratulate’ for Topic (2) and ‘justify’ and ‘se-
cure’ for Topic (3); while negative expressions ap-
peared topic-dependent, such as ‘critic’ (stemmed
from ‘criticism’) and ‘eyesore’ for Topic (1),
‘flaw’ and ‘condemn’ for Topic (2) and ‘mistake’
and ‘secureNEG’ (i.e., ‘secure’ was negated) for
Topic (3).

Some expressions were unexpectedly generated
regardless of the types of annotation, e.g., ‘pales-
tinian’ for Topic (3); however, we found some
characteristics in the results using automatic anno-
tation. Some expressions on opinions that did not
convey sentiments, such as ‘state’, frequently ap-
peared regardless of topic. This sort of expression
may effectively function as degrading sentences
only conveying facts, but may function harmfully
by catching sentences conveying opinions without
sentiments in the task of sentiment retrieval. Some
topic expressions, such as ‘settle’ (stemmed from
‘settlement’ or not) for Topic (3), were generated,
because such words convey positive sentiments in
some other contexts and thus they were contained
in the list of sentiment-bearing words that we used
for automatic annotation. This will not cause a
topic relevance model to drift, because we mod-
eled the topic relevance using whole sentences, as
described in Section5.2.2; however, it may harm
the sentiment relevance model to some extent.
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Table 2: Experimental results of training-based
task using manually annotated data

10% 25% 40%
Models Bpref (AvgP) Bpref (AvgP) Bpref (AvgP)

lmtf 0.1389 (0.1135)0.1389 (0.1135)0.1386 (0.1145)
lmt 0.1499 (0.1164)0.1499 (0.1164)0.1444 (0.1148)
rmtf 0.1811 (0.1706)0.1887 (0.1770)0.1841 (0.1691)
rmt 0.1712 (0.1619)0.1712 (0.1619)0.1922 (0.1705)

rmt-base0.1922 (0.1723)0.2005 (0.1812)0.2100* (0.1951)
rms 0.0464 (0.0384)0.0452 (0.0394)0.0375 (0.0320)

rms-base0.0772 (0.0640)0.0869 (0.0704)0.0865 (0.0724)
rmt-rms 0.2025 (0.1413)0.2210 (0.1925)0.2117 (0.2003)
rmt-slm 0.2278* (0.1715)0.2249 (0.1676)0.1999 (0.1819)

slm 0.2006 (0.1914)0.2247 (0.1824)0.2441* (0.2427)

‘*’ indicates statistically significant improve-
ment overrmtf wherep < 0:05 with the two-
sided Wilcoxon signed-rank test.

We performed retrieval experiments in the steps
described in Section4.1. For this purpose, we split
the data into three parts: (i)x% as the training
data, (ii) (50 � x)% as the evaluation data, and
(iii) 50% as the test data.

The test results of training-based task using
manually annotated data and automatically anno-
tated data are shown inTables 2 and 3, respec-
tively. The scores were computed according to the
bprefevaluation measure (Buckley and Voorhees,
2004), as mentioned in Section5.1. In addition
to the bpref, mean average precision values are
presented as ‘AvgP’ in the tables, for reference.8

In these tables, the top row indicates the percent-
ages of the training datax. It turned out that
in all our experiments the appropriate fraction of
training data was 40%. In this setting, ourslm
model worked 76.1% better than the query like-
lihood model and 32.6% better than the conven-
tional relevance model, when using manual anno-
tation, and both improvements were statistically
significant according to the Wilcoxon signed-rank
test.9 When using automatic annotation, theslm
model worked 67.2% better than the query like-
lihood model and 25.9% better than the conven-
tional relevance model, where both improvements
were statistically significant. Thermt-basemodel
also worked well with automatic annotation.

5.4 Experiments on seed-based task

For experiments on the seed-based task that was
described in Section4.1, we used three groups of

8As mentioned in Section5.1, the bpref is more appro-
priate for the evaluation of our experiments than the mean
average precision.

9Significance tests involved only 20 queries, which makes
it difficult to achieve statistical significance.

Table 3: Experimental results of training-based
task using automatically annotated data

10% 25% 40%
Models Bpref (AvgP) Bpref (AvgP) Bpref (AvgP)

lmtf 0.1389 (0.1135)0.1389 (0.1135)0.1386 (0.1145)
lmt 0.1325 (0.0972)0.1315 (0.0976)0.1325 (0.0972)
rmtf 0.1811 (0.1706)0.1887 (0.1770)0.1841 (0.1691)
rmt 0.1490 (0.1418)0.1762 (0.1584)0.1695 (0.1485)

rmt-base0.2076* (0.1936)0.2252* (0.2139)0.2302* (0.2196)
rms 0.0347 (0.0287)0.0501 (0.0408)0.0501 (0.0408)

rms-base0.0943 (0.0733)0.1196 (0.0896)0.1241 (0.0979)
rmt-rms 0.1690 (0.1182)0.2063 (0.1938)0.1603 (0.1591)
rmt-slm 0.1980 (0.1426)0.2013 (0.1835)0.2148 (0.1882)

slm 0.2011 (0.1537)0.2261* (0.1716)0.2318* (0.1802)

‘*’ indicates statistically significant improve-
ment overrmtf wherep < 0:05 with the two-
sided Wilcoxon signed-rank test.

seed words:KAM , TUR andORG. Each group
consists of a positive word setqs(+) and a negative
word setqs(�), as follows:KAM : qs(+) = fgoodg, andqs(�) = fbadg.TUR: qs(+) = fgood, nice, excellent, positive,

fortunate, correct, superiorg, andqs(�) = fbad,
nasty, poor, negative, unfortunate, wrong, infe-
riorg.ORG: qs(+) = fsupport, demand, promise,
want, hopeg, andqs(�) = frefuse, accuse, crit-
icism, fear, rejectg.KAM and TUR were used in (Kamps and

Marx, 2002) and (Turney and Littman, 2003),
respectively. We constructedORG considering
sentiment-bearing words that may frequently ap-
pear in newspaper articles.

We experimented with the seed-based task,
making use of each of these seed word groups, in
the steps described in Section4.1. For this pur-
pose, we split the data into two parts: (i) 50% as
the estimation data and (ii) 50% as the test data.

The test results using manually annotated data
and automatically annotated data are shown inTa-
bles 4and5, respectively, where the scores were
computed according to the bpref evaluation mea-
sure. Mean average precision values are also pre-
sented as ‘AvgP’ in the tables, for reference.

When using the manually annotated approach,
our slm model worked well, especially with the
seed word groupORG, as shown inTable 4. Us-
ing ORG, the slm model worked 61.2% better
than the query likelihood model and 15.2% bet-
ter than the conventional relevance model, where
both improvements were statistically significant
according to the Wilcoxon signed-rank test. Even
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Table 4: Experimental results of seed-based task
using manually annotated data

ORG TUR KAM
Models Bpref (AvgP) Bpref (AvgP) Bpref (AvgP)

lmtf 0.1385 (0.1119)0.1385 (0.1119)0.1385 (0.1119)
lmtsf 0.1182 (0.1035)0.1061 (0.0884)0.1330 (0.1062)
lmt 0.1501 (0.1171)0.1501 (0.1171)0.1501 (0.1171)
base 0.1615 (0.1319)0.1531 (0.1217)0.1514 (0.1180)
rmtf 0.1938 (0.1776)0.1938 (0.1776)0.1938 (0.1776)
rmtsf 0.1884 (0.1775)0.1661 (0.1412)0.1927 (0.1754)
rmt 0.1974 (0.1826)0.1974 (0.1826)0.1974 (0.1826)

rmt-base0.1960 (0.1918)0.1931 (0.1703)0.1837 (0.1721)
rms 0.0434 (0.0262)0.0295 (0.0205)0.0280 (0.0170)

rms-base0.1142 (0.1022)0.1144 (0.0841)0.1226 (0.0973)
rmt-rms 0.1705 (0.1117)0.1403 (0.1424)0.1405 (0.0842)
rmt-slm 0.2266* (0.2034)0.2272* (0.2012)0.2264* (0.2016)

slm 0.2233* (0.2048)0.2160 (0.1945)0.2072 (0.1929)

‘*’ indicates statistically significant improve-
ment overrmtf wherep < 0:05 with the two-
sided Wilcoxon signed-rank test.

using the other seed word groups, theslm model
worked 49–56% better than the query likelihood
model and 6–12% better than the conventional
relevance model; however, the latter improve-
ment was not statistically significant. Thermt-slm
model also worked well with manual annotation.

When using automatic annotation, theslm
model worked 46–48% better than the query like-
lihood model and 4–6% better than the conven-
tional relevance model, as shown inTable 5. The
improvements over the conventional relevance
model were statistically significant only when us-
ing TUR or KAM ; however, the score when us-
ingORG is almost comparable with the others.

6 Conclusion

We propose sentiment retrieval models in the
framework of probabilistic generative models, not
only assuming that a user inputs query terms ex-
pressing a certain topic, but also assuming that the
user specifies a sentiment polarity of interest ei-
ther as a sentiment specificationqx 2 f�1; 1g or
as a set of sentiment seed wordsqs. For this pur-
pose, we combine sentiment relevance models and
topic relevance models, considering the topic de-
pendence of the sentiment. In our experiments,
our model worked significantly better than stan-
dard language modeling approaches, both when
usingqx andqs, and with both manual and auto-
matic annotation of the fragments expressing sen-
timents in text. Withqs and automatic annota-
tion, our model still worked significantly better
than the standard approaches; however, the per-

Table 5: Experimental results of seed-based task
using automatically annotated data

ORG TUR KAM
Models Bpref (AvgP) Bpref (AvgP) Bpref (AvgP)

lmtf 0.1385 (0.1119)0.1385 (0.1119)0.1385 (0.1119)
lmtsf 0.1182 (0.1035)0.1061 (0.0884)0.1330 (0.1062)
lmt 0.1325 (0.0972)0.1325 (0.0972)0.1325 (0.0972)

basef 0.1550 (0.1369)0.1451 (0.1188)0.1416 (0.1142)
rmtf 0.1938 (0.1776)0.1938 (0.1776)0.1938 (0.1776)
rmtsf 0.1884 (0.1775)0.1661 (0.1412)0.1927 (0.1754)
rmt 0.1757 (0.1578)0.1757 (0.1578)0.1757 (0.1578)

rmt-base0.1957 (0.1862)0.1976 (0.1882)0.1825 (0.1704)
rms 0.0421 (0.0236)0.0364 (0.0205)0.0217 (0.0147)

rms-base0.1268 (0.1096)0.1301 (0.1148)0.1326 (0.1158)
rmt-rms 0.1465 (0.1514)0.1390 (0.1393)0.1252 (0.0757)
rmt-slm 0.1977 (0.1811)0.2008 (0.1649)0.1959 (0.1677)

slm 0.2031 (0.1714)0.2055* (0.1668)0.2044* (0.1698)

‘*’ indicates statistically significant improve-
ment overrmtf wherep < 0:05 with the two-
sided Wilcoxon signed-rank test.

formance did not reach that achieved with other
settings. We believe the performance can be im-
proved with larger-scale data.

We experimented to find sentences that were
relevant to a given topic and were appropriate to
a given sentiment; however, our models can also
be applied to textual chunks of any length, such as
at document level or passage level. Our model can
be easily extended toopinion retrieval, if the opin-
ion retrieval is defined as retrieving sentences or
documents that contain either positive or negative
sentiments. This issue is worth pursuing in future
work. Approaches considering polarity strength
or continuous values for the polarity specification,
rather than usingf�1; 1g, can also be considered
in future work.
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Abstract

This paper proposes an unsupervised
lexicon building method for the detec-
tion of polar clauses, which convey pos-
itive or negative aspects in a specific
domain. The lexical entries to be ac-
quired are called polar atoms, the min-
imum human-understandable syntactic
structures that specify the polarity of
clauses. As a clue to obtain candidate
polar atoms, we use context coherency,
the tendency for same polarities to ap-
pear successively in contexts. Using
the overall density and precision of co-
herency in the corpus, the statistical
estimation picks up appropriate polar
atoms among candidates, without any
manual tuning of the threshold values.
The experimental results show that the
precision of polarity assignment with
the automatically acquired lexicon was
94% on average, and our method is ro-
bust for corpora in diverse domains and
for the size of the initial lexicon.

1 Introduction

Sentiment Analysis (SA) (Nasukawa and Yi,
2003; Yi et al., 2003) is a task to recognize
writers’ feelings as expressed in positive or
negative comments, by analyzing unreadably
large numbers of documents. Extensive syn-
tactic patterns enable us to detect sentiment
expressions and to convert them into seman-
tic structures with high precision, as reported
by Kanayama et al. (2004). From the exam-
ple Japanese sentence (1) in the digital cam-
era domain, the SA system extracts a senti-
ment representation as (2), which consists of
a predicate and an argument with positive (+)
polarity.

(1) Kono kamera-ha subarashii-to omou.
‘I think this camera is splendid.’

(2) [+] splendid(camera)

SA in general tends to focus on subjec-
tive sentiment expressions, which explicitly de-
scribe an author’s preference as in the above
example (1). Objective (or factual) expres-
sions such as in the following examples (3) and
(4) may be out of scope even though they de-
scribe desirable aspects in a specific domain.
However, when customers or corporate users
use SA system for their commercial activities,
such domain-specific expressions have a more
important role, since they convey strong or
weak points of the product more directly, and
may influence their choice to purchase a spe-
cific product, as an example.

(3) Kontorasuto-ga kukkiri-suru.
‘The contrast is sharp.’

(4) Atarashii kishu-ha zuumu-mo tsuite-iru.
‘The new model has a zoom lens, too.’

This paper addresses the Japanese ver-
sion of Domain-oriented Sentiment Analysis,
which identifies polar clauses conveying good-
ness and badness in a specific domain, in-
cluding rather objective expressions. Building
domain-dependent lexicons for many domains
is much harder work than preparing domain-
independent lexicons and syntactic patterns,
because the possible lexical entries are too
numerous, and they may differ in each do-
main. To solve this problem, we have devised
an unsupervised method to acquire domain-
dependent lexical knowledge where a user has
only to collect unannotated domain corpora.

The knowledge to be acquired is a domain-
dependent set of polar atoms. A polar atom is
a minimum syntactic structure specifying po-
larity in a predicative expression. For exam-
ple, to detect polar clauses in the sentences (3)
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and (4)1, the following polar atoms (5) and (6)
should appear in the lexicon:

(5) [+] kukkiri-suru
‘to be sharp’

(6) [+] tsuku ← zuumu-ga
‘to have ← zoom lens-NOM’

The polar atom (5) specified the positive po-
larity of the verb kukkiri-suru. This atom can
be generally used for this verb regardless of
its arguments. In the polar atom (6), on the
other hand, the nominative case of the verb
tsuku (‘have’) is limited to a specific noun zu-
umu (‘zoom lens’), since the verb tsuku does
not hold the polarity in itself. The automatic
decision for the scopes of the atoms is one of
the major issues.

For lexical learning from unannotated cor-
pora, our method uses context coherency in
terms of polarity, an assumption that polar
clauses with the same polarity appear suc-
cessively unless the context is changed with
adversative expressions. Exploiting this ten-
dency, we can collect candidate polar atoms
with their tentative polarities as those adja-
cent to the polar clauses which have been
identified by their domain-independent polar
atoms in the initial lexicon. We use both intra-
sentential and inter-sentential contexts to ob-
tain more candidate polar atoms.

Our assumption is intuitively reasonable,
but there are many non-polar (neutral) clauses
adjacent to polar clauses. Errors in sentence
delimitation or syntactic parsing also result in
false candidate atoms. Thus, to adopt a can-
didate polar atom for the new lexicon, some
threshold values for the frequencies or ratios
are required, but they depend on the type of
the corpus, the size of the initial lexicon, etc.

Our algorithm is fully automatic in the
sense that the criteria for the adoption of po-
lar atoms are set automatically by statistical
estimation based on the distributions of co-
herency: coherent precision and coherent den-
sity. No manual tuning process is required,
so the algorithm only needs unannotated do-
main corpora and the initial lexicon. Thus
our learning method can be used not only by
the developers of the system, but also by end-
users. This feature is very helpful for users to

1The English translations are included only for con-
venience.

analyze documents in new domains.
In the next section, we review related work,

and Section 3 describes our runtime SA sys-
tem. In Section 4, our assumption for unsu-
pervised learning, context coherency and its
key metrics, coherent precision and coherent
density are discussed. Section 5 describes our
unsupervised learning method. Experimental
results are shown in Section 6, and we conclude
in Section 7.

2 Related Work

Sentiment analysis has been extensively stud-
ied in recent years. The target of SA in this
paper is wider than in previous work. For ex-
ample, Yu and Hatzivassiloglou (2003) sepa-
rated facts from opinions and assigned polari-
ties only to opinions. In contrast, our system
detects factual polar clauses as well as senti-
ments.

Unsupervised learning for sentiment analy-
sis is also being studied. For example, Hatzi-
vassiloglou and McKeown (1997) labeled ad-
jectives as positive or negative, relying on se-
mantic orientation. Turney (2002) used col-
location with “excellent” or “poor” to obtain
positive and negative clues for document clas-
sification. In this paper, we use contextual
information which is wider than for the con-
texts they used, and address the problem of
acquiring lexical entries from the noisy clues.

Inter-sentential contexts as in our approach
were used as a clue also for subjectivity anal-
ysis (Riloff and Wiebe, 2003; Pang and Lee,
2004), which is two-fold classification into sub-
jective and objective sentences. Compared to
it, this paper solves a more difficult problem:
three-fold classification into positive, negative
and non-polar expressions using imperfect co-
herency in terms of sentiment polarity.

Learning methods for phrase-level sentiment
analysis closely share an objective of our ap-
proach. Popescu and Etzioni (2005) achieved
high-precision opinion phrases extraction by
using relaxation labeling. Their method itera-
tively assigns a polarity to a phrase, relying on
semantic orientation of co-occurring words in
specific relations in a sentence, but the scope
of semantic orientation is limited to within a
sentence. Wilson et al. (2005) proposed su-
pervised learning, dividing the resources into
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Figure 1: The flow of the clause-level SA.

prior polarity and context polarity, which are
similar to polar atoms and syntactic patterns
in this paper, respectively. Wilson et al. pre-
pared prior polarities from existing resources,
and learned the context polarities by using
prior polarities and annotated corpora. There-
fore the prerequisite data and learned data
are opposite from those in our approach. We
took the approach used in this paper because
we want to acquire more domain-dependent
knowledge, and context polarity is easier to
access in Japanese2. Our approach and their
work can complement each other.

3 Methodology of Clause-level SA

As Figure 1 illustrates, the flow of our sen-
timent analysis system involves three steps.
The first step is sentence delimitation: the in-
put document is divided into sentences. The
second step is proposition detection: proposi-
tions which can form polar clauses are identi-
fied in each sentence. The third step is polarity
assignment: the polarity of each proposition
is examined by considering the polar atoms.
This section describes the last two processes,
which are based on a deep sentiment analy-
sis method analogous to machine translation
(Kanayama et al., 2004) (hereafter “the MT
method”).

3.1 Proposition Detection

Our basic tactic for clause-level SA is the high-
precision detection of polar clauses based on
deep syntactic analysis. ‘Clause-level’ means
that only predicative verbs and adjectives such

2For example, indirect negation such as caused by
a subject “nobody” or a modifier “seldom” is rare in
Japanese.

as in (7) are detected, and adnominal (attribu-
tive) usages of verbs and adjectives as in (8)
are ignored, because utsukushii (‘beautiful’) in
(8) does not convey a positive polarity.

(7) E-ga utsukushii.
‘The picture is beautiful.’

(8) Utsukushii hito-ni aitai.
‘I want to meet a beautiful person.’

Here we use the notion of a proposition as a
clause without modality, led by a predicative
verb or a predicative adjective. The proposi-
tions detected from a sentence are subject to
the assignment of polarities.

Basically, we detect a proposition only at
the head of a syntactic tree3. However, this
limitation reduces the recall of sentiment anal-
ysis to a very low level. In the example (7)
above, utsukushii is the head of the tree, while
those initial clauses in (9) to (11) below are
not. In order to achieve higher recall while
maintaining high precision, we apply two types
of syntactic patterns, modality patterns and
conjunctive patterns4, to the tree structures
from the full-parsing.

(9) Sore-ha utsukushii-to omou.
‘I think it is beautiful.’

(10) Sore-ha utsukushiku-nai.
‘It is not beautiful.’

(11) Sore-ga utsukushii-to yoi.
‘I hope it is beautiful.’

Modality patterns match some auxiliary
verbs or corresponding sentence-final expres-
sions, to allow for specific kinds of modality
and negation. One of the typical patterns is
[ v to omou] (‘I think v ’)5, which allows ut-
sukushii in (9) to be a proposition. Also nega-
tion is handled with a modality pattern, such
as [ v nai] (‘not v ’). In this case a neg fea-
ture is attached to the proposition to identify
utsukushii in (10) as a negated proposition.
On the other hand, no proposition is identi-
fied in (11) due to the deliberate absence of
a pattern [ v to yoi] (‘I hope v ’). We used
a total of 103 domain-independent modality
patterns, most of which are derived from the

3This is same as the rightmost part of the sentence
since all Japanese modification is directed left to right.

4These two types of patterns correspond to auxil-
iary patterns in the MT method, and can be applied
independent of domains.

5
v denotes a verb or an adjective.
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coordinative (roughly ‘and’)
-te, -shi, -ueni, -dakedenaku, -nominarazu

causal (roughly ‘because’)
-tame, -kara, -node

adversative (roughly ‘but’)
-ga, -kedo, -keredo, - monono, -nodaga

Table 1: Japanese conjunctions used for con-
junctive patterns.

MT method, and some patterns are manually
added for this work to achieve higher recall.

Another type of pattern is conjunctive pat-
terns, which allow multiple propositions in a
sentence. We used a total of 22 conjunctive
patterns also derived from the MT method, as
exemplified in Table 1. In such cases of coordi-
native clauses and causal clauses, both clauses
can be polar clauses. On the other hand, no
proposition is identified in a conditional clause
due to the absence of corresponding conjunc-
tive patterns.

3.2 Polarity Assignment Using Polar
Atoms

To assign a polarity to each proposition, po-
lar atoms in the lexicon are compared to the
proposition. A polar atom consists of po-
larity, verb or adjective, and optionally, its
arguments. Example (12) is a simple polar
atom, where no argument is specified. This
atom matches any proposition whose head is
utsukushii. Example (13) is a complex polar
atom, which assigns a negative polarity to any
proposition whose head is the verb kaku and
where the accusative case is miryoku.

(12) [+] utsukushii
‘to be beautiful’

(13) [−] kaku ← miryoku-wo
‘to lack ← attraction-ACC’

A polarity is assigned if there exists a polar
atom for which verb/adjective and the argu-
ments coincide with the proposition, and oth-
erwise no polarity is assigned. The opposite
polarity of the polar atom is assigned to a
proposition which has the neg feature.

We used a total of 3,275 polar atoms, most
of which are derived from an English sentiment
lexicon (Yi et al., 2003).

According to the evaluation of the MT
method (Kanayama et al., 2004), high-
precision sentiment analysis had been achieved
using the polar atoms and patterns, where the

splendid

light have-zoom

small-LCD
⊗

satisfied
⊗

high-price

I
¾

ª
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6

Intra-sentential
Context

Figure 2: The concept of the intra- and inter-
sentential contexts, where the polarities are
perfectly coherent. The symbol ‘⊗’ denotes
the existence of an adversative conjunction.

system never took positive sentiment for neg-
ative and vice versa, and judged positive or
negative to neutral expressions in only about
10% cases. However, the recall is too low, and
most of the lexicon is for domain-independent
expressions, and thus we need more lexical en-
tries to grasp the positive and negative aspects
in a specific domain.

4 Context Coherency

This section introduces the intra- and inter-
sentential contexts in which we assume context
coherency for polarity, and describes some pre-
liminary analysis of the assumption.

4.1 Intra-sentential and
Inter-sentential Context

The identification of propositions described
in Section 3.1 clarifies our viewpoint of the
contexts. Here we consider two types of
contexts: intra-sentential context and inter-
sentential context. Figure 2 illustrates the
context coherency in a sample discourse (14),
where the polarities are perfectly coherent.

(14) Kono kamera-ha subarashii-to omou.
‘I think this camera is splendid.’

Karui-shi, zuumu-mo tsuite-iru.
‘It’s light and has a zoom lens.’

Ekishou-ga chiisai-kedo, manzoku-da.
‘Though the LCD is small, I’m satisfied.’

Tada, nedan-ga chotto takai.
‘But, the price is a little high.’

The intra-sentential context is the link be-
tween propositions in a sentence, which are
detected as coordinative or causal clauses. If
there is an adversative conjunction such as
-kedo (‘but’) in the third sentence in (14), a
flag is attached to the relation, as denoted
with ‘⊗’ in Figure 2. Though there are dif-
ferences in syntactic phenomena, this is sim-
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shikashi (‘however’), demo (‘but’), sorenanoni
(‘even though’), tadashi (‘on condition that’),
dakedo (‘but’), gyakuni (‘on the contrary’),
tohaie (‘although’), keredomo (’however’),
ippou (‘on the other hand’)

Table 2: Inter-sentential adversative expres-
sions.

Domain Post. Sent. Len.

digital cameras 263,934 1,757,917 28.3
movies 163,993 637,054 31.5
mobile phones 155,130 609,072 25.3
cars 159,135 959,831 30.9

Table 3: The corpora from four domains
used in this paper. The “Post.” and “Sent.”
columns denote the numbers of postings and
sentences, respectively. “Len.” is the average
length of sentences (in Japanese characters).

ilar to the semantic orientation proposed by
Hatzivassiloglou and McKeown (1997).

The inter-sentential context is the link be-
tween propositions in the main clauses of pairs
of adjacent sentences in a discourse. The po-
larities are assumed to be the same in the
inter-sentential context, unless there is an ad-
versative expression as those listed in Table 2.
If no proposition is detected as in a nominal
sentence, the context is split. That is, there is
no link between the proposition of the previous
sentence and that of the next sentence.

4.2 Preliminary Study on Context
Coherency

We claim these two types of context can be
used for unsupervised learning as clues to as-
sign a tentative polarity to unknown expres-
sions. To validate our assumption, we con-
ducted preliminary observations using various
corpora.

4.2.1 Corpora
Throughout this paper we used Japanese

corpora from discussion boards in four differ-
ent domains, whose features are shown in Ta-
ble 3. All of the corpora have clues to the
boundaries of postings, so they were suitable
to identify the discourses.

4.2.2 Coherent Precision
How strong is the coherency in the con-

text proposed in Section 4.1? Using the polar
clauses detected by the SA system with the

initial lexicon, we observed the coherent pre-
cision of domain d with lexicon L, defined as:

cp(d, L) = #(Coherent)
#(Coherent)+#(Conflict) (15)

where #(Coherent) and #(Conflict) are oc-
currence counts of the same and opposite po-
larities observed between two polar clauses as
observed in the discourse. As the two polar
clauses, we consider the following types:

Window. A polar clause and the nearest po-
lar clause which is found in the preceding
n sentences in the discourse.

Context. Two polar clauses in the intra-
sentential and/or inter-sentential context
described in Section 4.1. This is the view-
point of context in our method.

Table 4 shows the frequencies of coherent
pairs, conflicting pairs, and the coherent pre-
cision for half of the digital camera domain
corpus. “Baseline” is the percentage of posi-
tive clauses among the polar clauses6.

For the “Window” method, we tested for
n=0, 1, 2, and ∞. “0” means two propositions
within a sentence. Apparently, the larger the
window size, the smaller the cp value. When
the window size is “∞”, implying anywhere
within a discourse, the ratio is larger than the
baseline by only 2.7%, and thus these types
of coherency are not reliable even though the
number of clues is relatively large.

“Context” shows the coherency of the two
types of context that we considered. The
cp values are much higher than those in the
“Window” methods, because the relationships
between adjacent pairs of clauses are handled
more appropriately by considering syntactic
trees, adversative conjunctions, etc. The cp
values for inter-sentential and intra-sentential
contexts are almost the same, and thus both
contexts can be used to obtain 2.5 times more
clues for the intra-sentential context. In the
rest of this paper we will use both contexts.

We also observed the coherent precision for
each domain corpus. The results in the cen-
ter column of Table 5 indicate the number
is slightly different among corpora, but all of
them are far from perfect coherency.

6If there is a polar clause whose polarity is unknown,
the polarity is correctly predicted with at least 57.0%
precision by assuming “positive”.

359



Model Coherent Conflict cp(d, L)

Baseline 57.0%

Window

n = 0 3,428 1,916 64.1%
n = 1 11,448 6,865 62.5%
n = 2 16,231 10,126 61.6%
n = ∞ 26,365 17,831 59.7%

Context
intra. 2,583 996 72.2%
inter. 3,987 1,533 72.2%
both 6,570 2,529 72.2%

Table 4: Coherent precision with various view-
points of contexts.

Domain cp(d, L) cd(d, L)

digital cameras 72.2% 7.23%
movies 76.7% 18.71%
mobile phones 72.9% 7.31%
cars 73.4% 7.36%

Table 5: Coherent precision and coherent den-
sity for each domain.

4.2.3 Coherent Density

Besides the conflicting cases, there are many
more cases where a polar clause does not ap-
pear in the polar context. We also observed
the coherent density of the domain d with the
lexicon L defined as:

cd(d, L) = #(Coherent)
#(Polar) (16)

This indicates the ratio of polar clauses that
appear in the coherent context, among all of
the polar clauses detected by the system.

The right column of Table 5 shows the co-
herent density in each domain. The movie
domain has notably higher coherent density
than the others. This indicates the sentiment
expressions are more frequently used in the
movie domain.

The next section describes the method of
our unsupervised learning using this imperfect
context coherency.

5 Unsupervised Learning for
Acquisition of Polar Atoms

Figure 3 shows the flow of our unsupervised
learning method. First, the runtime SA sys-
tem identifies the polar clauses, and the can-
didate polar atoms are collected. Then, each
candidate atom is validated using the two met-
rics in the previous section, cp and cd, which
are calculated from all of the polar clauses
found in the domain corpus.

Domain
Corpus d

-

Initial
Lexicon L

*
SA

6

Polar
Clauses

context-

µ
U

Candidate
Polar Atoms

f(a), p(a), n(a)

cd(d, L)

cp(d, L)
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6

Rª

N ?
? test-

±

- ∧ - New
Lexicon

Figure 3: The flow of the learning process.

ID Candidate Polar Atom f(a) p(a) n(a)

1* chiisai ‘to be small’ 3,014 226 227
2 shikkari-suru ‘to be firm’ 246 54 10

3
chiisai ← bodii-ga

11 4 0
‘to be small ← body-NOM’

4*
todoku ← mokuyou-ni

2 0 2
‘to be delivered←on Thursday’

Table 6: Examples of candidate polar atoms
and their frequencies. ‘*’ denotes that it
should not be added to the lexicon. f(a), p(a),
and n(a) denote the frequency of the atom and
in positive and negative contexts, respectively.

5.1 Counts of Candidate Polar Atoms

From each proposition which does not have a
polarity, candidate polar atoms in the form of
simple atoms (just a verb or adjective) or com-
plex atoms (a verb or adjective and its right-
most argument consisting of a pair of a noun
and a postpositional) are extracted. For each
candidate polar atom a, the total appearances
f(a), and the occurrences in positive contexts
p(a) and negative contexts n(a) are counted,
based on the context of the adjacent clauses
(using the method described in Section 4.1).
If the proposition has the neg feature, the po-
larity is inverted. Table 6 shows examples of
candidate polar atoms with their frequencies.

5.2 Determination for Adding to
Lexicon

Among the located candidate polar atoms,
how can we distinguish true polar atoms,
which should be added to the lexicon, from
fake polar atoms, which should be discarded?

As shown in Section 4, both the coherent
precision (72-77%) and the coherent density
(7-19%) are so small that we cannot rely on
each single appearance of the atom in the po-
lar context. One possible approach is to set
the threshold values for frequency in a polar
context, max(p(a), n(a)) and for the ratio of
appearances in polar contexts among the to-
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tal appearances, max(p(a),n(a))
f(a) . However, the

optimum threshold values should depend on
the corpus and the initial lexicon.

In order to set general criteria, here we as-
sume that a true positive polar atom a should
have higher p(a)

f(a) than its average i.e. coher-
ent density, cd(d, L+a), and also have higher

p(a)
p(a)+n(a) than its average i.e. coherent preci-
sion, cp(d, L+a) and these criteria should be
met with 90% confidence, where L+a is the
initial lexicon with a added. Assuming the bi-
nomial distribution, a candidate polar atom is
adopted as a positive polar atom7 if both (17)
and (18) are satisfied8.

q > cd(d, L),
where

p(a)∑

k=0

f(a)Ckq
k(1− q)f(a)−k = 0.9

(17)

r > cp(d, L) or n(a) = 0,
where

p(a)∑

k=0

p(a)+n(a)Ckr
k(1− r)p(a)+n(a)−k= 0.9

(18)

We can assume cd(d, L+a) ' cd(d, L), and
cp(d, L+a) ' cp(d, L) when L is large. We
compute the confidence interval using approx-
imation with the F-distribution (Blyth, 1986).

These criteria solve the problems in mini-
mum frequency and scope of the polar atoms
simultaneously. In the example of Table 6, the
simple atom chiisai (ID=1) is discarded be-
cause it does not meet (18), while the complex
atom chiisai ← bodii-ga (ID=3) is adopted
as a positive atom. shikkari-suru (ID=2)
is adopted as a positive simple atom, even
though 10 cases out of 64 were observed in the
negative context. On the other hand, todoku
← mokuyou-ni (ID=4) is discarded because it
does not meet (17), even though n(a)

f(a) = 1.0,
i.e. always observed in negative contexts.

6 Evaluation

6.1 Evaluation by Polar Atoms

First we propose a method of evaluation of the
lexical learning.

7The criteria for the negative atoms are analogous.
8

nCr notation is used here for combination (n
choose k).

Annotator B
Positive Neutral Negative

Anno- Positive 65 11 3
tator Neutral 3 72 0

A Negative 1 4 41

Table 7: Agreement of two annotators’ judg-
ments of 200 polar atoms. κ=0.83.

It is costly to make consistent and large
‘gold standards’ in multiple domains, espe-
cially in identification tasks such as clause-
level SA (cf. classification tasks). Therefore
we evaluated the learning results by asking hu-
man annotators to classify the acquired polar
atoms as positive, negative, and neutral, in-
stead of the instances of polar clauses detected
with the new lexicon. This can be done be-
cause the polar atoms themselves are informa-
tive enough to imply to humans whether the
expressions hold positive or negative meanings
in the domain.

To justify the reliability of this evaluation
method, two annotators9 evaluated 200 ran-
domly selected candidate polar atoms in the
digital camera domain. The agreement results
are shown in Table 7. The manual classifi-
cation was agreed upon in 89% of the cases
and the Kappa value was 0.83, which is high
enough to be considered consistent.

Using manual judgment of the polar atoms,
we evaluated the performance with the follow-
ing three metrics.

Type Precision. The coincidence rate of the
polarity between the acquired polar atom
and the human evaluators’ judgments. It
is always false if the evaluators judged it
as ‘neutral.’

Token Precision. The coincidence rate of
the polarity, weighted by its frequency in
the corpus. This metric emulates the pre-
cision of the detection of polar clauses
with newly acquired poler atoms, in the
runtime SA system.

Relative Recall. The estimated ratio of the
number of detected polar clauses with the
expanded lexicon to the number of de-
tected polar clauses with the initial lex-

9For each domain, we asked different annotators
who are familiar with the domain. They are not the
authors of this paper.
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Domain #
Type Token Relative
Prec. Prec. Recall

digital cameras 708 65% 96.5% 1.28
movies 462 75% 94.4% 1.19
mobile phones 228 54% 92.1% 1.13
cars 487 68% 91.5% 1.18

Table 8: Evaluation results with our method.
The column ‘#’ denotes the number of polar
atoms acquired in each domain.

icon. Relative recall will be 1 when no
new polar atom is acquired. Since the pre-
cision was high enough, this metric can
be used for approximation of the recall,
which is hard to evaluate in extraction
tasks such as clause-/phrase-level SA.

6.2 Robustness for Different
Conditions

6.2.1 Diversity of Corpora

For each of the four domain corpora, the an-
notators evaluated 100 randomly selected po-
lar atoms which were newly acquired by our
method, to measure the precisions. Relative
recall is estimated by comparing the numbers
of detected polar clauses from randomly se-
lected 2,000 sentences, with and without the
acquired polar atoms. Table 8 shows the re-
sults. The token precision is higher than 90%
in all of the corpora, including the movie do-
main, which is considered to be difficult for SA
(Turney, 2002). This is extremely high preci-
sion for this task, because the correctness of
both the extraction and polarity assignment
was evaluated simultaneously. The relative re-
call 1.28 in the digital camera domain means
the recall is increased from 43%10 to 55%. The
difference was smaller in other domains, but
the domain-dependent polar clauses are much
informative than general ones, thus the high-
precision detection significantly enhances the
system.

To see the effects of our method, we con-
ducted a control experiment which used pre-
set criteria. To adopt the candidate atom a,
the frequency of polarity, max(p(a), n(a)) was
required to be 3 or more, and the ratio of po-
larity, max(p(a),n(a))

f(a) was required to be higher
than the threshold θ. Varying θ from 0.05 to

10The human evaluation result for digital camera do-
main (Kanayama et al., 2004).
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Figure 4: Relative recall vs. token precision
with various preset threshold values θ for the
digital camera and movie domains. The right-
most star and circle denote the performance of
our method.

0.8, we evaluated the token precision and the
relative recall in the domains of digital cam-
eras and movies. Figure 4 shows the results.

The results showed both relative recall and
token precision were lower than in our method
for every θ, in both corpora. The optimum θ
was 0.3 in the movie domain and 0.1 in the
digital camera domain. Therefore, in this pre-
set approach, a tuning process is necessary for
each domain. Our method does not require
this tuning, and thus fully automatic learning
was possible.

Unlike the normal precision-recall tradeoff,
the token precision in the movie domain got
lower when the θ is strict. This is due to the
frequent polar atoms which can be acquired
at the low ratios of the polarity. Our method
does not discard these important polar atoms.

6.2.2 Size of the Initial Lexicon

We also tested the performance while vary-
ing the size of the initial lexicon L. We pre-
pared three subsets of the initial lexicon, L0.8,
L0.5, and L0.2, removing polar atoms ran-
domly. These lexicons had 0.8, 0.5, 0.2 times
the polar atoms, respectively, compared to
L. Table 9 shows the precisions and recalls
using these lexicons for the learning process.
Though the cd values vary, the precision was
stable, which means that our method was ro-
bust even for different sizes of the lexicon. The
smaller the initial lexicon, the higher the rela-
tive recall, because the polar atoms which were
removed from L were recovered in the learning
process. This result suggests the possibility of
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lexicon cd Token Prec. Relative Rec.

L 7.2% 96.5% 1.28
L0.8 6.1% 97.5% 1.41
L0.5 3.9% 94.2% 2.10
L0.2 3.6% 84.8% 3.55

Table 9: Evaluation results for various sizes of
the initial lexicon (the digital camera domain).

the bootstrapping method from a small initial
lexicon.

6.3 Qualitative Evaluation

As seen in the agreement study, the polar
atoms used in our study were intrinsically
meaningful to humans. This is because the
atoms are predicate-argument structures de-
rived from predicative clauses, and thus hu-
mans could imagine the meaning of a polar
atom by generating the corresponding sen-
tence in its predicative form.

In the evaluation process, some interesting
results were observed. For example, a nega-
tive atom nai ← kerare-ga (‘to be free from
vignetting’) was acquired in the digital cam-
era domain. Even the evaluator who was fa-
miliar with digital cameras did not know the
term kerare (‘vignetting’), but after looking up
the dictionary she labeled it as negative. Our
learning method could pick up such technical
terms and labeled them appropriately.

Also, there were discoveries in the error
analysis. An evaluator assigned positive to aru
← kamera-ga (‘to have camera’) in the mobile
phone domain, but the acquired polar atom
had the negative polarity. This was actually
an insight from the recent opinions that many
users want phones without camera functions11.

7 Conclusion

We proposed an unsupervised method to ac-
quire polar atoms for domain-oriented SA, and
demonstrated its high performance. The lex-
icon can be expanded automatically by us-
ing unannotated corpora, and tuning of the
threshold values is not required. Therefore
even end-users can use this approach to im-
prove the sentiment analysis. These features
allow them to do on-demand analysis of more
narrow domains, such as the domain of digital

11Perhaps because cameras tend to consume battery
power and some users don’t need them.

cameras of a specific manufacturer, or the do-
main of mobile phones from the female users’
point of view.
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Abstract

We describe a probabilistic approach to content se-
lection for meeting summarization. We use skip-
chain Conditional Random Fields (CRF) to model
non-local pragmatic dependencies between paired
utterances such as QUESTION-ANSWER that typi-
cally appear together in summaries, and show that
these models outperform linear-chain CRFs and
Bayesian models in the task. We also discuss dif-
ferent approaches for ranking all utterances in a se-
quence using CRFs. Our best performing system
achieves 91.3% of human performance when evalu-
ated with the Pyramid evaluation metric, which rep-
resents a 3.9% absolute increase compared to our
most competitive non-sequential classifier.

1 Introduction
Summarization of meetings faces many challenges
not found in texts, i.e., high word error rates, ab-
sence of punctuation, and sometimes lack of gram-
maticality and coherent ordering. On the other
hand, meetings present a rich source of structural
and pragmatic information that makes summariza-
tion of multi-party speech quite unique. In par-
ticular, our analyses of patterns in the verbal ex-
change between participants found that adjacency
pairs (AP), a concept drawn from the conver-
sational analysis literature (Schegloff and Sacks,
1973), have particular relevance to summarization.
APs are pairs of utterances such as QUESTION-
ANSWER or OFFER-ACCEPT, in which the second
utterance is said to be conditionally relevant on the
first. We show that there is a strong correlation be-
tween the two elements of an AP in summariza-
tion, and that one is unlikely to be included if the
other element is not present in the summary.

Most current statistical sequence models in nat-
ural language processing (NLP), such as hidden

∗This material is based on research supported in part by
the U.S. National Science Foundation (NSF) under Grants
No. IIS-0121396 and IIS-05-34871, and the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. HR0011-06-C-0023. Any opinions, findings and con-
clusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of
the NSF or DARPA.

Markov models (HMMs) (Rabiner, 1989), are lin-
ear chains that only encode local dependencies
between utterances to be labeled. In multi-party
speech, the two elements of an AP are gener-
ally arbitrarily distant, and such models can only
poorly account for dependencies underlying APs
in summarization. We use instead skip-chain se-
quence models (Sutton and McCallum, 2004),
which allow us to explicitly model dependencies
between distant utterances, and turn out to be par-
ticularly effective in the summarization task.

In this paper, we compare two types of network
structures—linear-chain and skip-chain—and two
types of network semantics—Bayesian Networks
(BNs) and Conditional Random Fields (CRFs).
We discuss the problem of estimating the class
posterior probability of each utterance in a se-
quence in order to extract the N most proba-
ble ones, and show that the cost assigned by a
CRF to each utterance needs to be locally nor-
malized in order to outperform BNs. After ana-
lyzing the predictive power of a large set of dura-
tional, acoustical, lexical, structural, and informa-
tion retrieval features, we perform feature selec-
tion to have a competitive set of predictors to test
the different models. Empirical evaluations using
two standard summarization metrics—the Pyra-
mid method (Nenkova and Passonneau, 2004b)
and ROUGE (Lin, 2004)—show that the best
performing system is a CRF incorporating both
order-2 Markov dependencies and skip-chain de-
pendencies, which achieves 91.3% of human per-
formance in Pyramid score, and outperforms our
best-performing non-sequential model by 3.9%.

2 Corpus
The work presented here was applied to the ICSI
Meeting Corpus (Janin et al., 2003), a corpus
of “naturally-occurring” meetings, i.e. meetings
that would have taken place anyway. Their style
is quite informal, and topics are primarily con-
cerned with speech, natural language, artificial

364



intelligence, and networking research. The cor-
pus contains 75 meetings, which are 60 minutes
long on average, and involve a number of partic-
ipants ranging from 3 to 10 (6 on average). The
total number of unique speakers is 60, includ-
ing 26 non-native English speakers. Experiments
in this paper are based either on human ortho-
graphic transcriptions or automatic speech recog-
nition output, which were available for all meet-
ings. For automatic recognition, we used the ICSI-
SRI-UW speech recognition system (Mirghafori
et al., 2004), a state-of-the-art conversational tele-
phone speech (CTS) recognizer whose language
and acoustic models were adapted to the meeting
domain. It achieves 34.8% WER on the ICSI cor-
pus, which is indicative of the difficulty involved
in processing meetings automatically.

We also used additional annotation that has
been developed to support higher-level analyses of
meeting structure, in particular the ICSI Meeting
Recorder Dialog act (MRDA) corpus (Shriberg et
al., 2004). Dialog act (DA) labels describe the
pragmatic function of utterances, e.g. a STATE-
MENT or a BACKCHANNEL. This auxiliary cor-
pus consists of over 180,000 human-annotated
dialog act labels (κ = .8), for which so-called
adjacency pair (AP) relations (e.g., APOLOGY-
DOWNPLAY) were also labeled. This latter anno-
tation was used to train an AP classifier that is in-
strumental in automatically determining the struc-
ture of our sequence models. Note that, in the case
of three or more speakers, adjacency pair is ad-
mittedly an unfortunate term, since labeled APs
are generally not adjacent (e.g., see Table 1), but
we will nevertheless use the same terminology to
enforce consistency with previous work.

To train and evaluate our summarizer, we used
a corpus of extractive summaries produced at the
University of Edinburgh (Murray et al., 2005). For
each of the 75 meetings, human judges were asked
to select transcription utterances segmented by DA
to include in summaries, resulting in an average
compression ratio of 6.26% (though no strict limit
was imposed). Inter-labeler agreement was mea-
sured using six meetings that were summarized by
multiple coders (average κ = .323). While this
level of agreement is quite low, this situation is
not uncommon to summarization, since there may
be many good summaries for a given document;
a main challenge lies in using evaluation schemes
that properly accounts for this diversity.

3 Content selection

State sequence Markov models such as hidden
Markov models (Rabiner, 1989) have been highly
successful in many speech and natural language
processing applications, including summarization.
Following an intuition that the probability of a
given sentence may be locally conditioned on the
previous one, Conroy (2004) built a HMM-based
summarizer that consistently ranked among the
top systems in recent Document Understanding
Conference (DUC) evaluations.

Inter-sentential influences become more com-
plex in the case of dialogues or correspondences,
especially when they involve multiple parties.
In the case of summarization of conversational
speech, Zechner (2002) found, for instance, that
a simple technique consisting of linking together
questions and answers in summaries—and thus
preventing the selection of orphan questions or
answers—significantly improved their readability
according to various human summary evaluations.
In email summarization (Rambow et al., 2004),
Shrestha and McKeown (2004) obtained good per-
formance in automatic detection of questions and
answers, which can help produce summaries that
highlight or focus on the question and answer ex-
change. In a combined chat and email summariza-
tion task, a technique (Zhou and Hovy, 2005) con-
sisting of identifying APs and appending any rele-
vant responses to topic initiating messages was in-
strumental in outperforming two competitive sum-
marization baselines.

The need to model pragmatic influences, such
as between a question and an answer, is also preva-
lent in meeting summarization. In fact, question-
answer pairs are not the only discourse relations
that we need to preserve in order to create co-
herent summaries, and, as we will see, most in-
stances of APs would need to be preserved to-
gether, either inside or outside the summary. Ta-
ble 1 displays an AP construction with one state-
ment (A part) and three respondents (B parts).
This example illustrates that the number of turns
between constituents of APs is variable and thus
difficult to model with standard sequence models.
This example also illustrates some of the predic-
tors investigated in this paper. First, many speak-
ers respond to A’s utterance, which is generally a
strong indicator that the A utterance should be in-
cluded. Secondly, while APs are generally char-
acterized in terms of pre-defined dialog acts, such
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Time Speaker AP Transcript
1480.85-1493.91 1 A are - are those d- delays adjustable? see a lot of people who actually build stuff

with human computer interfaces understand that delay, and - and so when you -
by the time you click it it’ll be right on because it’ll go back in time to put the -

1489.71-1489.94 2 yeah.
1493.95-1495.41 3 B yeah, uh, not in this case.
1494.31-1495.83 2 B it could do that, couldn’t it.
1495.1-1497.07 4 B we could program that pretty easily , couldn’t we?

Table 1: Snippet of a meeting displaying an AP construction, where a question (A) initiates three responses (B). Sentences in
italic are not present in the reference summary.

as OFFER-ACCEPT, we found that the type of di-
alog act has much less importance than the ex-
istence of the AP connection itself (APs in the
data represent a great variety of DA pairs, includ-
ing many that are not characterized as APs in the
litterature—e.g., STATEMENT-STATEMENT in the
table). Since DAs seem to matter less than adja-
cency pairs, the aim will be to build techniques to
automatically identify such relations and exploit
them in utterance selection.

In the current work, we use skip-chain sequence
models (Sutton and McCallum, 2004) to repre-
sent dependencies between both contiguous ut-
terances and paired utterances appearing in the
same AP constructions. The graphical represen-
tations of skip-chain models, such as the CRF rep-
resented in Figure 1, are composed of two types of
edges: linear-chain and skip-chain edges. The lat-
ter edges model AP links, which we represent as
a set of (s, d) index pairs (note that no more than
one AP may share the same second element d).

The intuition that the summarization labels (−1
or 1) are highly correlated with APs is confirmed
in Table 2. While contiguous labels yt−1 and yt
seem to seldom influence each other, the correla-
tion between AP elements ys and yd is particularly
strong, and they have a tendency to be either both
included or both excluded. Note that the second
table is not symmetric, because the data allows an
A part to be linked to multiple B parts, but not
vice-versa. While counts in Table 2 reflect hu-
man labels, we only use automatically predicted
(s, d) pairs in the experiments of the remaining
part of this paper. To find these pairs automati-
cally, we trained a non-sequential log-linear model
that achieves a .902 accuracy (Galley et al., 2004).

4 Skip-Chain Sequence Models

In this paper, we investigate conditional models
for paired sequences of observations and labels. In
the case of utterance selection, the observation se-
quence x = x1:T = (x1, . . . , xT ) represents local

Statement

x1 x2 x3 x4 x5

BackChannel Statement Statement Statement

y1 y2 y3 y4 y5

Figure 1: A skip-chain CRF with pragmatic-level links.

Linear-chain edges yt = 1 yt = −1
yt−1 = 1 529 7742
yt−1 = −1 7742 116040
Skip-chain edges yd = 1 yd = −1
ys = 1 6792 2191
ys = −1 1479 121591

Table 2: Contingency tables: while the correlation between
adjacent labels yt−1 and yt is not significant (χ2 = 2.3,
p > .05), empirical evidence clearly shows that ys and yd
influence each other (χ2 = 78948, p < .001).

summarization predictors (see Section 6), and the
binary sequence y = y1:T = (y1, . . . , yT ) (where
yt ∈ {−1, 1}) determines which utterances must
be included in the summary. In a discriminative
framework, we concentrate our modeling effort on
estimating p(y|x) from data, and do not explicitly
model the prior probability p(x), since x is fixed
during testing anyway.

Many probabilistic approaches to modeling se-
quences have relied on directed graphical mod-
els, also known as Bayesian networks (BN),1 in
particular hidden Markov models (Rabiner, 1989)
and conditional Markov models (McCallum et al.,
2000). However, prominent recent approaches
have focused on undirected graphical models, in
particular conditional random fields (CRF) (Laf-
ferty et al., 2001), and provided state-of-the-art
performance in many NLP tasks. In our work, we
will provide empirical results for state sequence
models of both semantics, and we will now de-

1In the existing literature, sequence models that satisfy the
Markovian condition—i.e., the state of the system at time t
depend only on its immediate past t− k:t− 1 (typically just
t− 1)—are generally termed dynamic Bayesian networks
(DBN). Since the particular models under investigation, i.e.
skip-chain models, do not have this property, we will simply
refer to them as Bayesian networks.
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scribe skip-chain models for both BNs and CRFs.
In a BN, the probability of the sequence y fac-

torizes as a product of probabilities of local predic-
tions yt conditioned on their parents π(yt) (Equa-
tion 1). In a CRF, the probability of the sequence y
factorizes according to a set of clique potentials
{Φc}c∈C , where C is represents the cliques of the
underlying graphical model (Equation 2).

pBN(y|x) =
T∏
i=1

pBN(yt|x, π(yt)) (1)

pCRF(y|x) ∝
∏
c∈C

Φc(xc,yc) (2)

We parameterize these BNs and CRFs as log-
linear models, and factorize both BN’s local pre-
diction probabilities and CRF’s clique potentials
using two types of feature functions. Linear-chain
feature functions fj(yt−k:t,x, t) represent local
dependencies that are consistent with an order-k
Markov assumption. For instance, one such func-
tion could be a predicate that is true if and only if
yt−1 = 1, yt = −1, and (xt−1, xt) indicates that
both utterances are produced by the same speaker.
Given a set of skip edges S = {(st, t)} specifying
source and destination indices, skip-chain feature
functions gj(yst , yt,x, st, t) exploit dependencies
between variables that are arbitrarily distant in
the chain. For instance, the finding that OFFER-
REJECT pairs are often linked in summaries might
be encoded as a skip-chain feature predicate that
is true if and only if yst = 1, yt = 1, and the first
word of the t-th utterance is “no”.

Log-linear models for skip-chain sequence
models are defined in terms of weights {λk} and
{µk}, one for each feature function. In the case of
BNs, we write:

log pBN(yt|x, π(yt)) ∝
J∑
j=1

λjfj(x,yt−k:t, t) +
J ′∑
j=1

µjgj(x, yst , yt, st, t)

We can reduce a particular skip-chain CRF to rep-
resent only the set of cliques along (yt−1, yt) adja-
cency edges and (yst , yt) skip edges, resulting in
only two potential functions:

log ΦLIN(x,yt−k:t, t) =
J∑
j=1

λjfj(x,yt−k:t, t)

log ΦSKIP(x, yst , yt, t) =
J ′∑
j=1

µjgj(x, yst , yt, st, t)

4.1 Inference and Parameter Estimation

Our CRF and BN models were designed us-
ing MALLET (McCallum, 2002), which provides
tools for training log-linear models with L-BFGS
optimization techniques and maximize the log-
likelihood of our training dataD = (x(i),y(i))

N

i=1,
and provides probabilistic inference algorithms for
linear-chain BNs and CRFs.

Most previous work with CRFs containing non-
local dependencies used approximate probabilis-
tic inference techniques, including TRP (Sutton
and McCallum, 2004) and Gibbs sampling (Finkel
et al., 2005). Approximation is needed when
the junction tree of a graphical model is associ-
ated with prohibitively large cliques. For exam-
ple, the worse case reported in (Sutton and Mc-
Callum, 2004) is a clique of 61 nodes. In the
case of skip-chain models representing APs, the
inference problem is somewhat simpler: loops in
the graph are relatively short, 98% of AP edges
span no more than 5 time slices, and the maximum
clique size in the entire data is 5. While exact in-
ference might be possible in our case, we used the
simpler approach of adapting standard inference
algorithms for linear-chain models.

Specifically, to account for skip-edges, we used
a technique inspired by (Sha and Pereira, 2003),
in which multiple state dependencies, such as an
order-2 Markov model, are encoded using auxil-
iary tags. For instance, an order-2 Markov model
is parameterized using state triples yt−2:t, and each
possible triple is converted to a label zt = yt−2:t.
Using these auxiliary labels only, we can then
use the standard forward-backward algorithm for
computing marginal distributions in linear-chain
CRFs, and Viterbi decoding in linear-chain CRFs
and BNs. The only requirement is to ensure that
a transition between zt and zt+1 is forbidden if
the sub-states yt−1:t common to both states differ,
i.e., is assigned an infinite cost. This approach can
be extended to the case of skip-chain transitions.
For instance, an order-1 Markov model with skip-
edges can be constructed using zt = (yst , yt−1, yt)
triples, where the first element yst represents the
label at the source of the skip-edge. Similarly to
the case of order-2 Markov models, we need to
ensure that only valid sequences of labels are con-
sidered, which is trivial to enforce if we assume
that no skip edge ranges more than a predefined
threshold of k time slices.

While this approach is not exact, it still provides
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competitive performance as we will see in Sec-
tion 8. In future work, we plan to explore more
accurate probabilistic inference techniques.

5 Ranking Utterances by Importance

As we will see in Section 8, using the actual
{−1, 1} label predictions of our BNs and CRFs
leads to significantly sub-optimal results, which
might be explained by the following reasons. First,
our models are optimized to maximize the condi-
tional log-likelihood of the training data, a mea-
sure that does not correlate well with utility mea-
sures generally used in retrieval oriented tasks
such as summarization, especially when faced
with a significant class imbalance (only 6.26%
of reference instances are positive). Second, the
MAP decision rule doesn’t give us the freedom to
select an arbitrary number of sentences in order
to satisfy any constraint on length. Instead of us-
ing actual predictions, it seems more reasonable
to compute the posterior probability of each lo-
cal prediction yt, and extract the N most probable
summary sentences (yr1 , . . . , yrk), where N may
depend on a length expressed in number of words,
as it is the case in our evaluation in Section 7.

BNs assign probability distributions over entire
sequences by estimating the probability of each in-
dividual instance yt in the sequence (Equation 1),
and seem thus particularly suited for ranking utter-
ances. A first approach is then to rank utterances
according to the cost of predicting yt = 1 at each
time step on the Viterbi path. While these costs
are well-formed (negative log) probabilities in the
case of BNs, they cannot be interpreted as such in
the case of CRFs, and turn out to produce poor re-
sults with CRFs. Indeed, the set of CRF potentials
associated with each time step have no immedi-
ate probabilistic interpretation, and cannot be used
directly to rank sentences. Since BNs and CRFs
are here parameterized as log-linear models and
rely on the same set of feature functions, a second
approach is to use CRF-trained model parameters
to build a BN classifier that assigns a probability
to each yt. Specifically, the CRF model is first
used to generate label predicitons ŷ, from which
the locally-normalized model estimates the cost
of predicting ŷt = 1 given a label history ŷ1:t−1.
This ensures that we have a well-formed probabil-
ity distribution at each time slice, while capitaliz-
ing on the good performance of CRF models.

Lexical features:
· n-grams (n ≤ 3)
· number of words
· number of digits
· number of consecutive repeats

Information retrieval features:
· max/sum/mean frequency of all terms in ut
· max/sum/mean idf score
· max/sum/mean tf ·idf score
· cosine similarity between word vector of ut with cen-

troid of of the meeting
· scores of LSA with 5, 10, 50, 100, 200, 300 concepts

Acoustic features:
· seconds of silence before/during/after the turn
· speech rate
· min/max/mean/median/stddev/onset/outset f0 of utter-

ance t, and of first and last word
· min/max/mean/stddev energy
· .05, .25, .5, .75, .95 quantiles of f0 and energy
· pitch range
· f0 mean absolute slope

Durational and structural features:
· duration of the previous/current/next utterance
· relative position within meeting (i.e., index t)
· relative position within speaker turn
· large number of structural predicates, i.e. “is the previ-

ous utterance of the same speaker?”
· number of APs initiated in yt

Discourse features:
· lexical cohesion score (for topic shifts) (Hearst, 1994)
· first and second word of utterance, if in cue word list
· number of pronouns
· number of fillers and fluency devices (e.g., “uh”, “um”)
· number of backchannel and acknowledgment tokens

(e.g., “uh-huh”, “ok”, “right”)

Table 3: Features for extractive summarization. Unless oth-
erwise mentioned, we refer to features of utterance t whose
label yt we are trying to predict.

6 Features for extractive summarization
We started our analyses with a large collection
of features found to be good predictors in ei-
ther speech (Inoue et al., 2004; Maskey and
Hirschberg, 2005; Murray et al., 2005) or text
summarization (Mani and Maybury, 1999). Our
goal is to build a very competitive feature set that
capitalizes on recent advances in summarization of
both genres. Table 3 lists some important features.

There is strong evidence that lexical cues such
as “significant” and “great” are strong predictors
in many summarization tasks (Edmundson, 1968).
Such cues are admittedly quite genre specific,
so we did not want to commit ourselves to any
specific list, which may not carry over well to
our specific speech domain, and we automatically
selected a list of n-grams (n ≤ 3) using cross-
validation on the training data. More specifically,
we computed the mutual information of each n-
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Transcript:

I think - one thing that makes a difference is this DC offset compensation.
1-13

Did you have a look at meeting digits if they have a them?
14-26

I didn't. No.
27-29

Hmm.
30

No. The DC component is negligible. All mikes have DC removal.
31-41

Yeah.
42

Because there's a sample and hold in the A-to-D.
43-51

And I also, um, did some experiments about normalizing the phase.
52-62

And came up with a web page people can take a look at.
63-75

Model 1 (len=20):

31-41

43-51

Model 2 (len=22):

31-41

52-62

Model 3 (len=24):

52-62

63-75

Peer (len=22):

1-13

43-51

Optimal (len=22):

31-41

52-62

1

1

2

3

4

3

3

2

2

Speaker:

Figure 2: Model, peer, and “optimal” summaries are all extracts taken from the same transcription.

gram with the class variable, and selected for each
n the 200 best scoring n-grams. Other lexical fea-
tures include: the number of digits, which is help-
ful for identifying sections of the meetings where
participants collect data by recording digits; the
number of repeats, which may indicate the kind of
hesitations and disfluencies that negatively corre-
lates with what is included in the summary.

The information retrieval feature set contains
many features that are generally found helpful in
summarization, in particular tf ·idf and scores de-
rived from centroid methods. In particular, we
used the latent semantic analysis (LSA) feature
discussed in (Murray et al., 2005), which attempts
to determine sentence importance through singu-
lar value decomposition, and whose resulting sin-
gular values and singular vectors can be exploited
to associate each utterance a degree of relevance to
one of the top-n concepts of the meetings (where n
represents the number of dimensions in the LSA).
We used the same scoring mechanism as (Mur-
ray et al., 2005), though we extracted features for
many different n values.

Acoustic features extracted with Praat
(Boersma and Weenink, 2006) were normal-
ized by channel and speaker, including many
raw features such as f0 and energy. Structural
features listed in the table are those computed
from the sequence model before decoding, e.g.,
the duration that separates the two elements
of an AP. Finally, discourse features represent
predictors that may substitute to DA labels. While
DA tagging is not directly our concern, it is
presumably helpful to capitalize on discourse
characteristics of utterances involved in adjacency
pairs, since different types of dialog acts may be
unequally likely to appear in a summary.

7 Evaluation
Evaluating summarization is a difficult problem
and there is no broad consensus on how to best
perform this task. Two metrics have become

quite popular in multi-document summarization,
namely the Pyramid method (Nenkova and Pas-
sonneau, 2004b) and ROUGE (Lin, 2004). Pyra-
mid and ROUGE are techniques looking for con-
tent units repeated in different model summaries,
i.e., summary content units (SCUs) such as clauses
and noun phrases for the Pyramid method, and n-
grams for ROUGE. The underlying hypothesis is
that different model sentences, clauses, or phrases
may convey the same meaning, which is a reason-
able assumption when dealing with reference sum-
maries produced by different authors, since it is
quite unlikely that any two abstractors would use
the exact same words to convey the same idea.

Our situation is however quite different, since
all model summaries of a given document are ut-
terance extracts of that same document, as this can
been seen in the excerpt of Figure 2. In our own
annotation of three meetings with SCUs defined
as in (Nenkova and Passonneau, 2004a), we found
that repetitions and reformulation of the same in-
formation are particularly infrequent, and that tex-
tual units that express the same content among
model summaries are generally originating from
the same document sentence (e.g., in the figure,
the first sentence in model 1 and 2 emanate from
the same document sentence). Very short SCUs
(e.g., base noun phrases) sometimes appeared in
different locations of a meeting, but we think it is
problematic to assume that connections between
such short units are indicative of any similarity
of sentential meaning: the contexts are different,
and words may be uttered by different speakers,
which may lead to unrelated or conflicting prag-
matic forces. For instance, an SCU realized as
“DC offset” and “DC component” appears in two
different sentences in the figure, i.e. those iden-
tified as 1-13 and 31-41. However, the two sen-
tences have contradictory meanings, and it would
be unfortunate to increase the score of a peer sum-
mary containing the former sentence because the
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latter is included in some model summaries.
For all these reasons, we believe that sum-

marization evaluation in our case should rely on
the following restrictive matching: two summary
units should be considered equivalent if and only
if they are extracted from the same location in
the original document (e.g., the “DC” appearing
in models 1 and 2 is not the same as the “DC” in
the peer summary, since they are extracted from
different sentences). This constraint on the match-
ing is reflected in our Pyramid evaluation, and we
define an SCU as a word and its document po-
sition, which lets us distinguish (“DC”,11) from
(“DC”,33). While this restriction on SCUs forces
us to disregard scarcely occurring paraphrases and
repetitions of the same information, it provides the
benefit of automated evaluation.

Once all SCUs have been identified, the Pyra-
mid method is applied as in (Nenkova and Passon-
neau, 2004b): we compute a scoreD by adding for
each SCU present in the summary a score equal
to the number of model summaries in which that
SCU appears. The Pyramid score P is computed
by dividing D by the maximum D∗ value that is
obtainable given the constraint on length. For in-
stance, the peer summary in the figure gets a score
D = 9 (since the 9 SCUs in range 43-51 occur in
one model), and the maximum obtainable score is
D∗ = 44 (all SCUs of the optimal summary ap-
pear in exactly two model summaries), hence the
peer summary’s score is P = .204.

While our evaluation scheme is similar to com-
paring the binary predictions of model and peer
summaries—each prediction determining whether
a given transcription word is included or not—
and averaging precision scores over all peer-model
pairs, the Pyramid evaluation differs on an im-
portant point, which makes us prefer the Pyramid
evaluation method: the maximum possible Pyra-
mid score is always guaranteed to be 1, but av-
erage precision scores can become arbitrarily low
as the consensus between summary annotators de-
creases. For instance, the average precision score
of the optimal summary in the figure is PR = 2

3 .2

2Precision scores of the optimal summary compared
against the the three model summaries are .5, 1, and .5, re-
spectively, and hence average 2

3
. We can show that P =

PR/PR∗, where PR∗ is the average precision of the op-
timal summary. Lack of space prevent us from providing a
proof, so we will just show that the equality holds in our ex-
ample: since the peer summary’s precision scores against the
three model summaries are respectively 9

22
, 0, and 0, we have

PR/PR∗ = ( 9
66

)/( 2
3
) = 9

44
= P .

FEATURE Fβ=1

1 utterance duration .246
2 100-dimension LSA .268
3 duration of utterance t− 1 .275
4 time between utterances s and d = t .281
5 IDF mean .284
6 meeting position .286
7 number of APs initiated in t .288
8 duration of utterance t+ 1 .288
9 number of fillers .289

10 .25-quantile of energy .290
11 number of lexical repeats .292
12 lexical cohesion score .294
13 f0 mean of last word of utterance t .294
14 LSA 50 dimensions .295
15 utterances (t,t+ 1) by same speaker .298
16 speech rate .302
17 “is that” .303
18 “for the” .303
19 (ut−1,ut) by same speaker .305
20 “to try” .305
21 “meetings” .305
22 utterance starts with “and” .306
23 “we have” .306
24 “new” .307
25 utterance starts with “what” .307

Table 4: Forward feature selection.

In the case of the six test meetings, which all have
either 3 or 4 model summaries, the maximum pos-
sible average precision is .6405.

8 Experiments

We follow (Murray et al., 2005) in using the same
six meetings as test data, since each of these meet-
ings has multiple reference summaries. The re-
maining 69 meetings were used for training, which
represent in total more than 103,000 training in-
stances (or DA units), of which 6,464 are posi-
tives (6.24%). The multi-reference test set con-
tains more than 28,000 instances.

The goal of a preliminary experiment was to de-
vise a set of useful predictors from a full set of
1171. We performed feature selection by incre-
mentally growing a log-linear model with order-
0 features f(x, yt) using a forward feature selec-
tion procedure similar to (Berger et al., 1996).
Probably due to the imbalance between positive
and negative samples, we found it more effective
to rank candidate features by gains in F -measure
(through 5-fold cross validation on the entire train-
ing set). The increase inF1 by adding new features
to the model is displayed in Table 4; this greedy
search resulted in a set S of 217 features.

We now analyze the performance of different
sequence models on our test set. The target length
of each summary was set to 12.7% of the number
of words of the full document, which is the aver-
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age on the entire training data (the average on the
test data is 12.9%). In Table 5, we use an order-0
CRF to compare S against all features and various
categorical groupings. Overall, we notice lexical
predictors and statistics derived from them (e.g.
LSA features) represent the most helpful feature
group (.497), though all other features combined
achieve a competitive performance (.476).

Table 6 displays performance for sequence
models incorporating linear-chain features of in-
creasing order k. Its second column indicates
what criterion was used to rank utterances. In the
case of ‘pred’, we used actual model {−1, 1} pre-
dictions, which in all cases generated summaries
much shorted than the allowable length, and pro-
duced poor performance. ‘Costs’ and ‘norm-CRF’
refer to the two ranking criteria presented in Sec-
tion 5, and it is clear that the performance of CRFs
degrades with increasing orders without local nor-
malization. While the contingency counts in Ta-
ble 2 only hinted a limited benefit of linear-chain
features, empirical results show the contrary—
especially for order k = 2. However, the further
increase of k causes overfitting, and skip-chain
features seem a better way to capture non-local
dependencies while keeping the number of model
parameters relatively small. Overall, the addition
of skip-chain edges to linear-chain models provide
noticeable improvement in Pyramid scores. Our
system that performed best on cross-validation
data is an order-2 CRF with skip-chain transitions,
which achieves a Pyramid score of P = .554.

We now assess the significance of our results
by comparing our best system against: (1) a lead
summarizer that always selects the first N utter-
ances to match the predefined length; (2) human
performance, which is obtained by leave-one-out
comparisons among references (Table 7); (3) “op-
timal” summaries generated using the procedure
explained in (Nenkova and Passonneau, 2004b)
by ranking document utterances by the number of
model summaries in which they appear. It ap-
pears that our system is considerably better than
the baseline, and achieves 91.3% of human per-
formance in terms of Pyramid scores, and 83% if
using ASR transcription. This last result is partic-
ularly positive if we consider our strong reliance
on lexical features.

For completeness, we also included standard
ROUGE (1, 2, and L) scores in Table 7, which
were obtained using parameters defined for the

FEATURE SET P
lexical .471
IR .415
lexical + IR .497
acoustic .407
structural/durational .478
acoustic + structural/durational .476
all features .507
selected features (S) .515

Table 5: Pyramid score for each feature set.

MODEL RANKING k = 1 2 3
linear-chain BN pred .241 .267 .269
linear-chain BN costs .512 .519 .525
skip-chain BN costs .543 .549 .542
linear-chain CRF pred .326 .36 .348
linear-chain CRF costs .508 .475 .447
linear-chain CRF norm-CRF .53 .548 .54
skip-chain CRF norm-CRF .541 .554 .559

Table 6: Pyramid scores for different sequence models, where
k stands for the order of linear-chain features. The value in
bold is the performance of the model that was selected after
a 5-fold cross validation on the training data, which obtained
the highest F1 score.

SUMMARIZER P R-1 R-2 R-L
baseline .188 .501 .210 .495
skip-chain CRF (transcript) .554 .715 .442 .709
skip-chain CRF (ASR) .504 .714 .42 .706
human .607 .720 .477 .715
optimal 1 .791 .648 .788

Table 7: Pyramid, and average ROUGE scores for summaries
produces by a baseline (lead summarizer), our best system,
humans, and the optimal summarizer.

DUC-05 evaluation. Since system summaries
have on average approximately the same length
as references, we only report recall measures of
ROUGE (precision and F averages are within ±
.002).3 It may come as a surprise that our best sys-
tem (both with ASR and true words) performs al-
most as well as humans; it seems more reasonable
to conclude that, in our case, ROUGE has trouble
discriminating between systems with moderately
close performance. This seems to confirm our im-
pression that content evaluation in our task should
be based on exact matches.

We performed a last experiment to compare our
best system against Murray et al. (2005), who used
the same test data, but constrained summary sizes
in terms of number of DA units instead of words.
In their experiments, 10% of DAs had to be se-
lected. Our system achieves .91 recall, .5 preci-
sion, and .64 F1 with the same length constraint.

3Human performance with ROUGE was assessed by
cross-validating reference summaries of each meeting (i.e.,
n references for a given meeting resulted in n evaluations
against the other references). We used the same leave-one-
out procedure with other summarizers, in order to get results
comparable to humans.
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The discrepancy between recall and precision is
largely due to the fact that generated summaries
are on average much longer than model summaries
(10% vs. 6.26% of DAs), which explains why our
precision is relatively low in this last evaluation.
The best ROUGE-1 measure reported in (Murray
et al., 2005) is .69 recall, which is significantly
lower than ours according to confidence intervals.

9 Conclusion
An order-2 CRF with skip-chain dependencies de-
rived from the automatic analysis of participant
interaction was shown to outperform linear-chain
BNs and CRFs, despite the incorporation in all
cases of the same competitive set of predictors
resulting from cross-validated feature selection.
Compared to an order-0 CRF model, the absolute
increase in performance is 3.9% (7.5% relative in-
crease), which indicates that it is helpful to use
skip-chain sequence models in the summarization
task. Our best performing system reaches 91.3%
of human performance, and scales relatively well
on automatic speech recognition output.
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Abstract 

Adapting language models across styles 
and topics, such as for lecture transcrip-
tion, involves combining generic style 
models with topic-specific content rele-
vant to the target document.  In this 
work, we investigate the use of the Hid-
den Markov Model with Latent Dirichlet 
Allocation (HMM-LDA) to obtain syn-
tactic state and semantic topic assign-
ments to word instances in the training 
corpus.  From these context-dependent 
labels, we construct style and topic mod-
els that better model the target document, 
and extend the traditional bag-of-words 
topic models to n-grams.  Experiments 
with static model interpolation yielded a 
perplexity and relative word error rate 
(WER) reduction of 7.1% and 2.1%, re-
spectively, over an adapted trigram base-
line.  Adaptive interpolation of mixture 
components further reduced perplexity 
by 9.5% and WER by a modest 0.3%. 

1 Introduction 

With the rapid growth of audio-visual materials 
available over the web, effective language mod-
eling of the diverse content, both in style and 
topic, becomes essential for efficient access and 
management of this information.  As a prime 
example, successful language modeling for aca-
demic lectures not only enables the initial tran-
scription via automatic speech recognition, but 
also assists educators and students in the creation 
and navigation of these materials through annota-
tion, retrieval, summarization, and even transla-
tion of the embedded content. 

Compared with other types of audio content, 
lecture speech often exhibits a high degree of 
spontaneity and focuses on narrow topics with 
specific terminology (Furui, 2003; Glass et al, 
2004).  Unfortunately, training corpora available 
for language modeling rarely match the target 
lecture in both style and topic.  While transcripts 
from other lectures better match the style of the 
target lecture than written text, it is often difficult 
to find transcripts on the target topic.  On the 
other hand, although topic-specific vocabulary 
can be gleaned from related text materials, such 
as the textbook and lecture slides, written lan-
guage is a poor predictor of how words are actu-
ally spoken.  Furthermore, given that the precise 
topic of a target lecture is often unknown a priori 
and may even shift over time, it is generally dif-
ficult to identify topically related documents.  
Thus, an effective language model (LM) need to 
not only account for the casual speaking style of 
lectures, but also accommodate the topic-specific 
vocabulary of the subject matter. Moreover, the 
ability of the language model to dynamically 
adapt over the course of the lecture could prove 
extremely useful for both increasing transcription 
accuracy, as well as providing evidence for lec-
ture segmentation and information retrieval. 

In this paper, we investigate the application of 
the syntactic state and semantic topic assign-
ments from the Hidden Markov Model with La-
tent Dirichlet Allocation model to the problem of 
language modeling.  We explore the use of these 
context-dependent labels to identify style and 
learn topics from both a large number of spoken 
lectures as well as written text.  By dynamically 
interpolating lecture style models with topic-
specific models, we obtain language models that 
better describe the subtopic structure within a 
lecture.  Initial experiments demonstrate a 16.1% 
perplexity reduction and a 2.4% WER reduction 
over an adapted trigram baseline. 
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In the following sections, we first summarize 
related research on adaptive and topic-mixture 
language models, and describe previous work on 
the HMM-LDA model.  We then examine the 
ability of the model to learn syntactic classes as 
well as topics from textbook materials and lec-
ture transcripts.  Next, we describe a variety of 
language model experiments we performed to 
combine style and topic models constructed from 
the state and topic labels with conventional tri-
gram models trained from both spoken and writ-
ten materials.  We also demonstrate the use of 
the combined model in an on-line adaptive mode.  
Finally, we summarize the results of this research 
and suggest future opportunities for related mod-
eling techniques in spoken lecture and other con-
tent processing research. 

2 Adaptive and Topic-M ixture LMs 

The concept of adaptive and topic-mixture lan-
guage models has been previously explored by 
many researchers.  Adaptive language modeling 
exploits the property that words appearing earlier 
in a document are likely to appear again. Cache 
language models (Kuhn and De Mori, 1990; 
Clarkson and Robinson, 1997) leverage this ob-
servation and increase the probability of previ-
ously observed words in a document when pre-
dicting the next word. By interpolating with a 
conditional trigram cache model, Goodman 
(2001) demonstrated up to 34% decrease in per-
plexity over a trigram baseline for small training 
sets. 

The cache intuition has been extended by at-
tempting to increase the probability of unob-
served but topically related words.  Specifically, 
given a mixture model with topic-specific com-
ponents, we can increase the mixture weights of 
the topics corresponding to previously observed 
words to better predict the next word.  Some of 
the early work in this area used a maximum en-
tropy language model framework to trigger in-
creases in likelihood of related words (Lau et al., 
1993; Rosenfeld, 1996). 

A variety of methods has been used to explore 
topic-mixture models.  To model a mixture of 
topics within a document, the sentence mixture 
model (Iyer and Ostendorf, 1999) builds multiple 
topic models from clusters of training sentences 
and defines the probability of a target sentence as 
a weighted combination of its probability under 
each topic model.  Latent Semantic Analysis 
(LSA) has been used to cluster topically related 
words and has demonstrated significant reduc-

tion in perplexity and word error rate (Belle-
garda, 2000).  Probabilistic LSA (PLSA) has 
been used to decompose documents into compo-
nent word distributions and create unigram topic 
models from these distributions.  Gildea and 
Hofmann (1999) demonstrated noticeable per-
plexity reduction via dynamic combination of 
these unigram topic models with a generic tri-
gram model. 

To identify topics from an unlabeled corpus, 
(Blei et al., 2003) extends PLSA with the Latent 
Dirichlet Allocation (LDA) model that describes 
each document in a corpus as generated from a 
mixture of topics, each characterized by a word 
unigram distribution. Hidden Markov Model 
with LDA (HMM-LDA) (Griffiths et al., 2004) 
further extends this topic mixture model to sepa-
rate syntactic words from content words whose 
distributions depend primarily on local context 
and document topic, respectively. 

In the specific area of lecture processing, pre-
vious work in language model adaptation has 
primarily focused on customizing a fixed n-gram 
language model for each lecture by combining n-
gram statistics from general conversational 
speech, other lectures, textbooks, and other re-
sources related to the target lecture (Nanjo and 
Kawahara, 2002, 2004; Leeuwis et al., 2003; 
Park et al., 2005). 

Most of the previous work on topic-mixture 
models focuses on in-domain adaptation using 
large amounts of matched training data.  How-
ever, most, if not all, of the data available to train 
a lecture language model are either cross-domain 
or cross-style.  Furthermore, although adaptive 
models have been shown to yield significant per-
plexity reduction on clean transcripts, the im-
provements tend to diminish when working with 
speech recognizer hypotheses with high WER. 

In this work, we apply the concept of dynamic 
topic adaptation to the lecture transcription task.  
Unlike previous work, we first construct a style 
model and a topic-domain model using the clas-
sification of word instances into syntactic states 
and topics provided by HMM-LDA.  Further-
more, we leverage the context-dependent labels 
to extend topic models from unigrams to n-
grams, allowing for better prediction of transi-
tions involving topic words.  Note that although 
this work focuses on the use of HMM-LDA to 
generate the state and topic labels, any method 
that yields such labels suffices for the purpose of 
the language modeling experiments.  The follow-
ing section describes the HMM-LDA framework 
in more detail. 
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3 HMM-LDA 

3.1 Latent Dir ichlet Allocation 

Discrete Principal Component Analysis describes 
a family of models that decompose a set of fea-
ture vectors into its principal components (Bun-
tine and Jakulin, 2005).  Describing feature vec-
tors via their components reduces the number of 
parameters required to model the data, hence im-
proving the quality of the estimated parameters 
when given limited training data.  LSA, PLSA, 
and LDA are all examples from this family. 

Given a predefined number of desired compo-
nents, LSA models feature vectors by finding a 
set of orthonormal components that maximize 
the variance using singular value decomposition 
(Deerwester et al., 1990).  Unfortunately, the 
component vectors may contain non-interpret-
able negative values when working with word 
occurrence counts as feature vectors.  PLSA 
eliminates this problem by using non-negative 
matrix factorization to model each document as a 
weighted combination of a set of non-negative 
feature vectors (Hofmann, 1999).  However, be-
cause the number of parameters grows linearly 
with the number of documents, the model is 
prone to overfitting.  Furthermore, because each 
training document has its own set of topic weight 
parameters, PLSA does not provide a generative 
framework for describing the probability of an 
unseen document (Blei et al., 2003). 

To address the shortcomings of PLSA, Blei et 
al. (2003) introduced the LDA model, which fur-
ther imposes a Dirichlet distribution on the topic 
mixture weights corresponding to the documents 
in the corpus.  With the number of model pa-
rameters dependent only on the number of topic 
mixtures and vocabulary size, LDA is less prone 
to overfitting and is capable of estimating the 
probability of unobserved test documents. 

Empirically, LDA has been shown to outper-
form PLSA in corpus perplexity, collaborative 
filtering, and text classification experiments (Blei 
et al., 2003).  Various extensions to the basic 
LDA model have since been proposed.  The Au-
thor Topic model adds an additional dependency 
on the author(s) to the topic mixture weights of 
each document (Rosen-Zvi et al., 2005).  The 
Hierarchical Dirichlet Process is a nonparametric 
model that generalizes distribution parameter 
modeling to multiple levels.  Without having to 
estimate the number of mixture components, this 
model has been shown to match the best result 
from LDA on a document modeling task (Teh et 
al., 2004). 

3.2 Hidden Markov Model with LDA 

HMM-LDA model proposed by Griffiths et al. 
(2004) combines the HMM and LDA models to 
separate syntactic words with local dependencies 
from topic-dependent content words without re-
quiring any labeled data.  Similar to HMM-based 
part-of-speech taggers, HMM-LDA maps each 
word in the document to a hidden syntactic state.  
Each state generates words according to a uni-
gram distribution except the special topic state, 
where words are modeled by document-specific 
mixtures of topic distributions, as in LDA.  
Figure 1 describes this generative process in 
more detail. 

Figure 1: Generative framework and graphical 
model representation of HMM-LDA.  The num-
ber of states and topics are pre-specified.  The 
topic mixture for each document is modeled with 
a Dirichlet distribution.  Each word wi in the n-
word document is generated from its hidden state 
si or hidden topic zi if si is the special topic state. 

 
Unlike vocabulary selection techniques that 

separate domain-independent words from topic-
specific keywords using word collocation statis-
tics, HMM-LDA classifies each word instance 
according to its context.  Thus, an instance of the 
word “ return” may be assigned to a syntactic 
state in “ to return a” , but classified as a topic 
keyword in “ expected return for” .  By labeling 
each word in the training set with its syntactic 
state and mixture topic, HMM-LDA not only 
separates stylistic words from content words in a 
context-dependent manner, but also decomposes 
the corpus into a set of topic word distributions.  
This form of soft, context-dependent classifica-
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tion has many potential uses for language model-
ing, topic segmentation, and indexing. 

3.3 Training 

To train an HMM-LDA model, we employ the 
MATLAB Topic Modeling Toolbox 1.3 (Grif-
fiths and Steyvers, 2004; Griffiths et al., 2004).  
This particular implementation performs Gibbs 
sampling, a form of Markov chain Monte Carlo 
(MCMC), to estimate the optimal model parame-
ters fitted to the training data.  Specifically, the 
algorithm creates a Markov chain whose station-
ary distribution matches the expected distribution 
of the state and topic labels for each word in the 
training corpus.  Starting from random labels, 
Gibbs sampling sequentially samples the label 
for each hidden variable conditioned on the cur-
rent value of all other variables.  After a suffi-
cient number of iterations, the Markov chain 
converges to the stationary distribution.  We can 
easily compute the posterior word distribution 
for each state and topic from a single sample by 
averaging over the label counts and prior pa-
rameters.  With a sufficiently large training set, 
we will have enough words assigned to each 
state and topic to yield a reasonable approxima-
tion to the underlying distribution. 

In the following sections, we examine the ap-
plication of models derived from the HMM-LDA 
labels to the task of spoken lecture transcription 
and explore techniques on adaptive topic model-
ing to construct a better lecture language model. 

4 HMM-LDA Analysis 

Our language modeling experiments have been 
conducted on high-fidelity transcripts of ap-
proximately 168 hours of lectures from three un-
dergraduate subjects in math, physics, and com-
puter science (CS), as well as 79 seminars cover-
ing a wide range of topics (Glass et al., 2004).  
For evaluation, we withheld the set of 20 CS lec-
tures and used the first 10 lectures as a develop-
ment set and the last 10 lectures for the test set.  
The remainder of these data was used for training 

and will be referred to as the Lectures dataset. 
To supplement the out-of-domain lecture tran-

scripts with topic-specific textual resources, we 
added the CS course textbook (Textbook) as ad-
ditional training data for learning the target top-
ics.  To create topic-cohesive documents, the 
textbook is divided at every section heading to 
form 271 documents.  Next, the text is heuristi-
cally segmented at sentence-like boundaries and 
normalized into the words corresponding to the 
spoken form of the text.  Table 1 summarizes the 
data used in this evaluation. 

 
Dataset Documents Sentences Vocabulary Words 
Lectures 150 58,626 25,654 1,390,039 
Textbook 271 6,762 4,686 131,280 
CS Dev 10 4,102 3,285 93,348 
CS Test 10 3,595 3,357 87,518 

Table 1: Summary of evaluation datasets. 
 
In the following analysis, we ran the Gibbs 

sampler against the Lectures dataset for a total of 
2800 iterations, computing a model every 10 it-
erations, and took the model with the lowest per-
plexity as the final model.  We built the model 
with 20 states and 100 topics based on prelimi-
nary experiments.  We also trained an HMM-
LDA model on the Textbook dataset using the 
same model parameters.  We ran the sampler for 
a total of 2000 iterations, computing the perplex-
ity every 100 iterations.  Again, we selected the 
lowest perplexity model as the final model. 

4.1 Semantic Topics 

HMM-LDA extracts words whose distributions 
vary across documents and clusters them into a 
set of components.  In Figure 2, we list the top 
10 words from a random selection of 10 topics 
computed from the Lectures dataset.  As shown, 
the words assigned to the LDA topic state are 
representative of content words and are grouped 
into broad semantic topics.  For example, topic 4, 
8, and 9 correspond to machine learning, linear 
algebra, and magnetism, respectively. 

Since the Lectures dataset consists of speech 
transcripts with disfluencies, it is interesting to 
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Figure 2: The top 10 words from 10 randomly selected topics computed from the Lectures dataset. 
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observe that “ <laugh>”  is the top word in a 
topic corresponding to childhood memories.  
Cursory examination of the data suggests that the 
speakers talking about children tend to laugh 
more during the lecture.  Although it may not be 
desirable to capture speaker idiosyncrasies in the 
topic mixtures, HMM-LDA has clearly demon-
strated its ability to capture distinctive semantic 
topics in a corpus.  By leveraging all documents 
in the corpus, the model yields smoother topic 
word distributions that are less vulnerable to 
overfitting. 

Since HMM-LDA labels the state and topic of 
each word in the training corpus, we can also 
visualize the results by color-coding the words 
by their topic assignments.  Figure 3 shows a 
color-coded excerpt from a topically coherent 
paragraph in the Textbook dataset.  Notice how 
most of the content words (uppercase) are as-
signed to the same topic/color.  Furthermore, of 
the 7 instances of the words “ and”  and “ or”  
(underlined), 6 are correctly classified as syntac-
tic or topic words, demonstrating the context-
dependent labeling capabilities of the HMM-
LDA model.  Moreover, from these labels, we 
can identify multi-word topic key phrases (e.g. 
output signals, input signal, “ and”  gate) in addi-
tion to standalone keywords, an observation we 
will leverage later on with n-gram topic models. 

 

 
Figure 3: Color-coded excerpt from the Textbook 
dataset showing the context-dependent topic la-
bels.  Syntactic words appear black in lowercase.  
Topic words are shown in uppercase with their 
respective topic colors.  All instances of the 
words “ and”  and “ or”  are underlined. 

4.2 Syntactic States 

Since the syntactic states are shared across all 
documents, we expect words associated with the 
syntactic states when applying HMM-LDA to the 
Lectures dataset to reflect the lecture style vo-
cabulary.   

In Figure 4, we list the top 10 words from each 
of the 19 syntactic states (state 20 is the topic 
state).  Note that each state plays a clear syntactic 
role.  For example, state 2 contains prepositions 
while state 7 contains verbs.  Since the model is 
trained on transcriptions of spontaneous speech, 
hesitation disfluencies (<uh> , <um> , <partial>) 
are all grouped in state 3 along with other words 
(so, if, okay) that frequently indicate hesitation.  
While many of these hesitation words are con-
junctions, the words in state 6 show that most 
conjunctions are actually assigned to a different 
state representing different syntactic behavior 
from hesitations.  As demonstrated with sponta-
neous speech, HMM-LDA yields syntactic states 
that have a good correspondence to part-of-
speech labels, without requiring any labeled 
training data. 

4.3 Discussions 

Although MCMC techniques converge to the 
global stationary distribution, we cannot guaran-
tee convergence from observation of the perplex-
ity alone.  Unlike EM algorithms, random sam-
pling may actually temporarily decrease the 
model likelihood.  Thus, in the above analysis, 
the number of iterations was chosen to be at least 
double the point at which the perplexity first ap-
peared to converge. 

In addition to the number of iterations, the 
choice of the number of states and topics, as well 
as the values of the hyper-parameters on the 
Dirichlet prior, also impact the quality and effec-
tiveness of the resulting model.  Ideally, we run 
the algorithm with different combinations of the 
parameter values and perform model selection to 
choose the model with the best complexity-
penalized likelihood.  However, given finite 
computing resources, this approach is often im-

We draw an INVERTER SYMBOLICALLY as in Figure 3.24.  
An AND GATE, also shown in Figure 3.24, is a PRIMITIVE 
FUNCTION box with two INPUTS and ONE OUTPUT.  It 
drives its OUTPUT SIGNAL to a value that is the LOGICAL 
AND of the INPUTS.  That is, if both of its INPUT SIGNALS 
BECOME 1.  Then ONE and GATE DELAY time later the AND 
GATE wil l force its OUTPUT SIGNAL TO be 1; otherwise the 
OUTPUT will be 0.  An OR GATE is a SIMILAR two INPUT 
PRIMITIVE FUNCTION box that drives its OUTPUT SIGNAL 
to a value that is the LOGICAL OR of the INPUTS.  That is, the 
OUTPUT will BECOME 1 if at least ONE of the INPUT 
SIGNALS is 1; otherwise the OUTPUT will BECOME 0. 
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Figure 4: The top 10 words from the 19 syntactic states computed from the Lectures dataset. 
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practical.  As an alternative for future work, we 
would like to perform Gibbs sampling on the 
hyper-parameters (Griffiths et al., 2004) and ap-
ply the Dirichlet process to estimate the number 
of states and topics (Teh et al., 2004). 

Despite the suboptimal choice of parameters 
and potential lack of convergence, the labels de-
rived from HMM-LDA are still effective for lan-
guage modeling applications, as described next. 

5 Language Modeling Experiments 

To evaluate the effectiveness of models derived 
from the separation of syntax from content, we 
performed experiments that compare the per-
plexities and WERs of various model combina-
tions.  For a baseline, we used an adapted model 
(L+T) that linearly interpolates trigram models 
trained on the Lectures (L) and Textbook (T) 
datasets.  In all models, all interpolation weights 
and additional parameters are tuned on a devel-
opment set consisting of the first half of the CS 
lectures and tested on the second half.  Unless 
otherwise noted, modified Kneser-Ney discount-
ing (Chen and Goodman, 1998) is applied with 
the respective training set vocabulary using the 
SRILM Toolkit (Stolcke, 2002). 

To compute the word error rates associated 
with a specific language model, we used a 
speaker-independent speech recognizer (Glass, 
2003).  The lectures were pre-segmented into 
utterances by forced alignment of the reference 
transcription. 

5.1 Lecture Style 

In general, an n-gram model trained on a limited 
set of topic-specific documents tends to overem-
phasize words from the observed topics instead 
of evenly distributing weights over all potential 
topics.  Specifically, given the list of words fol-
lowing an n-gram context, we would like to 
deemphasize the observed occurrences of topic 
words and ideally redistribute these counts to all 
potential topic words.  As an approximation, we 
can build such a topic-deemphasized style tri-
gram model (S) by using counts of only n-gram 
sequences that do not end on a topic word, 
smoothed over the Lectures vocabulary.  Figure 
5 shows the n-grams corresponding to an utter-
ance used to build the style trigram model.  Note 
that the counts of topic to style word transitions 
are not altered as these probabilities are mostly 
independent of the observed topic distribution. 

By interpolating the style model (S) from 
above with the smoothed trigram model based on 

the Lectures dataset (L), the combined model 
(L+S) achieves a 3.6% perplexity reduction and 
1.0% WER reduction over (L), as shown in Table 
2.  Without introducing topic-specific training 
data, we can already improve the generic lecture 
LM performance using the HMM-LDA labels. 

 

<s> for the SPATIAL MEMORY </s> 

unigrams: for, the, spatial, memory, </s> 
bigrams: <s> for, for the, the spatial, spatial memory, memory </s> 
trigrams: <s> <s> for, <s> for the, for the spatial, 
 the spatial memory, spatial memory </s> 

Figure 5: Style model n-grams.  Topic words in 
the utterance are in uppercase.   

5.2 Topic Domain 

Unlike Lectures, the Textbook dataset contains 
content words relevant to the target lectures, but 
in a mismatched style.  Commonly, the Textbook 
trigram model is interpolated with the generic 
model to improve the probability estimates of the 
transitions involving topic words.  The interpola-
tion weight is chosen to best fit the probabilities 
of these n-gram sequences while minimizing the 
mismatch in style.  However, with only one pa-
rameter, all n-gram contexts must share the same 
mixture weight.  Because transitions from con-
texts containing topic words are rarely observed 
in the off-topic Lectures, the Textbook model (T) 
should ideally have higher weight in these con-
texts than contexts that are more equally ob-
served in both datasets. 

One heuristic approach for adjusting the 
weight in these contexts is to build a topic-
domain trigram model (D) from the Textbook n-
gram counts with Witten-Bell smoothing (Chen 
and Goodman, 1998) where we emphasize the 
sequences containing a topic word in the context 
by doubling their counts.  In effect, this reduces 
the smoothing on words following topic contexts 
with respect to lower-order models without sig-
nificantly affecting the transitions from non-topic 
words.  Figure 6 shows the adjusted counts for an 
utterance used to build the domain trigram 
model.   

 
<s> HUFFMAN CODE can be represented as a BINARY TREE … 

unigrams: huffman, code, can, be, represented, as, binary, tree, … 
bigrams: <s> huffman, huffman code (2×), code can (2×),  
 can be, be represented, represented as, a binary,  
 binary tree (2×), … 
trigrams: <s> <s> hufmann, <s> hufmann code (2×),  
 hufmann code can (2×), code can be (2×),  
 can be represented, be represented as,  
 represented as a, as a binary, a binary tree (2×), ... 

Figure 6: Domain model n-grams.  Topic words 
in the utterance are in uppercase. 
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Empirically, interpolating the lectures, text-
book, and style models with the domain model 
(L+T+S+D) further decreases the perplexity by 
1.4% and WER by 0.3% over (L+T+S), validat-
ing our intuition.  Overall, the addition of the 
style and domain models reduces perplexity and 
WER by a noticeable 7.1% and 2.1%, respec-
tively, as shown in Table 2. 

 
 Perplexity 

Model Development Test 
L: Lectures Trigram 180.2 (0.0%) 199.6 (0.0%) 
T: Textbook Trigram 291.7 (+61.8%) 331.7 (+66.2%) 
S: Style Trigram 207.0 (+14.9%) 224.6 (+12.5%) 
D: Domain Trigram 354.1 (+96.5%) 411.6 (+106.3%) 
L+S 174.2 (–3.3%) 192.4 (–3.6%) 
L+T: Baseline 138.3 (0.0%) 154.4 (0.0%) 
L+T+S 131.0 (–5.3%) 145.6 (–5.7%) 
L+T+S+D 128.8 (–6.9%) 143.6 (–7.1%) 
L+T+S+D+Topic100 
• Static Mixture (cheat) 
• Dynamic M ixture 

 
118.1 (–14.6%) 
115.7 (–16.4% ) 

 
131.3 (–15.0%) 
129.5 (–16.1% ) 

 

 Word Er ror  Rate 
Model Development Test 
L: Lectures Trigram 49.5% (0.0%) 50.2% (0.0%) 
L+S 49.2% (–0.7%) 49.7% (–1.0%) 
L+T: Baseline 46.6% (0.0%) 46.7% (0.0%) 
L+T+S 46.0% (–1.2%) 45.8% (–1.8%) 
L+T+S+D 45.8% (–1.8%) 45.7% (–2.1%) 
L+T+S+D+Topic100 
• Static Mixture (cheat) 
• Dynamic M ixture 

 
45.5% (–2.4%) 
45.4%  (–2.6% ) 

 
45.4% (–2.8%) 
45.6%  (–2.4% ) 

 

Table 2: Perplexity (top) and WER (bottom) per-
formance of various model combinations.  Rela-
tive reduction is shown in parentheses. 

5.3 Textbook Topics 

In addition to identifying content words, HMM-
LDA also assigns words to a topic based on their 
distribution across documents.  Thus, we can 
apply HMM-LDA with 100 topics to the Text-
book dataset to identify representative words and 
their associated contexts for each topic.  From 
these labels, we can build unsmoothed trigram 
language models (Topic100) for each topic from 
the counts of observed n-gram sequences that 
end in a word assigned to the respective topic. 

Figure 7 shows a sample of the word n-grams 
identified via this approach for a few topics.  
Note that some of the n-grams are key phrases 
for the topic while others contain a mixture of 
syntactic and topic words.  Unlike bag-of-words 
models that only identify the unigram distribu-
tion for each topic, the use of context-dependent 
labels enables the construction of n-gram topic 
models that not only characterize the frequencies 
of topic words, but also describe the transition 
contexts leading up to these words. 

 

Huffman tree 
relative frequency 

relative frequencies 
the tree 

one hundred 

Monte Carlo 
rand update 

random numbers 
trials remaining 

trials passed 

time segment 
the agenda 

segment time 
current time 
first agenda 

assoc key 
the table 

local table 
a table 

of records 

Figure 7: Sample of n-grams from select topics. 

5.4 Topic Mixtures 

Since each target lecture generally only covers a 
subset of the available topics, it will be ideal to 
identify the specific topics corresponding to a 
target lecture and assign those topic models more 
weight in a linearly interpolated mixture model.  
As an ideal case, we performed a cheating ex-
periment to measure the best performance of a 
statically interpolated topic mixture model 
(L+T+S+D+Topic100) where we tuned the 
mixture weights of all mixture components, in-
cluding the lectures, textbook, style, domain, and 
the 100 individual topic trigram models on indi-
vidual target lectures.   

Table 2 shows that by weighting the compo-
nent models appropriately, we can reduce the 
perplexity and WER by an additional 7.9% and 
0.7%, respectively, over the (L+T+S+D) model 
even with simple linear interpolation for model 
combination. 

To gain further insight into the topic mixture 
model, we examine the breakdown of the nor-
malized topic weights for a specific lecture.  As 
shown in Figure 8, of the 100 topic models, 15 of 
them account for over 90% of the total weight.  
Thus, lectures tend to show a significant topic 
skew which topic adaptation approaches can 
model effectively. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
Figure 8: Topic mixture weight breakdown. 

5.5 Topic Adaptation 

Unfortunately, since different lectures cover dif-
ferent topics, we generally cannot tune the topic 
mixture weights ahead of time.  One approach, 
without any a priori knowledge of the target lec-
ture, is to adaptively estimate the optimal mix-
ture weights as we process the lecture (Gildea 
and Hofmann, 1999).  However, since the topic 
distribution shifts over a long lecture, modeling a 
lecture as an interpolation of components with 
fixed weights may not be the most optimal.  In-
stead, we employ an exponential decay strategy 
where we update the current mixture distribution 
by linearly interpolating it with the posterior 
topic distribution given the current word.  Spe-
cifically, applying Bayes’  rule, the probability of 
topic t generating the current word w is given by: 
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To achieve the exponential decay, we update the 
topic distribution after each word according to 
Pi+1(t) = (1 – � )�Pi(t) + � �P(t | wi), where �  is the 
adaptation rate. 

We evaluated this approach of dynamic mix-
ture weight adaptation on the (L+T+S+D+Topic 
100) model, with the same set of components as 
the cheating experiment with static weights.  As 
shown in Table 2, the dynamic model actually 
outperforms the static model by more than 1% in 
perplexity, by better modeling the dynamic topic 
substructure within the lecture. 

To run the recognizer with a dynamic LM, we 
rescored the top 100 hypotheses generated with 
the (L+T+S+D) model using the dynamic LM.  
The WER obtained through such n-best rescoring 
yielded noticeable improvements over the 
(L+T+S+D) model without a priori knowledge 
of the topic distribution, but did not beat the op-
timal static model on the test set.   

To further gain an intuition for mixture weight 
adaptation, we plotted the normalized adapted 
weights of the topic models across the first lec-
ture of the test set in Figure 9.  Note that the 
topic mixture varies greatly across the lecture.  In 
this particular lecture, the lecturer starts out with 
a review of the previous lecture.  Subsequently, 
he shows an example of computation using ac-
cumulators.  Finally, he focuses the lecture on 
stream as a data structure, with an intervening 
example that finds pairs of i and j that sum up to 
a prime.  By comparing the topic labels in Figure 
9 with the top words from the corresponding top-
ics in Figure 10, we observe that the topic 
weights obtained via dynamic adaptation match 
the subject matter of the lecture fairly closely. 

Finally, to assess the effect that word error rate 
has on adaptation performance, we applied the 
adaptation algorithm to the corresponding tran-
script from the automatic speech recognizer 
(ASR).  Traditional cache language models tend 
to be vulnerable to recognition errors since incor-
rect words in the history negatively bias the pre-
diction of the current word.  However, by adapt-
ing at a topic level, which reduces the number of 
dynamic parameters, the dynamic topic model is 
less sensitive to recognition errors.  As seen in 
Figure 9, even with a word error rate around 
40%, the normalized topic mixture weights from 
the ASR transcript still show a strong resem-
blance to the original weights from the manual 
reference transcript.  

 
Figure 9: Adaptation of topic model weights on 
manual and ASR transcription of a single lecture. 
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Figure 10: Top 10 words from select Textbook 
topics appearing in Figure 9. 

6 Summary and Conclusions 

In this paper, we have shown how to leverage 
context-dependent state and topic labels, such as 
the ones generated by the HMM-LDA model, to 
construct better language models for lecture tran-
scription and extend topic models beyond tradi-
tional unigrams.  Although the WER of the top 
recognizer hypotheses exceeds 45%, by dynami-
cally updating the mixture weights to model the 
topic substructure within individual lectures, we 
are able to reduce the test set perplexity and 
WER by over 16% and 2.4%, respectively, rela-
tive to the combined Lectures and Textbook 
(L+T) baseline. 

Although we primarily focused on lecture 
transcription in this work, the techniques extend 
to language modeling scenarios where exactly 
matched training data are often limited or non-
existent.  Instead, we have to rely on appropriate 
combination of models derived from partially 
matched data.  HMM-LDA and related tech-
niques show great promise for finding structure 
in unlabeled data, from which we can build more 
sophisticated models. 

The experiments in this paper combine models 
primarily through simple linear interpolation.  As 
motivated in section 5.2, allowing for context-
dependent interpolation weights based on topic 
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labels may yield significant improvement for 
both perplexity and WER.  Thus, in future work, 
we would like to study algorithms for automati-
cally learning appropriate context-dependent in-
terpolation weights.  Furthermore, we hope to 
improve the convergence properties of the dy-
namic adaptation scheme at the start of lectures 
and across topic transitions.  Lastly, we would 
like to extend the LDA framework to support 
speaker-specific adaptation and apply the result-
ing topic distributions to lecture segmentation. 
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Abstract

This paper presents a corrective model
for speech recognition of inflected lan-
guages. The model, based on a discrim-
inative framework, incorporates word n-
grams features as well as factored mor-
phological features, providing error reduc-
tion over the model based solely on word
n-gram features. Experiments on a large
vocabulary task, namely the Czech portion
of the MALACH corpus, demonstrate per-
formance gain of about 1.1–1.5% absolute
in word error rate, wherein morphologi-
cal features contribute about a third of the
improvement. A simple feature selection
mechanism based onχ2 statistics is shown
to be effective in reducing the number of
features by about 70% without any loss in
performance, making it feasible to explore
yet larger feature spaces.

1 Introduction

N -gram models have long been the stronghold of
statistical language modeling approaches. Within
then-gram paradigm, straightforward approaches
for increasing accuracy include using larger train-
ing sets and augmenting the contextual informa-
tion within the n-gram window. Incorporating
syntactic features into the context has been at the
forefront of recent research (Collins et al., 2005;
Rosenfeld et al., 2001; Chelba and Jelinek, 2000;
Hall and Johnson, 2004). However, much of the
previous work has focused on English language
syntax. This paper addresses syntax as captured
by the inflectional morphology of highly inflected
language.

High inflection in a language is generally cor-
related with some level of word-order flexibil-

ity. Morphological features either directly identify
or help disambiguate the syntactic participants of
a sentence. Inflectional morphology works as a
proxy for structured syntax in a language. Model-
ing morphological features in these languages not
only provides an additional source of information
but can also alleviate data sparsity problems.

Czech speech recognition needs to deal with
two sources of errors which are absent in En-
glish, namely, the inflectional morphology and the
differences in the formal (written) and colloquial
(spoken) forms. Table 1 presents an example out-
put of our speech recognizer on an utterance from
a Holocaust survivor, who is recounting General
Romel’s desert campaign during the Second World
War. In this example, the feminine past-tense
form of the Czech verb forto be is chosen mis-
takenly, which is followed by a sequence of in-
correct words chosen primarily to maintain agree-
ment with the feminine form of the verb. This is
an example of what we refer to as the morpho-
logical groupingeffect. When the acoustic model
prefers a word with an incorrect inflection, the lan-
guage model effectively propagates the error to
later words. A language model based on word-
forms prefers sequences observed in the training
data, which will implicitly force an agreement
with the inflections of preceding words, making it
difficult to stop propagating errors. Although this
analysis is anecdotal in nature, thegroupingeffect
appears to be prevalent in the Czech dataset used
in this work. The proposed corrective model with
morphological features is expected to alleviate the
groupingeffect as well as to improve the recogni-
tion of inflected languages in general.

In the following section, we present a brief
review of related work on morphological lan-
guage modeling and discriminative language mod-
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REF no Jěźıš to ǔz byl Romel hnedle p̌red Alexandríı
gloss well Jesus by that time already was Romel just in front of Alexandria
translation oh Jesus, Romel was already just in front of Alexandria by that time
HYP no Jěźıš to ǔz byla sama hned lepš́ı Alexandrie
gloss well Jesus by that time already (she) was herself just better Alexandria
translation oh Jesus, she was herself just better Alexandria by that time

Table 1: An example of thegroupingeffect. The incorrect form of the verbto bebegins a group of
incorrect words in the hypothesis, but these words agree in their morphological inflection.

els. We begin the description of our work in sec-
tion 3 with the type of morphological features
modeled as well as their computation from the out-
put word-lattices of a speech recognizer. Section 4
presents the corrective model and the training ap-
proach explored in the current work. A simple and
effective feature selection mechanism is described
in section 5. In section 6, the proposed framework
is evaluated on a large vocabulary Czech speech
recognition task. Results show that the morpho-
logical features provide a significant improvement
over models lacking these features; subsequently,
two different analyses are provided to understand
the contribution of different morphological fea-
tures.

2 Related Work

It has long been assumed that incorporating mor-
phological features into a language models should
help improve the performance of speech recogni-
tion systems. Early models for German showed
little improvements over bigram language mod-
els and almost no improvement over trigram mod-
els (Geutner, 1995). More recently, morphology-
based models have been shown to help reduce er-
ror rate for out-of-vocabulary words (Carki et al.,
2000; Podvesky and Machek, 2005).

Much of the early work on morphological lan-
guage modeling was focused on utilizing compos-
ite morphological tags, largely due to the difficulty
in teasing apart the intricate interdependencies of
the morphological features. Apart from a few ex-
ceptions, there has been little work done in explor-
ing the morphological systems of highly inflected
languages.

Kirchhoff and colleagues (2004) successfully
incorporated morphological features for Arabic
using a factored language model. In their ap-
proach, morphological inflections are modeled in
a generative framework, and the space of factored
morphological tags is explored using a genetic al-
gorithm.

Adopting a different tactic, Choueiter and

colleagues (2006) exploited morphological con-
straints to prune illegal morpheme sequences from
ASR output. They noticed that the gains obtained
from the application of such constraints in Arabic
depends on the size of the vocabulary – an absolute
gain of 2.4% in word error rate (WER) reduced
to 0.2% when the size was increased from 64k to
800k.

Our approach to modeling morphology differs
from that of Vergyri et al. (2004) and Choueiter et
al. (2006). By choosing a discriminative frame-
work and maximum entropy based estimation, we
allow arbitrary features or constraints and their
combinations without the need for explicit elab-
oration of the factored space and its backoff ar-
chitecture. Thus, morphological features can be
incorporated in the absence of knowledge about
their interdependencies.

Several researchers have investigated tech-
niques for improving automatic speech recogni-
tion (ASR) results by modeling the errors (Collins
et al., 2005; Shafran and Byrne, 2004). Collins
et al. (2005) present a corrective language model
based on a discriminative framework. Initially, a
set of hypotheses is generated by a baseline de-
coder with standard acoustic and language models.
A corrective model is estimated such that it scores
desired or oracle hypotheses higher than compet-
ing hypotheses. The parameters are learned via
the perceptron algorithm which shifts weight away
from features associated with poor hypotheses and
towards those associated with better hypotheses.
By the appropriate choice of desired hypotheses,
the model parameters can be estimated to mini-
mize WER in speech recognition. During decod-
ing, the model can then be used to rerank a set
of hypotheses, and hence, it is also known as a
rerankingframework. This paradigm allows mod-
eling arbitrary input features, even syntactic fea-
tures obtained from a parser. We adopt a vari-
ant of this framework where the corrective model
is based on a conditional model estimated by the
maximum entropy procedure (Charniak and John-
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son, 2005) and we investigate its effectiveness in
modeling morphological features for highly in-
flected languages, in particular, Czech.

3 Inflectional Morphology

Inflectional abundance in a language generally
corresponds to some flexibility in word order. In
a free word-order language, the order of senten-
tial participants is relatively unconstrained. This
does not mean a speaker of the language can ar-
bitrarily choose an order. Word-order choice may
change the semantic and/or pragmatic interpreta-
tion of an utterance. Czech is known as a free
word-order language allowing for subject, object,
and verbal components to come in any order. Mor-
phological inflection in these languages must in-
clude a syntacticcasemarker to allow the determi-
nation of which participants are subjects (nomina-
tive case), objects (accusative or dative) and other
such entities. Additionally, morphological inflec-
tion encodes features such as gender and number.
The agreement of these features between senten-
tial components (adjectives with nouns, subjects
with verbs, etc.) may further disambiguate the tar-
get of a modifier (e.g., identifying the noun that is
modified by a particular adjective).

The increased flexibility in word order aggra-
vates the data sparsity of standardn-gram lan-
guage model for two reasons: first, the number of
valid configurations of a group of words increases
with the free order; and second, lexical items are
decorated with the inflectional morphemes, multi-
plying the number of word-forms that appear.

In addition to modeling sequences of word-
forms, we model sequences of morphologically
reducedlemmas, sequence of morphologicaltags
and sequences of various factored representations
of the morphological tags. Factoring a word
into the semantics-bearing lemma and syntax-
bearing morphological tag alleviates the data spar-
sity problem to some extent. However, the number
of possible factorizations ofn-grams is large. The
approach adopted in this work is to provide a rich
class of features and defer the modeling of their
interaction to the learning procedure.

3.1 Extracting Morphological Features

The extraction of reliable morphological features
critically effects further morphological modeling.
Here, we first select the most likely morphologi-
cal analysis for each word using a morphological

Label Description # Values

lemma Reduced lexeme < |vocab|
POS Coarse part-of-speech 12
D-POS Detailed part-of-speech 65
gen Grammatical Gender 10
num Grammatical Number 5
case Grammatical Case 8

Table 2: Czech morphological features used in the
current work. The # Values field indicates the size
of the closed set of possible values. Not all values
are used in the annotated data.

tagger. In particular, we use the Czech feature-
based tagger distributed with the Prague Depen-
dency Treebank (Hajič et al., 2005). The tagger is
based on a morphological analyzer which uses a
lexicon and a rule-based tag guesser for words not
found in the lexicon. Trained by the maximum en-
tropy procedure, the tagger uses left and right con-
textual features from the input string. Currently,
this is the best available Czech-language tagger.
See Hajǐc and Vidov́a-Hladḱa (1998) for further
details on the tagger.

A disadvantage of such an approach is that
the tagger works on strings rather than the word-
lattices that we expect from an ASR system.
Therefore, we must extract a set of strings from the
lattices prior to tagging. An alternative approach is
to hypothesize all morphological analyses for each
word in the lattice, thereby considering the entire
set of analyses as features in the model. In the cur-
rent implementation we have chosen to use a tag-
ger to reduce the complexity of the model by lim-
iting the number of active features while still ob-
taining relatively reliable features. Moreover, sys-
tematic errors in tagging can be potentially com-
pensated by the corrective model.

The initial stage of feature extraction begins
with an analysis of the data on which we train and
test our models. The process follows:

1. Extract then-best hypotheses according to a
baseline model, wheren varies from 50 to
1000 in the current work.

2. Tag each of the hypotheses with the morpho-
logical tagger.

3. Re-encode the original word strings along
with their tagged morphological analysis in
a weighted finite state transducer to allow
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Word-form to obdob́ı bylo pom̌erńe kŕatké
gloss that period was relatively short
lemma ten obdob́ı být poměrňe kŕatký
tag PDNS1 NNNS1 VpNS- Dg— AAFS2

Table 3: A morphological analysis of Czech. This analyses was generated by the Hajič tagger.

form to obdob́ı bylo pom̌erńe kŕatké
to obdob́ı obdob́ı bylo bylo poměrńe pom̌erńe krátké

lemma ten obdob́ı být poměrňe kŕatký
ten obdob́ı obdob́ı být být poměrňe pom̌erňe krátký

tag PDNS1 NNNS1 VpNS- Dg— AAFS2
PDNS1NNNS1 NNNS1VpNS- VpNS-Dg— Dg— AAFS2

POS P N V D A
P N N V V D D A

. . . . . .
case 1 1 - - 2

1 1 1 - - 0 - 2
num/case S1 S1 S- – S2

S1 S1 S1S- S-– – S2
. . . . . .

Table 4: Examples of then-grams extracted from the Czech sentenceTo obdob́ı bylo pom̌erně krátké. A
subset of the feature classes is presented here. The morphological feature values are those assigned by
the Hajǐc tagger.

an efficient means of projecting the hypothe-
ses from word-form to morphology and vice
versa.

4. Extract appropriately factoredn-gram fea-
tures for each hypothesis as described below.

Each word state in the original lattice has an
associated lemma/tag from which a variety ofn-
gram features can be extracted.

From the morphological features assigned by
the tagger, we chose to retain only a subset and dis-
card the less reliable features which are semantic
in nature. The basic morphological features used
are detailed in Table 2. In the tag-based model, a
string of 5 characters representing the 5 morpho-
logical fields is used as a unique identifier. The
derived features includen-grams of POS, D-POS,
gender (gen), number (num), and case features as
well as their combinations.

POS, D-POSCaptures the sub-categorization of
the part-of-speech tags.

gen, num Captures complex gender-number
agreement features.

num, caseCaptures number agreement between
specific case markers.

POS, caseCaptures associated POS/Case fea-
tures (e.g., adjectives associated with nomi-
native elements).

The paired features allow for complex inflec-
tional interactions and are less sparse than the
composite 5-component morphological tags. Ad-
ditionally, the morphologically reduced lemma
andn-grams of lemmas are used as features in the
models.

Table 3 presents a morphological analysis of the
Czech sentenceTo obdob́ı bylo pom̌erně krátké.
The encoded tags represent the first 5 fields of the
Prague Dependency Treebank morphological en-
coding and correspond to the last 5 rows of Ta-
ble 2. Features for this sentence include the word-
form, lemma, and composite tag features as well
as the components of each tag and the above men-
tioned concatenation of tag fields. Additionally,
n-grams of each of these features are included. Bi-
gram features extracted from an example sentence
are illustrated in Table 4.

The following section describes how the fea-
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tures extracted above are modeled in a discrimi-
native framework to reduce word error rate.

4 Corrective Model and Estimation

In this work, we adopt the reranking framework
of Charniak and Johnson (2005) for incorporating
morphological features. The model scores each
test hypothesisy using a linear function,vθ(y), of
features extracted from the hypothesisfj(y) and
model parametersθj , i.e., vθ(y) =

∑
j θjfj(y).

The hypothesis with the highest score is then cho-
sen as the output.

The model parameters,θ, are learned from a
training set by maximum entropy estimation of the
following conditional model:∏

s

∑
yi∈Ys:g(yi)=maxjg(yj)

Pθ(yi|Ys)

Here,Ys = {yj} is the set of hypotheses for each
training utterances and the functiong returns an
extrinsic evaluation score, which in our case is
the WER of the hypothesis.Pθ(yi|Ys) is modeled
by a maximum entropy distribution of the form,
Pθ(yi|Ys) = exp vθ(yi)/

∑
j exp vθ(yj). This

choice simplifies the numerical estimation proce-
dure since the gradient of the log-likelihood with
respect to a parameter, sayθj , reduces to differ-
ence in expected counts of the associated feature,
Eθ[fj |Ys]−Eθ[fj |yi ∈ Ys : g(yi) = maxjg(yj)].
To allow good generalization properties, a Gaus-
sian regularization term is also included in the cost
function.

A set of hypothesesYs is generated for each
training utterance using a baseline ASR system.
Care is taken to reduce the bias in decoding the
training set by following a jack-knife procedure.
The training set is divided into 20 subsets and each
subset is decoded after excluding the transcripts
of that subset from the language model of the de-
coder.

The model allows the exploration of a large fea-
ture space, includingn-grams of words, morpho-
logical tags, and factored tags. In a large vocab-
ulary system, this could be an enormous space.
However, in a discriminative maximum entropy
framework, only the observed features are consid-
ered. Among the observed features, those associ-
ated with words that are correct in all hypotheses
do not provide any additional discrimination ca-
pability. Mathematically, the gradient of the log-
likelihood with respect to the parameters of these

features tends to zero and they may be discarded.
Additionally, the parameters associated with fea-
tures that are rarely observed in the training set are
difficult to learn reliably and may be discarded.

To avoid redundant features, we focus on words
which are frequently incorrect; this is theerror re-
gion we aim to model. In the training utterance,
the error regions of a hypothesis are identified us-
ing the alignment corresponding to the minimum
edit distance from the reference, akin to comput-
ing word error rate. To mark all the error regions in
an ASR lattice, the minimum edit distance align-
ment is obtained using equivalent finite state ma-
chine operations (Mohri, 2002). From amongst all
the error regions in the training lattices, the most
frequent 12k words in error are shortlisted. Fea-
tures are computed in the corrective model only if
they involve words for the shortlist. The parame-
ters,θ, are estimated by numerical optimization as
in (Charniak and Johnson, 2005).

5 Feature Selection

The space of features spanned by the cross-
product space of words, lemmas, tags, factored-
tags and their n-gram can potentially be over-
whelming. However, not all of these features
are equally important and many of the features
may not have a significant impact on the word
error rate. The maximum entropy framework af-
fords the luxury of discarding such irrelevant fea-
tures without much bookkeeping, unlike maxi-
mum likelihood models. In the context of mod-
eling morphological features, we investigate the
efficacy of simple feature selection based on the
χ2 statistics, which has been shown to effective
in certain text categorization problems. e.g. (Yang
and Pedersen, 1997).

Theχ2 statistics measures the lack of indepen-
dence by computing the deviation of the observed
countsOi from the expected countsEi.

χ2 =
∑
i

(Oi − Ei)2/Ei

In our case, there are two classes – oracle hy-
pothesesc and competing hypotheses̄c. The
expected count is the count marginalized over
classes.

χ2(f, c) =
(P (f, c)− P (f))2

P (f)
+

(P (f, c̄)− P (f))2

P (f)

+
(P (f̄ , c)− P (f̄))2

P (f̄)
+

(P (f̄ , c̄)− P (f̄))2

P (f̄)
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This can be simplified using a two-way contin-
gency table of feature and class, whereA is the
number of timesf andc co-occur,B is the num-
ber of timesf occurs withoutc, C is the number
of timesc occurs withoutf , andD is the number
of times neitherf nor c occurs, andN is the total
number of examples. Then, theχ2 is defined to
be:

χ2(f, c) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)

Theχ2 statistics are computed for all the fea-
tures and the features with larger value are re-
tained. Alternatives feature selection mechanisms
such as those based on mutual information and in-
formation gain are less reliable thanχ2 statistics
for heavy-tailed distributions. More complex fea-
ture selection mechanism would entail computing
higher order interaction between features which is
computationally expensive and so is not explored
in this work.

6 Empirical Evaluation

The corrective model presented in this work is
evaluated on a large vocabulary task consisting
of spontaneous spoken testimonies in Czech lan-
guage, which is a subset of the multilingual
MALACH corpus (Psutka et al., 2003).

6.1 Task

For acoustic model training, transcripts are avail-
able for about 62 hours of speech from 336 speak-
ers, amounting to 507k spoken words from a vo-
cabulary of 79k. A portion of this data containing
speech from 44 speakers, about 21k words in all
is treated as development set (dev). The test set
(eval) consists of about 2 hours of speech from 10
new speakers and contains about 15k words.

6.2 Baseline ASR System

The baseline ASR system uses perceptual linear
prediction (PLP) features which is computed on
44KHz input speech at the rate of 10 frames per
second, and is normalized to have zero mean and
unit variance per speaker. The acoustic models are
made of 3-state HMM triphones, whose observa-
tion distributions are clustered into about 4500 al-
lophonic (triphone) states. Each state is modeled
by a 16 component Gaussian mixture with diag-
onal covariances. The parameters of the acoustic

models are initially estimated by maximum likeli-
hood and then refined by five iterations of maxi-
mum mutual information estimation (MMI).

Unlike other comparable corpora, this corpus
contains a relatively high percentage of colloquial
words – about 9% of the vocabulary and 7% of the
tokens. For the sake of downstream application,
the colloquial variants are subsumed in the lexi-
con. As a result, common words contain several
pronunciation variants, and a few have as many as
14 variants.

For the first pass decoding, a language model
was created by interpolating the in-domain model
(weight=0.75), estimated from 600k words of
transcripts with an out-of-domain model, esti-
mated from 15M words of Czech National Cor-
pus (Psutka et al., 2003). Both models are param-
eterized by a trigram language model with Katz
back-off. The decoding graph was built by com-
posing the language model, the lexical transducer
and the context-dependent transducer (phones to
triphones) into a single compact finite state ma-
chine.

The baseline ASR system decodes test utter-
ance in two passes. A first pass decoding is per-
formed with MMIE acoustic models, whose out-
put transcripts are bootstrapped to estimate two
maximum likelihood linear regression transforms
for each speaker using five iterations. A second
pass decoding is then performed with the new
speaker adapted acoustic models. The resulting
performance is given in Table 5. The performance
reflects the difficulty of transcribing spontaneous
speech from the elderly speakers whose speech is
also heavily accented and emotional in this corpus.

1-best 1000-best

Dev 29.9 21.5
Eval 35.9 22.4

Table 5: The performance of the baseline ASR
system is reported, showing the word error rate
of 1-best MAP hypothesis and the oracle in 1000-
best hypotheses for dev and eval sets.

6.3 Experiments With Morphology

We present a set of contrastive experiments to
gauge the performance of the corrective models
and the contribution of morphological features.
For training the corrective models, 50 best hy-
potheses are generated for each utterance using the
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Figure 1: Feature selection viaχ2 statistics helps reduce the number of parameters by 70% without any
loss in performance, as observed in dev (a) and eval (b) sets.

jack-knife procedure mentioned earlier. For each
hypothesis, bigram and unigram features are com-
puted which consist of word-forms, lemmas, mor-
phologoical tags, factored morphological tags, and
the likelihood from the baseline ASR system. For
testing, the baseline ASR system is used to gener-
ate 1000 best hypotheses for each utterance. These
are then evaluated using the corrective models and
the best scored hypothesis is chosen as the output.

Table 6 summarizes the results on two test sets
– the dev and the eval set. A corrective model with
word bigram features improve the word error rate
by about an absolute 1% over the baseline. Mor-
phological features provide a further gain on both
the test sets consistently.

Features Dev Eval

Baseline 29.9 35.9
Word bigram 29.0 34.8
+ Morph bigram 28.7 34.4

Table 6: The word error rate of the corrective
model is compared with that of the baseline ASR
system, illustrating the improvement in perfor-
mance with morphological features.

The gains on the dev set are significant at the
level of p < 0.001 for three standard NIST tests,
namely, matched pair sentence segment, signed
pair comparison, and Wilcoxon signed rank tests.
For the smaller eval set the significant levels were
lower for morphological features. The relative
gains observed are consistent over a variety of con-

ditions that we have tested including the ones re-
ported below.

Subsequently, we investigated the impact of re-
ducing the number of features usingχ2 statistics,
as described in section 5. The experiments with
bigram features of word-forms and morphology
were repeated using reduced feature sets, and the
performance was measured at 10%, 30% and 60%
of their original features. The results, as illustrated
in Figure 1, show that the word error rate does not
change significantly even after the number of fea-
tures are reduced by 70%. We have also observed
that most of the gain can be achieved by evalu-
ating 200 best hypotheses from the baseline ASR
system, which could further reduce the computa-
tional cost for time-sensitive applications.

6.4 Analysis of Feature Classes

The impact of feature classes can be analyzed by
excluding all features from a particular class and
evaluating the performance of the resulting model
without re-estimation. Figure 2 illustrates the ef-
fectiveness of different features class. They-axis
shows the gain in F-score, which is monotonic
with the word error rate, on the entire develop-
ment dataset. In this analysis, the likelihood score
from the baseline ASR system was omitted since
our interest is in understanding the effectiveness
of categorical features such as words, lemmas and
tags.

The most independently influential feature class
is the factored tag features. This corresponds with
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Figure 2: Analysis of features classes for a bigram
form, lemma, tag, and factored tag model.Y -axis
is the contribution of this feature if added to an
otherwise complete model. Feature classes are la-
beled: TNG – tagn-gram, LNG – lemman-gram,
FNG – formn-gram and TFAC – factored tagn-
grams. The number following the # represents the
order of then-gram.

our belief that modeling morphological features
requires detailed models of the morphology; in
this model the composite morphological tagn-
gram features (TNG) offer little contribution in the
presence of the factored features.

Analysis of feature reduction by theχ2 statistics
reveals a similar story. When features are ranked
according to theirχ2 statistics, about 57% of the
factored tagn-grams occur in the top 10% while
only 7% of the wordn-grams make it. The lemma
and composite tagn-grams give about 6.2% and
19.2% respectively. Once again, the factored tag
is the most influential feature class.

7 Conclusion

We have proposed a corrective modeling frame-
work for incorporating inflectional morphology
into a discriminative language model. Empirical
results on a difficult Czech speech recognition task
support our claim that morphology can help im-
prove speech recognition results for these types of
languages. Additionally, we present a feature se-
lection method that effectively reduces the model
size by about 70% while having little or no im-
pact on recognition accuracy. Model size reduc-
tion greatly reduces training time which can often
be prohibitively expensive for maximum entropy
training.

Analysis of the models learned on our task show
that factored morphological tags along with word-
forms provide most of the discriminative power;

and, in the presence of these features, composite
morphological tags are of little use.

The corrective model outlined here operates on
the word lattices produced by an ASR system. The
morphological tags are inferred from the word se-
quences in the lattice. Alternatively, by employ-
ing an ASR system that models the morphological
constraints in the acoustics as in (Chung and Sen-
eff, 1999), the corrective model could be applied
directly to a lattice with morphological tags.

When dealing with ASR word lattices, the ef-
ficacy of the proposed feature selection mecha-
nism can be exploited to eliminate the intermedi-
ate tagger, a potential source of errors. Instead of
considering the best morphological analysis, the
model could consider all possible analyses of the
words. Further, the feature space could be en-
riched with syntactic features which are known to
be useful (Collins et al., 2005). The task of mod-
eling is then tackled by feature selection and the
maximum entropy training procedure.
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Abstract

We investigate the problem of learn-
ing a part-of-speech (POS) lexicon for a
resource-poor language, dialectal Arabic.
Developing a high-quality lexicon is often
the first step towards building a POS tag-
ger, which is in turn the front-end to many
NLP systems. We frame the lexicon ac-
quisition problem as a transductive learn-
ing problem, and perform comparisons
on three transductive algorithms: Trans-
ductive SVMs, Spectral Graph Transduc-
ers, and a novel Transductive Clustering
method. We demonstrate that lexicon
learning is an important task in resource-
poor domains and leads to significant im-
provements in tagging accuracy for dialec-
tal Arabic.

1 Introduction

Due to the rising importance of globalization and
multilingualism, there is a need to build natu-
ral language processing (NLP) systems for an in-
creasingly wider range of languages, including
those languages that have traditionally not been
the focus of NLP research. The development of
NLP technologies for a new language is a chal-
lenging task since one needs to deal not only with
language-specific phenomena but also with a po-
tential lack of available resources (e.g. lexicons,
text, annotations). In this study we investigate the
problem of learning a part-of-speech (POS) lexi-
con for a resource-poor language, dialectal Arabic.

Developing a high-quality POS lexicon is the
first step towards training a POS tagger, which in
turn is typically the front end for other NLP appli-
cations such as parsing and language modeling. In

the case of resource-poor languages (and dialec-
tal Arabic in particular), this step is much more
critical than is typically assumed: a lexicon with
too few constraints on the possible POS tags for
a given word can have disastrous effects on tag-
ging accuracy. Whereas such constraints can be
obtained from large hand-labeled corpora or high-
quality annotation tools in the case of resource-
rich languages, no such resources are available for
dialectal Arabic. Instead, constraints on possible
POS tags must be inferred from a small amount
of tagged words, or imperfect analysis tools. This
can be seen as the problem of learning complex,
structured outputs (multi-class labels, with a dif-
ferent number of classes for different words and
dependencies among the individual labels) from
partially labeled data.

Our focus is on investigating several machine
learning techniques for this problem. In partic-
ular, we argue that lexicon learning in resource-
poor languages can be best viewed as transduc-
tive learning. The main contribution of this work
are: (1) a comprehensive evaluation of three trans-
ductive algorithms (Transductive SVM, Spectral
Graph Transducer, and a new technique called
Transductive Clustering) as well as an inductive
SVM on this task; and (2) a demonstration that
lexicon learning is a worthwhile investment and
leads to significant improvements in the tagging
accuracy for dialectal Arabic.

The outline of the paper is as follows: Section 2
describes the problem in more detail and discusses
the situation in dialectal Arabic. The transductive
framework and algorithms for lexicon learning are
elaborated in Section 3. Sections 4 and 5 describe
the data and system. Experimental results are pre-
sented in Section 6. We discuss some related work
in Section 7 before concluding in Section 8.
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2 The Importance of Lexicons in
Resource-poor POS Tagging

2.1 Unsupervised Tagging
The lack of annotated training data in resource-
poor languages necessitates the use of unsuper-
vised taggers. One commonly-used unsuper-
vised tagger is the Hidden Markov model (HMM),
which models the joint distribution of a word se-
quence w0:M and tag sequence t0:M as:

P (t0:M , w0:M ) =
M
∏

i=0

p(wi|ti)p(ti|ti−1, ti−2)

(1)
This is a trigram HMM. Unsupervised learn-

ing is performed by running the Expectation-
Maximization (EM) algorithm on raw text. In this
procedure, the tag sequences are unknown, and the
probability tables p(wi|ti) and p(ti|ti−1, ti−2) are
iteratively updated to maximize the likelihood of
the observed word sequences.

Although previous research in unsupervised
tagging have achieved high accuracies rivaling su-
pervised methods (Kupiec, 1992; Brill, 1995),
much of the success is due to the use of artifi-
cially constrained lexicons. Specifically, the lex-
icon is a wordlist where each word is annotated
with the set of all its possible tags. (We will call
the set of possible tags of a given word the POS-
set of that word; an example: POS-set of the En-
glish word bank may be {NN,VB}.) Banko and
Moore (2004) showed that unsupervised tagger ac-
curacies on English degrade from 96% to 77% if
the lexicon is not constrained such that only high
frequency tags exist in the POS-set for each word.

Why is the lexicon so critical in unsupervised
tagging? The answer is that it provides addi-
tional knowledge about word-tag distributions that
may otherwise be difficult to glean from raw text
alone. In the case of unsupervised HMM taggers,
the lexicon provides constraints on the probability
tables p(wi|ti) and p(ti|ti−1, ti−2). Specifically,
the lexical probability table is initialized such that
p(wi|ti) = 0 if and only if tag ti is not included in
the POS-set of word wi. The transition probability
table is initialized such that p(ti|ti−1, ti−2) = 0 if
and only if the tag sequence (ti, ti−1, ti−2) never
occurs in the tag lattice induced by the lexicon on
the raw text. The effect of these zero-probability
initialization is that they will always stay zero
throughout the EM procedure (modulo the effects
of smoothing). This therefore acts as hard con-
straints and biases the EM algorithm to avoid cer-

tain solutions when maximizing likelihood. If the
lexicon is accurate, then the EM algorithm can
learn very good predictive distributions from raw
text only; conversely, if the lexicon is poor, EM
will be faced with more confusability during train-
ing and may not produce a good tagger. In general,
the addition of rare tags, even if they are correct,
creates a harder learning problem for EM.

Thus, a critical aspect of resource-poor POS
tagging is the acquisition of a high-quality lexi-
con. This task is challenging because the lexicon
learning algorithm must not be resource-intensive.
In practice, one may be able to find analysis tools
or incomplete annotations such that only a partial
lexicon is available. The focus is therefore on ef-
fective machine learning algorithms for inferring
a full high-quality lexicon from a partial, possibly
noisy initial lexicon. We shall now discuss this sit-
uation in the context of dialectal Arabic.

2.2 Dialectal Arabic

The Arabic language consist of a collection of
spoken dialects and a standard written language
(Modern Standard Arabic, or MSA). The dialects
of Arabic are of considerable importance since
they are used extensively in almost all everyday
conversations. NLP technology for dialectal Ara-
bic is still in its infancy, however, due to the lack
of data and resources. Apart from small amounts
of written dialectal material in e.g. plays, novels,
chat rooms, etc., data can only be obtained by
recording and manually transcribing actual con-
versations. Annotated corpora are scarce because
annotation requires another stage of manual ef-
fort beyond transcription work. In addition, ba-
sic resources such as lexicons, morphological an-
alyzers, tokenizers, etc. have been developed for
MSA, but are virtually non-existent for dialectal
Arabic.

In this study, we address lexicon learning for
Levantine Colloquial Arabic. We assume that only
two resources are available during training: (1)
raw text transcriptions of Levantine speech and (2)
a morphological analyzer developed for MSA.

The lexicon learning task begins with a par-
tial lexicon generated by applying the MSA ana-
lyzer to the Levantine wordlist. Since MSA dif-
fers from Levantine considerably in terms of syn-
tax, morphology, and lexical choice, not all Lev-
antine words receive an analysis. In our data,
23% of the words are un-analyzable. Thus, the
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goal of lexicon learning is to infer the POS-sets
of the un-analyzable words, given the partially-
annotated lexicon and raw text.

Details on the Levantine data and overall system
are provided in Sections 4 and 5. We discuss the
learning algorithms in the next section.

3 Learning Frameworks and Algorithms

Let us formally define the lexicon learning prob-
lem. We have a wordlist of size m + u. A portion
of these words (m) are annotated with POS-set la-
bels, which may be acquired by manual annotation
or an automatic analysis tool. The set of labeled
words {Xm} is the training set, also referred to as
the partial lexicon. The task is to predict the POS-
sets of the remaining u unlabeled words {Xu}, the
test set. The goal of lexicon learning is to label
{Xu} with low error. The final result is a full lex-
icon that contains POS-sets for all m + u words.

3.1 Transductive Learning with Structured
Outputs

We argue that the above problem formulation
lends itself to a transductive learning framework.
Standard inductive learning uses a training set of
fully labeled samples in order to learn a classi-
fication function. After completion of the train-
ing phase, the learned model is then used to clas-
sify samples from a new, previously unseen test
set. Semi-supervised inductive learning exploits
unlabeled data in addition to labeled data to better
learn a classification function. Transductive learn-
ing, first described by Vapnik (Vapnik, 1998) also
describes a setting where both labeled and unla-
beled data are used jointly to decide on a label as-
signment to the unlabeled data points. However,
the goal here is not to learn a general classifica-
tion function that can be applied to new test sets
multiple times but to achieve a high-quality one-
time labeling of a particular data set. Transduc-
tive learning and inductive semi-supervised learn-
ing are sometimes confused in the literature. Both
approaches use unlabeled data in learning – the
key difference is that a transductive classifier only
optimizes the performance on the given unlabeled
data while an inductive semi-supervised classifier
is trained to perform well on any new unlabeled
data.

Lexicon learning fits in the transductive learn-
ing framework as follows: The test set {Xu},
i.e. the unlabeled words, is static and known dur-

NN−VB vs. ~NN−VB

NN−JJ vs. ~NN−JJ

VB vs. ~VB

NN vs. ~NN

VB−JJ vs. ~VB−JJ

..., etc.
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−0.4

−0.4

0.7 argmax NN−JJ

NN vs.~NN

VB vs. ~VB

JJ vs. ~JJ
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K independent classifiers + 1 overall classifier

SINGLE−LABEL FRAMWORK

COMPOUND−LABEL FRAMEWORK
1 multi−class classifier

(one−vs−rest implementation using N binary classifiers)

0.9

−0.8 {NN,JJ}

0.1

Classifier
2nd Stage

Figure 1: Learning with Structured Outputs using
single or compound labels

ing learning time; we are not interested in inferring
POS-sets for any words outside the word list.

An additional characterization of the lexicon
learning problem is that it is a problem of learn-
ing with complex, structured outputs. The label
for each word is its POS-set, which may contain
one to K POS tags (where K is the size of the
tagset, K=20 in our case). This differs from tra-
ditional classification tasks where the output is a
single scalar variable.

Structured output problems like lexicon learn-
ing can be characterized by the granularity of the
basic unit of labels. We define two cases: single-
label and compound-label. In the single-label
framework (see Figure 1), each individual POS tag
is the target of classification and we have K binary
classifiers each hypothesizing whether a word has
a POS tag k (k = 1, . . . ,K). A second-stage clas-
sifier takes the results of the K individual classi-
fiers and outputs a POS-set. This classifier can
simply take all POS tags hypothesized positive by
the individual binary classifiers to form the POS-
set, or use a more sophisticated scheme for deter-
mining the number of POS tags (Elisseeff and We-
ston, 2002).

The alternative compound-label framework
treats each POS-set as an atomic label for clas-
sification. A POS-set such as {“NN”, “VB”} is
“compounded” into one label “NN-VB”, which re-
sults in a different label than, say, “NN” or “NN-
JJ”. Suppose there exist N distinct POS-sets in the
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training data; then we have N atomic units for la-
beling. Thus a (N -ary) multi-class classifier is em-
ployed to directly predict the POS-set of a word. If
only binary classifiers are available (i.e. in the case
of Support Vector Machines), one can use one-vs-
rest, pairwise, or error correcting code schemes to
implement the multi-class classification.

The single-label framework is potentially ill-
suited for capturing the dependencies between
POS tags. Dependencies between POS tags arise
since some tags, such as “NN” and “NNP” can of-
ten be tagged to the same word and therefore co-
occur in the POS-set label. The compound-label
framework implicitly captures tag co-occurrence,
but potentially suffers from training data fragmen-
tation as well as the inability to hypothesize POS-
sets that do not already exist in the training data.
In our initial experiments, the compound-label
framework gave better classification results; thus
we implemented all of our algorithms in the multi-
class framework (using the one-vs-rest scheme
and choosing the argmax as the final decision).

3.2 Transductive Clustering

How does a transductive algorithm effectively uti-
lize unlabeled samples in the learning process?
One popular approach is the application of the so-
called cluster assumption, which intuitively states
that samples close to each other (i.e. samples that
form a cluster) should have similar labels.

Transductive clustering (TC) is a simple algo-
rithm that directly implements the cluster assump-
tion. The algorithm clusters labeled and unlabeled
samples jointly, then uses the labels of labeled
samples to infer the labels of unlabeled words in
the same cluster. This idea is relatively straight-
forward, yet what is needed is a principled way
of deciding the correct number of clusters and the
precise way of label transduction (e.g. based on
majority vote vs. probability thresholds). Typ-
ically, such parameters are decided heuristically
(e.g. (Duh and Kirchhoff, 2005a)) or by tuning on
a labeled development set; for resource-poor lan-
guages, however, no such set may be available.

As suggested by (El-Yaniv and Gerzon, 2005),
the TC algorithm can utilize a theoretical error
bound as a principled way of determining the pa-
rameters. Let R̂h(Xm) be the empirical risk of a
given hypothesis (i.e. classifier) on the training set;
let Rh(Xu) be the test risk. (Derbeko et al., 2004)
derive an error bound which states that, with prob-

ability 1−δ, the risk on the test samples is bounded
by:

Rh(Xu) ≤ R̂h(Xm)

+

√

(

m+u

u

)

(

u+1

u

)

(

ln
1

p(h)
+ln

1
δ

2m

)

(2)

i.e. the test risk is bounded by the empirical risk on
the labeled data, R̂h(Xm), plus a term that varies
with the prior p(h) of the hypothesis or classifier.
This is a PAC-Bayesian bound (McAllester, 1999).
The prior p(h) indicates ones prior belief on the
hypothesis h over the set of all possible hypothe-
ses. If the prior is low or the empirical risk is high,
then the bound is large, implying that test risk may
be large. A good hypothesis (i.e. classifier) will
ideally have a small value for the bound, thus pre-
dicting a small expected test risk.

The PAC-Bayesian bound is important because
it provides a theoretical guarantee on the quality
of a hypothesis. Moreover, the bound in Eq. 2 is
particularly useful because it is easily computable
on any hypothesis h, assuming that one is given
the value of p(h). Given two hypothesized label-
ings of the test set, h1 and h2, the one with the
lower PAC-Bayesian bound will achieve a lower
expected test risk. Therefore, one can use the
bound as a principled way of choosing the pa-
rameters in the Transductive Clustering algorithm:
First, a large number of different clusterings is cre-
ated; then the one that achieves the lowest PAC-
Bayesian bound is chosen. The pseudo-code is
given in Figure 2.

(El-Yaniv and Gerzon, 2005) has applied the
Transductive Clustering algorithm successfully to
binary classification problems and demonstrated
improvements over the current state-of-the-art
Spectral Graph Transducers (Section 3.4). We use
the algorithm as described in (Duh and Kirchhoff,
2005b), which adapts the algorithm to structured
output problems. In particular, the modification
involves a different estimate of the priors p(h),
which was assumed to be uniform in (El-Yaniv and
Gerzon, 2005). Since there are many possible h,
adopting a uniform prior will lead to small values
of p(h) and thus a loose bound for all h. Proba-
bility mass should only be spent on POS-sets that
are possible, and as such, we calculate p(h) based
on frequencies of compound-labels in the training
data (i.e. an empirical prior).

3.3 Transductive SVM
Transductive SVM (TSVM) (Joachims, 1999) is
an algorithm that implicitly implements the cluster
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1 For τ = 2 : C (C is set arbitrarily to a large number)
2 Apply a clustering algorithm to generate τ clusters on Xm+u.
3 Generate label hypothesis hτ (by labeling each cluster with the most frequent label among its labeled samples)
4 Calculate the bound for hτ as defined in Eq. 2.

5 Choose the hypothesis hτ with the lowest bound; output the corresponding classification of Xu.

Figure 2: Pseudo-code for transductive clustering.

assumption. In standard inductive SVM (ISVM),
the learning algorithm seeks to maximize the mar-
gin subject to misclassification constraints on the
training samples. In TSVM, this optimization is
generalized to include additional constraints on
the unlabeled samples. The resulting optimiza-
tion algorithm seeks to maximize the margin on
both labeled and unlabeled samples and creates a
hyperplane that avoids high-density regions (e.g.
clusters).

3.4 Spectral Graph Transducer

Spectral Graph Transducer (SGT) (Joachims,
2003) achieves transduction via an extension of
the normalized mincut clustering criterion. First,
a data graph is constructed where the vertices are
labeled or unlabeled samples and the edge weights
represent similarities between samples. The min-
cut criteria seeks to partition the graph such that
the sum of cut edges is minimized. SGT extends
this idea to transductive learning by incorporating
constraints that require samples of the same label
to be in the same cluster. The resulting partitions
decide the label of unlabeled samples.

4 Data

4.1 Corpus

The dialect addressed in this work is Levantine
Colloquial Arabic (LCA), primarily spoken in Jor-
dan, Lebanon, Palestine, and Syria. Our devel-
opment/test data comes from the Levantine Ara-
bic CTS Treebank provided by LDC. The train-
ing data comes from the Levantine CTS Audio
Transcripts. Both are from the Fisher collection
of conversational telephone speech between Lev-
antine speakers previously unknown to each other.
The LCA data was transcribed in standard MSA
script and transliterated into ASCII characters us-
ing the Buckwalter transliteration scheme1. No di-
acritics are used in either the training or develop-
ment/test data. Speech effects such as disfluencies
and noises were removed prior to our experiments.

1http://www.ldc.upenn.edu/myl/morph/buckwalter.html

The training set consists of 476k tokens and
16.6k types. It is not annotated with POS tags –
this is the raw text we use to train the unsuper-
vised HMM tagger. The test set consists of 15k
tokens and 2.4k types, and is manually annotated
with POS tags. The development set is also POS-
annotated, and contains 16k tokens and 2.4k types.
We used the reduced tagset known as the Bies
tagset (Maamouri et al., 2004), which focuses on
major part-of-speech and excludes detailed mor-
phological information.

Using the compound-label framework, we
observe 220 and 67 distinct compound-labels
(i.e. POS-sets) in the training and test sets, respec-
tively. As mentioned in Section 3.1, a classifier
in the compound-label framework can never hy-
pothesize POS-sets that do not exist in the training
data: 43% of the test vocabulary (and 8.5% by to-
ken frequency) fall under this category.

4.2 Morphological Analyzer

We employ the LDC-distributed Buckwalter ana-
lyzer for morphological analyses of Arabic words.
For a given word, the analyzer outputs all possi-
ble morphological analyses, including stems, POS
tags, and diacritizations. The information regard-
ing possible POS tags for a given word is crucial
for constraining the unsupervised learning process
in HMM taggers.

The Buckwalter analyzer is based on an internal
stem lexicon combined with rules for affixation. It
was originally developed for the MSA, so only a
certain percentage of Levantine words can be cor-
rectly analyzed. Table 1 shows the percentages
of words in the LCA training text that received N
possible POS tags from the Buckwalter analyzer.
Roughly 23% of types and 28% of tokens received
no tags (N=0) and are considered un-analyzable.

5 System

Our overall system looks as follows (see Figure
3): In Step 1, the MSA (Buckwalter) analyzer
is applied to the word list derived from the raw
training text. The result is a partial POS lexicon,
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word2 JJ−NN
word3 JJ
word4 ?
word5 ?

word1 NN−VB

HMM TaggerFull POS LexiconPartial POS Lexicon

RAW
TEXT

Buckwalter
Analyzer (1)

Transductive
Learning (2) Training (3)

EM

word2 JJ−NN
word3 JJ

word1 NN−VB

word4 NN−VB
word5 JJ

Figure 3: Overall System: (1) Apply Buckwalter Analyzer to dialectal Arabic raw text, obtaining a
partial POS lexicon. (2) Use Transductive Learning to infer missing POS-sets. (3) Unsupervised training
of HMM Tagger using both raw text and inferred lexicon.

N Type Token
0 23.3 28.2
1 52.5 40.4
2 17.7 19.9
3 5.2 10.5
4 1.0 2.3
5 0.1 0.6

Table 1: Percentage of word types/tokens with N
possible tags, as determined by the Buckwalter an-
alyzer. Words with 0 tags are un-analyzable.

which lists the set of possible POS tags for those
words for which the analyzer provided some out-
put. All possibilities suggested by the analyzer are
included.

The focus of Step 2 is to infer the POS-sets of
the remaining, unannotated words using one of the
automatic learning procedures described in Sec-
tion 3. Finally, Step 3 involves training an HMM
tagger using the learned lexicon. This is the stan-
dard unsupervised learning component of the sys-
tem. We use a trigram HMM, although modifica-
tions such as the addition of affixes and variables
modeling speech effects may improve tagging ac-
curacy. Our concern here is the evaluation of the
lexicon learning component in Step 2.

An important problem in this system setup is
the possibility of error propagation. In Step 1, the
MSA analyzer may give incorrect POS-sets to ana-
lyzable words. It may not posit the correct tag (low
recall), or it may give too many tags (low preci-
sion). Both have a negative effect on lexicon learn-
ing and EM training. For lexicon learning, Step
1 errors represent corrupt training data; For EM
training, Step 1 error may cause the HMM tagger
to never hypothesize the correct tag (low recall) or
have too much confusibility during training (low

precision). We attempted to measure the extent of
this error by calculating the tag precision/recall on
words that occur in the test set: Among the 12k
words analyzed by the analyzer, 1483 words oc-
cur in the test data. We used the annotations in
the test data and collected all the “oracle” POS-
sets for each of these 1483 words.2 The aver-
age precision of the analyzer-generated POS-sets
against the oracle is 56.46%. The average recall
is 81.25%. Note that precision is low–this implies
that the partial lexicon is not very constrained. The
recall of 81.25% means that 18.75% of the words
may never receive the correct tag in tagging. In
the experiments, we will investigate to what ex-
tent this kind of error affects lexicon learning and
EM training.

6 Experiments

6.1 Lexicon learning experiments

We seek to answer the following three questions
in our experiments:

• How useful is the lexicon learning step in an
end-to-end POS tagging system? Do the ma-
chine learning algorithms produce lexicons
that result in higher tagging accuracies, when
compared to a baseline lexicon that simply
hypothesizes all POS tags for un-analyzable
words? The answer is a definitive yes.

• What machine learning algorithms perform
the best on this task? Do transductive learn-
ing outperform inductive learning? The em-
pirical answer is that TSVM performs best,
SGT performs worst, and TC and ISVM are
in the middle.

2Since the test set is small, these “oracle” POS-sets may
be missing some tags. Thus the true precision may be higher
(and recall may be lower) than measured.
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Orthographic features:
wi matches /ˆpre/, pre = {set of data-derived prefixes}
wi matches /suf$/, suf = {set of data-derived suffixes}
Contextual features:
wi−1 = voc, voc = {set of words in lexicon}
ti−1 = tag, tag = {set of POS tags}
ti+1 = tag, tag = {set of POS tags}
wi−1 is an un-analyzable word
wi+1 is an un-analyzable word

Table 2: Binary features used for predicting POS-
sets of un-analyzable words.

• What is the relative impact of errors from the
MSA analyzer on lexicon learning and EM
training? The answer is that Step 1 errors af-
fect EM training more, and lexicon learning
is comparably robust to these errors.

In our problem, we have 12k labeled samples
and 3970 unlabeled samples. We define the feature
of each sample as listed in Table 2. The contextual
features are generated by co-occurrence statistics
gleaned from the training data. For instance, for
a word foo, we collect all bigrams consisting of
foo from the raw text; all features [wt−1 = voc]
that correspond to the bigrams (voc, foo) are set
to 1. The idea is that words with similar ortho-
graphic and/or contextual features should receive
similar POS-sets.

All results, unless otherwise noted, are tagging
accuracies on the test set given by training a HMM
tagger on a specific lexicon. Table 3 gives tagging
accuracies of the four machine learning methods
(TSVM, TC, ISVM, SGT) as well as two base-
line approaches for generating a lexicon: (all tags)
gives all 20 possible tags to the un-analyzable
words, whereas (open class) gives only the sub-
set of open-class POS tags.3 The results are given
in descending order of overall tagging accuracy.4

With the exception of TSVM (63.54%) vs. TC
(62.89%), all differences are statistically signifi-
cant. As seen in the table, applying a machine
learning step for lexicon learning is a worthwhile
effort since it always leads to better tagging accu-
racies than the baseline methods.

3Not all un-analyzable words are open-class. Close-class
words may be un-analyzable due to dialectal spelling varia-
tions.

4Note that the unknown word accuracies do not follow
the same trend and are generally quite low. This might be
due to the fact that POS tags of unknown words are usually
best predicted by the HMM’s transition probabilities, which
may not be as robust due to the noisy lexicon.

Method Accuracy UnkAcc
TSVM 63.54 26.19
TC 62.89 26.71
ISVM 61.53 27.68
SGT 59.68 25.82
open class 57.39 27.08
all tags 55.64 25.00

Table 3: Tagging Accuracies for lexicons derived
by machine learning (TSVM, TC, ISVM, SGT)
and baseline methods. Accuracy=Overall accu-
racy; UnkAcc=Accuracy of unknown words.

The poor performance of SGT is somewhat sur-
prising since it is contrary to results presented in
other papers. We attributed this to the difficulty in
constructing the data graph. For instance, we con-
structed k-nearest-neighbor graphs based on the
cosine distance between feature vectors, but it is
difficult to decide the best distance metric or num-
ber of neighbors. Finally, we note that besides the
performance of SGT, transductive learning meth-
ods (TSVM, TC) outperform the inductive ISVM.

We also compute precision/recall statistics of
the final lexicon on the test set words (similar to
Section 5) and measure the average size of the
POS-sets (‖POSset‖). As seen in Table 4, POS-
set sizes of machine-learned lexicon is a factor of
2 or 3 smaller than that of the baseline lexicons.
On the other hand, recall is better for the baseline
lexicons. These observations, combined with the
fact that machine-learned lexicons gave better tag-
ging accuracy, suggests that we have a constrained
lexicon effect here: i.e. for EM training, it is better
to constrain the lexicon with small POS-sets than
to achieve high recall.

Method Precision Recall ‖POSset‖
TSVM 58.15 88.85 1.89
TC 59.19 87.88 1.80
ISVM 58.09 88.44 1.87
SGT 53.98 82.60 1.87
open class 54.03 96.77 3.39
all tags 53.31 98.53 5.17

Table 4: Statistics of the Lexicons in Table 3.

Next, we examined the effects of error propa-
gation from the MSA analyzer in Step 1. We at-
tempted to correct these errors by using POS-sets
of words derived from the development data. In
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particular, of the 1562 partial lexicon words that
also occur in the development set, we found 1044
words without entirely matching POS-sets. These
POS-sets are replaced with the oracle POS-sets de-
rived from the development data, and the result is
treated as the (corrected) partial lexicon of Step 1.
In this procedure, the average POS-set size of the
partial lexicon decreased from 2.13 to 1.10, recall
increased from 82.44% to 100%, and precision in-
creased from 57.15% to 64.31%. We apply lexi-
con learning to this corrected partial lexicon and
evaluate tagging results, shown in Table 5. The
fact that all numbers in Table 5 represent signifi-
cant improvements over Table 3 implies that error
propagation is not a trivial problem, and automatic
error correction methods may be desired.

Method Accuracy UnkAcc
TSVM 66.54 27.38
ISVM 65.08 26.86
TC 64.05 28.20
SGT 63.78 27.23
all tags 62.96 27.91
open class 61.26 27.83

Table 5: Tag accuracies by correcting mistakes in
the partial lexicon prior to lexicon learning. In-
terestingly, we note ISVM outperforms TC here,
which differs from Table 3.

Finally, we determine whether error propaga-
tion impacts lexicon learning (Step 2) or EM train-
ing (Step 3) more. Table 6 shows the results of
TSVM for four scenarios: correcting analyzer er-
rors in the the lexicon: (A) prior to lexicon learn-
ing, (B) prior to EM training, (C) both, or (D)
none. As seen in Table 6, correcting the lexicon
at Step 3 (EM training) gives the most improve-
ments, indicating that analyzer errors affects EM
training more than lexicon learning. This implies
that lexicon learning is relatively robust to train-
ing data corruption, and that one can mainly focus
on improved estimation techniques for EM train-
ing (Wang and Schuurmans, 2005) if the goal is to
alleviate the impact of analyzer errors. The same
evaluation on the other machine learning methods
(TC, ISVM, SGT) show similar results.

6.2 Comparison experiments: Expert lexicon
and supervised learning

Our approach to building a resource-poor POS
tagger involves (a) lexicon learning, and (b) un-

Scenario Step2 Step3 TSVM
(B) N Y 66.70
(C) Y Y 66.54
(A) Y N 64.93
(D) N N 63.54

Table 6: Effect of correcting the lexicon in differ-
ent steps. Y=yes, lexicon corrected; N=no, POS-
set remains the same as analyzer’s output.

supervised training. In this section we examine
cases where (a) an expert lexicon is available, so
that lexicon learning is not required, and (b) sen-
tences are annotated with POS information, so that
supervised training is possible. The goal of these
experiments is to determine when alternative ap-
proaches involving additional human annotations
become worthwhile in this task.

(a) Expert lexicon: First, we build an expert
lexicon by collecting all tags per word in the de-
velopment set (i.e. “oracle” POS-sets). Then, the
tagger is trained using EM by treating the develop-
ment set as raw text (i.e. ignoring the POS anno-
tations). This achieves an accuracy of 74.45% on
the test set. Note that this accuracy is significantly
higher than the ones in Table 3, which represent
unsupervised training on more raw text (the train-
ing set), but with non-expert lexicons derived from
the MSA analyzer and a machine learner. This re-
sult further demonstrates the importance of obtain-
ing an accurate lexicon in unsupervised training. If
one were to build this expert lexicon by hand, one
would need an annotator to label the POS-sets of
2450 distinct lexicon items.

(b) Supervised training: We build a super-
vised tagger by training on the POS annotations of
the development set, which achieves 82.93% accu-
racy. This improved accuracy comes at the cost of
annotating 2.2k sentences (16k tokens) with com-
plete POS information.

Finally, we present the same results with re-
duced data, taking first 50, 100, 200, etc. sen-
tences in the development set for lexicon or POS
annotation. The learning curve is shown in Table
7. One may be tempted to draw conclusions re-
garding supervised vs. unsupervised approaches
by directly comparing this table with the results
in Section 6.1; we avoid doing so since taggers in
Sections 6.1 and 6.2 are trained on different data
sets (training vs. development set) and the accu-
racy differences are compounded by issues such
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Supervised Unsupervised, Expert
#Sentence Acc #Vocab Acc
50 47.82 123 47.13
100 55.32 188 54.65
200 61.17 299 57.37
400 69.17 497 64.36
800 76.92 953 70.36
1600 81.73 1754 72.99
2200 82.93 2450 74.45

Table 7: (1) Supervised training accuracies with
varying numbers of sentences. (2) Accuracies of
unsupervised training using a expert lexicon of
different vocabulary sizes.

as ngram coverage, data-set selection, and the way
annotations are done.

7 Related Work

There is an increasing amount of work in NLP
tools for Arabic. In supervised POS tagging, (Diab
et al., 2004) achieves high accuracy on MSA with
the direct application of SVM classifiers. (Habash
and Rambow, 2005) argue that the rich morphol-
ogy of Arabic necessitates the use of a morpho-
logical analyzer in combination with POS tag-
ging. This can be considered similar in spirit to
the learning of lexicons for unsupervised tagging.

The work done at a recent JHU Workshop
(Rambow and others, 2005) is very relevant in that
it investigates a method for improving LCA tag-
ging that is orthogonal to our approach. They do
not use the raw LCA text as we have done. Instead,
they train a MSA supervised tagger and adapt it to
LCA by a combination of methods, such using a
MSA-LCA translation lexicon and redistributing
the probabibility mass of MSA words to LCA.

8 Conclusion

In this study, we investigated several machine
learning algorithms on the task of lexicon learn-
ing and demonstrated its impact on dialectal Ara-
bic tagging. We achieve a POS tagging accuracy
of 63.54% using a transductively-learned lexicon
(TSVM), outperforming the baseline (57.39%).
This result brings us one step closer to the accu-
racies of unsupervised training with expert lexi-
con (74.45%) and supervised training (82.93%),
both of which require significant annotation effort.
Future work includes a more detailed analysis of

transductive learning in this domain and possible
solutions to alleviating error propagation.
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Abstract 

This paper explores the use of a character 
segment based character correction 
model, language modeling, and shallow 
morphology for Arabic OCR error cor-
rection.  Experimentation shows that 
character segment based correction is su-
perior to single character correction and 
that language modeling boosts correction, 
by improving the ranking of candidate 
corrections, while shallow morphology 
had a small adverse effect.  Further, 
given sufficiently large corpus to extract 
a dictionary and to train a language 
model, word based correction works well 
for a morphologically rich language such 
as Arabic.   

1 Introduction 

Recent advances in printed document digitization 
and processing led to large scale digitization ef-
forts of legacy printed documents producing 
document images.  To enable subsequent proc-
essing and retrieval, the document images are 
often transformed to character-coded text using 
Optical Character Recognition (OCR).  Although 
OCR is fast, OCR output typically contains er-
rors.  The errors are even more pronounced in 
OCR’ed Arabic text due to Arabic’s orthographic 
and morphological properties.  The introduced 
errors adversely affect linguistic processing and 
retrieval of OCR’ed documents.  This paper ex-
plores the effectiveness post-OCR error correc-
tion.  The correction uses an improved character 
segment based noisy channel model, language 
modeling, and shallow morphological processing 
to correct OCR errors.  The paper will be organ-
ized as follows:  Section 2 provides background 
information on Arabic OCR and OCR error cor-
rection; Section 3 presents the error correction 

methodology; Section 4 reports and discusses 
experimental results; and Section 5 concludes the 
paper and provides possible future directions. 

2 Background 

This section reviews prior work on Arabic OCR 
for Arabic and OCR error correction. 
 

2.1 Arabic OCR 

The goal of OCR is to transform a document im-
age into character-coded text. The usual process 
is to automatically segment a document image 
into character images in the proper reading order 
using image analysis heuristics, apply an auto-
matic classifier to determine the character codes 
that most likely correspond to each character im-
age, and then exploit sequential context (e.g., 
preceding and following characters and a list of 
possible words) to select the most likely charac-
ter in each position. The character error rate can 
be influenced by reproduction quality (e.g., 
original documents are typically better than pho-
tocopies), the resolution at which a document 
was scanned, and any mismatch between the in-
stances on which the character image classifier 
was trained and the rendering of the characters in 
the printed document.  Arabic OCR presents sev-
eral challenges, including: 
• Arabic’s cursive script in which most charac-
ters are connected and their shape vary with posi-
tion in the word.  
• The optional use of word elongations and liga-
tures, which are special forms of certain letter 
sequences. 
• The presence of dots in 15 of the 28 letters to 
distinguish between different letters and the op-
tional use of diacritic which can be confused 
with dirt, dust, and speckle (Darwish and Oard, 
2002). 
• The morphological complexity of Arabic, 
which results in an estimated 60 billion possible 
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surface forms, complicates dictionary-based er-
ror correction.  Arabic words are built from a 
closed set of about 10,000 root forms that typi-
cally contain 3 characters, although 4-character 
roots are not uncommon, and some 5-character 
roots do exist.  Arabic stems are derived from 
these root forms by fitting the root letters into a 
small set of regular patterns, which sometimes 
includes addition of “infix” characters between 
two letters of the root (Ahmed, 2000). 
There is a number of commercial Arabic OCR 
systems, with Sakhr’s Automatic Reader and 
Shonut’s Omni Page being perhaps the most 
widely used. Retrieval of OCR degraded text 
documents has been reported for many lan-
guages, including English (Harding et al., 1997), 
Chinese (Tseng and Oard, 2001), and Arabic 
(Darwish and Oard, 2002). 
 

2.2 OCR Error Correction 

Much research has been done to correct 
recognition errors in OCR-degraded collections.  
There are two main categories of determining 
how to correct these errors. They are word-level 
and passage-level post-OCR processing. Some of 
the kinds of word level post-processing include 
the use of dictionary lookup, probabilistic 
relaxation, character and word n-gram frequency 
analysis (Hong, 1995), and morphological 
analysis (Oflazer, 1996). Passage-level post-
processing techniques include the use of word n-
grams, word collocations, grammar, conceptual 
closeness, passage level word clustering, 
linguistic context, and visual context. The 
following introduces some of the error correction 
techniques. 
• Dictionary Lookup:  Dictionary Lookup, which 
is the basis for the correction reported in this 
paper, is used to compare recognized words with 
words in a term list (Church and Gale, 1991; 
Hong, 1995; Jurafsky and Martin, 2000). If a 
word is found in the dictionary, then it is 
considered correct. Otherwise, a checker 
attempts to find a dictionary word that might be 
the correct spelling of the misrecognized word. 
Jurafsky and Martin (2000) illustrate the use of a 
noisy channel model to find the correct spelling 
of misspelled or misrecognized words. The 
model assumes that text errors are due to edit 
operations namely insertions, deletions, and 
substitutions. Given two words, the number of 
edit operations required to transform one of the 
words to the other is called the Levenshtein edit 
distance (Baeza-Yates and Navarro, 1996). To 

capture the probabilities associated with different 
edit operations, confusion matrices are 
employed. Another source of evidence is the 
relative probabilities that candidate word 
corrections would be observed. These 
probabilities can be obtained using word 
frequency in text corpus (Jurafsky and Martin, 
2000).  However, the dictionary lookup approach 
has the following problems (Hong, 1995):  
a) A correctly recognized word might not be in 
the dictionary. This problem could surface if the 
dictionary is small, if the correct word is an 
acronym or a named entity that would not 
normally appear in a dictionary, or if the 
language being recognized is morphologically 
complex. In a morphological complex language 
such as Arabic, German, and Turkish the number 
of valid word surface forms is arbitrarily large 
which complicates building dictionaries for spell 
checking.  
b) A word that is misrecognized is in the 
dictionary. An example of that is the recognition 
of the word “tear” instead of “fear”. This 
problem is particularly acute in a language such 
as Arabic where a large fraction of three letters 
sequences are valid words.   
• Character N-Grams:  Character n-grams maybe 
used alone or in combination with dictionary 
lookup (Lu et al., 1999; Taghva et al., 1994).  
The premise for using n-grams is that some letter 
sequences are more common than others and 
other letter sequences are rare or impossible. For 
example, the trigram “xzx” is rare in the English 
language, while the trigram “ies” is common. 
Using this method, an unusual sequence of letters 
can point to the position of an error in a 
misrecognized word.  This technique is 
employed by BBN’s Arabic OCR system (Lu et 
al., 1999). 
• Using Morphology:  Many morphologically 
complex languages, such as Arabic, Swedish, 
Finnish, Turkish, and German, have enormous 
numbers of possible words. Accounting for and 
listing all the possible words is not feasible for 
purposes of error correction. Domeij proposed a 
method to build a spell checker that utilizes a 
stem lists and orthographic rules, which govern 
how a word is written, and morphotactic rules, 
which govern how morphemes (building blocks 
of meanings) are allowed to combine, to accept 
legal combinations of stems (Domeij et al., 
1994). By breaking up compound words, 
dictionary lookup can be applied to individual 
constituent stems.  Similar work was done for 
Turkish in which an error tolerant finite state 
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recognizer was employed (Oflazer, 1996). The 
finite state recognizer tolerated a maximum 
number of edit operations away from correctly 
spelled candidate words. This approach was 
initially developed to perform morphological 
analysis for Turkish and was extended to 
perform spelling correction.  The techniques 
used for Swedish and Turkish can potentially be 
applied to Arabic. Much work has been done on 
Arabic morphology and can be potentially 
extended for spelling correction. 
• Word Clustering:  Another approach tries to 
cluster different spellings of a word based on a 
weighted Levenshtein edit distance. The insight 
is that an important word, specially acronyms 
and named-entities, are likely to appear more 
than once in a passage. Taghva described an 
English recognizer that identifies acronyms and 
named-entities, clusters them, and then treats the 
words in each cluster as one word (Taghva, 
1994).  Applying this technique for Arabic 
requires accounting for morphology, because 
prefixes or suffixes might be affixed to instances 
of named entities. DeRoeck introduced a 
clustering technique tolerant of Arabic’s 
complex morphology (De Roeck and Al-Fares, 
2000). Perhaps the technique can be modified to 
make it tolerant of errors. 
• Using Grammar:  In this approach, a passage 
containing spelling errors is parsed based on a 
language specific grammar. In a system 
described by Agirre (1998), an English grammar 
was used to parse sentences with spelling 
mistakes.  Parsing such sentences gives clues to 
the expected part of speech of the word that 
should replace the misspelled word. Thus 
candidates produced by the spell checker can be 
filtered.  Applying this technique to Arabic might 
prove challenging because the work on Arabic 
parsing has been very limited (Moussa et al., 
2003). 
• Word N-Grams (Language Modeling):  A 
Word n-gram is a sequence of n consecutive 
words in text. The word n-gram technique is a 
flexible method that can be used to calculate the 
likelihood that a word sequence would appear 
(Tillenius, 1996). Using this method, the 
candidate correction of a misspelled word might 
be successfully picked. For example, in the 
sentence “I bought a peece of land,” the possible 
corrections for the word peece might be “piece” 
and “peace”. However, using the n-gram method 
will likely indicate that the word trigram “piece 
of land” is much more likely than the trigram 

“peace of land.” Thus the word “piece” is a more 
likely correction than “peace”. 

3 Error Correction Methodology 

This section describes the character level model-
ing, the language modeling, and shallow mor-
phological analysis. 
 

3.1 OCR Character Level Model 

A noisy channel model was used to learn how 
OCR corrupts single characters or character 
segments, producing a character level confusion 
model.   To train the model, 6,000 OCR cor-
rupted words were obtained from a modern print-
ing of a medieval religious Arabic book (called 
“The Provisions of the Return” or “Provisions” 
for short by Ibn Al-Qayim).  The words were 
then manually corrected, and the corrupted and 
manually corrected versions were aligned. The 
Provisions book was scanned at 300x300 dots 
per inch (dpi), and Sakhr’s Automatic Reader 
was used to OCR the scanned pages.  From the 
6,000 words, 4,000 were used for training and 
the remaining words were set aside for later test-
ing.  The Word Error Rate (WER) for the 2,000 
testing words was 39%.  For all words (in train-
ing and testing), the different forms of alef 
(hamza, alef, alef maad, alef with hamza on top, 
hamza on wa, alef with hamza on the bottom, and 
hamza on ya) were normalized to alef, and ya 
and alef maqsoura were normalized to ya.  Sub-
sequently, the characters in the aligned words 
can aligned in two different ways, namely:  1:1 
(one-to-one) character alignment, where each 
character is mapped to no more than one charac-
ter (Church and Gale, 1991); or using m:n align-
ment, where a character segment of length m is 
aligned to a character segment of length n (Brill 
and Moore, 2000).  The second method is more 
general and potentially more accurate especially 
for Arabic where a character can be confused 
with as many as three or four characters.  The 
following example highlights the difference be-
tween the 1:1 and the m:n alignment approaches.  
Given the training pair (rnacle, made): 
 

1:1 alignment :    

 

r     n     a     c     l     e 
 
 
 

m    ε     a     d    ε     e 
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m:n alignment: 

 
 
For alignment, Levenstein dynamic program-

ming minimum edit distance algorithm was used 
to produce 1:1 alignments.  The algorithm com-
putes the minimum number of edit operations 
required to transform one string into another.  
Given the output alignments of the algorithm, 
properly aligned characters (such as a ���� a and e 

���� e) are used as anchors, ε’s (null characters) 
are combined to misaligned adjacent characters 

producing m:n alignments, and ε’s between cor-
rectly aligned characters are counted as deletions 
or insertions. 
To formalize the error model, given a clean word 

χ = #C1..Ck.. Cl..Cn# and the resulting OCR de-

graded word δ = #D1..Dx.. Dy..Dm#, where Dx.. Dy 

resulted from Ck.. Cl, ε representing the null 
character, and # marking word boundaries, the 
probability estimates for the three edit operations 
for the models are: 
 

Psubstitution (Ck..Cl −> Dx.. Dy) = 

)..(

)....(

lk

yxlk

CCcount

DDCCcount →
 

 

Pdeletion (Ck..Cl −> ε) = 
)..(

)..(

lk

lk

CCcount

CCcount ε→  

 

Pinsertion (ε −>  Dx.. Dy) = 
)(

)..(

Ccount

DDcount yx→ε
 

 

When decoding a corrupted string δ composed of 
the characters D1..Dx.. Dy..Dm, the goal is to find 

a string χ composed of the characters C1..Ck.. 

Cl..Cn such that P(δ|χ)·P(χ) is maximum.  P(χ) is 
the prior probability of observing χ in text and 
P(δ|χ) is the probability of producing δ from χ.   
P(χ) was computed from a web-mined collection 
of religious text by Ibn Taymiya, the main 
teacher of the medieval author of the “Provi-
sions” book.  The collection contained approxi-
mately 16 million words, with 278,877 unique 
surface forms.  

P(δ|χ) is calculated using the trained model, as 
follows: 

∏=
yx DDall

lkyx CCDDPP
..:

)..|..()|( χδ
 

The segments Dx.. Dy are generated by finding all 

possible 2n-1 segmentations of the word δ.  For 
example, given “macle” then all possible seg-
mentations are (m,a,c,l,e), (ma,c,l,e), (m,ac,l,e), 
(mac,l,e), (m,a,cl,e), (ma,cl,e), (m,acl,e), 
(macl,e), (m,a,c,le), (ma,c,le), (m,ac,le), (mac,le), 
(m,a,cle), (ma,cle), (m,acle), (macle). 
All segment sequences Ck.. Cl known to produce 
Dx.. Dy for each of the possible segmentations are 
produced.  If a sequence of C1.. Cn segments 

generates a valid word χ which exists in the web-
mined collection, then argmaxχ P(δ|χ)·P(χ) is 
computed, otherwise the sequence is discarded.  
Possible corrections are subsequently ranked.  
For all the experiments reported in this paper, the 
top 10 corrections are generated.  Note that error 
correction reported in this paper does not assume 
that a word is correct because it exists in the 
web-mined collection and assumes that all words 
are possibly incorrect. 
The effect of two modifications to the m:n char-
acter model mentioned above were examined.   
The first modification involved making the char-
acter model account for the position of letters in 
a word.  The intuition for this model is that since 
Arabic letters change their shape based on their 
positions in words and would hence affect the 
letters with which they would be confused.  
Formally, given L denoting the positions of the 
letter at the boundaries of character segments, 
whether start, middle, end, or isolated, the char-
acter model would be: 
 

Psubstitution (Ck..Cl −> Dx.. Dy | L) = 

)|..(

)|....(

LCCcount

LDDCCcount

lk

yxlk →
 

 

Pdeletion (Ck..Cl −> ε | L) = 
)|..(

)|..(

LCCcount

LCCcount

lk

lk ε→  

 

Pinsertion (ε −>  Dx.. Dy) = 
)|(

)|..(

LCcount

LDDcount yx→ε
 

 
The second modification involved giving a small 
uniform probability to single character substiu-
tions that are unseen in the training data.  This 
was done in accordance to Lidstone’s law to 
smooth probabilities.  The probability was set to 
be 100 times smaller than the probability of the 
smallest seen single character substitution*.   

                                                 
* Other uniform probability estimates were examined for the 
training data and the one reported here seemed to work best 

r     n      a     c     l     e 
 
 

            
         m       a     d      e 
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3.2 Language Modeling  

For language modeling, a trigram language 
model was trained on the same web-mined col-
lection that was mentioned in the previous sub-
section without any kind of morphological proc-
essing.  Like the text extracted from the “Provi-
sions” book, alef and ya letter normalizations 
were performed.  The language model was built 
using SRILM toolkit with Good-Turing smooth-
ing and default backoff.   

Given a corrupted word sequence ∆ = {δ1 .. δi .. 
δn} and Ξ = {Χ1 .. Χi .. Χn}, where Χi ={χi0 .. χim} 

are possible corrections of δi (m = 10 for all the 
experiments reported in the paper), the aim was 

to find a sequence Ω = {ω1 .. ωi .. ωn}, where 

ωi ∈ Χi, that maximizes: 

( )
4342144444 344444 21
odelCharacterM

iji

delLanguageMo

jijiij
mjni

PP )|(,| ,2,1
..1,..1

χδχχχ ⋅




 Π −−==

 

 

3.3 Language Modeling and Shallow Mor-

phological Analysis 

Two paths were pursued to explore the combined 
effect of language modeling and shallow mor-
phological analysis.   
In the first, a 6-gram language model was trained 
on the same web-mined collection after each of 
the words in the collection was segmented into 
its constituent prefix, stem, and suffix (in this 
order) using language model based stemmer (Lee 
et al., 2003).  For example, “ TUآPQRو  – wktAbhm” 
was replaced by “w# ktAb +hm” where # and + 
were used to mark prefixes and suffixes respec-
tively and to distinguish them from stems.  Like 
before, alef and ya letter normalizations were 
performed and the language model was built us-
ing SRILM toolkit with the same parameters.   
Formally, the only difference between this 

model and the one before is that Χi ={χi0 .. χim} 
are the {prefix, stem, suffix} tuples of the possi-

ble corrections of δi (a tuple is treated as a block).  
Otherwise everything else is identical. 
In the second, a trigram language model was 
trained on the same collection after the language 
modeling based stemming was used on all the 
tokens in the collection (Lee et al., 2003).  The 
top n generated corrections were subsequently 
stemmed and the stems were reranked using the 
language model.  The top resulting stem was 
compared to the condition in which language 
modeling was used without morphological 
analysis (as in the previous subsection) and then 
the top resulting correction were stemmed.  This 

path was pursued to examine the effect of correc-
tion on applications where stems are more useful 
than words such as Arabic information retrieval 
(Darwish et al., 2005; Larkey et al., 2002).   
 

3.4 Testing the Models 

The 1:1 and m:n character mapping models were 
tested while enabling or disabling character posi-
tion training (CP), smoothing by the assignment 
of small probabilities to unseen single character 
substitutions (UP), language modeling (LM), and 
shallow morphological processing (SM) using 
the 6-gram model.  
As mentioned earlier, all models were tested us-
ing sentences containing 2,000 words in total.  

4 Experimental Results 

Table 1 reports on the percentage of words for 
which a proper correction was found in the top n 
generated corrections using different models.   
The percentage of words for which a proper cor-
rection exists in the top 10 proposed correction is 
the upper limit accuracy we can achieve given 
than we can rerank the correction using language 
modeling.  Table 2 reports the word error rate for 
the 1:1 and m:n models with and without CP, 
UP, LM, and SM.  Further, the before and after 
stemming error rates are reported for setups that 
use language modeling.  Table 3 reports on the 
stem error rate when using the stem trigram lan-
guage model. 
The best model was able to find the proper cor-
rection within the top 10 proposed correction for 
90% of the words.  The failure to find a proper 
correction within the proposed corrections was 
generally due to grossly misrecognized words 
and was rarely due to words that do not exist in 
web-mined collection.  Perhaps, more training 
examples for the character based models would 
improve correction. 
 
 
Corrections 1 2 3 4 5 10 

1:1 75.3 80.3 83.1 84.5 85 86.5 

1:1 + CP 76.9 82.1 83.5 83.2 85 86 

1:1 + UP 76 81 83.6 84.6 85.2 86.7 

m:n 78.3 83.5 85.4 86.7 87.1 88.5 

m:n + CP 79.9 83.9 84.0 85.5 85.9 86.8 

m:n + UP 78.4 83.7 85.6 84.1 87.0 90.0 

Table 1:  Percentage of words for which a proper cor-

rection was found in the top n generated corrections 
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Model 1:1 m:n 

 Word Stem Word Stem 

No Correction 39.0% - 39.0% - 

Base Model 24.7% - 21.8% - 

+ CP 23.1% - 21.5% - 

+ UP 24% - 21.6% - 

+ LM 15.8% 14.6% 13.3% 12.1% 

+ LM + CP 16.5% 15.1% 15.5% 14.7% 

+ LM + UP 15.4% 14.3% 11.7% 10.8% 

+ SM + UP 27.8% 26.5% 24.5% 23.0% 

Table 2:  Word/stem error rate for correction with the 

different models 

 
Model 1:1 m:n 

Stem 3-gram 16.1% 12.9% 

Table 3:  Stem error rate for top correction using stem 

trigram language model 

 
The results indicate that the m:n character model 
is better than the 1:1 model in two ways.  The 
first is that the m:n model yielded a greater per-
centage of proper corrections in the top 10 gen-
erated corrections, and the second is that the 
scores of the top 10 corrections were better 
which led to better results compared to the 1:1 
model when used in combination with language 
modeling.  For the m:n model with language 
modeling, the language model properly picked 
the proper correction from the proposed correc-
tion 98% of the time (for the cases where a 
proper correction was within the proposed cor-
rections). 
Also the use of smoothing, UP, produced better 
corrections, while accounting for character posi-
tions had an adverse effect on correction.  This 
might be an indication that the character segment 
correction training data was sparse.  Using the 6-
gram language model on the segmented words 
had a severely negative impact on correction ac-
curacy.  Perhaps is due to insufficient training 
data for the model.  This situation lends itself to 
using a factored language model using the sur-
face form of words as well as other linguistic 
features of the word such as part of speech tags, 
prefixes, and suffixes. 
As for training a language model on words ver-
sus stems, the results suggest that word based 
correction is slightly better than stem based cor-
rection.  The authors’ intuition is that this re-
sulted from having a sufficiently large corpus to 
train the language model and that this might have 
been reversed if the training corpus for the lan-
guage model was smaller.  Perhaps further inves-
tigation would prove or disprove the authors’ 
intuition. 

5 Conclusion and Future Work 

The paper examined the use of single character 
and character segment models based correction 
of Arabic OCR text combined with language 
modeling and shallow morphological analysis.  
Further, character position and smoothing issues 
were also examined.  The results show the supe-
riority of the character segment based model 
compared to the single character based model.  
Further, the use of language modeling yielded 
improved error correction particularly for the 
character segment based model.  Accounting for 
character position and shallow morphological 
analysis had a negative impact on correction, 
while smoothing had a positive impact.  Lastly, 
given a large in-domain corpus to extract a cor-
rection dictionary and to train a language model 
is a sufficient strategy for correcting a morpho-
logically rich language such as Arabic with a 
70% reduction in word error rate.  
For future work, a factor language model 

might prove beneficial to incorporate morpho-
logical information and other factors such as part 
of speech tags while overcoming training data 
sparseness problems.  Also, determining the size 
of a sufficiently large corpus to generate a cor-
rection dictionary and to train a language model 
is desirable.  Finally, word prediction might 
prove useful for cases where OCR grossly mis-
recognized words. 
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Abstract

Supervised and semi-supervised sense dis-
ambiguation methods will mis-tag the in-
stances of a target word if the senses of
these instances are not defined in sense in-
ventories or there are no tagged instances
for these senses in training data. Here we
used a model order identification method
to avoid the misclassification of the in-
stances with undefined senses by discov-
ering new senses from mixed data (tagged
and untagged corpora). This algorithm
tries to obtain a natural partition of the
mixed data by maximizing a stability cri-
terion defined on the classification result
from an extended label propagation al-
gorithm over all the possible values of
the number of senses (or sense number,
model order). Experimental results on
SENSEVAL-3 data indicate that it outper-
forms SVM, a one-class partially super-
vised classification algorithm, and a clus-
tering based model order identification al-
gorithm when the tagged data is incom-
plete.

1 Introduction

In this paper, we address the problem of partially
supervised word sense disambiguation, which is
to disambiguate the senses of occurrences of a tar-
get word in untagged texts when given incomplete
tagged corpus 1.

Word sense disambiguation can be defined as
associating a target word in a text or discourse

1“incomplete tagged corpus” means that tagged corpus
does not include the instances of some senses for the target
word, while these senses may occur in untagged texts.

with a definition or meaning. Many corpus based
methods have been proposed to deal with the sense
disambiguation problem when given definition for
each possible sense of a target word or a tagged
corpus with the instances of each possible sense,
e.g., supervised sense disambiguation (Leacock et
al., 1998), and semi-supervised sense disambigua-
tion (Yarowsky, 1995).

Supervised methods usually rely on the infor-
mation from previously sense tagged corpora to
determine the senses of words in unseen texts.
Semi-supervised methods for WSD are charac-
terized in terms of exploiting unlabeled data in
the learning procedure with the need of prede-
fined sense inventories for target words. The in-
formation for semi-supervised sense disambigua-
tion is usually obtained from bilingual corpora
(e.g. parallel corpora or untagged monolingual
corpora in two languages) (Brown et al., 1991; Da-
gan and Itai, 1994), or sense-tagged seed examples
(Yarowsky, 1995).

Some observations can be made on the previous
supervised and semi-supervised methods. They
always rely on hand-crafted lexicons (e.g., Word-
Net) as sense inventories. But these resources may
miss domain-specific senses, which leads to in-
complete sense tagged corpus. Therefore, sense
taggers trained on the incomplete tagged corpus
will misclassify some instances if the senses of
these instances are not defined in sense invento-
ries. For example, one performs WSD in informa-
tion technology related texts using WordNet 2 as
sense inventory. When disambiguating the word
“boot” in the phrase “boot sector”, the sense tag-
ger will assign this instance with one of the senses
of “boot” listed in WordNet. But the correct sense

2Online version of WordNet is available at
http://wordnet.princeton.edu/cgi-bin/webwn2.0
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“loading operating system into memory” is not in-
cluded in WordNet. Therefore, this instance will
be associated with an incorrect sense.

So, in this work, we would like to study the
problem of partially supervised sense disambigua-
tion with an incomplete sense tagged corpus.
Specifically, given an incomplete sense-tagged
corpus and a large amount of untagged examples
for a target word 3, we are interested in (1) label-
ing the instances in the untagged corpus with sense
tags occurring in the tagged corpus; (2) trying to
find undefined senses (or new senses) of the target
word 4 from the untagged corpus, which will be
represented by instances from the untagged cor-
pus.

We propose an automatic method to estimate
the number of senses (or sense number, model or-
der) of a target word in mixed data (tagged cor-
pus+untagged corpus) by maximizing a stability
criterion defined on classification result over all
the possible values of sense number. At the same
time, we can obtain a classification of the mixed
data with the optimal number of groups. If the es-
timated sense number in the mixed data is equal
to the sense number of the target word in tagged
corpus, then there is no new sense in untagged
corpus. Otherwise new senses will be represented
by groups in which there is no instance from the
tagged corpus.

This partially supervised sense disambiguation
algorithm may help enriching manually compiled
lexicons by inducing new senses from untagged
corpora.

This paper is organized as follows. First, a
model order identification algorithm will be pre-
sented for partially supervised sense disambigua-
tion in section 2. Section 3 will provide experi-
mental results of this algorithm for sense disam-
biguation on SENSEVAL-3 data. Then related
work on partially supervised classification will be
summarized in section 4. Finally we will conclude
our work and suggest possible improvements in
section 5.

2 Partially Supervised Word Sense
Disambiguation

The partially supervised sense disambiguation
problem can be generalized as a model order iden-

3Untagged data usually includes the occurrences of all the
possible senses of the target word

4“undefined senses” are the senses that do not appear in
tagged corpus.

tification problem. We try to estimate the sense
number of a target word in mixed data (tagged cor-
pus+untagged corpus) by maximizing a stability
criterion defined on classification results over all
the possible values of sense number. If the esti-
mated sense number in the mixed data is equal to
the sense number in the tagged corpus, then there
is no new sense in the untagged corpus. Other-
wise new senses will be represented by clusters in
which there is no instance from the tagged corpus.
The stability criterion assesses the agreement be-
tween classification results on full mixed data and
sampled mixed data. A partially supervised clas-
sification algorithm is used to classify the full or
sampled mixed data into a given number of classes
before the stability assessment, which will be pre-
sented in section 2.1. Then we will provide the
details of the model order identification procedure
in section 2.2.

2.1 An Extended Label Propagation
Algorithm

Table 1: Extended label propagation algorithm.
Function: ELP(DL, DU , k, Y 0

DL+DU
)

Input: labeled examples DL, unlabeled
examples DU , model order k, initial
labeling matrix Y 0

DL+DU
;

Output: the labeling matrix YDU
on DU ;

1 If k < kXL
then

YDU
=NULL;

2 Else if k = kXL
then

Run plain label propagation algorithm
on DU with YDU

as output;
3 Else then
3.1 Estimate the size of tagged data set

of new classes;
3.2 Generate tagged examples from DU

for (kXL
+ 1)-th to k-th new classes;

3.3 Run plain label propagation algorithm
on DU with augmented tagged dataset
as labeled data;

3.4 YDU
is the output from plain label

propagation algorithm;
End if

4 Return YDU
;

Let XL+U = {xi}
n
i=1 be a set of contexts of

occurrences of an ambiguous word w, where xi

represents the context of the i-th occurrence, and n
is the total number of this word’s occurrences. Let
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SL = {sj}
c
j=1 denote the sense tag set of w in XL,

where XL denotes the first l examples xg(1 ≤ g ≤
l) that are labeled as yg (yg ∈ SL). Let XU denote
other u (l + u = n) examples xh(l + 1 ≤ h ≤ n)
that are unlabeled.

Let Y 0
XL+U

∈ N |XL+U |×|SL| represent initial
soft labels attached to tagged instances, where
Y 0

XL+U ,ij = 1 if yi is sj and 0 otherwise. Let Y 0
XL

be the top l rows of Y 0
XL+U

and Y 0
XU

be the remain-
ing u rows. Y 0

XL
is consistent with the labeling in

labeled data, and the initialization of Y 0
XU

can be
arbitrary.

Let k denote the possible value of the number
of senses in mixed data XL+U , and kXL

be the
number of senses in initial tagged data XL. Note
that kXL

= |SL|, and k ≥ kXL
.

The classification algorithm in the order identi-
fication process should be able to accept labeled
data DL

5, unlabeled data DU
6 and model order k

as input, and assign a class label or a cluster index
to each instance in DU as output. Previous super-
vised or semi-supervised algorithms (e.g. SVM,
label propagation algorithm (Zhu and Ghahra-
mani, 2002)) cannot classify the examples in DU

into k groups if k > kXL
. The semi-supervised k-

means clustering algorithm (Wagstaff et al., 2001)
may be used to perform clustering analysis on
mixed data, but its efficiency is a problem for clus-
tering analysis on a very large dataset since multi-
ple restarts are usually required to avoid local op-
tima and multiple iterations will be run in each
clustering process for optimizing a clustering so-
lution.

In this work, we propose an alternative method,
an extended label propagation algorithm (ELP),
which can classify the examples in DU into k
groups. If the value of k is equal to kXL

, then
ELP is identical with the plain label propagation
algorithm (LP) (Zhu and Ghahramani, 2002). Oth-
erwise, if the value of k is greater than kXL

, we
perform classification by the following steps:

(1) estimate the dataset size of each new class as
sizenew class by identifying the examples of new
classes using the “Spy” technique 7 and assuming

5DL may be the dataset XL or a subset sampled from XL.
6DU may be the dataset XU or a subset sampled from

XU .
7The “Spy” technique was proposed in (Liu et al., 2003).

Our re-implementation of this technique consists of three
steps: (1) sample a small subset Ds

L with the size 15%×|DL|
from DL; (2) train a classifier with tagged data DL − Ds

L;
(3) classify DU and Ds

L, and then select some examples from
DU as the dataset of new classes, which have the classifica-

that new classes are equally distributed;
(2) D

′

L = DL, D
′

U = DU ;
(3) remove tagged examples of the m-th new

class (kXL
+ 1 ≤ m ≤ k) from D

′

L
8 and train a

classifier on this labeled dataset without the m-th
class;

(4) the classifier is then used to classify the ex-
amples in D

′

U ;
(5) the least confidently unlabeled point

xclass m ∈ D
′

U , together with its label m, is added
to the labeled data D

′

L = D
′

L + xclass m, and
D

′

U = D
′

U − xclass m;
(6) steps (3) to (5) are repeated for each new

class till the augmented tagged data set is large
enough (here we try to select sizenew class/4 ex-
amples with their sense tags as tagged data for
each new class);

(7) use plain LP algorithm to classify remaining
unlabeled data D

′

U with D
′

L as labeled data.
Table 1 shows this extended label propagation

algorithm.
Next we will provide the details of the plain la-

bel propagation algorithm.

Define Wij = exp(−
d2

ij

σ2 ) if i 6= j and Wii = 0
(1 ≤ i, j ≤ |DL + DU |), where dij is the distance
(e.g., Euclidean distance) between the example xi

and xj , and σ is used to control the weight Wij .
Define |DL + DU | × |DL + DU | probability

transition matrix Tij = P (j → i) =
Wij∑n

k=1
Wkj

,

where Tij is the probability to jump from example
xj to example xi.

Compute the row-normalized matrix T by
T ij = Tij/

∑n
k=1 Tik.

The classification solution is obtained by
YDU

= (I − T uu)−1T ulY
0
DL

. I is |DU | × |DU |

identity matrix. T uu and T ul are acquired by split-
ting matrix T after the |DL|-th row and the |DL|-th
column into 4 sub-matrices.

2.2 Model Order Identification Procedure
For achieving the model order identification (or
sense number estimation) ability, we use a clus-
ter validation based criterion (Levine and Domany,
2001) to infer the optimal number of senses of w
in XL+U .

tion confidence less than the average of that in Ds
L. Classifi-

cation confidence of the example xi is defined as the absolute
value of the difference between two maximum values from
the i-th row in labeling matrix.

8Initially there are no tagged examples for the m-th class
in D

′

L. Therefore we do not need to remove tagged examples
for this new class, and then directly train a classifier with D

′

L.
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Table 2: Model order evaluation algorithm.
Function: CV(XL+U , k, q, Y 0

XL+U
)

Input: data set XL+U , model order k,
and sampling frequency q;
Output: the score of the merit of k;

1 Run the extended label propagation
algorithm with XL, XU , k and Y 0

XL+U
;

2 Construct connectivity matrix Ck based
on above classification solution on XU ;

3 Use a random predictor ρk to assign
uniformly drawn labels to each vector
in XU ;

4 Construct connectivity matrix Cρk
using

above classification solution on XU ;
5 For µ = 1 to q do
5.1 Randomly sample a subset Xµ

L+U with
the size α|XL+U | from XL+U , 0 < α < 1;

5.2 Run the extended label propagation
algorithm with Xµ

L, Xµ
U , k and Y 0µ;

5.3 Construct connectivity matrix Cµ
k using

above classification solution on Xµ
U ;

5.4 Use ρk to assign uniformly drawn labels
to each vector in Xµ

U ;
5.5 Construct connectivity matrix Cµ

ρk
using

above classification solution on Xµ
U ;

Endfor
6 Evaluate the merit of k using following

formula:
Mk = 1

q

∑
µ(M(Cµ

k , Ck) − M(Cµ
ρk

, Cρk
)),

where M(Cµ, C) is given by equation (2);
7 Return Mk;

Then this model order identification procedure
can be formulated as:

k̂XL+U
= argmaxKmin≤k≤Kmax

{CV (XL+U , k, q, Y
0

XL+U
)}.

(1)

k̂XL+U
is the estimated sense number in XL+U ,

Kmin (or Kmax) is the minimum (or maximum)
value of sense number, and k is the possible value
of sense number in XL+U . Note that k ≥ kXL

.
Then we set Kmin = kXL

. Kmax may be set as a
value greater than the possible ground-truth value.
CV is a cluster validation based evaluation func-
tion. Table 2 shows the details of this function.
We set q, the resampling frequency for estimation
of stability score, as 20. α is set as 0.90. The ran-
dom predictor assigns uniformly distributed class
labels to each instance in a given dataset. We
run this CV procedure for each value of k. The
value of k that maximizes this function will be se-

lected as the estimation of sense number. At the
same time, we can obtain a partition of XL+U with
k̂XL+U

groups.
The function M(Cµ, C) in Table 2 is given by

(Levine and Domany, 2001):

M(Cµ
, C) =

∑
i,j

1{Cµ
i,j = Ci,j = 1, xi, xj ∈ X

µ

U}∑
i,j

1{Ci,j = 1, xi, xj ∈ X
µ

U}
,

(2)

where Xµ
U is the untagged data in Xµ

L+U , Xµ
L+U

is a subset with the size α|XL+U | (0 < α < 1)
sampled from XL+U , C or Cµ is |XU | × |XU | or
|Xµ

U | × |Xµ
U | connectivity matrix based on classi-

fication solutions computed on XU or Xµ
U respec-

tively. The connectivity matrix C is defined as:
Ci,j = 1 if xi and xj belong to the same cluster,
otherwise Ci,j = 0. Cµ is calculated in the same
way.

M(Cµ, C) measures the proportion of example
pairs in each group computed on XU that are also
assigned into the same group by the classification
solution on Xµ

U . Clearly, 0 ≤ M ≤ 1. Intu-
itively, if the value of k is identical with the true
value of sense number, then classification results
on the different subsets generated by sampling
should be similar with that on the full dataset. In
the other words, the classification solution with the
true model order as parameter is robust against re-
sampling, which gives rise to a local optimum of
M(Cµ, C).

In this algorithm, we normalize M(Cµ
k , Ck) by

the equation in step 6 of Table 2, which makes
our objective function different from the figure of
merit (equation ( 2)) proposed in (Levine and Do-
many, 2001). The reason to normalize M(Cµ

k , Ck)
is that M(Cµ

k , Ck) tends to decrease when increas-
ing the value of k (Lange et al., 2002). Therefore
for avoiding the bias that the smaller value of k
is to be selected as the model order, we use the
cluster validity of a random predictor to normalize
M(Cµ

k , Ck).
If k̂XL+U

is equal to kXL
, then there is no new

sense in XU . Otherwise (k̂XL+U
> kXL

) new
senses of w may be represented by the groups in
which there is no instance from XL.

3 Experiments and Results

3.1 Experiment Design

We evaluated the ELP based model order iden-
tification algorithm on the data in English lexi-
cal sample task of SENSEVAL-3 (including all
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Table 3: Description of The percentage of official
training data used as tagged data when instances
with different sense sets are removed from official
training data.

The percentage of official
training data used as tagged data

Ssubset = {s1} 42.8%
Ssubset = {s2} 76.7%
Ssubset = {s3} 89.1%

Ssubset = {s1, s2} 19.6%
Ssubset = {s1, s3} 32.0%
Ssubset = {s2, s3} 65.9%

the 57 English words ) 9, and further empirically
compared it with other state of the art classifi-
cation methods, including SVM 10 (the state of
the art method for supervised word sense disam-
biguation (Mihalcea et al., 2004)), a one-class par-
tially supervised classification algorithm (Liu et
al., 2003) 11, and a semi-supervised k-means clus-
tering based model order identification algorithm.

The data for English lexical samples task in
SENSEVAL-3 consists of 7860 examples as offi-
cial training data, and 3944 examples as official
test data for 57 English words. The number of
senses of each English word varies from 3 to 11.

We evaluated these four algorithms with differ-
ent sizes of incomplete tagged data. Given offi-
cial training data of the word w, we constructed
incomplete tagged data XL by removing the all
the tagged instances from official training data that
have sense tags from Ssubset, where Ssubset is a
subset of the ground-truth sense set S for w, and S
consists of the sense tags in official training set for
w. The removed training data and official test data
of w were used as XU . Note that SL = S−Ssubset.
Then we ran these four algorithm for each target
word w with XL as tagged data and XU as un-
tagged data, and evaluated their performance us-
ing the accuracy on official test data of all the 57
words. We conducted six experiments for each tar-
get word w by setting Ssubset as {s1}, {s2}, {s3},
{s1, s2}, {s1, s3}, or {s2, s3}, where si is the i-th
most frequent sense of w. Ssubset cannot be set as
{s4} since some words have only three senses. Ta-
ble 3 lists the percentage of official training data
used as tagged data (the number of examples in in-

9Available at http://www.senseval.org/senseval3
10we used a linear SV M light, available at

http://svmlight.joachims.org/.
11Available at http://www.cs.uic.edu/∼liub/LPU/LPU-

download.html

complete tagged data divided by the number of ex-
amples in official training data) when we removed
the instances with sense tags from Ssubset for all
the 57 words. If Ssubset = {s3}, then most of
sense tagged examples are still included in tagged
data. If Ssubset = {s1, s2}, then there are very few
tagged examples in tagged data. If no instances are
removed from official training data, then the value
of percentage is 100%.

Given an incomplete tagged corpus for a target
word, SVM does not have the ability to find the
new senses from untagged corpus. Therefore it la-
bels all the instances in the untagged corpus with
sense tags from SL.

Given a set of positive examples for a class and
a set of unlabeled examples, the one-class partially
supervised classification algorithm, LPU (Learn-
ing from Positive and Unlabeled examples) (Liu
et al., 2003), learns a classifier in four steps:

Step 1: Identify a small set of reliable negative
examples from unlabeled examples by the use of a
classifier.

Step 2: Build a classifier using positive ex-
amples and automatically selected negative exam-
ples.

Step 3: Iteratively run previous two steps until
no unlabeled examples are classified as negative
ones or the unlabeled set is null.

Step 4: Select a good classifier from the set of
classifiers constructed above.

For comparison, LPU 12 was run to perform
classification on XU for each class in XL. The
label of each instance in XU was determined by
maximizing the classification score from LPU out-
put for each class. If the maximum score of an
instance is negative, then this instance will be la-
beled as a new class. Note that LPU classifies
XL+U into kXL

+ 1 groups in most of cases.
The clustering based partially supervised sense

disambiguation algorithm was implemented by re-
placing ELP with a semi-supervised k-means clus-
tering algorithm (Wagstaff et al., 2001) in the
model order identification procedure. The label
information in labeled data was used to guide the
semi-supervised clustering on XL+U . Firstly, the
labeled data may be used to determine initial clus-
ter centroids. If the cluster number is greater

12The three parameters in LPU were set as follows: “-s1
spy -s2 svm -c 1”. It means that we used the spy technique for
step 1 in LPU, the SVM algorithm for step 2, and selected the
first or the last classifier as the final classifier. It is identical
with the algorithm “Spy+SVM IS” in Liu et al. (2003).
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than kXL
, the initial centroids of clusters for new

classes will be assigned as randomly selected in-
stances. Secondly, in the clustering process, the
instances with the same class label will stay in
the same cluster, while the instances with different
class labels will belong to different clusters. For
better clustering solution, this clustering process
will be restarted three times. Clustering process
will be terminated when clustering solution con-
verges or the number of iteration steps is more than
30. Kmin = kXL

= |SL|, Kmax = Kmin + m. m
is set as 4.

We used Jensen-Shannon (JS) divergence (Lin,
1991) as distance measure for semi-supervised
clustering and ELP, since plain LP with JS diver-
gence achieves better performance than that with
cosine similarity on SENSEVAL-3 data (Niu et al.,
2005).

For the LP process in ELP algorithm, we con-
structed connected graphs as follows: two in-
stances u, v will be connected by an edge if u is
among v’s 10 nearest neighbors, or if v is among
u’s 10 nearest neighbors as measured by cosine or
JS distance measure (following (Zhu and Ghahra-
mani, 2002)).

We used three types of features to capture the
information in all the contextual sentences of tar-
get words in SENSEVAL-3 data for all the four
algorithms: part-of-speech of neighboring words
with position information, words in topical con-
text without position information (after removing
stop words), and local collocations (as same as the
feature set used in (Lee and Ng, 2002) except that
we did not use syntactic relations). We removed
the features with occurrence frequency (counted
in both training set and test set) less than 3 times.

If the estimated sense number is more than the
sense number in the initial tagged corpus XL, then
the results from order identification based meth-
ods will consist of the instances from clusters of
unknown classes. When assessing the agreement
between these classification results and the known
results on official test set, we will encounter the
problem that there is no sense tag for each instance
in unknown classes. Slonim and Tishby (2000)
proposed to assign documents in each cluster with
the most dominant class label in that cluster, and
then conducted evaluation on these labeled docu-
ments. Here we will follow their method for as-
signing sense tags to unknown classes from LPU,
clustering based order identification process, and

ELP based order identification process. We as-
signed the instances from unknown classes with
the dominant sense tag in that cluster. The result
from LPU always includes only one cluster of the
unknown class. We also assigned the instances
from the unknown class with the dominant sense
tag in that cluster. When all instances have their
sense tags, we evaluated the their results using the
accuracy on official test set.

3.2 Results on Sense Disambiguation

Table 4 summarizes the accuracy of SVM, LPU,
the semi-supervised k-means clustering algorithm
with correct sense number |S| or estimated sense
number k̂XL+U

as input, and the ELP algorithm
with correct sense number |S| or estimated sense
number k̂XL+U

as input using various incomplete
tagged data. The last row in Table 4 lists the av-
erage accuracy of each algorithm over the six ex-
perimental settings. Using |S| as input means that
we do not perform order identification procedure,
while using k̂XL+U

as input is to perform order
identification and obtain the classification results
on XU at the same time.

We can see that ELP based method outperforms
clustering based method in terms of average accu-
racy under the same experiment setting, and these
two methods outperforms SVM and LPU. More-
over, using the correct sense number as input helps
to improve the overall performance of both clus-
tering based method and ELP based method.

Comparing the performance of the same sys-
tem with different sizes of tagged data (from the
first experiment to the third experiment, and from
the fourth experiment to the sixth experiment), we
can see that the performance was improved when
given more labeled data. Furthermore, ELP based
method outperforms other methods in terms of ac-
curacy when rare senses (e.g. s3) are missing in
the tagged data. It seems that ELP based method
has the ability to find rare senses with the use of
tagged and untagged corpora.

LPU algorithm can deal with only one-class
classification problem. Therefore the labeled data
of other classes cannot be used when determining
the positive labeled data for current class. ELP
can use the labeled data of all the known classes to
determine the seeds of unknown classes. It may
explain why LPU’s performance is worse than
ELP based sense disambiguation although LPU
can correctly estimate the sense number in XL+U
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Table 4: This table summarizes the accuracy of SVM, LPU, the semi-supervised k-means clustering al-
gorithm with correct sense number |S| or estimated sense number k̂XL+U

as input, and the ELP algorithm
with correct sense number |S| or estimated sense number k̂XL+U

as input on the official test data of ELS
task in SENSEVAL-3 when given various incomplete tagged corpora.

Clustering algorithm ELP algorithm Clustering algorithm ELP algorithm
SVM LPU with |S| as input with |S| as input with k̂XL+U

as input with k̂XL+U
as input

Ssubset =
{s1} 30.6% 22.3% 43.9% 47.8% 40.0% 38.7%

Ssubset =
{s2} 59.7% 54.6% 44.0% 62.4% 48.5% 62.6%

Ssubset =
{s3} 67.0% 53.4% 48.7% 67.2% 52.4% 69.1%

Ssubset =
{s1, s2} 14.6% 13.1% 44.4% 40.2% 35.6% 33.0%

Ssubset =
{s1, s3} 25.7% 21.1% 48.5% 37.9% 39.8% 31.0%

Ssubset =
{s2, s3} 56.2% 53.1% 47.3% 59.4% 46.6% 58.7%

Average accuracy 42.3% 36.3% 46.1% 52.5% 43.8% 48.9%

Table 5: These two tables provide the mean and
standard deviation of absolute values of the differ-
ence between ground-truth results |S| and sense
numbers estimated by clustering or ELP based or-
der identification procedure respectively.

Clustering based method ELP based method
Ssubset =
{s1} 1.3±1.1 2.2±1.1

Ssubset =
{s2} 2.4±0.9 2.4±0.9

Ssubset =
{s3} 2.6±0.7 2.6±0.7

Ssubset =
{s1, s2} 1.2±0.6 1.6±0.5

Ssubset =
{s1, s3} 1.4±0.6 1.8±0.4

Ssubset =
{s2, s3} 1.8±0.5 1.8±0.5

when only one sense is missing in XL.
When very few labeled examples are avail-

able, the noise in labeled data makes it difficult
to learn the classification score (each entry in
YDU

). Therefore using the classification confi-
dence criterion may lead to poor performance of
seed selection for unknown classes if the classifi-
cation score is not accurate. It may explain why
ELP based method does not outperform cluster-
ing based method with small labeled data (e.g.,
Ssubset = {s1}).

3.3 Results on Sense Number Estimation

Table 5 provides the mean and standard devia-
tion of absolute difference values between ground-

truth results |S| and sense numbers estimated by
clustering or ELP based order identification pro-
cedures respectively. For example, if the ground
truth sense number of the word w is kw, and the es-
timated value is k̂w, then the absolute value of the
difference between these two values is |kw − k̂w|.
Therefore we can have this value for each word.
Then we calculated the mean and deviation on this
array of absolute values. LPU does not have the
order identification capability since it always as-
sumes that there is at least one new class in un-
labeled data, and does not further differentiate the
instances from these new classes. Therefore we do
not provide the order identification results of LPU.

From the results in Table 5, we can see that esti-
mated sense numbers are closer to ground truth re-
sults when given less labeled data for clustering or
ELP based methods. Moreover, clustering based
method performs better than ELP based method in
terms of order identification when given less la-
beled data (e.g., Ssubset = {s1}). It seems that
ELP is not robust to the noise in small labeled data,
compared with the semi-supervised k-means clus-
tering algorithm.

4 Related Work

The work closest to ours is partially supervised
classification or building classifiers using positive
examples and unlabeled examples, which has been
studied in machine learning community (Denis et
al., 2002; Liu et al., 2003; Manevitz and Yousef,
2001; Yu et al., 2002). However, they cannot
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group negative examples into meaningful clusters.
In contrast, our algorithm can find the occurrence
of negative examples and further group these neg-
ative examples into a “natural” number of clusters.
Semi-supervised clustering (Wagstaff et al., 2001)
may be used to perform classification by the use
of labeled and unlabeled examples, but it encoun-
ters the same problem of partially supervised clas-
sification that model order cannot be automatically
estimated.

Levine and Domany (2001) and Lange et al.
(2002) proposed cluster validation based criteria
for cluster number estimation. However, they
showed the application of the cluster validation
method only for unsupervised learning. Our work
can be considered as an extension of their methods
in the setting of partially supervised learning.

In natural language processing community, the
work that is closely related to ours is word sense
discrimination which can induce senses by group-
ing occurrences of a word into clusters (Schütze,
1998). If it is considered as unsupervised meth-
ods to solve sense disambiguation problem, then
our method employs partially supervised learning
technique to deal with sense disambiguation prob-
lem by use of tagged and untagged texts.

5 Conclusions

In this paper, we present an order identification
based partially supervised classification algorithm
and investigate its application to partially super-
vised word sense disambiguation problem. Exper-
imental results on SENSEVAL-3 data indicate that
our ELP based model order identification algo-
rithm achieves better performance than other state
of the art classification algorithms, e.g., SVM,
a one-class partially supervised algorithm (LPU),
and a semi-supervised k-means clustering based
model order identification algorithm.
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Abstract 

User-supplied reviews are widely and 
increasingly used to enhance e-
commerce and other websites. Because 
reviews can be numerous and varying in 
quality, it is important to assess how 
helpful each review is. While review 
helpfulness is currently assessed manu-
ally, in this paper we consider the task 
of automatically assessing it. Experi-
ments using SVM regression on a vari-
ety of features over Amazon.com 
product reviews show promising results, 
with rank correlations of up to 0.66. We 
found that the most useful features in-
clude the length of the review, its uni-
grams, and its product rating. 

1 Introduction 

Unbiased user-supplied reviews are solicited 
ubiquitously by online retailers like Ama-
zon.com, Overstock.com, Apple.com and Epin-
ions.com, movie sites like imdb.com, traveling 
sites like citysearch.com, open source software 
distributors like cpanratings.perl.org, and count-
less others. Because reviews can be numerous 
and varying in quality, it is important to rank 
them to enhance customer experience. 

In contrast with ranking search results, assess-
ing relevance when ranking reviews is of little 
importance because reviews are directly associ-
ated with the relevant product or service. Instead, 
a key challenge when ranking reviews is to de-
termine which reviews the customers will find 
helpful. 

Most websites currently rank reviews by their 
recency or product rating (e.g., number of stars 
in Amazon.com reviews). Recently, more sophis-
ticated ranking schemes measure reviews by their 

helpfulness, which is typically estimated by hav-
ing users manually assess it. For example, on 
Amazon.com, an interface allows customers to 
vote whether a particular review is helpful or not. 
Unfortunately, newly written reviews and re-
views with few votes cannot be ranked as several 
assessments are required in order to properly es-
timate helpfulness. For example, for all MP3 
player products on Amazon.com, 38% of the 
20,919 reviews received three or fewer helpful-
ness votes. Another problem is that low-traffic 
items may never gather enough votes. Among the 
MP3 player reviews that were authored at least 
three months ago on Amazon.com, still only 31% 
had three or fewer helpfulness votes. 

It would be useful to assess review helpfulness 
automatically, as soon as the review is written. 
This would accelerate determining a review’s 
ranking and allow a website to provide rapid 
feedback to review authors. 

In this paper, we investigate the task of auto-
matically predicting review helpfulness using a 
machine learning approach. Our main contribu-
tions are: 

• A system for automatically ranking reviews 
according to helpfulness; using state of the art 
SVM regression, we empirically evaluate our 
system on a real world dataset collected from 
Amazon.com on the task of reconstructing the 
helpfulness ranking; and 

• An analysis of different classes of features 
most important to capture review helpful-
ness; including structural (e.g., html tags, 
punctuation, review length), lexical (e.g., n-
grams), syntactic (e.g., percentage of verbs and 
nouns), semantic (e.g., product feature men-
tions), and meta-data (e.g., star rating). 

2 Relevant Work 

The task of automatically assessing product re-
view helpfulness is related to these broader areas 
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of research: automatic analysis of product re-
views, opinion and sentiment analysis, and text 
classification. 

In the thriving area of research on automatic 
analysis and processing of product reviews (Hu 
and Liu 2004; Turney 2002; Pang and Lee 2005), 
little attention has been paid to the important task 
studied here – assessing review helpfulness. Pang 
and Lee (2005) have studied prediction of prod-
uct ratings, which may be particularly relevant 
due to the correlation we find between product 
rating and the helpfulness of the review (dis-
cussed in Section 5). However, a user’s overall 
rating for the product is often already available. 
Helpfulness, on the other hand, is valuable to 
assess because it is not explicitly known in cur-
rent approaches until many users vote on the 
helpfulness of a review.  

In opinion and sentiment analysis, the focus is 
on distinguishing between statements of fact vs. 
opinion, and on detecting the polarity of senti-
ments being expressed. Many researchers have 
worked in various facets of opinion analysis. 
Pang et al. (2002) and Turney (2002) classified 
sentiment polarity of reviews at the document 
level.  Wiebe et al. (1999) classified sentence 
level subjectivity using syntactic classes such as 
adjectives, pronouns and modal verbs as features.  
Riloff and Wiebe (2003) extracted subjective 
expressions from sentences using a bootstrapping 
pattern learning process. Yu and Hatzivassi-
loglou (2003) identified the polarity of opinion 
sentences using semantically oriented words. 
These techniques were applied and examined in 
different domains, such as customer reviews (Hu 
and Liu 2004) and news articles (TREC novelty 
track 2003 and 2004).  

In text classification, systems typically use 
bag-of-words models, although there is some 
evidence of benefits when introducing relevant 
semantic knowledge (Gabrilovich and Mark-
ovitch, 2005). In this paper, we explore the use of 
some semantic features for review helpfulness 
ranking. Another potential relevant classification 
task is academic and commercial efforts on de-
tecting email spam messages1, which aim to cap-
ture a much broader notion of helpfulness. For an 
SVM-based approach, see (Drucker et al  1999).  

Finally, a related area is work on automatic es-
say scoring, which seeks to rate the quality of an 
essay (Attali and Burstein 2006; Burstein et al. 
2004). The task is important for reducing the 
human effort required in scoring large numbers 

                                                      
1 See http://www.ceas.cc/, http://spamconference.org/  

of student essays regularly written for standard 
tests such as the GRE. The exact scoring ap-
proaches developed in commercial systems are 
often not disclosed. However, more recent work 
on one of the major systems, e-rater 2.0, has fo-
cused on systematizing and simplifying the set of 
features used (Attali and Burstein 2006). Our 
choice of features to test was partially influenced 
by the features discussed by Attali and Burstein. 
At the same time, due to differences in the tasks, 
we did not use features aimed at assessing essay 
structure such as discourse structure analysis fea-
tures. Our observations suggest that even helpful 
reviews vary widely in their discourse structure. 
We present the features which we have used be-
low, in Section 3.2. 

3 Modeling Review Helpfulness 

In this section, we formally define the learning 
task and we investigate several features for as-
sessing review helpfulness. 

3.1 Task Definition 

Formally, given a set of reviews R for a particu-
lar product, our task is to rank the reviews ac-
cording to their helpfulness. We define a review 
helpfulness function, h, as: 

 ( ) ( )
( ) ( )rratingrrating

rrating
Rrh

−+

+

+
=∈  (1) 

where rating+(r) is the number of people that will 
find a review helpful and rating-(r) is the number 
of people that will find the review unhelpful. For 
evaluation, we resort to estimates of h from man-
ual review assessments on websites like Ama-
zon.com, as described in Section 4. 

3.2 Features 

One aim of this paper is to investigate how well 
different classes of features capture the helpful-
ness of a review. We experimented with various 
features organized in five classes: Structural, 
Lexical, Syntactic, Semantic, and Meta-data. Be-
low we describe each feature class in turn. 

Structural Features 

Structural features are observations of the docu-
ment structure and formatting. Properties such as 
review length and average sentence length are 
hypothesized to relate structural complexity to 
helpfulness. Also, HTML formatting tags could 
help in making a review more readable, and con-
sequently more helpful. We experimented with 
the following features: 
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• Length (LEN): The total number of tokens in a 
syntactic analysis2 of the review. 

• Sentential (SEN): Observations of the sen-
tences, including the number of sentences, the 
average sentence length, the percentage of 
question sentences, and the number of excla-
mation marks. 

• HTML (HTM): Two features for the number of 
bold tags <b> and line breaks <br>. 

Lexical Features 

Lexical features capture the words observed in 
the reviews. We experimented with two sets of 
features: 

• Unigram (UGR): The tf-idf statistic of each 
word occurring in a review. 

• Bigram (BGR): The tf-idf statistic of each bi-
gram occurring in a review. 

For both unigrams and bigrams, we used lemma-
tized words from a syntactic analysis of the re-
views and computed the tf-idf statistic (Salton 
and McGill 1983) using the following formula: 

 ( )
N

idftfidftf log×
=  

where N is the number of tokens in the review. 

Syntactic Features 

Syntactic features aim to capture the linguistic 
properties of the review. We grouped them into 
the following feature set: 

• Syntax (SYN): Includes the percentage of 
parsed tokens that are open-class (i.e., nouns, 
verbs, adjectives and adverbs), the percentage 
of tokens that are nouns, the percentage of to-
kens that are verbs, the percentage of tokens 
that are verbs conjugated in the first person, 
and the percentage of tokens that are adjectives 
or adverbs. 

Semantic Features 

Most online reviews are fairly short; their spar-
sity suggests that bigram features will not per-
form well (which is supported by our 
experiments described in Section 5.3). Although 
semantic features have rarely been effective in 
many text classification problems (Moschitti and 
Basili 2004), there is reason here to hypothesize 
that a specialized vocabulary of important words 
might help with the sparsity. We hypothesized 
                                                      

2  Reviews are analyzed using the Minipar dependency 
parser (Lin 1994). 

that good reviews will often contain: i) refer-
ences to the features of a product (e.g., the LCD 
and resolution of a digital camera), and ii) men-
tions of sentiment words (i.e., words that express 
an opinion such as “great screen”). Below we 
describe two families of features that capture 
these semantic observations within the reviews: 

• Product-Feature (PRF): The features of prod-
ucts that occur in the review, e.g., capacity of 
MP3 players and zoom of a digital camera. 
This feature counts the number of lexical 
matches that occur in the review for each prod-
uct feature. There is no trivial way of obtaining 
a list of all the features of a product. In Section 
5.1 we describe a method for automatically ex-
tracting product features from Pro/Con listings 
from Epinions.com. Our assumption is that 
pro/cons are the features that are important for 
customers (and hence should be part of a help-
ful review). 

• General-Inquirer (GIW): Positive and negative 
sentiment words describing products or prod-
uct features (e.g., “amazing sound quality” and 
“weak zoom”). The intuition is that reviews 
that analyze product features are more helpful 
than those that do not. We try to capture this 
analysis by extracting sentiment words using 
the publicly available list of positive and nega-
tive sentiment words from the General Inquirer 
Dictionaries3. 

Meta-Data Features 

Unlike the previous four feature classes, meta-
data features capture observations which are in-
dependent of the text (i.e., unrelated with linguis-
tic features). We consider the following feature: 

• Stars (STR): Most websites require reviewers 
to include an overall rating for the products 
that they review (e.g., star ratings in Ama-
zon.com). This feature set includes the rating 
score (STR1) as well as the absolute value of 
the difference between the rating score and the 
average rating score given by all reviewers 
(STR2). 

We differentiate meta-data features from seman-
tic features since they require external knowl-
edge that may not be available from certain 
review sites. Nowadays, however, most sites that 
collect user reviews also collect some form of 
product rating (e.g., Amazon.com, Over-
stock.com, and Apple.com). 
                                                      

3 http://www.wjh.harvard.edu/~inquirer/homecat.htm 
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4 Ranking System 

In this paper, we estimate the helpfulness func-
tion in Equation 1 using user ratings extracted 
from Amazon.com, where rating+(r) is the num-
ber of unique users that rated the review r as 
helpful and rating-(r) is the number of unique 
users that rated r as unhelpful. 

Reviews from Amazon.com form a gold stan-
dard labeled dataset of {review, h(review)} pairs 
that can be used to train a supervised machine 
learning algorithm. In this paper, we applied an 
SVM (Vapnik 1995) package on the features ex-
tracted from reviews to learn the function h. 

Two natural options for learning helpfulness 
according to Equation 1 are SVM Regression and 
SVM Ranking (Joachims 2002). Though learning 
to rank according to helpfulness requires only 
SVM Ranking, the helpfulness function provides 
non-uniform differences between ranks in the 
training set. Also, in practice, many products 
have only one review, which can serve as train-
ing data for SVM Regression but not SVM Rank-
ing. Furthermore, in large sites such as 
Amazon.com, when new reviews are written it is 
inefficient to re-rank all previously ranked re-
views. We therefore choose SVM Regression in 
this paper. We describe the exact implementation 
in Section 5.1. 

After the SVM is trained, for a given product 
and its set of reviews R, we rank the reviews of R 
in decreasing order of h(r), r ∈ R. 

Table 1 shows four sample reviews for the 
iPod Photo 20GB product from Amazon.com, 
their total number of helpful and unhelpful votes, 
as well as their rank according to the helpfulness 
score h from both the gold standard from Ama-
zon.com and using the SVM prediction of our 
best performing system described in Section 5.2. 

5 Experimental Results 

We empirically evaluate our review model and 
ranking system, described in Section 3 and Sec-
tion 4, by comparing the performance of various 
feature combinations on products mined from 
Amazon.com. Below, we describe our experi-
mental setup, present our results, and analyze 
system performance. 

5.1 Experimental Setup 

We describe below the datasets that we extracted 
from Amazon.com, the implementation of our 
SVM system, and the method we used for ex-
tracting features of reviews. 

Extraction and Preprocessing of Datasets 

We focused our experiments on two products 
from Amazon.com: MP3 Players and Digital 
Cameras. 

Using Amazon Web Services API, we col-
lected reviews associated with all products in the 
MP3 Players and Digital Cameras categories. 
For MP3 Players, we collected 821 products and 
33,016 reviews; for Digital Cameras, we col-
lected 1,104 products and 26,189 reviews. 

In most retailer websites like Amazon.com, 
duplicate reviews, which are quite frequent, skew 
statistics and can greatly affect a learning algo-
rithm. Looking for exact string matches between 
reviews is not a sufficient filter since authors of 
duplicated reviews often make small changes to 
the reviews to avoid detection. We built a simple 
filter that compares the distribution of word bi-
grams across each pair of reviews. A pair is 
deemed a duplicate if more than 80% of their 
bigrams match. 

Also, whole products can be duplicated. For 
different product versions, such as iPods that can 
come in black or white models, reviews on Ama-
zon.com are duplicated between them. We filter 

Table 1. Sample of 4 out of 43 reviews for the iPod Photo 20GB product from Ama-
zon.com along with their ratings as well as their helpfulness ranks (from both the gold 
standard from Amazon.com and the SVM prediction of our best performing system de-
scribed in Section 5.2). 

RANK(h) 
REVIEW TITLE HELPFUL 

VOTES 
UNHELPFUL 

VOTES GOLD 
STANDARD 

SVM 
PREDICTION 

“iPod Moves to All-color Line-up” 215 11 7 1 
“iPod: It's NOT Music to My Ears” 11 13 25 30 
“The best thing I ever bought” 22 32 26 27 
“VERY disappointing” 1 18 40 40 
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out complete products where each of its reviews 
is detected as a duplicate of another product (i.e., 
only one iPod version is retained). 

The filtering of duplicate products and dupli-
cate reviews discarded 85 products and 12,097 
reviews for MP3 Players and 38 products and 
3,692 reviews for Digital Cameras. 

In order to have accurate estimates for the 
helpfulness function in Equation 1, we filtered 
out any review that did not receive at least five 
user ratings (i.e., reviews where less than five 
users voted it as helpful or unhelpful are filtered 
out). This filtering was performed before dupli-
cate detection and discarded 45.7% of the MP3 
Players reviews and 32.7% of the Digital Cam-
eras reviews. 

Table 2 describes statistics for the final data-
sets after the filtering steps. 10% of products for 
both datasets were withheld as development cor-
pora and the remaining 90% were randomly 
sorted into 10 sets for 10-fold cross validation. 

SVM Regression 

For our regression model, we deployed the state 
of the art SVM regression tool SVMlight 
(Joachims 1999). We tested on the development 
sets various kernels including linear, polynomial 
(degrees 2, 3, and 4), and radial basis function 
(RBF). The best performing kernel was RBF and 
we report only these results in this paper (per-
formance was measured using Spearman’s corre-
lation coefficient, described in Section 5.2). 

We tuned the RBF kernel parameters C (the 
penalty parameter) and γ (the kernel width hy-
perparameter) performing full grid search over 
the 110 combinations of exponentially spaced 
parameter pairs (C,γ) following (Hsu et al. 2003). 

Feature Extraction 

To extract the features described in Section 3.2, 
we preprocessed each review using the Minipar 
dependency parser (Lin 1994). We used the 
parser tokenization, sentence breaker, and syn-
tactic categorizations to generate the Length, 

Sentential, Unigram, Bigram, and Syntax feature 
sets. 

In order to count the occurrences of product 
features for the Product-Feature set, we devel-
oped an automatic way of mining references to 
product features from Epinions.com. On this 
website, user-generated product reviews include 
explicit lists of pros and cons, describing the best 
and worst aspects of a product. For example, for 
MP3 players, we found the pro “belt clip” and 
the con “Useless FM tuner”. Our assumption is 
that the pro/con lists tend to contain references to 
the product features that are important to cus-
tomers, and hence their occurrence in a review 
may correlate with review helpfulness. We fil-
tered out all single-word entries which were in-
frequently seen (e.g., hold, ever). After splitting 
and filtering the pro/con lists, we were left with a 
total of 9,110 unique features for MP3 Players 
and 13,991 unique features for Digital Cameras. 

The Stars feature set was created directly from 
the star ratings given by each author of an Ama-
zon.com review. 

For each feature measurement f, we applied 
the following standard transformation: 
 ( )1ln +f  
and then scaled each feature between [0, 1] as 
suggested in (Hsu et al. 2003). 

We experimented with various combinations 
of feature sets. Our results tables use the abbre-
viations presented in Section 3.2. For brevity, we 
report the combinations which contributed to our 
best performing system and those that help assess 
the power of the different feature classes in cap-
turing helpfulness. 

5.2 Ranking Performance 

Evaluating the quality of a particular ranking is 
difficult since certain ranking intervals can be 
more important than others (e.g., top-10 versus 
bottom-10) We adopt the Spearman correlation 
coefficient ρ (Spearman 1904) since it is the 
most commonly used measure of correlation be-
tween two sets of ranked data points4. 

For each fold in our 10-fold cross-validation 
experiments, we trained our SVM system using 9 
folds. For the remaining test fold, we ranked each 
product’s reviews according to the SVM predic-
tion (described in Section 4) and computed the ρ 

                                                      
4 We used the version of Spearman’s correlation coeffi-
cient that allows for ties in rankings. See Siegel and Cas-
tellan (1988) for more on alternate rank statistics such as 
Kendall’s tau. 

Table 2. Overview of filtered datasets extracted 
from Amazon.com. 

 MP3 
PLAYERS 

DIGITAL 
CAMERAS 

Total Products 736 1066 
Total Reviews 11,374 14,467 
Average Reviews/Product 15.4 13.6 
Min/MaxReviews/Product 1 / 375 1 / 168 
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correlation between the ranking and the gold 
standard ranking from the test fold5. 

Although our task definition is to learn review 
rankings according to helpfulness, as an interme-
diate step the SVM system learns to predict the 
absolute helpfulness score for each review. To 
test the correlation of this score against the gold 
standard, we computed the standard Pearson cor-
relation coefficient. 

Results show that the highest performing fea-
ture combination consisted of the Length, the 
Unigram, and the Stars feature sets. Table 3 re-
ports the evaluation results for every combination 
of these features with 95% confidence bounds. 
Of the three features alone, neither was statisti-
cally more significant than the others. Examining 
each pair combination, only the combination of 
length with stars outperformed the others. Sur-
prisingly, adding unigram features to this combi-
nation had little effect for the MP3 Players. 

Given our list of features defined in Section 
3.2, helpfulness of reviews is best captured with 
a combination of the Length and Stars features. 
Training an RBF-kernel SVM regression model 
does not necessarily make clear the exact rela-
tionship between input and output variables. To 
investigate this relationship between length and 
helpfulness, we inspected their Pearson correla-
tion coefficient, which was 0.45. Users indeed 
tend to find short reviews less helpful than longer 
ones: out of the 5,247 reviews for MP3 Players 
that contained more than 1000 characters, the 
average gold standard helpfulness score was 
82%; the 204 reviews with fewer than 100 char-
acters had on average a score of 23%. The ex-
plicit product rating, such as Stars is also an 
                                                      

5 Recall that the gold standard is extracted directly from 
user helpfulness votes on Amazon.com (see Section 4). 

indicator of review helpfulness, with a Pearson 
correlation coefficient of 0.48. 

The low Pearson correlations of Table 3 com-
pared to the Spearman correlations suggest that 
we can learn the ranking without perfectly learn-
ing the function itself. To investigate this, we 
tested the ability of SVM regression to recover 
the target helpfulness score, given the score itself 
as the only feature. The Spearman correlation for 
this test was a perfect 1.0. Interestingly, the Pear-
son correlation was only 0.798, suggesting that 
the RBF kernel does learn the helpfulness rank-
ing without learning the function exactly. 

5.3 Results Analysis 

Table 3 shows only the feature combinations of 
our highest performing system. In Table 4, we 
report several other feature combinations to show 
why we selected certain features and what was 
the effect of our five feature classes presented in 
Section 3.2. 

In the first block of six feature combinations in 
Table 4, we show that the unigram features out-
perform the bigram features, which seem to be 
suffering from the data sparsity of the short re-
views. Also, unigram features seem to subsume 
the information carried in our semantic features 
Product-Feature (PRF) and General-Inquirer 
(GIW). Although both PRF and GIW perform 
well as standalone features, when combined with 
unigrams there is little performance difference 
(for MP3 Players we see a small but insignificant 
decrease in performance whereas for Digital 
Cameras we see a small but insignificant im-
provement). Recall that PRF and GIW are simply 
subsets of review words that are found to be 
product features or sentiment words. The learn-
ing algorithm seems to discover on its own which 

Table 3. Evaluation of the feature combinations that make up our best performing system 
(in bold), for ranking reviews of Amazon.com MP3 Players and Digital Cameras accord-
ing to helpfulness. 

MP3 PLAYERS DIGITAL CAMERAS 
FEATURE COMBINATIONS 

SPEARMAN† PEARSON† SPEARMAN† PEARSON† 

LEN 0.575 ± 0.037 0.391 ± 0.038 0.521 ± 0.029 0.357 ± 0.029 
UGR 0.593 ± 0.036 0.398 ± 0.038 0.499 ± 0.025 0.328 ± 0.029 
STR1 0.589 ± 0.034 0.326 ± 0.038 0.507 ± 0.029 0.266 ± 0.030 
UGR+STR1 0.644 ± 0.033 0.436 ± 0.038 0.490 ± 0.032 0.324 ± 0.032 
LEN+UGR 0.582 ± 0.036 0.401 ± 0.038 0.553 ± 0.028 0.394 ± 0.029 
LEN+STR1 0.652 ± 0.033 0.470 ± 0.038 0.577 ± 0.029 0.423 ± 0.031 
LEN+UGR+STR1 0.656 ± 0.033 0.476 ± 0.038 0.595 ± 0.028 0.442 ± 0.031 

LEN=Length; UGR=Unigram; STR=Stars 
†95% confidence bounds are calculated using 10-fold cross-validation. 
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words are most important in a review and does 
not use additional knowledge about the meaning 
of the words (at least not the semantics contained 
in PRF and GIW). 

We tested two different versions of the Stars 
feature: i) the number of star ratings, STR1; and 
ii) the difference between the star rating and the 
average rating of the review, STR2. The second 
block of feature combinations in Table 4 shows 
that neither is significantly better than the other 
so we chose STR1 for our best performing sys-
tem. 

Our experiments also revealed that our struc-
tural features Sentential and HTML, as well as 
our syntactic features, Syntax, did not show any 
significant improvement in system performance. 
In the last block of feature combinations in Table 
4, we report the performance of our best per-
forming features (Length, Unigram, and Stars) 
along with these other features. Though none of 
the features cause a performance deterioration, 
neither of them significantly improves perform-
ance. 

5.4 Discussion 

In this section, we discuss the broader implica-
tions and potential impacts of our work, and pos-
sible connections with other research directions. 

The usefulness of the Stars feature for deter-
mining review helpfulness suggests the need for 
developing automatic methods for assessing pro-
duct ratings, e.g., (Pang and Lee 2005).  

Our findings focus on predictors of helpful-
ness of reviews of tangible consumer products 
(consumer electronics). Helpfulness is also solic-
ited and tracked for reviews of many other types 
of entities: restaurants (citysearch.com), films 
(imdb.com), reviews of open-source software 
modules (cpanratings.perl.org), and countless 
others. Our findings of the importance of Length, 
Unigrams, and Stars may provide the basis of 
comparison for assessing helpfulness of reviews 
of other entity types. 

Our work represents an initial step in assessing 
helpfulness. In the future, we plan to investigate 
other possible indicators of helpfulness such as a 
reviewer’s reputation, the use of comparatives 
(e.g., more and better than), and references to 
other products. 

Taken further, this work may have interesting 
connections to work on personalization, social 
networks, and recommender systems, for in-
stance by identifying the reviews that a particular 
user would find helpful.  

Our work on helpfulness of reviews also has 
potential applications to work on automatic gen-

Table 4. Performance evaluation of various feature combinations for ranking reviews of MP3 Players 
and Digital Cameras on Amazon.com according to helpfulness. The first six lines suggest that uni-
grams subsume the semantic features; the next two support the use of the raw counts of product ratings 
(stars) rather than the distance of this count from the average rating; the final six investigate the impor-
tance of auxiliary feature sets.  

MP3 PLAYERS DIGITAL CAMERAS 
FEATURE COMBINATIONS 

SPEARMAN† PEARSON† SPEARMAN† PEARSON† 

UGR 0.593 ± 0.036 0.398 ± 0.038 0.499 ± 0.025 0.328 ± 0.029 
BGR 0.499 ± 0.040 0.293 ± 0.038 0.434 ± 0.032 0.242 ± 0.029 
PRF 0.591± 0.037 0.400 ± 0.039 0.527 ± 0.030 0.316 ± 0.028 
GIW 0.571 ± 0.036 0.381 ± 0.038 0.524 ± 0.030 0.333 ± 0.028 
UGR+PRF 0.570 ± 0.037 0.375 ± 0.038 0.546 ± 0.029 0.348 ± 0.028 
UGR+GIW 0.554 ± 0.037 0.358 ± 0.038 0.568 ± 0.031 0.324 ± 0.029 
STR1 0.589 ± 0.034 0.326 ± 0.038 0.507 ± 0.029 0.266 ± 0.030 
STR2 0.556 ± 0.032 0.303 ± 0.038 0.504 ± 0.027 0.229 ± 0.027 
LEN+UGR+STR1 0.656 ± 0.033 0.476 ± 0.038 0.595 ± 0.028 0.442 ± 0.031 
LEN+UGR+STR1+SEN 0.653 ± 0.033 0.470 ± 0.038 0.599 ± 0.028 0.448 ± 0.030 
LEN+UGR+STR1+HTM 0.640 ± 0.035 0.459 ± 0.039 0.594 ± 0.028 0.442 ± 0.031 
LEN+UGR+STR1+SYN 0.645 ± 0.034 0.469 ± 0.039 0.595 ± 0.028 0.447 ± 0.030 
LEN+UGR+STR1+SEN+HTM+SYN 0.631 ± 0.035 0.453 ± 0.039 0.600 ± 0.028 0.452 ± 0.030 
LEN+UGR+STR1+SEN+HTM+SYN+PRF+GIW 0.601 ± 0.035 0.396 ± 0.038 0.604 ± 0.027 0.460 ± 0.030 

LEN=Length; SEN=Sentential; HTM=HTML; UGR=Unigram; BGR=Bigram; 
SYN=Syntax; PRF=Product-Feature; GIW=General-Inquirer; STR=Stars 

†95% confidence bounds are calculated using 10-fold cross-validation. 
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eration of review information, by providing a 
way to assess helpfulness of automatically gener-
ated reviews. Work on generation of reviews in-
cludes review summarization and extraction of 
useful reviews from blogs and other mixed texts. 

6 Conclusions 

Ranking reviews according to user helpfulness is 
an important problem for many online sites such 
as Amazon.com and Ebay.com. To date, most 
websites measure helpfulness by having users 
manually assess how helpful each review is to 
them. In this paper, we proposed an algorithm for 
automatically assessing helpfulness and ranking 
reviews according to it. Exploiting the multitude 
of user-rated reviews on Amazon.com, we 
trained an SVM regression system to learn a 
helpfulness function and then applied it to rank 
unlabeled reviews. Our best system achieved 
Spearman correlation coefficient scores of 0.656 
and 0.604 against a gold standard for MP3 play-
ers and digital cameras. 

We also performed a detailed analysis of dif-
ferent features to study the importance of several 
feature classes in capturing helpfulness. We 
found that the most useful features were the 
length of the review, its unigrams, and its product 
rating. Semantic features like mentions of prod-
uct features and sentiment words seemed to be 
subsumed by the simple unigram features. Struc-
tural features (other than length) and syntactic 
features had no significant impact. 

It is our hope through this work to shed some 
light onto what people find helpful in user-
supplied reviews and, by automatically ranking 
them, to ultimately enhance user experience. 
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Abstract

We present an approach for the joint ex-
traction of entities and relations in the con-
text of opinion recognition and analysis.
We identify two types of opinion-related
entities — expressions of opinions and
sources of opinions — along with the link-
ing relation that exists between them. In-
spired by Roth and Yih (2004), we employ
an integer linear programming approach
to solve the joint opinion recognition task,
and show that global, constraint-based in-
ference can significantly boost the perfor-
mance of both relation extraction and the
extraction of opinion-related entities. Per-
formance further improves when a seman-
tic role labeling system is incorporated.
The resulting system achieves F-measures
of 79 and 69 for entity and relation extrac-
tion, respectively, improving substantially
over prior results in the area.

1 Introduction

Information extraction tasks such as recognizing
entities and relations have long been considered
critical to many domain-specific NLP tasks (e.g.
Mooney and Bunescu (2005), Prager et al. (2000),
White et al. (2001)). Researchers have further
shown thatopinion-oriented information extrac-
tion can provide analogous benefits to a variety of
practical applications including product reputation
tracking (Morinaga et al., 2002), opinion-oriented
question answering (Stoyanov et al., 2005), and
opinion-oriented summarization (e.g. Cardie et
al. (2004), Liu et al. (2005)). Moreover, much
progress has been made in the area of opinion ex-
traction: it is possible to identify sources of opin-
ions (i.e. the opinion holders) (e.g. Choi et al.

(2005) and Kim and Hovy (2005b)), to determine
the polarity and strength of opinion expressions
(e.g. Wilson et al. (2005)), and to recognize propo-
sitional opinions and their sources (e.g. Bethard
et al. (2004)) with reasonable accuracy. To date,
however, there has been no effort to simultane-
ously identify arbitrary opinion expressions, their
sources, and the relations between them. Without
progress on thejoint extraction of opinion enti-
tiesand their relations, the capabilities of opinion-
based applications will remain limited.

Fortunately, research in machine learning has
produced methods for global inference and joint
classification that can help to address this defi-
ciency (e.g. Bunescu and Mooney (2004), Roth
and Yih (2004)). Moreover, it has been shown that
exploiting dependencies among entities and/or re-
lations via global inference not only solves the
joint extraction task, but often boosts performance
on the individual tasks when compared to clas-
sifiers that handle the tasks independently — for
semantic role labeling (e.g. Punyakanok et al.
(2004)), information extraction (e.g. Roth and Yih
(2004)), and sequence tagging (e.g. Sutton et al.
(2004)).

In this paper, we present a global inference ap-
proach (Roth and Yih, 2004) to the extraction
of opinion-related entities and relations. In par-
ticular, we aim to identify two types of entities
(i.e. spans of text): entities that express opin-
ions and entities that denote sources of opinions.
More specifically, we use the termopinion expres-
sion to denote all direct expressions of subjectiv-
ity including opinions, emotions, beliefs, senti-
ment, etc., as well as all speech expressions that
introduce subjective propositions; and use the term
sourceto denote the person or entity (e.g. a re-
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port) that holds the opinion.1 In addition, we
aim to identify the relations between opinion ex-
pression entities and source entities. That is, for
a given opinion expressionOi and source entity

Sj, we determine whether the relationLi,j
def
=

(Sj expressesOi) obtains, i.e. whetherSj is the
source of opinion expressionOi. We refer to this
particular relation as thelink relation in the rest
of the paper. Consider, for example, the following
sentences:

S1. [Bush](1) intends(1) to curb the increase in
harmful gas emissions and is counting on(1)

the good will(2) of [US industrialists](2) .

S2. Byquestioning(3) [the Imam](4)’s edict(4) [the
Islamic Republic of Iran](3) made [the people
of the world](5) understand(5)...

The underlined phrases above are opinion expres-
sions and phrases marked with square brackets are
source entities. The numeric superscripts on en-
tities indicate link relations: a source entity and
an opinion expression with the same number sat-
isfy the link relation. For instance, the source en-
tity “Bush” and the opinion expression“intends”
satisfy the link relation, and so do“Bush” and
“counting on.” Notice that a sentence may con-
tain more than one link relation, and link relations
are not one-to-one mappings between sources and
opinions. Also, the pair of entities in a link rela-
tion may not be the closest entities to each other, as
is the case in the second sentence, between“ques-
tioning” and“the Islamic Republic of Iran.”

We expect the extraction of opinion relations to
be critical for many opinion-oriented NLP appli-
cations. For instance, consider the following ques-
tion that might be given to a question-answering
system:

• What isthe Imam’s opinion towardthe Islamic
Republic of Iran?

Without in-depth opinion analysis, the question-
answering system might mistake example S2 as
relevant to the query, even though S2 exhibits the
opinion of the Islamic Republic of Iran toward
Imam, not the other way around.

Inspired by Roth and Yih (2004), we model
our task as global, constraint-based inference over
separately trained entity and relation classifiers.
In particular, we develop three base classifiers:
two sequence-tagging classifiers for the extraction

1See Wiebe et al. (2005) for additional details.

of opinion expressions and sources, and a binary
classifier to identify the link relation. The global
inference procedure is implemented via integer
linear programming (ILP) to produce an optimal
and coherent extraction of entities and relations.

Because many (60%) opinion-source relations
appear as predicate-argument relations, where the
predicate is a verb, we also hypothesize that se-
mantic role labeling (SRL) will be very useful for
our task. We present two baseline methods for
the joint opinion-source recognition task that use
a state-of-the-art SRL system (Punyakanok et al.,
2005), and describe two additional methods for in-
corporating SRL into our ILP-based system.

Our experiments show that the global inference
approach not only improves relation extraction
over the base classifier, but does the same for in-
dividual entity extractions. For source extraction
in particular, our system achieves an F-measure of
78.1, significantly outperforming previous results
in this area (Choi et al., 2005), which obtained an
F-measure of 69.4 on the same corpus. In addition,
we achieve an F-measure of 68.9 for link relation
identification and 82.0 for opinion expression ex-
traction; for the latter task, our system achieves
human-level performance.2

2 High-Level Approach and Related
Work

Our system operates in three phases.

Opinion and Source Entity Extraction We
begin by developing two separate token-level
sequence-tagging classifiers for opinion expres-
sion extraction and source extraction, using linear-
chain Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001). The sequence-tagging classi-
fiers are trained using only local syntactic and lex-
ical information to extract each type of entity with-
out knowledge of any nearby or neighboring enti-
ties or relations. We collectn-best sequences from
each sequence tagger in order to boost the recall of
the final system.

Link Relation Classification We also develop
a relation classifier that is trained and tested on
all pairs of opinion and source entities extracted
from the aforementionedn-best opinion expres-
sion and source sequences. The relation classifier
is modeled using Markov order-0 CRFs(Lafferty

2Wiebe et al. (2005) reports human annotation agreement
for opinion expression as 82.0 by F1 measure.
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et al., 2001), which are equivalent to maximum en-
tropy models. It is trained using only local syntac-
tic information potentially useful for connecting a
pair of entities, but has no knowledge of nearby or
neighboring extracted entities and link relations.

Integer Linear Programming Finally, we for-
mulate an integer linear programming problem for
each sentence using the results from the previous
two phases. In particular, we specify a number
of soft and hard constraints among relations and
entities that take into account the confidence val-
ues provided by the supporting entity and relation
classifiers, and that encode a number of heuristics
to ensure coherent output. Given these constraints,
global inference via ILP finds the optimal, coher-
ent set of opinion-source pairs by exploiting mu-
tual dependencies among the entities and relations.

While good performance in entity or relation
extraction can contribute to better performance of
the final system, this is not always the case. Pun-
yakanok et al. (2004) notes that, in general, it is
better to have high recall from the classifiers in-
cluded in the ILP formulation. For this reason, it is
not our goal to directly optimize the performance
of our opinion and source entity extraction models
or our relation classifier.

The rest of the paper is organized as follows.
Related work is outlined below. Section 3 de-
scribes the components of the first phase of our
system, the opinion and source extraction classi-
fiers. Section 4 describes the construction of the
link relation classifier for phase two. Section 5
describes the ILP formulation to perform global
inference over the results from the previous two
phases. Experimental results that compare our ILP
approach to a number of baselines are presented in
Section 6. Section 7 describes how SRL can be in-
corporated into our global inference system to fur-
ther improve the performance. Final experimental
results and discussion comprise Section 8.

Related Work The definition of our source-
expresses-opinion task is similar to that of Bethard
et al. (2004); however, our definition of opin-
ion and source entities are much more extensive,
going beyond single sentences and propositional
opinion expressions. In particular, we evaluate
our approach with respect to (1) a wide variety
of opinion expressions, (2) explicit and implicit3

sources, (3) multiple opinion-source link relations

3Implicit sources are those that are not explicitly men-
tioned. See Section 8 for more details.

per sentence, and (4) link relations that span more
than one sentence. In addition, the link rela-
tion model explicitly exploits mutual dependen-
cies among entities and relations, while Bethard
et al. (2004) does not directly capture the potential
influence among entities.

Kim and Hovy (2005b) and Choi et al. (2005)
focus only on the extraction of sources of
opinions, without extracting opinion expressions.
Specifically, Kim and Hovy (2005b) assume a pri-
ori existence of the opinion expressions and ex-
tract a single source for each, while Choi et al.
(2005) do not explicitly extract opinion expres-
sions nor link an opinion expression to a source
even though their model implicitly learns approxi-
mations of opinion expressions in order to identify
opinion sources. Other previous research focuses
only on the extraction of opinion expressions (e.g.
Kim and Hovy (2005a), Munson et al. (2005) and
Wilson et al. (2005)), omitting source identifica-
tion altogether.

There have also been previous efforts to si-
multaneously extract entities and relations by ex-
ploiting their mutual dependencies. Roth and
Yih (2002) formulated global inference using a
Bayesian network, where they captured the influ-
ence between a relation and a pair of entities via
the conditional probability of a relation, given a
pair of entities. This approach however, could not
exploit dependencies between relations. Roth and
Yih (2004) later formulated global inference using
integer linear programming, which is the approach
that we apply here. In contrast to our work, Roth
and Yih (2004) operated in the domain of factual
information extraction rather than opinion extrac-
tion, and assumed that the exact boundaries of en-
tities from the gold standard are known a priori,
which may not be available in practice.

3 Extraction of Opinion and Source
Entities

We develop two separate sequence tagging classi-
fiers for opinion extraction and source extraction,
using linear-chain Conditional Random Fields
(CRFs) (Lafferty et al., 2001). The sequence tag-
ging is encoded as the typical ‘BIO’ scheme.4

Each training or test instance represents a sen-
tence, encoded as a linear chain of tokens and their

4‘B’ is for the token thatbegins an entity, ‘I’ is for to-
kens that areinside an entity, and ‘O’ is for tokensoutside an
entity.
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associated features. Our feature set is based on
that of Choi et al. (2005) for source extraction5,
but we include additional lexical and WordNet-
based features. For simplicity, we use the same
features for opinion entity extraction and source
extraction, and let the CRFs learn appropriate fea-
ture weights for each task.

3.1 Entity extraction features

For each tokenxi, we include the following fea-
tures. For details, see Choi et al. (2005).

word: words in a [-4, +4] window centered onxi.

part-of-speech: POS tags in a [-2, +2] window.6

grammatical role: grammatical role (subject, ob-
ject, prepositional phrase types) ofxi derived from
a dependency parse.7

dictionary : whetherxi is in the opinion expres-
sion dictionary culled from the training data and
augmented by approximately 500 opinion words
from the MPQA Final Report8. Also computed
for tokens in a [-1, +1] window and forxi’s parent
“chunk” in the dependency parse.

semantic class: xi’s semantic class.9

WordNet: the WordNet hypernym ofxi.10

4 Relation Classification

We also develop a maximum entropy binary clas-
sifier for opinion-sourcelink relation classifica-
tion. Given an opinion-source pair,Oi-Sj , the re-
lation classifier decides whether the pair exhibits
a valid link relation,Li,j. The relation classifier
focuses only on the syntactic structure and lexical
properties between the two entities of a given pair,
without knowing whether the proposed entities are
correct. Opinion and source entities are taken from
then-best sequences of the entity extraction mod-
els; therefore, some are invariably incorrect.

From each sentence, we create training and test
instances for all possible opinion-source pairings
that do not overlap: we create an instance forLi,j

only if the span ofOi andSj do not overlap.
For training, we also filter out instances for

which neither the proposed opinion nor source en-

5We omit only the extraction pattern features.
6Using GATE:http://gate.ac.uk/
7Provided by Rebecca Hwa, based on the Collins parser:

ftp://ftp.cis.upenn.edu/pub/mcollins/PARSER.tar.gz
8
https://rrc.mitre.org/pubs/mpqaFinalReport.pdf

9Using SUNDANCE: (http://www.cs.utah.edu/r̃iloff/

publications.html#sundance )
10

http://wordnet.princeton.edu/

tity overlaps with a correct opinion or source en-
tity per the gold standard. This training instance
filtering helps to avoid confusion between exam-
ples like the following (where entities marked in
bold are the gold standard entities, and entities
in square brackets represent then-best output se-
quences from the entity extraction classifiers):

(1) [The president] s1 walked away from [the
meeting]o1, [ [revealing] o2 his disap-
pointment] o3 with the deal.

(2) [The monster]s2 walked away, [revealing]o4

a little box hidden underneath.

For these sentences, we construct training in-
stances forL1,1, L1,2, and L1,3, but not L2,4,
which in fact has very similar sentential structure
asL1,2, and hence could confuse the learning al-
gorithm.

4.1 Relation extraction features

The training and test instances for each (potential)
link Li,j (with opinion candidate entityOi and
source candidate entitySj) include the following
features.

opinion entity word : the words contained inOi.

phrase type: the syntactic category of the con-
stituent in which the entity is embedded, e.g. NP
or VP. We encode separate features forOi andSj.

grammatical role: the grammatical role of the
constituent in which the entity is embedded.
Grammatical roles are derived from dependency
parse trees, as done for the entity extraction classi-
fiers. We encode separate features forOi andSj.

position: a boolean value indicating whetherSj

precedesOi.

distance: the distance betweenOi andSj in num-
bers of tokens. We use four coarse categories: ad-
jacent, very near, near, far.

dependency path: the path through the depen-
dency tree from the head ofSj to the head ofOi.
For instance, ‘subj↑verb’ or ‘subj↑verb↓obj’.

voice: whether the voice ofOi is passive or active.

syntactic frame: key intra-sentential relations be-
tweenOi andSj. The syntactic frames that we use
are:
◦ [E1:role] [distance][E2:role], where distance
∈ {adjacent, very near, near, far}, andEi:role
is the grammatical role ofEi. Either E1 is an
opinion entity andE2 is a source, or vice versa.

◦ [E1:phrase][distance][E2:phrase], where
Ei:phrase is the phrasal type of entityEi.
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◦ [E1:phrase][E2:headword], whereE2 must be
the opinion entity, andE1 must be the source en-
tity (i.e. no lexicalized frames for sources).E1

andE2 can be contiguous.
◦ [E1:role] [E2:headword], whereE2 must be the

opinion entity, andE1 must be the source entity.
◦ [E1:phrase]NP [E2:phrase] indicates the

presence of specific syntactic patterns, e.g.
‘VP NP VP’ depending on the possible phrase
types of opinion and source entities. The three
phrases do not need to be contiguous.

◦ [E1:phrase]VP [E2:phrase] (See above.)
◦ [E1:phrase][wh-word] [E2:phrase] (See

above.)
◦ Src [distance][x] [distance]Op, wherex ∈
{by, of, from, for, between, among, and, have,
be, will, not, ], ”, . . . }.

When a syntactic frame is matched to a sen-
tence, the bracketed items should be instantiated
with particular values corresponding to the sen-
tence. Pattern elements without square brackets
are constants. For instance, the syntactic frame
‘[ E1:phrase]NP [E2:phrase]’ may be instantiated
as ‘VP NP VP’. Some frames are lexicalized with
respect to the head of an opinion entity to reflect
the fact that different verbs expect source enti-
ties in different argument positions (e.g.SOURCE

blamedTARGET vs. TARGET angeredSOURCE).

5 Integer Linear Programming
Approach

As noted in the introduction, we model our task
as global, constraint-based inference over the sep-
arately trained entity and relation classifiers, and
implement the inference procedure as binary in-
teger linear programming (ILP) ((Roth and Yih,
2004), (Punyakanok et al., 2004)). ILP consists
of an objective function which is a dot product
between a vector of variables and a vector of
weights, and a set of equality and inequality con-
straints among variables. Given an objective func-
tion and a set of constraints, LP finds the opti-
mal assignment of values to variables, i.e. one that
minimizes the objective function. In binary ILP,
the assignments to variables must be either0 or 1.
The variables and constraints defined for the opin-
ion recognition task are summarized in Table 1 and
explained below.

Entity variables and weights For each opinion
entity, we add two variables,Oi and Ōi, where
Oi = 1 means to extract the opinion entity, and

Objective functionf
=

∑
i(woi

Oi) +
∑

i(w̄oi
Ōi)

+
∑

j(wsj
Sj) +

∑
j(w̄sj

S̄j)

+
∑

i,j(wli,jLi,j) +
∑

i(w̄li,j L̄i,j)

∀i, Oi + Ōi = 1
∀j, Sj + S̄j = 1
∀i, j, Li,j + L̄i,j = 1

∀i, Oi =
∑

j Li,j

∀j, Sj + Aj =
∑

i Li,j

∀j, Aj − Sj ≤ 0

∀i, j, i < j, Xi + Xj = 1,X ∈ {S,O}

Table 1: Binary ILP formulation

Ōi = 1 means to discard the opinion entity. To
ensure coherent assignments, we add equality con-
straints∀i, Oi + Ōi = 1. The weightswoi

and
w̄oi

for Oi and Ōi respectively, are computed as
a negative conditional probability of the span of
an entity to be extracted (or suppressed) given the
labelings of the adjacent variables of the CRFs:

woi

def
= −P (xk, xk+1, ..., xl|xk−1, xl+1)

wherexk = ‘B’

& xm = ‘I’ for m ∈ [k + 1, l]

w̄oi

def
= −P (xk, xk+1, ..., xl|xk−1, xl+1)

wherexm = ‘O’ for m ∈ [k, l]

wherexi is the value assigned to the random vari-
able of the CRF corresponding to an entityOi.
Likewise, for each source entity, we add two vari-
ablesSj andS̄j and a constraintSj + S̄j = 1. The
weights for source variables are computed in the
same way as opinion entities.

Relation variables and weights For each link
relation, we add two variablesLi,j and L̄i,j, and
a constraintLi,j + L̄i,j = 1. By the definition of
a link, if Li,j = 1, then it is implied thatOi = 1
andSj = 1. That is, if a link is extracted, then the
pair of entities for the link must be also extracted.
Constraints to ensure this coherency are explained
in the following subsection. The weights for link
variables are based on probabilities from the bi-
nary link classifier.

Constraints for link coherency In our corpus, a
source entity can be linked to more than one opin-
ion entity, but an opinion entity is linked to only
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one source. Nonetheless, the majority of opinion-
source pairs involve one-to-one mappings, which
we encode as hard and soft constraints as follows:

For each opinion entity, we add an equality con-
straint Oi =

∑
j Li,j to enforce that only one

link can emanate from an opinion entity. For each
source entity, we add an equality constraint and an
inequality constraint that together allow a source
to link to at most two opinions:Sj +Aj =

∑
i Li,j

andAj − Sj ≤ 0, whereAj is an auxiliary vari-
able, such that its weight is some positive constant
value that suppressesAj from being assigned to1.
And Aj can be assigned to1 only if Sj is already
assigned to1. It is possible to add more auxiliary
variables to allow more than two opinions to link
to a source, but for our experiments two seemed to
be a reasonable limit.

Constraints for entity coherency When we use
n-best sequences wheren > 1, proposed entities
can overlap. Because this should not be the case
in the final result, we add an equality constraint
Xi + Xj = 1, X ∈ {S,O} for all pairs of entities
with overlapping spans.

Adjustments to weights To balance the preci-
sion and recall, and to take into account the per-
formance of different base classifiers, we apply ad-
justments to weights as follows.

1) We define six coefficientscx and c̄x, where
x ∈ {O,S,L} to modify a group of weights
as follows.
∀i, x, wxi

:= wxi
∗ cx;

∀i, x, w̄xi
:= w̄xi

∗ c̄x;
In general, increasingcx will promote recall,
while increasing c̄x will promote precision.
Also, settingco > cs will put higher confi-
dence on the opinion extraction classifier than
the source extraction classifier.

2) We also define one constantcA to set the
weights for auxiliary variableAi. That is,
∀i, wAi

:= cA.
3) Finally, we adjust the confidence of the link

variable based onn-th-best sequences of the en-
tity extraction classifiers as follows.
∀i, wLi,j

:= wLi,j
∗ d

whered
def
= 4/(3 + min(m,n)), whenOi is

from anm-th sequence andSj is from an-th
sequence.11

11This will smoothly degrade the confidence of a link
based on the entities from highern-th sequences. Values ofd
decrease as4/4, 4/5, 4/6, 4/7....

6 Experiments–I

We evaluate our system using the NRRC Multi-
Perspective Question Answering (MPQA) corpus
that contains 535 newswire articles that are man-
ually annotated for opinion-related information.
In particular, our gold standard opinion entities
correspond todirect subjective expressionanno-
tations andsubjective speech eventannotations
(i.e. speech events that introduce opinions) in the
MPQA corpus (Wiebe et al., 2005). Gold stan-
dard source entities and link relations can be ex-
tracted from theagent attribute associated with
each opinion entity. We use 135 documents as a
development set and report 10-fold cross valida-
tion results on the remaining 400 documents in all
experiments below.

We evaluate entity and link extraction using
both anoverlapandexactmatching scheme.12 Be-
cause the exact start and endpoints of the man-
ual annotations are somewhat arbitrary, the over-
lap scheme is more reasonable for our task (Wiebe
et al., 2005). We report results according to both
matching schemes, but focus our discussion on re-
sults obtained using overlap matching.13

We use the Mallet14 implementation of CRFs.
For brevity, we will refer to the opinion extraction
classifier as CRF-OP, the source extraction classi-
fier as CRF-SRC, and the link relation classifier as
CRF-LINK . For ILP, we use Matlab, which pro-
duced the optimal assignment in a matter of few
seconds for each sentence. The weight adjustment
constants defined for ILP are based on the devel-
opment data.15

The link-nearest baselines For baselines, we
first consider alink-nearestheuristic: for each
opinion entity extracted by CRF-OP, the link-
nearest heuristic creates a link relation with the
closest source entity extracted by CRF-SRC. Re-
call that CRF-SRC and CRF-OP extract entities
from n-best sequences. We test the link-nearest
heuristic withn = {1, 2, 10} where largern will
boost recall at the cost of precision. Results for the

12Given two linksL1,1 = (O1, S1) andL2,2 = (O2, S2),
exact matching requires the spans ofO1 and O2, and the
spans ofS1 andS2, to match exactly, while overlap matching
requires the spans to overlap.

13Wiebe et al. (2005) also reports the human annotation
agreement study via the overlap scheme.

14Available at http://mallet.cs.umass.edu
15co = 2.5, c̄o = 1.0, cs = 1.5, c̄s = 1.0, cL = 2.5, c̄L =

2.5, cA = 0.2. Values are picked so as to boost recall while
reasonably suppressing incorrect links.
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Overlap Match Exact Match
r(%) p(%) f(%) r(%) p(%) f(%)

NEAREST-1 51.6 71.4 59.9 26.2 36.9 30.7

NEAREST-2 60.7 45.8 52.2 29.7 19.0 23.1

NEAREST-10 66.3 20.9 31.7 28.2 00.0 00.0

SRL 59.7 36.3 45.2 32.6 19.3 24.2

SRL+CRF-OP 45.6 83.2 58.9 27.6 49.7 35.5

ILP-1 51.6 80.8 63.0 26.4 42.0 32.4

ILP-10 64.0 72.4 68.0 31.0 34.8 32.8

Table 2: Relation extraction performance

NEAREST-n : link-nearest heuristic w/n-best
SRL : all V-A0 frames from SRL

SRL+CRF-OP : all V-A0 filtered by CRF-OP

ILP-n : ILP applied ton-best sequences

link-nearest heuristic on the full source-expresses-
opinion relation extraction task are shown in the
first three rows of table 2. NEAREST-1 performs
the best in overlap-match F-measure, reaching
59.9. NEAREST-10 has higher recall (66.3%), but
the precision is really low (20.9%). Performance
of the opinion and source entity classifiers will be
discussed in Section 8.

SRL baselines Next, we consider two base-
lines that use a state-of-the-art SRL system (Pun-
yakanok et al., 2005). In many link relations,
the opinion expression entity is a verb phrase and
the source entity is in an agent argument posi-
tion. Hence our second baseline, SRL, extracts
all verb(V)-agent(A0) frames from the output of
the SRL system and provides an upper bound on
recall (59.7%) for systems that use SRL in isola-
tion for our task. A more sophisticated baseline,
SRL+CRF-OP, extracts only those V-A0 frames
whose verb overlaps with entities extracted by the
opinion expression extractor, CRF-OP. As shown
in table 2, filtering out V-A0 frames that are in-
compatible with the opinion extractor boosts pre-
cision to 83.2%, but the F-measure (58.9) is lower
than that of NEAREST-1.

ILP results The ILP-n system in table 2 de-
notes the results of the ILP approach applied to the
n-best sequences. ILP-10 reaches an F-measure
of 68.0, a significant improvement over the high-
est performing baseline16, and also a substantial
improvement over ILP-1. Note that the perfor-
mance of NEAREST-10 was much worse than that

16Statistically significant by paired-t test, wherep <
0.001.

Overlap Match Exact Match
r(%) p(%) f(%) r(%) p(%) f(%)

ILP-1 51.6 80.8 63.0 26.4 42.0 32.4

ILP-10 64.0 72.4 68.0 31.0 34.8 32.8

ILP+SRL-f -1 51.7 81.5 63.3 26.6 42.5 32.7

ILP+SRL-f -10 65.7 72.4 68.9 31.5 34.3 32.9

ILP+SRL-fc-10 64.0 73.5 68.4 28.4 31.3 29.8

Table 3: Relation extraction with ILP and SRL

ILP-n : ILP applied ton-best sequences
ILP+SRL-f -n : ILP w/ SRL features,n-best

ILP+SRL-fc-n : ILP w/ SRL features,
and SRL constraints,n-best

of NEAREST-1, because the 10-best sequences in-
clude many incorrect entities whereas the corre-
sponding ILP formulation can discard the bad en-
tities by considering dependencies among entities
and relations.17

7 Additional SRL Incorporation

We next explore two approaches for more directly
incorporating SRL into our system.

Extra SRL Features for the Link classifier We
incorporate SRL into the link classifier by adding
extra features based on SRL. We add boolean fea-
tures to check whether the span of an SRL argu-
ment and an entity matches exactly. In addition,
we includesyntactic frame features as follows:

◦ [E1:srl-arg] [E2:srl-arg], whereEi:srl-arg indi-
cates the SRL argument type of entityEi.

◦ [E1.srl-arg] [E1:headword][E2:srl-arg], where
E1 must be an opinion entity, andE2 must be a
source entity.

Extra SRL Constraints for the ILP phase We
also incorporate SRL into the ILP phase of our
system by adding extra constraints based on SRL.
In particular, we assign very high weights for links
that match V-A0 frames generated by SRL, in or-
der to force the extraction of V-A0 frames.

17A potential issue with overlap precision and recall is that
the measures may drastically overestimate the system’s per-
formance as follows: a system predicting a single link rela-
tion whose source and opinion expression both overlap with
every token of a document would achieve 100% overlap pre-
cision and recall. We can ensure this does not happen by mea-
suring the average number of (source, opinion) pairs to which
each correct or predicted pair is aligned (excluding pairs not
aligned at all). In our data, this does not exceed 1.08, (except
for baselines), so we can conclude these evaluation measures
are behaving reasonably.
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Opinion Source Link
r(%) p(%) f(%) r(%) p(%) f(%) r(%) p(%) f(%)

Before ILP CRF-OP/SRC/LINK with 1 best 76.4 88.4 81.9 67.3 81.9 73.9 60.5 50.5 55.0

merged 10 best 95.7 31.2 47.0 95.3 24.5 38.9 N/A

After ILP ILP-SRL-f -10 75.1 82.9 78.8 80.6 75.7 78.1 65.7 72.4 68.9

ILP-SRL-f -10∪ CRF-OP/SRCwith 1 best 82.3 81.7 82.0 81.5 73.4 77.3 N/A

Table 4: Entity extraction performance (by overlap-matching)

8 Experiments–II

Results using SRL are shown in Table 3 (on the
previous page). In the table, ILP+SRL-f denotes
the ILP approach using the link classifier with
the extra SRL ‘f ’eatures, and ILP+SRL-fc de-
notes the ILP approach using both the extra SRL
‘f ’eatures and the SRL ‘c’onstraints. For compar-
ison, the ILP-1 and ILP-10 results from Table 2
are shown in rows 1 and 2.

The F-measure score of ILP+SRL-f -10 is 68.9,
about a 1 point increase from that of ILP-10,
which shows that extra SRL features for the link
classifier further improve the performance over
our previous best results.18 ILP+SRL-fc-10 also
performs better than ILP-10 in F-measure, al-
though it is slightly worse than ILP+SRL-f -10.
This indicates that the link classifier with extra
SRL features already makes good use of the V-A0
frames from the SRL system, so that forcing the
extraction of such frames via extra ILP constraints
only hurts performance by not allowing the extrac-
tion of non-V-A0 pairs in the neighborhood that
could have been better choices.

Contribution of the ILP phase In order to
highlight the contribution of the ILP phase for our
task, we present ‘before’ and ‘after’ performance
in Table 4. The first row shows the performance
of the individual CRF-OP, CRF-SRC, and CRF-
LINK classifiers before the ILP phase. Without the
ILP phase, the 1-best sequence generates the best
scores. However, we also present the performance
with merged 10-best entity sequences19 in order
to demonstrate that using 10-best sequences with-
out ILP will only hurt performance. The precision
of the merged 10-best sequences system is very
low, however the recall level is above 95% for both

18Statistically significant by paired-t test, wherep <
0.001.

19If an entityEi extracted by theith-best sequence over-
laps with an entityEj extracted by thejth-best sequence,
wherei < j, then we discardEj . If Ei andEj do not over-
lap, then we extract both entities.

CRF-OP and CRF-SRC, giving an upper bound for
recall for our approach. The third row presents
results after the ILP phase is applied for the 10-
best sequences, and we see that, in addition to the
improved link extraction described in Section 7,
the performance on source extraction is substan-
tially improved, from F-measure of 73.9 to 78.1.
Performance on opinion expression extraction de-
creases from F-measure of 81.9 to 78.8. This de-
crease is largely due toimplicit links, which we
will explain below. The fourth row takes the union
of the entities from ILP-SRL-f -10 and the entities
from the best sequences from CRF-OP and CRF-
SRC. This process brings the F-measure of CRF-
OP up to 82.0, with a different precision-recall
break down from those of 1-best sequences with-
out ILP phase. In particular, the recall on opinion
expressions now reaches 82.3%, while maintain-
ing a high precision of 81.7%.

Overlap Match Exact Match
r(%) p(%) f(%) r(%) p(%) f(%)

DEV.CONF 65.7 72.4 68.9 31.5 34.3 32.9

NO.CONF 63.7 76.2 69.4 30.9 36.7 33.5

Table 5: Relation extraction with ILP weight ad-
justment. (All cases using ILP+SRL-f -10)

Effects of ILP weight adjustment Finally, we
show the effect of weight adjustment in the ILP
formulation in Table 5. The DEV.CONF row shows
relation extraction performance using a weight
configuration based from the development data.
In order to see the effect of weight adjustment,
we ran an experiment, NO.CONF, using fixed de-
fault weights.20 Not surprisingly, our weight ad-
justment tuned from the development set is not the
optimal choice for cross-validation set. Neverthe-
less, the weight adjustment helps to balance the
precision and recall, i.e. it improves recall at the

20To be precise,cx = 1.0, c̄x = 1.0 for x ∈ {O, S, L},
butcA = 0.2 is the same as before.
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cost of precision. The weight adjustment is more
effective when the gap between precision and re-
call is large, as was the case with the development
data.

Implicit links A good portion of errors stem
from the implicit link relation, which our system
did not model directly. An implicit link relation
holds for an opinion entity without an associated
source entity. In this case, the opinion entity is
linked to animplicit source. Consider the follow-
ing example.
• Anti-Soviethysteria wasfirmly oppressed.

Notice that opinion expressions such as“Anti-
Soviet hysteria”and “firmly oppressed” do not
have associated source entities, because sources of
these opinion expressions are not explicitly men-
tioned in the text. Because our system forces
each opinion to be linked with an explicit source
entity, opinion expressions that do not have ex-
plicit source entities will be dropped during the
global inference phase of our system. Implicit
links amount to 7% of the link relations in our
corpus, so the upper bound for recall for our ILP
system is 93%. In the future we will extend our
system to handle implicit links as well. Note that
we report results against a gold standard that in-
cludes implicit links. Excluding them from the
gold standard, the performance of our final sys-
tem ILP+SRL-f -10 is 72.6% in recall, 72.4% in
precision, and 72.5 in F-measure.

9 Conclusion

This paper presented a global inference approach
to jointly extract entities and relations in the con-
text of opinion oriented information extraction.
The final system achieves performance levels that
are potentially good enough for many practical
NLP applications.
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Abstract

Lexical features are key to many ap-
proaches to sentiment analysis and opin-
ion detection. A variety of representations
have been used, including single words,
multi-word Ngrams, phrases, and lexico-
syntactic patterns. In this paper, we use a
subsumption hierarchy to formally define
different types of lexical features and their
relationship to one another, both in terms
of representational coverage and perfor-
mance. We use the subsumption hierar-
chy in two ways: (1) as an analytic tool
to automatically identify complex features
that outperform simpler features, and (2)
to reduce a feature set by removing un-
necessary features. We show that reduc-
ing the feature set improves performance
on three opinion classification tasks, espe-
cially when combined with traditional fea-
ture selection.

1 Introduction

Sentiment analysis and opinion recognition are ac-
tive research areas that have many potential ap-
plications, including review mining, product rep-
utation analysis, multi-document summarization,
and multi-perspective question answering. Lexi-
cal features are key to many approaches, and a va-
riety of representations have been used, including
single words, multi-word Ngrams, phrases, and
lexico-syntactic patterns. It is common for dif-
ferent features to overlap representationally. For
example, the unigram “happy” will match all of
the texts that the bigram “very happy” matches.
Since both features represent a positive sentiment
and the bigram matches fewer contexts than the

unigram, it is probably sufficient just to have the
unigram. However, there are many cases where
a feature captures a subtlety or non-compositional
meaning that a simpler feature does not. For exam-
ple, “basket case” is a highly opinionated phrase,
but the words “basket” and “case” individually
are not. An open question in opinion analysis is
how often more complex feature representations
are needed, and which types of features are most
valuable. Our first goal is to devise a method to
automatically identify features that are represen-
tationally subsumed by a simpler feature but that
are better opinion indicators. These subjective ex-
pressions could then be added to a subjectivity lex-
icon (Esuli and Sebastiani, 2005), and used to gain
understanding about which types of complex fea-
tures capture meaningful expressions that are im-
portant for opinion recognition.

Many opinion classifiers are created by adopt-
ing a “kitchen sink” approach that throws together
a variety of features. But in many cases adding
new types of features does not improve perfor-
mance. For example, Pang et al. (2002) found that
unigrams outperformed bigrams, and unigrams
outperformed the combination of unigrams plus
bigrams. Our second goal is to automatically iden-
tify features that are unnecessary because similar
features provide equal or better coverage and dis-
criminatory value. Our hypothesis is that a re-
duced feature set, which selectively combines un-
igrams with only the most valuable complex fea-
tures, will perform better than a larger feature set
that includes the entire “kitchen sink” of features.

In this paper, we explore the use of a subsump-
tion hierarchy to formally define the subsump-
tion relationships between different types of tex-
tual features. We use the subsumption hierarchy
in two ways. First, we use subsumption as an an-
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alytic tool to compare features of different com-
plexities and automatically identify complex fea-
tures that substantially outperform their simpler
counterparts. Second, we use the subsumption hi-
erarchy to reduce a feature set based on represen-
tational overlap and on performance. We conduct
experiments with three opinion data sets and show
that the reduced feature sets can improve classifi-
cation performance.

2 The Subsumption Hierarchy

2.1 Text Representations
We analyze two feature representations that have
been used for opinion analysis: Ngrams and Ex-
traction Patterns. Information extraction (IE)
patterns are lexico-syntactic patterns that rep-
resent expressions which identify role relation-
ships. For example, the pattern “<subj>
ActVP(recommended)” extracts the subject of
active-voice instances of the verb “recommended”
as the recommender. The pattern “<subj>
PassVP(recommended)” extracts the subject of
passive-voice instances of “recommended” as the
object being recommended.

(Riloff and Wiebe, 2003) explored the idea
of using extraction patterns to represent more
complex subjective expressions that have non-
compositional meanings. For example, the expres-
sion “drive (someone) up the wall” expresses the
feeling of being annoyed, but the meanings of the
words “drive”, “up”, and “wall” have no emotional
connotations individually. Furthermore, this ex-
pression is not a fixed word sequence that can be
adequately modeled by Ngrams. Any noun phrase
can appear between the words “drive’ and “up”, so
a flexible representation is needed to capture the
general pattern “drives <NP> up the wall”.

This example represents a general phenomenon:
many expressions allow intervening noun phrases
and/or modifying terms. For example:

“stepped on <mods> toes”
Ex: stepped on the boss’ toes

“dealt <np> <mods> blow”
Ex: dealt the company a decisive blow

“brought <np> to <mods> knees”
Ex: brought the man to his knees

(Riloff and Wiebe, 2003) also showed that syn-
tactic variations of the same verb phrase can be-

have very differently. For example, they found that
passive-voice constructions of the verb “ask” had
a 100% correlation with opinion sentences, but
active-voice constructions had only a 63% corre-
lation with opinions.

Pattern Type Example Pattern
<subj> PassVP <subj> is satisfied
<subj> ActVP <subj> complained
<subj> ActVP Dobj <subj> dealt blow
<subj> ActInfVP <subj> appear to be
<subj> PassInfVP <subj> is meant to be
<subj> AuxVP Dobj <subj> has position
<subj> AuxVP Adj <subj> is happy
ActVP <dobj> endorsed <dobj>
InfVP <dobj> to condemn <dobj>
ActInfVP <dobj> get to know <dobj>
PassInfVP <dobj> is meant to be <dobj>
Subj AuxVP <dobj> fact is <dobj>
NP Prep <np> opinion on <np>

ActVP Prep <np> agrees with <np>

PassVP Prep <np> is worried about <np>

InfVP Prep <np> to resort to <np>

<possessive> NP <noun>’s speech

Figure 1: Extraction Pattern Types

Our goal is to use the subsumption hierarchy
to identify Ngram and extraction pattern features
that are more strongly associated with opinions
than simpler features. We used three types of fea-
tures in our research: unigrams, bigrams, and IE
patterns. The Ngram features were generated us-
ing the Ngram Statistics Package (NSP) (Baner-
jee and Pedersen, 2003).1 The extraction pat-
terns (EPs) were automatically generated using
the Sundance/AutoSlog software package (Riloff
and Phillips, 2004). AutoSlog relies on the Sun-
dance shallow parser and can be applied exhaus-
tively to a text corpus to generate IE patterns that
can extract every noun phrase in the corpus. Au-
toSlog has been used to learn IE patterns for the
domains of terrorism, joint ventures, and micro-
electronics (Riloff, 1996), as well as for opinion
analysis (Riloff and Wiebe, 2003). Figure 1 shows
the 17 types of extraction patterns that AutoSlog
generates. PassVP refers to passive-voice verb
phrases (VPs), ActVP refers to active-voice VPs,
InfVP refers to infinitive VPs, and AuxVP refers

1NSP is freely available for use under the GPL from
http://search.cpan.org/dist/Text-NSP. We discarded Ngrams
that consisted entirely of stopwords. We used a list of 281
stopwords.
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to VPs where the main verb is a form of “to be”
or “to have”. Subjects (subj), direct objects (dobj),
PP objects (np), and possessives can be extracted
by the patterns.2

2.2 The Subsumption Hierarchy
We created a subsumption hierarchy that defines
the representational scope of different types of fea-
tures. We will say that feature A representation-
ally subsumes feature B if the set of text spans
that match feature A is a superset of the set of text
spans that match feature B. For example, the uni-
gram “happy” subsumes the bigram “very happy”
because the set of text spans that match “happy”
includes the text spans that match “very happy”.

First, we define a hierarchy of valid subsump-
tion relationships, shown in Figure 2. The 2Gram
node, for example, is a child of the 1Gram node
because a 1Gram can subsume a 2Gram. Ngrams
may subsume extraction patterns as well. Ev-
ery extraction pattern has at least one correspond-
ing 1Gram that will subsume it.3. For example,
the 1Gram “recommended” subsumes the pattern
“<subj> ActVP(recommended)” because the pat-
tern only matches active-voice instances of “rec-
ommended”. An extraction pattern may also
subsume another extraction pattern. For exam-
ple, “<subj> ActVP(recommended)” subsumes
“<subj> ActVP(recommended) Dobj(movie)”.

To compare specific features we need to for-
mally define the representation of each type of
feature in the hierarchy. For example, the hierar-
chy dictates that a 2Gram can subsume the pattern
“ActInfVP <dobj>”, but this should hold only if
the words in the bigram correspond to adjacent
words in the pattern. For example, the 2Gram “to
fish” subsumes the pattern “ActInfVP(like to fish)
<dobj>”. But the 2Gram “like fish” should not
subsume it. Similarly, consider the pattern “In-
fVP(plan) <dobj>”, which represents the infini-
tive “to plan”. This pattern subsumes the pattern
“ActInfVP(want to plan) <dobj>”, but it should
not subsume the pattern “ActInfVP(plan to start)”.

To ensure that different features truly subsume
each other representationally, we formally define
each type of feature based on words, sequential

2However, the items extracted by the patterns are not ac-
tually used by our opinion classifiers; only the patterns them-
selves are matched against the text.

3Because every type of extraction pattern shown in Fig-
ure 1 contains at least one word (not including the extracted
phrases, which are not used as part of our feature representa-
tion).

dependencies, and syntactic dependencies. A se-
quential dependency between words wi and wi+1

means that wi and wi+1 must be adjacent, and that
wi must precede wi+1. Figure 3 shows the formal
definition of a bigram (2Gram) node. The bigram
is defined as two words with a sequential depen-
dency indicating that they must be adjacent.

Name = 2Gram
Constituent[0] = WORD1
Constituent[1] = WORD2
Dependency = Sequential(0, 1)

Figure 3: 2Gram Definition

A syntactic dependency between words wi and
wi+1 means that wi has a specific syntactic rela-
tionship to wi+1, and wi must precede wi+1. For
example, consider the extraction pattern “NP Prep
<np>”, in which the object of the preposition at-
taches to the NP. Figure 4 shows the definition of
this extraction pattern in the hierarchy. The pat-
tern itself contains three components: the NP, the
attaching preposition, and the object of the prepo-
sition (which is the NP that the pattern extracts).
The definition also includes two syntactic depen-
dencies: the first dependency is between the NP
and the preposition (meaning that the preposition
syntactically attaches to the NP), while the second
dependency is between the preposition and the ex-
traction (meaning that the extracted NP is the syn-
tactic object of the preposition).

Name = NP Prep <np>

Constituent[0] = NP
Constituent[1] = PREP
Constituent[2] = NP EXTRACTION
Dependency = Syntactic(0, 1)
Dependency = Syntactic(1, 2)

Figure 4: “NP Prep <np>” Pattern Definition

Consequently, the bigram “affair with” will not
subsume the extraction pattern “affair with <np>”
because the bigram requires the noun and preposi-
tion to be adjacent but the pattern does not. For ex-
ample, the extraction pattern matches the text “an
affair in his mind with Countess Olenska” but the
bigram does not. Conversely, the extraction pat-
tern does not subsume the bigram either because
the pattern requires syntactic attachment but the
bigram does not. For example, the bigram matches
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<subj> ActVP
<subj> ActInfVP

<subj> ActVP Dobj

<subj> PassVP

<subj> PassInfVP

InfVP <dobj>
ActInfVP <dobj>

PassInfVP <dobj>
1Gram

2Gram

<possessive> NP

<subj> AuxVP AdjP

<subj> AuxVP Dobj

ActVP <dobj>

ActVP Prep <np>

NP Prep <np>

PassVP Prep <np>

Subj AuxVP <dobj>

3Gram

ActVP Prep:OF <np>

InfVP Prep <np>

NP Prep:OF <np>

PassVP Prep:OF <np>
4Gram

InfVP Prep:OF <np>

Figure 2: The Subsumption Hierarchy

the sentence “He ended the affair with a sense of
relief”, but the extraction pattern does not.

Figure 5 shows the definition of another ex-
traction pattern, “InfVP <dobj>”, which includes
both syntactic and sequential dependencies. This
pattern would match the text “to protest high
taxes”. The pattern definition has three compo-
nents: the infinitive “to”, a verb, and the direct ob-
ject of the verb (which is the NP that the pattern
extracts). The definition also shows two syntac-
tic dependencies. The first dependency indicates
that the verb syntactically attaches to the infinitive
“to”. The second dependency indicates that the ex-
tracted NP syntactically attaches to the verb (i.e.,
it is the direct object of that particular verb).

The pattern definition also includes a sequen-
tial dependency, which specifies that “to” must be
adjacent to the verb. Strictly speaking, our parser
does not require them to be adjacent. For exam-
ple, the parser allows intervening adverbs to split
infinitives (e.g., “to strongly protest high taxes”),
and this does happen occasionally. But split in-
finitives are relatively rare, so in the vast major-
ity of cases the infinitive “to” will be adjacent to
the verb. Consequently, we decided that a bigram
(e.g., “to protest”) should representationally sub-
sume this extraction pattern because the syntac-
tic flexibility afforded by the pattern is negligi-
ble. The sequential dependency link represents

this judgment call that the infinitive “to” and the
verb are adjacent in most cases.

For all of the node definitions, we used our best
judgment to make decisions of this kind. We tried
to represent major distinctions between features,
without getting caught up in minor differences that
were likely to be negligible in practice.

Name = InfVP <dobj>
Constituent[0] = INFINITIVE TO
Constituent[1] = VERB
Constituent[2] = DOBJ EXTRACTION
Dependency = Syntactic(0, 1)
Dependency = Syntactic(1, 2)
Dependency = Sequential(0, 1)

Figure 5: “InfVP <dobj>” Pattern Definition

To use the subsumption hierarchy, we assign
each feature to its appropriate node in the hierar-
chy based on its type. Then we perform a top-
down breadth-first traversal. Each feature is com-
pared with the features at its ancestor nodes. If
a feature’s words and dependencies are a superset
of an ancestor’s words and dependencies, then it
is subsumed by the (more general) ancestor and
discarded.4 When the subsumption process is fin-
ished, a feature remains in the hierarchy only if

4The words that they have in common must also be in the
same relative order.
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there are no features above it that subsume it.

2.3 Performance-based Subsumption

Representational subsumption is concerned with
whether one feature is more general than another.
But the purpose of using the subsumption hier-
archy is to identify more complex features that
outperform simpler ones. Applying the subsump-
tion hierarchy to features without regard to per-
formance would simply eliminate all features that
have a more general counterpart in the feature set.
For example, all bigrams would be discarded if
their component unigrams were also present in the
hierarchy.

To estimate the quality of a feature, we use In-
formation Gain (IG) because that has been shown
to work well as a metric for feature selection (For-
man, 2003). We will say that feature A be-
haviorally subsumes feature B if two criteria are
met: (1) A representationally subsumes B, and (2)
IG(A) ≥ IG(B) - δ, where δ is a parameter repre-
senting an acceptable margin of performance dif-
ference. For example, if δ=0 then condition (2)
means that feature A is just as valuable as fea-
ture B because its information gain is the same or
higher. If δ>0 then feature A is allowed to be a lit-
tle worse than feature B, but within an acceptable
margin. For example, δ=.0001 means that A’s in-
formation gain may be up to .0001 lower than B’s
information gain, and that is considered to be an
acceptable performance difference (i.e., A is good
enough that we are comfortable discarding B in
favor of the more general feature A).

Note that based on the subsumption hierarchy
shown in Figure 2, all 1Grams will always sur-
vive the subsumption process because they cannot
be subsumed by any other types of features. Our
goal is to identify complex features that are worth
adding to a set of unigram features.

3 Data Sets

We used three opinion-related data sets for our
analyses and experiments: the OP data set created
by (Wiebe et al., 2004), the Polarity data set5 cre-
ated by (Pang and Lee, 2004), and the MPQA data
set created by (Wiebe et al., 2005).6 The OP and
Polarity data sets involve document-level opinion
classification, while the MPQA data set involves

5Version v2.0, which is available at:
http://www.cs.cornell.edu/people/pabo/movie-review-data/

6Available at http://www.cs.pitt.edu/mpqa/databaserelease/

sentence-level classification.
The OP data consists of 2,452 documents from

the Penn Treebank (Marcus et al., 1993). Metadata
tags assigned by the Wall Street Journal define the
opinion/non-opinion classes: the class of any doc-
ument labeled Editorial, Letter to the Editor, Arts
& Leisure Review, or Viewpoint by the Wall Street
Journal is opinion, and the class of documents in
all other categories (such as Business and News)
is non-opinion. This data set is highly skewed,
with only 9% of the documents belonging to the
opinion class. Consequently, a trivial (but useless)
opinion classifier that labels all documents as non-
opinion articles would achieve 91% accuracy.

The Polarity data consists of 700 positive and
700 negative reviews from the Internet Movie
Database (IMDb) archive. The positive and neg-
ative classes were derived from author ratings ex-
pressed in stars or numerical values. The MPQA
data consists of English language versions of ar-
ticles from the world press. It contains 9,732
sentences that have been manually annotated for
subjective expressions. The opinion/non-opinion
classes are derived from the lower-level annota-
tions: a sentence is an opinion if it contains a sub-
jective expression of medium or higher intensity;
otherwise, it is a non-opinion sentence. 55% of the
sentences belong to the opinion class.

4 Using the Subsumption Hierarchy for
Analysis

In this section, we illustrate how the subsump-
tion hierarchy can be used as an analytic tool to
automatically identify features that substantially
outperform simpler counterparts. These features
represent specialized usages and expressions that
would be good candidates for addition to a sub-
jectivity lexicon. Figure 6 shows pairs of features,
where the first is more general and the second is
more specific. These feature pairs were identified
by the subsumption hierarchy as being representa-
tionally similar but behaviorally different (so the
more specific feature was retained). The IGain
column shows the information gain values pro-
duced from the training set of one cross-validation
fold. The Class column shows the class that the
more specific feature is correlated with (the more
general feature is usually not strongly correlated
with either class).

The top table in Figure 6 contains examples for
the opinion/non-opinion classification task from
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Opinion/Non-Opinion Classification
ID Feature IGain Class Example
A1 line .0016 - . . . issue consists of notes backed by credit line receivables
A2 the line .0075 opin ...lays it on the line; ...steps across the line
B1 nation .0046 - . . . has 750,000 cable-tv subscribers around the nation
B2 a nation .0080 opin It’s not that we are spawning a nation of ascetics . . .
C1 begin .0006 - Campeau buyers will begin writing orders...
C2 begin with .0036 opin To begin with, we should note that in contrast...
D1 benefits .0040 - . . . earlier period included $235,000 in tax benefits.
DEP NP Prep(benefits to) .0090 opin . . . boon to the rich with no proven benefits to the economy
E1 due .0001 - . . . an estimated $ 1.23 billion in debt due next spring
EEP ActVP Prep(due to) .0038 opin It’s all due to the intense scrutiny...

Positive/Negative Sentiment Classification
ID Feature IGain Class Example
F1 short .0014 - to make a long story short...
F2 nothing short .0039 pos nothing short of spectacular
G1 ugly .0008 - ...an ugly monster on a cruise liner
G2 and ugly .0054 neg it’s a disappointment to see something this dumb and ugly
H1 disaster .0010 - ...rated pg-13 for disaster related elements
HEP AuxVP Dobj(be disaster) .0048 neg . . . this is such a confused disaster of a film
I1 work .0002 - the next day during the drive to work...
IEP ActVP(work) .0062 pos the film will work just as well...
J1 manages .0003 - he still manages to find time for his wife
JEP ActInfVP(manages to keep) .0054 pos this film manages to keep up a rapid pace

Figure 6: Sample features that behave differently, as revealed by the subsumption hierarchy.
(1 ⇒ unigram; 2 ⇒ bigram; EP ⇒ extraction pattern)

the OP data. The more specific features are more
strongly correlated with opinion articles. Surpris-
ingly, simply adding a determiner can dramatically
change behavior. Consider A2. There are many
subjective idioms involving “the line” (two are
shown in the table; others include “toe the line”
and “draw the line”), while objective language
about credit lines, phone lines, etc. uses the deter-
miner less often. Similarly, consider B2. Adding
“a” to “nation” often corresponds to an abstract
reference used when making an argument (e.g.,
“a nation of ascetics”), whereas other instances
of “nation” are used more literally (e.g., “the 6th
largest in the nation”). 21% of feature B1’s in-
stances appear in opinion articles, while 70% of
feature B2’s instances are in opinion articles.

“Begin with” (C2) captures an adverbial phrase
used in argumentation (“To begin with...”) but
does not match objective usages such as “will
begin” an action. The word “benefits” alone
(D1) matches phrases like “tax benefits” and “em-
ployee benefits” that are not opinion expressions,
while DEP typically matches positive senses of
the word “benefits”. Interestingly, the bigram
“benefits to” is not highly correlated with opin-
ions because it matches infinitive phrases such
as “tax benefits to provide” and “health benefits
to cut”. In this case, the extraction pattern “NP

Prep(benefits to)” is more discriminating than the
bigram for opinion classification. The extraction
pattern EEP is also highly correlated with opin-
ions, while the unigram “due” and the bigram
“due to” are not.

The bottom table in Figure 6 shows feature
pairs identified for their behavioral differences on
the Polarity data set, where the task is to distin-
guish positive reviews from negative reviews. F2

and G2 are bigrams that behave differently from
their component unigrams. The expression “noth-
ing short (of)” is typically used to express posi-
tive sentiments, while “nothing” and “short” by
themselves are not. The word “ugly” is often used
as a descriptive modifier that is not expressing
a sentiment per se, while “and ugly” appears in
predicate adjective constructions that are express-
ing a negative sentiment. The extraction pattern
HEP is more discriminatory than H1 because it
distinguishes negative sentiments (“the film is a
disaster!”) from plot descriptions (“the disaster
movie...”). IEP shows that active-voice usages of
“work” are strong positive indicators, while the
unigram “work” appears in a variety of both pos-
itive and negative contexts. Finally, JEP shows
that the expression “manages to keep” is a strong
positive indicator, while “manages” by itelf is
much less discriminating.
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These examples illustrate that the subsumption
hierarchy can be a powerful tool to better under-
stand the behaviors of different kinds of features,
and to identify specific features that may be desir-
able for inclusion in specialized lexical resources.

5 Using the Subsumption Hierarchy to
Reduce Feature Sets

When creating opinion classifiers, people often
throw in a variety of features and trust the ma-
chine learning algorithm to figure out how to make
the best use of them. However, we hypothesized
that classifiers may perform better if we can proac-
tively eliminate features that are not necesary be-
cause they are subsumed by other features. In this
section, we present a series of experiments to ex-
plore this hypothesis. First, we present the results
for an SVM classifier trained using different sets
of unigram, bigram, and extraction pattern fea-
tures, both before and after subsumption. Next, we
evaluate a standard feature selection approach as
an alternative to subsumption and then show that
combining subsumption with standard feature se-
lection produces the best results of all.

5.1 Classification Experiments

To see whether feature subsumption can improve
classification performance, we trained an SVM
classifier for each of the three opinion data sets.
We used the SVMlight (Joachims, 1998) package
with a linear kernel. For the Polarity and OP data
we discarded all features that have frequency < 5,
and for the MPQA data we discarded features that
have frequency < 2 because this data set is sub-
stantially smaller. All of our experimental results
are averages over 3-fold cross-validation.

First, we created 4 baseline classifiers: a 1Gram
classifier that uses only the unigram features; a
1+2Gram classifier that uses unigram and bigram
features; a 1+EP classifier that uses unigram and
extraction pattern features, and a 1+2+EP classi-
fier that uses all three types of features. Next, we
created analogous 1+2Gram, 1+EP, and 1+2+EP
classifiers but applied the subsumption hierar-
chy first to eliminate unnecessary features be-
fore training the classifier. We experimented with
three delta values for the subsumption process:
δ=.0005, .001, and .002.

Figures 7, 8, and 9 show the results. The sub-
sumption process produced small but consistent
improvements on all 3 data sets. For example, Fig-

ure 8 shows the results on the OP data, where all
of the accuracy values produced after subsumption
(the rightmost 3 columns) are higher than the ac-
curacy values produced without subsumption (the
Base[line] column). For all three data sets, the best
overall accuracy (shown in boldface) was always
achieved after subsumption.

Features Base δ=.0005 δ=.001 δ=.002
1Gram 79.8
1+2Gram 81.2 81.0 81.3 81.0
1+EP 81.7 81.4 81.4 82.0
1+2+EP 81.7 82.3 82.3 82.7

Figure 7: Accuracies on Polarity Data

Features Base δ=.0005 δ=.001 δ=.002
1Gram 97.5 - - -
1+2Gram 98.0 98.7 98.6 98.7
1+EP 97.2 97.8 97.9 97.9
1+2+EP 97.8 98.6 98.7 98.7

Figure 8: Accuracies on OP Data

Features Base δ=.0005 δ=.001 δ=.002
1Gram 74.8
1+2Gram 74.3 74.9 74.6 74.8
1+EP 74.4 74.6 74.6 74.6
1+2+EP 74.4 74.9 74.7 74.6

Figure 9: Accuracies on MPQA Data

We also observed that subsumption had a dra-
matic effect on the F-measure scores on the OP
data, which are shown in Figure 10. The OP data
set is fundamentally different from the other data
sets because it is so highly skewed, with 91% of
the documents belonging to the non-opinion class.
Without subsumption, the classifier was conser-
vative about assigning documents to the opinion
class, achieving F-measure scores in the 82-88
range. After subsumption, the overall accuracy
improved but the F-measure scores increased more
dramatically. These numbers show that the sub-
sumption process produced not only a more ac-
curate classifier, but a more useful classifier that
identifies more documents as being opinion arti-
cles.

For the MPQA data, we get a very small im-
provement of 0.1% (74.8% → 74.9%) using sub-
sumption. But note that without subsumption the
performance actually decreased when bigrams and
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Features Base δ=.0005 δ=.001 δ=.002
1Gram 84.5
1+2Gram 88.0 92.5 92.0 92.3
1+EP 82.4 86.9 87.4 87.4
1+2+EP 86.7 91.8 92.5 92.3

Figure 10: F-measures on OP Data
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Figure 11: Feature Selection on OP Data

extraction patterns were added! The subsumption
process counteracted the negative effect of adding
the more complex features.

5.2 Feature Selection Experiments

We conducted a second series of experiments to
determine whether a traditional feature selection
approach would produce the same, or better, im-
provements as subsumption. For each feature, we
computed its information gain (IG) and then se-
lected the N features with the highest scores.7 We
experimented with values of N ranging from 1,000
to 10,000 in increments of 1,000.

We hypothesized that applying subsumption be-
fore traditional feature selection might also help to
identify a more diverse set of high-performing fea-
tures. In a parallel set of experiments, we explored
this hypothesis by first applying subsumption to
reduce the size of the feature set, and then select-
ing the best N features using information gain.

Figures 11, 12, and 13 show the results of these
experiments for the 1+2+EP classifiers. Each
graph shows four lines. One line corresponds to
the baseline classifier with no subsumption, and
another line corresponds to the baseline classifier
with subsumption using the best δ value for that
data set. Each of these two lines corresponds to

7In the case of ties, we included all features with the same
score as the Nth-best as well.
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Figure 12: Feature Selection on Polarity Data
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Figure 13: Feature Selection on MPQA Data

just a single data point (accuracy value), but we
drew that value as a line across the graph for the
sake of comparison. The other two lines on the
graph correspond to (a) feature selection for dif-
ferent values of N (shown on the x-axis), and (b)
subsumption followed by feature selection for dif-
ferent values of N.

On all 3 data sets, traditional feature selection
performs worse than the baseline in some cases,
and it virtually never outperforms the best classi-
fier trained after subsumption (but without feature
selection). Furthermore, the combination of sub-
sumption plus feature selection generally performs
best of all, and nearly always outperforms feature
selection alone. For all 3 data sets, our best ac-
curacy results were achieved by performing sub-
sumption prior to feature selection. The best accu-
racy results are 99.0% on the OP data, 83.1% on
the Polarity data, and 75.4% on the MPQA data.
For the OP data, the improvement over baseline
for both accuracy and F-measure are statistically
significant at the p < 0.05 level (paired t-test). For
the MPQA data, the improvement over baseline is
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statistically significant at the p < 0.10 level.

6 Related Work

Many features and classification algorithms have
been explored in sentiment analysis and opinion
recognition. Lexical cues of differing complexi-
ties have been used, including single words and
Ngrams (e.g., (Mullen and Collier, 2004; Pang et
al., 2002; Turney, 2002; Yu and Hatzivassiloglou,
2003; Wiebe et al., 2004)), as well as phrases
and lexico-syntactic patterns (e.g, (Kim and Hovy,
2004; Hu and Liu, 2004; Popescu and Etzioni,
2005; Riloff and Wiebe, 2003; Whitelaw et al.,
2005)). While many of these studies investigate
combinations of features and feature selection,
this is the first work that uses the notion of sub-
sumption to compare Ngrams and lexico-syntactic
patterns to identify complex features that outper-
form simpler counterparts and to reduce a com-
bined feature set to improve opinion classification.

7 Conclusions

This paper uses a subsumption hierarchy of
feature representations as (1) an analytic tool
to compare features of different complexities,
and (2) an automatic tool to remove unneces-
sary features to improve opinion classification
performance. Experiments with three opinion
data sets showed that subsumption can improve
classification accuracy, especially when combined
with feature selection.
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Abstract
We extended language modeling ap-
proaches in information retrieval (IR) to
combine collaborative filtering (CF) and
content-based filtering (CBF). Our ap-
proach is based on the analogy between
IR and CF, especially between CF and rel-
evance feedback (RF). Both CF and RF
exploit users’ preference/relevance judg-
ments to recommend items. We first in-
troduce a multinomial model that com-
bines CF and CBF in a language modeling
framework. We then generalize the model
to another multinomial model that approx-
imates the Polya distribution. This gener-
alized model outperforms the multinomial
model by 3.4% for CBF and 17.4% for
CF in recommending English Wikipedia
articles. The performance of the gener-
alized model for three different datasets
was comparable to that of a state-of-the-
art item-based CF method.

1 Introduction

Recommender systems (Resnick and Varian,
1997) help users select particular items (e.g,
movies, books, music, and TV programs) that
match their taste from a large number of choices
by providing recommendations. The systems ei-
ther recommend a set of N items that will be of
interest to users (top-N recommendation problem)
or predict the degree of users’ preference for items
(prediction problem).

For those systems to work, they first have to
aggregate users’ evaluations of items explicitly or
implicitly. Users may explicitly evaluate certain
movies as rating five stars to express their prefer-
ence. These evaluations are used by the systems

as explicit ratings (votes) of items or the systems
infer the evaluations of items from the behavior of
users and use these inferred evaluations as implicit
ratings. For example, systems can infer that users
may like certain items if the systems learn which
books they buy, which articles they read, or which
TV programs they watch.

Collaborative filtering (CF) (Resnick et al.,
1994; Breese et al., 1998) and content-based (or
adaptive) filtering (CBF) (Allan, 1996; Schapire
et al., 1998) are two of the most popular types
of algorithms used in recommender systems. A
CF system makes recommendations to current
(active) users by exploiting their ratings in the
database. User-based CF (Resnick et al., 1994;
Herlocker et al., 1999) and item-based CF (Sarwar
et al., 2001; Karypis, 2001), among other CF algo-
rithms, have been studied extensively. User-based
CF first identifies a set of users (neighbors) that
are similar to the active user in terms of their rat-
ing patterns in the database. It then uses the neigh-
bors’ rating patterns to produce recommendations
for the active user. On the other hand, item-based
CF calculates the similarity between items before-
hand and then recommends items that are similar
to those preferred by the active user. The perfor-
mance of item-based CF has been shown to be
comparable to or better than that of user-based CF
(Sarwar et al., 2001; Karypis, 2001). In contrast
to CF, CBF uses the contents (e.g., texts, genres,
authors, images, and audio) of items to make rec-
ommendations for the active user. Because CF
and CBF are complementary, much work has been
done to combine them (Basu et al., 1998; Yu et
al., 2003; Si and Jin, 2004; Basilico and Hofmann,
2004).

The approach we took in this study is designed
to solve top-N recommendation problems with im-
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plicit ratings by using an item-based combination
of CF and CBF. The methods described in this
paper will be applied to recommending English
Wikipedia1 articles based on those articles edited
by active users. (This is discussed in Section 3.)
We use their editing histories and the contents of
their articles to make top-N recommendations. We
regard users’ editing histories as implicit ratings.
That is, if users have edited articles, we consider
that they have positive attitudes toward the arti-
cles. Those implicit ratings are regarded as pos-
itive examples. We do not have negative examples
for learning their negative attitudes toward arti-
cles. Consequently, handling our application with
standard machine learning algorithms that require
both positive and negative examples for classifica-
tion (e.g., support vector machines) is awkward.

Our approach is based on the advancement in
language modeling approaches to information re-
trieval (IR) (Croft and Lafferty, 2003) and extends
these to incorporate CF. The motivation behind our
approach is the analogy between CF and IR, espe-
cially between CF and relevance feedback (RF).
Both CF and RF recommend items based on user
preference/relevance judgments. Indeed, RF tech-
niques have been applied to CBF, or adaptive fil-
tering, successfully (Allan, 1996; Schapire et al.,
1998). Thus, it is likely that RF can also be applied
to CF.

To apply RF, we first extend the representation
of items to combine CF and CBF under the models
developed in Section 2. In Section 3, we report
our experiments with the models. Future work and
conclusion are in Sections 4 and 5.

2 Relevance feedback models

The analogy between IR and CF that will be ex-
ploited in this paper is as follows.2 First, a docu-
ment in IR corresponds to an item in CF. Both are
represented as vectors. A document is represented
as a vector of words (bag-of-words) and an item
is represented as a vector of user ratings (bag-of-
user ratings). In RF, a user specifies documents
that are relevant to his information need. These
documents are used by the system to retrieve new

1http://en.wikipedia.org/wiki/Main Page
2The analogy between IR and CF has been recognized.

For example, Breese et al. (1998) used the vector space
model to measure the similarity between users in a user-based
CF framework. Wang et al. (2005) used a language modeling
approach different from ours. These works, however, treated
only CF. In contrast with these, our model extends language
modeling approaches to incorporate both CF and CBF.

relevant documents. In CF, an active user (implic-
itly) specifies items that he likes. These items are
used to search new items that will be preferred by
the active user.

We use relevance models (Lavrenko and Croft,
2001; Lavrenko, 2004) as the basic framework
of our relevance feedback models because (1)
they perform relevance feedback well (Lavrenko,
2004) and (2) they can simultaneously handle dif-
ferent kinds of features (e.g., different language
texts (Lavrenko et al., 2002), such as texts and im-
ages (Leon et al., 2003). These two points are es-
sential in our application.

We first introduce a multinomial model follow-
ing the work of Lavrenko (2004). This model is
a novel one that extends relevance feedback ap-
proaches to incorporate CF. It is like a combina-
tion of relevance feedback (Lavrenko, 2004) and
cross-language information retrieval (Lavrenko et
al., 2002). We then generalize that model to an ap-
proximated Polya distribution model that is better
suited to CF and CBF. This generalized model is
the main technical contribution of this work.

2.1 Preparation
Lavrenko (2004) adopts the method of kernels to
estimate probabilities: Let d be an item in the
database or training data, the probability of item x
is estimated as p(x) = 1

M

∑
d p(x|θd), where M

is the number of items in the training data, θd is the
parameter vector estimated from d, and p(x|θd) is
the conditional probability of x given θd.3 This
means that once we have defined a probability dis-
tribution p(x|θ) and the method of estimating θd
from d, then we can assign probability p(x) to x
and apply language modeling approaches to CF
and CBF.

To begin with, we define the representation
of item x as the concatenation of two vectors
{wx,ux}, where wx = wx1wx2 . . . is the se-
quence of words (contents) contained in x and
ux = ux1ux2 . . . is the sequence of users who
have rated x implicitly. We use Vw and Vu to de-
note the set of words and users in the database.
The parameter vector θ is also the concatenation
of two vectors {ω, µ}, where ω and µ are the pa-
rameter vectors for Vw and Vu, respectively. The
probability of x given θ is defined as p(x|θ) =
pω(wx|ω)pµ(ux|µ).

3Item d in summation
∑

d
and word w in

∑
w

and
∏
w

go over every distinct item d and word w in the training data,
unless otherwise stated.
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2.2 Multinomial model
Our first model regards that both pω and pµ follow
multinomial distributions. In this case, ω(w) and
µ(u) are the probabilities of word w and user u.
Then, pω(wx|ω) is defined as

pω(wx|ω) =
|wx|∏

i=1

ω(wxi) =
∏

w∈Vw
ω(w)n(w,wx)

(1)
where n(w,wx) is the number of occurrences ofw
in wx. In this model, we use a linear interpolation
method to estimate probability ωd(w).

ωd(w) = λωPl(w|wd) + (1− λω)Pg(w) (2)

where Pl(w|wd) = n(w,wd)∑
w′ n(w′,wd)

, Pg(w) =
∑

d
n(w,wd)∑

d

∑
w′ n(w′,wd)

and λω (0 ≤ λω ≤ 1) is

a smoothing parameter. The estimation of user
probabilities goes similarly: Let n(u,ux) be the
number of times user u implicitly rated item x,
we define or estimate pµ, λµ and µd in the same
way. In summary, we have defined a probability
distribution p(x|θ) and the method of estimating
θd = {ωd, µd} from d.

To recommend top-N items, we have to rank
items in the database in response to the implicit
ratings of active users. We call those implicit rat-
ings query q. It is a set of items and is represented
as q = {q1 . . .qk}, where qi is an item implic-
itly rated by an active user and k is the size of q.
We next estimate θq = {ωq, µq}. Then, we com-
pare θq and θd to rank items by using Kullback-
Leibler divergence D(θq||θd) (Lafferty and Zhai,
2001; Lavrenko, 2004).
ωq(w) can be approximated as

ωq(w) =
1
k

k∑

i=1

ωqi(w) (3)

where ωqi(w) is obtained by Eq. 2 (Lavrenko,
2004). However, we found in preliminary experi-
ments that smoothing query probabilities hurt per-
formance in our application. Thus, we use

ωqi(w) = Pl(w|wqi) =
n(w,wqi)∑
w′ n(w′,wqi)

(4)

instead of Eq. 2 when qi is in a query.
Because KL-divergence is a distance measure,

we use a score function derived from −D(θq||θd)
to rank items. We use Sq(d) to denote the score

of d given q. Sq(d) is derived as follows. (We
ignore terms that are irrelevant to ranking items.)

−D(θq||θd) = −D(ωq||ωd)−D(µq||µd)

−D(ωq||ωd) rank=
1
k

k∑

i=1

S(ωqi ||ωd) (5)

where

S(ωqi ||ωd) =
∑
w

Pl(w|wqi)×log

(
λωPl(w|wd)

(1− λω)Pg(w)
+ 1

)
.

(6)

The summation goes over every word w that
is shared by both wqi and wd. We define
S(µqi ||µd) similarly.4 Then, the score of d given
qi, Sqi(d) is defined as

Sqi(d) = λsS(µqi ||µd) + (1− λs)S(ωqi ||ωd)
(7)

where λs (0 ≤ λs ≤ 1) is a free parameter. Fi-
nally, the score of d given q is

Sq(d) =
1
k

k∑

i=1

Sqi(d). (8)

The calculation of Sq(d) can be very efficient
because once we cache Sqi(d) for each item pair
of qi and d in the database, we can reuse it to cal-
culate Sq(d) for any query q. We further optimize
the calculation of top-N recommendations by stor-
ing only the top 100 items (neighbors) in decreas-
ing order of Sqi(·) for each item qi and setting
the scores of lower ranked items as 0. (Note that
Sqi(d) >= 0 holds.) Consequently, we only have
to search small part of the search space without
affecting the performance very much. These two
types of optimization are common in item-based
CF (Sarwar et al., 2001; Karypis, 2001).

2.3 Polya model
Our second model is based on the Polya distribu-
tion. We first introduce (hyper) parameter Θ =
{αω, αµ} and denote the probability of x given
Θ as p(x|Θ) = pω(wx|αω)pµ(ux|αµ). αω and
αµ are the parameter vectors for words and users.
pω(wx|αω) is defined as follows.

pω(wx|αω) =
Γ(

∑
w α

ω
w)

Γ(
∑
w n

x
w + αωw)

∏
w

Γ(nx
w + αωw)

Γ(αωw)
(9)

4S(µqi ||µd) =
∑

u
Pl(u|uqi) ×

log
(
λµPl(u|ud)

(1−λµ)Pg(u)
+ 1

)
, where Pl(u|uqi) =

n(u,µqi
)∑

u′ n(u′,µqi
)
, Pl(u|ud) = n(u,ud)∑

u′ n(u′,ud)
, and

Pg(u) =

∑
d
n(u,ud)∑

d

∑
u′ n(u′,ud)

.
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Figure 1: Relationship between original count n
and dumped count ν(n, α)

where Γ is known as the gamma function, αωw is a
parameter for word w and nx

w = n(w,wx). This
can be approximated as follows (Minka, 2003).

pω(wx|αω) ∼
∏
w

ω(w)ñ(w,wx) (10)

where

ñ(w,wx) = αωw(Ψ(nx
w + αωw)−Ψ(αωw))

≡ ν(nx
w, α

ω
w) (11)

Ψ is known as the digamma function and is sim-
ilar to the natural logarithm. We call Eq. 10 the
approximated Polya model or simply the Polya
model in this paper.

Eq. 10 indicates that the Polya distribution
can be interpreted as a multinomial distribution
over a modified set of counts ñ(·) (Minka, 2003).
These modified counts are dumped as shown in
Fig. 1. When αωw → ∞, ν(nx

w, α
ω
w) approaches

nx
w. When αωw → 0, ν(nx

w, α
ω
w) = 0 if nx

w = 0
otherwise it is 1. For intermediate values of αωw,
the mapping ν dumps the original counts.

Under the approximation of Eq. 10, the es-
timation of parameters can be understood as the
maximum-likelihood estimate of a multinomial
distribution from dumped counts ñ(·) (Minka,
2003). Indeed, all we have to do to estimate the
parameters for ranking items is replace Pl and Pg
from Section 2.2 with Pl(w|wd) = ñ(w,wd)∑

w′ ñ(w′,wd)
,

Pg(w) =
∑

d
ñ(w,wd)∑

d

∑
w′ ñ(w′,wd)

, and Pl(w|wqi) =
ñ(w,wqi )∑
w′ ñ(w′,wqi )

. Then, as in the multinomial model,

we can define S(ωqi ||ωd) with these probabilities.
This argument also applies to S(µqi ||µd).

The approximated Polya model is a generaliza-
tion of the multinomial model described in Sec-
tion 2.2. If we set αωw and αµu very large then the
Polya model is identical to the multinomial model.
By comparing Eqs. 1 and 10, we can see why the
Polya model is superior to the multinomial model
for modeling the occurrences of words (and users).
In the multinomial model, if a word with probabil-
ity p occurs twice, its probability becomes p2. In
the Polya model, the word’s probability becomes
p1.5, for example, if we set αωw = 1. Clearly,
p2 < p1.5; therefore, the Polya model assigns
higher probability. In this example, the Polya
model assigns probability p to the first occurrence
and p0.5(> p) to the second. Since words that oc-
cur once are likely to occur again (Church, 2000),
the Polya model is better suited to model the oc-
currences of words and users. See Yamamoto and
Sadamitsu (2005) for further discussion on apply-
ing the Polya distribution to text modeling.

Zaragoza et al.(2003) applied the Polya distri-
bution to ad hoc IR. They introduced the exact
Polya distribution (see Eq. 9) as an extension
to the Dirichlet prior method (Zhai and Lafferty,
2001). However, we have introduced a multino-
mial approximation of the Polya distribution. This
approximation allows us to use the linear interpo-
lation method to mix the approximated Polya dis-
tributions. Thus, our model is similar to two-stage
language models (Zhai and Lafferty, 2002) that
combine the Dirichlet prior method and the lin-
ear interpolation method. In contrast to our model,
Zaragoza et al.(2003) had difficulty in mixing the
Polya distributions and did not treat that in their
paper.

3 Experiments

We first examined the behavior of the Polya model
by varying the parameters. We tied αωw for every
w and αµu for every u; for any w and u, αωw = αω
and αµu = αµ. We then compared the Polya model
to an item-based CF method.

3.1 Behavior of Polya model

3.1.1 Dataset
We made a dataset of articles from English

Wikipedia5 to evaluate the Polya model. English
Wikipedia is an online encyclopedia that anyone

5We downloaded 20050713 pages full.xml.gz
and 20050713 pages current.xml.gz from
http://download.wikimedia.org/wikipedia/en/.
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can edit, and it has many registered users. Our
aim is to recommend a set of articles to each user
that is likely to be of interest to that user. If we
can successfully recommend interesting articles,
this could be very useful to a wide audience be-
cause Wikipedia is very popular. In addition, be-
cause wikis are popular media for sharing knowl-
edge, developing effective recommender systems
for wikis is important.

In our Wikipedia dataset, each item (article) x
consisted of wx and ux. ux was the sequence of
users who had edited x. If users had edited x mul-
tiple times, then those users occurred in ux multi-
ple times. wx was the sequence of words that were
typical in x. To make wx, we removed stop words
and stemmed the remaining words with a Porter
stemmer. Next, we identified 100 typical words
in each article and extracted only those words
(|wx| ≥ 100 because some of them occurred
multiple times). Typicality was measured using
the log-likelihood ratio test (Dunning, 1993). We
needed to reduce the number of words to speed up
our recommender system.

To make our dataset, we first extracted 302,606
articles, which had more than 100 tokens after the
stop words were removed. We then selected typi-
cal words in each article. The implicit rating data
were obtained from the histories of users editing
these articles. Each rating consisted of {user, ar-
ticle, number of edits}. The size of this original
rating data was 3,325,746. From this data, we ex-
tracted a dense subset that consisted of users and
articles included in at least 25 units of the original
data. We discarded the users who had edited more
than 999 articles because they were often software
robots or system operators, not casual users. The
resulting 430,096 ratings consisted of 4,193 users
and 9,726 articles. Each user rated (edited) 103
articles on average (the median was 57). The av-
erage number of ratings per item was 44 and the
median was 36.

3.1.2 Evaluation of Polya model

We conducted a four-fold cross validation of
this rating dataset to evaluate the Polya model. We
used three-fourth of the dataset to train the model
and one-fourth to test it.6 All users who existed in

6We needed to estimate probabilities of users and words.
We used only training data to estimate the probabilities of
users. However, we used all 9,726 articles to estimate the
probabilities of words because the articles are usually avail-
able even when editing histories of users are not.

both training and test data were used for evalua-
tion. For each user, we regarded the articles in the
training data that had been edited by the user as a
query and ranked articles in response to it. These
ranked top-N articles were then compared to the
articles in the test data that were edited by the
same user to measure the precisions for the user.
We used P@N (precision at rank N = the ratio of
the articles edited by the user in the top-N articles),
S@N (success at rankN = 1 if some top-N articles
were edited by the user, else 0), and R-precision (=
P@N, where N is the number of articles edited by
the user in the test data). These measures for each
user were averaged over all users to get the mean
precision of each measure. Then, these mean pre-
cisions were averaged over the cross validation re-
peats.

Here, we report the averaged mean pre-
cisions with standard deviations. We first
report how R-precision varied depend-
ing on α (αω or αµ). α was varied over
10−5, 0.4, 1.1, 2, 3.3, 5.4, 9, 16.4, 38.8, and 105.
The values of ν(10, α) were approximately 1, 2,
3, 4, 5, 6, 7, 8, 9, and 10, respectively, as shown
in Fig. 1. When α = 105, the Polya model
represents the multinomial model as discussed in
Section 2.3. For each value of α, we varied λ (λω
or λµ) over 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.95, and 0.99 to obtain the optimum
R-precision. These optimum R-precisions are
shown in Fig. 2. In this figure, CBF and CF
represent the R-precisions for the content-based
and collaborative filtering part of the Polya model.
The values of CBF and CF were obtained by
setting λs = 0 and λs = 1 in Eq. 7 (which
is applied to the Polya model instead of the
multinomial model), respectively. The error bars
represent standard deviations.

At once, we noticed that CBF outperformed
CF. This is reasonable because the contents of
Wikipedia articles should strongly reflect the users
(authors) interest. In addition, each article had
about 100 typical words, and this was richer than
the average number of users per article (44). This
observation contrasts with other work where CBF
performed poorly compared with CF, e.g., (Ali and
van Stam, 2004).

Another important observation is that both
curves in Fig. 2 are concave. The best R-
precisions were obtained at intermediate values of
α for both CF and CBF as shown in Table 1.
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Figure 2: R-precision for Polya model

Table 1: Improvement in R-precision (RP)
best RP (ν(·)/α) RP (ν(·)/α) %change

CBF 0.091 (7/9.0) 0.088 (10/105) +3.4%
CF 0.081 (2/0.4) 0.069 (10/105) +17.4%

When α = 105 or ν(10, α) ∼ 10, the Polya
model represents the multinomial model as dis-
cussed in Section 2.3. Thus, Fig. 2 and Table 1
show that the best R-precisions achieved by the
Polya model were better than those obtained by
the multinomial model. The improvement was
3.4% for CBF and 17.4% for CF as shown in Ta-
ble 1. The improvement of CF was larger than
that of CBF. This implies that the occurrences of
users are more clustered than those of words. In
other words, the degree of repetition in the editing
histories of users is greater than that in word se-
quences. A user who edits an article are likely to
edit the article again.

From Fig. 2 and Table 1, we concluded that the
generalization of a multinomial model achieved by
the Polya model is effective in improving recom-
mendation performance.

3.1.3 Combination of CBF and CF
Next, we show how the combination of CBF

and CF improves recommendation performance.
We set α (αω and αµ) to the optimum values in
Table 1 and varied λ (λs, λω and λµ) to obtain the
R-precisions for CBF+CF, CBF and CF in Fig. 3.
The values of CBF were obtained as follows. We
first set λs = 0 in Eq. 7 to use only CBF scores
and then varied λω, which is the smoothing pa-
rameter for word probabilities, in Eq. 2. To get
the values of CF, we set λs = 1 in Eq. 7 and then
varied λµ, which is the smoothing parameter for
user probabilities. The values of CBF+CF were
obtained by varying λs in Eq. 7 while setting λω
and λµ to the optimum values obtained from CBF
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Figure 3: Combination of CBF and CF.

Table 2: Precision and Success at top-N
CBF+CF CBF CF

N P@N S@N P@N S@N P@N S@N
5 0.166 0.470 0.149 0.444 0.137 0.408
10 0.135 0.585 0.123 0.562 0.112 0.516
15 0.117 0.650 0.107 0.628 0.098 0.582
20 0.105 0.694 0.096 0.671 0.089 0.627

R-precision 0.099 0.091 0.081
optimum λ λs = 0.2 λω = 0.01 λµ = 0.2

and CF (see Table 2). These parameters (λs, λω
and λµ) were defined in the context of the multi-
nomial model in Section 2.2 and used similarly in
the Polya model in this experiment.

We can see that the combination was quite ef-
fective as CBF+CF outperformed both CBF and
CF. Table 2 shows R-precision, P@N and S@N
for N = 5, 10, 15, 20. These values were obtained
by using the optimum values of λ in Fig. 3.

Table 2 shows the same tendency as Fig. 3. For
all values of N , CBF+CF outperformed both CBF
and CF. We attribute this effectiveness of the com-
bination to the feature independence of CBF and
CF. CBF used words as features and CF used user
ratings as features. They are very different kinds
of features and thus can provide complementary
information. Consequently, CBF+CF can exploit
the benefits of both methods. We need to do fur-
ther work to confirm this conjecture.

3.2 Comparison with a baseline method

We compared the Polya model to an implementa-
tion of a state-of-the-art item-based CF method,
CProb (Karypis, 2001). CProb has been tested
with various datasets and found to be effective in
top-N recommendation problems. CProb has also
been used in recent work as a baseline method
(Ziegler et al., 2005; Wang et al., 2005).

In addition to the Wikipedia dataset, we used
two other datasets for comparison. The first was
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R-precision P@10
WP ML BX WP ML BX

Polya-CF 0.081 0.272 0.066 0.112 0.384 0.054
CProb 0.082 0.258 0.071 0.113 0.373 0.057

%change -1.2% +5.4% -7.0% -0.9% +2.9% -5.3%

Table 3: Comparison of Polya-CF and CProb

the 1 million MovieLens dataset.7 This data con-
sists of 1,000,209 ratings of 3,706 movies by 6,040
users. Each user rated an average of 166 movies
(the median was 96). The average number of rat-
ings per movie was 270 and the median was 124.
The second was the BookCrossing dataset (Ziegler
et al., 2005). This data consists of 1,149,780 rat-
ings of 340,532 books by 105,283 users. From
this data, we removed books rated by less than 20
users. We also removed users who rated less than
5 books. The resulting 296,471 ratings consisted
of 10,345 users and 5,943 books. Each user rated
29 books on average (the median was 10). The av-
erage number of ratings per book was 50 and the
median was 33. Note that in our experiments, we
regarded the ratings of these two datasets as im-
plicit ratings. We regarded the number of occur-
rence of each rating as one.

We conducted a four-fold cross validation for
each dataset to compare CProb and Polya-CF,
which is the collaborative filtering part of the
Polya model as described in the previous section.
For each cross validation repeat, we tuned the pa-
rameters of CProb and Polya-CF on the test data to
get the optimum R-precisions, in order to compare
best results for these models.8 P@N and S@N
were calculated with the same parameters. These
measures were averaged as described above. R-
precision and P@10 are in Table 3. The max-
imum standard deviation of these measures was
0.001. We omitted reporting other measures be-
cause they had similar tendencies. In Table 3, WP,
ML and BX represent the Wikipedia, MovieLens,
and BookCrossing datasets.

In Table 3, we can see that the variation of per-
formance among datasets was greater than that be-
tween Polya-CF and CProb. Both methods per-

7http://www.grouplens.org/
8CProb has two free parameters. Polya-CF also has two

free parameters (αµ and λµ). However, for MovieLens and
BookCrossing datasets, Polya-CF has only one free parame-
ter λµ, because we regarded the number of occurrence of each
rating as one, which means ν(1, αµ) = 1 for all αµ > 0 (See
Fig. 1). Consequently, we don’t have to tune αµ. Since the
number of free parameters is small, the comparison of perfor-
mance shown in Table 3 is likely to be reproduced when we
tune the parameters on separate development data instead of
test data.

formed best against ML. We think that this is be-
cause ML had the densest ratings. The average
number of ratings per item was 270 for ML while
that for WP was 44 and that for BX was 50.

Table 3 also shows that Polya-CF outperformed
CProb when the dataset was ML and CProb was
better than Polya-CF in the other cases. However,
the differences in precision were small. Overall,
we can say that the performance of Polya-CF is
comparable to that of CProb.

An important advantage of the Polya model
over CProb is that the Polya model can unify CBF
and CF in a single language modeling framework
while CProb handles only CF. Another advantage
of the Polya model is that we can expect to im-
prove its performance by incorporating techniques
developed in IR because the Polya model is based
on language modeling approaches in IR.

4 Future work

We want to investigate two areas in our future
work. One is the parameter estimation and the
other is the refinement of the query model.

We tuned the parameters of the Polya model by
exhaustively searching the parameter space guided
by R-precision. We actually tried to learn αω
and αµ from the training data by using an EM
method (Minka, 2003; Yamamoto and Sadamitsu,
2005). However, the estimated parameters were
about 0.05, too small for better recommendations.
We need further study to understand the relation
between the probabilistic quality (perplexity) of
the Polya model and its recommendation quality.

We approximate the query model as Eq. 3. This
allows us to optimize score calculation consider-
ably. However, this does not consider the interac-
tion among items, which may deteriorate the qual-
ity of probability estimation. We want to inves-
tigate more efficient query models in our future
work.

5 Conclusion

Recommender systems help users select particular
items from a large number of choices by provid-
ing recommendations. Much work has been done
to combine content-based filtering (CBF) and col-
laborative filtering (CF) to provide better recom-
mendations. The contributions reported in this pa-
per are twofold: (1) we extended relevance feed-
back approaches to incorporate CF and (2) we in-
troduced the approximated Polya model as a gen-
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eralization of the multinomial model and showed
that it is better suited to CF and CBF. The perfor-
mance of the Polya model is comparable to that of
a state-of-the-art item-based CF method.

Our work shows that language modeling ap-
proaches in information retrieval can be extended
to CF. This implies that a large amount of work
in the field of IR could be imported into CF. This
would be interesting to investigate in future work.
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Abstract

Random Indexing is a vector space tech-
nique that provides an efficient and scal-
able approximation to distributional simi-
larity problems. We present experiments
showing Random Indexing to be poor at
handling large volumes of data and evalu-
ate the use of weighting functions for im-
proving the performance of Random In-
dexing. We find that Random Index is ro-
bust for small data sets, but performance
degrades because of the influence high fre-
quency attributes in large data sets. The
use of appropriate weight functions im-
proves this significantly.

1 Introduction

Synonymy relations between words have been
used to inform many Natural Language Processing
(NLP) tasks. While these relations can be extracted
from manually created resources such as thesauri
(e.g. Roget’s Thesaurus) and lexical databases
(e.g. WordNet, Fellbaum, 1998), it is often ben-
eficial to extract these relationships from a corpus
representative of the task.

Manually created resources are expensive and
time-consuming to create, and tend to suffer from
problems of bias, inconsistency, and limited cover-
age. These problems may result in an inappropri-
ate vocabulary, where some terms are not present
or an unbalanced set of synonyms. In a medical
context it is more likely that administration will re-
fer to the giving of medicine than to paper work,
whereas in a business context the converse is more
likely.

The most common method for automatically
creating these resources uses distributional simi-

larity and is based on the distributional hypoth-
esis that similar words appear in similar con-
texts. Terms are described by collating informa-
tion about their occurrence in a corpus into vec-
tors. These context vectors are then compared for
similarity. Existing approaches differ primarily in
their definition of context, e.g. the surrounding
words or the entire document, and their choice of
distance metric for calculating similarity between
the context vectors representing each term.

In this paper, we analyse the use of Random In-
dexing (Kanerva et al., 2000) for semantic similar-
ity measurement. Random Indexing is an approxi-
mation technique proposed as an alternative to La-
tent Semantic Analysis (LSA, Landauer and Du-
mais, 1997). Random Indexing is more scalable
and allows for the incremental learning of context
information.

Curran and Moens (2002) found that dramati-
cally increasing the volume of raw input data for
distributional similarity tasks increases the accu-
racy of synonyms extracted. Random Indexing
performs poorly on these volumes of data. Noting
that in many NLP tasks, including distributional
similarity, statistical weighting is used to improve
performance, we modify the Random Indexing al-
gorithm to allow for weighted contexts.

We test the performance of the original and our
modified system using existing evaluation metrics.
We further evaluate against bilingual lexicon ex-
traction using distributional similarity (Sahlgren
and Karlgren, 2005). The paper concludes with
a more detailed analysis of Random Indexing in
terms of both task and corpus composition. We
find that Random Index is robust for small cor-
pora, but larger corpora require that the contexts
be weighted to maintain accuracy.
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2 Random Indexing

Random Indexing is an approximating technique
proposed by Kanerva et al. (2000) as an alternative
to Singular Value Decomposition (SVD) for Latent
Semantic Analysis (LSA, Landauer and Dumais,
1997). In LSA, it is assumed that there is some
underlying dimensionality in the data, so that the
attributes of two or more terms that have similar
meanings can be folded onto a single axis.

Sahlgren (2005) criticise LSA for being both
computationally inefficient and requiring the for-
mation of a full co-occurrence matrix and its de-
composition before any similarity measurements
can be made. Random Indexing avoids both these
by creating a short index vector for each unique
context, and producing the context vector for each
term by summing index vectors for each context
as it is read, allowing an incremental building of
the context space.

Hecht-Nielsen (1994) observed that there are
many more nearly orthogonal directions in high-
dimensional space than there are truly orthogo-
nal directions. The random index vectors are
nearly-orthogonal, resulting in an approximate
description of the context space. The approx-
imation comes from the Johnson-Lindenstrauss
lemma (Johnson and Lindenstrauss, 1984), which
states that if we project points in a vector space
into a randomly selected subspace of sufficiently
high dimensionality, the distances between the
points are approximately preserved. Random Pro-
jection (Papadimitriou et al., 1998) and Random
Mapping (Kaski, 1998) are similar techniques that
use this lemma. Achlioptas (2001) showed that
most zero-mean distributions with unit variance,
including very simple ones like that used in Ran-
dom Indexing, produce a mapping that satisfies
the lemma. The following description of Ran-
dom Indexing is taken from Sahlgren (2005) and
Sahlgren and Karlgren (2005).

We allocate a d length index vector to each
unique context as is it found. These vectors con-
sist of a large number of 0s and a small number
(ε) of ±1s. Each element is allocated one of these
values with the following probability:











+1 with probability ε/2
d

0 with probability d−ε
d

−1 with probability ε/2
d

Context vectors are generated on-the-fly. As the
corpus is scanned, for each term encountered, its

contexts are extracted. For each new context, an
index vector is produced for it as above. The con-
text vector is the sum of the index vectors of all
the contexts in which the term appears.

The context vector for a term t appearing in one
each in the contexts c1 = [1, 0, 0,−1] and c2 =
[0, 1, 0,−1] would be [1, 1, 0,−2]. If the context
c1 encountered again, no new index vector would
be generated and the existing index vector for c1

would be added to the existing context vector to
produce a new context vector for t of [2, 1, 0,−3].

The distance between these context vectors can
then be measured using any vector space distance
measure. Sahlgren and Karlgren (2005) use the
cosine measure:

cos(θ(u, v)) =
~u · ~v

|~u| |~v|
=

∑d
i=1 ~ui~vi

√

∑d
i=1 ~u2

i

√

∑d
i=1 ~v2

i

Random Indexing allows for incremental sam-
pling. This means that the entire data set need not
be sampled before similarity between terms can be
measured. It also means that additional context
information can be added at any time without in-
validating the information already produced. This
is not feasible with most other word-space mod-
els. The approach used by Grefenstette (1994) and
Curran (2004) requires the re-computation of all
non-linear weights if new data is added, although
some of these weights can be approximated when
adding new data incrementally. Similarly, new
data can be folded into a reduced LSA space, but
there is no guarantee that the original smoothing
will apply correctly to the new data (Sahlgren,
2005).

3 Weights

Our initial experiments using Random Indexing
to extract synonymy relations produced worse re-
sults than those using full vector measures, such as
JACCARD (Curran, 2004), when the full vector is
weighted. We experiment using weight functions
with Random Indexing.

Only a linear weighting scheme can be applied
while maintaining incremental sampling. While
incremental sampling is part of the rationale be-
hind its development, it is not required for Ran-
dom Indexing to work as a dimensionality reduc-
tion technique.

To this end, we revise Random Indexing to en-
able us to use weight functions. For each unique
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IDENTITY 1.0 FREQ f(w, r, w′)

RELFREQ
f(w,r,w′)
f(w,∗,∗)

TF-IDF
f(w,r,w′)
n(∗,r,w′)

TF-IDF† log2(f(w,r,w′)+1)

log2(1+
N

(r,w′)

n(∗,r,w′)
)

MI log( p(w,r,w′)
p(w,∗,∗)p(∗,r,w′)

)

TTEST
p(w,r,w′)−p(∗,r,w′)p(w,∗,∗)√

p(∗,r,w′)p(w,∗,∗)
GREF94 log2(f(w,r,w′)+1)

log2(n(∗,r,w′)+1)

LIN98A log( f(w,r,w′)f(∗,r∗)
f(∗,r,w′)f(w,r,∗)

) LIN98B − log(n(∗,r,w′)
Nw

)

CHI2 cf. Manning and Schütze (1999) LR cf. Manning and Schütze (1999)

DICE
2p(w,r,w′)

p(w,∗,∗)+p(∗,r,w′)

Table 1: Weight Functions Evaluated

context attribute, a d length index vector will be
generated. The context vector of a term w is then
created by the weighted sum of each of its at-
tributes. The results of the original Random In-
dexing algorithm are reproduced using frequency
weighting (FREQ).

Weights are generated using the frequency dis-
tribution of each term and its contexts. This in-
creases the overhead, as we must store the context
attributes for each term. Rather than the context
vector being generated by adding each individual
context, it is generated by adding each the index
vector for each unique context multiplied by its
weight.

The time to calculate the weight of all attributes
of all terms is negligible. The original technique
scales to O(dnm) in construction, for n terms and
m unique attributes. Our new technique scales to
O(d(a + nm)) for a non-zero context attributes
per term, which since a � m is also O(dnm).

Following the notation of Curran (2004), a con-
text relation is defined as a tuple (w, r, w′) where
w is a term, which occurs in some grammatical re-
lation r with another word w′ in some sentence.
We refer to the tuple (r, w′) as an attribute of w.
For example, (dog, direct-obj, walk) indicates that
dog was the direct object of walk in a sentence.

An asterisk indicates the set of all existing val-
ues of that component in the tuple.

(w, ∗, ∗) ≡ {(r, w′)|∃(w, r, w′)}

The frequency of a tuple, that is the number of
times a word appears in a context is f(w, r, w′).
f(w, ∗, ∗) is the instance or token frequency of the
contexts in which w appears. n(w, ∗, ∗) is the type

frequency. This is the number of attributes of w.

f(w, ∗, ∗) ≡
∑

(r,w′)∈(w,∗,∗) f(w, r, w′)

p(w, ∗, ∗) ≡ f(w,∗,∗)
f(∗,∗,∗)

n(w, ∗, ∗) ≡ |(w, ∗, ∗)|
Nw ≡ |{w|n(w, ∗, ∗) > 0}|

Most experiments limited weights to the positive
range; those evaluated with an unrestricted range
are marked with a ± suffix. Some weights were
also evaluated with an extra log2(f(w, r, w′) +
1) factor to promote the influence of higher fre-
quency attributes, indicated by a LOG suffix. Al-
ternative functions are marked with a dagger.

The context vector of each term w is thus:

w̄ =
∑

(r,w′)∈(w,∗,∗)

~(r, w′) wgt(w, r, w′)

where ~(r, w′) is the index vector of the context
(r, w′). The weights functions we evaluate are
those from Curran (2004) and are given in Table 1.

4 Semantic Similarity

The first use of Random Indexing was to measure
semantic similarity using distributional similarity.
Kanerva et al. (2000) used Random Indexing to
find the best synonym match in Test of English
as a Foreign Language (TOEFL). TOEFL was used
by Landauer and Dumais (1997), who reported an
accuracy 36% using un-normalised vectors, which
was improved to 64% using LSA. Kanerva et al.
(2000) produced an accuracy of 48–51% using the
same type of document based contexts and Ran-
dom Indexing, which improved to 62–70% using
narrow context windows. Karlgren and Sahlgren
(2001) improved this to 72% using lemmatisation
and POS tagging.
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4.1 Distributional Similarity

Measuring distributional similarity first requires
the extraction of context information for each of
the vocabulary terms from raw text. The contexts
for each term are collected together and counted,
producing a vector of context attributes and their
frequencies in the corpus. These terms are then
compared for similarity using a nearest-neighbour
search based on distance calculations between the
statistical descriptions of their contexts.

The simplest algorithm for finding synonyms is
a k-nearest-neighbour search, which involves pair-
wise vector comparison of the context vector of
the target term with the context vector of every
other term in the vocabulary.

We use two types of context extraction to pro-
duce both high and low quality context descrip-
tions. The high quality contexts were extracted
from grammatical relations extracted using the
SEXTANT relation extractor (Grefenstette, 1994)
and are lemmatised. This is the same data used in
Curran (2004).

The low quality contexts were extracted taking
a window of one word to the left and right of the
target term. The context is marked as to whether
it preceded or followed the term. Curran (2004)
found this extraction technique to provided rea-
sonable results on the non-speech portion of the
BNC when the data was lemmatised. We do not
lemmatise, which produces noisier data.

4.2 Bilingual Lexicon Acquisition

A variation on the extraction of synonymy rela-
tions, is the extraction of bilingual lexicons. This
is the task of finding for a word in one language
words of a similar meaning in a second language.
The results of this can be used to aid manual con-
struction of resources or directly aid translation.

This task was first approached as a distribu-
tional similarity-like problem by Brown et al.
(1988). Their approach uses aligned corpora in
two or more languages: the source language, from
which we are translating, and the target language,
to which we are translating. For a each aligned
segment, they measure co-occurrence scores be-
tween each word in the source segment and each
word in the target segment. These co-occurrence
scores are used to measure the similarity between
source and target language terms

Sahlgren and Karlgren’s approach models the
problem as a distributional similarity problem us-

Source Context Target
Language Language

aaabbc I xxyzzz

bcc II wxy

aab III xzz

Table 2: Paragraph Aligned Corpora

ing the paragraph as context. In Table 2, the source
language is limited to the words a, b and c and the
target language to the words x, y and z. Three para-
graphs in each of these languages are presented as
pairs of translations labelled as a context: aaabbc

is translated as xxyzzz and labelled context I. The
frequency weighted context vector for a is {I:3,
III:2} and for x is {I:2, II:1, III:1}.

A translation candidate for a term in the source
language is found by measuring the similarity be-
tween its context vector and the context vectors of
each of the terms in the target language. The most
similar target language term is the most likely
translation candidate.

Sahlgren and Karlgren (2005) use Random In-
dexing to produce the context vectors for the
source and target languages. We re-implement
their system and apply weighting functions in an
attempt to achieve improved results.

5 Experiments

For the experiments extracting synonymy rela-
tions, high quality contexts were extracted from
the non-speech portion of the British National
Corpus (BNC) as described above. This represents
90% of the BNC, or 90 million words.

Comparisons between low frequency terms are
less accurate than between high frequency terms
as there is less evidence describing them (Cur-
ran and Moens, 2002). This is compounded in
randomised vector techniques because the ran-
domised nature of the representation means that
a low frequency term may have a similar context
vector to a high frequency term while not sharing
many contexts. A frequency cut-off of 100 was
found to balance this inaccuracy with the reduc-
tion in vocabulary size. This reduces the original
246,046 word vocabulary to 14,862 words. Exper-
iments showed d = 1000 and ε = 10 to provide a
balance between speed and accuracy.

Low quality contexts were extracted from por-
tions of the entire of the BNC. These formed cor-
pora of 100,000, 500,000, 1 million, 5 million, 10
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million, 50 million and 100 million words, cho-
sen from random documents. This allowed us test
the effect of both corpus size and context qual-
ity. This produced vocabularies of between 10,380
and 522,163 words in size. Because of the size
of the smallest corpora meant that a high cutoff
would remove to many terms for a fair test, a cut-
off of 5 was applied. The values d = 1000 and
ε = 6 were used.

For our experiments in bilingual lexicon acqui-
sition we follow Sahlgren and Karlgren (2005).
We use the Spanish-Swedish and the English-
German portions of the Europarl corpora (Koehn,
2005).1 These consist of 37,379 aligned para-
graphs in Spanish–Swedish and 45,556 in English-
German. The text was lemmatised using Con-
nexor Machinese (Tapanainen and Jävinen, 1997)2

producing vocabularies of 42,671 terms of Span-
ish, 100,891 terms of Swedish, 40,181 terms of
English and 70,384 terms of German. We use
d = 600 and ε = 6 and apply a frequency cut-
off of 100.

6 Evaluation Measures

The simplest method for evaluation is the direct
comparison of extracted synonyms with a man-
ually created gold standard (Grefenstette, 1994).
To reduce the problem of limited coverage, our
evaluation of the extraction of synonyms combines
three electronic thesauri: the Macquarie, Roget’s
and Moby thesauri.

We follow Curran (2004) and use two perfor-
mance measures: direct matches (DIRECT) and
inverse rank (INVR). DIRECT is the number of
returned synonyms found in the gold standard.
INVR is the sum of the inverse rank of each match-
ing synonym, e.g. matches at ranks 3, 5 and 28
give an inverse rank score of 1

3 + 1
5 + 1

28 . With
at most 100 matching synonyms, the maximum
INVR is 5.187. This more fine grained as it incor-
porates the both the number of matches and their
ranking.

The same 300 single word nouns were used for
evaluation as used by Curran (2004) for his large
scale evaluation. These were chosen randomly
from WordNet such that they covered a range over
the following properties: frequency, number of
senses, specificity and concreteness. On average
each evaluation term had 301 gold-standard syn-

1http://www.statmt.org/europarl/
2http://www.connexor.com/

Weight DIRECT INVR
FREQ 2.87 0.94
IDENTITY 3.18 0.95
RELFREQ 2.87 0.94
TF-IDF 0.30 0.07
TF-IDF† 3.92 1.39
MI 1.52 0.54
MILOG 3.38 1.39
MI± 1.87 0.65
MILOG± 3.49 1.41
TTEST 1.06 0.52
TTESTLOG 1.53 0.62
TTEST± 1.06 0.52
TTESTLOG± 1.52 0.61
GREF94 2.82 0.86
LIN98A 1.52 0.50
LIN98B 2.95 0.84
CHI2 0.46 0.25
DICE 3.32 1.11
DICELOG 2.56 0.81
LR 1.96 0.58

Table 3: Evaluation of synonym extraction

onyms. For each of these terms, the closest 100
terms and their similarity scores were extracted.

For the evaluation of bilingual lexicon acqui-
sition we use two online lexical resources used
by Sahlgren and Karlgren (2005) as gold stan-
dards: Lexin’s online Swedish-Spanish lexicon3

and TU Chemnitz’ online English-German dic-
tionary.4 Each of the elements in a compound
or multi-word expression is treated as a poten-
tial translation. The German abblendlicht (low beam

light) is treated as a translation candidate for low,
beam and light separately.

Low coverage is more of problem than in our
thesaurus task as we have not used combined re-
sources. There are an average of 19 translations
for each of the 3,403 Spanish terms and 197 trans-
lations for each of the 4,468 English terms. The
English-German translation count is skewed by
the presence of connectives in multi-word expres-
sions, such as of and on, producing mistranslations.
Sahlgren and Karlgren (2005) provide good com-
mentary on the evaluation of this task.

Spanish and English are used as the source lan-
guages. The 200 closest terms in the target lan-
guage are found for all terms in both the source
vocabulary and the gold-standards.

We measure the DIRECT score and INVR as
above. In addition we measure the precision of the
closest translation candidate, as used in Sahlgren
and Karlgren (2005).

3http://lexin.nada.kth.se/sve-spa.shtml
4http://dict.tu-chemnitz.de/
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Weight English-German Spanish-Swedish
DIRECT Precision INVR DIRECT Precision INVR

FREQ 6.1 58% 0.97 0.8 47% 0.53
IDENTITY 6.0 58% 0.91 0.8 47% 0.53
RELFREQ 6.1 58% 0.97 0.8 47% 0.53
TF-IDF 4.9 53% 0.84 0.8 43% 0.50
TF-IDF† 6.3 58% 0.94 0.8 47% 0.53
MI 2.3 58% 0.76 0.8 48% 0.56
MILOG 2.1 58% 0.76 0.8 49% 0.56
MI± 4.6 57% 0.86 0.8 46% 0.53
MILOG± 4.6 57% 0.87 0.8 47% 0.54
TTEST 2.1 57% 0.75 0.8 48% 0.56
TTESTLOG 1.9 56% 0.72 0.8 46% 0.54
TTEST± 4.3 57% 0.85 0.8 45% 0.53
TTESTLOG± 4.0 56% 0.80 0.8 46% 0.53
GREF94 6.1 58% 0.95 0.8 48% 0.54
LIN98A 4.0 59% 0.82 0.8 48% 0.56
LIN98B 5.9 58% 0.91 0.8 48% 0.54
CHI2 3.1 50% 0.71 0.7 41% 0.48
DICE 5.7 58% 0.95 0.8 47% 0.53
DICELOG 4.7 57% 0.90 0.8 46% 0.52
LR 4.5 57% 0.86 0.8 47% 0.54

Table 4: Evaluation of bilingual lexicon extraction

7 Results

Table 3 shows the results for the experiments ex-
tracting synonymy. The basic Random Indexing
algorithm (FREQ) produces a DIRECT score of
2.87, and an INVR of 0.94. It is interesting that
the only other linear weight, IDENTITY, produces
more accurate results. This shows high frequency,
low information contexts reduce the accuracy of
Random Indexing. IDENTITY removes this effect
by ignoring frequency, but does not address the
information aspect. A more accurate weight will
consider the information provided by a context in
its weighting.

There was a large variance in the effective-
ness of the other weights and most proved to be
detrimental to Random Indexing. TF-IDF was the
worst, reducing the DIRECT score to 0.30 and the
INVR to 0.07. TF-IDF†, which is a log-weighted
alternative to TF-IDF, produced very good results.

With the exception of DICELOG, adding an
additional log factor improved performance (TF-
IDF†, MILOG and TTESTLOG). Unrestricted
ranges improved the MI family, but made no dif-
ference to TTEST. Grefenstette’s variation on
TF-IDF (GREF94) does not perform as well as
TF-IDF†, and Lin’s variations on MI± (LIN98A,
LIN98B) do not perform as well as MILOG±.

MILOG± had a higher INVR than TF-IDF†, but
a lower DIRECT score, indicating that it forces
more correct results to the top of the results list,
but also forces some correct results further down
so that they no longer appear in the top 100.

Weight BNC LARGE
DIRECT INVR DIRECT INVR

FREQ 8.9 0.93 7.2 0.85
TF-IDF† 11.8 1.39 12.5 1.50
MILOG± 10.5 1.41 13.8 1.75

Table 5: Evaluation of Random Indexing using a
very large corpus

The effect of high frequency contexts is in-
creased further as we increase the size of the cor-
pus. Table 5 presents results using the 2 billion
word corpus used by Curran (2004). This consists
of the non-speech portion of the BNC, the Reuter’s
Corpus Volume 1 and most of the English news
holdings of the LDC in 2003. Contexts were ex-
tracted as presented in Section 4. A frequency cut-
off of 100 was applied and the values d = 1000
and ε = 5 for FREQ and ε = 10 for the improved
weights were used.

We see that the very large corpus has reduced
the accuracy of frequency weighted Random In-
dexing. In contrast, our two top performers have
both substantially increased in accuracy, present-
ing a 75–100% improvment in performance over
FREQ. MILOG± is more accurate than TF-IDF†
for both measures of accuracy now, indicating it is
a better weight function for very large data sets.

7.1 Bilingual Lexicon Acquisition

When the same function were applied to the bilin-
gual lexicon acquisition task we see substantially
different results: neither the improvement nor the
extremely poor results are found (Table 4).
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Figure 1: Random Indexing using window-based
context

In the English-German corpora we replicate
Sahlgren and Karlgren’s (2005) results, with a pre-
cision of 58%. This has a DIRECT score of 6.1 and
an INVR of 0.97. The only weight to make an im-
provement is TF-IDF†, which has a DIRECT score
of 6.3, but a lower INVR and all weights perform
worse in at least one measure.

Our results for the Spanish-Swedish corpora
show similar results. Our accuracy is down from
that in Sahlgren and Karlgren (2005). This is ex-
plained by our application of the frequency cut-off
to both the source and target languages. There are
more weights with higher accuracies, and fewer
with significantly lower accuracies.

7.2 Smaller Corpora

The absence of a substantial improvement in bilin-
gual lexicon acquisition requires further investiga-
tion. Three main factors differ between our mono-
lingual and bilingual experiments: that we are
smoothing a homogeneous data set in our mono-
lingual experiments and a heterogeneous data set
in our bilingual experiments; we are using local
grammatical contexts in our monolingual experi-
ments and paragraph contexts in our bilingual ex-
periments; and, the volume of raw data used in our
monolingual experiments is many times that used
in our bilingual experiments.

Figure 1 presents results for corpora extracted
from the BNC using the window-based context.
Results are shown for the original Random Index-
ing (FREQ) and using IDENTITY, MILOG± and
TF-IDF†, as well as for the full vector measure-
ment using JACCARD measure and the TTEST±

weight (Curran, 2004). Of the Random Index-
ing results FREQ produces the lowest overall re-

sults. It performs better than MILOG± for very
small corpora, but produces near constant results
for greater corpus sizes. Curran and Moens (2002)
found that increasing the volume of input data in-
creased the accuracy of results generated using a
full vector space model. Without weighting, Ran-
dom Indexing fails this, but after weighting is ap-
plied Curran and Moens’ results are confirmed.

The quality of context extracted influences how
weights perform individually, but Random In-
dexing using weights still outperforms not using
weights. The relative performance of MILOG±

has been reduced when compared with TF-IDF†,
but is still greater then FREQ.

Gorman and Curran (2006) showed Random In-
dexing to be much faster than full vector space
techniques, but with a 46–56% reduction in accu-
racy compared to using JACCARD and TTEST± .
Using the MI± weight kept the improvement in
speed but with only a 10–18% reduction in accu-
racy. When JACCARD and TTEST± are used with
our low quality contexts they perform consistently
worse that Random Indexing. This indicates Ran-
dom Indexing is stable in the presence of noisy
data. It would be interesting to further compare
these results to those produced by LSA.

The results we have presented have shown that
applying weights to Random Indexing can im-
prove its performance for thesaurus extraction
tasks. This improvement is dependent on the vol-
ume of raw data used to generate the context in-
formation. It is less dependent on the quality of
contexts extracted.

What we have not shown is whether this extends
to the extraction of bilingual lexicons. The bilin-
gual corpora have 12-16 million words per lan-
guage, and for this sized corpora we already see
substantial improvement with corpora as small as
5 million words (Figure 1). It may be that ex-
tracting paragraph-level contexts is not well suited
to weighting, or that the heterogeneous nature of
the aligned corpora reduces the meaningfulness of
weighting. There is also the question as to whether
it can be applied to all languages. There is a lack of
freely available large-scale multi-lingual resources
that makes this difficult to examine.

8 Conclusion

We have applied weighting functions to the vec-
tor space approximation Random Indexing. For
large data sets we found a significant improvement
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when weights were applied. For smaller data sets
we found that Random Indexing was sufficiently
robust that weighting had at most a minor effect.

Our weighting schemes removed the possibil-
ity of incremental learning of the term space. An
interesting direction would be the development of
algorithms that allowed the incremental applica-
tion of weights, perhaps by re-weighting vectors
when a new context is learned.

Other areas left open for investigation are the in-
teraction between Random Indexing, weights and
the type of context extracted, the use of large-
scale bilingual corpora, the acquisition of lexi-
cons for non-Indo-European languages and across
language family boundaries, and the difference in
effect term and paragraph/document contexts for
thesaurus extraction.

We have demonstrated that the accuracy of Ran-
dom Indexing can be improved by applying weight
functions, increasing accuracy by up to 50% on the
BNC and 100% on a 2 billion word corpus.
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Abstract

Markov order-1 conditional random fields
(CRFs) and semi-Markov CRFs are two
popular models for sequence segmenta-
tion and labeling. Both models have ad-
vantages in terms of the type of features
they most naturally represent. We pro-
pose a hybrid model that is capable of rep-
resenting both types of features, and de-
scribe efficient algorithms for its training
and inference. We demonstrate that our
hybrid model achieves error reductions of
18% and 25% over a standard order-1 CRF
and a semi-Markov CRF (resp.) on the
task of Chinese word segmentation. We
also propose the use of a powerful fea-
ture for the semi-Markov CRF: the log
conditional odds that a given token se-
quence constitutes a chunk according to
a generative model, which reduces error
by an additional 13%. Our best system
achieves 96.8% F-measure, the highest re-
ported score on this test set.

1 Introduction

The problem of segmenting sequence data into
chunks arises in many natural language applica-
tions, such as named-entity recognition, shallow
parsing, and word segmentation in East Asian lan-
guages. Two popular discriminative models that
have been proposed for these tasks are the condi-
tional random field (CRFs) (Lafferty et al., 2001)
and the semi-Markov conditional random field
(semi-CRF) (Sarawagi and Cohen, 2004).

A CRF in its basic form is a model for label-
ing tokens in a sequence; however it can easily
be adapted to perform segmentation via labeling

each token asBEGIN or CONTINUATION, or accord-
ing to some similar scheme. CRFs using this tech-
nique have been shown to be very successful at the
task of Chinese word segmentation (CWS), start-
ing with the model of Peng et al. (2004). In the
Second International Chinese Word Segmentation
Bakeoff (Emerson, 2005), two of the highest scor-
ing systems in the closed track competition were
based on a CRF model. (Tseng et al., 2005; Asa-
hara et al., 2005)

While the CRF is quite effective compared with
other models designed for CWS, one wonders
whether it may be limited by its restrictive inde-
pendence assumptions on non-adjacent labels: an
order-M CRF satisfies the order-M Markov as-
sumption that, globally conditioned on the input
sequence, each label is independent of all other
labels given theM labels to its left and right.
Consequently, the model only “sees” word bound-
aries within a moving window ofM + 1 charac-
ters, which prohibits it from explicitly modeling
the tendency of strings longer than that window
to form words, or from modeling the lengths of
the words. Although the window can in principle
be widened by increasingM , this is not a practi-
cal solution as the complexity of training and de-
coding a linear sequence CRF grows exponentially
with the Markov order.

The semi-CRF is a sequence model that is de-
signed to address this difficulty via careful relax-
ation of the Markov assumption. Rather than re-
casting the segmentation problem as a labeling
problem, the semi-CRF directly models the dis-
tribution of chunk boundaries.1 In terms of inde-

1As it was originally described, the semi-CRF also as-
signs labels to each chunk, effectively performing joint seg-
mentation and labeling, but in a pure segmentation problem
such as CWS, the use of labels is unnecessary.
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pendence, using an order-M semi-CRF entails the
assumption that, globally conditioned on the input
sequence, the position of each chunk boundary is
independent of all other boundaries given the po-
sitions of theM boundaries to its left and right
regardless of how far away they are. Even with an
order-1 model, this enables several classes of fea-
tures that one would expect to be of great utility
to the word segmentation task, in particularword
lengthandword identity.

Despite this, the only work of which we are
aware exploring the use of a semi-Markov CRF
for Chinese word segmentation did not find signif-
icant gains over the standard CRF (Liang, 2005).
This is surprising, not only because the additional
features a semi-CRF enables are intuitively very
useful, but because as we will show, an order-M
semi-CRF is strictly more powerful than an or-
der-M CRF, in the sense that any feature that can
be used in the latter can also be used in the for-
mer, or equivalently, the semi-CRF makes strictly
weaker independence assumptions. Given a judi-
cious choice of features (or simply enough training
data) the semi-CRF should be superior.

We propose that the reason for this discrepancy
may be that despite the greater representational
power of the semi-CRF, there are some valuable
features that are more naturally expressed in a
CRF segmentation model, and so they are not typ-
ically included in semi-CRFs (indeed, they have
not to date been used in any semi-CRF model for
any task, to our knowledge). In this paper, we
show that semi-CRFs are strictly more expressive,
and also demonstrate how CRF-type features can
be used in a semi-CRF model for Chinese word
segmentation. Our experiments show that a model
incorporating both types of features can outper-
form models using only one or the other type.

Orthogonally, we explore in this paper the use
of a very powerful feature for the semi-CRF de-
rived from a generative model.

It is common in statistical NLP to use as fea-
tures in a discriminative model the (logarithm of
the) estimated probability of some event accord-
ing to a generative model. For example, Collins
(2000) uses a discriminative classifier for choosing
among the topN parse trees output by a generative
baseline model, and uses the log-probability of a
parse according to the baseline model as a feature
in the reranker. Similarly, the machine translation
system of Och and Ney uses log-probabilities of

phrasal translations and other events as features in
a log-linear model (Och and Ney, 2002; Och and
Ney, 2004). There are many reasons for incorpo-
rating these types of features, including the desire
to combine the higher accuracy of a discriminative
model with the simple parameter estimation and
inference of a generative one, and also the fact that
generative models are more robust in data sparse
scenarios (Ng and Jordan, 2001).

For word segmentation, one might want to use
as a local feature the log-probability that a segment
is a word, given the character sequence it spans. A
curious property of this feature is that it induces
a counterintuitive asymmetry between theis-word
and is-not-wordcases: the component generative
model can effectively dictate that a certain chunk
isnota word, by assigning it a very low probability
(driving the feature value to negative infinity), but
it cannot dictate that a chunkis a word, because
the log-probability is bounded above.2 If instead
the log conditional oddslog Pi(y|x)

Pi(¬y|x) is used, the
asymmetry disappears. We show that such a log-
odds feature provides much greater benefit than
the log-probability, and that it is useful to include
such a feature even when the model also includes
indicator function features for every word in the
training corpus.

2 Hybrid Markov/Semi-Markov CRF

The model we describe is formally a type of semi-
Markov CRF, distinguished only in that it also in-
volves CRF-style features. So we first describe the
semi-Markov model in its general form.

2.1 Semi-Markov CRF

An (unlabeled) semi-Markov conditional random
field is a log-linear model defining the conditional
probability of a segmentation given an observation
sequence. The general form of a log-linear model
is as follows: given an inputx ∈ X, an output
y ∈ Y , a feature mappingΦ : X × Y 7→ Rn, and
a weight vectorw, the conditional probability of
y givenx is estimated as:

P (y | x) =
exp (w · Φ(x,y))

Z(x)

whereZ : x 7→ R is a normalizing factor.w
is typically chosen to maximize the conditional
likelihood of a labeled training set. In the word

2We assume the weight assigned to the log-probability
feature is positive.
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segmentation task,x is an ordered sequence of
characters(x1, x2, . . . , xn), andy is a set of in-
dices corresponding to the start of each word:
{y1, y2, . . . , ym} such thaty1 = 1, ym ≤ n, and
for all j, yj < yj+1. A log-linear model in this
space is an order-1 semi-CRF if its feature mapΦ
decomposes according to

Φ(x,y) =
m∑

j=1

φS(yj , yj+1,x) (1)

whereφS is a local feature map that only considers
one chunk at a time (definingym+1 = n+1). This
decomposition is responsible for the characteristic
independence assumptions of the semi-CRF.

Hand-in-hand with the feature decomposition
and independence assumptions comes the capac-
ity for exact decoding using the Viterbi algorithm,
and exact computation of the objective gradient
using the forward-backward algorithm, both in
time quadratic in the lengths of the sentences.
Furthermore, if the model is constrained to pro-
pose only chunkings with maximum word length
k, then the time for inference and training be-
comes linear in the sentence length (and ink). For
Chinese word segmentation, choosing a moderate
value ofk does not pose any significant risk, since
the vast majority of Chinese words are only a few
characters long: in our training set, 91% of word
tokens were one or two characters, and 99% were
five characters or less.

Using a semi-CRF as opposed to a traditional
Markov CRF allows us to model some aspects
of word segmentation that one would expect to
be very informative. In particular, it makes pos-
sible the use of local indicator function features
of the type “the chunk consists of character se-
quenceχ1, . . . , χ`,” or “the chunk is of length̀ .”
It also enables “pseudo-bigram language model”
features, firing when a given word occurs in the
context of a given character unigram or bigram.3

And crucially, although it is slightly less natural
to do so, any feature used in an order-1 Markov
CRF can also be represented in a semi-CRF. As
Markov CRFs are used in the most competitive
Chinese word segmentation models to date, one
might expect that incorporating both types of fea-
tures could yield a superior model.

3We did not experiment with this type of feature.

2.2 CRF vs. Semi-CRF

In order to compare the two types of linear CRFs,
it is convenient to define a representation of the
segmentation problem in terms of character labels
as opposed to sets of whole words. Denote by
L(y) ∈ {B,C}n (for BEGIN vs. CONTINUATION)
the sequence{L1, L2, . . . Ln} of labels such that
Li = B if and only if yi ∈ y. It is clear that if we
constrainL1 = B, the two representationsy and
L(y) are equivalent. An order-1 Markov CRF is a
log-linear model in which the global feature vector
Φ decomposes into a sum over local feature vec-
tors that consider bigrams of the label sequence:

Φ(x,y) =
n∑

i=1

φM (Li, Li+1, i,x) (2)

(whereLn+1 is defined asB). The local features
that are most naturally expressed in this context
are indicators of some joint event of the label bi-
gram(Li, Li+1) and nearby characters inx. For
example, one might use the feature “the current
characterxi is χ andLi = C”, or “the current and
next characters are identical andLi = Li+1 = B.”

Although we have heretofore disparaged the
CRF as being incapable of representing such pow-
erful features as word identity, the type of features
that it most naturally represents should be help-
ful in CWS for generalizing to unseen words. For
example, the first feature mentioned above could
be valuable to rule out certain word boundaries if
χ were a character that typically occurs only as a
suffix but that combines freely with a variety of
root forms to create new words. This type of fea-
ture (specifically, a feature indicating theabsence
as opposed to thepresenceof a chunk boundary)
is a bit less natural in a semi-CRF, since in that
case local featuresφS(yj , yj+1,x) are defined on
pairs of adjacent boundaries. Information about
which tokens arenot on boundaries is only im-
plicit, making it a bit more difficult to incorporate
that information into the features. Indeed, neither
Liang (2005) nor Sarawagi and Cohen (2004) nor
any other system using a semi-Markov CRF on
any task has included this type of feature to our
knowledge. We hypothesize (and our experiments
confirm) that the lack of this feature explains the
failure of the semi-CRF to outperform the CRF for
word segmentation in the past.

Before showing how CRF-type features can be
used in a semi-CRF, we first demonstrate that the
semi-CRF is indeed strictly more expressive than
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the CRF, meaning that any global feature mapΦ
that decomposes according to (2) also decomposes
according to (1). It is sufficient to show that for
any feature mapΦM of a Markov CRF, there exists
a semi-Markov-type feature mapΦS such that for
anyx,y,

ΦM (x,y) =
n∑

i=1

φM (Li, Li+1, i,x) (3)

=
m∑

j=1

φS(yj , yj+1,x) = ΦS(x,y)

To this end, note that there are only four possible
label bigrams:BB, BC, CB, andCC. As a di-
rect result of the definition ofL(y), we have that
(Li, Li+1) = (B,B) if and only if some word of
length one begins ati, or equivalently, there exists
a wordj such thatyj = i andyj+1−yj = 1. Sim-
ilarly, (Li, Li+1) = (B,C) if and only if some
word of length> 1 begins ati, etc. Using these
conditions, we can defineφS to satisfy equation 3
as follows:

φS(yj , yj+1,x) = φM (B,B, yj ,x)

if yj+1 − yj = 1, and

φS(yj , yj+1,x) = φM (B,C, yj ,x)

+
yj+1−2∑
k=yj+1

φM (C,C, k,x) (4)

+ φM (C,B, yj+1 − 1,x)

otherwise. Defined thus,
∑m

j=1 φS will contain ex-
actlyn φM terms, corresponding to then label bi-
grams.4

2.3 Order-1 Markov Features in a Semi-CRF

While it is fairly intuitive that any feature used in a
1-CRF can also be used in a semi-CRF, the above
argument reveals an algorithmic difficulty that is
likely another reason that such features are not typ-
ically used. The problem is essentially an effect of
the sum forCC label bigrams in (4): quadratic
time training and decoding assumes that the fea-
tures of each chunkφS(yj , yj+1,x) can be multi-
plied with the weight vectorw in a number of op-
erations that is roughly constant over all chunks,

4We have discussed the case of Markov order-1, but the
argument can be generalized to show that an order-M CRF
has an equivalent representation as an order-M semi-CRF,
for anyM .

procedureComputeScores(x,w)
for i = 2 . . . (n− 1) do

σCC
i ← φM (C,C, i,x) ·w

end for
for a = 1 . . . n do

CCsum← 0
for b = (a + 1) . . . (n + 1) do

if b− a = 1 then
σab ← φM (B,B, a,x) ·w

else
σab ← φM (B,C, a,x) ·w + CCsum

+φM (C,B, b− 1,x) ·w
CCsum← CCsum + σCC

b−1

end if
end for

end for

Figure 1: Dynamic program for computing chunk
scoresσab with 1-CRF-type features.

but if one näıvely distributes the product over the
sum, longer chunks will take proportionally longer
to score, resulting in cubic time algorithms.5

In fact, it is possible to use these features
without any asymptotic decrease in efficiency by
means of a dynamic program. Both Viterbi and
forward-backward involve the scoresσab = w ·
φS(a, b,x). Suppose that before starting those al-
gorithms, we compute and cache the scoreσab of
each chunk, so that remainder the algorithm runs
in quadratic time, as usual. This pre-computation
can be done quickly if we first compute the values
σCC

i = w · φM (C,C, i,x), and use them to fill in
the values ofσab as shown in Figure 1.

In addition, computing the gradient of the semi-
CRF objective requires that we compute the ex-
pected value of each feature. For CRF-type fea-
tures, this is tantamount to being able to compute
the probability that each label bigram(Li, Li+1)
takes any value. Assume that we have already run
standard forward-backward inference so that we
have for any(a, b) the probability that the subse-
quence(xa,xa+1, . . . ,xb−1) segments as a chunk,
P (chunk(a, b)). Computing the probability that
(Li, Li+1) takes the valuesBB, BC or CB is
simple to compute:

P (Li, Li+1 = BB) = P (chunk(i, i + 1))

5Note that the problem would arise even if only zero-order
Markov (label unigram) features were used, only in that case
the troublesome features would be those that involved the la-
bel unigramC.
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and, e.g.,

P (Li, Li+1 = BC) =
∑

j>i+1

P (chunk(i, j)),

but the same method of summing over chunks can-
not be used for the valueCC since for each label
bigram there are quadratically many chunks cor-
responding to that value. In this case, the solution
is deceptively simple: using the fact that for any
given label bigram, the sum of the probabilities of
the four labels must be one, we can deduce that

P (Li, Li+1 = CC) = 1.0− P (Li, Li+1 = BB)
− P (Li, Li+1 = BC)− P (Li, Li+1 = CB).

One might object that features of theC andCC
labels (the ones presenting algorithmic difficulty)
are unnecessary, since under certain conditions,
their removal would not in fact change the expres-
sivity of the model or the distribution that maxi-
mizes training likelihood. This will indeed be the
case when the following conditions are fulfilled:

1. All label bigram features are of the form

φM (Li,Li+1, i,x) =
1{(Li, Li+1) = α & pred(i,x)}

for some label bigramα and predicatepred,
and any such feature with a given predicate
has variants for all four label bigramsα.

2. No regularization is used during training.

A proof of this claim would require too much
space for this paper, but the key is that, given a
model satisfying the above conditions, one can
obtain an equivalent model via adding, for each
feature type overpred, some constant to the four
weights corresponding to the four label bigrams,
such that theCC bigram features all have weight
zero.

In practice, however, one or both of these con-
ditions is always broken. It is common knowl-
edge that regularization of log-linear models with
a large number of features is necessary to achieve
high performance, and typically in NLP one de-
fines feature templates and chooses only those fea-
tures that occur in some positive example in the
training set. In fact, if both of these conditions are
fulfilled, it is very likely that the optimal model
will have some weights with infinite values. We
conclude that it is not a practical alternative to omit
theC andCC label features.

2.4 Generative Features in a Discriminative
Model

When using the output of a generative model as
a feature in a discriminative model, Raina et al.
(2004) provide a justification for the use of log
conditional odds as opposed to log-probability:
they show that using log conditional odds as fea-
tures in a logistic regression model is equivalent
to discriminatively training weights for the fea-
tures of a Näıve Bayes classifier to maximize
conditional likelihood.6 They demonstrate that
the resulting classifier, termed a “hybrid genera-
tive/discriminative classifier”, achieves lower test
error than either pure Naı̈ve Bayes or pure logistic
regression on a text classification task, regardless
of training set size.

The hybrid generative/discriminative classifier
also uses a unique method for using the same data
used to estimate the parameters of the compo-
nent generative models for training the discrimina-
tive model parametersw without introducing bias.
A “leave-one-out” strategy is used to choosew,
whereby the feature values of thei-th training ex-
ample are computed using probabilities estimated
with thei-th example held out. The beauty of this
approach is that since the probabilities are esti-
mated according to (smoothed) relative frequency,
it is only necessary during feature computation to
maintain sufficient statistics and adjust them as
necessary for each example.

In this paper, we experiment with the use of
a single “hybrid” local semi-CRF feature, the
smoothed log conditional odds that a given sub-
sequencexab = (xa, . . . ,xb−1) forms a word:

log
wordcount(xab) + 1

nonwordcount(xab) + 1
,

where wordcount(xab) is the number of times
xab forms a word in the training set, and
nonwordcount(xab) is the number of timesxab

occurs, not segmented into a single word. The
models we test are not strictly speaking hybrid
generative/discriminative models, since we also
use indicator features not derived from a genera-
tive model. We did however use the leave-one-out
approach for computing the log conditional odds
feature during training.

6In fact, one more step beyond what is shown in that paper
is required to reach the stated conclusion, since their features
are not actually log conditional odds, butlog P (x|y)

P (x|¬y)
. It is

simple to show that in the given context this feature is equiv-
alent to log conditional odds.
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3 Experiments

To test the ideas discussed in this paper, we com-
pared the performance of semi-CRFs using vari-
ous feature sets on a Chinese word segmentation
task. The data used was the Microsoft Research
Beijing corpus from the Second International
Chinese Word Segmentation Bakeoff (Emerson,
2005), and we used the same train/test split used in
the competition. The training set consists of 87K
sentences of Beijing dialect Chinese, hand seg-
mented into 2.37M words. The test set contains
107K words comprising roughly 4K sentences.
We used a maximum word lengthk of 15 in our
experiments, which accounted for 99.99% of the
word tokens in our training set. The 249 train-
ing sentences that contained words longer than 15
characters were discarded. We did not discard any
test sentences.

In order to be directly comparable to the Bake-
off results, we also worked under the very strict
“closed test” conditions of the Bakeoff, which re-
quire that no information or data outside of the
training set be used, not even prior knowledge of
which characters represent Arabic numerals, Latin
characters or punctuation marks.

3.1 Features Used

We divide our main features into two types accord-
ing to whether they are most naturally used in a
CRF or a semi-CRF.

The CRF-type features are indicator functions
that fire when the character label (or label bigram)
takes some value and some predicate of the input
at a certain position relative to the label is satis-
fied. For each character label unigramL at posi-
tion i, we use the same set of predicate templates
checking:

• The identity ofxi−1 andxi

• The identity of the character bigram starting
at positionsi− 2, i− 1 andi

• Whetherxj andxj+1 are identical, forj =
(i− 2) . . . i

• Whetherxj andxj+2 are identical, forj =
(i− 3) . . . i

• Whether the sequencexj . . .xj+3 forms an
AABB sequence forj = (i− 4) . . . i

• Whether the sequencexj . . .xj+3 forms an
ABAB sequence forj = (i− 4) . . . i

The latter four feature templates are designed to
detect character or word reduplication, a morpho-
logical phenomenon that can influence word seg-
mentation in Chinese. The first two of these were
also used by Tseng et al. (2005).

For label bigrams(Li, Li+1), we use the same
templates, but extending the range of positions
by one to the right.7 Each label uni- or bigram
also has a “prior” feature that always fires for
that label configuration. All configurations con-
tain the above features for the label unigramB,
since these are easily used in either a CRF or semi-
CRF model. To determine the influence of CRF-
type features on performance, we also test config-
urations in which bothB andC label features are
used, and configurations using all label uni- and
bigrams.

In the semi-Markov conditions, we also use as
feature templates indicators of the length of a word
`, for ` = 1 . . . k, and indicators of the identity of
the corresponding character sequence.

All feature templates were instantiated with val-
ues that occur in positive training examples. We
found that excluding CRF-type features that occur
only once in the training set consistently improved
performance on the development set, so we use a
count threshold of two for the experiments. We do
not do any thresholding of the semi-CRF features,
however.

Finally, we use the single generative feature,
log conditional odds that the given string forms
a word. We also present results using the more
typical log conditional probability instead of the
odds, for comparison. In fact, these are both semi-
Markov-type features, but we single them out to
determine what they contribute over and above the
other semi-Markov features.

3.2 Results

The results of test set runs are summarized in ta-
ble 3.2. The columns indicate which CRF-type
features were used: features of only the labelB,
features of label unigramsB and C, or features
of all label unigrams and bigrams. The rows indi-
cate which semi-Markov-type features were used:

7For both label unigram and label bigram features, the in-
dices are chosen so that the feature set exhibits no asymmetry
with respect to direction: for each feature considering some
boundary and some property of the character(s) at a given
offset to the left, there is a corresponding feature considering
that boundary and the same property of the character(s) at the
same offset to the right, and vice-versa.
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Features B only uni uni+bi
none 92.33 94.71 95.69
semi 95.28 96.05 96.46
prob 93.86 95.40 96.04

semi+prob 95.51 96.24 96.55
odds 95.10 96.06 96.40

semi+odds 96.27 96.77 96.84

Table 1: Test F-measure for different model con-
figurations.

“semi” means length and word identity features
were used, “prob” means the log-probability fea-
ture was used, and “odds” means the log-odds fea-
ture was used.

To establish the impact of each type of feature
(C label unigrams, label bigrams, semi-CRF-type
features, and the log-odds feature), we look at the
reduction in error brought about by adding each
type of feature. First consider the effect of the
CRF-type features. Adding theC label features
reduces error by 31% if no semi-CRF features are
used, by 16% when semi-CRF indicator features
are turned on, and by 13% when all semi-CRF fea-
tures (including log-odds) are used. Using all label
bigrams reduces error by 44%, 25%, and 15% in
these three conditions, respectively.

Contrary to previous conclusions, our results
show a significant impact due to the use of semi-
CRF-type features, when CRF-type features are
held constant. Adding semi-CRF indicator fea-
tures results in a 38% error reduction without
CRF-type features, and 18% with them. Adding
semi-CRF indicator features plus the log-odds fea-
ture gives 52% and 27% in these two conditions,
respectively.

Finally, across configurations, the log condi-
tional odds does much better than log condi-
tional probability. When the log-odds feature is
added to the complete CRF model (uni+bi) as
the only semi-CRF-type feature, errors are re-
duced by 24%, compared to only 7.6% for the log-
probability. Even when the other semi-CRF-type
features are present as well, log-odds reduces error
by 13% compared to 2.5% for log-probability.

Our best model, combining all features, resulted
in an error reduction of 12% over the highest score
on this dataset from the 2005 Sighan closed test
competition (96.4%), achieved by the pure CRF
system of Tseng et al. (2005).

3.3 Discussion

Our results indicate that both Markov-type and
semi-Markov-type features are useful for generali-
zation to unseen data. This may be because the
two types of features are in a sense complemen-
tary: semi-Markov-type features such as word-
identity are valuable for modeling the tendency
of known strings to segment as words, while la-
bel based features are valuable for modeling prop-
erties of sub-lexical components such as affixes,
helping to generalize to words that have not previ-
ously been encountered. We did not explicitly test
the utility of CRF-type features for improving re-
call on out-of-vocabulary items, but we note that
in the Bakeoff, the model of Tseng et al. (2005),
which was very similar to our CRF-only system
(only containing a few more feature templates),
was consistently among the best performing sys-
tems in terms of test OOV recall (Emerson, 2005).

We also found that for this sequence segmenta-
tion task, the use of log conditional odds as a fea-
ture results in much better performance than the
use of the more typical log conditional probabil-
ity. It would be interesting to see the log-odds
applied in more contexts where log-probabilities
are typically used as features. We have presented
the intuitive argument that the log-odds may be
advantageous because it does not exhibit the 0-1
asymmetry of the log-probability, but it would be
satisfying to justify the choice on more theoretical
grounds.

4 Relation to Previous Work

There is a significant volume of work explor-
ing the use of CRFs for a variety of chunking
tasks, including named-entity recognition, gene
prediction, shallow parsing and others (Finkel et
al., 2005; Culotta et al., 2005; Sha and Pereira,
2003). The current work indicates that these sys-
tems might be improved by moving to a semi-CRF
model.

There have not been a large number of studies
using the semi-CRF, but the few that have been
done found only marginal improvements over pure
CRF systems (Sarawagi and Cohen, 2004; Liang,
2005; Dauḿe III and Marcu, 2005). Notably,
none of those studies experimented with features
of chunknon-boundaries, as is achieved by the use
of CRF-type features involving the labelC, and
we take this to be the reason for their not obtain-
ing higher results.
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Although it has become fairly common in NLP
to use the log conditional probabilities of events
as features in a discriminative model, we are not
aware of any work using the log conditional odds.

5 Conclusion

We have shown that order-1 semi-Markov condi-
tional random fields are strictly more expressive
than order-1 Markov CRFs, and that the added
expressivity enables the use of features that lead
to improvements on a segmentation task. On the
other hand, Markov CRFs can more naturally in-
corporate certain features that may be useful for
modeling sub-chunk phenomena and generaliza-
tion to unseen chunks. To achieve the best per-
formance for segmentation, we propose that both
types of features be used, and we show how this
can be done efficiently.

Additionally, we have shown that a log condi-
tional odds feature estimated from a generative
model can be superior to the more common log
conditional probability.
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Abstract 

Web extraction systems attempt to use 
the immense amount of unlabeled text 
in the Web in order to create large lists 
of entities and relations. Unlike 
traditional IE methods, the Web 
extraction systems do not label every 
mention of the target entity or relation, 
instead focusing on extracting as many 
different instances as possible while 
keeping the precision of the resulting 
list reasonably high. URES is a Web 
relation extraction system that learns 
powerful extraction patterns from 
unlabeled text, using short descriptions 
of the target relations and their 
attributes. The performance of URES is 
further enhanced by classifying its 
output instances using the properties of 
the extracted patterns. The features we 
use for classification and the trained 
classification model are independent 
from the target relation, which we 
demonstrate in a series of experiments. 
In this paper we show how the 
introduction of a simple rule based 
NER can boost the performance of 
URES on a variety of relations. We 
also compare the performance of 
URES to the performance of the state-
of-the-art KnowItAll system, and to the 
performance of its pattern learning 
component, which uses a simpler and 
less powerful pattern language than 
URES. 

1   Introduction 

Information Extraction (IE) (Riloff 1993; 
Cowie and Lehnert 1996; Grishman 1996; 
Grishman 1997; Kushmerick, Weld et al. 1997; 
Freitag 1998; Freitag and McCallum 1999; 
Soderland 1999)  is the task of extracting 
factual assertions from text. 

Most IE systems rely on knowledge 
engineering or on machine learning to generate 
extraction patterns – the mechanism that 
extracts entities and relation instances from 
text. In the machine learning approach, a 
domain expert labels instances of the target 
relations in a set of documents. The system 
then learns extraction patterns, which can be 
applied to new documents automatically. 

Both approaches require substantial human 
effort, particularly when applied to the broad 
range of documents, entities, and relations on 
the Web.   In order to minimize the manual 
effort necessary to build Web IE systems, we 
have designed and implemented URES 
(Unsupervised Relation Extraction System). 
URES takes as input the names of the target 
relations and the types of their arguments. It 
then uses a large set of unlabeled documents 
downloaded from the Web in order to learn the 
extraction patterns. 

URES is most closely related to the 
KnowItAll system developed at University of 
Washington by Oren Etzioni and colleagues 
(Etzioni, Cafarella et al. 2005), since both are 
unsupervised and both leverage relation-
independent extraction patterns to 
automatically generate seeds, which are then 
fed into a pattern-learning component.  
KnowItAll is based on the observation that the 
Web corpus is highly redundant. Thus, its 
selective, high-precision extraction patterns 
readily ignore most sentences, and focus on 
sentences that indicate the presence of relation 
instances with very high probability. 

 In contrast, URES is based on the 
observation that, for many relations, the Web 
corpus has limited redundancy, particularly 
when one is concerned with less prominent 
instances of these relations (e.g., the 
acquisition of Austria Tabak).  Thus, URES 
utilizes a more expressive extraction pattern 
language, which enables it to extract 
information from a broader set of sentences.  
URES relies on a sophisticated mechanism to 
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assess its confidence in each extraction, 
enabling it to sort extracted instances, thereby 
improving its recall without sacrificing 
precision. 

 
Our main contributions are as follows: 

 
• We introduce the first domain-

independent system to extract relation 
instances from the Web with both high 
precision and high recall. 

• We show how to minimize the human 
effort necessary to deploy URES for 
an arbitrary set of relations, including 
automatically generating and labeling 
positive and negative examples of the 
relation.  

• We show how we can integrate a 
simple NER component into the 
classification scheme of URES in 
order to boost recall between 5-15% 
for similar precision levels. 

• We report on an experimental 
comparison between URES, URES-
NER and the state-of-the-art 
KnowItAll system, and show that 
URES can double or even triple the 
recall achieved by KnowItAll for 
relatively rare relation instances. 

 

The rest of the paper is organized as 
follows:  Section 2 describes previous work.  
Section 3 outlines the general design principles 
of URES, its architecture, and then describes 
each URES component in detail.  Section 4 
presents our experimental evaluation.  Section 
5 contains conclusions and directions for future 
work. 

2   Related Work 

The IE systems most similar to URES are 
based on bootstrap learning: Mutual 
Bootstrapping (Riloff and Jones 1999), the 
DIPRE system (Brin 1998), and the Snowball 
system (Agichtein and Gravano 2000 ). 
(Ravichandran and Hovy 2002) also use 
bootstrapping, and learn simple surface 
patterns for extracting binary relations from the 
Web. 

Unlike those unsupervised IE systems, 
URES patterns allow gaps that can be matched 
by any sequences of tokens. This makes URES 
patterns much more general, and allows to 
recognize instances in sentences inaccessible 

to the simple surface patterns of systems such 
as (Brin 1998; Riloff and Jones 1999; 
Ravichandran and Hovy 2002). The greater 
power of URES requires different and more 
complex methods for learning, scoring, and 
filtering of patterns. 

Another direction for unsupervised relation 
learning was taken in (Hasegawa, Sekine et al. 
2004; Chen, Ji et al. 2005). These systems use 
a NER system to identify pairs of entities and 
then cluster them based on the types of the 
entities and the words appearing between the 
entities. Only pairs that appear at least 30 times 
were considered. The main benefit of this 
approach is that all relations between two 
entity types can be discovered simultaneously 
and there is no need for the user to supply the 
relations definitions. Such a system could have 
been used as a preliminary step to URES, 
however its relatively low precision makes it 
unfeasible. Unlike URES, the evaluations 
performed in these papers ignored errors that 
were introduced by the underlying NER 
component. The precision reported by these 
systems (77% breakeven for the COM-COM 
domain) is inferior to that of URES. 

We compared our results directly to two 
other unsupervised extraction systems, the 
Snowball (Agichtein and Gravano 2000 ) and 
KnowItAll. Snowball is an unsupervised 
system for learning relations from document 
collections. The system takes as input a set of 
seed examples for each relation, and uses a 
clustering technique to learn patterns from the 
seed examples. It does rely on a full fledged 
Named Entity Recognition system. Snowball 
achieved fairly low precision figures (30-50%) 
on relations such as Merger and Acquisition on 
the same dataset we used in our experiments. 

KnowItAll is a system developed at 
University of Washington by Oren Etzioni and 
colleagues (Etzioni, Cafarella et al. 2005). We 
shall now briefly describe it and its pattern 
learning component. 

Brief description of KnowItAll 
KnowItAll uses a set of generic extraction 
patterns, and automatically instantiates rules by 
combining those patterns with user supplied 
relation labels. For example, KnowItAll has 
patterns for a generic “of” relation: 

NP1  <relation>  NP2 
NP1  's  <relation>  ,  NP2 
NP2  ,  <relation>  of  NP1 
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where NP1 and NP2 are simple noun phrases 
that extract values of attribute1 and attribute2 
of a relation, and <relation> is a user-supplied 
string associated with the relation. The rules 
may also constrain NP1 and NP2 to be proper 
nouns. 

The rules have alternating context strings 
(exact string match) and extraction slots 
(typically an NP or head of an NP).  Each rule 
has an associated query used to automatically 
find candidate sentences from a Web search 
engine. 

KnowItAll also includes mechanisms to 
control the amount of search, to merge 
redundant extractions, and to assign a 
probability to each extraction based on 
frequency of extraction or on Web statistics 
(Downey, Etzioni et al. 2004). 

KnowItAll-PL.  While those generic rules 
lead to high precision extraction, they tend to 
have low recall, due to the wide variety of 
contexts describing a relation. KnowItAll 
includes a simple pattern learning scheme 
(KnowItAll-PL) that builds on the generic 
extraction mechanism (KnowItAll-baseline). 
Like URES, this is a self-supervised method 
that bootstraps from seeds that are 
automatically extracted by the baseline system. 

KnowItAll-PL creates a set of positive 
training sentences by downloading sentences 
that contain both argument values of a seed 
tuple and also the relation label. Negative 
training is created by downloading sentences 
with only one of the seed argument values, and 
considering a nearby NP as the other argument 
value. This does not guarantee that the 
negative example will actually be false, but 
works well in practice. 

Rule induction tabulates the occurrence of 
context tokens surrounding the argument 
values of the positive training sentences. Each 
candidate extraction pattern has a left context 
of zero to k tokens immediately to the left of 
the first argument, a middle context of all 
tokens between the two arguments, and a right 
context of zero to k tokens immediately to the 
right of the second argument.  A pattern can be 
generalized by dropping the furthest terms 
from the left or right context. KnowItAll-PL 
retains the most general version of each pattern 
that has training frequency over a threshold 
and training precision over a threshold. 

 
 

3   Description of URES 

The goal of URES is extracting instances of 
relations from the Web without human 
supervision. Accordingly, the input of the 
system is limited to (reasonably short) 
definition of the target relations (composed of 
the relation's schema and a few keywords that 
enable gathering relevant sentences). For 
example, this is the description of the 
acquisition relation: 
 

     Acquisition(ProperNP, ProperNP) ordered 
          keywords={"acquired" "acquisition"} 

 
The word ordered indicates that Acquisition 

is not a symmetric relation and the order of its 
arguments matters. The ProperNP tokens 
indicate the types of the attributes. In the 
regular mode, there are only two possible 
attribute types – ProperNP and CommonNP, 
meaning proper and common noun phrases, 
respectively. When using the NER Filter 
component described in the section 4.1 we 
allow further subtypes of ProperNP, and the 
predicate definition becomes: 
          acquisition(Company, Company) … 

The keywords are used for gathering 
sentences from the Web and for instantiating 
the generic patterns for seeds generation. 
Additional keywords (such as “acquire”, 
“purchased”, “hostile takeover”, etc), which 
can be used for gathering more sentences, are 
added automatically by using WordNet [18]. 

URES consists of several largely 
independent components; their layout is shown 
on the Figure 1. The Sentence Gatherer 
generates (e.g., downloads from the Web) a 
large set of sentences that may contain target 
instances. The Seeds Generator, which is 
essentially equal to the KnowItAll-baseline 
system, uses a small set of generic patterns 
instantiated with the predicate keywords to 
extract a small set of high-confidence instances 
of the target relations. The Pattern Learner uses 
the seeds to learn likely patterns of relation 
occurrences. Then, the Instance Extractor uses 
the patterns to extracts the instances from the 
sentences. Those instances can be filtered by a 
NER Filter, which is an optional part of the 
system. Finally, the Classifier assigns the 
confidence score to each extraction. 
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Figure 1. The architecture of URES 

3.1  Pattern Learner 

The task of the Pattern Learner is to learn the 
patterns of occurrence of relation instances. 
This is an inherently supervised task, because 
at least some occurrences must be known in 
order to be able to find patterns among them. 
Consequently, the input to the Pattern Learner 
includes a small set (10 instances in our 
experiments) of known instances for each 
target relation. Our system assumes that the 
seeds are a part of the target relation definition. 
However, the set of seeds need not be created 
manually. Instead, the seeds can be taken 
automatically from the top-scoring results of a 
high-precision low-recall unsupervised 
extraction system, such as KnowItAll. The 
seeds for our experiments were produced in 
exactly this way: we used two generic patterns 
instantiated with the relation name and 
keywords. Those patterns have a relatively 
high precision (although low recall), and the 
top-confidence results, which are the ones 
extracted many times from different sentences, 
have close to 100% probability of being 
correct. 

The Pattern Learner proceeds as follows: 
first, the gathered sentences that contain the 
seed instances are used to generate the positive 
and negative sets. From those sets the patterns 
are learned. Finally, the patterns are post-

processed and filtered. We shall now describe 
those steps in detail. 
 

PREPARING THE POSITIVE AND NEGATIVE 
SETS 
The positive set of a predicate (the terms 
predicate and relation are interchangeable in 
our work) consists of sentences that contain a 
known instance of the predicate, with the 
instance attributes changed to “<AttrN>”, 
where N is the attribute index. For example, 
assuming there is a seed instance 
Acquisition(Oracle, PeopleSoft), the sentence 
The Antitrust Division of the U.S. Department of 
Justice evaluated the likely competitive effects of 
Oracle's proposed acquisition of PeopleSoft. 

will be changed to 
The Antitrust Division… …of <Attr1>'s proposed 
acquisition of <Attr2>. 

The positive set of a predicate P is generated 
straightforwardly, using substring search. The 
negative set of a predicate consists of 
sentences with known false instances of the 
predicate similarly marked (with <AttrN> 
substituted for attributes). The negative set is 
used by the pattern learner during the scoring 
and filtering step, to filter out the patterns that 
are overly general. We generate the negative 
set from the sentences in the positive set by 
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changing the assignment of one or both 
attributes to other suitable entities in the 
sentence. In the shallow parser based mode of 
operation, any suitable noun phrase can be 
assigned to an attribute. 
 

GENERATING THE PATTERNS 
The patterns for the predicate P are 
generalizations of pairs of sentences from the 
positive set of P. The function Generalize(s1, 
s2)  is applied to each pair of sentences s1 and 
s2 from the positive set of the predicate.  The 
function generates a pattern that is the best 
(according to the objective function defined 
below) generalization of its two arguments. 

The following pseudocode shows the 
process of generating the patterns for the 
predicate P: 
 

For each pair s1, s2 from PositiveSet(P) 

    Let Pattern = Generalize(s1, s2). 

    Add Pattern to PatternsSet(P). 

The patterns are sequences of tokens, skips 
(denoted *), limited skips (denoted *?) and 
slots. The tokens can match only themselves, 
the skips match zero or more arbitrary tokens, 
and slots match instance attributes.  The 
limited skips match zero or more arbitrary 
tokens, which must not belong to entities of the 
types equal to the types of the predicate 
attributes. In the shallow parser based mode, 
there are only two different entity types – 
ProperNP and CommonNP, standing for 
proper and common noun phrases. 

The Generalize(s1, s2) function takes two 
sentences and generates the least (most 
specific) common generalization of both.  The 
function does a dynamical programming 
search for the best match between the two 
patterns (Optimal String Alignment algorithm), 
with the cost of the match defined as the sum 
of costs of matches for all elements. The exact 
costs of matching elements are not important 
as long as their relative order is maintained. 
We use the following numbers:  two identical 
elements match at cost 0, a token matches a 
skip or an empty space at cost 10, a skip 
matches an empty space at cost 2, and different 
kinds of skip match at cost 3. All other 
combinations have infinite cost. After the best 
match is found, it is converted into a pattern by 
copying matched identical elements and 
adding skips where non-identical elements are 

matched. For example, assume the sentences 
are 
   Toward this end, <Attr1> in July acquired 
<Attr2> 

   Earlier this year, <Attr1> acquired <Attr2> from 
X 

After the dynamic programming-based 
search, the following match will be found: 

Toward (cost 10)
Earlier   (cost 10)

this this (cost 0)
end (cost 10)

year (cost 10)
, , (cost 0)
<Attr1 > <Attr1 > (cost 0)
in   July (cost 20)
acquired acquired (cost 0)
<Attr2 > <Attr2 > (cost 0)

from (cost 10)
X (cost 10)  

 
at total cost = 80. Assuming that “X” 

belongs to the same type as at least one of the 
attributes while the other tokens are not 
entities, the match will be converted to the 
pattern 
     *?  this  *?  ,  <Attr1>  *?  acquired  <Attr2>   
* 

3.2  Classifying the Extractions 

The goal of the final classification stage is to 
filter the list of all extracted instances, keeping 
the correct extractions and removing mistakes 
that would always occur regardless of the 
quality of the patterns. It is of course 
impossible to know which extractions are 
correct, but there exist properties of patterns 
and pattern matches that increase or decrease 
the confidence in the extractions that they 
produce. Thus, instead of a binary classifier, 
we seek a real-valued confidence function c, 
mapping the set of extracted instances into the 
[0, 1] segment. 

Since confidence value depends on the 
properties of particular sentences and patterns, 
it is more properly defined over the set of 
single pattern matches. Then, the overall 
confidence of an instance is the maximum of 
the confidence values of the matches that 
produce the instance. 

Assume that an instance E was extracted 
from a match of a pattern P at a sentence S. 
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The following set of binary features may 
influence the confidence c(E, P, S): 
f1(E, P, S) = 1,  if the number of sentences  
                     producing E  is greater than one. 
f2(E, P, S) = 1,  if the number of sentences  
                     producing E is greater than two. 
f3(E, P, S) = 1,  if at least one slot of the pattern P is 
                      adjacent to a non-stop-word token. 
f4(E, P, S) = 1,  if both slots of the pattern P are 
                       adjacent to non-stop-word tokens. 
f5…f9(E, P, S)  = 1,  if the number of nonstop                    
                       words in P is 0 (f5), 1 or greater (f6),  
                       2 or greater (f7), 3 or greater (f8), and  
                       4 or greater (f9). 
f10…f15(E, P, S)  = 1, if the number of words 
                       between the slots of the match M                                  
                       that were matched to skips of the 
                       pattern P is 0 (f10), 1 or less (f11), 2  
                       or less (f12) , 3 or less(f13),  5 or less 
                       (f14), and 10 or less (f15). 
 

Utilizing the NER 

In the URES-NER version the entities of each 
candidate instance are passed through a simple 
rule-based NER filter, which attaches a score 
(“yes”, “maybe”, or “no”) to the argument(s) 
and optionally fixes the arguments boundaries. 
The NER is capable of identifying entities of 
type PERSON and COMPANY (and can be 
extended to identify additional types).   
 

The scores mean: 
   “yes” – the argument is of the correct 

entity type. 
   “no” – the argument is not of the right 

entity type, and hence 
              the candidate instance should be 

removed. 
   “maybe” – the argument type is uncertain, 

can be either 
                    correct or no.  
 
If “no” is returned for one of the arguments, 

the instance is removed. Otherwise, an 
additional binary feature is added to the 
instance's vector: 

     f16 = 1 iff the score for both arguments is 
“yes”. 

For bound predicates, only the second 
argument is analyzed, naturally. 

As can be seen, the set of features above is 
small, and is not specific to any particular 
predicate. This allows us to train a model using 
a small amount of labeled data for one 

predicate, and then use the model for all other 
predicates: 

Training: The patterns for a single model 
predicate are run over a relatively small set of 
sentences (3,000-10,000 sentences in our 
experiments), producing a set of extractions 
(between 150-300 extractions in our 
experiments). 

The extractions are manually labeled 
according to whether they are correct or not. 
For each pattern match Mk = (Ek, Pk, Sk), the 
value of the feature vector fk = (f1(Mk), …, 
f15(Mk)) is calculated, and the label Lk = ±1  
is set according to whether the extraction Ek is 
correct or no. 

A regression model estimating the function 
L(f) is built from the training data {(fk, Lk)}. 
For our classifier we used the BBR (Genkin, 
Lewis et al. 2004), but other models, such as 
SVM or NaiveBayes are of course also 
possible. 

Confidence estimation: For each pattern 
match M, its score L(f(M)) is calculated by the 
trained regression model. Note that we do not 
threshold the value of L, instead using the raw 
probability value between zero and one. 

The final confidence estimates c(E) for the 
extraction E is set to the maximum of L(f(M)) 
over all matches M that produced E. 

4   Experimental Evaluation 

Our experiments aim to answer three 
questions: 
  

1. Can we train URES’s classifier once, and 
then use the results on all other relations?  
2. What boost will we get by introducing a 

simple NER into the classification scheme of 
URES?   

3. How does URES’s performance compare 
with KnowItAll and KnowItAll-PL? 

 
Our experiments utilized five relations: 

Acquisition(BuyerCompany,AcquiredCompan
y), 
Merger(Company1, Company2), 
CEO_Of(Company, Person), 
MayorOf(City, Person), 
InventorOf(Person, Invention). 
 

Merger is a symmetric predicate, in the 
sense that the order of its attributes does not 
matter. Acquisition is antisymmetric, and the 
other three are tested as bound in the first 
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attribute. For the bound predicates, we are only 
interested in the instances with particular 
prespecified values of the first attribute. The 
Invention attribute of the InventorOf predicate 
is of type CommonNP. All other attributes are 
of type ProperName. 

The data for the experiments were collected 
by the KnowItAll crawler. The data for the 
Acquisition and Merger predicates consist of 
about 900,000 sentences for each of the two 
predicates, where each sentence contains at 
least one predicate keyword. The data for the 
bounded predicates consist of sentences that 
contain a predicate keyword and one of a 
hundred values of the first (bound) attribute. 
Half of the hundred are frequent entities 
(>100,000 search engine hits), and another half 
are rare (<10,000 hits). 

The pattern learning for each of the 
predicates was performed using the whole 
corpus of sentences for the predicate. For 
testing the precision of each of the predicates 
in each of the systems we manually evaluated 
sets of 200 instances that were randomly 
selected out of the full set of instances 
extracted from the whole corpus. 

In the first experiment, we test the 
performance of the classification component 

using different predicates for building the 
model. In the second experiment we evaluate 
the full system over the whole dataset. 

 
4.1  Cross-Predicate Classification 

Performance 

In this experiment we test whether the choice 
of the model predicate for training the 
classifier is significant. 

The pattern learning for each of the 
predicates was performed using the whole 
corpus of sentences for the predicate. For 
testing we used a small random selection of 
sentences, run the Instance Extractor over 
them, and manually evaluated each extracted 
instance. The results of the evaluation for 
Acquisition, CEO_Of, and Merger are 
summarized in Figure 2. As can be seen, using 
any of the predicates as the model produces 
similar results. The graphs for the other two 
predicates are similar. We have used only the 
first 15 features, as the NER-based feature (f16) 
is predicate-dependent.  
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Figure 2.  Cross-predicate classification performance results. Each graph shows the five precision-recall curves produced by 

using the five different model predicates. As can be seen, the curves on each graph are very similar. 
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Figure 3.  Comparision between URES, URES-NER, KnowItAll-baseline, and KnowItAll-PL. 

 
4.2  Performance of the whole system 

In this experiment we compare the 
performance of URES with classification to the 
performance of KnowItAll. To carry out the 
experiments, we used extraction data kindly 
provided by the KnowItAll group. They 
provided us with the extractions obtained by 
the KnowItAll system and by its pattern 
learning component (KnowItAll-PL). Both are 
sketched in Section 2.1 and are described in 
detail in (Etzioni, Cafarella et al. 2005). 

In this experiment we used Acquisition as 
the model predicate for testing all other 
predicates except itself.  For testing 
Acquisition we used CEO_Of as the model 
predicate.  The results are summarized in the 
five graphs in the Figure 3. 

For three relations (Acquisition, Merger, and 
InventorOf) URES clearly outperforms 
KnowItAll. Yet for the other two (CEO_Of 
and MayorOf), the simpler method of 
KnowItAll-PL or even the KnowItAll-baseline 
do as well as URES. Close inspection reveals 
that the key difference is the amount of 
redundancy of instances of those relations in 

the data. Instances of CEO_Of and MayorOf 
are mentioned frequently in a wide variety of 
sentences whereas instances of the other 
relations are relatively infrequent. 

KnowItAll extraction works well when 
redundancy is high and most instances have a 
good chance of appearing in simple forms that 
KnowItAll is able to recognize. The additional 
machinery in URES is necessary when 
redundancy is low. Specifically, URES is more 
effective in identifying low-frequency 
instances, due to its more expressive rule 
representation, and its classifier that inhibits 
those rules from overgeneralizing. 

In the same graphs we can see that URES-
NER outperforms URES by 5-15% in recall 
for similar precision levels. We can also see 
that for Person-based predicates the 
improvement is much more pronounced, 
because Person is a much simpler entity to 
recognize.  Since in the InventorOf predicate 
the 2nd attribute is of type CommonNP, the 
NER component adds no value and URES-
NER and URES results are identical for this 
predicate. 
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5   Conclusions 

We have presented the URES system for 
autonomously extracting relations from the 
Web. We showed how to improve the 
precision of the system by classifying the 
extracted instances using the properties of the 
patterns and sentences that generated the 
instances and how to utilize a simple NER 
component. The cross-predicate tests showed 
that classifier that performs well for all 
relations can be built using a small amount of 
labeled data for any particular relation. We 
performed an experimental comparison 
between URES, URES-NER and the state-of-
the-art KnowItAll system, and showed that 
URES can double or even triple the recall 
achieved by KnowItAll for relatively rare 
relation instances, and get an additional 5-15% 
boost in recall by utilizing a simple NER. In 
particular we have shown that URES is more 
effective in identifying low-frequency 
instances, due to its more expressive rule 
representation, and its classifier (augmented by 
NER) that inhibits those rules from 
overgeneralizing. 
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Abstract

We present an investigation of recently
proposed character and word sequence
kernels for the task of authorship attribu-
tion based on relatively short texts. Per-
formance is compared with two corre-
sponding probabilistic approaches based
on Markov chains. Several configurations
of the sequence kernels are studied on a
relatively large dataset (50 authors), where
each author covered several topics. Utilis-
ing Moffat smoothing, the two probabilis-
tic approaches obtain similar performance,
which in turn is comparable to that of char-
acter sequence kernels and is better than
that of word sequence kernels. The results
further suggest that when using a realistic
setup that takes into account the case of
texts which are not written by any hypoth-
esised authors, the amount of training ma-
terial has more influence on discrimination
performance than the amount of test mate-
rial. Moreover, we show that the recently
proposed author unmasking approach is
less useful when dealing with short texts.

1 Introduction

Applications of authorship attribution include pla-
giarism detection (e.g. college essays), deducing
the writer of inappropriate communications that
were sent anonymously or under a pseudonym
(e.g. threatening or harassing e-mails), as well
as resolving historical questions of unclear or
disputed authorship. Specific examples are the
Federalist papers (Hanus and Hagenauer, 2005;
Mosteller, 1984) and the forensic analysis of the
Unabomber manifesto (Foster, 2001).

Within the area of automatic author at-
tribution, recently it has been shown that
encouraging performance can be achieved

via the use of probabilistic models based on
n-grams (Clement and Sharp, 2003) and Markov
chains of characters and words (Peng et al., 2004).
Diederich et al. (2003) showed that Support Vector
Machines (SVMs), using the bag-of-words kernel,
can obtain promising performance, while in an-
other study, SVMs with kernels based on character
collocations obtained mixed performance (Cor-
ney, 2003). Gamon (2004) utilised SVMs with
syntactic and semantic features to obtain relatively
minor accuracy improvements over the use of
function word frequencies and part-of-speech
trigrams. Koppel & Schler (2004) proposed a
word-level heuristic, resembling recursive feature
elimination used for cancer classification (Guyon
et al., 2002; Huang and Kecman, 2005), to obtain
author unmasking curves. The curves were
processed to obtain feature vectors that were in
turn classified in a traditional SVM setting.

The studies listed above have several limita-
tions. In (Clement and Sharp, 2003), a rudimen-
tary probability smoothing technique was used to
handle n-grams which were unseen during the
training phase. In the dataset used by (Peng et al.,
2004) each author tended to stick to one or two
topics, raising the possibility that the discrimina-
tion was based on topic rather than by author style.

In (Corney, 2003; Gamon, 2004; Peng et al.,
2004; Koppel and Schler, 2004) the datasets were
rather small in terms of the number of authors,
indicating the results may not be generalisable.
Specifically, in (Corney, 2003) the largest dataset
contains texts from five authors, in (Gamon, 2004)
from three, while in (Peng et al., 2004) and (Kop-
pel and Schler, 2004) from ten.

In (Clement and Sharp, 2003; Gamon, 2004;
Peng et al., 2004), the attribution of a given doc-
ument was forced to one of the authors from a
set of possible authors (i.e. a closed set identifi-
cation setup), thus not taking into account the re-
alistic case of having a document which was not
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written by any of the authors. In (Koppel and
Schler, 2004), the unmasking method was evalu-
ated exclusively on books, raising the question as
to whether the method is applicable to consider-
ably shorter texts.

Lastly, all of the studies used different datasets
and experiment setups, thus making a quantita-
tive performance comparison of the different ap-
proaches infeasible.

Recently, various practical character and word
sequence kernels have been proposed (Cancedda
et al., 2003; Leslie et al., 2004; Vishwanathan
and Smola, 2003) for the purposes of text and
biological sequence analysis. This allows kernel
based techniques (such as SVMs) to be used in
lieu of traditional probabilistic approaches based
on Markov chains. In comparison to the latter,
SVMs have the advantage of directly optimising
the discrimination criterion.

This paper has four main aims: (i) to evalu-
ate the usefulness of sequence kernel based ap-
proaches for the task of authorship attribution;
(ii) to compare their performance with two prob-
abilistic approaches based on Markov chains of
characters and words; (iii) to appraise the applica-
bility of the author unmasking approach for deal-
ing with short texts; and (iv) to address some of
the limitations of the previous studies.

Several configurations of the sequence kernels
are studied. The evaluations are done on a rela-
tively large dataset (50 authors) where each author
covers several topics. Rather than using long texts
(such as books), in almost all of the experiments
the amount of training and test material per author
is varied from approx. 300 to 5000 words for both
cases. Moreover, rather than using a closed set
identification setup, the evaluations are done using
a verification setup. Here, a given text material is
classified as either having been written by a hy-
pothesised author or as not written by that author
(i.e. a two class discrimination task).

The paper is structured as follows. Section 2
describes author attribution systems based on
Markov chains of characters and words, followed
by a description of the corresponding sequence
kernel based approaches in Section 3. Section 4
provides an empirical performance comparison of
the abovementioned approaches, while in Sec-
tion 5 the author unmasking method is appraised.
Section 6 concludes the paper by presenting the
main findings and suggesting future directions.

2 Markov Chain Based Approaches

The opinion on how likely a given text X was writ-
ten by author A, rather than any other author, can
be found by a log likelihood ratio:

OA,G (X) = |ez(X)|−1 log [ pA (ez(X)) / pG (ez(X)) ]

where z ∈ {words, chars}, ez(X) extracts an ordered
set of items from X (where the items are either
words or characters, indicated by z), |ez(X)|−1 is
used as a normalisation for varying number of
items, while pA(ez(X)) and pG(ez(X)) estimate the
likelihood of the text having been written by au-
thor A and a generic author1, G, respectively.

Given a threshold t, text X is classified as hav-
ing been written by author A when OA,G (X) > t,
or as written by someone else when OA,G (X) ≤ t.
The |ez(X)|−1 normalisation term allows for the
use of a common threshold (i.e. shared by all au-
thors), which facilitates the interpretation of per-
formance (e.g. via the use of the Equal Error Rate
(EER) point on a Receiver Operating Characteris-
tic (ROC) curve (Ortega-Garcia et al., 2004)).

Appropriating a technique originally used in
language modelling (Chen and Goodman, 1999),
the likelihood of author A having written a partic-
ular sequence of items, X =

`
i1, i2, · · · , i|X|

´
, can

be approximated using the joint probability of all
present m-th order Markov chains:

pA (X) ≈
Y|X|

j=(m+1)
pA

“
ij |ij−1

j−m

”
(1)

where ij−1
j−m is a shorthand for ij−m · · · ij−1 and m

indicates the length of the history. Given train-
ing material for author A, denoted as XA, the max-
imum likelihood (ML) probability estimate for a
particular m-th order Markov chain is:

pml
A

“
ij |ij−1

j−m

”
= C

“
ijj−m|XA

”
/ C

“
ij−1
j−m|XA

”
(2)

where C
`
ijj−m|XA

´
is the number of times the se-

quence ijj−m occurs in XA. For chains that have
not been seen during training, elaborate smooth-
ing techniques (Chen and Goodman, 1999) are
utilised to avoid zero probabilities in Eqn. (1).

The probabilities for the generic author are es-
timated from a dataset comprised of texts from
many authors.

In this work we utilise interpolated Moffat
smoothing2, where the probability of an m-th or-

1A generic author is a composite of a number of authors.
2Moffat smoothing is often mistakenly referred to as

Witten-Bell smoothing. Witten & Bell (1991) referred to this
technique as Method C and cited Moffat (1988).
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der chain is a linear interpolation of its ML esti-
mate and the smoothed probability estimate of the
corresponding (m-1)-th order chain:

pmof
A

“
ij |ij-1

j-m
”

= α
i
j-1
j-m

pml
A

“
ij |ij-1

j-m
”
+β

i
j-1
j-m

pmof
A

“
ij |ij-1

j-(m-1)
”

where α
i
j-1
j-m

= 1− β
i
j-1
j-m

, and

β
i
j−1
j−m

=

˛̨
ij : C

`
ij−1
j−mij |XA

´
> 0

˛̨˛̨
ij : C

`
ij−1
j−mij |XA

´
> 0

˛̨
+

P
ij
C

`
ijj−m|XA

´
Here,

˛̨
ij : C

`
ij−1
j−mij |XA

´
> 0

˛̨
is the number of

unique (m+1)-grams that have the same ij−1
j−m his-

tory items. Further elucidation of this method is
given in (Chen and Goodman, 1999; Witten and
Bell, 1991).

The (m-1)-th order probability will typically
correlate with the m-th order probability and has
the advantage of being estimated from a larger
number of examples (Chen and Goodman, 1999).
The 0-th order probability is interpolated with the
uniform distribution, given by: punif

A = 1/ |VA|,
where |VA| is the vocabulary size (Chen and Good-
man, 1999).

When an m-th order chain has a history (i.e. the
items ij−1

j−m) which hasn’t been observed during
training, a back-off to the corresponding reduced
order chain is done3:

if C
“
ij−1
j−m|XA

”
= 0, pmof

A

“
ij |ij−1

j−m

”
= pmof

A

“
ij |ij−1

j−(m−1)

”
Note that if the 0-th order chain also hasn’t been
observed during training, we are effectively back-
ing off to the uniform distribution.

A caveat: the training dataset for an author can
be much smaller (and hence have a smaller vo-
cabulary) than the combined training dataset for
the generic author, resulting in punif

A > punif
G . Thus

when a previously unseen chain is encountered
there is a dangerous bias towards author A, i.e.,
pmof

A

`
ij |ij−1

j−m

´
> pmof

G

`
ij |ij−1

j−m

´
. To avoid this, punif

A

must be set equal to punif
G .

3 Sequence Kernel Based Approaches
Kernel based techniques, such as SVMs, allow the
comparison of, and discrimination between, vec-
torial as well as non-vectorial objects. In a binary
SVM, the opinion on whether object X belongs to
class -1 or +1 is given by:

O+1,−1(X) =
X|S|

j=1
λj yj k(sj , X) + b (3)

where k(XA, XB) is a symmetric kernel function
which reflects the degree of similarity between

3Personal correspondence with the authors of (Chen and
Goodman, 1999).

objects XA and XB, while S = (sj)
|S|
j=1 is a set

of support objects with corresponding class labels
(yj ∈ {−1, +1} )|S|j=1 and weights Λ = (λj)

|S|
j=1. The

kernel function, b as well as sets S and Λ define a
hyperplane which separates the +1 and -1 classes.
Given a training dataset, quadratic programming
based optimisation is used to maximise the separa-
tion margin4 (Schölkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004).

Recently, kernels for measuring the similarity of
texts based on sequences of characters and words
have been proposed (Cancedda et al., 2003; Leslie
et al., 2004; Vishwanathan and Smola, 2003). One
kernel belonging to this family is:

k(XA, XB) =
X

q∈Q?
wq C(q|XA) C(q|XB) (4)

where Q? represents all possible sequences,
in XA and XB, of the symbols in Q. In turn,
Q is a set of possible symbols, which can be
characters, e.g. Q = { ‘a’, ‘b’, ‘c’, · · · }, or words,
e.g. Q = {‘kangaroo’, ‘koala’, ‘platypus’, · · · }.
Furthermore, C(q|X) is the number of occurrences
of sequence q in X, and wq is the weight for
sequence q. If the sequences are restricted to have
only one item, Eqn. (4) for the case of words is
in effect a bag-of-words kernel (Cancedda et al.,
2003; Shawe-Taylor and Cristianini, 2004).

In this work we have utilised weights that were
dependent only on the length of each sequence,
i.e. wq = w|q|. By default w|q| = 0, modified by one
of the following functions:

specific length: w|q| = 1, if |q| = τ

bounded range: w|q| = 1, if |q| ∈ [1, τ ]

bounded linear decay: w|q| = 1 + 1−|q|
τ

, if |q| ∈ [1, τ ]

bounded linear growth: w|q| = |q| / τ , if |q| ∈ [1, τ ]

where τ indicates a user defined maximum se-
quence length.

To allow comparison of texts with different
lengths, a normalised version (Schölkopf and
Smola, 2002; Shawe-Taylor and Cristianini, 2004)
of the kernel can be used:

bk(XA, XB) = k(XA, XB) /
p

k(XA, XA) k(XB , XB)

with constraints |XA| ≥ 1 and |XB | ≥ 1.
It has been suggested that SVM discrimina-

tion based on character sequence kernels in effect
utilises a noisy version of stemming (Cancedda
et al., 2003). As such, word sequence kernels
could be more effective than character sequence

4Based on preliminary experiments, the regularisation
constant C, used in SVM training, was set to 100.
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kernels, since proper word stems, instead of full
words, can be explicitly used. However, it must
be noted that Eqn. (4) implicitly maps texts to a
feature space which has one dimension for each
of the possible sequences comprised of the sym-
bols from Q (Cancedda et al., 2003). When us-
ing words, the number of unique symbols (i.e. |Q|)
can be much greater than when using characters
(e.g. 10,000 vs 100); furthermore, for a given
text the number of words is always smaller than
the number of characters. For a given sequence
length, these observations indicate that for word
sequence kernels the implicit feature space repre-
sentation can have considerably higher dimension-
ality and be sparser than for character sequence
kernels, which could lead to poorer generalisation
of the resulting classifier.

4 Evaluation

4.1 “Columnists” Dataset

We have compiled a dataset that is comprised of
texts from 50 newspaper journalists, with a min-
imum of 10,000 words per journalist. Journalists
were selected based on their coverage of several
topics; any journalist who covered only one spe-
cific area (e.g. sports or economics) was not in-
cluded in the dataset. Apart from removing all
advertising material and standardising the repre-
sentation by converting any unicode characters to
their closest ASCII counterparts, no further edit-
ing was performed. The dataset is available for
use by other researchers by contacting the authors.

4.2 Setup

The experiments followed a verification setup,
where a given text material was classified as ei-
ther having been written by a hypothesised author
or as not written by that author (i.e. a two class
discrimination task). This is distinct from a closed
set identification setup, where a text is assigned as
belonging to one author out of a pool of authors.
The presentation of an impostor text (a text known

Table 1: Approximate correspondence between
the number of characters and number of words.
For comparison purposes, this paper has about
5900 words.

No. characters 1750 3500 7000 14000 28000
No. words 312 625 1250 2500 5000

not to be written by the hypothesised author) will
be referred to as an impostor claim, while the pre-
sentation of a true text (a text known to be written
by the hypothesised author) will be referred to as
a true claim.

For a given text, one of the following two classi-
fication errors can occur: (i) a false positive, where
an impostor text is incorrectly classified as a true
text; (ii) a false negative, where a true text is in-
correctly classified as an impostor text. The er-
rors are measured in terms of the false positive rate
(FPR) and the false negative rate (FNR). Follow-
ing the approach often used within the biometrics
field, the decision threshold was then adjusted so
that the FPR is equal to the FNR, giving Equal Er-
ror Rate (EER) performance (Ortega-Garcia et al.,
2004; Sanderson et al., 2006).

The authors in the database were randomly as-
signed into two disjoint sections: (i) 10 back-
ground authors; (ii) 40 evaluation authors. For
the case of Markov chain approaches, texts from
the background authors were used to construct the
generic author model, while for kernel based ap-
proaches they were used to represent the negative
class. In both cases, text materials each comprised
of approx. 28,000 characters were used, via ran-
domly choosing a sufficient number of sentences
from the pooled texts. Table 1 shows a corre-
spondence between the number of characters and
words, using the average word length of 5.6 char-
acters including a trailing whitespace (found on
the whole dataset).

For each author in the evaluation section, their
material was randomly split5 into two continuous
parts: training and testing. The split occurred
without breaking sentences. The training material
was used to construct the author model, while the
test material was used to simulate a true claim as
well as impostor claims against all other authors’
models. Note that if material from the evaluation
section was used for constructing the generic au-
thor model, the system would have prior knowl-
edge about the writing style of the authors used
for the impostor claims.

For each configuration of an approach (where,
for example, the configuration is the order of the
Markov chains), the above procedure was repeated
ten times, with the randomised assignments and
splitting being done each time. The final results

5By ‘randomly split’ we mean that the location of the
training and testing parts within the text material is random.
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were then obtained in terms of the mean and the
corresponding standard deviation of the ten EERs
(the standard deviations are shown as error bars
in the result figures). Based on preliminary ex-
periments, stemming was used for word based ap-
proaches (Manning and Schütze, 1999).

4.3 Experiments and Discussion

In the first experiment we studied the effects of
varying the order for character and word Markov
chain approaches, while the amount of training
material was fixed at approx. 28,000 characters
and the test material (for evaluation authors) was
decreased from approx. 28,000 to 1,750 charac-
ters. Results are presented in Fig. 1.

The results show that 2nd order chains of
characters generally obtain the best performance.
However, the difference in performance between
1st order and 2nd order chains could be considered
as statistically insignificant due to the large over-
lap of the error bars. The best performing word
chain approach had an order of zero, with higher
orders (not shown) having virtually the same per-
formance as the 0th order. Its performance is
largely similar to the 2nd order character chain ap-
proach, with the latter obtaining a somewhat lower
error rate at 28,000 characters.

The second experiment was similar to the first,
with the difference being that the amount of train-
ing material and test material was decreased from
approx. 28,000 to 1,750 characters. The main
change between the results of this experiment
(shown in Fig. 2) and the previous experiment’s
results is the faster degradation in performance as
the number of characters is decreased. We com-
ment on this effect later.

In the third experiment we utilised SVMs with
character sequence kernels and studied the effects
of chunk size. As SVMs employ support ob-
jects in the definition of the discriminant function
(see Section 3), the training material was split into
varying size chunks, ranging from approximately
62 to 4000 characters. Each of the chunks can be-
come a support chunk. Naturally, the smaller the
chunk size, the larger the number of chunks. As
the split was done without breaking sentences, the
effective chunk size tended to be somewhat larger.
If there is less words available than a given chunk
size, then all of the remaining words are used for
forming a chunk. Based on preliminary experi-
ments, the bounded range weight function with
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Figure 1: Performance of character and word
Markov chain approaches using fixed size training
material (approx. 28,000 characters) and varying
size test material.
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Figure 2: Performance of character and word
Markov chain approaches for varying size of train-
ing and test material. At each point the size of the
training and test materials is equal.

τ=3 was used. The amount of training and test
material was equal and three cases were evaluated:
28,000, 14,000 and 7,000 characters. Results, pre-
sented in Fig. 3, indicate that the optimum chunk
size is approximately 500 characters for the three
cases. Furthermore, the optimum chunk size ap-
pears to be independent of the number of available
chunks for training.

In the fourth experiment we studied the ef-
fects of various weight functions and sequence
lengths for the character sequence kernel. The
amount of training and test material was fixed at
approx. 28,000 characters. Based on the results
from the previous experiment, chunk size was set
at 500. Results for specific length (Fig. 4) suggest
that most of the reliable discriminatory informa-
tion is contained in sequences of length 2. The
error rates for the bounded range and bounded lin-
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Figure 3: Performance of the character sequence
kernel approach for varying chunk sizes. Bounded
range weight function with τ=3 was used.
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Figure 4: Performance of the character sequence
kernel approach for various weight functions. The
size of training and test materials was fixed at ap-
prox. 28,000 characters. Chunk size of 500 char-
acters was used. Error bars were omitted for clar-
ity.

ear decay functions are quite similar, with both
reaching minima for sequences of length 4; most
of the improvement occurs when the sequences
reach a length of 3. This indicates that while se-
quences with a specific length of 3 and 4 are less
reliable than sequences with a specific length of
2, they contain (partly) complementary informa-
tion which is useful when combined with infor-
mation from shorter lengths. Emphasising longer
lengths of 5 and 6 (via the bounded linear growth
function) achieves a minor, but noticeable, perfor-
mance degradation. We conjecture that the degra-
dation is caused by the sparsity of relatively long
sequences, which affects the generalisation of the
classifier.

The fifth experiment was devoted to an evalua-
tion of the effects of chunk size for the word se-
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Figure 5: Performance of the word sequence ker-
nel approach for varying chunk sizes. Specific
length weight function with τ=1 was used.

quence approach. To keep the results comparable
with the character sequence approach (third exper-
iment), the training material was split into vary-
ing size chunks, ranging from approximately 62
to 8000 characters. Based on the results from the
first experiment, the specific length weight func-
tion with τ=1 was used6 (resulting in a bag-of-
words kernel).

The amount of training and test material was
equal and three cases were evaluated: 28,000,
14,000 and 7,000 characters. Results, shown in
Fig. 5, suggest that the optimum chunk size is ap-
proximately 4000 characters for the three cases.

As mentioned in Section 3, for the word based
approach the implicit feature space representation
can have considerably higher dimensionality and
be sparser than for the character based approach.
Consequently, longer texts would be required to
adequately populate the feature space. This is re-
flected by the optimum chunk size for the word
based approach, which is roughly an order of mag-
nitude larger than the optimum chunk size for the
character based approach.

In the sixth experiment we compared the per-
formance of character sequence kernels (using
the bounded range function with τ=4) and sev-
eral configurations of the word sequence kernels.
The amount of training material was fixed at ap-
prox. 28,000 characters and the test material was
decreased from approx. 28,000 to 1,750 charac-
ters. Based on the results of previous experi-
ments, chunk size was set to 500 for the charac-
ter based approach and to 4000 for the word based

6Note that for τ=1, all of the weight functions presented
in Section 3 are equivalent.
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 char: len=4 (bounded range)
 word: len=1 (specific length)
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Figure 6: Performance of character and word se-
quence kernel approaches using fixed size training
material (approx. 28,000 characters) and varying
size test material.

approach. Fig. 6 shows that word sequences with
a specific length of 2 lead to considerably worse
performance than sequences of length 1 (i.e. indi-
vidual words). Furthermore, the best performing
combination of lengths (i.e. via the bounded linear
decay function7) does not provide better perfor-
mance than using individual words. The charac-
ter sequence kernels consistently achieve a lower
error rate than the best performing word sequence
kernel. This suggests that the sparse feature space
representation, described in Section 3, is becom-
ing an issue.

The final experiment was similar to the sixth,
with the difference being that the amount of train-
ing material and test material was decreased from
approx. 28,000 to 1,750 characters. As observed
for the Markov chain approaches, the main change
between the results of this experiment (shown in
Fig. 7) and the previous experiment’s results is the
faster degradation in performance as the number
of characters is decreased. Along with the results
from experiments 1 and 2, this indicates that the
amount of training material has considerably more
influence on discrimination performance than the
amount of test material.

In Fig. 8 it can be observed that the best per-
forming Markov chain based approach (charac-
ters, 2nd order) obtains comparable performance
to the character sequence kernel based approach
(using the bounded range function with τ=4).

7Other combinations of lengths were also evaluated,
though the results are not shown here.
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Figure 7: Performance of character and word se-
quence kernel approaches for varying size of train-
ing and test material. At each point the size of the
training and test materials is equal.
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 (A) Seq. kernel (char, len=4, bounded range)
 (A) Markov chain (char, order=2)
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 (B) Markov chain (char, order=2)

Figure 8: Comparison between the best sequence
kernel approach with the best Markov chain ap-
proach for two cases: (A) varying size of training
and test material, (B) fixed size training material
(approx. 28,000 characters) and varying size test
material.

5 Author Unmasking On Short Texts

Koppel & Schler (2004) proposed an alternative
method for author verification. Rather than treat-
ing the verification problem directly as a two-class
discrimination task (as done in Section 4), an “au-
thor unmasking” curve is first built. A vector rep-
resenting the “essential features” of the curve is
then classified in a traditional SVM setting. The
unmasking procedure is reminiscent of the recur-
sive feature elimination procedure first proposed
in the context of gene selection for cancer classifi-
cation (Guyon et al., 2002).

Instead of having an author specific model (as
in the Markov chain approach) or an author spe-
cific SVM, a reference text is used. The text to be
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Figure 9: Unmasking of Wilde’s An Ideal Hus-
band using Wilde’s Woman of No Importance as
well as the works of other authors as reference
texts.

classified as well as the reference text are divided
into chunks; the features representing each chunk
are the counts of pre-selected words. Each point in
the author unmasking curve is the cross-validation
accuracy of discriminating between the two sets
of chunks (using a linear SVM). At each iteration,
several of the most discriminative features are re-
moved from further consideration.

The underlying hypothesis is that if the two
given texts have been written by the same author,
the differences between them will be reflected in
a relatively small number of features. Koppel &
Schler (2004) observed that for texts authored by
the same person, the extent of the cross-validation
accuracy degradation is much larger than for texts
written by different authors. Encouraging classifi-
cation results were obtained for long texts (books
available from Project Gutenberg8).

In this section we first confirm the unmasking
effect for long texts and then show that for shorter
texts (i.e. approx. 5000 words), the effect is con-
siderably less distinctive.

For the first experiment we followed the setup
in (Koppel and Schler, 2004), i.e. the same books,
chunks with a size of approximately 500 words,
10 fold cross-validation, removing 6 features at
each iteration, and using 250 words with the high-
est average frequency in both texts as the set of
pre-selected words. Fig. 9 shows curves for un-
masking Oscar Wilde’s An Ideal Husband using
Wilde’s Woman of No Importance (same-author
curve) as well as the works of other authors as
reference texts (different-author curves). As can

8http://www.gutenberg.org
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Figure 10: Unmasking of a text from author A
from the Columnists dataset, using A’s as well as
other authors’ reference texts.

Table 2: Performance of author unmasking, char-
acter sequence kernel approach (τ = 4, bounded
range) and character Markov chain approach (2nd
order).

Approach mean EER std. dev.
Author unmasking 30.88 4.32
Character sequence kernel 8.08 2.08
Character Markov chain 8.14 1.79

be observed, the unmasking effect is most pro-
nounced for Wilde’s text. Furthermore, this figure
has a close resemblance to Fig. 2 in (Koppel and
Schler, 2004).

In the second experiment we used text mate-
rials from the Columnists dataset. Each author’s
text material was divided into two sections of ap-
proximately 5000 words, with the one of the sec-
tions randomly selected to be the reference mate-
rial, leaving the other as the test material. Based
on preliminary experiments, the number of pre-
selected words was set to 100 (with the highest
average frequency in both texts) and the size of
the chunks was set to 200 words. The remainder
of the unmasking procedure setup was the same as
for the first experiment. The setup for verification
trials was similar to the setup in Section 4.2, with
the difference being that the background authors
were used to generate same-author and different-
author curves for training the secondary SVM. In
all cases features from each curve were extracted,
as done in (Koppel and Schler, 2004), prior to fur-
ther processing.

Table 2 provides a comparison between the per-
formance of the unmasking approach with that
of the character sequence kernel and character
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Markov chain based approaches, as evaluated in
Section 4. Fig. 10 shows representative curves re-
sulting from unmasking of the test material from
author A, using A’s as well as other authors’ refer-
ence materials. Generally, the unmasking effect
for the same-author curves is considerably less
pronounced and in some cases it is non-existent.
More dangerously, different-author curves often
have close similarities to same-author curves. The
results and the above observations hence suggest
that the unmasking method is less useful when
dealing with relatively short texts.

6 Main Findings and Future Directions

In this paper we investigated the use of charac-
ter and word sequence kernels for the task of
authorship attribution and compared their perfor-
mance with two probabilistic approaches based on
Markov chains of characters and words. The eval-
uations were done on a relatively large dataset (50
authors), where each author covered several top-
ics. Rather than using the restrictive closed set
identification setup, a verification setup was used
which takes into account the realistic case of texts
which are not written by any hypothesised authors.
We also appraised the applicability of the recently
proposed author unmasking approach for dealing
with relatively short texts.

In the framework of Support Vector Machines,
several configurations of the sequence kernels
were studied, showing that word sequence ker-
nels do not achieve better performance than a bag-
of-words kernel. Character sequence kernels (us-
ing sequences with a length of 4) generally have
better performance than the bag-of-words kernel
and also have comparable performance to the two
probabilistic approaches.

A possible advantage of character sequence ker-
nels over word-based kernels is their inherent abil-
ity to do partial matching of words. Let us con-
sider two examples. (i) Given the words “negotia-
tion” and “negotiate”, the character sequence ker-
nel can match “negotiat”, while a standard word-
based kernel requires explicit word stemming be-
forehand in order to match the two related words
(as done in our experiments). (ii) Given the
words “negotiation” and “desalination”, a charac-
ter sequence kernel can match the common ending
“ation”. Particular word endings may be indica-
tive of a particular author’s style; such information
would not be picked up by a standard word-based
kernel.

Interestingly, the bag-of-words kernel based ap-
proach obtains worse performance than the cor-
responding word based Markov chain approach.
Apart from the issue of sparse feature space rep-
resentation, factors such as the chunk size and the
setting of the C parameter in SVM training can
also affect the generalisation performance.

The results also show that the amount of train-
ing material has more influence on discrimina-
tion performance than the amount of test material;
about 5000 training words are required to obtain
relatively good performance when using between
1250 and 5000 test words.

Further experiments suggest that the author un-
masking approach is less useful when dealing with
relatively short texts, due to the unmasking effect
being considerably less pronounced than for long
texts and also due to different-author unmasking
curves having close similarities to the same-author
curves.

In future work it would be useful to appraise
composite kernels (Joachims et al., 2001) in or-
der to combine character and word sequence ker-
nels. If the two kernel types use (partly) com-
plementary information, better performance could
be achieved. Furthermore, more sophisticated
character sequence kernels can be evaluated, such
as mismatch string kernels used in bioinformat-
ics, where mutations in the sequences are al-
lowed (Leslie et al., 2004).
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Abstract

Entity annotation involves attaching a la-
bel such as ‘name’ or ‘organization’ to a
sequence of tokens in a document. All the
current rule-based and machine learning-
based approaches for this task operate at
the document level. We present a new
and generic approach to entity annotation
which uses the inverse index typically cre-
ated for rapid key-word based searching
of a document collection. We define a set
of operations on the inverse index that al-
lows us to create annotations defined by
cascading regular expressions. The entity
annotations for an entire document cor-
pus can be created purely of the index
with no need to access the original docu-
ments. Experiments on two publicly avail-
able data sets show very significant perfor-
mance improvements over the document-
based annotators.

1 Introduction

Entity Annotation associates a well-defined label
such as ‘person name’, ‘organization’, ‘place’,
etc., with a sequence of tokens in unstructured
text. The dominant paradigm for annotating a
document collection is to annotate each document
separately. The computational complexity of an-
notating the collection in this paradigm, depends
linearly on the number of documents and the cost
of annotating each document. More precisely, it
depends on the total number of tokens in the doc-
ument collection. It is not uncommon to have mil-
lions of documents in a collection. Using this par-
adigm, it can take hours or days to annotate such
big collections even with highly parallel server
farms. Another drawback of this paradigm is that
the entire document collection needs to be re-
processed whenever new annotations are required.

In this paper, we propose an alternative para-
digm for entity annotation. We build an index for
the tokens in the document collection first. Us-
ing a set of operators on the index, we can gener-
ate new index entries for sequences of tokens that
match any given regular expression. Since a large
class of annotators (e.g., GATE (Cunningham et
al., 2002)) can be built using cascading regular ex-
pressions, this approach allows us to support anno-
tation of the document collection purely from the
index.

We show both theoretically and experimentally
that this approach can lead to substantial reduc-
tions in computational complexity, since the order
of computation is dependent on the size of the in-
dexes and not the number of tokens in the doc-
ument collection. In most cases, the index sizes
used for computing the annotations will be a small
fraction of the total number of tokens.

In (Cho and Rajagopalan, 2002) the authors de-
velop a method for speeding up the evaluation of
a regular expression ‘R’ on a large text corpus by
use of an optimally constructed multi-gram index
to filter documents that will match ‘R’. Unfortu-
nately, their method requires access to the docu-
ment collection for the final match of ‘R’ to the
filtered document set, which can be very time con-
suming. The other bodies of related prior work
concern indexing annotated data (Cooper et al.,
2001; Li and Moon, 2001) and methods for doc-
ument level annotation (Agichtein and Gravano,
2000; McCallum et al., 2000). The work on index-
ing annotated data is not directly relevant, since
our method creates the index to the annotations di-
rectly as part of the algorithm for computing the
annotation. (Eikvil, 1999) has a good survey of
existing document level IE methods. The rele-
vance to our work is that only a certain class of
annotators can be implemented using our method:
namely anything that can be implemented using
cascading weighted regular expressions. Fortu-
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nately, this is still powerful enough to enable a
large class of highly effective entity annotators.

The rest of the paper is organized as follows. In
Section 2, we present an overview of the proposed
approach for entity annotation. In Section 3, we
construct an algorithm for implementing a deter-
ministic finite automaton (DFA) using an inverse
index of a document collection. We also compare
the complexity of this approach against the direct
approach of running the DFA over the document
collection, and show that under typical conditions,
the index-based approach will be an order of mag-
nitude faster. In Section 4, we develop an alter-
native algorithm which is based on translating the
original regular expression directly into an ordered
AND/OR graph with an associated set of index
level operators. This has the advantage of oper-
ating directly on the much more compact regular
expressions instead of the equivalent DFA (which
can become very large as a result of the NFA to
DFA conversion and epsilon removal steps). We
provide details of our experiments on two publicly
available data sets in Section 5. Finally we present
our conclusions in Section 6.

2 Overview

Figure 1 shows the process for entity annotation
presented in the paper. A given document collec-
tionD is tokenized and segmented into sentences.
The tokens are stored in an inverse indexI. The
inverse indexI has an ordered listU of the unique
tokensu1, u2, ..uW that occur in the collection,
whereW is the number of tokens inI. Addition-
ally, for each unique tokenui, I has a postings
list L(ui) =< l1, l2, . . . lcnt(ui) > of locations in
D at which ui occurs. cnt(ui) is the length of
L(ui). Each entrylk, in the postings listL(ui),
has three fields: (1) a sentence identifier,lk.sid,
(2) the begin position of the particular occurrence
of ui, lk.first and (3) the end position of the same
occurrence ofui, lk.last.

We require the input grammar to be the same
as that used for named entity annotations in GATE
(Cunningham et al., 2002). The GATE architec-
ture for text engineering uses the Java Annota-
tions Pattern Engine (JAPE) (Cunningham, 1999)
for its information extraction task. JAPE is a pat-
tern matching language. We support two classes
of properties for tokens that are required by gram-
mars such as JAPE: (1) orthographic properties
such as an uppercase character followed by lower

case characters, and (2) gazetteer (dictionary) con-
tainment properties of tokens and token sequences
such as ‘location’ and ‘person name’. The set of
tokens along with entity types specified by either
of these two properties are referred to asBasic
Entities. The instances of basic entities specified
by orthographic properties must be single tokens.
However, instances of basic entities specified us-
ing gazetteer containment properties can be token
sequences.

The module (1) of our system shown in Fig-
ure 1, identifies postings lists for each basic en-
tity type. These postings lists are entered as index
entries inI for the corresponding types. For ex-
ample, if the input rules require tokens/token se-
quences that satisfyCapswordor Location Dic-
tionary properties, a postings list is created for
each of these basic types. Constructing the post-
ings list for a basic entity type with some ortho-
graphic property is a fairly straightforward task;
the postings lists of tokens satisfying the ortho-
graphic properties are merged (while retaining the
sorted order of each postings list). The mecha-
nism for generating the postings list of basic en-
tities with gazetteer properties will be developed
in the following sections. A rule for NE an-
notation may require a token to satisfy multiple
properties such asLocation Dictionaryas well as
Capsword. The posting list for tokens that satisfy
multiple properties are determined by perform-
ing an operationparallelint(L,L′) over the post-
ing lists of the corresponding basic entities. The
parallelint(L,L′) operation returns a posting list
such that each entry in the returned list occurs in
bothL as well asL′. The module (2) of our sys-
tem shown in Figure 1 identifies instances of each
annotation type, by performing index-based oper-
ations on the postings lists ofbasic entitytypes and
other tokens.

3 Annotation using Cascading Regular
Expressions

Regular expressions over basic entities have been
extensively used for NE annotations. The Com-
mon Pattern Specification Language (CSPL)1

specifies a standard for describing Annotators that
can be implemented by a series of cascading regu-
lar expression matches.

Consider a regular expressionR over an al-
phabetΣ of basic entities, and a token sequence

1http://www.ai.sri.com/ ∼appelt/TextPro
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Figure 1: Overview of the entity annotation process described in this paper

T = {t1, . . . , tW }. The annotation problem aims
at determining all matches of regular expression
R in the token sequenceT . Additionally, NE an-
notations do not span multiple sentences. We will
therefore assume that the length of any annotated
token sequence is bounded by∆, where∆ can
be the maximum sentence length in the document
collection of interest. In practice,∆ can be even
smaller.

3.1 Computing Annotations using a DFA

Given a regular expressionR, we can convert it
into a deterministic finite automate (DFA)DR. A
DFA is a finite state machine, where for each pair
of state and input symbol, there is one and only
one transition to a next state.DR starts process-
ing of an input sequence from a start statesR, and
for each input symbol, it makes a transition to a
state given by a transition functionΦR. Whenever
DR lands in an accept state, the symbol sequence
till that point is accepted byDR. For simplicity of
the document and index algorithms, we will ignore
document and sentence boundaries in the follow-
ing analysis.

Let @ti,i+∆, 1 ≤ i ≤ W −∆ be a subsequence
of T of length∆. On a given input@ti,i+∆, DR

will determine all token sequences originating atti
that are accepted by the regular expression gram-
mar specified throughDR. Figure 2 outlines the
algorithm findAnnotationsthat locates all token
sequences inT that are accepted byDR.

Let DR have{S1, . . . , SN} states. We assume
that the states have been topologically ordered so
thatS1 is the start state. Letα be the time taken
to consume a single token and advance the DFA
to the next state (this is typically implemented as
a table or hash look-up). The time taken by the al-

findAnnotations(T, DR)
Let T = {t1, . . . , tW }
for i = 1 toW −∆ do

let @ti,i+∆ be a subsequence of length∆ starting
from ti in T
useDR to annotate@ti,i+∆

end for

Figure 2: The algorithm for finding all the occur-
rences ofR in a token sequenceT .

gorithmfindAnnotationscan be obtained by sum-
ming up the number of times each state is vis-
ited as the input tokens are consumed. Clearly,
the stateS1 is visitedW times,W being the total
number of symbols in the token sequenceT . Let
cnt(Si) give the total number of times the stateSi

has been visited. The complexity of this method
is:

CD = α

i=N∑
i=1

cnt(Si) = α

[
W +

i=N∑
i=2

cnt(Si)

]
(1)

3.2 Computing Regular Expression Matches
using Index

In this section, we present a new approach for find-
ing all matches of a regular expressionR in a to-
ken sequenceT , based on the inverse indexI of T .
The structure of the inverse index was presented in
Section 2. We define two operations on postings
lists which find use in our annotation algorithm.

1. merge(L,L′): Returns a postings list such
that each entry in the returned list occurs either in
L or L′ or both. This operation takesO(|L|+ |L′|)
time.

2. consint(L,L′): Returns a postings list such
that each entry in the returned list points to a to-
ken sequence which consists of two consecutive
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subsequences@sa and@sb within the same sen-
tence, such that,L has an entry for@sa andL′

has an entry for@sb. There are several meth-
ods for computing this depending on the relative
size of L and L′. If they are roughly equal in
size, a simple linear pass throughL andL′, anal-
ogous to a merge, can be performed. If there is
a significant difference in sizes, a more efficient
modified binary search algorithm can be imple-
mented. The details are shown in Figure 3. The

consint(L, L′)
Let M elements of L bel1 · · · lM
Let N elements of L’ bel′1 · · · lN
if M < N then

setj = 1
for i = 1 to M do

setk = 1, keep doublingk until
l′j .first ≤ li.last < l′j+k.first

binary search theL′ in the intervalj · · · k
to determine the value ofp such that
l′p.first ≤ li.last < l′p+1.first
if l′p.first = li.last a match exists, copy to output
setj = p + 1

end for
else

Same as above exceptl andl′ are reversed
end if

Figure 3: The modified binary search algorithm
for consint

complexity of this algorithm is determined by the
sizeqi of the interval required to satisfyl′j .first ≤
li.last < l′j+qi

.first (assuming|L| < |L′|). It
will take an average oflog2(qi) operations to de-
termine the size of interval andlog2(qi) opera-
tions to perform the binary search, giving a to-
tal of 2 log2(qi). Let q1 · · · qM be the sequence
of intervals. Since the intervals will be at most
two times larger than the actual interval between
the nearest matches inL′ to L, we can see that
|L′| ≤

∑M
i=1 qi ≤ 2 ∗ |L′|. Hence the worst case

will be reached whenqi = 2|L′|/|L| with a time
complexity given by2|L| (log2(|L′|/|L|) + 1), as-
suming|L| < |L′|.

To support annotation of a token sequence that
matches a regular expression only in the con-
text of some regular expression match on its left
and/or right, we implement simple extensions to
the consint(L1, L2) operator. Details of the ex-
tensions are left out from this paper owing to space
constraints.

3.3 Implementing a DFA using the Inverse
Index

In this section, we present a method that takes a
DFA DR and an inverse indexI of a token se-
quenceT , to compute a postings list of subse-
quences of length at most∆, that match the regu-
lar expressionR.

Let the setS = {S1, . . . , SN} denote the set
of states inDR, and let the states be topologi-
cally ordered withS1 as the start state. We as-
sociate an objectlists,k with each states ∈ S and
∀1 ≤ k ≤ ∆. The objectlists,k is a posting list
of all token sequences of length exactlyk that end
in states. The lists,k is initialized to be empty
for all states and lengths. We iteratively compute
lists,k for all the states using the algorithm given
in Figure 4. The functiondest(Si) returns a set
of states, such that for eachs ∈ dest(Si), there
is an arc from stateSi to states. The function
label(Si, Sj) returns the token associated with the
edge(Si, Sj).

for k = 1 to∆ do
for i = 1 toN do

for s ∈ dest(Si) do
if i == 1 then

t = L(label(Si, s))
else

t = consint(listSi,k−1, L(label(Si, s)))
end if
lists,k = merge(lists,k, t)

end for
end for

end for

Figure 4: The algorithm for building the index to
all token sequences inT that matchR.

At the end of the algorithm, all token sequences
corresponding to postings listslists,i, s ∈ S, 1 ≤
i ≤ ∆ are sequences that are matched by the reg-
ular expressionR.

3.4 Complexity Analysis for the Index-based
Approach

The complexity analysis of the algorithm given
in Figure 4 is based on the observation that,∑k=∆

k=1 |listSi,k| = cnt(Si). This holds, since
listSi,k contains an entry for all sequences that
visit the stateSi and are of length exactlyk. Sum-
ming the length of these lists for a particular state
Si across all the values ofk will yield the total
number of sequences of length at most∆ that visit
the stateSi.

For the algorithm in Figure 3, the time taken by

495



oneconsint operation is given by2β(|listSi,k| ∗
(log(ρijk) + 1)) whereβ is a constant that varies
with the lower level implementation. ρijk =
|L(label(Si,Sj))|

|listSi,k| is the ratio of the postings list size

of the label associated with the arc fromSi to
Sj to the list size ofSi at stepk. Note that
ρijk ≥ 1. Let prev(Si) be the list of pre-
decessor states toSi. The time taken by all
the merge operations for a stateSi at stepk
is given by γ(log(|prev(Si)|)|listSi,k|) Assum-
ing all the merges are performed simultaneously,
γ(log(|prev(Si)|) is the time taken to create each
entry in the final merged list, whereγ is a con-
stant that varies with the lower level implementa-
tion. Note this scales as the log of the number of
lists that are being merged.

The total time taken by the algorithm given in
Figure 4 can be computed using the time spent on
merge andconsint operations for all states and
all lengths. Settinḡρis = maxk ρisk, the total time
CI can be given as:

CI =

i=N∑
i=2

γ log(|prev(Si)|) + 2β
∑

s∈dest(Si)

log(ρ̄is)

 cnt(Si)

(2)

Note that in deriving Equation 2, we have ig-
nored the cost of merginglist(Sa, k) for k =
1 · · ·∆ for the accept states.

3.5 Comparison of Complexities

To simplify further analysis, we can replace
cnt(Si) with fcnt(Si) where fcnt(Si) =
cnt(Si)/W . If we assume that the token distribu-
tion statistics of the document collection remain
constant as the number of documents increases,
we can also assume thatfcnt(Si) is invariant to
W . Sinceρijk is given by a ratio of list sizes, we
can also consider it to be invariant toW . We now
assumeα ≈ β ≈ γ since these are implementa-
tion specific times for similar low level compute
operations. With this assumptions from Equations
1 and 2, the ratioCD/CI can be approximated by:

1 +
∑N

i=2
fcnt(Si)∑N

i=2

[∑
s∈dest(Si)

2 log(ρ̄is) + log(|prev(Si)|)
]

fcnt(Si)

(3)

The overall ratio ofCD to CI is invariant toW
and depends on two key factorsfcnt(Si) and∑

s∈dest(Si) log(ρ̄is). If fcnt(Si) � 1, the ratio
will be large and the index-based approach will be

much faster. However, if eitherfcnt(Si) starts ap-
proaching1 or

∑
s∈dest(Si) log(ρ̄is) starts getting

very large (caused by a large fan out fromSi), the
direct match using the DFA may be more efficient.

Intuitively, this makes sense since the main ben-
efit of the index is to eliminate unnecessary hash
lookups for tokens do not match the arcs of the
DFA. As fcnt(Si) approaches 1, this assumption
breaks down and hence the inherent efficiency of
the direct DFA approach, where only a single hash
lookup is required per state regardless of the num-
ber of destination states, becomes the dominant
factor.

3.6 Comparison of Complexities for Simple
Dictionary DFA

To illustrate the potential gains from the index-
based annotation, consider a simple DFADR with
two statesS1 and S2. Let the set of unique to-
kensA be{a, b, c · · · z}. Let E be the dictionary
{a, e, i, o, u}. LetDR have five arcs fromS1 to S2

one for each element inE. The DFADR is a sim-
ple acceptor for the dictionaryE, and if run over
a token sequenceT drawn fromA, it will match
any single token that is inE. For this simple case
fcnt(S2) is just the fraction of tokens that occur
in E and hence by definitionfcnt(S2) ≤ 1. Sub-
stituting into 3 we get

CD

CI
=

1 + fcnt(S2)
2 log(5)fcnt(S2)

(4)

As long asfcnt(S2) < 0.27, this ratio will always
be greater than1.

4 Inverse Index-based Annotation using
Regular Expressions

A DFA corresponding to a given regular expres-
sion can be used for annotation, using the inverse
index approach as described in Section 3.3. How-
ever, the NFA to DFA conversion step may result
in a DFA with a very large number of states. We
develop an alternative algorithm that translates the
original regular expression directly into an ordered
AND/OR graph. Associated with each node in the
graph is a regular expression and a postings list
that points to all the matches for the node’s regu-
lar expression in the document collection. There
are two node types: AND nodes where the output
list is computed from theconsint of the postings
lists of two children nodes and OR nodes where
the output list is formed by merging the posting
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lists of all the children nodes. Additionally, each
node has two binary properties: isOpt and self-
Loop. The first property is set if the regular ex-
pression being matched is of the form ‘R?’, where
‘?’ denotes that the regular expression R is op-
tional. The second property is set if the regular
expression is of the form ‘R+’, where ‘+’ is the
Kleen operator denoting one or more occurrences.
For the case of ‘R*’, both properties are set.

The AND/OR graph is recursively built by scan-
ning the regular expression from left to right and
identifying every sub-regular expression for which
a sub-graph can be built. We use capital letters
R,X to denote regular expressions and small let-
ters a, b, c, etc., to denote terminal symbols in
the symbol setΣ. Figure 5 details the algorithm
used to build the AND/OR graph. Effectively, the
AND/OR graph decomposes the computation of
the postings list forR into a ordered set ofmerge
andconsint operations, such that the outputL(v)
for nodev become the input to its parents. The
graph specifies the ordering, and by evaluating all
the nodes in dependency order, the root node will
end up with a postings list that corresponds to the
desired regular expression.

if R is emptythen
ReturnNULL

else if R is a symbola ∈ Σ then
ReturncreateNode(name = a)

else
DecomposeR such thatR → R′ <regexp>
if <regexp> is emptythen

if R′ == (X) or X+ or X∗ or X? then
node = createGraph(X)
if R′ == X+ or X∗ then

node.selfLoop = 1
end if
if R′ == X? or X∗ then

node.isOpt = 1
end if

else ifR′ == (X1|X2|..|Xk) then
node = createNode(name = R)
node.nodetype = OR
for i = 1 to k do

node.children[i] = createGraph(Xi)
end for

end if
else

node = createNode(name = R)
node.nodetype = AND
node.children[1] = createGraph(R′)
node.children[2] = createGraph(<regexp>)

end if
Returnnode

end if

Figure 5:createGraph(R)

Figure 6: An example regular expression and cor-
responding AND/OR graph

4.1 Handling ‘?’ and Kleen Operators

The isOpt and selfLoop properties of a node are
set if the corresponding regular expression is of
the formR?, R+ or R∗. To handle theR? case
we associate a new propertyisOpt with the output
list L(v) from nodev, such thatL(v).isOpt = 1
if the v.isOpt = 1. We also define two operations
consintε in Figure 7 andmergeε which account
for theisOpt property of their argument lists. For
consintε, the generated list has itsisOpt set to
1 if and only if both the argument lists have their
isOpt property set to1. Themergeε operation re-
mains the same asmerge, except that the resultant
list hasisOpt set to1 if any of its argument lists
hasisOpt set to1. The worst case time taken by
consintε is bounded by1 consint and2 merge
operations.

To handle theR+ case, we define a new oper-
ator consintε(L,+) which returns a postings list
L′, such that each entry in the returned list points
to a token sequence consisting of allk ∈ [1,∆]
consecutive subsequences@s1,@s2 . . .@sk, each
@si, 1 ≤ i ≤ k being an entry inL. A sim-
ple linear pass throughL is sufficient to obtain
consint(L,+). The time complexity of this op-
eration is linear in the size ofL′. TheisOpt prop-
erty of the result listL′ is set to the same value as
its argument listL.

Figure 6 shows an example regular expres-
sion and its corresponding AND/OR graph; AND
nodes are shown as circles whereas OR nodes are
shown as square boxes. Nodes having isOpt and
selfLoop properties are labeled with+, ∗ or ?.
Any AND/OR graph thus constructed is acyclic.
The edges in the graph represent dependency be-
tween computing nodes. The main regular expres-
sion is at the root node of the graph. The leaf
nodes correspond to symbols inΣ. Figure 8 out-
lines the algorithm for computing the postings list
of a regular expression by operating bottom-up on
the AND/OR graph.
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consintε(L, L′)
if ((L.isOpt == 0) and (L’.isOpt == 0))then

Returnconsint(L, L′)
end if
if ((L.isOpt == 0) and (L’.isOpt == 1))then

Returnmerge(L, consint(L, L′))
end if
if ((L.isOpt == 1) and (L’.isOpt == 0))then

Returnmerge(consint(L, L′), L′)
end if
if ((L.isOpt == 1) and (L’.isOpt == 1))then

t = merge(consint(L, L′), L′)
Returnmerge(t, L)

end if

Figure 7:consintε

for Each nodev in the reverse topological sorting ofGR

do
if v.nodetype == AND then

Let v1 andv2 be the children ofv
L(v) = consintε(L(v1), L(v2))

else ifv.type == OR then
L(v) = mergeε(L(v.child1), · · · , L(v.childn))

end if
if v.selfLoop == 1 then

L(v) = consintε(L(v), +)
end if
if v.isOpt == 1 then

L(v).isOpt = 1
end if

end for

Figure 8: The algorithm for computing postings
list of a regular expressionR using the inverse in-
dex I and the corresponding AND/OR graphGR

5 Experiments and Results

In this section, we present empirical compari-
son of performance of the index-based annotation
technique (Section 4) against annotation based on
the ‘document paradigm’ using GATE. The exper-
iments were performed on two data sets,viz., (i)
the enron email data set2 and (ii) a combination of
Reuters-21578 data set3 and the20 Newsgroups
data set4. After cleaning, the former data set was
2.3 GB while the latter was93 MB in size. Our
code is entirely in Java. The experiments were
performed on a dual 3.2GHz Xeon server with 4
GB RAM. The code for creation of the index was
custom-built in Java. Prior to indexing, the sen-
tence segmentation and tokenization of each data
set was performed using in-house Java versions of

2http://www.cs.cmu.edu/ ∼enron/
3http://www.daviddlewis.com/resources/

testcollections/reuters21578/
4http://people.csail.mit.edu/jrennie/

20Newsgroups/

standard tools5.

5.1 Rule Specification using JAPE

JAPE is a version of CPSL6 (Common Pattern
Specification Language). JAPE provides finite
state transduction over annotations based on reg-
ular expressions. The JAPE grammar requires in-
formation from two main resources: (i) a tokenizer
and (ii) a gazetteer.

(1) Tokenizer:The tokenizer splits the text into
very simple tokens such as numbers, punctuation
and words of different types. For example, one
might distinguish between words in uppercase and
lowercase, and between certain types of punctua-
tion. Although the tokenizer is ca pable of much
deeper analysis than this, the aim is to limit its
work to maximise efficiency, and enable greater
flexibility by placing the burden on the grammar
rules, which are more adaptable. A rule has a
left hand side (LHS) and a right hand side (RHS).
The LHS is a regular expression which has to be
matched on the input; the RHS describes the an-
notations to be added to the Annotation Set. The
LHS is separated from the RHS by ’>’. The fol-
lowing four operators can be used on the LHS: ’|’,
’?’, ’ ∗’ and ’+’. The RHS uses ’;’ as a separa-
tor between statements that set the values of the
different attributes. The following tokenizer rule
identifies each character sequence that begins with
a letter in upper case and is followed by0 or more
letters in lower case:

"UPPERCASELETTER" "LOWERCASELETTER"*
>>> Token; orth=upperInitial; kind=word;

Each such character sequence will be annotated as
type “Token”. The attribute “orth” (orthography)
has the value “upperInitial”; the attribute “kind”
has the value “word”.

(2) Gazetteer:The gazetteer lists used are plain
text files, with one entry per line. Each list rep-
resents a set of names, such as names of cities,
organizations, days of the week,etc.An index file
is used to access these lists; for each list, a ma-
jor type is specified and, optionally, a minor type.
These lists are compiled into finite state machines.
Any text tokens that are matched by these ma-
chines will be annotated with features specifying
the major and minor types. JAPE grammar rules

5http://l2r.cs.uiuc.edu/ ∼cogcomp/
tools.php

6A good description of the original version of this lan-
guage is in Doug Appelt’s TextPro manual:http://www.
ai.sri.com/ ∼appelt/TextPro .
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then specify the types to be identified in particular
circumstances.

The JAPE Rule: Each JAPE rule has two parts,
separated by “–>”. The LHS consists of an an-
notation pattern to be matched; the RHS describes
the annotation to be assigned. A basic rule is given
as:
Rule::=
<rule> <ident> ( <priority> <integer> )?
LeftHandSide ">>>" RightHandSide

(1) Left hand side:On the LHS, the pattern is
described in terms of the annotations already as-
signed by the tokenizer and gazetteer. The annota-
tion pattern may contain regular expression opera-
tors (e.g.∗, ?, +). There are 3 main ways in which
the pattern can be specified:

1. value: specify a string of text, e.g.
{Token.string == “of”}

2. attribute: specify the attributes (and values)
of a token (or any other annotation),e.g.
{Token.kind == number}

3. annotation:specify an annotation type from
the gazetteer,e.g. {Lookup.minorType ==
month}

(2) Right hand side:The RHS consists of de-
tails of the annotations and optional features to be
created. Annotations matched on the LHS of a rule
may be referred to on the RHS by means of labels
that are attached to pattern elements. Finally, at-
tributes and their corresponding values are added
to the annotation. An example of a complete rule
is:
Rule: NumbersAndUnit
(({Token.kind=="number"})+:numbers
{Token.kind=="unit"})
>>>
:numbers.Name={rule="NumbersAndUnit"}

This says ‘match sequences of numbers followed
by a unit; create aNameannotation across the span
of the numbers, and attribute rule with valueNum-
bersAndUnit’.

Use of context: Context can be dealt with in the
grammar rules in the following way. The pattern to
be annotated is always enclosed by a set of round
brackets. If preceding context is to be included in
the rule, this is placed before this set of brackets.
This context is described in exactly the same way
as the pattern to be matched. If context follow-
ing the pattern needs to be included, it is placed

Figure 9: An example JAPE rule used in the ex-
periments

after the label given to the annotation. Context is
used where a pattern should only be recognised if
it occurs in a certain situation, but the context itself
does not form part of the pattern to be annotated.

For example, the following rule for ‘email-id’s
(assuming an appropriate regular expression for
“EMAIL-ADD”) would mean that an email ad-
dress would only be recognized if it occurred in-
side angled brackets (which would not themselves
form part of the entity):

Rule: Emailaddress1
({Token.string=="<"})
(
{Token.kind==EMAIL-ADD}
)
:email
({Token.string==">"})
>>>
:email.Address={kind="email",
rule="Emailaddress1"}

5.2 Results

In our first experiment, we performed annotation
of the two corpora for4 annotation types using2
JAPE rules for each type. The4 annotation types
were ‘Person name’, ‘Organization’, ‘Location’
and ‘Date’. A sample JAPE rule for identifying
person names is shown in Figure 9. This rule iden-
tifies a sequence of words as a person name when
each word in the sequence starts with an alpha-
bet in upper-case and when the sequence is imme-
diately preceded by a word from a dictionary of
‘INITIAL’s. Example words in the ‘INITIAL’ dic-
tionary are: ‘Mr.’, ‘Dr.’, ’Lt.’, etc.
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Table 1 compares the time taken by the index-
based annotator against that taken by GATE for the
8 JAPE rules. The index-based annotator performs
8-13 times faster than GATE. Table 2 splits the
time mentioned for the index-based annotator in
Table 1 into the time taken for the task of comput-
ing postings lists for basic entities and derived en-
tities (c.f. Section 2) for each of the data sets. We
can also observe that a greater speedup is achieved
for the larger corpus.

Data set GATE Index-based
Enron 4974343 374926

Reuters 752287 92238

Table 1: Time (in milliseconds) for computing an-
notations using the two techniques

Data set Orthographic Gazetteer Derived
entity types entity types entity types

Enron 38285 105870 230771
Reuters 28493 21531 42214

Table 2: Time (in milliseconds) for computing
postings lists of entity types

An important advantage of performing annota-
tions over the inverse index is that index entries
for basic entity types can be preserved and reused
for annotation types as additional rules for anno-
tation are specified by users. For instance, the in-
dex entry for ‘Capsword’ might find reuse in sev-
eral annotation rules. As against this, a document-
based annotator has to process each document
from scratch for every newly introduced annota-
tion rule. To verify this, we introduced1 addi-
tional rule for each of the4 named entity types.
In Table 3, we compare the time required by
the index-based annotator against that required by
GATE for annotating the two corpora using the4
additional rules. We achieve a greater speedup fac-
tor of 23-37 for incremental annotation.

Data set GATE Index-based
Enron 1479954 62227

Reuters 661157 17929

Table 3: Time (in milliseconds) for computing an-
notations using the two techniques for the addi-
tional4 rules

6 Conclusions

In this paper we demonstrated that a suitably con-
structed inverse index contains all the necessary
information to implement entity annotators that
use cascading regular expressions. The approach
has the key advantage of not requiring access to
the original unstructured data to compute the an-
notations. The method uses a basic set of opera-
tors on the inverse index to construct indexes to all
matches for a regular expression in the tokenized
data set. We showed theoretically, that for a DFA
implementation, the index approach can be much
faster if the index sizes corresponding to the labels
on the DFA are a small fraction of the total num-
ber of tokens in the data set. We also provided
a more efficient index-based implementation that
is directly computed from the regular expressions
without the need of a DFA conversion and experi-
mentally demonstrated the gains.
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Abstract 

Information Extraction (IE) is the task of 
extracting knowledge from unstructured 
text. We present a novel unsupervised 
approach for information extraction 
based on graph mutual reinforcement. 
The proposed approach does not require 
any seed patterns or examples. Instead, it 
depends on redundancy in large data sets 
and graph based mutual reinforcement to 
induce generalized “extraction patterns” . 
The proposed approach has been used to 
acquire extraction patterns for the ACE 
(Automatic Content Extraction) Relation 
Detection and Characterization (RDC) 
task. ACE RDC is considered a hard task 
in information extraction due to the ab-
sence of large amounts of training data 
and inconsistencies in the available data. 
The proposed approach achieves superior 
performance which could be compared to 
supervised techniques with reasonable 
training data.  

1 Introduction 

In this paper we propose a novel, and completely 
unsupervised approach for information extrac-
tion. We present a general technique; however 
we focus on relation extraction as an important 
task of Information Extraction. The approach 
depends on constructing generalized extraction 
patterns, which could match many instances, and 
deploys graph based mutual reinforcement to 
weight the importance of these patterns. The mu-
tual reinforcement is used to automatically iden-

tify the most informative patterns, where patterns 
that match many instances tend to be correct. 
Similarly, instances matched by many patterns 
tend to be correct. The intuition is that large un-
supervised data is redundant, i.e. different in-
stances of information could be found many 
times in different contexts and by different repre-
sentation. The problem can therefore be seen as 
hubs (instances) and authorities (patterns) prob-
lem which can be solved using the Hypertext 
Induced Topic Selection (HITS) algorithm 
(Kleinberg, 1998). 

HITS is an algorithmic formulation of the no-
tion of authority in web pages link analysis, 
based on a relationship between a set of relevant 
“authoritative pages”  and a set of “hub pages” . 
The HITS algorithm benefits from the following 
observation:  when a page (hub) links to another 
page (authority), the former confers authority 
over the latter.  

By analogy to the authoritative web pages 
problem, we could represent the patterns as au-
thorities and instances as hubs, and use mutual 
reinforcement between patterns and instances to 
weight the most authoritative patterns. Highly 
weighted patterns are then used in extracting in-
formation.  

The proposed approach does not need any 
seeds or examples. Human involvement is only 
needed in determining the entities of interest; the 
entities among which we are seeking relations. 

The paper proceeds as follows: in Section 2 
we discuss previous work followed by a brief 
definition of our general notation in Section 3. A 
detailed description of the proposed approach 
then follows in Section 4. Section 5 discusses the 
application of the proposed approach to the prob-
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lem of detecting semantic relations from text. 
Section 6 discusses experimental results while 
the conclusion is presented in Section 7. 

2 Previous Work 

Most of the previous work on Information Ex-
traction (IE) focused on supervised learning. Re-
lation Detection and Characterization (RDC) was 
introduced in the Automatic Content Extraction 
Program (ACE) (ACE, 2004). The approaches 
proposed to the ACE RDC task such as kernel 
methods (Zelenko et al., 2002) and Maximum 
Entropy methods (Kambhatla, 2004) required the 
availability of large set of human annotated cor-
pora which are tagged with relation instances. 
However human annotated instances are limited, 
expensive, and time consuming to obtain, due to 
the lack of experienced human annotators and the 
low inter-annotator agreements. 

Some previous work adopted weakly super-
vised or unsupervised learning approaches. 
These approaches have the advantage of not 
needing large tagged corpora but need seed ex-
amples or seed extraction patterns. The major 
drawback of these approaches is their depend-
ency on seed examples or seed patterns which 
may lead to limited generalization due to de-
pendency on handcrafted examples. Some of 
these approaches are briefed here: 

 (Brin,98) presented an approach for extracting 
the authorship information as found in books de-
scription on the World Wide Web. This tech-
nique is based on dual iterative pattern relation 
extraction wherein a relation and pattern set is 
iteratively constructed. This approach has two 
major drawbacks: the use of handcrafted seed 
examples to extract more examples similar to 
these handcrafted seed examples and the use of a 
lexicon as the main source for extracting infor-
mation. 

(Blum and Mitchell, 1998) proposed an ap-
proach based on co-training that uses unlabeled 
data in a particular setting. They exploit the fact 
that, for some problems, each example can be 
described by multiple representations. 

(Riloff & Jones, 1999) presented the Meta-
Bootstrapping algorithm that uses an un-
annotated training data set and a set of seeds to 
learn a dictionary of extraction patterns and a 
domain specific semantic lexicon. Other works 
tried to exploit the duality of patterns and their 
extractions for the purpose of inferring the se-
mantic class of words like (Thelen & Riloff, 
2002) and (Lin et al, 2003). 

(Muslea et al., 1999) introduced an inductive 
algorithm to generate extraction rules based on 
user labeled training examples. This approach 
suffers from the labeled data bottleneck. 

(Agichtein et. al, 2000) presented an approach 
using seed examples to generate initial patterns 
and to iteratively obtain further patterns. Then 
ad-hoc measures were deployed to estimate the 
relevancy of the patterns that have been newly 
obtained. The major drawbacks of this approach 
are:  its dependency on seed examples leads to 
limited capability of generalization, and the esti-
mation of patterns relevancy requires the de-
ployment of ad-hoc measures. 

(Hasegawa et. al. 2004) introduced unsuper-
vised approach for relation extraction depending 
on clustering context words between named enti-
ties; this approach depends on ad-hoc context 
similarity between phrases in the context and 
focused on certain types of relations. 

(Etzioni et al, 2005) proposed a system for 
building lists of named entities found on the web. 
Their system uses a set of eight domain-
independent extraction patterns to generate can-
didate facts. 

All approaches, proposed so far, suffer from 
either requiring large amount of labeled data or 
the dependency on seed patterns (or examples) 
that result in limited generalization. 

3 General Notation 

In graph theory, a graph is a set of objects called 
vertices joined by links called edges. A bipartite 
graph, also called a bigraph, is a special graph 
where the set of vertices can be divided into two 
disjoint sets with no two vertices of the same set 
sharing an edge.  

The Hypertext Induced Topic Selection 
(HITS) algorithm is an algorithm for rating, and 
therefore ranking, web pages. The HITS algo-
rithm makes use of the following observation: 
when a page (hub) links to another page (author-
ity), the former confers authority over the latter. 
HITS uses two values for each page, the "author-
ity value" and the "hub value". "Authority value" 
and "hub value" are defined in terms of one an-
other in a mutual recursion. An authority value is 
computed as the sum of the scaled hub values 
that point to that authority. A hub value is the 
sum of the scaled authority values of the authori-
ties it points to. 

A template, as we define for this work, is a se-
quence of generic forms that could generalize 
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over the given instances. An example template 
is:  

GPE  POS  ( PERSON) + 
 
GPE:  Geogr aphi cal  Pol i t i cal  En-
t i t y  
POS:  possessi ve endi ng 
PERSON:  PERSON Ent i t y  

 
This template could match the sentence: 

“France’s President Jacque Chirac...” .  This tem-
plate is derived from the representation of the 
Named Entity tags, Part-of-Speech (POS) tags 
and semantic tags. The choice of the template 
representation here is for illustration purpose 
only; any combination of tags, representations 
and tagging styles might be used.  

A pattern is more specific than a template. A 
pattern specifies the role played by the tags (first 
entity, second entity, or relation). An example of 
a pattern is:  

    
GPE( E2)   POS   ( PERSON) +( E1)  
 
This pattern indicates that the word(s) with the 

tag GPE in the sentence represents the second 
en-tity (Entity 2) in the relation, while the 
word(s) tagged PERSON represents the first en-
tity (Entity 1) in this relation, the “+”  symbol 
means that the (PERSON) entity is repetitive (i.e. 
may consist of several tokens).  

A tuple, in our notation during this paper, is 
the result of the application of a pattern to un-
structured text. In the above example, one result 
of applying the pattern to some raw text is the 
following tuple: 

 
Ent i t y 1:  Jacque Chi r ac 
Ent i t y 2:  Fr ance 
Rel at i on:  EMP- Execut i ve 

4 The Approach 

The unsupervised graph-based mutual rein-
forcement approach, we propose, depends on the 
construction of generalized “extraction patterns” 
that could match many instances. The patterns 
are then weighted according to their importance 
by deploying graph based mutual reinforcement 
techniques. This duality in patterns and extracted 
information (tuples) could be stated that patterns 
could match different tuples, and tuples in turn 
could be matched by different patterns. The pro-
posed approach is composed of two main steps 
namely, initial patterns construction and pattern 

weighting or induction. Both steps are detailed in 
the next sub-sections. 

4.1 Initial Patterns Construction 

As shown in Figure 1, several syntactic, lexical, 
and semantic analyzers could be applied to the 
unstructured text. The resulting analyses could be 
employed in the construction of extraction pat-
terns. It is worth mentioning that the proposed 
approach is general enough to accommodate any 
pattern design; the introduced pattern design is 
for illustration purposes only. 

 
 

 
 
Initially, we need to start with some templates 

and patterns to proceed with the induction proc-
ess. Relatively large amount of text data is 
tagged with different taggers to produce the pre-
viously mentioned patterns styles. An n-gram 
language model is built on this data and used to 
construct weighted finite state machines.  

Paths with low cost (high language model 
probabilities) are chosen to construct the initial 
set of templates; the intuition is that paths with 
low cost (high probability) are frequent and 
could represent potential candidate patterns. 

The resulting initial set of templates is applied 
to a very large text data to produce all possible 
patterns. The number of candidate initial patterns 
could be reduced significantly by specifying the 
candidate types of entities; for example we might 
specify that the first entity could be PEROSN or 
PEOPLE while the second entity could be OR-
GANIZATION, LOCATION, COUNTRY and 
etc...  

The candidate patterns are then applied to the 
tagged stream and the unstructured text to collect 
a set of patterns and matched tuples pairs.  

The following procedure briefs the Initial Pat-
tern Construction Step: 
• Select a random set of text data. 

American vice President   Al Gore said today... 

PEOPLE    O         O       PERSON   O    O... 

ADJ     NOUN_PHRASE   NNP  VBD CD... 

PEOPLE NOUN_PHRASE  PERSON  VBD CD... 

Entities 

POS 

Tagged 
Stream 

Figure 1:  An example of the output of analys-
ers applied to the unstructured text  
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• Apply various taggers on text data and con-
struct templates style. 

• Build n-gram language model on template 
style data. 

• Construct weighted finite state machines 
from the n-gram language model. 

• Choose n-best paths in the finite state ma-
chines. 

• Use best paths as initial templates. 

• Apply initial templates on large text data. 

• Construct initial patterns and associated tu-
ples sets. 

4.2 Pattern Induction 

The inherent duality in the patterns and tuples 
relation suggests that the problem could be inter-
preted as a hub authority problem. This problem 
could be solved by applying the HITS algorithm 
to iteratively assign authority and hub scores to 
patterns and tuples respectively. 
 

 
Patterns and tuples are represented by a bipar-

tite graph as illustrated in figure 2. Each pattern 
or tuple is represented by a node in the graph. 
Edges represent matching between patterns and 
tuples. The pattern induction problem can be 
formulated as follows: Given a very large set of 
data D containing a large set of patterns P which 
match a large set of tuples T, the problem is to 

identify P
~

, the set of patterns that match the set 

of the most correct tuples  T
~

. The intuition is 

that the tuples matched by many different pat-
terns tend to be correct and the patterns matching 
many different tuples tend to be good patterns. In 
other words; we want to choose, among the large 
space of patterns in the data, the most informa-
tive, highest confidence patterns that could iden-
tify correct tuples; i.e. choosing the most “ au-
thoritative”  patterns in analogy with the hub au-

thority problem. However, bothP
~

and T
~

are un-
known. The induction process proceeds as fol-
lows:  each pattern p in P is associated with a 
numerical authority weight av which expresses 
how many tuples match that pattern. Similarly, 
each tuple t in T has a numerical hub weight ht 
which expresses how many patterns were 
matched by this tuple. The weights are calculated 
iteratively as follows: 
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where T(p) is the set of tuples matched by p, P(t) 

is the set of patterns matching t, ( )pa i )1( +  is the 
authoritative weight of pattern p  at iteration  

)1( +i , and ( )th i )1( +  is the hub weight of tuple t  

at iteration  )1( +i  . H(i) and A(i) are normaliza-
tion factors defined as: 
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Highly weighted patterns are identified and used 
for extracting relations. 

4.3 Tuple Clustering 

The tuple space should be reduced to allow more 
matching between pattern-tuple pairs. This space 
reduction could be accomplished by seeking a 
tuple similarity measure, and constructing a 
weighted undirected graph of tuples. Two tuples 
are linked with an edge if their similarity meas-
ure exceeds a certain threshold. Graph clustering 
algorithms could be deployed to partition the 
graph into a set of homogeneous communities or 
clusters. To reduce the space of tuples, we seek a 
matching criterion that group similar tuples to-
gether. Using WordNet, we can measure the se-
mantic similarity or relatedness between a pair of 
concepts (or word senses), and by extension, be-
tween a pair of sentences. We use the similarity 

P

P

P

P

P

T

T

T

T

T

P

P

T

T

Patterns� Tuples�

Figure 2: A bipartite graph represent-
ing patterns and tuples 
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measure described in (Wu and Palmer, 1994) 
which finds the path length to the root  node 
from the least common subsumer (LCS) of the 
two word senses which is the most specific word 
sense they share as an ancestor. The similarity 
score of two tuples, ST, is calculated as follows: 
 

2
2

2
1 EET SSS +=    (5) 

 
where SE1, and SE2 are the similarity scores of the 
first entities in the two tuples, and their second 
entitles respectively. 

The tuple matching procedure assigns a simi-
larity measure to each pair of tuples in the data-
set. Using this measure we can construct an undi-
rected graph G. The vertices of G are the tuples. 
Two vertices are connected with an edge if the 
similarity measure between their underlying tu-
ples exceeds a certain threshold. It was noticed 
that the constructed graph consists of a set of 
semi isolated groups as shown in figure 3. Those 
groups have a very large number of inter-group 
edges and meanwhile a rather small number of 
intra-group edges. This implies that using a 
graph clustering algorithm would eliminate those 
weak intra-group edges and produce separate 
groups or clusters representing similar tuples. We 
used Markov Cluster Algorithm (MCL) for graph 
clustering (Dongen, 2000). MCL is a fast and 
scalable unsupervised clustering algorithm for 
graphs based on simulation of stochastic flow. 

 

 
 

Figure 3: Applying Clustering Algorithms to Tu-
ple graph  

 
An example of a couple of tuples that could be 

matched by this technique is: 
Uni t ed St at ed( E2)  pr esi -
dent ( E1)  
US( E2)  l eader ( E1)  
  
A bipartite graph of patterns and tuple clusters 

is constructed. Weights are assigned to patterns 
and tuple clusters by iteratively applying the 

HITS algorithm and the highly ranked patterns 
are then used for relation extraction.  

5 Experimental Setup 

5.1 ACE Relation Detection and Charac-
terization 

In this section, we describe Automatic Content 
Extraction (ACE). ACE is an evaluation con-
ducted by NIST to measure Entity Detection and 
Tracking (EDT) and Relation Detection and 
Characterization (RDC). The EDT task is con-
cerned with the detection of mentions of entities, 
and grouping them together by identifying their 
coreference. The RDC task detects relations be-
tween entities identified by the EDT task. We 
choose the RDC task to show the performance of 
the graph based unsupervised approach we pro-
pose. To this end we need to introduce the notion 
of mentions and entities. Mentions are any in-
stances of textual references to objects like peo-
ple, organizations, geopolitical entities (countries, 
cities …etc), locations, or facilities. On the other 
hand, entities are objects containing all mentions 
to the same object. Here, we present some exam-
ples of ACE entities and relations: 

Spai n’ s I nt er i or  Mi ni st er  
announced t hi s eveni ng t he 
ar r est  of  separ at i st  or gani -
zat i on Et a’ s pr esumed l eader  
I gnaci o Gar ci a Ar r egui .  Ar -
r egui ,  who i s consi der ed t o 
be t he Et a or gani zat i on’ s 
t op man,  was ar r est ed at  
17h45 Gr eenwi ch.  The Spani sh 
j udi c i ar y suspect s Ar r egui  
of  or der i ng a f ai l ed at t ack 
on Ki ng Juan Car l os i n 1995.  
 

In this fragment, all the underlined phrases are 
mentions to “Et a”  organization, or to “Gar ci a 
Ar r egui ” . There is a management relation be-
tween “ l eader ”  which references to “ Gar -
ci a Ar r egui ”  and “ Et a” .  

5.2 Patterns Construction and Induction 

We used the LDC English Gigaword Corpus, 
AFE source from January to August 1996 as a 
source for unstructured text. This provides a total 
of 99475 documents containing 36 M words.  In 
the performed experiments, we focus on two 
types of relations EMP-ORG relations and GPE-
AFF relations which represent almost 50% of all 
relations in RDC – ACE task. 

T

T T

T
T

T

T

T

T

T

T
T

T T

T

T T

T
T

T

T

T

T

T

T
T

T T

Before Clustering� After Clustering�

505



POS (part of speech) tagger and mention tagger 
were applied to the data, the used pattern design 
consists of a mix between the part of speech 
(POS) tags and the mention tags for the words in 
the unsupervised data. We use the mention tag, if 
it exists; otherwise we use the part of speech tag. 
An example of the analyzed text and the pre-
sumed associated pattern is shown: 
 

Text :  Et a’ s pr esumed l eader  
Ar r egui  … 
Pos:  NNP POS JJ NN NNP 
Ment i on:  ORG 0 0 0 PERSON 
Pat t er n:  ORG( E2)  POS JJ 
NN( R)  PERSON( E1)  

 
An n-gram language model, 5-gram model and 
back off to lower order n-grams, was built on the 
data tagged with the described patterns’  style. 
Weighted finite states machines were constructed 
with the language model probabilities. The n-best 
paths, 20 k paths, were identified and deployed 
as the initial template set. Sequences that do not 
contain the entities of interest, and hence cannot 
represent relations, were automatically filtered 
out. This resulted in an initial templates set of 
around 3000 element. This initial templates set 
was applied on the text data to establish initial 
patterns and tuples pairs. Graph based mutual 
reinforcement technique was deployed with 10 
iterations on the patterns and tuples pairs to 
weight the patterns. 

We conducted two groups of experiments, the 
first with simple syntactic tuple matching, and 
the second with semantic tuple clustering as de-
scribed in section 4.3 

6 Results and Discussion 

We compare our results to a state-of-the-art su-
pervised system similar to the system described 
in (Kambhatla, 2004). Although it is unfair to 
make a comparison between a supervised system 
and a completely unsupervised system, we chose 
to make this comparison to test the performance 
of the proposed unsupervised approach on a real 
task with defined test set and state-of-the-art per-
formance. The supervised system was trained on 
145 K words which contain 2368 instances of the 
two relation types we are considering. 

The system performance is measured using 
precision, recall and F-Measure with various 
amounts of induced patterns. Table 1 presents the 
precision, recall and F-measure for the two rela-
tions using the presented approach with the utili-

zation of different amount of highly weighted 
patterns. Table 2 presents the same results using 
semantic tuple matching and clustering, as de-
scribed in section 4.3.  

 
No. of  

Patterns Precision Recall F-Measure 

1500 35.9 66.3 46.58 
1000 41.2 59.7 48.75 
700 43.1 58.1 49.49 
500 46 56.5 50.71 
400 46.9 52.9 49.72 
200 50.1 44.9 47.36 

 
Table 1:  The effect of varying the number of 
induced patterns on the system performance 
(syntactic tuple matching) 

 
No. of  

Patterns Precision Recall F-Measure 
1500 36.1 67.2 46.97 
1000 43.7 59.6 50.43 
700 44.1 59.3 50.58 
500 46.3 57.2 51.18 
400 47.3 57.6 51.94 
200 48.1 45.9 46.97 

 
Table 2:  The effect of varying the number of 
induced patterns on the system performance (se-
mantic tuple matching) 
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Sup 67.1 54.2 59.96

Unsup-Syn 46 56.5 50.71

Unsup-Sem 47.3 57.6 51.94

Precision Recall F Measure

 
 

Figure 4:  A comparison between the supervised 
system (Sup), the unsupervised system with syn-
tactic tuple matching (Unsup-Syn), and with se-
mantic tuple matching (Unsup-Sem) 

 
Best F-Measure is achieved using relatively 

small number of induced patterns (400 and  500 
patterns) while using more patterns increases the 
recall but degrades the precision. 

Table 2 indicates that the semantic clustering 
of tuples did not provide significant improve-

506



ment; although better performance was achieved 
with less number of patterns (400 patterns). We 
think that the deployed similarity measure and it 
needs further investigation to figure out the rea-
son for that. 

Figure 4 presents the comparison between the 
proposed unsupervised systems and the reference 
supervised system. The unsupervised systems 
achieves good results even in comparison to  a 
state-of-the-art supervised system. 

Sample patterns and corresponding matching 
text are introduced in Table 3 and Table 4. Table 
3 shows some highly ranked patterns while Table 
4 shows examples of low ranked patterns. 

 
Pattern Matches 

GPE (PERSON)+ 
Peruvian President Alberto Fu-
jimori 

GPE (PERSON)+ 
Zimbabwean President Robert 
Mugabe 

GPE (PERSON)+ PLO leader Yasser Arafat 

GPE POS (PERSON)+ 
Zimbabwe 's President Robert 
Mugabe 

GPE JJ PERSON    
American clinical neuropsy-
chologist 

GPE JJ PERSON    American diplomatic personnel 

PERSON IN JJ GPE candidates for local government 
ORGANIZATION PER-
SON 

Airways spokesman 

ORGANIZATION PER-
SON      

Ajax players 

PERSON IN DT (OR-
GANIZATION)+  

chairman of the opposition par-
ties 

(ORGANIZATION)+ 
PERSON    

opposition parties chairmans 

 
Table3: Examples of patterns with high weights 

 
Pattern Matches 

GPE CC (PERSON)+ Barcelona and Johan 
Cruyff 

GPE , CC PERSON Paris , but Riccardi 

GPE VBZ VBN PERSON Pyongyang has accepted 
Gallucci 

GPE VBZ VBN PERSON Russia has abandoned us 

GPE VBZ VBN P PER-
SON 

Rwanda 's defeated Hutu 

GPE VBZ VBN PERSON state has pressed Arafat 

GPE VBZ VBN TO VB 
PERSON 

Taiwan has tried to keep 
Lee 

(PERSON)+ VBD GPE 
ORGANIZATION 

Alfred Streim told Ger-
man radio 

(PERSON)+ VBD GPE 
ORGANIZATION 

Dennis Ross met Syrian 
army 

(PERSON)+ VBD GPE 
ORGANIZATION 

Van Miert told EU indus-
try 

 
Table4: Examples of patterns with low weights 

7 Conclusion and Future Work 

In this work, a general framework for unsuper-
vised information extraction based on mutual 
reinforcement in graphs has been introduced. We 
construct generalized extraction patterns and de-
ploy graph based mutual reinforcement to auto-
matically identify the most informative patterns. 
We provide motivation for our approach from a 
graph theory and graph link analysis perspective. 
Experimental results have been presented sup-
porting the applicability of the proposed ap-
proach to ACE Relation Detection and Charac-
terization (RDC) task, demonstrating its applica-
bility to hard information extraction problems. 
The proposed approach achieves remarkable re-
sults comparable to a state-of-the-art supervised 
system, achieving 51.94 F-measure compared to 
59.96 F-measure of the state-of-the-art super-
vised system which requires huge amount of hu-
man annotated data. The proposed approach 
represents a powerful unsupervised technique for 
information extraction in general and particularly 
for relations extraction that requires no seed pat-
terns or examples and achieves significant per-
formance. 
In our future work, we plan to focus on general-
izing the approach for targeting more NLP prob-
lems. 
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Abstract

When a machine learning-based named
entity recognition system is employed in
a new domain, its performance usually de-
grades. In this paper, we provide an em-
pirical study on the impact of training data
size and domain information on the per-
formance stability of named entity recog-
nition models. We present an informative
sample selection method for building high
quality and stable named entity recogni-
tion models across domains. Experimen-
tal results show that the performance of
the named entity recognition model is en-
hanced significantly after being trained
with these informative samples.

1 Introduction

Named entities (NE) are phrases that contain
names of persons, organizations, locations, etc.
Named entity recognition (NER) is an important
task in many natural language processing appli-
cations, such as information extraction and ma-
chine translation. There have been a number of
conferences aimed at evaluating NER systems,
for example, MUC6, MUC7, CoNLL2002 and
CoNLL2003, and ACE (automatic content extrac-
tion) evaluations.

Machine learning approaches are becoming
more attractive for NER in recent years since they
are trainable and adaptable. Recent research on
English NER has focused on the machine learning
approach (Sang and Meulder, 2003). The relevant
algorithms include Maximum Entropy (Borth-
wick, 1999; Klein et al., 2003), Hidden Markov
Model (HMM) (Bikel et al., 1999; Klein et al.,
2003), AdaBoost (Carreras et al., 2003), Memory-
based learning (Meulder and Daelemans, 2003),

Support Vector Machine (Isozaki and Kazawa,
2002), Robust Risk Minimization (RRM) Classi-
fication method (Florian et al., 2003), etc.

For Chinese NER, most of the existing ap-
proaches use hand-crafted rules with word (or
character) frequency statistics. Some machine
learning algorithms also have been investigated in
Chinese NER, including HMM (Yu et al., 1998;
Jing et al., 2003), class-based language model
(Gao et al., 2005; Wu et al., 2005), RRM (Guo
et al., 2005; Jing et al., 2003), etc.

However, when a machine learning-based NER
system is directly employed in a new domain, its
performance usually degrades. In order to avoid
the performance degrading, the NER model is of-
ten retrained with domain-specific annotated cor-
pus. This retraining process usually needs more
efforts and costs. In order to enhance the perfor-
mance stability of NER models with less efforts,
some issues have to be considered in practice. For
example, how much training data is enough for
building a stable and applicable NER model? How
does the domain information and training data size
impact the NER performance?

This paper provides an empirical study on the
impact of training data size and domain informa-
tion on NER performance. Some useful observa-
tions are obtained from the experimental results
on a large-scale annotated corpus. Experimental
results show that it is difficult to significantly en-
hance the performance when the training data size
is above a certain threshold. The threshold of the
training data size varies with domains. The perfor-
mance stability of each NE type recognition also
varies with domains. Corpus statistical data show
that NE types have different distribution across do-
mains. Based on the empirical investigations, we
present an informative sample selection method
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for building high quality and stable NER models.
Experimental results show that the performance of
the NER model is enhanced significantly across
domains after being trained with these informative
samples. In spite of our focus on Chinese, we be-
lieve that some of our observations can be poten-
tially useful to other languages including English.

This paper is organized as follows. Section 2
describes a Chinese NER system using multi-level
linguistic features. Section 3 discusses the impact
of domain information and training data size on
the NER performance. Section 4 presents an in-
formative sample selection method to enhance the
performance of the NER model across domains.
Finally the conclusion is given in Section 5.

2 Chinese NER Based on Multilevel
Linguistic Features

In this paper, we focus on recognizing four types
of NEs: Persons (PER), Locations (LOC), Orga-
nizations (ORG) and miscellaneous named enti-
ties (MISC) which do not belong to the previous
three groups (e.g. products, conferences, events,
brands, etc.). All the NER models in the follow-
ing experiments are trained with a Chinese NER
system. In this section, we simply describe this
Chinese NER system. The Robust Risk Minimiza-
tion (RRM) Classification method and multi-level
linguistic features are used in this system (Guo et
al., 2005).

2.1 Robust Risk Minimization Classifier

We can view the NER task as a sequential classi-
fication problem. Iftoki (i = 0, 1, ..., n) denotes
the sequence of tokenized text which is the input
to the system, then every tokentoki should be as-
signed a class-labelti.

The class label valueti associated with each to-
kentoki is predicted by estimating the conditional
probabilityP (ti = c|xi) for every possible class-
label valuec, wherexi is a feature vector associ-
ated with tokentoki.

We assume thatP (ti = c|xi) = P (ti =
c|toki, {tj}j≤i). The feature vectorxi can depend
on previously predicted class labels{tj}j≤i, but
the dependency is typically assumed to be local.
In the RRM method, the above conditional proba-
bility model has the following parametric form:

P (ti = c|xi, ti−l, ..., ti−1) = T (wT
c xi + bc),

whereT (y) = min(1, max(0, y)) is the truncation
of y into the interval [0, 1].wc is a linear weight

vector andbc is a constant. Parameterswc andbc

can be estimated from the training data. Given
training data(xi, ti) for i = 1, ..., n, the model
is estimated by solving the following optimization
problem for eachc (Zhang et al., 2002):

inf
w,b

1

n

n
∑

i=1

f(wT
c xi + bc, y

i
c),

whereyi
c = 1 whenti = c, andyi

c = −1 other-
wise. The functionf is defined as:

f(p, y) =











−2py py < 1
1

2
(py − 1)2 py ∈ [−1, 1]

0 py > 1

Given the above conditional probability model,
the best possible sequence ofti’s can be estimated
by dynamic programming in the decoding stage
(Zhang et al., 2002).

2.2 Multilevel Linguistic Features

This Chinese NER system uses Chinese charac-
ters (not Chinese words) as the basic token units,
and then maps word-based features that are as-
sociated with each word into corresponding fea-
tures of those characters that are contained in the
word. This approach can effectively incorporate
both character-based features and word-based fea-
tures. In general, we may regard this approach
as information integration from linguistic views at
different abstraction levels.

We integrate a diverse set of local linguistic fea-
tures, including word segmentation information,
Chinese word patterns, complex lexical linguis-
tic features (e.g. part of speech and semantic fea-
tures), aligned at the character level. In additional,
we also use external NE hints and gazetteers, in-
cluding surnames, location suffixes, organization
suffixes, titles, high-frequency Chinese characters
in Chinese names and translation names, and lists
of locations and organizations. In this system, lo-
cal linguistic features of a token unit are derived
from the sentence containing this token unit. All
special linguistic patterns (i.e. date, time, numeral
expression) are encoded into pattern-specific class
labels aligned with the tokens.

3 Impact of Training Data Size And
Domain Information on the NER
Performance

It is very important to keep the performance sta-
bility of NER models across domains in practice.
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However, the performance usually becomes unsta-
ble when NER models are applied in different do-
mains. We focus on the impact of the training data
size and domain information on the NER perfor-
mance in this section.

3.1 Data

We built a large-scale high-quality Chinese NE an-
notated corpus. The corpus size is 114.25M Chi-
nese characters. All the data are news articles se-
lected from several Chinese newspapers in 2001
and 2002. All the NEs in the corpus are manually
tagged. Documents in the corpus are also man-
ually classified into eight domain categories, in-
cluding politics, sports, science, economics, enter-
tainment, life, society and others. Cross-validation
is employed to ensure the tagging quality.

All the training data and test data in the exper-
iments are selected from this Chinese annotated
corpus. The general training data are randomly se-
lected from the corpus without distinguishing their
domain categories. All the domain-specific train-
ing data are selected from the corpus according to
their domain categories. One general test data set
and seven domain-specific test data sets are used
in our experiments (see Table 1). The size of the
general test data set is 1.34M Chinese characters.
Seven domain-specific test sets are extracted from
the general test data set according to the document
domain categories.

Domain NE distribution in the domain-oriented test data set Test set
PER ORG LOC MISC Total Size

General 11,991 9,820 12,353 1,820 35,984 1.34M
Politics 2,470 1,528 2,540 480 7,018 0.2M
Economics 1,098 2,971 2,362 493 6,924 0.26M
Sports 1,802 1,323 1,246 478 4,849 0.10M
Entertainment 2,458 526 738 542 4,264 0.10M
Society 916 418 823 349 2,506 0.08M
Life 2,331 1,690 3,634 763 8,418 0.39M
Science 1,802 1,323 1,246 478 4,849 0.10M

Table 1: NE distribution in the general and
domain-specific test data sets

In our evaluation, only NEs with correct bound-
aries and correct class labels are considered as the
correct recognition. We use the standard P (i.e.
Precision), R (i.e. Recall), and F-measure (de-
fined as 2PR/(P+R)) to measure the performance
of NER models.

3.2 Impact of Training Data Size on the NER
Performance across Domains

The amount of annotated data is always a bottle-
neck for supervised learning methods in practice.

Figure 1: Performance curves of the general and
specific domain NER models

Thus, we evaluate the impact of training data size
on the NER performance across domains.

In this baseline experiment, an initial general
NER model is trained with 0.1M general data at
first. Then the NER model is incrementally re-
trained by adding 0.1M new general training data
each time till the performance isn’t enhanced sig-
nificantly. The NER performance curve (labelled
with the tag ”General” ) in the whole retraining
process is shown in Figure 1. Experimental results
show that the performance of the general NER
model is significantly enhanced in the first several
retraining cycles since more training data are used.
However, when the general training data set size is
more than 2.4M, the performance enhancement is
very slight.

In order to analyze how the training data size
impacting the performance of NER models in spe-
cific domains, seven domain-specific NER mod-
els are built using the similar retraining process.
Each domain-specific NER model is also trained
with 0.1M domain-specific data at first. Then,
each initial domain-specific NER model is incre-
mentally retrained by adding 0.1M new domain-
specific data each time.

NER F(%) Size NE distribution in the training set
Model thre-

shold
(M) PER ORG LOC MISC Total

General 80.38 2.4 24,960 27,231 21,098 7,439 80,728
Politics 83.09 0.9 11,388 6,618 14,350 1,974 34,330
Econ-
omics 85.46 1.7 7,197 21,113 15,582 3,466 47,358
Sports 90.78 0.6 11,647 8,105 7,468 3,070 30,290
Entert-
ainment 83.31 0.6 12,954 2,823 4,665 3,518 32,860
Society 76.55 0.6 7,099 3,279 6,946 1,909 19,233
Life 81.06 1.7 10,502 5,675 18,980 2,420 37,577
Science 70.02 0.4 1,625 3,010 2,083 902 7,620

Table 2: Performance of NER models, size thresh-
old and NE distribution in the corresponding train-
ing data sets
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The performance curves of these domain-
specific NER models are also shown in Figure 1
(see the curves labelled with the domain tags). Al-
though the initial performance of each domain-
specific NER model varies with domains, the per-
formance is also significantly enhanced in the first
several retraining cycles. When the size of the
domain-specific training data set is above a certain
threshold, the performance enhancement is very
slight as well.

The final performance of the trained NER mod-
els, and the corresponding training data sets are
shown in Table 2.

From these NER performance curves, we obtain
the following observations.

1. More training data are used, higher NER per-
formance can be achieved. However, it is
difficult to significantly enhance the perfor-
mance when the training data size is above a
certain threshold.

2. The threshold of the training data size and
the final achieved performance vary with do-
mains (see Table 2). For example, in enter-
tainment domain, the threshold is 0.6M and
the final F-measure achieves 83.31%. In eco-
nomic domain, the threshold is 1.7M, and the
corresponding F-measure is 85.46%.

3.3 The Performance Stability of Each NE
Type Recognition across Domains

Statistic data on our large-scale annotated corpus
(shown in Table 3) show that the distribution of NE
types varies with domains. We define ” NE density
” to quantitatively measure the NE distribution in
an annotated data set. NE density is defined as ”the
count of NE instances in one thousand Chinese
characters”. Higher NE density usually indicates
that more NEs are contained in the data set. We
may easily measure the distribution of each NE
type across domains using NE density. In this an-
notated corpus, PER, LOC, and ORG have similar
NE density while MISC has the smallest NE den-
sity. All the NE types also have different NE den-
sity in each domain. For example, the NE density
of ORG and LOC is much higher than that of PER
in economic domain. PER and LOC have higher
NE density than ORG in politics domain. PER
has the highest NE density among these NE types
in both sports and entertainment domains. The
unbalanced NE distribution across domains shows

that news articles on different domains usually fo-
cus on different specific NE types. These NE dis-
tribution features imply that each NE type has dif-
ferent domain dependency feature. The perfor-
mance stability of domain-focused NE type recog-
nition becomes more important in domain-specific
applications. For example, since economic news
articles usually focus on ORG and LOC NEs, the
high-quality LOC and ORG recognition models
will be more valuable in economic domain. In ad-
dition, these distribution features also can be used
to guide training and test data selection.

Domain NE distribution in the specific domain
PER LOC ORG MISC ALL Ratio

(%)
Politics 167,989 180,193 105,936 30,830 484,948 16.43
Econ-
omics 117,459 200,261 352,323 76,320 746,363 25.29
Sports 129,137 73,435 98,618 33,304 334,494 11.33
Entert- 154,193 50,408 40,444 52,460 297,505 10.08
ainment
Life 200,222 234,150 145,138 65,733 645,243 21.86
Society 63,793 53,724 43,657 21,162 182,336 6.18
Science 27,878 30,737 72,413 16,824 147,852 5.00
Others 31,723 40,730 26,666 13,926 113,045 3.83
All 892,394 863,638 885,195 310,559 2,951,786 –
Domain NE density in the Chinese annotated corpus Size

PER LOC ORG MISC ALL (M)
Politics 10.70 11.48 6.75 1.96 31.21 15.70
Econ-
omics 4.18 7.13 12.55 2.72 26.58 28.08
Sports 16.43 9.34 12.55 4.24 42.57 7.86
Entert-
ainment 16.81 5.05 4.14 5.72 32.44 9.17
Life 5.64 6.59 4.09 1.85 18.17 35.52
Society 8.57 7.22 5.87 2.84 24.51 7.44
Science 4.30 4.74 11.17 2.60 22.82 6.48
Others 7.9 10.18 6.67 3.48 28.26 4.00
All 7.81 7.56 7.75 2.72 25.89 114.25

Table 3: NE distribution in the Chinese annotated
corpus

In this experiment, the performance stability
of NER models across domains is evaluated, es-
pecially the performance stability of each NE
type recognition. The general NER model is
trained with 2.4M general data. Seven domain-
specific models are trained with the corresponding
domain-specific training sets (see Table 2 in Sec-
tion 3.2).

The performance stability of the general NER
model is firstly evaluated on the general and
domain-specific test data sets (see Table 1 in Sec-
tion 3.1 ). The experimental results are shown in
Table 4. The performance curves of the general
model are shown in Figure 2, including the total
F-measure curve of the NER model (labelled with
the tag ”All”) and F-measure curves of each NE
type recognition in the specific domains (labelled
with the NE tags respectively).

The performance stability of the seven domain-
specific NER models are also evaluated. Each
domain-specific NER model is tested on the gen-
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Domain F(%) of general NER model
PER LOC ORG MISC ALL

General 86.69 85.55 73.59 56.00 80.38
Economic 85.11 88.22 75.91 49.53 80.50
Politics 86.26 87.00 71.31 61.50 81.90
Sports 91.87 89.03 81.67 67.41 86.10
Entertainment 84.24 85.85 68.65 60.96 79.31
Life 86.62 83.54 70.30 58.49 79.73
Society 84.53 76.16 68.89 41.14 74.50
Science 87.74 86.42 65.85 24.10 69.55

Table 4: Performance of the general NER model
in specific domains

Figure 2: Performance curves of the general NER
model in specific domains

eral test data and the other six different domain-
specific test data sets. The experimental results are
shown in Table 5. The performance curves of three
domain-specific NER models are shown in Figure
3, Figure 4 and Figure 5 respectively.

From these experimental results, we have the
following conclusions.

1. The performance stability of all the NER
models is limited across domains. When a
NER model is employed in a new domain, its
performance usually decreases. Moreover, its
performance is usually much lower than the
performance of the corresponding domain-
specific model.

2. The general NER model has better per-

Figure 3: Performance curves of economic do-
main NER model in the other specific domains

NER F(%) in specific domain
Model Gen- Eco- Poli- Spo- Enter- Life Soc- Sci-

eral nomic tics rts tainment iety ence
General 80.38 80.50 81.90 86.10 79.31 79.73 74.50 69.55
Econ-
omic 75.30 85.46 74.32 72.89 68.46 76.23 65.75 68.97
Politics 73.37 66.39 83.09 76.37 71.51 74.83 67.31 53.76
Sports 71.23 62.56 68.99 90.78 73.48 71.18 64.82 53.85
Entert-
ainment 70.82 61.52 72.04 75.34 83.31 71.80 69.10 52.50
Life 73.53 66.92 75.07 73.86 72.68 81.06 69.61 57.36
Society 70.29 62.55 72.70 70.69 72.24 74.10 76.55 53.42
Science 67.26 67.57 69.00 64.32 63.84 69.05 64.85 70.02

Table 5: Performance of NER models in specific
domains

Figure 4: Performance curves of sports domain
NER model in the other specific domains

formance stability than the domain-specific
NER model when they are applied in new do-
mains (see Table 5). Domain-specific mod-
els usually could achieve a higher perfor-
mance in its corresponding domain after be-
ing trained with a smaller amount of domain-
specific annotated data (see Table 2 in Sec-
tion 3.2). However, the performance stability
of domain-specific NER model is poor across
different domains. Thus, it is very popular to
build a general NER model for the general
applications in practice.

3. The performance of PER, LOC and ORG
recognition is better than that of MISC recog-

Figure 5: Performance curves of politics domain
NER model in the other specific domains
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nition in NER (see Figure 2∼ Figure 5).
The main reason for the poor performance of
MISC recognition is that there are less com-
mon indicative features among various MISC
NEs which we do not distinguish. In addi-
tion, NE density of MISC is much less than
that of PER, LOC, and ORG. There are a
relatively small number of positive training
samples for MISC recognition.

4. NE types have different domain dependency
attribute. The performance stability of each
NE type recognition varies with domains (see
Figure 2∼ Figure 5). The performance of
PER and LOC recognition are more stable
across domains. Thus, few efforts are needed
to adapt the existing high-quality general
PER and LOC recognition models in domain-
specific applications. Since ORG and MISC
NEs usually contain more domain-specific
semantic information, ORG and MISC are
more domain-dependent than PER and LOC.
Thus, more domain-specific features should
be mined for ORG and MISC recognition.

4 Use Informative Training Samples to
Enhance the Performance of NER
Models across Domains

A higher performance system usually requires
more features and a larger number of training data.
This requires larger system memory and more effi-
cient training method, which may not be available.
Within the limitation of available training data and
computational resources, it is necessary for us to
either limit the number of features or select more
informative data which can be efficiently handled
by the training algorithm. Active learning method
is usually employed in text classification (McCal-
lum and Nigam et al., 1998). It is only recently
employed in NER (Shen et al., 2004).

In order to enhance the performance and over-
come the limitation of available training data and
computational resources, we present an informa-
tive sample selection method using a variant of
uncertainty-sampling (Lewis and Catlett, 1994).
The main steps are described as follows.

1. Build an initial NER model (F-
measure=76.24%) using an initial data
set. The initial data set (about 1M Chinese
characters) is randomly selected from the
large-scale candidate data set (about 9M ).

Figure 6: Performance curves of general NER
models after being trained with informative sam-
ples and random samples respectively

2. Refine the training set by adding more infor-
mative samples and removing those redun-
dant samples. In this refinement phase, all of
the data are annotated by the current recogni-
tion model (e.g. the initial model built in Step
1). Each annotation has a confidence score
associated with the prediction. In general, an
annotation with lower confidence score usu-
ally indicates a wrong prediction. The con-
fidence score of the whole sample sentence
is defined as the average of the confidence
scores of all the annotations contained in the
sentence. Thus, we add those sample sen-
tences with lower confidence scores into the
training set. Meanwhile, in order to keep a
reasonable size of the training set, those old
training sample sentences with higher confi-
dence scores are removed from the current
training set. In each retraining phase, all of
the sample sentences are sorted by the con-
fidence score. The top 1000 new sample
sentences with lowest confidence scores are
added into the current training set. The top
500 old training sample sentences with high-
est confidence scores are removed from the
current training set.

3. Retrain a new Chinese NER model with the
newly refined training set

4. Repeat Step 2 and Step 3, until the perfor-
mance doesn’t improve any more.

We apply this informative sample selection
method to incrementally build the general domain
NER model. The size of the final informative
training sample set is 1.05M Chinese characters.
This informative training sample set has higher
NE density than the random training data set (see
Table 6).
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We denote this general NER model trained with
the informative sample set as ”general informa-
tive model”, and denote the general-domain model
which is trained with 2.4M random general train-
ing data as ”general random model”. The perfor-
mance curves of the general NER models after be-
ing trained with informative samples and random
data respectively are shown in Figure 6. Experi-
ment results (see Table 6) show that there is a sig-
nificant enhancement in F-measure if using infor-
mative training samples. Compared with the ran-
dom model, the informative model can increase F-
measure by 4.21 percent points.

Type Using informative sample set Using random training set
(1.05M) (2.4M)

F(%) NEs NE density F(%) NEs NE density
PER 89.87 18,898 18.00 86.69 24,960 10.38
LOC 89.68 24,862 23.68 85.55 21,089 11.33
ORG 79.22 22,173 21.12 73.59 27,231 8.78
MISC 64.27 8,067 7.68 56.00 7,439 3.10
Total 84.59 74,000 70.48 80.38 80,728 33.58

Table 6: Performance of informative model and
random model in the general domain

Domain F(%) of general informative model
PER LOC ORG MISC ALL

Economic 89.26 90.66 81.24 61.14 84.63
Politics 89.36 89.37 74.76 65.95 84.70
Sports 93.65 90.66 86.00 72.05 88.71
Entertainment 88.38 87.54 73.88 58.32 82.74
Life 89.15 88.35 75.68 72.01 84.66
Society 86.61 82.15 72.99 58.55 79.49
Science 90.91 88.35 71.69 25.16 72.71

Table 7: Performance of the general informative
model in specific domains

This informative model is also evaluated on the
domain-specific test sets. Experimental results are
shown in Table 7. We view the performance of the
domain-specific NER model as the baseline per-
formance in its corresponding domain (see Table
8), denoted asFbaseline. The performance of in-
formative model in specific domains is very close
to the correspondingFbaseline (see Figure 7). We
define the domain-specific average F-measure as
the average of all the F-measure of the NER model
in seven specific domains, denote asF . The av-
erage of all theFbaseline in specific domains is
denoted asF baseline. The average F-measure of
the informative model and the random model in
specific domains is denoted asF informative and
F random respectively. Compared withF baseline

(F =81.47%), the informative model increasesF

by 1.05 percent points. However,F decreases by
2.67 percent points if using the random model. Es-
pecially, the performance of the informative model
is better than the corresponding baseline perfor-

Figure 7: Performance comparison of informa-
tive model, random model, and the corresponding
domain-specific models

mance in politics, life, society and science do-
mains. Moreover, the size of the informative sam-
ple set is much less than the life domain training
set (1.7M).

NER F(%) in specific domains
model Eco- Poli- Spo- Entert- Life So- Sci- F

nomic tics rts ainment ciety ence
domain-
specific 85.46 83.09 90.78 83.31 81.06 76.55 70.02 81.47
(baseline)
Infor-
mative 84.63 84.70 88.71 82.74 84.66 79.49 72.71 82.52
Random 80.50 81.90 86.10 79.31 79.73 74.50 69.55 78.80
NER δ(F ) in specific domain
model δ(F ) = (F − F ) σ

Eco- Poli- Spo- Entert- Life So- Sci-
nomic tics rts ainment ciety ence

Infor-
mative 2.11 2.18 6.19 0.22 2.14 -3.03 -9.81 4.74
Random 1.7 3.1 7.3 0.51 0.93 -4.3 -9.25 4.94

Table 8: Performance comparison of informa-
tive model, random model and the corresponding
domain-specific model in each specific domain

The informative model has much better perfor-
mance than the random model in specific domains
(see Table 8 and Figure 7).F informative is 82.52%
while F random is 78.80%. The informative model
can increaseF by 3.72 percent points. The infor-
mative model is also more stable than the random
model in specific domains (see Table 8). Standard
deviation of F-measure for the informative model
is 4.74 while that for the random model is 4.94.

Our experience with the incremental sample se-
lection provides the following hints.

1. The performance of the NER model across
domains can be significantly enhanced after
being trained with informative samples. In
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order to obtain a high-quality and stable NER
model, it is only necessary to keep the infor-
mative samples. Informative sample selec-
tion can alleviate the problem of obtaining a
large amount of annotated data. It is also an
effective method for overcoming the poten-
tial limitation of computational resources.

2. In learning NER models, annotated results
with lower confidence scores are more use-
ful than those samples with higher confidence
scores. This is consistent with other studies
on active learning.

5 Conclusion

Efficient and robust NER model is very impor-
tant in practice. This paper provides an empirical
study on the impact of training data size and do-
main information on the performance stability of
NER. Experimental results show that it is difficult
to significantly enhance the performance when the
training data size is above a certain threshold. The
threshold of the training data size varies with do-
mains. The performance stability of each NE type
recognition also varies with domains. The large-
scale corpus statistic data also show that NE types
have different distribution across domains. These
empirical investigations provide useful hints for
enhancing the performance stability of NER mod-
els across domains with less efforts. In order to en-
hance the NER performance across domains, we
present an informative training sample selection
method. Experimental results show that the per-
formance is significantly enhanced by using infor-
mative training samples.

In the future, we’d like to focus on further
exploring more effective methods to adapt NER
model to a new domain with much less efforts,
time and performance degrading.
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Abstract

In this paper we describe and evaluate
several statistical models for the task of
realization ranking, i.e. the problem of
discriminating between competing surface
realizations generated for a given input se-
mantics. Three models (and several vari-
ants) are trained and tested: ann-gram
language model, a discriminative maxi-
mum entropy model using structural in-
formation (and incorporating the language
model as a separate feature), and finally an
SVM ranker trained on the same feature
set. The resulting hybrid tactical generator
is part of a larger, semantic transfer MT
system.

1 Introduction

This paper describes the application of several dif-
ferent statistical models for the task ofrealiza-
tion rankingin tactical generation, i.e. the problem
of choosing among multiple paraphrases that are
generated for a given meaning representation. The
specific realization component we use is the open-
source chart generator of the Linguistic Knowl-
edge Builder (LKB ; Carroll, Copestake, Flickinger,
& Poznanski, 1999; Carroll & Oepen, 2005).
Given a meaning representation in the form of
Minimal Recursion Semantics (MRS; Copestake,
Flickinger, Malouf, Riehemann, & Sag, 1995),
the generator outputs English realizations in ac-
cordance with the HPSG LinGO English Resource
Grammar (ERG; Flickinger, 2002).

As an example of generator output, a sub-set
of alternate realizations that are produced for a
single input MRS is shown in Figure 1. For the
two data sets considered in this paper, the aver-
age number of realizations produced by the gen-
erator is 85.7 and 102.2 (the maximum numbers
are 4176 and 3408, respectively). Thus, there is
immediate demand for a principled way of choos-
ing a single output among the generated candi-
dates. For this task we train and test three differ-
ent statistical models: ann-gram language model,

a maximum entropy model (MaxEnt) and a (lin-
ear) support vector machine (SVM). These are
all models that have proved popular within the
NLP community, but it is usually only the first
of these three that has been applied to the task
of ranking in sentence generation. The latter two
models that we present here go beyond the sur-
face information used by then-gram model, and
are trained on asymmetric treebankwith features
defined over the full HPSG analyses of compet-
ing realizations. Furthermore, such discriminative
models are suitable for ‘on-line’ use within our
generator—adopting the technique ofselective un-
packing from a packed forest (Carroll & Oepen,
2005)—which means our hybrid realizer obviates
the need for exhaustive enumeration of candidate
outputs. The present results extend our earlier
work (Velldal, Oepen, & Flickinger, 2004)—and
the related work of Nakanishi, Miyao, & Tsu-
jii (2005)—to an enlarged data set, more feature
types, and additional learners.

The rest of this paper is structured as follows.
Section 2 first gives a general summary of the var-
ious statistical models we will be considering, as
well as the measures used for evaluating them. We
then go on to define the task we are aiming to solve
in terms of treebank data and feature types in Sec-
tion 3. By looking at different variants of the Max-
Ent model we review some results for the relative
contribution of individual features and the impact
of frequency cutoffs for feature selection. Keeping
these parameters constant then, Section 4 provides
an array of empirical results on the relative perfor-
mance of the various approaches.

2 Models

In this section we briefly review the different types
of statistical models that we use for ranking the
output of the generator. We start by describing
the language model, and then go on to review the
framework for discriminative MaxEnt models and
SVM rankers. In the following we will uses andr to denote semantic inputs and generated realiza-
tions respectively.
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Remember that dogs must be on a leash.
Remember dogs must be on a leash.
On a leash, remember that dogs must be.
On a leash, remember dogs must be.
A leash, remember that dogs must be on.
A leash, remember dogs must be on.
Dogs, remember must be on a leash.

Table 1: A small example set of generator out-
puts using theERG. Where the input semantics is
no specified for aspects of information structure
(e.g. requesting foregrounding of a specific entity),
paraphrases include all grammatically legitimate
topicalizations. Other choices involve, for exam-
ple, the optionality of complementizers and rela-
tive pronouns, permutation of (intersective) modi-
fiers, and lexical and orthographic alternations.

2.1 Language Models

The use ofn-gram language models is the most
common approach to statistical selection in gen-
eration (Langkilde & Knight, 1998; and White
(2004); inter alios). In order to better assert the
relative performance of the discriminative mod-
els and the structural features we present below,
we also apply a trigram model to the ranking
problem. Using the freely available CMU SLM
Toolkit (Clarkson & Rosenfeld, 1997), we trained
a trigram model on an unannotated version of
the British National Corpus (BNC), containing
roughly 100 million words (using Witten-Bell dis-
counting and back-off). Given such a modelpn,
the score of a realizationri with surface formwki1 = (wi1; : : : ; wik) is then computed as

(1) F (s; ri) = kXj=1 pn(wi;jjwi;j�n; : : : ; wi;j�1)
Given the scoring functionF , the best realiza-
tion is selected according to the following decision
function:

(2) r̂ = argmaxr02Y(s) F (s; r0)
Although in this case scoring is not conditioned
on the input semantics at all, we still include it to
make the function formulation more general as we
will be reusing it later.

Note that, as the realizations in our symmet-
ric treebank also include punctuation marks, these
are also treated as separate tokens by the language
model (in addition to pseudo-tokens marking sen-
tence boundaries).

2.2 Maximum Entropy Models

Maximum entropy modeling provides a very flex-
ible framework that has been widely used for a
range of tasks in NLP, including parse selection
(e.g. Johnson, Geman, Canon, Chi, & Riezler,
1999; Malouf & Noord, 2004) and reranking for
machine translation (e.g. Och et al., 2004). A
model is specified by a set of real-valuedfeature
functionsthat describe properties of the data, and
an associated set oflearned weightsthat determine
the contribution of each feature.

Let us first introduce some notation before we
go on. LetY(si) = fr1; : : : ; rmg be the set of re-
alizations licensed by the grammar for a semantic
representationsi. Now, let our (positive) training
data be given asXp = fx1; : : : ; xNg where eachxi is a pair(si; rj) for which rj 2 Y(si) andrj
is annotated in the treebank as being a correct re-
alization ofsi. Note that we might have several
different members ofY(si) that pair up withsi
in Xp. In our set-up, this is the case where multi-
ple HPSG derivations for the same input semantics
project identical surface strings.

Given a set ofd features (as further described
in Section 3.2), each pair of semantic inputs and
hypothesized realizationr is mapped to a feature
vector�(s; r) 2 <d. The goal is then to find a
vector of weightsw 2 <d that optimize the like-
lihood of the training data. A conditional MaxEnt
model of the probability of a realizationr given
the semanticss, is defined aspw(rjs) = eFw(s;r)Zw(s)(3)

where the functionFw is simply the sum of the
products of all feature values and feature weights,
given by

(4) Fw(s; r) = dXi=1 wi�i(s; r) = w � �(s; r)
The normalization termZw is defined as

(5) Zw(s) = Xr02Y(s) eFw(s;r)
When we want to find the best realization for a
given input semantics according to a modelpw, it
is sufficient to compute the score function as in
Equation (4) and then use the decision function
previously given in Equation (2) above. When it
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comes to estimating1 the parametersw, the pro-
cedure seeks to maximize the (log of) a penalized
likelihood function as in

(6) ŵ = argmaxw logL(w)� Pdi=1w2i2�2
whereL(w) is the ‘conditionalized’ likelihood of
the training dataXp (Johnson et al., 1999), com-
puted asL(w) = QNi=1 pw(rijsi). The second
term of the likelihood function in Equation (6) is
a penalty term that is commonly used for reducing
the tendency of log-linear models to over-fit, es-
pecially when training on sparse data using many
features (Chen & Rosenfeld, 1999; Johnson et al.,
1999; Malouf & Noord, 2004). More specifically
it defines a zero-mean Gaussian prior on the fea-
ture weights which effectively leads to less ex-
treme values. After empirically tuning the prior
on our ‘Jotunheimen’ treebank (training and test-
ing by 10-fold cross-validation), we ended up us-
ing �2 = 0:003 for the MaxEnt models applied in
this paper.

2.3 SVM Rankers

In this section we briefly formulate the optimiza-
tion problem in terms of support vector machines.
Our starting point is the SVM approach introduced
in Joachims (2002) for learning ranking functions
for information retrieval. In our case the aim is to
learn a ranking function from a set of preference
relations on sentences generated for a given input
semantics.

In contrast to the MaxEnt approach, the SVM
approach has a geometric rather than probabilistic
view on the problem. Similarly to the the MaxEnt
set-up, the SVM learner will try to learn a linear
scoring function as defined in Equation (4) above.
However, instead of maximizing the probability
of the preferred or positive realizations, we try to
maximize their value forFw directly.

Recall our definition of the set of positive train-
ing examples in Section 2.2. Let us here analo-
gously defineXn = fx1; : : : ; xQg to be the neg-
ative counterpart, so that for a given pairx =(si; rj) 2 Xn, we have thatrj 2 Y(si) but rj is
not annotated as a preferred realization ofsi. Fol-

1We use the TADM open-source package (Malouf, 2002)
for training the models, using itslimited-memory variable
metricas the optimization method and experimentally deter-
mine the optimal convergence threshold and variance of the
prior.

lowing Joachims (2002), the goal is to minimize

(7) V (w; �) = 12w � w + CX �i;j;k
subject to the following constraints,8ijk s.t. (sk; ri) 2 Xp ^ (sk; rj) 2 Xn :(8) w � �(sk; ri) � w � �(sk; rj) + 1� �i;j;k8ijk : �i;j;k � 0(9)

Joachims (2002) shows that the preference con-
straints in Equation (8) can be rewritten as

(10) w � (�(sk; ri)� �(sk; rj)) � 1� �i;j;k
so that the optimization problem is equivalent to
training a classifier on the pairwise difference vec-
tors �(sk; ri) � �(sk; rj). The (non-negative)
slack variables�i;j;k are commonly used in SVMs
to make it possible to approximate a solution by
allowing some error in cases where a separating
hyperplane can not be found. The trade-off be-
tween maximizing the margin size and minimizing
the training error is governed by the constantC.
Using the SVMlight package by Joachims (1999),
we empirically specifiedC = 0:005 for the model
described in this paper. Note that, for the ex-
periments reported here, we will only be mak-
ing binary distinctions of preferred/non-preferred
realizations, although the approach presented in
(Joachims, 2002) is formulated for the more gen-
eral case of learning ordinal ranking functions.

Finally, given a linear SVM, we score and se-
lect realizations in the same way as we did with
the MaxEnt model, according to Equations (4) and
(2). Note, however, that it is also possible to use
non-linear kernel functions with this set-up, since
the ranking function can be represented as a linear
combination of the feature vectors as in

(11) w � �(s; ri) =X�j;k �(sj ; rk)�(s; ri)
2.4 Evaluation Measures

The models presented in this paper are evaluated
with respect to two simple metrics: exact match
accuracy and word accuracy. The exact match
measure simply counts the number of times that
the model assigns the highest score to a string that
exactly matches a corresponding ‘gold’ or refer-
ence sentence (i.e. a sentence that is marked as
preferred in the treebank). This score is discounted
appropriately in the case of ties between preferred
and non-preferred candidates.

519



if several realizations are given the top rank by
the model. We also include the exact match accu-
racy for the five best candidates according to the
models (see then-best columns of Table 6).

The simple measure of exact match accuracy of-
fers a very intuitive and transparent view on model
performance. However, it is also in some respects
too harsh as an evaluation measure in our setting
since there will often be more than just one of
the candidate realizations that provides a reason-
able rendering of the input semantics. We there-
fore also includeWA as similarity-based evalua-
tion metric. This measure is based on theLev-
ensthein distancebetween a candidate string and
a reference, also known asedit distance. This is
given by the minimum number of deletions, sub-
stitutions and insertions of words that are required
to transform one string into another. If we letd, s
andi represent the number of necessary deletions,
substitutions and insertions respectively, and letl
be the length of the reference, thenWA is defined
as

(12) WA = 1� d+ s+ il
The scores produced by similarity measures such
as WA are often difficult to interpret, but at least
they provide an alternative view on the relative
performance of the different models that we want
to compare. We could also have used several
other similarity measures here, such as the BLEU

score which is a well-established evaluation metric
within MT, but in our experience the various string
similarity measures usually agree on the relative
ranking of the different models.

3 Data Sets and Features

The following sections summarize the data sets
and the feature types used in the experiments.

3.1 Symmetric Treebanks

Conditional parse selection models are standardly
trained on a treebank consisting of strings paired
with their optimal analyses. For our discriminative
realization ranking experiments we require train-
ing corpora that provide the inverse relation. By
assuming that the preferences captured in a stan-
dard treebank can constitute abidirectional rela-
tion, Velldal et al. (2004) propose a notion of sym-
metric treebanks as the combination of (a) a set of
pairings of surface forms and associated seman-
tics; combined with (b) the sets of alternative anal-

Jotunheimen

Bin Items Words Trees Gold Chance100 � n 396 21.7 367.4 20.7 0.08350 � n< 100 246 18.5 73.7 11.5 0.16010 � n< 50 831 14.8 24.2 6.3 0.2775 � n< 10 426 10.1 7.0 3.0 0.4361 < n< 5 291 11.2 3.3 1.6 0.486

Total 2190 15.1 85.7 8.2 0.287

Rondane

Bin Items Words Trees Gold Chance100 � n 107 21.8 498.4 17.8 0.06050 � n< 100 63 19.1 72.9 12.0 0.16210 � n< 50 244 15.2 23.4 4.9 0.2345 � n< 10 119 11.9 7.2 2.7 0.3771 < n< 5 101 9.3 3.21 1.5 0.476

Total 634 15.1 102.2 6.8 0.263

Table 2: Some core metrics for the symmetric tree-
banks ‘Jotunheimen’ (top) and ‘Rondane’ (bot-
tom). The former data set was used for devel-
opment and cross-validation testing, the latter for
cross-genre held-out testing. The data items are
aggregated relative to their number of realizations.
The columns are, from left to right, the subdivi-
sion of the data according to the number of real-
izations, total number of items scored (excluding
items with only one realization and ones where
all realizations are marked as preferred), aver-
age string length, average number of realizations,
and average number of references. The rightmost
column shows a random choice baseline, i.e. the
probability of selecting the preferred realization
by chance.

yses for each surface form, and (c) sets of alter-
nate realizations of each semantic form. Using
the semantics of the preferred analyses in an ex-
isting treebank as input to the generator, we can
produce all equivalent paraphrases of the original
string. Furthermore, assuming that the original
surface form is an optimal verbalization of the cor-
responding semantics, we can automatically label
the preferred realization(s) by matching theyields
of the generated trees against the original strings
in the ‘source’ treebank. The result is what we
call a generation treebank, which taken together
with the original parse-oriented pairings constitute
a full symmetrical treebank.

We have successfully applied this technique to
the tourism segments of the LinGO Redwoods
treebank, which in turn is built atop theERG.2

2See ‘http://www.delph-in.net/erg/’ for fur-
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Table 2 summarizes the two resulting data sets,
which are both comprised of instructional texts
on tourist activities, the application domain of the
background MT system.

3.2 Feature Templates

For the purpose of parse selection, Toutanova,
Manning, Shieber, Flickinger, & Oepen (2002)
and Toutanova & Manning (2002) train a dis-
criminative log-linear model on the Redwoods
parse treebank, using features defined overderiva-
tion treeswith non-terminals representing thecon-
struction typesand lexical typesof the HPSG
grammar (see Figure 1). The basic feature set
of our MaxEnt realization ranker is defined in the
same way (corresponding to thePCFG-S model of
Toutanova & Manning, 2002), each feature captur-
ing a sub-tree from the derivation limited to depth
one. Table 3 shows example features in our Max-
Ent and SVM models, where the feature template
# 1 corresponds to local derivation sub-trees. To
reduce the effects of data sparseness, feature type
# 2 in Table 3 provides a back-off to derivation
sub-trees, where the sequence of daughters is re-
duced, in turn, to just one of the daughters. Con-
versely, to facilitate sampling of larger contexts
than just sub-trees of depth one, feature template
# 1 allows optional grandparenting, including the
upward chain of dominating nodes in some fea-
tures. In our experiments, we found that grandpar-
enting of up to three dominating nodes gave the
best balance of enlarged context vs. data sparse-
ness.

subjh

hspec

det the le

the

sing noun

n intr le

dog

third sg fin verb

v unerg le

barks

Figure 1: Sample HPSG derivation tree for the
sentencethe dog barks. Phrasal nodes are la-
beled with identifiers of grammar rules, and (pre-
terminal) lexical nodes with class names for types
of lexical entries.

In addition to these dominance-oriented fea-
tures taken from the derivation trees of each re-
alization, our models also include more surface-

ther information and download pointers.

Id Sample Features

1 h0 subjh hspec third sg fin verbi
1 h1 4 subjh hspec third sg fin verbi
1 h0 hspec det the le sing nouni
1 h1 subjh hspec det the le sing nouni
1 h2 4 subjh hspec det the le sing nouni
2 h0 subjh third sg fin verbi
2 h0 subjh hspcei
2 h1 subjh hspec det the lei
2 h1 subjh hspec sing nouni
3 h1 n intr le dogi
3 h2 det the le n intr le dogi
3 h3 � det the le n intr le dogi
4 h1 n intr lei
4 h2 det the le n intr lei
4 h3 � det the le n intr lei

Table 3: Examples of structural features extracted
from the derivation tree in Figure 1. The first col-
umn identifies the feature template corresponding
to each example; in the examples, the first integer
value is a parameter to feature templates, i.e. the
depth of grandparenting (types 1 and 2) orn-gram
size (types 3 and 4). The special symbols4 and�
denote the root of the tree and left periphery of the
yield, respectively.

oriented features, viz.n-grams of lexical types
with or without lexicalization. Feature type # 3 in
Table 3 definesn-grams of variable size, where
(in a loose analogy to part of speech tagging) se-
quences of lexical types capture syntactic cate-
gory assignments. Feature templates # 3 and # 4
only differ with regard to lexicalization, as the for-
mer includes the surface token associated with the
rightmost element of eachn-gram. Unless other-
wise noted, we used a maximumn-gram size of
three in the experiments reported here, again due
to its empirically determined best overall perfor-
mance.

The number of instantiated features produced
by the feature templates easily grows quite large.
For the ‘Jotunheimen’ data the total number of dis-
tinct feature instantiations is 312,650. For the ex-
periments in this paper we implemented a simple
frequency based cutoff by removing features that
are observed asrelevantless than times. We here
follow the approach of Malouf & Noord (2004)
whererelevanceof a feature is simply defined as
taking on a different value for any two competing
candidates for the same input. A feature is only
included in training if it is relevant for more than items in the training data. Table 4 shows the ef-
fect on the accuracy of the MaxEnt model when
varying the cutoff. We see that a model can be
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Cutoff Features Accuracy� 312,650 71.18
1 264,455 71.18
2 112,051 70.03
3 66,069 70.28
4 46,139 69.30
5 35,295 67.93

10 16,036 65.36
20 7,563 63.05
50 2,605 59.10

100 889 54.21
200 261 50.11
500 34 34.70

Table 4: The effects of frequency-based feature se-
lection with respect to model size and accuracy.

model configuration match WA

basic model of (Velldal et al., 2004) 63.09 0.904
basic plus partial daughter sequence 64.64 0.910
basic plus grandparenting 67.54 0.923
basic plus lexical type trigrams 68.61 0.921
basic plus all of the above 70.28 0.927
basic plus language model 67.96 0.912
basic plus all of the above 72.28 0.928

Table 5: Performance summaries of best-
performing realization rankers using various fea-
ture configurations, when compared to the set-up
of Velldal et al. (2004). These scores where com-
puted using a relevance cutoff of 3 and optimizing
the variance of the prior for individual configura-
tions.

compacted quite aggressively without sacrificing
much in performance. For all models presented
below we use a cutoff of = 3.

4 Results

In this section we present contrastive results for
the models defined in Section 2 above, evaluated
against the exact match accuracy and word accu-
racy as described in Section 2.4.

As can be seen in Table 6, both the MaxEnt
and SVM learner does a much better job than
then-gram model at identifying the correct refer-
ence strings. The two discriminative models per-
form very similarly, however, although the Max-
Ent model often seems to do slightly better.

When working with a cross-validation set-up
the difference between the learners can conve-
niently be tested using an approach such as the
cross-validated pairedt-test described by Diet-
terich (1998). We also tried this approach using
the Wilcoxon Matched-Pairs Signed-Ranks test as
a non-parametric alternative without the assump-

tion of normality of differences made in thet-test.
However, none of the two tests found that the dif-
ferences between the MaxEnt model and the SVM
model were significant for� = 0:05 (using two-
sided tests).

Note that, due to memory constraints, we only
included a random sample of maximum 50 non-
preferred realizations per item in the training data
used for the SVM ranker. Even so, the SVM
trained on the full ‘Jotunheimen’ data had a to-
tal of 66,621 example vectors in its training data,
which spawned a total of 639,301 preference con-
straints with respect to the optimization problem
of Equations 8 and 10. We did not try to maxi-
mize performance on the development data by re-
peatedly training with different random samples,
but this might be one way to improve the results.

Although we were only able to present results
using linear kernels for the SVM ranker in this pa-
per, preliminary experiments using apolynomial
kernel seem to give promising results. Due to
memory constraints and long convergence times,
we were only able to train such a model on half
of the ‘Jotunheimen’ data. However, when testing
on the remaining half, it achieved an exact match
accuracy of71:03%. This is comparable to the
performance achieved by the linear SVM through
full 10-fold training and testing. Moreover, there
is reason to believe that these results will improve
once we manage to train on the full data set.

In order to assess the effect of increasing the
size of the training set, Figure 3 presents learning
curves for two MaxEnt configurations, viz. the ba-
sic configurational model and the one including all
features but the language model. Each data point
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Figure 2: Exact match accuracy scores for the dif-
ferent models. Data items are binned with respect
to the number of distinct realizations.
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Jotunheimen Rondane

Model accuracy n-best WA accuracy n-best WA

BNC LM 53.24 78.81 0.882 54.19 77.19 0.891
SVM 71.11 84.69 0.922 63.64 83.12 0.906
MaxEnt 72.28 84.59 0.927 64.28 83.60 0.903

Table 6: Performance of the different learners. The resultson the ‘Jotunheimen’ treebank for the discrim-
inative models are averages from 10-fold cross-validation. A model trained on the entire ‘Jotunheimen’
data was used when testing on ‘Rondane’. Note that the training accuracy of the SVM learner on the
‘Jotunheimen’ training set is 91.69%, while it’s 92.99% forthe MaxEnt model.
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Figure 3: Learning curves for two MaxEnt model
configurations (trained without cutoffs). Al-
though there appears to be a saturation effect in
model performance with increasing amounts of
‘Jotunheimen’ training data, for the richer config-
uration (using all features but the language model)
further enlarging the training data still seems at-
tractive.

corresponds to average exact match performance
for 10-fold cross-validation on ‘Jotunheimen’, but
restricting the amount of training data presented to
the learner to between 10 and 100 per cent of the
total. At 60 per cent training data, the two mod-
els already perform at60:6% and68:4% accuracy,
and the learning curves are starting to flatten out.
Somewhat remarkably, the richer model including
partial daughter back-off, grandparenting, and lex-
ical type trigrams already outperforms the baseline
model by a clear margin with just a small fraction
of the training data, so the MaxEnt learner appears
to make effective use of the greatly enlarged fea-
ture space.

When testing against the ‘Rondane’ held-
out set and comparing to performance on the
‘Jotunheimen’ cross-validation set, we see that the
performance of both the MaxEnt model and the

SVM degrades quite a bit. Of course, some drop
in performance is to be expected as the estimation
parameters had been tuned to this development set.
Furthermore, as can be seen from Table 2, the
baseline is also slightly lower for the ‘Rondane’
test set as the average number of realizations is
higher. Also, while basically from the same do-
main, the two text collections differ noticeably
in style: ‘Jotunheimen’ is based on edited, high-
quality guide books; ‘Rondane’ has been gathered
from a variety of web sites. Note, however, that
the performance of the BNCn-gram model seems
to be more stable across the different data sets.

In any case we see that, for our realization rank-
ing task, the use of discriminative models in com-
bination with structural features extracted from
treebanks, clearly outperforms the surface ori-
ented, generativen-gram model. This is in spite of
the relatively modest size of the treebanked train-
ing data available to the discriminative models. On
the ‘Rondane’ test set the reduction in error rate
for the combined MaxEnt model relative to then-
gram LM, is22:03%. The error reduction for the
SVM over the LM on ‘Rondane’ is20:63%.

Another factor that is likely to be important for
the differences in performance is the fact that the
treebank data is better tuned to the domain of ap-
plication or the test data. Then-gram language
model, on the other hand, was only trained on
the general-domain BNC data. Note, however,
that when testing on ‘Rondane’, we also tried to
combine this general-domain model with an ad-
ditional in-domain model trained only on the text
that formed the basis of the ‘Jotunheimen’ tree-
bank, a total of 5024 sentences. The optimal
weights for linearly combining these two models
were calculated using the interpolation tool in the
CMU toolkit (using the expectation maximization
(EM) algorithm, minimizing the perplexity on a
held out data set of 330 sentences). However,
when applied to the ‘Rondane’ test set, this in-
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model error ties correct

BNC LM 253 68 313
MaxEnt (sans LM) 222 63 349
MaxEnt (combined) 225 3 404

Table 7: Exact match error counts for three mod-
els, viz. the BNC LM only, the MaxEnt model by
itself (using all feature types except the LM prob-
ability), and the combined MaxEnt model. The
intermediate column corresponds totiesor partial
errors, i.e. the number of items for which multiple
candidates were ranked at the top, of which some
were actually preferred and some not. Primarily
this latter error type is reduced by including the
LM feature in the MaxEnt universe.

terpolated model failed to improve on the results
achieved by just using the larger general-domain
model alone. This is probably due to the small
amount of domain specific data that we presently
have available for training.

Another observation about ourn-gram experi-
ments that is worth a mention is that we found that
ranking realizations according to non-normalized
log probabilities directly resulted in much bet-
ter accuracy than using a length normalized score
such as the geometric mean.

Finally, Table 7 breaks down per-item exact
match errors for three distinct ranking configura-
tions, viz. the BNC LM only, the structural Max-
Ent model only, and the combined MaxEnt model,
which includes the LM probability as an addi-
tional feature; all numbers are for application to
the held-out ‘Rondane’ test set. Further contrast-
ing the first two of these, the BNC LM yields 129
unique errors, in the sense that the structural Max-
Ent makes the correct predictions on these items,
contrasted to 98 unique errors in the structural
MaxEnt model. When compared to the only 124
errors made equally by both rankers, we conclude
that the different approaches have partially com-
plementary strengths and weaknesses. This ob-
servation is confirmed in the relatively substan-
tial improvement in ranking performance of the
combined model on the ‘Rondane’ test: The ex-
act match accuracies of then-gram model, the ba-
sic MaxEnt model and the combined model are54:19%, 59:43% and64:28%, respectively.

5 Summary and Outlook

Applying three alternate statistical models to the
realization ranking task, we found that discrimi-

native models with access to structural informa-
tion substantially outperform the traditional lan-
guage model approach. Using comparatively
small amounts of annotated training data, we were
able to boost ranking performance from around54% to more than72%, albeit for a limited, rea-
sonably coherent domain and genre. The incre-
mental addition of feature templates into the Max-
Ent model suggests a trend of diminishing return,
most likely due to increasing overlap in the portion
of the problem space captured across templates,
and possibly reflecting limitations in the amount
of training data. The comparison of the Max-
Ent and SVM rankers suggest comparable perfor-
mance on our task, not showing statistically signif-
icant differences. Nevertheless, in terms of scala-
bility when using large data sets, it seems clear
that the MaxEnt framework is a more practical and
manageable alternative, both in terms of training
time and memory requirements.

As further work we would like to try to train an
SVM that takes full advantage of the ranking po-
tential of the set-up described in (Joachims, 2002).
Instead of just making binary (right/wrong) dis-
tinctions, we could grade the realizations in the
training data according to theirWA scores toward
the references and try to learn a similar ranking.
So far we have only been able to do preliminary
experiments with this set-up on a small sub-set of
the data. When evaluated with the accuracy mea-
sures used in this paper the results were not as
good as those obtained when training with only
two ranks, however this might very well look dif-
ferent if we evaluate the full rankings (e.g. number
of swapped pairs) instead of just focusing on the
top ranked candidates. Note that it is also possible
to use such graded training data with the MaxEnt
models, by letting the probabilities of the empiri-
cal distribution be based on similarity scores such
asWA instead of frequencies.
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             Abstract 
 

In this paper, we propose a sentence 

ordering algorithm using a semi-supervised 

sentence classification and historical 

ordering strategy. The classification is based 

on the manifold structure underlying 

sentences, addressing the problem of limited 

labeled data. The historical ordering helps to 

ensure topic continuity and avoid topic bias. 

Experiments demonstrate that the method is 

effective.  

 

1. Introduction 
 
Sentence ordering has been a concern in text 

planning and concept-to-text generation (Reiter et 

al., 2000). Recently, it has also drawn attention in 

multi-document summarization (Barzilay et al., 

2002; Lapata, 2003; Bollegala et al., 2005). Since 

summary sentences generally come from 

different sources in multi-document 

summarization, an optimal ordering is crucial to 

make summaries coherent and readable.  

  In general, the strategies for sentence ordering 

in multi-document summarization fall in two 

categories. One is chronological ordering 

(Barzilay et al., 2002; Bollegala et al., 2005), 

which is based on time-related features of the 

documents. However, such temporal features may 

be not available in all cases. Furthermore, 

temporal inference in texts is still a problem, in 

spite of some progress in automatic 

disambiguation of temporal information (Filatova 

et al., 2001).  

Another strategy is majority ordering (MO) 

(McKeown et al., 2001; Barzilay et al., 2002), in 

which each summary sentence is mapped to a 

theme, i.e., a set of similar sentences in the 

documents, and the order of these sentences 

determines that for summary sentences. To do 

that, a directed theme graph is built, in which if a 

theme A occurs behind another theme B in a 

document, B is linked to A no matter how far 

away they are located. However, this may lead to 

wrong theme correlations, since B’s occurrence 

may rely on a third theme C and have nothing to 

do with A. In addition, when outputting theme 

orders, MO uses a kind of heuristic that chooses a 

theme based on its in-out edge difference in the 

directed theme graph. This may cause topic 

disruption, since the next choice may have no 

link with previous choices.  

Lapata (2003) proposed a probabilistic 

ordering (PO) method for text structuring, which 

can be adapted to majority ordering if the training 

texts are those documents to be summarized. The 

primary evidence for the ordering are informative 

features of sentences, including words and their 

grammatical dependence relations, which needs 

reliable parsing of the text. Unlike in MO, 

selection of the next sentence here is based on the 

most recent one. However, this may lead to topic 

bias: i.e. too many sentences on the same topic.  

  In this paper, we propose a historical ordering 

(HO) strategy, in which the selection of the next 

sentence is based on the whole history of 

selection, not just the most recent choice. This 
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strategy helps to ensure continuity of topics but to 

avoid topic bias at the same time. 

 To do that, we need to map summary sentences 

to those in documents. We formalize this as a 

kind of classification problem, with summary 

sentences as class labels. Since there are very few 

(only one) labeled examples for each class, we 

adopt a kind of semi-supervised classification 

method, which makes use of the manifold 

structure underlying the sentences to do the 

classification. A common assumption behind this 

learning paradigm is that the manifold structure 

among the data, revealed by higher density, 

provides a global comparison between data points 

(Szummer et al., 2001; Zhu et al., 2003; Zhou et 

al., 2003). Under such an assumption, even one 

labeled example is enough for classification, if 

only the structure is determined.  

  The remainder of the paper is organized as 

follows. In section 2, we give an overview of the 

proposed method. In section 3~5, we talk about 

the method including sentence networks, 

classification and ordering. In section 6, we 

present experiments and evaluations. Finally in 

section 7, we give some conclusions and future 

work.  

 
2. Overview 
 
Fig. 1 gives the overall structure of the proposed 

method, which includes three modules: 

construction of sentence networks, sentence 

classification and sentence ordering. 

     
  Fig. 1. Algorithm Overview 

 
The first step is to build a sentence neighborhood 

network with weights on edges, which can serve 

as the basis for a Markov random walk (Tishby et 

al., 2000). The neighborhood is based on 

similarity between sentences, and weights on 

edges can be seen as transition probabilities for 

the random walk. From this network, we can 

derive new representations for sentences.   

   The second step is to make a classification of 

sentences, with each summary sentence as a class 

label. Since only one labeled example exists for 

each class, we use a semi-supervised method 

based on a Markov random walk to reveal the 

manifold structure for the classification.  

   The third step is to order summary sentences 

according to the original positions of their 

partners in the same class. During this process, 

the next selection of a sentence is based on the 

whole history of selection, i.e., the association of 

the sentence with all those already selected.  

 

3. Sentence Network Construction 
 

Suppose S is the set of all sentences in the 

documents and a summary (a summary sentence 

may be not a document sentence), let S={ s1, 

s2, …, sN} with a distance metric d(si,sj), the 

distance between two sentences si and sj, which is 

based on the Jensen-Shannon divergence (Lin, 

1991). We construct a graph with sentences as 

points by sorting the distances among the points 

in an ascending order and repeatedly connecting 

two points according to the order until a 

connected graph is obtained. Then, we assign a 

weight wi,j, as in (1), to each edge based on the 

distance.  

)/),(exp()1 , δjiji ssdw −=  

The weights are symmetric, wi,i=1 and wi,j=0 for 

all non-neighbors (δ is set as 0.6 in this work). 2) 

is the one-step transition probability p(si, sj) from 

si to sj based on weights of neighbors. 

∑
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Sentence network construction 

Sentence classification 

Summary sentence ordering 
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Let M be the N×N matrix and Mi,j= p(si, sj), then 

Mt is the tth Markov random walk matrix, whose i, 

j-th entry is the probability pt(si, sj) of the 

transition from si to sj after t steps. In this way, 

each sentence sj is associated with a vector of 

conditional probabilities pt(si, sj), i=1, …, N, 

which form a new manifold-based representation 

for sj. With such representations, sentences are 

close whenever they have a similar distribution 

over the starting points. Notice that the 

representations depend on the step parameter t 

(Tishby et al., 2000). With smaller values of t, 

unlabeled points may be not connected with 

labeled ones; with bigger values of t, the points 

may be indistinguishable. So, an appropriate t 

should be estimated.  

 
4. Sentence Classification 
 
Suppose s1, s2, …, sL are summary sentences and 

their labels are c1, c2, …, cL respectively. In our 

case, each summary sentence is assigned with a 

unique class label ci, 1≤i≤L. This also means that 

for each class ci, there is only one labeled 

example, i.e., the summary sentence, si. 

  Let S={( s1, c1), (s2, c2), …, (sL, cL), sL+1,…, sN},  

then the task of sentence classification is to infer 

the labels for unlabeled sentences, sL+1,…, sN. 

Through the classification, we can get similar 

sentences for each summary sentence. To do that, 

we assume that each sentence has a distribution 

p(ck|si), 1≤k≤L, 1≤i≤N, and these probabilities are 

to be estimated from the data.  

  Seeing a sentence as a sample from the t step 

Markov random walk in the sentence graph, we 

have the following interpretation of p(ck|si). 

∑=
j

tjkik ijpscpscp ),()|()|()3  

This means that the probability of si belonging 

to ck is dependent on the probabilities of those 

sentences belonging to ck which will transit to si 

after t steps and their transition probabilities.  

   With the conditional log-likelihood of labeled 

sentences 4) as the estimation criterion, we can 

use the EM algorithm to estimate p(ck|si), in 

which the E-step and M-step are 5) and 6) 

respectively. 
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The final class ci for si is given in 7).  

)|(maxarg)7 ikci scpc
k

=  

p(ci|si) is called the membership probability of si. 

After classification, each sentence is assigned a 

label according to 7). 

   One key problem in this setting is to estimate 

the parameter t. A possible strategy for that is by 

cross validation, but it needs a large amount of 

labeled data. Here, following Szummer et al., 

2001, we use marginal difference of probabilities 

of sentences falling in different classes as the 

estimation criterion, which is given in 8). 

∑ ∑
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To maximize 8), we can get an appropriate value 

for the parameter t, which means that a better t 

should make sentences belong to some classes 

more prominently. Notice that the classes 

represented by summary sentences may be 

incomplete for all the sentences occurring in the 

documents, so some sentences will belong to the 

classes without obviously different probabilities. 

To avoid such sentences in the estimation of t, we 

only choose the top (40%) sentences in a class 

based on their membership probabilities. 

 
5. Sentence Ordering 
 

After sentence classification, we get a class of 

similar sentences for each summary sentence, 

which is also a member of the class. With these 

sentence classes, we create a directed class graph 

based on the order of their member sentences in 

documents. In the graph, each sentence class is a 
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node, and there exists a directed edge ei,j from 

one node ci to another cj if and only if there is si 

in ci immediately appearing before sj in cj in the 

documents (the sentences not in classes are 

neglected). The weight of ei,j, Fi,j, captures the 

frequency of such occurrence. We add one 

additional node denoting an initial class c0, and it 

links to each class with a directed edge e0,j, the 

weight F0,j of which is the frequency of the 

member sentences of the class appearing at the 

beginning of the documents.  

Suppose the input is the class graph G=<C, E>, 

where C = {c1, c2, …, cL} is the set of the classes, 

E={ei,j|1≤i, j≤L} is the set of the directed edges, 

and o is the ordering of the classes. Fig. 2 gives 

the ordering algorithm.  
-------------------------------------------------- 

i) i
Cc

k Fc
i

,0max
∈

←  

ii) o← o ck 

iii) For all ci in C, ikii FFF ,,0,0 +←  

iv) Remove ck from C and ek,j and ei,k from E; 

v) Repeat i)-iv) while C≠{  c0} 

vi) Return the order o. 

-------------------------------------------------------- 

Fig. 2 Ordering algorithm 

 
In the algorithm, there are two main steps. Step i) 

selects the class whose member sentences occur 

most frequently immediately after those in c0. 

Step iii) updates the weights of the edges e0,i. In 

fact, it can be seen as merge of the original c0 and 

ck, and in this sense the updated c0 represents the 

history of selections. 

   In contrast to the MO algorithm, the ordering 

algorithm here (HO) uses immediate back-front 

co-occurrence, while the MO algorithm uses 

relative back-front locations. On the other hand, 

the selection of a class is dependent on previous 

selections in HO, while in MO, the selection of a 

class is mainly dependent on its in-out edge 

difference.  

  In contrast to the PO algorithm, the selection of 

a class in HO is dependent on all previous 

selections, while in PO, the selection is only 

related to the most recent one. 

  As an example, Fig. 3 gives an initial class 

graph. The output orderings by PO and HO are 

[c1, c3, c4, c2] and [c1, c3, c2, c4] respectively. The 

difference lies in whether to select c4 or c2 after 

selection of c3. PO selects c4 since it only 

considers the most recent selection, while HO 

selects c2 because it considers all previous 

selections including c1. 

        c0 

          9 
        c1 
     5        6 
  c2                  c3  
 
         1       2 

1           c4 
   

   Fig. 3 Initial graph for PO and HO 

 

As another example, Fig. 4 gives the order of the 

classes in individual documents. 
 
 

1) c2   c3   c1 
2) c2   c3   c1 
3) c3   c2   c1 
4) c3   c2   c1 
5) c3   c2 
6) c2   c3 
7) c1    c2   c3  c2   c3   c2   c3   c2  

 
 

  Fig. 4. Class orders in documents 

 
From 1)-6), we can see some regularity among 

the order of the classes: c2 and c3 are 

interchangeable, while c1 always appears behind 

c2 or c3. From 7), we can see that c2 and c3 still 

co-occur, while c1 happens to occur at the 

beginning of the document. Thus, the appropriate 

ordering should be [c2, c3, c1] or [c3, c2, c1]. Fig. 5 

is the graph built by MO. 

        c2 

  4     6  6     2 

        c3 
       3  2 

        c1  

 Fig. 5 Graph by MO 
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According to MO, the first node to be selected 

will be c1, since the difference of its in-out edges 

(+3) is bigger than that (-2, -1) of other two nodes. 

Then the in-out edge differences for c2 or c3 are 

both 0 after removing edges associated with c1, 

and either c2 or c3 will be selected. Thus, the 

output ordering should be [c1, c2, c3] or [c1, c3, c2]. 

        c2 

  1      6   6     2 

        c3           3            

        0  2    3 

        c1      1      c0 

   Fig. 6 Graph by HO 

 

Fig. 6 is the class graph built by HO. According 

to HO, the first node to be selected will be c2 or c3, 

since e0,1=e0,2=3>e0,1=1. Suppose c2 is firstly 

selected, then e0,3
⇐ e0,3+e2,3=3+6=9, while e0,1

⇐  

e0,1+e2,1=1+2=3, so c3 will be selected then. 

Finally the output ordering will be [c2, c3, c1]. 

Similarly, if c3 is firstly selected, the output 

ordering will be [c3, c2, c1]. 

 

6 Experiments and Evaluation  
 
6.1 Data 
 
We used the DUC04 document dataset. The 

dataset contains 50 document clusters and each 

cluster includes 20 content-related documents. 

For each cluster, 4 manual summaries are 

provided.  

 
6.2 Evaluation Measure 
 
The proposed method in this paper consists of 

two main steps: sentence classification and 

sentence ordering. For classification, we used 

pointwise entropy (Dash et al., 2000) to measure 

the quality of the classification result due to lack 

of enough labeled data. For a n×m matrix M, 

whose row vectors are normalized as 1, its 

pointwise entropy is defined in 9).  

))1log()1(log()()9 ,,
1 1

,, jiji
ni mj

jiji MMMMME −−+−= ∑∑
≤≤ ≤≤

 

Intuitively, if Mi,j is close to 0 or 1, E(M) tends 

towards 0, which corresponds to clearer 

distinctions between classes; otherwise E(M) 

tends towards 1, which means there are no clear 

boundaries between classes. For comparison 

between different matrices, E(M) needs to be 

averaged over n×m.  

  For sentence ordering, we used Kendall’s τ 
coefficient (Lapata, 2003), as defined in 10),  

   
2/)1(

)(2
1)10

−
−=

NN

N Iτ  

where, NI is number of inversions of consecutive 

sentences needed to transform output of the 

algorithm to manual summaries. The measure 

ranges from -1 for inverse ranks to +1 for 

identical ranks, and can also be seen as a kind of 

edit similarity between two ranks: smaller values 

for lower similarity, and bigger values for higher 

similarity.  

 
6.3 Evaluation of Classification 
 
For sentence classification, we need to estimate 

the parameter t. We randomly chose 5 document 

clusters and one manual summary from the four. 

Fig. 7 shows the change of the average margin 

over all the top 40% sentences in a cluster with t 

varying from 3 to 25. 
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      Fig. 7. Average margin and t 

Fig. 7 indicates that the average margin changes 

with t for each cluster and the values of t 

maximizing the margin are different for different 

clusters. For the 5 clusters, the estimated t is 16, 8, 

14, 12 and 21 respectively. So we need to 
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estimate the best t for each cluster.  

  After estimation of t, EM was used to estimate 

the membership probabilities. Table 1 gives the 

average pointwise entropy for top 10% to top 

100% sentences in each cluster, where sentences 

were ordered by their membership probabilities. 

The values were averaged over 20 runs, and for 

each run, 10 document clusters and one summary 

were randomly selected, and the entropy was 

averaged over the summaries. 

 

Sentences E_Semi E_SVM Significance 

10% 0.23 0.22 ~ 

20% 0.26 0.27 ~ 

30% 0.32 0.43 * 

40% 0.35 0.49 ** 

50% 0.42 0.51 * 

60% 0.46 0.55 * 

70% 0.48 0.57 * 

80% 0.59 0.62 ~ 

90% 0.65 0.69 ~ 

100% 0.70 0.73 ~ 

Table 1. Entropy of classification result 

 

In Table 1, the column E_Semi shows entropies 

of the semi-supervised classification. It indicates 

that the entropy increases as more sentences are 

considered. This is not surprising since the 

sentences are ordered by their membership 

probabilities in a cluster, which can be seen as a 

kind of measure for closeness between sentences 

and cluster centroids, and the boundaries between 

clusters become dim with more sentences 

considered.  

  To compare the performance between this 

semi-supervised classification and a standard 

supervised method like Support Vector Machines 

(SVM), Table 1 also lists the average entropy of a 

SVM (E_SVM) over the runs. Similarly, we 

found that the entropy also increases as sentences 

increase. Table 2 also gives the significance sign 

over the runs, where *, ** and ~ represent 

p-values <=0.01, (0.01, 0.05] and >0.05, and 

indicate that the entropy of the semi-supervised 

classification is lower, significantly lower, or 

almost the same as that of SVM respectively.  

  Table 1 demonstrates that when the top 10% or 

20% sentences are considered, the performance 

between the two algorithms shows no difference. 

The reason may be that these top sentences are 

closer to cluster centroids in both cases, and the 

cluster boundaries in both algorithms are clear in 

terms of these sentences.  

For the top 30% sentences, the entropy for 

semi-supervised classification is lower than that 

for a SVM, and for the top 40%, the difference 

becomes significantly lower. The reason may go 

to the substantial assumptions behind the two 

algorithms. SVM, based on local comparison, is 

successful only when more labeled data is 

available. With only one sentence labeled as in 

our case, the semi-supervised method, based on 

global distribution, makes use of a large amount 

of unlabeled data to reveal the underlying 

manifold structure. Thus, the performance is 

much better than that of a SVM when more 

sentences are considered.  

For the top 50% to 70% sentences, E_Semi is 

still lower, but not by much. The reason may be 

that some noisy documents are starting to be 

included. For the top 80% to 100% sentences, the 

performance shows no difference again. The 

reason may be that the lower ranking sentences 

may belong to other classes than those 

represented by summary sentences, and with 

these sentences included, the cluster boundaries 

become unclear in both cases. 

 
6.4 Evaluation of Ordering 
 
We used the same classification results to test the 

performance of our ordering algorithm HO as 

well as MO and PO. Table 2 lists the Kendall’s τ 
coefficient values for the three algorithms (τ_1). 

The value was averaged over 20 runs, and for 

each run, 10 summaries were randomly selected 

and the τ score was averaged over summaries. 

Since a summary sentence tends to generalize 
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some sentences in the documents, we also tried to 

combine two or three consecutive sentences into 

one, and tested their ordering performance (τ_2 

and τ_3) respectively. 

 τ HO MO PO τ_1  0.42 0.31 0.33 τ_2 0.33 0.26 0.29 τ_3 0.27 0.21 0.25 

Table 2. τ scores for HO, MO and PO 

 

Table 2 indicates that the combination of 

sentences harms the performance. To see why, we 

checked the classification results, and found that 

the pointwise entropies for two and three 

sentence combinations (for the top 40% sentence 

in each cluster) increase 12.4% and 18.2% 

respectively. This means that the cluster structure 

becomes less clear with two or three sentence 

combinations, which would lead to less similar 

sentences being clustered with summary 

sentences. This result also suggests that if the 

summary sentence subsumes multiple sentences 

in the documents, they tend to be not consecutive.  

   Fig. 8 shows change of τ scores with different 

number of sentences used for ordering, where x 

axis denotes top (1-x)*100% sentences in each 

cluster. The score was averaged over 20 runs, and 

for each run, 10 summaries were randomly 

selected and evaluated. 

0
0.1
0.2
0.3
0.4
0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

least probability

τ
Fig. 8. τ scores and number of sentences 

 

Fig. 8 indicates that with fewer sentences (x 

>=0.7) used for ordering, the performance 

decreases. The reason may be that with fewer and 

fewer sentences used, the result is deficient 

training data for the ordering. On the other hand, 

with more sentences used (x <0.6), the 

performance also decreases. The reason may be 

that as more sentences are used, the noisy 

sentences could dominate the ordering. That’s 

why we considered only the top 40% sentences in 

each cluster as training data for sentence 

reordering here. 

As an example, the following is a summary for 

a cluster of documents about Central American 

storms, in which the ordering is given manually.  

 
1) A category 5 storm, Hurricane Mitch roared across the northwest 

Caribbean with 180 mph winds across a 350-mile front that 

devastated the mainland and islands of Central America. 

2) Although the force of the storm diminished, at least 8,000 people 

died from wind, waves and flood damage. 

3) The greatest losses were in Honduras where some 6,076 people 

perished. 

4) Around 2,000 people were killed in Nicaragua, 239 in El Salvador, 

194 in Guatemala, seven in Costa Rica and six in Mexico. 

5) At least 569,000 people were homeless across Central America. 

6) Aid was sent from many sources (European Union, the UN, US 

and Mexico). 

7) Relief efforts are hampered by extensive damage. 

 

Compared with the manual ordering, our 

algorithm HO outputs the ordering [1, 3, 4, 2, 5, 6, 

7]. In contrast, PO and MO created the orderings 

[1, 3, 4, 5, 6, 7, 2] and [1, 3, 2, 6, 4, 5, 7] 

respectively. In HO’s output, sentence 2 was put 

in the wrong position. To check why this was so, 

we found that sentences in cluster 2 and cluster 3 

(clusters containing sentence 2 or sentence 3) 

were very similar, and the size of cluster 3 was 

bigger than that of cluster 2. Also we found that 

sentences in cluster 4 mostly followed those in 

cluster 3. This may explain why the ordering [1, 3, 

4] occurred. Due to the link between cluster 2 and 

cluster 1 or 3, sentence 2 followed sentence 4 in 

the ordering. In PO, sentence 2 was put at the end 

of the ordering, since it only considered the most 

recent selection when determining next, so cluster 

1 would not be considered when determining the 
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4th position. This suggests that consideration of 

selection history does in fact help to group those 

related sentences more closely, although sentence 

2 was ranked lower than expected in the example.  

In MO, we found sentence 2 was put 

immediately behind sentence 3. The reason was 

that, after sentence 1 and 3 were selected, the 

in-edges of the node representing cluster 2 

became 0 in the cluster directed graph, and its 

in-out edge difference became the biggest among 

all nodes in the graph, so it was chosen. For 

similar reasons, sentence 6 was put behind 

sentence 2. This suggests that it may be difficult 

to consider the selection history in MO, since its 

selection is mainly based on the current status of 

clusters.      
6. Conclusion and Future Work 
 
In this paper, we propose a sentence ordering 

method for multi-document summarization based 

on semi-supervised classification and historical 

ordering. For sentence classification, the 

semi-supervised classification groups sentences 

based on their global distribution, rather than on 

local comparisons. Thus, even with a small 

amount of labeled data (just 1 labeled example in 

our case) we nevertheless ensure good 

performance for sentence classification. 

  For sentence ordering, we propose a kind of 

history-based ordering strategy, which determines 

the next selection based on the whole selection 

history, rather than the most recent single 

selection in probabilistic ordering, which could 

result in topic bias, or in-out difference in MO, 

which could result in topic disruption.     

  In this work, we mainly use sentence-level 

information, including sentence similarity and 

sentence order, etc. In future, we may explore the 

role of term-level or word-level features, e.g., 

proper nouns, in the ordering of summary 

sentences. To make summaries more coherent and 

readable, we may also need to discover how to 

detect and control topic movement automatic 

summaries. One specific task is how to generate 

co-reference among sentences in summaries. In 

addition, we will also try other semi-supervised 

classification methods, and other evaluation 

metrics, etc. 
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Abstract

This paper presents an empirical eval-
uation of the quality of publicly avail-
able large-scale knowledge resources. The
study includes a wide range of manu-
ally and automatically derived large-scale
knowledge resources. In order to establish
a fair and neutral comparison, the qual-
ity of each knowledge resource is indi-
rectly evaluated using the same method on
a Word Sense Disambiguation task. The
evaluation framework selected has been
the Senseval-3 English Lexical Sample
Task. The study empirically demonstrates
that automatically acquired knowledge re-
sources surpass both in terms of preci-
sion and recall the knowledge resources
derived manually, and that the combina-
tion of the knowledge contained in these
resources is very close to the most frequent
sense classifier. As far as we know, this is
the first time that such a quality assessment
has been performed showing a clear pic-
ture of the current state-of-the-art of pub-
licly available wide coverage semantic re-
sources.

1 Introduction

Using large-scale semantic knowledge bases, such
as WordNet (Fellbaum, 1998), has become a
usual, often necessary, practice for most current
Natural Language Processing systems. Even now,
building large and rich enough knowledge bases
for broad–coverage semantic processing takes a
great deal of expensive manual effort involving
large research groups during long periods of de-
velopment. This fact has severely hampered the

state-of-the-art of current Natural Language Pro-
cessing (NLP) applications. For example, dozens
of person-years have been invested in the develop-
ment of wordnets for various languages (Vossen,
1998), but the data in these resources seems not to
be rich enough to support advanced concept-based
NLP applications directly. It seems that applica-
tions will not scale up to working in open domains
without more detailed and rich general-purpose
(and also domain-specific) linguistic knowledge
built by automatic means.

For instance, in more than eight years of man-
ual construction (from version 1.5 to 2.0), Word-
Net passed from 103,445 semantic relations to
204,074 semantic relations1. That is, around
twelve thousand semantic relations per year. How-
ever, during the last years the research commu-
nity has devised a large set of innovative processes
and tools for large-scale automatic acquisition of
lexical knowledge from structured or unstructured
corpora. Among others we can mention eX-
tended WordNet (Mihalcea and Moldovan, 2001),
large collections of semantic preferences acquired
from SemCor (Agirre and Martinez, 2001; Agirre
and Martinez, 2002) or acquired from British Na-
tional Corpus (BNC) (McCarthy, 2001), large-
scale Topic Signatures for each synset acquired
from the web (Agirre and de la Calle, 2004) or
acquired from the BNC (Cuadros et al., 2005).

Obviously, all these semantic resources have
been acquired using a very different set of meth-
ods, tools and corpora, resulting on a different set
of new semantic relations between synsets. In fact,
each resource has different volume and accuracy
figures. Although isolated evaluations have been
performed by their developers in different experi-

1Symmetric relations are counted only once.
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mental settings, to date no comparable evaluation
has been carried out in a common and controlled
framework.

This work tries to establish the relative qual-
ity of these semantic resources in a neutral envi-
ronment. The quality of each large-scale knowl-
edge resource is indirectly evaluated on a Word
Sense Disambiguation (WSD) task. In particular,
we use a well defined WSD evaluation benchmark
(Senseval-3 English Lexical Sample task) to eval-
uate the quality of each resource.

Furthermore, this work studies how these re-
sources complement each other. That is, to which
extent each knowledge base provides new knowl-
edge not provided by the others.

This paper is organized as follows: after this
introduction, section 2 describes the large-scale
knowledge resources studied in this work. Section
3 describes the evaluation framework. Section 4
presents the evaluation results of the different se-
mantic resources considered. Section 5 provides a
qualitative assessment of this empirical study and
finally, the conclusions and future work are pre-
sented in section 6.

2 Large Scale Knowledge Resources

This study covers a wide range of large-scale
knowledge resources: WordNet (WN) (Fell-
baum, 1998), eXtended WordNet (Mihalcea and
Moldovan, 2001), large collections of semantic
preferences acquired from SemCor (Agirre and
Martinez, 2001; Agirre and Martinez, 2002) or
acquired from the BNC (McCarthy, 2001), large-
scale Topic Signatures for each synset acquired
from the web (Agirre and de la Calle, 2004) or
acquired from the BNC (Cuadros et al., 2005).

However, although these resources have been
derived using different WN versions, the research
community has the technology for the automatic
alignment of wordnets (Daudé et al., 2003). This
technology provides a mapping among synsets of
different WN versions, maintaining the compati-
bility to all the knowledge resources which use
a particular WN version as a sense repository.
Furthermore, this technology allows to port the
knowledge associated to a particular WN version
to the rest of WN versions already connected.

Using this technology, most of these resources
are integrated into a common resource called Mul-
tilingual Central Repository (MCR) (Atserias et
al., 2004). In particular, all WordNet versions, eX-

tended WordNet, and the semantic preferences ac-
quired from SemCor and BNC.

2.1 Multilingual Central Repository
The Multilingual Central Repository (MCR)2 fol-
lows the model proposed by the EuroWordNet
project. EuroWordNet (Vossen, 1998) is a multi-
lingual lexical database with wordnets for several
European languages, which are structured as the
Princeton WordNet. The Princeton WordNet con-
tains information about nouns, verbs, adjectives
and adverbs in English and is organized around the
notion of a synset. A synset is a set of words with
the same part-of-speech that can be interchanged
in a certain context. For example, <party, po-
litical party> form a synset because they can be
used to refer to the same concept. A synset is
often further described by a gloss, in this case:
”an organization to gain political power”. Finally,
synsets can be related to each other by semantic
relations, such as hyponymy (between specific and
more general concepts), meronymy (between parts
and wholes), cause, etc.

The current version of the MCR (Atserias et al.,
2004) is a result of the 5th Framework MEANING

project. The MCR integrates into the same Eu-
roWordNet framework wordnets from five differ-
ent languages (together with four English Word-
Net versions). The MCR also integrates WordNet
Domains (Magnini and Cavaglià, 2000) and new
versions of the Base Concepts and Top Concept
Ontology. The final version of the MCR contains
1,642,389 semantic relations between synsets,
most of them acquired by automatic means. This
represents almost one order of magnitude larger
than the Princeton WordNet (204,074 unique se-
mantic relations in WordNet 2.0). Table 1 summa-
rizes the main sources for semantic relations inte-
grated into the MCR.

Table 2 shows the number of semantic relations
between synsets pairs in the MCR and its overlap-
pings. Note that, most of the relations in the MCR

between synsets-pairs are unique.
Hereinafter we will refer to each semantic re-

source as follows:

• WN (Fellbaum, 1998): This knowledge re-
source uses the direct relations encoded in
WordNet 1.6 or 2.0. We also tested WN-2
(using relations at distance 1 and 2) and WN-
3 (using relations at distance 1, 2 and 3).

2http://nipadio.lsi.upc.es/˜nlp/meaning
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Source #relations
Princeton WN1.6 138,091
Selectional Preferences from SemCor 203,546
Selectional Preferences from the BNC 707,618
New relations from Princeton WN2.0 42,212
Gold relations from eXtended WN 17,185
Silver relations from eXtended WN 239,249
Normal relations from eXtended WN 294,488
Total 1,642,389

Table 1: Main sources of semantic relations

Type of Relations #relations
Total Relations 1,642,389
Different Relations 1,531,380
Unique Relations 1,390,181
Non-unique relations (>1) 70,425
Non-unique relations (>2) 341
Non-unique relations (>3) 8

Table 2: Overlapping relations in the MCR

• XWN (Mihalcea and Moldovan, 2001): This
knowledge resource uses the direct relations
encoded in eXtended WordNet.

• XWN+WN: This knowledge resource uses
the direct relations included in WN and
XWN.

• spBNC (McCarthy, 2001): This knowledge
resource contains the selectional preferences
acquired from the BNC.

• spSemCor (Agirre and Martinez, 2001;
Agirre and Martinez, 2002): This knowledge
resource contains the selectional preferences
acquired from SemCor.

• spBNC+spSemCor: This knowledge re-
source uses the selectional preferences ac-
quired from the BNC and SemCor.

• MCR (Atserias et al., 2004): This knowledge
resource uses the direct relations included in
MCR.

2.2 Automatically retrieved Topic Signatures
Topic Signatures (TS) are word vectors related to
a particular topic (Lin and Hovy, 2000). Topic
Signatures are built by retrieving context words
of a target topic from large volumes of text. In
our case, we consider word senses as topics. Ba-
sically, the acquisition of TS consists of A) ac-
quiring the best possible corpus examples for a
particular word sense (usually characterizing each
word sense as a query and performing a search on

the corpus for those examples that best match the
queries), and then, B) building the TS by deriv-
ing the context words that best represent the word
sense from the selected corpora.

For this study, we use the large-scale Topic Sig-
natures acquired from the web (Agirre and de la
Calle, 2004) and those acquired from the BNC
(Cuadros et al., 2005).

• TSWEB3: Inspired by the work of (Lea-
cock et al., 1998), these Topic Signatures
were constructed using monosemous rela-
tives from WordNet (synonyms, hypernyms,
direct and indirect hyponyms, and siblings),
querying Google and retrieving up to one
thousand snippets per query (that is, a word
sense). In particular, the method was as fol-
lows:

– Organizing the retrieved examples from
the web in collections, one collection
per word sense.

– Extracting the words and their frequen-
cies for each collection.

– Comparing these frequencies with those
pertaining to other word senses using
TFIDF (see formula 1).

– Gathering in an ordered list, the words
with distinctive frequency for one of the
collections, which constitutes the Topic
Signature for the respective word sense.

This constitutes the largest available seman-
tic resource with around 100 million relations
(between synsets and words).

• TSBNC: These Topic Signatures have been
constructed using ExRetriever4, a flexible
tool to perform sense queries on large cor-
pora.

– This tool characterizes each sense of a
word as a specific query using a declar-
ative language.

– This is automatically done by using a
particular query construction strategy,
defined a priori, and using information
from a knowledge base.

In this study, ExRetriever has been evaluated
using the BNC, WN as a knowledge base and

3http://ixa.si.ehu.es/Ixa/resources/sensecorpus
4http://www.lsi.upc.es/˜nlp/meaning/downloads.html

536



TFIDF (as shown in formula 1) (Agirre and
de la Calle, 2004)5.

TFIDF (w,C) =
wfw

maxwwfw
× log N

Cfw
(1)

Where w stands for word context, wf for the
word frecuency, C for Collection (all the cor-
pus gathered for a particular word sense), and
Cf stands for the Collection frecuency.

In this study we consider two different query
strategies:

• Monosemous A (queryA): (OR
monosemous-words). That is, the union
set of all synonym, hyponym and hyper-
onym words of a WordNet synset which are
monosemous nouns (these words can have
other senses as verbs, adjectives or adverbs).

• Monosemous W (queryW): (OR
monosemous-words). That is, the union
set of all words appearing as synonyms,
direct hyponyms, hypernyms indirect hy-
ponyms (distance 2 and 3) and siblings. In
this case, the nouns collected are monose-
mous having no other senses as verbs,
adjectives or adverbs.

While TSWEB use the query construction
queryW, ExRetriever use both.

3 Indirect Evaluation on Word Sense
Disambiguation

In order to measure the quality of the knowl-
edge resources described in the previous section,
we performed an indirect evaluation by using all
these resources as Topic Signatures (TS). That is,
word vectors with weights associated to a partic-
ular synset which are obtained by collecting those
word senses appearing in the synsets directly re-
lated to them 6. This simple representation tries to
be as neutral as possible with respect to the evalu-
ation framework.

All knowledge resources are indirectly evalu-
ated on a WSD task. In particular, the noun-set

5Although other measures have been tested, such as Mu-
tual Information or Association Ratio, the best results have
been obtained using TFIDF formula.

6A weight of 1 is given when the resource do not has as-
sociated weight.

of Senseval-3 English Lexical Sample task which
consists of 20 nouns. All performances are evalu-
ated on the test data using the fine-grained scoring
system provided by the organizers.

Furthermore, trying to be as neutral as possi-
ble with respect to the semantic resources studied,
we applied systematically the same disambigua-
tion method to all of them. Recall that our main
goal is to establish a fair comparison of the knowl-
edge resources rather than providing the best dis-
ambiguation technique for a particular semantic
knowledge base.

A common WSD method has been applied to
all knowledge resources. A simple word over-
lapping counting (or weighting) is performed be-
tween the Topic Signature and the test example7.
Thus, the occurrence evaluation measure counts
the amount of overlapped words and the weight
evaluation measure adds up the weights of the
overlapped words. The synset having higher over-
lapping word counts (or weights) is selected for a
particular test example. However, for TSWEB and
TSBNC the better results have been obtained us-
ing occurrences (the weights are only used to or-
der the words of the vector). Finally, we should
remark that the results are not skewed (for in-
stance, for resolving ties) by the most frequent
sense in WN or any other statistically predicted
knowledge.

Figure 3 presents an example of Topic Signa-
ture from TSWEB using queryW and the web and
from TSBNC using queryA and the BNC for the
first sense of the noun party. Although both auto-
matically acquired TS seem to be closely related to
the first sense of the noun party, they do not have
words in common.

As an example, table 4 shows a test example of
Senseval-3 corresponding to the first sense of the
noun party. In bold there are the words that ap-
pear in TSBNC-queryA. There are several impor-
tant words that appear in the text that also appear
in the TS.

4 Evaluating the quality of knowledge
resources

In order to establish a clear picture of the current
state-of-the-art of publicly available wide cover-
age knowledge resources we also consider a num-
ber of basic baselines.

7We also consider multiword terms.
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democratic 0.0126 socialist 0.0062
tammany 0.0124 organization 0.0060
alinement 0.0122 conservative 0.0059
federalist 0.0115 populist 0.0053
missionary 0.0103 dixiecrats 0.0051
whig 0.0099 know-nothing 0.0049
greenback 0.0089 constitutional 0.0045
anti-masonic 0.0083 pecking 0.0043
nazi 0.0081 democratic-republican 0.0040
republican 0.0074 republicans 0.0039
alcoholics 0.0073 labor 0.0039
bull 0.0070 salvation 0.0038

party 4.9350 trade 1.5295
political 3.7722 parties 1.4083
government 2.4129 politics 1.2703
election 2.2265 campaign 1.2551
policy 2.0795 leadership 1.2277
support 1.8537 movement 1.2156
leader 1.8280 general 1.2034
years 1.7128 public 1.1874
people 1.7044 member 1.1855
local 1.6899 opposition 1.1751
conference 1.6702 unions 1.1563
power 1.6105 national 1.1474

Table 3: Topic Signatures for party#n#1 using TSWEB (24 out of 15881 total words) and TS-
BNC(queryA) with TFIDF (24 out of 9069 total words)

<instance id=”party.n.bnc.00008131” docsrc=”BNC”> <context> Up to the late 1960s , catholic nationalists were split between
two main political groupings . There was the Nationalist Party , a weak organization for which local priests had to provide
some kind of legitimation . As a <head>party</head> , it really only exercised a modicum of power in relation to the Stormont
administration . Then there were the republican parties who focused their attention on Westminster elections . The disorganized
nature of catholic nationalist politics was only turned round with the emergence of the civil rights movement of 1968 and the
subsequent forming of the SDLP in 1970 . </context> </instance>

Table 4: Example of test num. 00008131 for party#n which its correct sense is 1

4.1 Baselines

We have designed several baselines in order to es-
tablish a relative comparison of the performance
of each semantic resource:

• RANDOM: For each target word, this
method selects a random sense. This baseline
can be considered as a lower-bound.

• WordNet MFS (WN-MFS): This method
selects the most frequent sense (the first sense
in WordNet) of the target word.

• TRAIN-MFS: This method selects the most
frequent sense in the training corpus of the
target word.

• Train Topic Signatures (TRAIN): This
baseline uses the training corpus to directly
build a Topic Signature using TFIDF measure
for each word sense. Note that in this case,
this baseline can be considered as an upper-
bound of our evaluation framework.

Table 5 presents the F1 measure (harmonic
mean of recall and precision) of the different base-
lines. In this table, TRAIN has been calculated
with a fixed vector size of 450 words. As ex-
pected, RANDOM baseline obtains the poorest
result while the most frequent sense of Word-
Net (WN-MFS) is very close to the most frequent
sense of the training corpus (TRAIN-MFS), but

Baselines F1
TRAIN 65.1
TRAIN-MFS 54.5
WN-MFS 53.0
RANDOM 19.1

Table 5: Baselines

both are far below to the Topic Signatures acquired
using the training corpus (TRAIN).

4.2 Performance of the knowledge resources

Table 6 presents the performance of each knowl-
edge resource uploaded into the MCR and the av-
erage size of its vectors. In bold appear the best
results for precision, recall and F1 measures. The
lowest result is obtained by the knowledge directly
gathered from WN mainly because of its poor cov-
erage (Recall of 17.6 and F1 of 25.6). Its perfor-
mance is improved using words at distance 1 and
2 (F1 of 33.3), but it decreases using words at dis-
tance 1, 2 and 3 (F1 of 30.4). The best precision is
obtained by WN (46.7), but the best performance
is achieved by the combined knowledge of MCR-
spBNC8 (Recall of 42.9 and F1 of 44.1). This rep-
resents a recall 18.5 points higher than WN. That
is, the knowledge integrated into the MCR (Word-
Net, eXtended WordNet and the selectional prefer-
ences acquired from SemCor) although partly de-
rived by automatic means performs much better

8MCR without Selectional Preferences from BNC
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KB P R F1 Av. Size
MCR-spBNC 45.4 42.9 44.1 115
MCR 41.8 40.4 41.1 235
spSemCor 43.1 38.7 40.8 56
spBNC+spSemCor 41.4 30.1 40.7 184
WN+XWN 45.5 28.1 34.7 68
WN-2 38.0 29.7 33.3 72
XWN 45.0 25.6 32.6 55
WN-3 31.6 29.3 30.4 297
spBNC 36.3 25.4 29.9 128
WN 46.7 17.6 25.6 13

Table 6: P, R and F1 fine-grained results for the
resources integrated into the MCR.

in terms of recall and F1 measures than using the
knowledge currently present in WN alone (with a
small decrease in precision). It also seems that the
knowledge from spBNC always degrades the per-
formance of their combinations9.

Regarding the baselines, all knowledge re-
sources integrated into the MCR surpass RAN-
DOM, but none achieves neither WN-MFS,
TRAIN-MFS nor TRAIN.

Figure 1 plots F1 results of the fine-grained
evaluation on the nominal part of the English lex-
ical sample of Senseval-3 of the baselines (in-
cluding upper and lower-bounds), the knowledge
bases integrated into the MCR, the best perform-
ing Topic Signatures acquired from the web and
the BNC evaluated individually and in combina-
tion with others. The figure presents F1 (Y-axis)
in terms of the size of the word vectors (X-axis)10.

In order to evaluate more deeply the quality of
each knowledge resource, we also provide some
evaluations of the combined outcomes of several
knowledge resources. The combinations are per-
formed following a very simple voting method:
first, for each knowledge resource, the scoring re-
sults obtained for each word sense are normal-
ized, and then, for each word sense, the normal-
ized scores are added up selecting the word sense
with higher score.

Regarding Topic Signatures, as expected, in
general the knowledge gathered from the web
(TSWEB) is superior to the one acquired from the
BNC either using queryA or queryW (TSBNC-
queryA and TSBNC-queryW). Interestingly, the
performance of TSBNC-queryA when using the

9All selectional preferences acquired from SemCor or the
BNC have been considered including those with very low
confidence score.

10Only varying the size of TS for TSWEB and TSBNC.

first two hundred words of the TS is slightly bet-
ter than using queryW (both using the web or the
BNC).

Although TSBNC-queryA and TSBNC-
queryW perform very similar, both knowledge
resources contain different knowledge. This is
shown when combining the outcomes of these
two different knowledge resources with TSWEB.
While no improvement is obtained when com-
bining the knowledge acquired from the web
and the BNC when using the same acquisition
method (queryW), the combination of TSWEB
and TSBNC-queryA (TSWEB+ExRetA) obtains
better F1 results than TSWEB (TSBNC-queryA
have some knowledge not included into TSWEB).

Surprisingly, the knowledge integrated into the
MCR (MCR-spBNC) surpass the knowledge from
Topic Signatures acquired from the web or the
BNC, using queryA, queryW or their combina-
tions.

Furthermore, the combination of TSWEB and
MCR-spBNC (TSWEB+MCR-spBNC) outper-
forms both resources individually indicating that
both knowledge bases contain complementary in-
formation. The maximum is achieved with TS
vectors of at most 700 words (with 49.3% preci-
sion, 49.2% recall and 49.2% F1). In fact, the
resulting combination is very close to the most
frequent sense baselines. This fact indicates that
the resulting large-scale knowledge base almost
encodes the knowledge necessary to behave as a
most frequent sense tagger.

4.3 Senseval-3 system performances

For sake of comparison, tables 7 and 8 present the
F1 measure of the fine-grained results for nouns
of the Senseval-3 lexical sample task for the best
and worst unsupervised and supervised systems,
respectively. We also include in these tables some
of the baselines and the best performing combina-
tion of knowledge resources (including TSWEB
and MCR-spBNC)11. Regarding the knowledge
resources evaluated in this study, the best com-
bination (including TSWEB and MCR-spBNC)
achieves an F1 measure much better than some su-
pervised and unsupervised systems and it is close
to the most frequent sense of WordNet (WN-MFS)
and to the most frequent sense of the training cor-
pora (TRAIN-MFS).

11Although we maintain the classification of the organiz-
ers, system s3 wsdiit used the train data.
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Figure 1: Fine-grained evaluation results for the knowledge resources

s3 systems F1
s3 wsdiit 68.0
WN-MFS 53.0
Comb TSWEB MCR-spBNC 49.2
s3 DLSI 17.8

Table 7: Senseval-3 Unsupervised Systems

s3 systems F1
htsa3 U.Bucharest (Grozea) 74.2
TRAIN 65.1
TRAIN-MFS 54.5
DLSI-UA-LS-SU U.Alicante (Vazquez) 41.0

Table 8: Senseval-3 Supervised Systems

We must recall that the main goal of this re-
search is to establish a clear and neutral view of the
relative quality of available knowledge resources,
not to provide the best WSD algorithm using these
resources. Obviously, much more sophisticated
WSD systems using these resources could be de-
vised.

5 Quality Assessment

Summarizing, this study provides empirical evi-
dence for the relative quality of publicly avail-

able large-scale knowledge resources. The rela-
tive quality has been measured indirectly in terms
of precision and recall on a WSD task.

The study empirically demonstrates that auto-
matically acquired knowledge bases clearly sur-
pass both in terms of precision and recall the
knowledge manually encoded from WordNet (us-
ing relations expanded to one, two or three levels).

Surprisingly, the knowledge contained into the
MCR (WordNet, eXtended WordNet, Selectional
Preferences acquired automatically from SemCor)
is of a better quality than the automatically ac-
quired Topic Signatures. In fact, the knowledge
resulting from the combination of all these large-
scale resources outperforms each resource indi-
vidually indicating that these knowledge bases
contain complementary information. Finally, we
should remark that the resulting combination is
very close to the most frequent sense classifiers.

Regarding the automatic acquisition of large-
scale Topic Signatures it seems that those ac-
quired from the web are slightly better than those
acquired from smaller corpora (for instance, the
BNC). It also seems that queryW performs better
than queryA but that both methods (queryA and
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queryW) also produce complementary knowledge.
Finally, it seems that the weights are not useful for
measuring the strength of a vote (they are only use-
ful for ordering the words in the Topic Signature).

6 Conclusions and future work

During the last years the research community has
derived a large set of semantic resources using a
very different set of methods, tools and corpus, re-
sulting on a different set of new semantic relations
between synsets. In fact, each resource has dif-
ferent volume and accuracy figures. Although iso-
lated evaluations have been performed by their de-
velopers in different experimental settings, to date
no complete evaluation has been carried out in a
common framework.

In order to establish a fair comparison, the qual-
ity of each resource has been indirectly evaluated
in the same way on a WSD task. The evaluation
framework selected has been the Senseval-3 En-
glish Lexical Sample Task. The study empirically
demonstrates that automatically acquired knowl-
edge bases surpass both in terms of precision and
recall to the knowledge bases derived manually,
and that the combination of the knowledge con-
tained in these resources is very close to the most
frequent sense classifier.

Once empirically demonstrated that the knowl-
edge resulting from MCR and Topic Signatures ac-
quired from the web is complementary and close
to the most frequent sense classifier, we plan to
integrate the Topic Signatures acquired from the
web (of about 100 million relations) into the MCR.
This process will be performed by disambiguat-
ing the Topic Signatures. That is, trying to obtain
word sense vectors instead of word vectors. This
will allow to enlarge the existing knowledge bases
in several orders of magnitude by fully automatic
methods. Other evaluation frameworks such as PP
attachment will be also considered.
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Abstract

Word clustering is important for automatic
thesaurus construction, text classification,
and word sense disambiguation. Recently,
several studies have reported using the
web as a corpus. This paper proposes
an unsupervised algorithm for word clus-
tering based on a word similarity mea-
sure by web counts. Each pair of words
is queried to a search engine, which pro-
duces a co-occurrence matrix. By calcu-
lating the similarity of words, a word co-
occurrence graph is obtained. A new kind
of graph clustering algorithm calledNew-
man clusteringis applied for efficiently
identifying word clusters. Evaluations are
made on two sets of word groups derived
from a web directory and WordNet.

1 Introduction

The web is a good source of linguistic informa-
tion for several natural language techniques such
as question answering, language modeling, and
multilingual lexicon acquisition. Numerous stud-
ies have examined the use of the web as a corpus
(Kilgarriff, 2003).

Web-based models perform especially well
against thesparse data problem: Statistical tech-
niques perform poorly when the words are rarely
used. For example, F. Keller et al. (2002) use the
web to obtain frequencies for unseen bigrams in
a given corpus. They count for adjective-noun,
noun-noun, and verb-object bigrams by querying
a search engine, and demonstrate that web fre-
quencies (web counts) correlate with frequencies
from a carefully edited corpus such as the British
National Corpus (BNC). Aside from counting bi-

grams, various tasks are attainable using web-
based models: spelling correction, adjective order-
ing, compound noun bracketing, countability de-
tection, and so on (Lapata and Keller, 2004). For
some tasks, simple unsupervised models perform
better when n-gram frequencies are obtained from
the web rather than from a standard large corpus;
the web yields better counts than the BNC.

The web is an excellent source of information
on new words. Therefore, automatic thesaurus
construction (Curran, 2002) offers great potential
for various useful NLP applications. Several stud-
ies have addressed the extraction of hypernyms
and hyponyms from the web (Miura et al., 2004;
Cimiano et al., 2004). P. Turney (2001) presents a
method to recognize synonyms by obtaining word
counts and calculating pointwise mutual informa-
tion (PMI). For further development of automatic
thesaurus construction, word clustering is benefi-
cial, e.g. for obtaining synsets. It also contributes
to word sense disambiguation (Li and Abe, 1998)
and text classification (Dhillon et al., 2002) be-
cause the dimensionality is reduced efficiently.

This paper presents an unsupervised algorithm
for word clustering based on a word similarity
measure by web counts. Given a set of words, the
algorithm clusters the words into groups so that
the similar words are in the same cluster. Each pair
of words is queried to a search engine, which re-
sults in a co-occurrence matrix. By calculating the
similarity of words, a word co-occurrence graph
is created. Then, a new kind of graph clustering
algorithm, calledNewman clustering, is applied.
Newman clustering emphasizes betweenness of an
edge and identifies densely connected subgraphs.

To the best of our knowledge, this is the first
attempt to obtain word groups using web counts.
Our contributions are summarized as follows:
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• A new algorithm for word clustering is de-
scribed. It has few parameters and thus is
easy to implement as a baseline method.

• We evaluate the algorithm on two sets of
word groups derived from a web directory
and WordNet. The chi-square measure and
Newman clustering are both used in our al-
gorithm, they are revealed to outperform PMI
and hierarchical clustering.

We target Japanese words in this paper. The re-
mainder of this paper is organized as follows: We
overview the related studies in the next section.
Our proposed algorithm is described in Section 3.
Sections 4 and 5 explain evaluations and advance
discussion. Finally, we conclude the paper.

2 Related Works

A number of studies have explained the use of
the web for NLP tasks e.g., creating multilingual
translation lexicons (Cheng et al., 2004), text clas-
sification (Huang et al., 2004), and word sense dis-
ambiguation (Turney, 2004). M. Baroni and M.
Ueyama summarize three approaches to use the
web as a corpus (Baroni and Ueyama, 2005): us-
ing web counts as frequency estimates, building
corpora through search engine queries, and crawl-
ing the web for linguistic purposes. Commercial
search engines are optimized for ordinary users.
Therefore, it is desirable to crawl the web and to
develop specific search engines for NLP applica-
tions (Cafarella and Etzioni, 2005). However, con-
sidering that great efforts are taken in commercial
search engines to maintain quality of crawling and
indexing, especially against spammers, it is still
important to pursue the possibility of using the
current search engines for NLP applications.

P. Turney (Turney, 2001) presents an unsu-
pervised learning algorithm for recognizing syn-
onyms by querying a web search engine. The
task of recognizing synonyms is, given a target
word and a set of alternative words, to choose the
word that is most similar in meaning to the tar-
get word. The algorithm uses pointwise mutual
information (PMI-IR) to measure the similarity of
pairs of words. It is evaluated using 80 synonym
test questions from the Test of English as a Foreign
Language (TOEFL) and 50 from the English as a
Second Language test (ESL). The algorithm ob-
tains a score of 74%, contrasted to that of 64% by
Latent Semantic Analysis (LSA). Terra and Clarke

(Terra and Clarke, 2003) provide a comparative in-
vestigation of co-occurrence frequency estimation
on the performance of synonym tests. They report
that PMI (with a certain window size) performs
best on average. Also, PMI-IR is useful for cal-
culating semantic orientation and rating reviews
(Turney, 2002).

As described, PMI is one of many measures to
calculate the strength of word similarity or word
association (Manning and Schütze, 2002). An
important assumption is that similarity between
words is a consequence of word co-occurrence, or
that the proximity of words in text is indicative of
relationship between them, such as synonymy or
antonymy. A commonly used technique to obtain
word groups is distributional clustering (Baker and
McCallum, 1998). Distributional clustering of
words was first proposed by Pereira Tishby & Lee
in (Pereira et al., 1993): They cluster nouns ac-
cording to their conditional verb distributions.

Graphic representations for word similarity
have also been advanced by several researchers.
Kageura et al. (2000) propose automatic thesaurus
generation based on a graphic representation. By
applying a minimum edge cut, the corresponding
English terms and Japanese terms are identified
as a cluster. Widdows and Dorow (2002) use a
graph model for unsupervised lexical acquisition.
A graph is produced by linking pairs of words
which participate in particular syntactic relation-
ships. An incremental cluster-building algorithm
achieves 82% accuracy at a lexical acquisition
task, evaluated against WordNet classes. Another
study builds a co-occurrence graph of terms and
decomposes it to identify relevant terms by dupli-
cating nodes and edges (Tanaka-Ishii and Iwasaki,
1996). It focuses on transitivity: if transitivity
does not hold between three nodes (e.g., if edge
a-bandb-cexist but edgea-cdoes not), the nodes
should be in separate clusters.

A network of words (or named entities) on the
web is investigated also in the context of the Se-
mantic Web (Cimiano et al., 2004; Bekkerman and
McCallum, 2005). Especially, a social network of
persons is mined from the web using a search en-
gine (Kautz et al., 1997; Mika, 2005; Matsuo et
al., 2006). In these studies, the Jaccard coefficient
is often used to measure the co-occurrence of enti-
ties. We compare Jaccard coefficients in our eval-
uations.

In the research field on complex networks,
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Table 1: Web counts for each word.
printer print InterLaser ink TV Aquos Sharp

17000000 103000000 215 18900000 69100000 1760000000 2410000 186000000

Table 2: Co-occurrence matrix by web counts.
printer print InterLaser ink TV Aquos Sharp

printer — 4780000 179 4720000 4530000 201000 990000
print 4780000 — 183 4800000 8390000 86400 1390000

InterLaser 179 183 — 116 65 0 0
ink 4720000 4800000 116 — 10600000 144000 656000
TV 4530000 8390000 65 10600000 — 1660000 42300000

Aquos 201000 86400 0 144000 1660000 — 1790000
Sharp 990000 1390000 0 656000 42300000 1790000 —

structures of various networks are investigated in
detail. For example, Motter (2002) targeted a
conceptual network from a thesaurus and demon-
strated its small-world structure. Recently, nu-
merous works have identified communities (or
densely-connected subgraphs) from large net-
works (Newman, 2004; Girvan and Newman,
2002; Palla et al., 2005) as explained in the next
section.

3 Word Clustering using Web Counts

3.1 Co-occurrence by a Search Engine

A typical word clustering task is described as fol-
lows: given a set of words (nouns), cluster words
into groups so that the similar words are in the
same cluster1. Let us take an example. As-
sume a set of words is given:プリンタ (printer),
印刷 (print), インターレーザー (InterLaser), イ
ンク (ink), TV (TV), Aquos (Aquos), and Sharp
(Sharp). Apparently, the first four words are re-
lated to a printer, and the last three words are re-
lated to a TV2. In this case, we would like to have
two word groups: the first four and the last three.

We query a search engine3 to obtain word
counts. Table 1 shows web counts for each word.
Table 2 shows the web counts for pairs of words.
For example, we submit a queryprinter AND In-
terLaserto a search engine, and are directed to 179
documents. Thereby,nC2 queries are necessary to
obtain the matrix if we haven words. We call Ta-
ble 2 aco-occurrence matrix.

We can calculate the pointwise mutual informa-

1In this paper, we limit our scope to clustering nouns. We
discuss the extension in Section 4.

2InterLaser is a laser printer made by Epson Corp. Aquos
is a liquid crystal TV made by Sharp Corp.

3Google (www.google.co.jp) is used in our study.

tion between wordw1 andw2 as

PMI(w1, w2) = log2

p(w1, w2)
p(w1)p(w2)

.

Probabilityp(w1) is estimated byfw1/N , where
fw1 represents the web count ofw1 andN repre-
sents the number of documents on the web. Prob-
ability of co-occurrencep(w1, w2) is estimated by
fw1,w2/N wherefw1,w2 represents the web count
of w1 ANDw2.

The PMI values are shown in Table 3. We set
N = 1010 according to the number of indexed
pages on Google. Some values are inconsistent
with our intuition: Aquosis inferred to have high
PMI to TV andSharp, but also toprinter. None
of the words has high PMI withTV. These are be-
cause the range of the word count is broad. Gen-
erally, mutual information tends to provide a large
value if either word is much rarer than the other.

Various statistical measures based on co-
occurrence analysis have been proposed for es-
timating term association: the DICE coefficient,
Jaccard coefficient, chi-square test, and the log-
likelihood ratio (Manning and Schütze, 2002). In
our algorithm, we use the chi-square (χ2) value in-
stead of PMI. The chi-square value is calculated as
follows: We denote the number of pages contain-
ing bothw1 andw2 asa. We also denoteb, c, d as
follows4.

w2 ¬w2

w1 a b
¬w1 c d

Thereby, the expected frequency of (w1, w2) is
(a+ c)(a+ b)/N . Eventually, chi-square is calcu-
lated as follows (Manning and Schütze, 2002).

4Note thatN = a + b + c + d.
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Table 3: A matrix of pointwise mutual information.
printer print InterLaser ink TV Aquos Sharp

printer — 4.771 8.936 7.199 0.598 5.616 1.647
print 4.771 — 6.369 4.624 -1.111 1.799 -0.463

InterLaser 8.936 6.369 — 8.157 0.781 −∞* −∞*
ink 7.199 4.624 8.157 — 1.672 4.983 0.900
TV 0.598 -1.111 0.781 1.672 — 1.969 0.370

Aquos 5.616 1.799 −∞*. 4.983 1.969 — 5.319
Sharp 1.647 -0.463 −∞* 0.900 0.370 5.319 —

* represents that the PMI is not available because the co-occurrence web count is zero, in which case we set−∞.

Table 4: A matrix of chi-square values.
printer print InterLaser ink TV Aquos Sharp

printer — 6880482.6 399.2 5689710.7 0.0* 0.0* 0.0*
print 6880482.6 — 277.8 3321184.6 176855.5 0.0* 0.0*

InterLaser 399.2 277.8 — 44.8 0.0* 0.0 0.0
ink 5689710.7 3321184.6 44.8 — 1419485.5 0.0* 0.0*
TV 0.0* 176855.5 0.0* 1419485.5 — 26803.2 70790877.6

Aquos 0.0* 0.0* 0.0 0.0* 26803.2 — 729357.7
Sharp 0.0* 0.0* 0.0 0.0* 70790877.6 729357.7 —

* represents that the observed co-occurrence frequency is below the expected value, in which case we set 0.0.

Figure 1: Examples of Newman clustering.

χ2(w1, w2)

=
N × (a× d− b× c)2

(a + b)× (a + c)× (b + d)× (c + d)

However,N is a huge number on the web and
sometimes it is difficult to know exactly. There-
fore we regard the co-occurrence matrix as a con-
tingency table:

b′ =
∑

w∈W ;w 6=w2

fw1,w , c′ =
∑

w∈W ;w 6=w1

fw2,w;

d′ =
∑

w,w′∈W ;w and w′ 6=w1 nor w2

fw,w′ , N ′ =
∑

w,w′∈W

fw,w′ ,

whereW represents a given set of words. Then
chi-square (within the word listW ) is defined as

χ2
W (w1, w2) =

N ′ × (a× d′ − b′ × c′)2

(a + b′)× (a + c′)× (b′ + d′)× (c′ + d′)
.

We should note thatχ2
W depends on a word

set W . It calculates the relative strength of co-
occurrences. Table 4 shows theχ2

W values.Aquos
has high values only withTV and Sharpas ex-
pected.

3.2 Clustering on Co-occurrence Graph

Recently, a series of effective graph clustering
methods has been advanced. Pioneering work that
specifically emphasizes edge betweenness was
done by Girvan and Newman (2002): we call the
method as GN algorithm. Betweenness of an edge
is the number of shortest paths between pairs of
nodes that run along it. Figure 1 (i) shows that
two “communities” (in Girvan’s term), i.e.{a,b,c}
and {d,e,f,g}, which are connected by edgec-d.
Edgec-dhas high betweenness because numerous
shortest paths (e.g., froma to d, from b to e, . . .)
traverse the edge. The graph is likely to be sepa-
rated into densely connected subgraphs if we cut
the high betweenness edge.

The GN algorithm is different from the mini-
mum edge cut. For (i), the results are identical: By
cutting edgec-d, which is a minimum edge cut, we
can obtain two clusters. However in case of (ii),
there are two candidates for the minimum edge
cut, whereas the highest betweenness edge is still
only edgec-d. Girvan et al. (2002) shows that this
clustering works well to various networks from
biological to social networks. Numerous studies
have been inspired by that work. One prominent
effort is a faster variant of GN algorithm (New-
man, 2004), which we callNewman clusteringin
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Figure 2: An illustration of graph-based word
clustering.

this paper.
In Newman clustering, instead of explicitly cal-

culating high-betweenness edges (which is com-
putationally demanding), an objective function is
defined as follows:

Q =
∑

i

(
eii −

(∑
j

eij

)2)
(1)

We assume that we have separate clusters, and that
eij is the fraction5 of edges in the network that
connect nodes in clusteri to those in clusterj.
The termeii denotes the fraction of edges within
the clusters. The term

∑
j eij represents the ex-

pected fraction of edges within the cluster. If a par-
5We can calculateeij using the number of edges between

clusteri andj divided by the number of all edges.

Figure 3: A word graph for 88 Japanese words.

ticular division gives no more within-community
edges than would be expected by random chance,
then we would obtainQ = 0. In practice, values
greater than about 0.3 appear to indicate signifi-
cant group structure (Newman, 2004).

Newman clustering is agglomerative (although
we can intuitively understand that a graph with-
out high betweenness edges is ultimately ob-
tained). We repeatedly join clusters together in
pairs, choosing at each step the joint that provides
the greatest increase inQ. Currently, Newman
clustering is one of the most efficient methods for
graph-based clustering.

The illustration of our algorithm is shown in
Fig. 2. First, we obtain web counts among a given
set of words using a search engine. Then PMI or
the chi-square values are calculated. If the value is
above a certain threshold6, we invent an edge be-
tween the two nodes. Then, we apply graph clus-
tering and finally identify groups of words. This il-
lustration shows that the chi-square measure yields
the correct clusters.

The algorithm is described in Fig. 4. The pa-
rameters are few: a thresholddthre for a graph and,
optionally, the number of clustersnc. This enables
easy implementation of the algorithm. Figure 3
is a small network of 88 Japanese words obtained
through 3828 search queries. We can see that some
parts in the graph are densely connected.

4 Experimental Results

This section addresses evaluation. Two sets of
word groups are used for the evaluation: one is
derived from documents on a web directory; an-
other is from WordNet. We first evaluate the co-

6In this example, 4.0 for PMI and 200 forχ2.
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¶ ³
1. Input A set of words is given. The number of words

is denoted asn.

2. Obtain frequencies Put a query for each pair of
words to a search engine, and obtain a co-
occurrence matrix. Then calculate the chi-square
matrix (alternatively a PMI matrix, or a Jaccard
matrix.)

3. Make a graph Set a node for each word, and an
edge to a pair of nodes whoseχ2 value is above a
threshold. The threshold is determined so that the
network density (the number of edges divided by
nC2) is dthre.

4. Apply Newman clustering Initially set each node
as a cluster. Then merge two clusters repeatedly
so thatQ is maximized. Terminate ifQ does
not increase anymore, or when a given number
of clustersnc is obtained. (Alternatively, apply
average-link hierarchical clustering.)

5. Output Output groups of words.µ ´
Figure 4: Our algorithm for word clustering.

occurrence measures, then we evaluate the cluster-
ing methods.

4.1 Word Groups from an Open Directory

We collected documents from the Japanese Open
Directory (dmoz.org/World/Japanese). The
dmoz japanese category contains about 130,000
documents and more than 10,000 classes. We
chose 9 categories out of the top 12 categories:
art, sports, computer, game, society, family, sci-
ence, andhealth. We crawled 1000 documents for
each category, i.e., 9000 documents in all.

For each category, a word group is obtained
through the procedure in Fig. 5. We consider
that the specific words to a category are relevant
to some extent, and that they can therefore be re-
garded as a word group. Examples are shown in
Table 5. In all, 90 word sets are obtained and
merged. We call the word set DMOZ-J data.

Our task is, given 90 words, to cluster the words
into the correct nine groups. Here we investigate
whether the correct nine words are selected for
each word using the co-occurrence measure. We
compare pointwise mutual information (PMI), the
Jaccard coefficient (Jaccard), and chi-square (χ2).
We chose these methods for comparison because
PMI performs best in (Terra and Clarke, 2003).
The Jaccard coefficient is often used in social net-
work mining from the web. Table 7 shows the pre-
cision of each method. Experiments are repeated
five times. We keep each method that outputs the

¶ ³
1. For each category, crawl 1000 documents ran-

domlya

2. Apply the Japanese morphological analysis sys-
tem ChaSen (Matsumoto et al., 2000) to the doc-
uments. Calculate the score of each wordw in
categoryc similarly to TF-IDF:

score(w, c) = fc(w)× log(Nall/fall(w))

where fc denotes the document frequency of
wordw in categoryc, Nall denotes the number of
all documents, andfall(w) denotes the frequency
of wordw in all documents.

3. For each category, the top 10 words are selected
as the word group.

aWe first get all urls, sort them, and select a sample
randomly.µ ´

Figure 5: Procedure for obtaining word groups for
a category.

Table 7: Precision for DMOZ-J set.
PMI Jaccard χ2

Mean 0.415 0.402 0.537
Min 0.396 0.376 0.493
Max 0.447 0.424 0.569
SD 0.020 0.020 0.032

highest nine words for each word, groups of ten
words. Therefore, recall is the same as the preci-
sion. From the table, the chi-square performs best.
PMI is slightly better than the Jaccard coefficient.

4.2 Word Groups from WordNet

Next, we make a comparison using WordNet7. By
extracting 10 words that have the same hypernym
(i.e. coordinates), we produce a word group. Ex-
amples are shown in Table 6. Nine word groups
are merged into one, as with DMOZ-J. The exper-
iments are repeated 10 times. Table 8 shows the
result. Again, the chi-square performs best among
the methods that were compared.

Detailed analyses of the results revealed that
word groups such as bacteria and diseases are clus-
tered correctly. However, word groups such as
computers(in which homepage, serverandclient
are included) are not well clustered: these words
tend to be polysemic, which causes difficulty.

4.3 Evaluation of Clustering

We compare two clustering methods: Newman
clustering and average-link agglomerative cluster-

7We use a partly-translated version of WordNet.
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Table 5: Examples of word groups from DMOZ-J.
category specific words to a category as a word group
アート (art) 画廊 (gallery),作品 (artwork),劇場 (theater),サックス (saxophone),短歌 (verse),ライブ (live con-

cert),ギター (guitar),披露 (performance),バレエ (ballet),個展 (personal exhibition)
レクリエーション
(recreation)

飼育 (raising),ヒナ (poult),ハムスター (hamster),旅日記 (travel diary),国立公園 (national park),
酒造 (brewing),競艇 (boat race),競争 (competition),釣り堀 (fishing pond)

健康 (health) 疾患 (illness),患者 (patient),筋炎 (myositis),外科 (surgery),透析 (dialysis),ステロイド (steroid),検
査 (test),病棟 (medical ward),膠原病 (collagen disease),外来 (clinic)

Table 6: Examples of word groups from WordNet.
hypernym hyponyms as a word group
宝石 (gem) アメジスト (amethyst),アクアマリン (aquamarine),ダイアモンド (diamond),エメラルド (emer-

ald),ムーンストーン (moonstone),ペリドット (peridot),ルビー (ruby),サファイア (sapphire),
トパーズ (topaz),トルマリン (tourmaline)

学問 (academic field) 自然科学 (natural science),数学 (mathematics),農学 (agronomics),建築学 (architectonics),地質
学 (geology),心理学 (psychology),情報工学 (computer science),認知科学 (cognitive science),社
会学 (sociology),言語学 (linguistics)

飲み物 (drink) 牛乳 (milk),アルコール (alcohol),清涼飲料 (cooling beverage),炭酸飲料 (carbonated beverage),
サイダー (soda),ココア (cocoa),フルーツジュース (fruit juice),コーヒー (coffee),お茶 (tea),ミ
ネラルウォーター (mineral water)

Table 8: Precision of WordNet set.
PMI Jaccard χ2

Mean 0.549 0.484 0.584
Min 0.473 0.415 0.498
Max 0.593 0.503 0.656
SD 0.037 0.027 0.048

Table 9: Precision, recall and the F-measure for
each clustering.

PMI Jaccard χ2

Average precision 0.633 0.603 0.486
-link recall 0.102 0.101 0.100

F-measure 0.179 0.173 0.164
Newman precision 0.751 0.739 0.546

recall 0.103 0.103 0.431
F-measure 0.182 0.181 0.480

ing, which is often used in word clustering.
A word co-occurrence graph is created using

PMI, Jaccard, and chi-square measures. The
threshold is determined so that the network den-
sity dthre is 0.3. Then, we apply clustering to ob-
tain nine clusters;nc = 9. Finally, we compare
the resultant clusters with the correct categories.

Clustering results for DMOZ-J sets are shown
in Table 9. Newman clustering produces higher
precision and recall. Especially, the combination
of chi-square and Newman is the best in our ex-
periments.

5 Discussion

In this paper, the scope of co-occurrence is
document-wide. One reason is that major com-
mercial search engines do not support a type of
queryw1 NEARw2. Another reason is in (Terra

and Clarke, 2003) document-wide co-occurrences
perform comparable to other Windows-based co-
occurrences.

Many types of co-occurrence exist other than
noun-noun. We limit our scope to noun-noun
co-occurrences in this paper. Other types of co-
occurrence such as verb-noun can be investigated
in future studies. Also, co-occurrence for the
second-order similarity can be sought. Because
web documents are sometimes difficult to analyze,
we keep our algorithm as simple as possible. An-
alyzing semantic relations and applying distribu-
tional clustering is another goal for future work.

A salient weak point of our algorithm is the
number of necessary queries allowed to a search
engine. For obtaining a graph ofn words,O(n2)
queries are required, which discourages us from
undertaking large experiments. However some de-
vices are possible: if we analyze the texts of the
top retrieved pages by queryw, we can guess what
words are likely to co-occur withw. This prepro-
cessing seems promising at least in social network
extraction: we can eliminate 85% of queries in
the 500 nodes case while retaining more than 90%
precision (Asada et al., 2005).

In our evaluation, the chi-square measure per-
formed well. One reason is that the PMI performs
worse when a word group contains rare or frequent
words, as is generally known for mutual informa-
tion measure (Manning and Schütze, 2002). An-
other reason is that if we put one word and two
words to a search engine, the result might be in-
consistent. In an extreme case, the web count of
w1 is below the web count ofw1ANDw2. This
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phenomenon depends on how a search engine pro-
cessesAND operator, and results in unstable val-
ues for the PMI. On the other hand, our method
by the chi-square uses a co-occurrence matrix as a
contingency table. For that reason, it suffers less
from the problem. Other statistical measures such
as the likelihood ratio are also applicable.

6 Conclusion

This paper describes a new approach for word
clustering using a search engine. The chi-square
measure is used to overcome the broad range of
word counts for a given set of words. We also ap-
ply recently-developed Newman clustering, which
yields promising results through our evaluations.

Our algorithm has few parameters. Therefore,
it can be used easily as a baseline, as suggested by
(Lapata and Keller, 2004). New words are gener-
ated day by day on the web. We believe that to
automatically identify new words and obtain word
groups potentially enhances many NLP applica-
tions.
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Abstract 

Co-occurrence analysis has been used to 

determine related words or terms in many 

NLP-related applications such as query 

expansion in Information Retrieval (IR). 

However, related words are usually 

determined with respect to a single word, 

without relevant information for its 

application context. For example, the word 

“programming” may be considered to be 

strongly related to “Java”, and applied 

inappropriately to expand a query on “Java 

travel”. To solve this problem, we propose 

to add another context word in the relation 

to specify the appropriate context of the 

relation, leading to term relations of the 

form “(Java, travel) → Indonesia”. The 

extracted relations are used for query 

expansion in IR. Our experiments on 

several TREC collections show that this 

new type of context-dependent relations 

performs much better than the traditional 

co-occurrence relations.  

1. Introduction 

A query usually is a poor expression of an 

information need. This is not only due to its short 

length (usually a few words), but also due to the 

inability of users to provide the best terms to 

describe their information need. At best, one can 

expect that some, but not all, relevant terms are 

used in the query. Query expansion thus aims to 

improve query expression by adding related 

terms to the query. However, the effect of query 

expansion is strongly determined by the term 

relations used (Peat and Willett, 1991). For 

example, even if “programming” is strongly 

related to “Java”, if this relation is used to 

expand a query on “Java travel”, the retrieval 

result will likely deteriorate because the 

irrelevant term “programming” is introduced, 

leading to the retrieval of irrelevant documents 

about “programming”.  

    A number of attempts have been made to deal 

with the problem of selecting appropriate 

expansion terms. For example, Wordnet has been 

used in (Voorhees, 1994) to determine the 

expansion terms. However, the experiments did 

not show improvement on retrieval effectiveness. 

Many experiments have been carried out using 

associative relations extracted from term co-

occurrences; but they showed variable results 

(Peat and Willett, 1991). In (Qiu and Frei, 1993), 

it is observed that one of the reasons is that one 

tried to determine expansion terms according to 

each original query term separately, which may 

introduce much noise. Therefore, they proposed 

to determine the expansion terms by summing up 

the relations of a candidate expansion term to 

each of the query terms. In so doing, a candidate 

expansion term is preferred if it has a strong 

relationship with many of the query terms. 

However, it is still difficult to prevent the 

expansion process from adding “programming” 

to a query on “Java travel” because of its very 

strong relation with “Java”. 

The approach used in (Qiu and Frei, 1993) 

indeed tries to correct a handicap inherent in the 

relations: as term relations are created between 

two single words such as “Java → 

programming”, no information is available to 

help determine the appropriate context to apply 

it. The approach used in (Qiu and Frei, 1993) can 

simply alleviate the problem without solving it 

radically. 

    In this paper, we argue that the solution lies in 

the relations themselves. They have to contain 

more information to help determine the 

appropriate context to apply them. We thus 

propose a way to add some context information 

into the relations: we introduce an additional 

word into the condition part of the relation, such 

as “(Java, computer) → programming”, which 
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means “programming” is related to “(Java, 

computer)” together. In so doing, we would be 

able to prevent from extracting and applying a 

relation such as “(Java, travel) → 

programming”.  

    In this paper, we will test the extracted 

relations in query expansion for IR. We choose to 

implement query expansion within the language 

modeling (LM) framework because of its 

flexibility and high performance. The 

experiments on several TREC collections will 

show that our query expansion approach can 

bring large improvements in retrieval 

effectiveness. 

    In the following sections, we will first review 

some of the relevant approaches on query 

expansion and term relation extraction. Then we 

will describe our general IR models and the 

extraction of term relations. The experimental 

results will be reported and finally some 

conclusions will be drawn. 

2. Query Expansion and Term Relations 

It has been found that a key factor that 

determines the effect of query expansion is the 

selection of appropriate expansion terms (Peat 

and Willett, 1991). To determine expansion 

terms, one possible resource is thesauri 

constructed manually, such as Wordnet. Thesauri 

contain manually validated relations between 

terms, which can be used to suggest related 

terms. (Voorhees, 1994) carried out a series of 

experiments on selecting related terms (e.g. 

synonyms, hyonyms, etc.) from Wordnet. 

However, the experiments did not show that this 

can improve retrieval effectiveness. Some of the 

reasons are as follows: Although Wordnet 

contains many relations validated by human 

experts, the coverage is far from complete for the 

purposes of IR: not only linguistically motivated 

relations, but also association relations, are useful 

in IR. Another problem is the lack of information 

about the appropriate context to apply relations. 

For example, Wordnet contains two synsets for 

“computer”, one for the sense of “machine” and 

another for “human expert”. It is difficult to 

automatically select the correct synset to expand 

the word “computer” even if we know that the 

query’s area is computer science. 

Another often used resource is associative 

relations extracted from co-occurrences: two 

terms that co-occur frequently are thought to be 

associated to each other (Jing and Croft, 1994). 

However, co-occurrence relations are noisy: 

Frequently co-occurring terms are not necessarily 

related. On the other hand, they can also miss 

true relations. The most important problem is still 

that of ambiguity: when one term is associated 

with another, it may be related for one sense and 

not for other possible senses. It is then difficult to 

determine when the relation applies. 

In most of the previous studies, relations 

extracted are restricted between one word and 

another. This limitation makes the relations 

ambiguous, and their utilization in query 

expansion often introduces undesired terms. We 

believe that the key to make a relation less 

ambiguous is to add some contextual 

information. 

In an attempt to select better expansion terms, 

(Qiu and Frei, 1993) proposed the following 

approach to select expansion terms: terms are 

selected according to their relation to the whole 

query, which is calculated as the sum of their 

relations to each of the query terms. Therefore, a 

term that is related to several query terms will be 

favored. In a similar vein, (Bai et al. 2005) also 

try to determine the relationship of a word to a 

group of words by combining its relationships to 

each of the words in the group. This can indeed 

select better expansion terms. The consideration 

of other query terms produces a weak contextual 

effect. However, this effect is limited due to the 

nature of the relations extracted, in which a term 

depends on only one other term. Much of the 

noise in the sets will remain after selection.  

For a query composed of several words, what 

we would really like to have is a set of terms that 

are related to all the words taken together (and 

not separately). By combining words in the 

condition part such as “(Java, travel)” or “(base, 

bat)”, each word will serve as a context to the 

other in order to constrain the related terms. In 

these cases, we would expect that “hotel”, 

“island” or “Indonesia” would co-occur much 

more often with “(Java, travel)” than 

“programming”, and “ball”, “catcher” etc. co-

occur much more often with “(base, bat)” than 

“animal” or “foundation”. 

One naturally would suggest that compound 

terms can be used for this purpose. However, for 

many queries, it is difficult to form a legitimate 

compound term. Even if we can detect one 

occurrence of a compound, we may miss others 

that use its variants. For example, if “Java travel” 

is used as a query, we will likely be able to 

consider it as a compound term. The same 

compound (or its variant) would be difficult to 
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detect in a document talking about traveling to 

Java: the two words may appear at some distance 

or not in some specific syntactic structure as 

required in (Lin, 1997). This will lead to the 

problem of mismatching between document and 

query. 

In fact, compound terms are not the only way 

to add contextual information to a word. By 

putting two words together (without forming a 

compound term), we usually obtain a more 

precise sense for each word. For example, from 

“Java travel”, we can guess that the intended 

meaning is likely related to “traveling to Java 

Island”. People will not interpret this 

combination in the sense of “Java 

programming”. In the same way, people would 

not consider “animal” to be a related term to 

“base, bat”. These examples show that in a 

combination of words, each word indeed serves 

to specify a context to interpret another word. It 

then suggests the following approach: we can 

adjunct some additional word(s) in the condition 

part of a relation, such as “(Java, travel) → 

Indonesia”, which means “Indonesia” is related 

to “(Java, travel)” together. It is expected that 

one would not obtain “(Java, travel) → 

programming”. 

Owing to the context effect explained above, 

we will call the relations with multiple words in 

the condition part context-dependent relations. In 

order to limit the computation complexity, we 

will only consider adding one additional word 

into relations.  

The proposed approach follows the same 

principle as (Yarowsky, 1995), which tried to 

determine the appropriate word sense according 

to one relevant context word. However, the 

requirement for query expansion is less than 

word sense disambiguation: we do not need to 

know the exact word sense to make expansion. 

We only need to determine the relevant 

expansion terms. Therefore, there is no need to 

determine manually a set of seeds before the 

learning process takes place. 

To some extent, the proposed approach is also 

related to (Schütze and Pedersen, 1997), which 

calculate term similarity according to the words 

appearing in the same context, or to second-order 

co-occurrences. However, a key difference is that 

(Schütze and Pedersen, 1997) consider only 

separate context words, while we consider 

multiple context words together. 

Once term relations are determined, they will 

be used in query expansion. The basic IR process 

will be implemented in a language modeling 

framework. This framework is chosen for its 

flexibility to integrate term relations. Indeed, the 

LM framework has proven to be capable of 

integrating term relations and query expansion 

(Bai et al., 2005; Berger and Lafferty, 1999; Zhai 

and Lafferty, 2001). However, none of the above 

studies has investigated the extraction of strong 

context-dependent relations from text collections. 

In the next section, we will describe the 

general LM framework and our query expansion 

models. Then the extraction of term relation will 

be explained. 

3. Context-Dependent Query Expansion 

in Language Models 

The basic IR approach based on LM (Ponte and 

Croft, 1998) determines the score of relevance of 

a document D by its probability to generate the 

query Q. By assuming independence between 

query terms, we have: 

∑∏
∈∈

∝=
Qw

i

Qw

i

ii

DwPDwPDQP )|(log)|()|(  

where )|( DwP i denotes the probability of a word 

in the language model of the document D. As no 

ambiguity will arise, we will use D to mean both 

the language model of the document and the 

document itself (similarly for a query model and 

a query Q). 

Another score function is based on KL-

divergence or cross entropy between the 

document model and the query model: 

∑
∈

=
Vw

ii

i

DwPQwPQDscore )|(log)|(),(  

where V is the vocabulary. Although we have 

both document and query models in the above 

formulation, usually only the document model is 

smoothed, while the query model uses Maximum 

Likelihood Estimation (MLE) )|( QwP iML
. Then 

we have: 

∑
∈

=
Qw

iiML

i

DwPQwPQDscore )|(log)|(),(  

However, it is obvious that a distance (KL-

divergence) measured between a short query of a 

few words and a document cannot be precise. A 

better expression would contain all the related 

terms. The construction of a better query 

expression is the very motivation for query 

expansion in traditional IR systems. It is the same 

in LM for IR: to create a better query expression 

(model) to be able to measure the distance to a 
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document in a more precise way. The key to 

creating the new model is the integration of term 

relations. 

3.1 LM for Query Expansion 

Term relations have been used in several recent 

language models in IR. (Berger and Lafferty, 

1999) proposed a translation model that expands 

the document model. The same approach can also 

be used to expand the query model. Following 

(Berger and Lafferty, 1999), we arrive at the first 

expansion model as follows, which has also been 

used in (Bai et al., 2005): 

Model 1: Context-independent query 

expansion model (CIQE) 

∑∑
∈∈

==
Qq

jMLjiR

Vq

jiRiR

jj

QqPqwPQqwPQwP )|()|()|,()|(  

In this model, each original query term qj is 

expanded by related terms wi. The relations 

between them are determined by )|( jiR qwP . We 

will explain how this probability is defined in 

Section 3.2. However, we can already see here 

that wi is determined solely by one of the query 

term qj. So, we call this model “context-

independent query expansion model” (CIQE). 

The above expanded query model enables us 

to obtain new related expansion terms, to which 

we also have to add the original query. This can 

be obtained through the following smoothing: 

∑
∈

−

+=

Qq

jMLjiR

iMLi

j

QqPqwP

QwPQwP

)|()|()1(                   

)|()|(

1

1

λ

λ

      (1) 

where 1λ is a smoothing parameter. 

However, if the query model is expanded on 

all the vocabulary (V), the query evaluation will 

be very time consuming because the query and 

the document have to be compared on every word 

(dimension). In practice, we observe that only a 

small number of terms have strong relations with 

a given term, and the terms having weak relations 

usually are not truly related. So we can limit the 

expansion terms only to the strongly related ones. 

By doing this, we can also expect to filter out 

some noise and considerably reduce the retrieval 

time. 

Suppose that we have selected a set E of 

strong expansion terms. Then we have: 

∑

∑

∪∈

∈

≈

=

QEw

ii

Vw

ii

i

i

DwPQwP

DwPQwPQDscore

)|(log)|(                    
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This query expansion method uses the same 

principle as (Qiu and Frei, 1993), but in a LM 

setting: the selected expansion terms are those 

that are strongly related to all the query terms 

(this is what the summation means). The 

approach used in (Bai et al., 2005) is slightly 

different: A context vector is first built for each 

word; then a context vector for a group of words 

(e.g. a multi-word query) is composed from the 

context vectors of the words of the group; finally 

related terms to the group of words are 

determined according to the similarity of their 

context vectors to that of the group. This last step 

uses second-order co-occurrences similarly to 

(Schütze and Pedersen, 1997). In both (Qiu and 

Frei, 1993) and (Bai et al., 2005), the terms 

related to a group of words are determined from 

their relations to each of the words in the group, 

while the latter relations are extracted separately. 

Irrelevant expansion terms can be retained. 

As we showed earlier, in many cases, when 

one additional word is used with another word, 

the sense of each of them can usually be better 

determined. This additional word may be 

sufficient to interpret correctly many multi-word 

user queries. Therefore, our goal is to extract 

stronger context-dependent relations of the form 

(qj qk) → wi, or to build a probability 

function )|( kjiR qqwP . Once this function is 

determined, it can be integrated into a new 

language model as follows. 

Model 2: Context-dependent query expansion 

model (CDQE) 

∑

∑

∈

∈

≈

=

Qqq

kjkjiR

Vqq

kjkjiRiR

kj

kj

QqqPqqwP

QqqPqqwPQwP

,

,

)|()|(                 

)|()|()|(

 

As )|( kjiR qqwP  is a relation with two terms as 

condition, we will also call it a biterm relation. 

The name “biterm” is due to (Srikanth and 

Srihari, 2002), which means two terms co-

occurring within some distance. Similarly, 

)|( jiR qwP  will be called unigram relation. The 

corresponding query models will be called biterm 

relation model and unigram relation model.  

As in general LM, the biterm relation model 

can be smoothed with a unigram model. Then we 

have the following score function: 

∑
∈

−

+=

Qqq

kjkjiR

iMLiR

kj

QqqPqqwP

QwPQwP

,

2

2

)|()|()1(                    

)|()|(

λ

λ

  (2) 
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where 2λ  is another smoothing parameter. 

3.2 Extraction of Term Relations 

The key problem now is to obtain the relations 

we need: )|( jiR wwP  and )|( kjiR wwwP . For the first 

probability, as in many previous studies, we 

exploit term co-occurrences. )|( jiR wwP  could be 

built as a traditional bigram model. However, this 

is not a good approach for IR because two related 

terms do not necessarily co-occur side by side. 

They often appear at some distance. Therefore, 

this model is indeed a biterm model (Srikanth 

and Srihari, 2002), i.e., we allow two terms be 

separated within some distance. We use the 

following formula to determine this probability: 

∑
=

lw

jl

ji

jiR
wwc

wwc
wwP

),(

),(
)|(  

where ),( ji wwc  is the frequency of co-occurrence 

of the biterm ),( ji ww , i.e. two terms in the same 

window of fixed size across the collection. In our 

case, we set the window size at 10 (because this 

size turned out to be reasonable in our pilot 

experiments). 

For )|( kji wwwP , we further extend the biterm 

to triterm, and we use the frequency of co-

occurrences of three terms ),,( kji wwwc  within the 

same windows in the document collection: 

∑
=

lw

kjl

kji
kjiR

wwwc

wwwc
wwwP

),,(

),,(
)|(  

The number of relations determined in this 

way can be very large. The upper bound for 

)|( ji wwP  and )|( kji wwwP  are respectively 

O(|V|
2
) and O(|V|

3
). However, many relations 

have very low probabilities and are often noise. 

As we only consider a subset of strong expansion 

terms, the relations with low probability are 

almost never used. Therefore, we set two filtering 

criteria: 

• The biterm in the condition of a relation should 

be higher than a threshold (10 in our case); 

• The probability of a relation should be higher 

than another threshold (0.0001 in our case). 

• One more filtering criterion is mutual 

information (MI), which reflects the 

relatedness of two terms in their combination 

),( kj ww . To keep a relation )|( kji wwwP , we 

require ),( kj ww  be a meaningful combination. 

We use the following pointwise MI (Church 

and Hanks 1989): 

)()(

),(
log),(

kj

kj
kj

wPwP

wwP
wwMI =  

 We only keep meaningful combinations such 

that 0),( >kj wwMI .  

By these filtering criteria, we are able to 

reduce considerably the number of biterms and 

triterms. For example, on a collection of about 

200MB, with a vocabulary size of about 148K, 

we selected only about 2.7M useful biterms and 

about 137M triterms, which remain tractable. 

3.3 Probability of Biterms 

In LM used in IR, each query term is attributed 

the same weight. This is equivalent to a uniform 

probability distribution, i.e.: 

U

i
Q

QqP
||

1
)|( =  

where |Q|U is the number of unigrams in the 

query. In CIQE model, we use the same method.  

In CDQE, we also need to attribute a 

probability )|( QqqP kj , to the biterm ),( kj qq . 

Several options are possible. 

Uniform probability 

This simple approach distributes the probability 

uniformly among all biterms in the query, i.e.: 

B

kj
Q

QqqP
||

1
)|( =  

where 
BQ ||  is the number of biterms in Q.  

According to mutual information 

In a query, if two words are strongly associated, 

this also means that their association is more 

meaningful to the query, thus should be weighted 

higher. Therefore, a natural way to assign a 

probability to a biterm in the query is to use 

mutual information, which denotes the strength 

of association between two words. We use again 

the pointwise mutual information MI(qj, qk). If it 

is negative, we consider that the biterm is not 

meaningful, and is ignored. Therefore, we arrive 

at the following probability function: 

∑
∈

=

Qqq

ml

kj

kj

ml

qqMI

qqMI
QqqP

)(

),(

),(
)|(  

where Qqq
ml

∈)(  means all the meaningful 

biterms in the query.  
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Statistical parsing 

In (Gao et al., 2002), a statistical parsing 

approach is used to determine the best 

combination of translation words for a query. The 

approach is similar to building a minimal 

spanning tree, which is also used in (Smeaton and 

Van Rijsbergen, 1983), to select the strongest 

term relations that cover the whole query. This 

approach can also be used in our model to 

determine the minimal set of the strongest 

biterms that cover the query.  

In our experiments, we tested all the three 

weighting schemas. It turns out that the best 

weighting is the one with MI. Therefore, in the 

next section, we will only report the results with 

the second option. 

4. Experimental Evaluation 

We evaluate query expansion with different 

relations on four TREC collections, which are 

described in Table 1. All documents have been 

processed in a standard manner: terms are 

stemmed using Porter stemmer and stopwords are 

removed. We only use titles of topics as queries, 

which contain 3.58 words per query on average.  

Table 1. TREC collection statistics 

Coll. Description 
Size 

(Mb) 
Vocab. # Doc. Query 

AP 
Associated 

Press (1988-89) 
491 196,933 164,597 51-100 

SJM 
San Jose 

Mercury News 

(1991) 

286 146,514 90,257 101-150 

WSJ 
Wall Street 

Journal (1990-

92) 

242 121,946 74,520 51-100 

In our experiments, the document model 

remains the same while the query model changes. 

The document model uses the following Dirichlet 

smoothing: 

µ

µ

+

+
=

U

iMLi
i

D

CwPDwtf
DwP

||

)|(),(
)|(  

where ),( Dwtf i is the term frequency of wi in D, 

)|( CwP iML  is the collection model and µ  is the 

Dirichlet prior, which is set at 1000 following 

(Zhai and Lafferty, 2001).  

There are two other smoothing parameters 
1λ , 

and 
2λ  to be determined. In our experiments, we 

use a simple method to set them: the parameters 

are tuned empirically using a training collection 

containing AP1989 documents and queries 101-

150. These preliminary tests suggest that the best 

value of 
1λ  and 

2λ  (in Equations 1-2) are 

relatively stable (we will show this later). In the 

experiments reported below, we will use 4.01 =λ ,  

and 3.02 =λ . 

4.1 Experimental Results 

The main experimental results are described in 

Table 2, which reports average precision with 

different methods as well as the number of 

relevant documents retrieved. UM is the basic 

unigram model without query expansion (i.e. we 

use MLE for the query model, while the 

document model is smoothed with Dirichlet 

method). CIQE is the context-independent query 

expansion model using unigram relations (Model 

1). CDQE is the context-dependent query 

expansion model using biterm relations (Model 

2). In the table, we also indicate whether the 

improvement in average precision obtained is 

statistically significant (t-test). 

Table 2. Avg. precision and Recall  

Coll. 

#Rel. 
UM CIQE CDQE 

0.2767 0.2902 (+5%*) 
0.3383  (+22%**) 

             [+17%**] 
AP 

6101 
3677 3897 4029 

0.2017 0.2225 (+10%**) 
0.2448 (+21%**) 

            [+10%*] 
SJM 

2559 
1641 1761 1873 

0.2373 0.2393 (+1%) 
0.2710 (+14%**) 

            [+13%*] 
WSJ 

2172 
1588 1626 1737 

* and ** indicate that the difference is statistically 

significant according to t-test: * indicates p<0.05, ** 

indicates p<0.01; (.) is compared to UM and [.] is 

compared to CIQE. 

CIQE and CDQE vs. UM 

It is interesting to observe that query expansion, 

either by CIQE or CDQE, consistently 

outperforms the basic unigram model on all the 

collections. In all the cases except CIQE for 

WSJ, the improvements in average precision are 

statistically significant. At the same time, the 

increases in the number of relevant documents 

retrieved are also consistent with those in average 

precision. 

The improvement scales obtained with CIQE 

are relatively small: from 1% to 10%. These 

correspond to the typical figure using this 

method.  

Comparing CIQE and CDQE, we can see that 

context-dependent query expansion (CDQE) 
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always produces better effectiveness than 

context-independent expansion (CIQE). The 

improvements range between 10% and 17%. All 

the improvements obtained by CDQE are 

statistically significant. This result strongly 

suggests that in general, the context-dependent 

term relations identify better expansion terms 

than context-independent unigram relations. This 

confirms our earlier hypothesis.  

Indeed, when we look at the expansion 

results, we see that the expansion terms 

suggested by biterm relations are usually better. 

For example, the (stemmed) expansion terms for 

the query “insider trading” suggested 

respectively by CIQE and CDQE are as follows: 

CIQE:  stock:0.0141 market:0.0113 US:0.0112 

year:0.0102 exchang:0.0101 trade:0.0092 

report:0.0082 price:0.0076 dollar:0.0071 

1:0.0069 govern:0.0066 state:0.0065 

futur:0.0061 million:0.0061 dai:0.0060 

offici:0.0059 peopl:0.0059 york:0.0057 

issu:0.0057 … 

CDQE:  secur:0.0161 charg:0.0158 stock:0.0137 

scandal:0.0128 boeski:0.0125 inform:0.0119 

street:0.0113 wall:0.0112 case:0.0106 

year:0.0090 million:0.0086 investig:0.0082 

exchang:0.0080 govern:0.0077 sec:0.0077 

drexel:0.0075 fraud:0.0071 law:0.0063 

ivan:0.0060 … 

We can see that in general, the terms suggested 

by CDQE are much more relevant. In particular, 

it has been able to suggest “boeski” (Boesky) 

who is involved in an insider trading scandal. 

Several other terms are also highly relevant, such 

as scandal, investing, sec, drexel, fraud, etc. 

The addition of these new terms does not only 

improve recall. Precision of top-ranked 

documents is also improved. This can be seen in 

Figure 1 where we compare the full precision-

recall curve for the AP collection for the three 

models. We can see that at all the recall levels, 

the precision values always follow the following 

order: CDQE > UM. The same observation is 

also made on the other collections. This shows 

that the CDQE method does not increase recall to 

the detriment of precision, but both of them. In 

contrast, CIQE increases precision at all but 0.0 

recall points: the precision at the 0.0 recall point 

is 0.6565 for CIQE and 0.6699 for UM. This 

shows that CIQE can slightly deteriorate the top-

ranked few documents. 

Figure 1. Comparison of three models on AP 
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CDQE vs. Pseudo-relevance feedback 

Pseudo-relevance feedback is widely considered 

to be an effective query expansion method. In 

many previous experiments, it produced very 

good results. The mixture model (Zhai and 

Lafferty, 2001) is a representative and effective 

method to implement pseudo-relevance feedback: 

It uses a set of feedback documents to smooth the 

original query model. Compared to the mixture 

model, our CDQE method is also more effective: 

By manually tuning the parameters of the mixture 

model to their best, we obtained the average 

precisions of 0.3171, 0.2393 and 0.2565 

respectively for AP, SJM and WSJ collections. 

These values are lower than those obtained with 

CDQE, which has not been heavily tuned.  

For the same query “insider trading”, the mixture 

model determines the following expansion terms: 

Mixture: stock:0.0259256 secur:0.0229553 

market:0.0157057 sec:0.013992 

inform:0.011658 firm:0.0110419 

exchang:0.0100346 law:0.00827076 

bill:0.007996 case:0.00764544 

profit:0.00672575 investor:0.00662856 

japan:0.00625859 compani:0.00609675 

commiss:0.0059618 foreign:0.00582441 

bank:0.00572947 investig:0.00572276 

We can see that some of these terms overlap with 

those suggested by biterm relations. However, 

interesting words such as boeski, drexel and 

scandal are not suggested. 

The above comparison shows that our method 

outperforms the state-of-the-art methods of query 

expansion developed so far. 

4.2 Effect of the Smoothing Parameter  

In the previous experiments, we have fixed the 

smoothing parameters. In this series of tests, we 
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analyze the effect of this smoothing parameter on 

retrieval effectiveness. The following figure 

shows the change of average precision (AvgP) 

using CDQE (Model 2) along with the change of 

the parameter 
2λ (UM is equivalent to 12 =λ ).  

Figure 2. Effectiveness w.r.t. 
2λ  
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We can see that for all the three collections, 

the effectiveness is good when the parameter is 

set in the range of 0.1-0.5. The best value for 

different collections remains stable: 0.2-0.3.  

The effect of 1λ  on Model 1 is slightly 

different, but we observe the same trend. 

4.3 Number of Expansion Terms 

In the previous tests, we limit the number of 

expansion terms to 80. When different numbers 

of expansion terms are used, we obtain different 

effectiveness measures. The following figure 

shows the variation of average precision (AvgP) 

with different numbers of expansion terms, using 

CDQE method.  

Figure 3. Effectiveness w.r.t. #expansion terms 
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We can see that when more expansion terms 

are added, the effectiveness does not always 

increase. In general, a number around 80 will 

produce good results. In some cases, even if 

better effectiveness can be obtained with more 

expansion terms, the retrieval time is also longer. 

The number 80 seems to produce a good 

compromise between effectiveness and retrieval 

speed: the retrieval time remains less than 1 sec. 

per query. 

4.4 Suitability of Relations Across 

Collections 
In many real applications (e.g. Web search), we 

do not have a static document collection from 

which relations can be extracted. The question is 

whether it is possible and beneficial to extract 

relations from one text collection and use them to 

retrieve documents in another text collection. Our 

intuition is that this is possible because the 

relations (especially context-dependent relations) 

encode general knowledge, which can be applied 

to a different collection. In order to show this, we 

extracted term relations from each collection, and 

applied them on other collections. The following 

tables show the effectiveness produced using 

respectively unigram and bi-term relations. 

Table 3. Cross-utilization of relations 
 

Unigram relation Biterm relation    Rel. 

Coll. AP SJM WSJ AP SJM WSJ 

AP 0.2902  0.2803  0.2793 0.3383 0.3057 0.2987 

SJM 0.2271 0.2225 0.2267 0.2424 0.2448 0.2453 

WSJ 0.2541  0.2445  0.2393 0.2816 0.2636 0.2710 

 

From this table, we can observe that relations 

extracted from any collection are useful to some 

degree: they all outperform UM (see Table 2). In 

particular, the relations extracted from AP are the 

best for almost all the collections. This can be 

explained by the larger size and wider coverage 

of the AP collection. This suggests that we do not 

necessarily need to extract term relations from 

the same text collection on which retrieval is 

performed. It is possible to extract relations from 

a large text collection, and apply them to other 

collections. This opens the door to the possibility 

of constructing a general relation base for various 

document collections. 

5. Related Work 

Co-occurrence analysis is a common method to 

determine term relations. The previous studies 

have been limited to relations between two 

words, which we called unigram relations. This 

expansion approach has been integrated both in 

traditional retrieval models (Jing and Croft, 

1994) and in LM (Berger and Lafferty 1999). As 

we observed, this type of relation will introduce 

much noise into the query, leading to unstable 

effectiveness. 

Several other studies tried to filter out noise 

expansion (or translation) terms by considering 

the relations between them (Gao et al., 2002; 
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Jang et al. 1999; Qiu and Frei, 1993; Bai et al. 

2005). However, this is insufficient to detect all 

the noise. The key issue is the ambiguity of 

relations due to the lack of context information in 

the relations. In this paper, we proposed a method 

to add some context information into relations.  

 (Lin, 1997) also tries to solve word ambiguity 

by adding syntactic dependency as context. 

However, our approach does not require 

determining syntactic dependency. The principle 

of our approach is more similar to (Yarowsky, 

1995). Compared to this latter, our approach is 

less demanding: we do not need to identify 

manually the exact word senses and seed context 

words. The process is fully automatic. This 

simplification is made possible due to the 

requirement for IR: only in-context related words 

are required, but not the exact senses.  

Our work is also related to (Smadja and 

McKeown, 1996), which tries to determine the 

translation of collocations. Term combinations or 

biterms we used can be viewed as collocations. 

Again, there is much less constraint for our 

related terms than translations in (Smadja and 

McKeown, 1996). 

6. Conclusions 

In many NLP applications such as IR, we need to 

determine relations between terms. In most 

previous studies, one tries to determine the 

related terms to one single term (word). This 

makes the resulting relations ambiguous. 

Although several approaches have been proposed 

to remove afterwards some of the inappropriate 

terms, this only affects part of the noise, and 

much still remains. In this paper, we argue that 

the solution to this problem lies in the addition of 

context information in the relations between 

terms. We proposed to add another word in the 

condition of the relations so as to help constrain 

the context of application. Our experiments 

confirm that this addition of limited context 

information can indeed improve the quality of 

term relations and query expansion in IR. 

In this paper, we only compared biterm 

relations and unigram relations, the general 

method can be extended to triterm relations or 

more complex relations, provided that they can 

be extracted efficiently.  

This paper only investigated the utilization of 

context-dependent relations in IR. These relations 

can be applied in many other tasks, such as 

machine translation, word sense disambiguation / 

discrimination, and so on. These are some 

interesting research work in the future. 
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Abstract

We propose a general method for reranker
construction which targets choosing the
candidate with the least expected loss,
rather than the most probable candidate.
Different approaches to expected loss ap-
proximation are considered, including es-
timating from the probabilistic model used
to generate the candidates, estimating
from a discriminative model trained to
rerank the candidates, and learning to ap-
proximate the expected loss. The pro-
posed methods are applied to the parse
reranking task, with various baseline mod-
els, achieving significant improvement
both over the probabilistic models and the
discriminative rerankers. When a neural
network parser is used as the probabilistic
model and the Voted Perceptron algorithm
with data-defined kernels as the learning
algorithm, the loss minimization model
achieves 90.0% labeled constituents F1

score on the standard WSJ parsing task.

1 Introduction

The reranking approach is widely used in pars-
ing (Collins and Koo, 2005; Koo and Collins,
2005; Henderson and Titov, 2005; Shen and Joshi,
2003) as well as in other structured classifica-
tion problems. For structured classification tasks,
where labels are complex and have an internal
structure of interdependency, the 0-1 loss consid-
ered in classical formulation of classification al-
gorithms is not a natural choice and different loss
functions are normally employed. To tackle this
problem, several approaches have been proposed
to accommodate loss functions in learning algo-
rithms (Tsochantaridis et al., 2004; Taskar et al.,

2004; Henderson and Titov, 2005). A very differ-
ent use of loss functions was considered in the ar-
eas of signal processing and machine translation,
where direct minimization of expected loss (Min-
imum Bayes Risk decoding) on word sequences
was considered (Kumar and Byrne, 2004; Stol-
cke et al., 1997). The only attempt to use Mini-
mum Bayes Risk (MBR) decoding in parsing was
made in (Goodman, 1996), where a parsing al-
gorithm for constituent recall minimization was
constructed. However, their approach is limited
to binarized PCFG models and, consequently, is
not applicable to state-of-the-art parsing meth-
ods (Charniak and Johnson, 2005; Henderson,
2004; Collins, 2000). In this paper we consider
several approaches to loss approximation on the
basis of a candidate list provided by a baseline
probabilistic model.

The intuitive motivation for expected loss mini-
mization can be seen from the following example.
Consider the situation where there are a group of
several very similar candidates and one very dif-
ferent candidate whose probability is just slightly
larger than the probability of any individual candi-
date in the group, but much smaller than their total
probability. A method which chooses the maxi-
mum probability candidate will choose this outlier
candidate, which is correct if you are only inter-
ested in getting the label exactly correct (i.e. 0-1
loss), and you think the estimates are accurate. But
if you are interested in a loss function where the
loss is small when you choose a candidate which
is similar to the correct candidate, then it is better
to choose one of the candidates in the group. With
this choice the loss will only be large if the outlier
turns out to be correct, while if the outlier is cho-
sen then the loss will be large if any of the group
are correct. In other words, the expected loss of
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choosing a member of the group will be smaller
than that for the outlier.

More formally, the Bayes risk of a model y =
h(x) is defined as

R(h) = Ex,y∆(y, h(x)), (1)

where the expectation is taken over all the possi-
ble inputs x and labels y and ∆(y, y′) denotes a
loss incurred by assigning x to y′ when the correct
label is y. We assume that the loss function pos-
sesses values within the range from 0 to 1, which
is equivalent to the requirement that the loss func-
tion is bounded in (Tsochantaridis et al., 2004). It
follows that an optimal reranker h? is one which
chooses the label y that minimizes the expected
loss:

h?(x) = arg min
y′∈G(x)

∑

y

P (y|x)∆(y, y′), (2)

where G(x) denotes a candidate list provided by
a baseline probabilistic model for the input x.
In this paper we propose different approaches to
loss approximation. We apply them to the parse
reranking problem where the baseline probabilis-
tic model is a neural network parser (Henderson,
2003), and to parse reranking of candidates pro-
vided by the (Collins, 1999) model. The result-
ing reranking method achieves very significant im-
provement in the considered loss function and im-
provement in most other standard measures of ac-
curacy.

In the following three sections we will discuss
three approaches to learning such a classifier. The
first two derive a classification criteria for use with
a predefined probability model (the first genera-
tive, the second discriminative). The third de-
fines a kernel for use with a classification method
for minimizing loss. All use previously proposed
learning algorithms and optimization criteria.

2 Loss Approximation with a
Probabilistic Model

In this section we discuss approximating the ex-
pected loss using probability estimates given by
a baseline probabilistic model. Use of probabil-
ity estimates is not a serious limitation of this
approach because in practice candidates are nor-
mally provided by some probabilistic model and
its probability estimates are used as additional fea-
tures in the reranker (Collins and Koo, 2005; Shen
and Joshi, 2003; Henderson and Titov, 2005).

In order to estimate the expected loss on the ba-
sis of a candidate list, we make the assumption that
the total probability of the labels not in the can-
didate list is sufficiently small that the difference
δ(x, y′) of expected loss between the labels in the
candidate list and the labels not in the candidate
list does not have an impact on the loss defined
in (1):

δ(x, y′) =

∑
y/∈G(x) P (y|x)∆(y, y′)

∑
y/∈G(x) P (y|x)

− (3)

∑
y∈G(x) P (y|x)∆(y, y′)

∑
y∈G(x) P (y|x)

This gives us the following approximation to the
expected loss for the label:

l(x, y′) =

∑
y∈G(x) P (y|x)∆(y, y′)

∑
y∈G(x) P (y|x)

. (4)

For the reranking case, often the probabilistic
model only estimates the joint probability P (x, y).
However, neither this difference nor the denomi-
nator in (4) affects the classification. Thus, replac-
ing the true probabilities with their estimates, we
can define the classifier

ĥ(x) = arg min
y′∈G(x)

∑

y∈G(x)

P (x, y|θ̂)∆(y, y′), (5)

where θ̂ denotes the parameters of the probabilis-
tic model learned from the training data. This ap-
proach for expected loss approximation was con-
sidered in the context of word error rate minimiza-
tion in speech recognition, see for example (Stol-
cke et al., 1997).

3 Estimating Expected Loss with
Discriminative Classifiers

In this section we propose a method to improve on
the loss approximation used in (5) by constructing
the probability estimates using a trained discrimi-
native classifier. Special emphasis is placed on lin-
ear classifiers with data-defined kernels for rerank-
ing (Henderson and Titov, 2005), because they do
not require any additional domain knowledge not
already encoded in the probabilistic model, and
they have demonstrated significant improvement
over the baseline probabilistic model for the parse
reranking task. This kernel construction can be
motivated by the existence of a function which
maps a linear function in the feature space of the
kernel to probability estimates which are superior
to the estimates of the original probabilistic model.
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3.1 Estimation with Fisher Kernels

The Fisher kernel for structured classification
is a trivial generalization of one of the best
known data-defined kernels for binary classifica-
tion (Jaakkola and Haussler, 1998). The Fisher
score of an example input-label pair (x, y) is a
vector of partial derivatives of the log-likelihood
of the example with respect to the model parame-
ters1:

φFK
θ̂

(x, y) = (6)

(logP (x, y|θ̂),
∂logP (x,y|θ̂)

∂θ1
,...,

∂logP (x,y|θ̂)

∂θl
).

This kernel defines a feature space which is appro-
priate for estimating the discriminative probability
in the candidate list in the form of a normalized
exponential

P (x, y)
∑

y′∈G(x) P (x, y′)
≈ (7)

exp(w?T φFK
θ̂

(x, y))
∑

y′∈G(x) exp(w?T φFK
θ̂

(x, y′))

for some choice of the decision vector w = w?

with the first component equal to one.
It follows that it is natural to use an estimator

of the discriminative probability P (y|x) in expo-
nential form and, therefore, the appropriate form
of the loss minimizing classifier is the following:

ĥFK(x) = (8)

arg min
y′∈G(x)

∑

y∈G(x)

exp(AŵT φFK
θ̂

(x, y′))∆(y, y′),

where ŵ is learned during classifier training and
the scalar parameter A can be tuned on the devel-
opment set. From the construction of the Fisher
kernel, it follows that the optimal value A is ex-
pected to be close to inverse of the first component
of ŵ, 1/ŵ1.

If an SVM is used to learn the classifier, then
the form (7) is the same as that proposed by (Platt,
1999), where it is proposed to use the logistic sig-
moid of the SVM output as the probability estima-
tor for binary classification problems.

1The first component logP (x, y|̂θ) is not in the strict
sense part of the Fisher score, but usually added to kernel
features in practice (Henderson and Titov, 2005).

3.2 Estimation with TOP Kernels for
Reranking

The TOP Reranking kernel was defined in (Hen-
derson and Titov, 2005), as a generalization of the
TOP kernel (Tsuda et al., 2002) proposed for bi-
nary classification tasks. The feature extractor for
the TOP reranking kernel is given by:

φTK
θ̂

(x, y) = (9)

(v(x, y, θ̂),
∂v(x, y, θ̂)

∂θ1
,...,

∂v(x, y, θ̂)

∂θl
),

where

v(x, y, θ̂) = log P (x, y|θ̂)− log
∑

y′∈G(x)−{y}

P (x, y′|θ̂).

The TOP reranking kernel has been demon-
strated to perform better than the Fisher kernel
for the parse reranking task (Henderson and Titov,
2005). The construction of this kernel is moti-
vated by the minimization of the classification er-
ror of a linear classifier wT φθ̂(x, y). This linear
classifier has been shown to converge, assuming
estimation of the discriminative probability in the
candidate list can be in the form of the logistic sig-
moid (Titov and Henderson, 2005):

P (x, y)
∑

y′∈G(x) P (x, y′)
≈ (10)

1

1 + exp(−w?T φTK
θ̂

(x, y))

for some choice of the decision vector w = w?

with the first component equal to one. From this
fact, the form of the loss minimizing classifier fol-
lows:

ĥTK(x) = (11)

arg min
y′∈G(x)

∑

y∈G(x)

g(AŵT φTK
θ̂

(x, y′))∆(y, y′),

where g is the logistic sigmoid and the scalar pa-
rameter A should be selected on the development
set. As for the Fisher kernel, the optimal value of
A should be close to 1/ŵ1.

3.3 Estimates from Arbitrary Classifiers

Although in this paper we focus on approaches
which do not require additional domain knowl-
edge, the output of most classifiers can be used
to estimate the discriminative probability in equa-
tion (7). As mentioned above, the form of (7)
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is appropriate for the SVM learning task with
arbitrary kernels, as follows from (Platt, 1999).
Also, for models which combine classifiers using
votes (e.g. the Voted Perceptron), the number of
votes cast for each candidate can be used to de-
fine this discriminative probability. The discrim-
inative probability of a candidate is simply the
number of votes cast for that candidate normalized
across candidates. Intuitively, we can think of this
method as treating the votes as a sample from the
discriminative distribution.

4 Expected Loss Learning

In this section, another approach to loss approx-
imation is proposed. We consider learning a lin-
ear classifier to choose the least loss candidate,
and propose two constructions of data-defined loss
kernels which define different feature spaces for
the classification. In addition to the kernel, this
approach differs from the previous one in that the
classifier is assumed to be linear, rather than the
nonlinear functions in equations (8) and (11).

4.1 Loss Kernel

The Loss Kernel feature extractor is composed of
the logarithm of the loss estimated by the proba-
bilistic model and its first derivatives with respect
to each model parameter:

φLK
θ̂

(x, y) = (12)

(v(x, y, θ̂),
∂v(x, y, θ̂)

∂θ1
,...,

∂v(x, y, θ̂)

∂θl
),

where

v(x, y, θ̂) = log(
∑

y′∈G(x)

P (y′, x|θ̂)∆(y′, y)).

The motivation for this kernel is very similar to
that for the Fisher kernel for structured classifica-
tion. The feature space of the kernel guarantees
convergence of an estimator for the expected loss
if the estimator is in normalized exponential form.
The standard Fisher kernel for structured classifi-
cation is a special case of this Loss Kernel when
∆(y, y′) is 0-1 loss.

4.2 Loss Logit Kernel

As the Loss kernel was a generalization of the
Fisher kernel to arbitrary loss function, so the Loss
Logit Kernel is a generalization of the TOP kernel
for reranking. The construction of the Loss Logit

Kernel, like the TOP kernel for reranking, can be
motivated by the minimization of the classification
error of a linear classifier wT φLLK

θ̂
(x, y), where

φLLK
θ̂

(x, y) is the feature extractor of the kernel
given by:

φLLK
θ̂

(x, y) = (13)

(v(x, y, θ̂),
∂v(x, y, θ̂)

∂θ1
,...,

∂v(x, y, θ̂)

∂θl
),

where

v(x, y, θ̂) = log(
∑

y′∈G(x)

P (y′|x, θ̂)(1−∆(y′, y)))−

log(
∑

y′∈G(x)

P (y′|x, θ̂)∆(y′, y)).

5 Experimental Evaluation

To perform empirical evaluations of the proposed
methods, we considered the task of parsing the
Penn Treebank Wall Street Journal corpus (Mar-
cus et al., 1993). First, we perform experiments
with SVM Struct (Tsochantaridis et al., 2004) as
the learner. Since SVM Struct already uses the
loss function during training to rescale the margin
or slack variables, this learner allows us to test the
hypothesis that loss functions are useful in pars-
ing not only to define the optimization criteria but
also to define the classifier and to define the feature
space. However, SVM Struct training for large
scale parsing experiments is computationally ex-
pensive2, so here we use only a small portion of
the available training data to perform evaluations
of the different approaches. In the other two sets
of experiments, described below, we test our best
model on the standard Wall Street Journal parsing
benchmark (Collins, 1999) with the Voted Percep-
tron algorithm as the learner.

5.1 The Probabilistic Models of Parsing

To perform the experiments with data-defined ker-
nels, we need to select a probabilistic model of
parsing. Data-defined kernels can be applied to
any kind of parameterized probabilistic model.

For our first set of experiments, we choose
to use a publicly available neural network based
probabilistic model of parsing (Henderson, 2003).

2In (Shen and Joshi, 2003) it was proposed to use an
ensemble of SVMs trained the Wall Street Journal corpus,
but the generalization performance of the resulting classifier
might be compromised in this approach.
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This parsing model is a good candidate for our ex-
periments because it achieves state-of-the-art re-
sults on the standard Wall Street Journal (WSJ)
parsing problem (Henderson, 2003), and data-
defined kernels derived from this parsing model
have recently been used with the Voted Percep-
tron algorithm on the WSJ parsing task, achiev-
ing a significant improvement in accuracy over the
neural network parser alone (Henderson and Titov,
2005). This gives us a baseline which is hard to
beat, and allows us to compare results of our new
approaches with the results of the original data-
defined kernels for reranking.

The probabilistic model of parsing in (Hender-
son, 2003) has two levels of parameterization. The
first level of parameterization is in terms of a
history-based generative probability model. These
parameters are estimated using a neural network,
the weights of which form the second level of pa-
rameterization. This approach allows the prob-
ability model to have an infinite number of pa-
rameters; the neural network only estimates the
bounded number of parameters which are relevant
to a given partial parse. We define data-defined
kernels in terms of the second level of parameteri-
zation (the network weights).

For the last set of experiments, we used the
probabilistic model described in (Collins, 1999)
(model 2), and the Tree Kernel (Collins and Duffy,
2002). However, in these experiments we only
used the estimates from the discriminative classi-
fier, so the details of the probabilistic model are
not relevant.

5.2 Experiments with SVM Struct

Both the neural network probabilistic model and
the kernel based classifiers were trained on sec-
tion 0 (1,921 sentences, 40,930 words). Section 24
(1,346 sentences, 29,125 words) was used as the
validation set during the neural network learning
and for choosing parameters of the models. Sec-
tion 23 (2,416 sentences, 54,268 words) was used
for the final testing of the models.

We used a publicly available tagger (Ratna-
parkhi, 1996) to provide the part-of-speech tags
for each word in the sentence. For each tag, there
is an unknown-word vocabulary item which is
used for all those words which are not sufficiently
frequent with that tag to be included individually
in the vocabulary. For these experiments, we only
included a specific tag-word pair in the vocabu-

R P F1 CM
SSN 80.9 81.7 81.3 18.3
TRK 81.1 82.4 81.7 18.2
SSN-Estim 81.4 82.3 81.8 18.3
LLK-Learn 81.2 82.4 81.8 17.6
LK-Learn 81.5 82.2 81.8 17.8
FK-Estim 81.4 82.6 82.0 18.3
TRK-Estim 81.5 82.8 82.1 18.6

Table 1: Percentage labeled constituent recall (R),
precision (P), combination of both (F1) and per-
centage complete match (CM) on the testing set.

lary if it occurred at least 20 time in the training
set, which (with tag-unknown-word pairs) led to
the very small vocabulary of 271 tag-word pairs.
The same model was used both for choosing the
list of candidate parses and for the probabilistic
model used for loss estimation and kernel feature
extraction. For training and testing of the kernel
models, we provided a candidate list consisting of
the top 20 parses found by the probabilistic model.
For the testing set, selecting the candidate with an
oracle results in an F1 score of 89.1%.

We used the SVM Struct software pack-
age (Tsochantaridis et al., 2004) to train the SVM
for all the approaches based on discriminative
classifier learning, with slack rescaling and lin-
ear slack penalty. The loss function is defined as
∆(y, y′) = 1 − F1(y, y′), where F1 denotes F1

measure on bracketed constituents. This loss was
used both for rescaling the slacks in the SVM and
for defining our classification models and kernels.

We performed initial testing of the models on
the validation set and preselected the best model
for each of the approaches before testing it on
the final testing set. Standard measures of pars-
ing accuracy, plus complete match accuracy, are
shown in table 1.3 As the baselines, the table in-
cludes the results of the standard TOP reranking
kernel (TRK) (Henderson and Titov, 2005) and
the baseline probabilistic model (SSN) (Hender-
son, 2003). SSN-Estim is the model using loss
estimation on the basic probabilistic model, as ex-
plained in section 2. LLK-Learn and LK-Learn are
the models which define the kernel based on loss,
using the Loss Logit Kernel (equation (13)) and
the Loss Kernel (equation (12)), respectively. FK-
Estim and TRK-Estim are the models which esti-

3All our results are computed with the evalb pro-
gram (Collins, 1999).
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mate the loss with data-defined kernels, using the
Fisher Kernel (equation (8)) and the TOP Rerank-
ing kernel (equation (11)), respectively.

All our proposed models show better F1 accu-
racy than the baseline probabilistic model SSN,
and all these differences are statistically signifi-
cant.4 The difference in F1 between TRK-Estim
and FK-Estim is not statistically significant, but
otherwise TRK-Estim demonstrates a statistically
significant improvement over all other models. It
should also be noted that exact match measures for
TRK-Estim and SSN-Estim are not negatively af-
fected, even though the F1 loss function was opti-
mized. It is important to point out that SSN-Estim,
which improves significantly over SSN, does not
require the learning of a discriminative classifier,
and differs from the SSN only by use of the dif-
ferent classification model (equation (5)), which
means that it is extremely easy to apply in prac-
tice.

One surprising aspect of these results is the fail-
ure of LLK-Learn and LK-Learn to achieve im-
provement over SSN-Estim. This might be ex-
plained by the difficulty of learning a linear ap-
proximation to (4). Under this explanation, the
performance of LLK-Learn and LK-Learn could
be explained by the fact that the first component of
their kernels is a monotonic function of the SSN-
Estim estimation. To test this hypothesis, we did
an additional experiment where we removed the
first component of Loss Logit Kernel (13) from
the feature vector and performed learning. Sur-
prisingly, the model achieved virtually the same
results, rather than the predicted worse perfor-
mance. This result might indicate that the LLK-
Learn model still can be useful for different prob-
lems where discriminative learning gives more ad-
vantage over generative approaches.

These experimental results demonstrate that
the loss approximation reranking approaches pro-
posed in this paper demonstrate significant im-
provement over the baseline models, achieving
about the same relative error reduction as previ-
ously achieved with data-defined kernels (Hender-
son and Titov, 2005). This improvement is despite
the fact that the loss function is already used in the
definition of the training criteria for all the mod-
els except SSN. It is also interesting to note that
the best result on the validation set for estimation

4We measured significance of all the experiments in this
paper with the randomized significance test (Yeh, 2000).

of the loss with data-defined kernels (12) and (13)
was achieved when the parameter A is close to the
inverse of the first component of the learned de-
cision vector, which confirms the motivation for
these kernels.

5.3 Experiments with Voted Perceptron and
Data-Defined Kernels

The above experiments with the SVM Struct
demonstrate empirically the viability of our ap-
proaches. The aim of experiments on the entire
WSJ is to test whether our approaches still achieve
significant improvement when more accurate gen-
erative models are used, and also to show that
they generalize well to learning methods different
from SVMs. We perform experiments on the stan-
dard WSJ parsing data using the standard split into
training, validation and testing sets. We replicate
completely the setup of experiments in (Hender-
son and Titov, 2005). For a detailed description of
the experiment setup, we refer the reader to (Hen-
derson and Titov, 2005). We only note here that
the candidate list has 20 candidates, and, for the
testing set, selecting the candidate with an oracle
results in an F1 score of 95.4%.

We selected the TRK-Estim approach for these
experiments because it demonstrated the best re-
sults in the previous set of experiments (5.2). We
trained the Voted Perceptron (VP) modification
described in (Henderson and Titov, 2005) with the
TOP Reranking kernel. VP is not a linear classi-
fier, so we were not able to use a classifier in the
form (11). Instead the normalized counts of votes
given to the candidate parses were used as proba-
bility estimates, as discussed in section 3.3.

The resulting accuracies of this model are pre-
sented in table 2, together with results of the
TOP Reranking kernel VP (Henderson and Titov,
2005) and the SSN probabilistic model (Hender-
son, 2003). Model TRK-Estim achieves signifi-
cantly better results than the previously proposed
models, which were evaluated in the same exper-
imental setup. Again, the relative error reduction
is about the same as that of TRK. The resulting
system, consisting of the generative model and
the reranker, achieves results at the state-of-the-art
level. We believe that this method can be applied
to most parsing models to achieve a significant im-
provement.
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R P F1

Henderson, 2003 88.8 89.5 89.1
Henderson&Titov, 2005 89.1 90.1 89.6
TRK-Estim 89.5 90.5 90.0

Table 2: Percentage labeled constituent recall (R),
precision (P), combination of both (F1) on the test-
ing set.

5.4 Experiments with Voted Perceptron and
Tree Kernel

In this series of experiments we validate the state-
ment in section 3.3, where we suggested that loss
approximation from a discriminative classifier is
not limited only to models with data-defined ker-
nels. We apply the same method as used in
the TRK-Estim model above to the Tree Ker-
nel (Collins and Duffy, 2002), which we call the
TK-Estim model.

We replicated the parse reranking experimen-
tal setup used for the evaluation of the Tree Ker-
nel in (Collins and Duffy, 2002), where the can-
didate list was provided by the generative proba-
bilistic model (Collins, 1999) (model 2). A list of
on average 29 candidates was used, with an oracle
F1 score on the testing set of 95.0%. We trained
VP using the same parameters for the Tree Ker-
nel and probability feature weighting as described
in (Collins and Duffy, 2002). A publicly avail-
able efficient implementation of the Tree Kernel
was utilized to speed up computations (Moschitti,
2004). As in the previous section, votes of the per-
ceptron were used to define the probability esti-
mate used in the classifier.

The results for the MBR decoding method (TK-
Estim), defined in section 3.3, along with the stan-
dard Tree Kernel VP results (Collins and Duffy,
2002) (TK) and the probabilistic baseline (Collins,
1999) (CO99) are presented in table 3. The pro-
posed model improves in F1 score over the stan-
dard VP results. Differences between all the mod-
els are statistically significant. The error reduction
of TK-Estim is again about the same as the error
reduction of TK. This improvement is achieved
without adding any additional linguistic features.
It is important to note that the model improves
in other accuracy measures as well. We would
expect even better results with MBR-decoding if
larger n-best lists are used. The n-best parsing al-
gorithm (Huang and Chiang, 2005) can be used to
efficiently produce candidate lists as large as 106

R P F1∗ CB 0C 2C
CO99 88.1 88.3 88.2 1.06 64.0 85.1
TK 88.6 88.9 88.7 0.99 66.5 86.3
TK-Estim 89.0 89.5 89.2 0.91 66.6 87.4

* F1 for previous models may have rounding errors.

Table 3: Result on the testing set. Percentage la-
beled constituent recall (R), precision (P), combi-
nation of both (F1), an average number of cross-
ing brackets per sentence (CB), percentage of sen-
tences with 0 and ≤ 2 crossing brackets (0C and
2C, respectively).

parse trees with the model of (Collins, 1999).

6 Conclusions

This paper considers methods for the estimation of
expected loss for parse reranking tasks. The pro-
posed methods include estimation of the loss from
a probabilistic model, estimation from a discrim-
inative classifier, and learning of the loss using a
specialized kernel. An empirical comparison of
these approaches on parse reranking tasks is pre-
sented. Special emphasis is given to data-defined
kernels for reranking, as they do not require the
introduction of any additional domain knowledge
not already encoded in the probabilistic model.
The best approach, estimation of the loss on the
basis of a discriminative classifier, achieves very
significant improvements over the baseline gener-
ative probabilistic models and the discriminative
classifier itself. Though the largest improvement is
demonstrated in the measure which corresponds to
the considered loss functional, other measures of
accuracy are also improved. The proposed method
achieves 90.0% F1 score on the standard Wall
Street Journal parsing task when the SSN neural
network is used as the probabilistic model and VP
with a TOP Reranking kernel as the discriminative
classifier.
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Abstract

We present an unsupervised learning ap-
proach to disambiguate various relations
between name entities by use of various
lexical and syntactic features from the
contexts. It works by calculating eigen-
vectors of an adjacency graph’s Lapla-
cian to recover a submanifold of data
from a high dimensionality space and
then performing cluster number estima-
tion on the eigenvectors. This method
can address two difficulties encoutered
in Hasegawa et al. (2004)’s hierarchical
clustering: no consideration of manifold
structure in data, and requirement to pro-
vide cluster number by users. Experiment
results on ACE corpora show that this
spectral clustering based approach outper-
forms Hasegawa et al. (2004)’s hierarchi-
cal clustering method and a plain k-means
clustering method.

1 Introduction

The task of relation extraction is to identify vari-
ous semantic relations between name entities from
text. Prior work on automatic relation extraction
come in three kinds: supervised learning algorithms
(Miller et al., 2000; Zelenko et al., 2002; Culotta
and Soresen, 2004; Kambhatla, 2004; Zhou et al.,
2005), semi-supervised learning algorithms (Brin,
1998; Agichtein and Gravano, 2000; Zhang, 2004),
and unsupervised learning algorithm (Hasegawa et
al., 2004).

Among these methods, supervised learning is usu-
ally more preferred when a large amount of la-

beled training data is available. However, it is
time-consuming and labor-intensive to manually tag
a large amount of training data. Semi-supervised
learning methods have been put forward to mini-
mize the corpus annotation requirement. Most of
semi-supervised methods employ the bootstrapping
framework, which only need to pre-define some ini-
tial seeds for any particular relation, and then boot-
strap from the seeds to acquire the relation. How-
ever, it is often quite difficult to enumerate all class
labels in the initial seeds and decide an “optimal”
number of them.

Compared with supervised and semi-supervised
methods, Hasegawa et al. (2004)’s unsupervised ap-
proach for relation extraction can overcome the dif-
ficulties on requirement of a large amount of labeled
data and enumeration of all class labels. Hasegawa
et al. (2004)’s method is to use a hierarchical cluster-
ing method to cluster pairs of named entities accord-
ing to the similarity of context words intervening be-
tween the named entities. However, the drawback of
hierarchical clustering is that it required providing
cluster number by users. Furthermore, clustering is
performed in original high dimensional space, which
may induce non-convex clusters hard to identified.

This paper presents a novel application of spec-
tral clustering technique to unsupervised relation ex-
traction problem. It works by calculating eigenvec-
tors of an adjacency graph’s Laplacian to recover a
submanifold of data from a high dimensional space,
and then performing cluster number estimation on
a transformed space defined by the first few eigen-
vectors. This method may help us find non-convex
clusters. It also does not need to pre-define the num-
ber of the context clusters or pre-specify the simi-
larity threshold for the clusters as Hasegawa et al.
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(2004)’s method.
The rest of this paper is organized as follows. Sec-

tion 2 formulates unsupervised relation extraction
and presents how to apply the spectral clustering
technique to resolve the task. Then section 3 reports
experiments and results. Finally we will give a con-
clusion about our work in section 4.

2 Unsupervised Relation Extraction
Problem

Assume that two occurrences of entity pairs with
similar contexts, are tend to hold the same relation
type. Thus unsupervised relation extraction prob-
lem can be formulated as partitioning collections of
entity pairs into clusters according to the similarity
of contexts, with each cluster containing only entity
pairs labeled by the same relation type. And then, in
each cluster, the most representative words are iden-
tified from the contexts of entity pairs to induce the
label of relation type. Here, we only focus on the
clustering subtask and do not address the relation
type labeling subtask.

In the next subsections we will describe our pro-
posed method for unsupervised relation extraction,
which includes: 1) Collect the context vectors in
which the entity mention pairs co-occur; 2) Cluster
these Context vectors.

2.1 Context Vector and Feature Design

Let X = {xi}n
i=1 be the set of context vectors of oc-

currences of all entity mention pairs, wherexi repre-
sents the context vector of thei-th occurrence, andn
is the total number of occurrences of all entity pairs.

Each occurrence of entity mention pairs can be
denoted as follows:

R → (Cpre, e1, Cmid, e2, Cpost) (1)

wheree1 ande2 represents the entity mentions, and
Cpre,Cmid,and Cpost are the contexts before, be-
tween and after the entity pairs respectively.

We extracted features frome1, e2, Cpre, Cmid,
Cpost to construct context vectors, which are com-
puted from the parse trees derived from Charniak
Parser (Charniak, 1999) and the Chunklink script1

written by Sabine Buchholz from Tilburg University.

1 Software available at http://ilk.uvt.nl/ sabine/chunklink/

Words: Words in the two entities and three context
windows.

Entity Type: the entity type of both entity men-
tions, which can be PERSON, ORGANIZA-
TION, FACILITY, LOCATION and GPE.

POS features: Part-Of-Speech tags corresponding
to all words in the two entities and three con-
text windows.

Chunking features: This category of features are
extracted from the chunklink representation,
which includes:

• Chunk tag information of the two entities and
three context windows. The “0” tag means that
the word is outside of any chunk. The “I-XP” tag
means that this word is inside an XP chunk. The
“B-XP” by default means that the word is at the be-
ginning of an XP chunk.

• Grammatical function of the two entities and
three context windows. The last word in each chunk
is its head, and the function of the head is the func-
tion of the whole chunk. “NP-SBJ” means a NP
chunk as the subject of the sentence. The other
words in a chunk that are not the head have “NO-
FUNC” as their function.

• IOB-chains of the heads of the two entities. So-
called IOB-chain, noting the syntactic categories of
all the constituents on the path from the root node
to this leaf node of tree.

We combine the above lexical and syntactic fea-
tures with their position information in the context
to form the context vector. Before that, we filter out
low frequency features which appeared only once in
the entire set.

2.2 Context Clustering

Once the context vectors of entity pairs are prepared,
we come to the second stage of our method: cluster
these context vectors automatically.

In recent years, spectral clustering technique has
received more and more attention as a powerful ap-
proach to a range of clustering problems. Among
the efforts on spectral clustering techniques (Weiss,
1999; Kannan et al., 2000; Shi et al., 2000; Ng et al.,
2001; Zha et al., 2001), we adopt a modified version
(Sanguinetti et al., 2005) of the algorithm by Ng et
al. (2001) because it can provide us model order se-
lection capability.

Since we do not know how many relation types
in advance and do not have any labeled relation
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Table 1: Context Clustering with Spectral-based Clustering
technique.

Input: A set of context vectorsX = {x1, x2, ..., xn},
X ∈ <n×d;
Output: Clustered data and number of clusters;

1. Construct an affinity matrix byAij = exp(− s2
ij

σ2 ) if i 6=
j, 0 if i = j. Here,sij is the similarity betweenxi and
xj calculated by Cosine similarity measure. and the free
distance parameterσ2 is used to scale the weights;

2. Normalize the affinity matrixA to create the matrixL =

D−1/2AD−1/2, whereD is a diagonal matrix whose (i,i)
element is the sum ofA’s ith row;

3. Setq = 2;
4. Computeq eigenvectors ofL with greatest eigenvalues.

Arrange them in a matrixY .
5. Perform elongatedK-means withq + 1 centers onY ,

initializing the(q + 1)-th mean in the origin;
6. If the q +1-th cluster contains any data points, then there

must be at least an extra cluster; setq = q + 1 and go
back to step 4. Otherwise, algorithm stops and outputs
clustered data and number of clusters.

training examples at hand, the problem of model
order selection arises, i.e. estimating the “opti-
mal” number of clusters. Formally, letk be the
model order, we need to findk in Equation: k =
argmaxk{criterion(k)}. Here, the criterion is de-
fined on the result of spectral clustering.

Table 1 shows the details of the whole algorithm
for context clustering, which contains two main
stages: 1) Transformation of Clustering Space (Step
1-4); 2) Clustering in the transformed space using
Elongated K-means algorithm (Step 5-6).

2.3 Transformation of Clustering Space

We represent each context vector of entity pair as a
node in an undirected graph. Each edge (i,j) in the
graph is assigned a weight that reflects the similarity
between two context vectorsi andj. Hence, the re-
lation extraction task for entity pairs can be defined
as a partition of the graph so that entity pairs that
are more similar to each other, e.g. labeled by the
same relation type, belong to the same cluster. As a
relaxation of such NP-hard discrete graph partition-
ing problem, spectral clustering technique computes
eigenvalues and eigenvectors of a Laplacian matrix
related to the given graph, and construct data clus-
ters based on such spectral information.

Thus the starting point of context clustering is to
construct anaffinity matrix Afrom the data, which
is ann × n matrix encoding the distances between

the various points. The affinity matrix is then nor-
malized to form a matrixL by conjugating with the
the diagonal matrixD−1/2 which has as entries the
square roots of the sum of the rows ofA. This is to
take into account the different spread of the various
clusters (points belonging to more rarified clusters
will have lower sums of the corresponding row of
A). It is straightforward to prove thatL is positive
definite and has eigenvalues smaller or equal to1,
with equality holding in at least one case.

Let K be the true number of clusters present in
the dataset. IfK is known beforehand, the firstK
eigenvectors ofL will be computed and arranged as
columns in a matrixY . Each row ofY corresponds
to a context vector of entity pair, and the above pro-
cess can be considered as transforming the original
context vectors in ad-dimensional space to new con-
text vectors in theK-dimensional space. Therefore,
the rows ofY will cluster upon mutually orthogonal
points on theK dimensional sphere,rather than on
the coordinate axes.

2.4 The Elongated K-means algorithm

As the step 5 of Table 1 shows, the result of elon-
gatedK-means algorithm is used to detect whether
the number of clusters selectedq is less than the true
numberK, and allows one to iteratively obtain the
number of clusters.

Consider the case when the number of clustersq
is less than the true cluster numberK present in the
dataset. In such situation, taking the firstq < K
eigenvectors, we will be selecting aq-dimensional
subspace in the clustering space. As the rows of the
K eigenvectors clustered along mutually orthogo-
nal vectors, their projections in a lower dimensional
space will cluster along radial directions. Therefore,
the general picture will be ofq clusters elongated in
the radial direction, with possibly some clusters very
near the origin (when the subspace is orthogonal to
some of the discarded eigenvectors).

Hence, theK-means algorithm is modified as
the elongatedK-means algorithm to downweight
distances along radial directions and penalize dis-
tances along transversal directions. The elongated
K-means algorithm computes the distance of point
x from the centerci as follows:

• If the center is not very near the origin,cT
i ci > ε (ε is a

parameter to be fixed by the user), the distances are cal-
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Figure 1: An Example:(a) The Three Circle Dataset.
(b) The clustering result using K-means; (c) Three
elongated clusters in the 2D clustering space using
Spectral clustering: two dominant eigenvectors; (d)
The clustering result using Spectral-based clustering
(σ2=0.05). (4,◦ and+ denote examples in different
clusters)

culated as:edist(x, ci) = (x − ci)
T M(x − ci), where

M = 1
λ
(Iq − cicT

i

cT
i

ci
) + λ

cicT
i

cT
i

ci
, λ is thesharpnessparam-

eter that controls the elongation (the smaller, the more
elongated the clusters)2.

• If the center is very near the origin,cT
i ci < ε, the dis-

tances are measured using the Euclidean distance.

In each iteration of procedure in Table 1, elon-
gatedK-means is initialized withq centers corre-
sponding to data points in different clusters and one
center in the origin. The algorithm then will drag the
center in the origin towards one of the clusters not
accounted for. Compute another eigenvector (thus
increasing the dimension of the clustering space to
q + 1) and repeat the procedure. Eventually, when
one reach as many eigenvectors as the number of
clusters present in the data, no points will be as-
signed to the center at the origin, leaving the cluster
empty. This is the signal to terminate the algorithm.

2.5 An example

Figure 1 visualized the clustering result of three cir-
cle dataset using K-means and Spectral-based clus-
tering. From Figure 1(b), we can see that K-means
can not separate the non-convex clusters in three cir-
cle dataset successfully since it is prone to local min-
imal. For spectral-based clustering, as the algorithm
described, initially, we took the two eigenvectors of
L with largest eigenvalues, which gave us a two-
dimensional clustering space. Then to ensure that
the two centers are initialized in different clusters,
one center is set as the point that is the farthest from
the origin, while the other is set as the point that
simultaneously farthest the first center and the ori-
gin. Figure 1(c) shows the three elongated clusters in
the 2D clustering space and the corresponding clus-
tering result of dataset is visualized in Figure 1(d),
which exploits manifold structure (cluster structure)
in data.

3 Experiments and Results

3.1 Data Setting

Our proposed unsupervised relation extraction is
evaluated on ACE corpus, which contains 519 files
from sources including broadcast, newswire, and
newspaper. We only deal with intra-sentence ex-
plicit relations and assumed that all entities have

2 In this paper, thesharpnessparameterλ is set to 0.2
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Table 2:Frequency of Major Relation SubTypes in the ACE
training and devtest corpus.

Type SubType Training Devtest
ROLE General-Staff 550 149

Management 677 122
Citizen-Of 127 24
Founder 11 5
Owner 146 15
Affiliate-Partner 111 15
Member 460 145
Client 67 13
Other 15 7

PART Part-Of 490 103
Subsidiary 85 19
Other 2 1

AT Located 975 192
Based-In 187 64
Residence 154 54

SOC Other-Professional 195 25
Other-Personal 60 10
Parent 68 24
Spouse 21 4
Associate 49 7
Other-Relative 23 10
Sibling 7 4
GrandParent 6 1

NEAR Relative-Location 88 32

been detected beforehand in the EDT sub-task of
ACE. To verify our proposed method, we only col-
lect those pairs of entity mentions which have been
tagged relation types in the given corpus. Then the
relation type tags were removed to test the unsuper-
vised relation disambiguation. During the evalua-
tion procedure, the relation type tags were used as
ground truth classes. A break-down of the data by
24 relation subtypes is given in Table 2.

3.2 Evaluation method for clustering result

When assessing the agreement between clustering
result and manually annotated relation types (ground
truth classes), we would encounter the problem that
there was no relation type tags for each cluster in our
clustering results.

To resolve the problem, we construct a contin-
gency tableT , where each entryti,j gives the num-
ber of the instances that belong to both thei-th es-
timated cluster andj-th ground truth class. More-
over, to ensure that any two clusters do not share
the same labels of relation types, we adopt a per-
mutation procedure to find an one-to-one mapping
function Ω from the ground truth classes (relation
types)TC to the estimated clustering resultEC.

There are at most|TC| clusters which are assigned
relation type tags. And if the number of the esti-
mated clusters is less than the number of the ground
truth clusters, empty clusters should be added so that
|EC| = |TC| and the one-to-one mapping can be
performed, which can be formulated as the function:
Ω̂ = arg maxΩ

∑|TC|
j=1 tΩ(j),j , whereΩ(j) is the in-

dex of the estimated cluster associated with thej-th
class.

Given the result of one-to-one mapping, we adopt
Precision, Recall and F-measureto evaluate the
clustering result.

3.3 Experimental Design

We perform our unsupervised relation extraction on
the devtest set of ACE corpus and evaluate the al-
gorithm on relation subtype level. Firstly, we ob-
serve the influence of various variables, including
Distance Parameterσ2, Different Features, Context
Window Size. Secondly, to verify the effectiveness
of our method, we further compare it with super-
vised method based on SVM and other two unsuper-
vised methods.

3.3.1 Choice of Distance Parameterσ2

We simply search overσ2 and pick the value
that finds the best aligned set of clusters on the
transformed space. Here, the scattering criterion
trace(P−1

W PB) is used to compare the cluster qual-
ity for different value ofσ2 3, which measures the ra-
tio of between-cluster to within-cluster scatter. The
higher thetrace(P−1

W PB), the higher the cluster
quality.

In Table 3 and Table 4, with different settings of
feature set and context window size, we find out the
corresponding value ofσ2 and cluster number which
maximize thetrace value in searching for a range of
valueσ2.

3.3.2 Contribution of Different Features

As the previous section presented, we incorporate
various lexical and syntactic features to extract rela-

3 trace(P−1
W PB) is trace of a matrix which is the sum of

its diagonal elements.PW is the within-cluster scatter matrix
as: PW =

∑c

j=1

∑
Xi∈χj

(Xi − mj)(Xi − mj)
t and PB

is the between-cluster scatter matrix as:PB =
∑c

j=1
(mj −

m)(mj − m)t, where m is the total mean vector andmj is
the mean vector forjth cluster and(Xj − mj)

t is the matrix
transpose of the column vector(Xj −mj).
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Table 3:Contribution of Different Features
Features σ2 cluster number trace value Precison Recall F-measure
Words 0.021 15 2.369 41.6% 30.2% 34.9%
+Entity Type 0.016 18 3.198 40.3% 42.5% 41.5%
+POS 0.017 18 3.206 37.8% 46.9% 41.8%
+Chunking Infomation 0.015 19 3.900 43.5% 49.4% 46.3%

Table 4:Different Context Window Size Setting
Context Window Size σ2 cluster number trace value Precision Recall F-measure

0 0.016 18 3.576 37.6% 48.1% 42.2%
2 0.015 19 3.900 43.5% 49.4% 46.3%
5 0.020 21 2.225 29.3% 34.7% 31.7%

tion. To measure the contribution of different fea-
tures, we report the performance by gradually in-
creasing the feature set, as Table 3 shows.

Table 3 shows that all of the four categories of fea-
tures contribute to the improvement of performance
more or less. Firstly,the addition of entity type fea-
ture is very useful, which improvesF-measureby
6.6%. Secondly, adding POS features can increase
F-measurescore but do not improve very much.
Thirdly, chunking features also show their great use-
fulness with increasingPrecision/Recall/F-measure
by 5.7%/2.5%/4.5%.

We combine all these features to do all other eval-
uations in our experiments.

3.3.3 Setting of Context Window Size

We have mentioned in Section 2 that the context
vectors of entity pairs are derived from the contexts
before, between and after the entity mention pairs.
Hence, we have to specify the three context window
size first. In this paper, we set the mid-context win-
dow as everything between the two entity mentions.
For the pre- and post- context windows, we could
have different choices. For example, if we specify
the outer context window size as 2, then it means that
the pre-context (post-context)) includes two words
before (after) the first (second) entity.

For comparison of the effect of the outer context
of entity mention pairs, we conducted three different
settings of context window size (0, 2, 5) as Table 4
shows. From this table we can find that with the con-
text window size setting, 2, the algorithm achieves
the best performance of 43.5%/49.4%/46.3% in
Precision/Recall/F-measure. With the context win-
dow size setting, 5, the performance becomes worse

Table 5: Performance of our proposed method (Spectral-
based clustering) compared with supervised method (SVM) and
unsupervised methods((Hasegawa et al., 2004))’s method and
K-means clustering.

Precision Recall F-measure
SVM 61.2% 49.6% 54.8%
Hasegawa’s Method1 38.7% 29.8% 33.7%
Hasegawa’s Method2 37.9% 36.0% 36.9%
Kmeans 34.3% 40.2% 36.8%
Our Proposed Method 43.5% 49.4% 46.3%

because extending the context too much may include
more features, but at the same time, the noise also
increases.

3.3.4 Comparison with Supervised methods
and other Unsupervised methods

To explore the effectiveness of our unsupervised
method compared to supervised method, we perform
SVM technique with the same feature set defined in
our proposed method. TheLIBSVM tool is used in
this test4. The kernel function we used is linear
and SVM models are trained using the training set
of ACE corpus.

In (Hasegawa et al., 2004), they preformed un-
supervised relation extraction based on hierarchical
clustering and they only used word features between
entity mention pairs to construct context vectors. We
reported the clustering results using the same clus-
tering strategy as Hasegawa et al. (2004) proposed.
In Table 5, Hasegawa’s Method1 means the test used
the word feature as Hasegawa et al. (2004) while
Hasegawa’s Method2 means the test used the same
feature set as our method. In both tests, we specified

4 LIBSV M : a library for support vector machines. Soft-
ware available at http://www.csie.ntu.edu.tw/ cjlin/libsvm. It
supports multi-class classification.
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Table 6:Comparison of the existing efforts on ACE RDC task.
Relation Dectection Relation Classification

on Types on Subtypes
Method P R F P R F P R F

Culotta and Soresen (2004)Tree kernel based 81.2 51.8 63.2 67.1 35.0 45.8 - - -
Kambhatla (2004) Feature based, Maxi-

mum Entropy
- - - - - - 63.5 45.2 52.8

Zhou et al. (2005) Feature based,SVM 84.8 66.7 74.7 77.2 60.7 68.0 63.1 49.5 55.5

the cluster number as the number of ground truth
classes.

We also approached the relation extraction prob-
lem using the standard clustering technique, K-
means, where we adopted the same feature set de-
fined in our proposed method to cluster the con-
text vectors of entity mention pairs and pre-specified
the cluster number as the number of ground truth
classes.

Table 5 reports the performance of our pro-
posed method comparing with SVM-based super-
vised method and the other two unsupervised meth-
ods. As the result shows, SVM-based method by us-
ing the same feature set in our proposed method can
achieve 61.2%/49.6%/54.8% inPrecision/Recall/F-
measure. Table 5 also shows our proposed spec-
tral based method clearly outperforms the other
two unsupervised methods by 12.5% and 9.5% in
F-measurerespectively. Moreover, the incorpora-
tion of various lexical and syntactic features into
Hasegawa et al. (2004)’s method2 makes it outper-
form Hasegawa et al. (2004)’s method1 which only
uses word feature.

3.4 Discussion

In this paper, we have shown that the modified spec-
tral clustering technique, with various lexical and
syntactic features derived from the context of en-
tity pairs, performed well on the unsupervised re-
lation disambiguation problem. Our experiments
show that by the choice of the distance parameter
σ2, we can estimate the cluster number which pro-
vides the tightest clusters. We notice that the es-
timated cluster number is less than the number of
ground truth classes in most cases. The reason for
this phenomenon may be that some relation types
can not be easily distinguished using the context in-
formation only. For example, the relation subtypes
“Located”, “Based-In” and “Residence” are difficult

to disambiguate even for human experts to differen-
tiate.

The results also show that various lexical and
syntactic features contain useful information for the
task. Especially, although we did not concern the
dependency tree and full parse tree information as
other supervised methods (Miller et al., 2000; Cu-
lotta and Soresen, 2004; Kambhatla, 2004; Zhou et
al., 2005), the incorporation of simple features, such
as words and chunking information, still can provide
complement information for capturing the charac-
teristics of entity pairs. Another observation from
the result is that extending the outer context window
of entity mention pairs too much may not improve
the performance since the process may incorporate
more noise information and affect the clustering re-
sult.

As regards the clustering technique, the spectral-
based clustering performs better than direct cluster-
ing, K-means. Since the spectral-based algorithm
works in a transformed space of low dimension-
ality, data can be easily clustered so that the al-
gorithm can be implemented with better efficiency
and speed. And the performance using spectral-
based clustering can be improved due to the reason
that spectral-based clustering overcomes the draw-
back of K-means (prone to local minima) and may
find non-convex clusters consistent with human in-
tuition.

Currently most of works on the RDC task of ACE
focused on supervised learning methods. Table 6
lists a comparison of these methods on relation de-
tection and relation classification. Zhou et al. (2005)
reported the best result as 63.1%/49.5%/55.5% in
Precision/Recall/F-measureon the extraction of
ACE relation subtypes using feature based method,
which outperforms tree kernel based method by
Culotta and Soresen (2004). Although our unsu-
pervised method still can not outperform these su-
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pervised methods, from the point of view of un-
supervised resolution for relation extraction, our
approach already achieves best performance of
43.5%/49.4%/46.3% inPrecision/Recall/F-measure
compared with other clustering methods.

4 Conclusion and Future work

In this paper, we approach unsupervised relation dis-
ambiguation problem by using spectral-based clus-
tering technique with diverse lexical and syntactic
features derived from context. The advantage of our
method is that it doesn’t need any manually labeled
relation instances, and pre-definition the number of
the context clusters. Experiment results on the ACE
corpus show that our method achieves better perfor-
mance than other unsupervised methods.

Currently we combine various lexical and syn-
tactic features to construct context vectors for clus-
tering. In the future we will further explore other
semantic information to assist the relation extrac-
tion problem. Moreover, instead of cosine similar-
ity measure to calculate the distance between con-
text vectors, we will try other distributional similar-
ity measures to see whether the performance of re-
lation extraction can be improved. In addition, if we
can find an effective unsupervised way to filter out
unrelated entity pairs in advance, it would make our
proposed method more practical.
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Abstract

In this paper we show that generative
models are competitive with and some-
times superior to discriminative models,
when both kinds of models are allowed to
learn structures that are optimal for dis-
crimination. In particular, we compare
Bayesian Networks and Conditional log-
linear models on two NLP tasks. We ob-
serve that when the structure of the gen-
erative model encodes very strong inde-
pendence assumptions (a la Naive Bayes),
a discriminative model is superior, but
when the generative model is allowed to
weaken these independence assumptions
via learning a more complex structure, it
can achieve very similar or better perfor-
mance than a corresponding discrimina-
tive model. In addition, as structure learn-
ing for generative models is far more ef-
ficient, they may be preferable for some
tasks.

1 Introduction

Discriminative models have become the models
of choice for NLP tasks, because of their ability
to easily incorporate non-independent features and
to more directly optimize classification accuracy.
State of the art models for many NLP tasks are ei-
ther fully discriminative or trained using discrim-
inative reranking (Collins, 2000). These include
models for part-of-speech tagging (Toutanova et
al., 2003), semantic-role labeling (Punyakanok et
al., 2005; Pradhan et al., 2005b) and Penn Tree-
bank parsing (Charniak and Johnson, 2005).

The superiority of discriminative models has
been shown on many tasks when the discrimina-
tive and generative models use exactly the same
model structure (Klein and Manning, 2002). How-
ever, the advantage of the discriminative mod-

els can be very slight (Johnson, 2001) and for
small training set sizes generative models can
be better because they need fewer training sam-
ples to converge to the optimal parameter setting
(Ng and Jordan, 2002). Additionally, many dis-
criminative models use a generative model as a
base model and add discriminative features with
reranking (Collins, 2000; Charniak and Johnson,
2005; Roark et al., 2004), or train discriminatively
a small set of weights for features which are gener-
atively estimated probabilities (Raina et al., 2004;
Och and Ney, 2002). Therefore it is important to
study generative models and to find ways of mak-
ing them better even when they are used only as
components of discriminative models.

Generative models may often perform poorly
due to making strong independence assumptions
about the joint distribution of features and classes.
To avoid this problem, generative models for
NLP tasks have often been manually designed
to achieve an appropriate representation of the
joint distribution, such as in the parsing models of
(Collins, 1997; Charniak, 2000). This shows that
when the generative models have a good model
structure, they can perform quite well.

In this paper, we look differently at compar-
ing generative and discriminative models. We ask
the question: given the same set of input features,
what is the best a generative model can do if it is
allowed to learn an optimal structure for the joint
distribution, and what is the best a discriminative
model can do if it is also allowed to learn an op-
timal structure. That is, we do not impose any in-
dependence assumptions on the generative or dis-
criminative models and let them learn the best rep-
resentation of the data they can.

Structure learning is very efficient for genera-
tive models in the form of directed graphical mod-
els (Bayesian Networks (Pearl, 1988)), since the
optimal parameters for such models can be esti-
mated in closed form. We compare Bayesian Net-
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works with structure learning to their closely re-
lated discriminative counterpart – conditional log-
linear models with structure learning. Our condi-
tional log-linear models can also be seen as Con-
ditional Random Fields (Lafferty et al., 2001), ex-
cept we do not have a structure on the labels, but
want to learn a structure on the features.

We compare the two kinds of models on two
NLP classification tasks – prepositional phrase at-
tachment and semantic role labelling. Our re-
sults show that the generative models are compet-
itive with or better than the discriminative mod-
els. When a small set of interpolation parame-
ters for the conditional probability tables are fit
discriminatively, the resulting hybrid generative-
discriminative models perform better than the gen-
erative only models and sometimes better than the
discriminative models.

In Section 2, we describe in detail the form of
the generative and discriminative models we study
and our structure search methodology. In Section
3 we present the results of our empirical study.

2 Model Classes and Methodology

2.1 Generative Models

In classification tasks, given a training set of in-
stances D = {[xi, yi]}, where xi are the input
features for the i-th instance, and yi is its label,
the task is to learn a classifier that predicts the la-
bels of new examples. If X is the space of inputs
and Y is the space of labels, a classifier is a func-
tion f : X → Y . A generative model is one that
models the joint probability of inputs and labels
PD(x, y) through a distribution Pθ(x, y), depen-
dent on some parameter vector θ. The classifier
based on this generative model chooses the most
likely label given an input according to the con-
ditionalized estimated joint distribution. The pa-
rameters θ of the fitted distribution are usually es-
timated using the maximum joint likelihood esti-
mate, possibly with a prior.

We study generative models represented as
Bayesian Networks (Pearl, 1988), because their
parameters can be estimated extremely fast as the
maximizer of the joint likelihood is the closed
form relative frequency estimate. A Bayesian Net-
work is an acyclic directed graph over a set of
nodes. For every variable Z, let Pa(Z) denote the
set of parents of Z. The structure of the Bayesian
Network encodes the following set of indepen-

Y

X1 X2 Xm
......

Figure 1: Naive Bayes Bayesian Network

dence assumptions: every variable is conditionally
independent of its non-descendants given its par-
ents. For example, the structure of the Bayesian
Network model in Figure 1 encodes the indepen-
dence assumption that the input features are con-
ditionally independent given the class label.

Let the input be represented as a vector of m

nominal features. We define Bayesian Networks
over the m input variables X1, X2, . . . , Xm and
the class variable Y . In all networks, we add links
from the class variable Y to all input features.
In this way we have generative models which
estimate class-specific distributions over features
P (X|Y ) and a prior over labels P (Y ). Figure 1
shows a simple Bayesian Network of this form,
which is the well-known Naive Bayes model.

A specific joint distribution for a given Bayesian
Network (BN) is given by a set of condi-
tional probability tables (CPTs) which spec-
ify the distribution over each variable given its
parents P (Z|Pa(Z)). The joint distribution
P (Z1, Z2, . . . , Zm) is given by:

P (Z1, Z2, . . . , Zm) =
∏

i=1...m

P (Zi|Pa(Zi))

The parameters of a Bayesian Network model
given its graph structure are the values of
the conditional probabilities P (Zi|Pa(Zi)). If
the model is trained through maximizing the
joint likelihood of the data, the optimal pa-
rameters are the relative frequency estimates:
P̂ (Zi = v|Pa(Zi) = ~u) = count(Zi=v,Pa(Zi)=~u)

count(Pa(Zi)=~u) Here
v denotes a value of Zi and ~u denotes a vector of
values for the parents of Zi.

Most often smoothing is applied to avoid zero
probability estimates. A simple form of smooth-
ing is add-α smoothing which is equivalent to a
Dirichlet prior. For NLP tasks it has been shown
that other smoothing methods are far superior to
add-α smoothing – see, for example, Goodman
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(2001). In particular, it is important to incorpo-
rate lower-order information based on subsets of
the conditioning information. Therefore we as-
sume a structural form of the conditional proba-
bility tables which implements a more sophisti-
cated type of smoothing – interpolated Witten-Bell
(Witten and Bell, 1991). This kind of smooth-
ing has also been used in the generative parser of
(Collins, 1997) and has been shown to have a rel-
atively good performance for language modeling
(Goodman, 2001).

To describe the form of the conditional proba-
bility tables, we introduce some notation. Let Z

denote a variable in the BN and Z1, Z2, . . . , Zk

denote the set of its parents. The probabil-
ity P (Z = z|Z1 = z1, Z2 = z2, . . . , Zk = zk) is estimated
using Witten-Bell smoothing as follows: (below
the tuple of values z1, z2, . . . , zk is denoted by
z1k).

PWB(z|z1k) = λ(z1k)× P̂ (z|z1k) + (1− λ(z1k))× PWB(z|z1k−1)

In the above equation, P̂ is the relative fre-
quency estimator. The recursion is ended by inter-
polating with a uniform distribution 1

Vz
, where Vz

is the vocabulary of values for the prediction vari-
able Z. We determine the interpolation back-off
order by looking at the number of values of each
variable. We apply the following rule: the variable
with the highest number of values observed in the
training set is backed off first, then the variable
with the next highest number of values, and so on.
Typically, the class variable will be backed-off last
according to this rule.

In Witten-Bell smoothing, the values of the in-
terpolation coefficients are as follows: λ(z1k) =

count(z1k)
count(z1k)+d×|z:count(z,z1k)>0| . The weight of the
relative frequency estimate based on a given con-
text increases if the context has been seen more
often in the training data and decreases if the con-
text has been seen with more different values for
the predicted variable z.

Looking at the form of our conditional proba-
bility tables, we can see that the major parame-
ters are estimated directly based on the counts of
the events in the training data. In addition, there
are interpolation parameters (denoted by d above),
which participate in computing the interpolation
weights λ. The d parameters are hyper-parameters
and we learn them on a development set of sam-
ples. We experimented with learning a single d

parameter which is shared by all CPTs and learn-
ing multiple d parameters – one for every type of

conditioning context in every CPT – i.e., each CPT
has as many d parameters as there are back-off lev-
els.

We place some restrictions on the Bayesian Net-
works learned, for closer correspondence with the
discriminative models and for tractability: Every
input variable node has the label node as a parent,
and at most three parents per variable are allowed.

2.1.1 Structure Search Methodology

Our structure search method differs slightly
from previously proposed methods in the literature
(Heckerman, 1999; Pernkopf and Bilmes, 2005).
The search space is defined as follows. We start
with a Bayesian Network containing only the class
variable. We denote by CHOSEN the set of vari-
ables already in the network and by REMAINING

the set of unplaced variables. Initially, only the
class variable Y is in CHOSEN and all other vari-
ables are in REMAINING. Starting from the cur-
rent BN, the set of next candidate structures is de-
fined as follows: For every unplaced variable R

in REMAINING, and for every subset Sub of size
at most two from the already placed variables in
CHOSEN, consider adding R with parents Sub∪Y

to the current BN. Thus the number of candidate
structures for extending a current BN is on the or-
der of m3, where m is the number of variables.

We perform a greedy search. At each step, if the
best variable B with the best set of parents Pa(B)
improves the evaluation criterion, move B from
REMAINING to CHOSEN, and continue the search
until there are no variables in REMAINING or the
evaluation criterion can not be improved.

The evaluation criterion for BNs we use is clas-
sification accuracy on a development set of sam-
ples. Thus our structure search method is dis-
criminative, in the terminology of (Grossman and
Domingos, 2004; Pernkopf and Bilmes, 2005). It
is very easy to evaluate candidate BN structures.
The main parameters in the CPTs are estimated
via the relative frequency estimator on the training
set, as discussed in the previous section. We do not
fit the hyper-parameters d during structure search.
We fit these parameters only after we have se-
lected a final BN structure. Throughout the struc-
ture search, we use a fixed value of 1 for d for all
CPTs and levels of back-off. Therefore we are us-
ing generative parameter estimation and discrimi-
native structure search. See Section 4 for discus-
sion on how this method relates to previous work.
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Notice that the optimal parameters of the con-
ditional probability tables of variables already in
the current BN do not change at all when a new
variable is added, thus making update very ef-
ficient. After the stopping criterion is met, the
hyper-parameters of the resulting BN are fit on
the development set. As discussed in the previ-
ous subsection, we fit either a single or multiple
hyper-parameters d. The fitting criterion for the
generative Bayesian Networks is joint likelihood
of the development set of samples with a Gaussian
prior on the values log(d). 1

Additionally, we explore fitting the hyper-
parameters of the Bayesian Networks by opti-
mizing the conditional likelihood of the develop-
ment set of samples. In this case we call the
resulting models Hybrid Bayesian Network mod-
els, since they incorporate a number of discrimi-
natively trained parameters. Hybrid models have
been proposed before and shown to perform very
competitively (Raina et al., 2004; Och and Ney,
2002). In Section 3.2 we compare generative and
hybrid Bayesian Networks.

2.2 Discriminative Models

Discriminative models learn a conditional distri-
bution Pθ(Y | ~X) or discriminant functions that
discriminate between classes. Here we concen-
trate on conditional log-linear models. A sim-
ple example of such model is logistic regression,
which directly corresponds to Naive Bayes but is
trained to maximize the conditional likelihood. 2

To describe the form of models we study, let us
introduce some notation. We represent a tuple of
nominal variables (X1,X2,. . . ,Xm) as a vector of
0s and 1s in the following standard way: We map
the tuple of values of nominal variables to a vector
space with dimensionality the sum of possible val-
ues of all variables. There is a single dimension in
the vector space for every value of each input vari-
able Xi. The tuple (X1,X2,. . . ,Xm) is mapped to
a vector which has 1s in m places, which are the
corresponding dimensions for the values of each
variable Xi. We denote this mapping by Φ.

In logistic regression, the probability of a label
Y = y given input features Φ(X1, X2, . . . , Xk) =

1Since the d parameters are positive we convert the prob-
lem to unconstrained optimization over parameters γ such
that d = eγ .

2Logistic regression additionally does not have the sum to
one constraint on weights but it can be shown that this does
not increase the representational power of the model.

~x is estimated as:

P (y|~x) =
exp 〈 ~wy, ~x〉∑
y′ exp 〈 ~wy′ , ~x〉

There is a parameter vector of feature weights
~wy for each label y. We fit the parameters of the

log-linear model by maximizing the conditional
likelihood of the training set including a gaussian
prior on the parameters. The prior has mean 0 and
variance σ2. The variance is a hyper-parameter,
which we optimize on a development set.

In addition to this simple logistic regression
model, as for the generative models, we consider
models with much richer structure. We consider
more complex mappings Φ, which incorporate
conjunctions of combinations of input variables.
We restrict the number of variables in the com-
binations to three, which directly corresponds to
our limit on number of parents in the Bayesian
Network structures. This is similar to consider-
ing polynomial kernels of up to degree three, but
is more general, because, for example, we can
add only some and not all bigram conjunctions
of variables. Structure search (or feature selec-
tion) for log-linear models has been done before
e.g. (Della Pietra et al., 1997; McCallum, 2003).
We devise our structure search methodology in a
way that corresponds as closely as possible to our
structure search for Bayesian Networks. The ex-
act hypothesis space considered is defined by the
search procedure for an optimal structure we ap-
ply, which we describe next.

2.2.1 Structure Search Methodology

We start with an initial empty feature set and a
candidate feature set consisting of all input fea-
tures: CANDIDATES={X1,X2,. . . ,Xm}. In the
course of the search, the set CANDIDATES may
contain feature conjunctions in addition to the ini-
tial input features. After a feature is selected from
the candidates set and added to the model, the fea-
ture is removed from CANDIDATES and all con-
junctions of that feature with all input features are
added to CANDIDATES. For example, if a fea-
ture conjunction 〈Xi1 ,Xi2 ,. . .,Xin〉 is selected, all
of its expansions of the form 〈Xi1 ,Xi2 ,. . .,Xin ,Xi〉,
where Xi is not in the conjunction already, are
added to CANDIDATES.

We perform a greedy search and at each step
select the feature which maximizes the evaluation
criterion, add it to the model and extend the set
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CANDIDATES as described above. The evaluation
criterion for selecting features is classification ac-
curacy on a development set of samples, as for the
Bayesian Network structure search.

At each step, we evaluate all candidate fea-
tures. This is computationally expensive, because
it requires iterative re-estimation. In addition to
estimating weights for the new features, we re-
estimate the old parameters, since their optimal
values change. We did not preform search for the
hyper-parameter σ when evaluating models. We fit
σ by optimizing the development set accuracy af-
ter a model was selected. Note that our feature se-
lection algorithm adds an input variable or a vari-
able conjunction with all of its possible values in a
single step of the search. Therefore we are adding
hundreds or thousands of binary features at each
step, as opposed to only one as in (Della Pietra
et al., 1997). This is why we can afford to per-
form complete re-estimation of the parameters of
the model at each step.

3 Experiments

3.1 Problems and Datasets

We study two classification problems – preposi-
tional phrase (PP) attachment, and semantic role
labeling.

Following most of the literature on preposi-
tional phrase attachment (e.g., (Hindle and Rooth,
1993; Collins and Brooks, 1995; Vanschoen-
winkel and Manderick, 2003)), we focus on the
most common configuration that leads to ambi-
guities: V NP PP. Here, we are given a verb
phrase with a following noun phrase and a prepo-
sitional phrase. The goal is to determine if the
PP should be attached to the verb or to the ob-
ject noun phrase. For example, in the sentence:
Never [hang]V [a painting]NP [with a peg]PP , the
prepositional phrase with a peg can either modify
the verb hang or the object noun phrase a painting.
Here, clearly, with a peg modifies the verb hang.

We follow the common practice in representing
the problem using only the head words of these
constituents and of the NP inside the PP. Thus the
example sentence is represented as the following
quadruple: [v:hang n1:painting p:with n2:peg].
Thus for the PP attachment task we have binary
labels Att , and four input variables – v, n1, p, n2.

We work with the standard dataset previously
used for this task by other researchers (Ratna-

Task Training Devset Test
PP 20,801 4,039 3,097
SRL 173,514 5,115 9,272

Table 1: Data sizes for the PP attachment and SRL
tasks.

parkhi et al., 1994; Collins and Brooks, 1995). It is
extracted from the the Penn Treebank Wall Street
Journal data (Ratnaparkhi et al., 1994). Table 1
shows summary statistics for the dataset.

The second task we concentrate on is semantic
role labeling in the context of PropBank (Palmer
et al., 2005). The PropBank corpus annotates
phrases which fill semantic roles for verbs on top
of Penn Treebank parse trees. The annotated roles
specify agent, patient, direction, etc. The labels
for semantic roles are grouped into two groups,
core argument labels and modifier argument la-
bels, which correspond approximately to the tradi-
tional distinction between arguments and adjuncts.

There has been plenty of work on machine
learning models for semantic role labeling, start-
ing with the work of Gildea and Jurafsky (2002),
and including CoNLL shared tasks (Carreras and
Màrquez, 2005). The most successful formulation
has been as learning to classify nodes in a syn-
tactic parse tree. The possible labels are NONE,
meaning that the corresponding phrase has no se-
mantic role and the set of core and modifier la-
bels. We concentrate on the subproblem of clas-
sification for core argument nodes. The problem
is, given that a node has a core argument label, de-
cide what the correct label is. Other researchers
have also looked at this subproblem (Gildea and
Jurafsky, 2002; Toutanova et al., 2005; Pradhan et
al., 2005a; Xue and Palmer, 2004).

Many features have been proposed for build-
ing models for semantic role labeling. Initially,
7 features were proposed by (Gildea and Juraf-
sky, 2002), and all following research has used
these features and some additional ones. These
are the features we use as well. Table 2 lists the
features. State-of-the-art models for the subprob-
lem of classification of core arguments addition-
ally use other features of individual nodes (Xue
and Palmer, 2004; Pradhan et al., 2005a), as well
as global features including the labels of other
nodes in parse tree. Nevertheless it is interesting
to see how well we can do with these 7 features
only.

We use the standard training, development, and
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Feature Types (Gildea and Jurafsky, 2002)
PHRASE TYPE: Syntactic Category of node
PREDICATE LEMMA: Stemmed Verb
PATH: Path from node to predicate
POSITION: Before or after predicate?
VOICE: Active or passive relative to predicate
HEAD WORD OF PHRASE
SUB-CAT: CFG expansion of predicate’s parent

Table 2: Features for Semantic Role Labeling.

test sets from the February 2004 version of Prop-
bank. The training set consists of sections 2 to 21,
the development set is from section 24, and the test
set is from section 23. The number of samples is
listed in Table 1. As we can see, the training set
size is much larger compared to the PP attachment
training set.

3.2 Results

In line with previous work (Ng and Jordan, 2002;
Klein and Manning, 2002), we first compare Naive
Bayes and Logistic regression on the two NLP
tasks. This lets us see how they compare when the
generative model is making strong independence
assumptions and when the two kinds of models
have the same structure. Then we compare the
generative and discriminative models with learned
richer structures.

Table 3 shows the Naive Bayes/Logistic re-
gression results for PP attachment. We list re-
sults for several conditions of training the Naive
Bayes classifier, depending on whether it is trained
as strictly generative or as a hybrid model, and
whether a single or multiple hyper-parameters d

are trained. In the table, we see results for gen-
erative Naive Bayes, where the d parameters are
trained to maximize the joint likelihood of the de-
velopment set, and for Hybrid Naive Bayes, where
the hyper-parameters are trained to optimize the
conditional likelihood. The column H-Params (for
hyper-parameters) indicates whether a single or
multiple d parameters are learned.

Logistic regression is more fairly comparable
to Naive Bayes trained using a single hyper-
parameter, because it also uses a single hyper-
parameter σ trained on a development set. How-
ever, for the generative model it is very easy to
train multiple weights d since the likelihood of a
development set is differentiable with respect to
the parameters. For logistic regression, we may
want to choose different variances for the differ-
ent types of features but the search would be pro-

Model H-params Test set acc
Naive Bayes 1 81.2
Naive Bayes 9 81.2
Logistic regression 1 82.6
Hybrid Naive Bayes 1 81.2
Hybrid Naive Bayes 9 81.5

Table 3: Naive Bayes and Logistic regression PP
attachment results.

hibitively expensive. Thus we think it is also fair
to fit multiple interpolation weights for the gener-
ative model and we show these results as well.

As we can see from the table, logistic regression
outperforms both Naive Bayes and Hybrid Naive
Bayes. The performance of Hybrid Naive Bayes
with multiple interpolation weights improves the
accuracy, but performance is still better for logis-
tic regression. This suggests that the strong in-
dependence assumptions are hurting the classifier.
According to McNemar’s test, logistic regression
is statistically significantly better than the Naive
Bayes models and than Hybrid Naive Bayes with a
single interpolation weight (p < 0.025), but is not
significantly better than Hybrid Naive Bayes with
multiple interpolation parameters at level 0.05.

However, when both the generative and dis-
criminative models are allowed to learn optimal
structures, the generative model outperforms the
discriminative model. As seen from Table 4,
the Bayesian Network with a single interpolation
weight achieves an accuracy of 84.6%, whereas
the discriminative model performs at 83.8%. The
hybrid model with a single interpolation weight
does even better, achieving 85.0% accuracy. For
comparison, the model of Collins & Brooks has
accuracy of 84.15% on this test set, and the high-
est result obtained through a discriminative model
with this feature set is 84.8%, using SVMs and a
polynomial kernel with multiple hyper-parameters
(Vanschoenwinkel and Manderick, 2003). The
Hybrid Bayes Nets are statistically significantly
better than the Log-linear model (p < 0.05), and
the Bayes Nets are not significantly better than the
Log-linear model. All models from Table 4 are
significantly better than all models in Table 3.

For semantic role labelling classification of core
arguments, the results are listed in Tables 5 and
6. We can see that the difference in performance
between Naive Bayes with a single interpolation
parameter d – 83.3% and the performance of Lo-
gistic regression – 91.1%, is very large. This
shows that the independence assumptions are quite
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Model H-params Test set acc
Bayes Net 1 84.6
Bayes Net 13 84.6
Log-linear model 1 83.8
Hybrid Bayes Net 1 85.0
Hybrid Bayes Net 13 84.8

Table 4: Bayesian Network and Conditional log-
linear model PP attachment results.

Model H-params Test set acc
Naive Bayes 1 83.3
Naive Bayes 15 85.2
Logistic regression 1 91.1
Hybrid Naive Bayes 1 84.1
Hybrid Naive Bayes 15 86.5

Table 5: Naive Bayes and Logistic regression SRL
classificaion results.

strong, and since many of the features are not
sparse lexical features and training data for them
is sufficient, the Naive Bayes model has no ad-
vantage over the discriminative logistic regression
model. The Hybrid Naive Bayes model with mul-
tiple interpolation weights does better than Naive
Bayes, performing at 86.5%. All differences be-
tween the classifiers in Table 5 are statistically sig-
nificant at level 0.01. Compared to the PP attach-
ment task, here we are getting more benefit from
multiple hyper-parameters, perhaps due to the di-
versity of the features for SRL: In SRL, we use
both sparse lexical features and non-sparse syntac-
tic ones, whereas all features for PP attachment are
lexical.

From Table 6 we can see that when we com-
pare general Bayesian Network structures to gen-
eral log-linear models, the performance gap be-
tween the generative and discriminative models
is much smaller. The Bayesian Network with a
single interpolation weight d has 93.5% accuracy
and the log-linear model has 93.9% accuracy. The
hybrid model with multiple interpolation weights
performs at 93.7%. All models in Table 6 are in
a statistical tie according to McNemar’s test, and
thus the log-linear model is not significantly bet-
ter than the Bayes Net models. We can see that
the generative model was able to learn a structure
with a set of independence assumptions which are
not as strong as the ones the Naive Bayes model
makes, thus resulting in a model with performance
competitive with the discriminative model.

Figures 2(a) and 2(b) show the Bayesian Net-
works learned for PP Attachment and Semantic
Role Labeling. Table 7 shows the conjunctions

Model H-params Test set acc
Bayes Net 1 93.5
Bayes Net 20 93.6
Log-linear model 1 93.9
Hybrid Bayes Net 1 93.5
Hybrid Bayes Net 20 93.7

Table 6: Bayesian Network and Conditional log-
linear model SRL classification results.

PP Attachment Model
〈P〉, 〈P,V〉, 〈P,N1〉, 〈P,N2〉
〈N1〉,〈V〉, 〈P,N1,N2〉
SRL Model
〈PATH〉, 〈PATH,PLEMMA〉,〈SUB-CAT〉,〈PLEMMA〉
〈HW,PLEMMA〉,〈PATH,PLEMMA,VOICE〉
,〈HW,PLEMMA,PTYPE〉,〈SUB-CAT,PLEMMA〉
〈SUB-CAT,PLEMMA,POS〉,〈HW〉

Table 7: Log-linear models learned for PP attach-
ment and SRL.

learned by the Log-linear models for PP attach-
ment and SRL.

We should note that it is much faster to do
structure search for the generative Bayesian Net-
work model, as compared to structure search for
the log-linear model. In our implementation, we
did not do any computation reuse between succes-
sive steps of structure search for the Bayesian Net-
work or log-linear models. Structure search took 2
hours for the Bayesian Network and 24 hours for
the log-linear model.

To put our results in the context of previous
work, other results on core arguments using the
same input features have been reported, the best
being 91.4% for an SVM with a degree 2 poly-
nomial kernel (Pradhan et al., 2005a).3 The
highest reported result for independent classifica-
tion of core arguments is 96.0% for a log-linear
model using more than 20 additional basic features
(Toutanova et al., 2005). Therefore our resulting
models with 93.5% and 93.9% accuracy compare
favorably to the SVM model with polynomial ker-
nel and show the importance of structure learning.

4 Comparison to Related Work

Previous work has compared generative and dis-
criminative models having the same structure,
such as the Naive Bayes and Logistic regression
models (Ng and Jordan, 2002; Klein and Man-
ning, 2002) and other models (Klein and Manning,
2002; Johnson, 2001).

3This result is on an older version of Propbank from July
2002.
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Figure 2: Learned Bayesian Network structures
for PP attachment and SRL.

Bayesian Networks with special structure of the
CPTs – e.g. decision trees, have been previously
studied in e.g. (Friedman and Goldszmidt, 1996),
but not for NLP tasks and not in comparison to dis-
criminative models. Studies comparing generative
and discriminative models with structure learn-
ing have been previously performed ((Pernkopf
and Bilmes, 2005) and (Grossman and Domingos,
2004)) for other, non-NLP domains. There are
several important algorithmic differences between
our work and that of (Pernkopf and Bilmes, 2005;
Grossman and Domingos, 2004). We detail the
differences here and perform an empirical evalua-
tion of the impact of some of these differences.

Form of the generative models. The genera-
tive models studied in that previous work do not
employ any special form of the conditional prob-
ability tables. Pernkopf and Bilmes (2005) use a
simple smoothing method: fixing the probability
of every event that has a zero relative frequency
estimate to a small fixed ε. Thus the model does
not take into account information from lower or-
der distributions and has no hyper-parameters that
are being fit. Grossman and Domingos (2004) do
not employ a special form of the CPTs either and
do not mention any kind of smoothing used in the
generative model learning.

Form of the discriminative models. The
works (Pernkopf and Bilmes, 2005; Grossman
and Domingos, 2004) study Bayesian Networks
whose parameters are trained discriminatively (by

maximizing conditional likelihood), as represen-
tatives of discriminative models. We study more
general log-linear models, equivalent to Markov
Random Fields. Our models are more general
in that their parameters do not need to be inter-
pretable as probabilities (sum to 1 and between 0
and 1), and the structures do not need to corre-
spond to Bayes Net structures. For discriminative
classifiers, it is not important that their compo-
nent parameters be interpretable as probabilities;
thus this restriction is probably unnecessary. Like
for the generative models, another major differ-
ence is in the smoothing algorithms. We smooth
the models both by fitting a gaussian prior hyper-
parameter and by incorporating features of subsets
of cliques. Smoothing in (Pernkopf and Bilmes,
2005) is done by substituting zero-valued param-
eters with a small fixed ε. Grossman and Domin-
gos (2004) employ early stopping using held-out
data which can achieve similar effects to smooth-
ing with a gaussian prior.

To evaluate the importance of the differences
between our algorithm and the ones presented in
these works, and to evaluate the importance of fit-
ting hyper-parameters for smoothing, we imple-
mented a modified version of our structure search.
The modifications were as follows. For Bayes
Net structure learning: (i) no Witten-Bell smooth-
ing is employed in the CPTs, and (ii) no backoffs
to lower-order distributions are considered. The
only smoothing remaining in the CPTs is an inter-
polation with a uniform distribution with a fixed
weight of α = .1. For discriminative log-linear
model structure learning: (i) the gaussian prior
was fixed to be very weak, serving only to keep the
weights away from infinity (σ = 100) and (ii) the
conjunction selection was restricted to correspond
to a Bayes Net structure with no features for sub-
sets of feature conjunctions. Thus the only differ-
ence between the class of our modified discrimina-
tive log-linear models and the class of models con-
sidered in (Pernkopf and Bilmes, 2005; Grossman
and Domingos, 2004) is that we do not restrict the
parameters to be interpretable as probabilities.

The results shown in Table 8 summarize the re-
sults obtained by the modified algorithm on the
two tasks. Both the generative and discriminative
learners suffered a statistically significant (at level
.01) loss in performance. Notably, the log-linear
model for PP attachment performs worse than lo-
gistic regression with better smoothing.
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PP Attachment Results
Model H-params Test set acc
Bayes Net 0 82.8
Log-linear model 0 81.2

SRL Classification Results
Model H-params Test set acc
Bayes Net 0 92.5
Log-linear model 0 92.7

Table 8: Bayesian Network and Conditional log-
linear model: PP & SRL classification results us-
ing minimal smoothing and no backoff to lower
order distributions.

In summary, our results showed that by learning
the structure for generative models, we can obtain
models which are competitive with or better than
corresponding discriminative models. We also
showed the importance of employing sophisti-
cated smoothing techniques in structure search al-
gorithms for natural language classification tasks.
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Abstract

This paper explores the use of two graph
algorithms for unsupervised induction and
tagging of nominal word senses based on
corpora. Our main contribution is the op-
timization of the free parameters of those
algorithms and its evaluation against pub-
licly available gold standards. We present
a thorough evaluation comprising super-
vised and unsupervised modes, and both
lexical-sample and all-words tasks. The
results show that, in spite of the infor-
mation loss inherent to mapping the in-
duced senses to the gold-standard, the
optimization of parameters based on a
small sample of nouns carries over to all
nouns, performing close to supervised sys-
tems in the lexical sample task and yield-
ing the second-best WSD systems for the
Senseval-3 all-words task.

1 Introduction

Word sense disambiguation (WSD) is a key
enabling-technology. Supervised WSD tech-
niques are the best performing in public evalu-
ations, but need large amounts of hand-tagged
data. Existing hand-annotated corpora like Sem-
Cor (Miller et al., 1993), which is annotated with
WordNet senses (Fellbaum, 1998) allow for a
small improvement over the simple most frequent
sense heuristic, as attested in the all-words track of
the last Senseval competition (Snyder and Palmer,
2004). In theory, larger amounts of training data
(SemCor has approx. 700K words) would improve
the performance of supervised WSD, but no cur-
rent project exists to provide such an expensive re-
source.

Supervised WSD is based on the “fixed-list of
senses” paradigm, where the senses for a tar-
get word are a closed list coming from a dic-

tionary or lexicon. Lexicographers and seman-
ticists have long warned about the problems of
such an approach, where senses are listed sepa-
rately as discrete entities, and have argued in fa-
vor of more complex representations, where, for
instance, senses are dense regions in a contin-
uum (Cruse, 2000).

Unsupervised WSD has followed this line of
thinking, and tries to induce word senses directly
from the corpus. Typical unsupervised WSD sys-
tems involve clustering techniques, which group
together similar examples. Given a set of induced
clusters (which represent word uses or senses1),
each new occurrence of the target word will be
compared to the clusters and the most similar clus-
ter will be selected as its sense.

Most of the unsupervised WSD work has been
based on the vector space model, where each
example is represented by a vector of features
(e.g. the words occurring in the context), and
the induced senses are either clusters of ex-
amples (Schütze, 1998; Purandare and Peder-
sen, 2004) or clusters of words (Pantel and Lin,
2002). Recently, Véronis (Véronis, 2004) has pro-
posed HyperLex, an application of graph models
to WSD based on the small-world properties of
cooccurrence graphs. Graph-based methods have
gained attention in several areas of NLP, including
knowledge-based WSD (Mihalcea, 2005; Navigli
and Velardi, 2005) and summarization (Erkan and
Radev, 2004; Mihalcea and Tarau, 2004).

The HyperLex algorithm presented in (Véronis,
2004) is entirely corpus-based. It builds a cooccur-
rence graph for all pairs of words cooccurring in
the context of the target word. Véronis shows that
this kind of graph fulfills the properties of small
world graphs, and thus possesses highly connected

1Unsupervised WSD approaches prefer the term ’word
uses’ to ’word senses’. In this paper we use them inter-
changeably to refer to both the induced clusters, and to the
word senses from some reference lexicon.
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components (hubs) in the graph. These hubs even-
tually identify the main word uses (senses) of the
target word, and can be used to perform word
sense disambiguation. These hubs are used as a
representation of the senses induced by the sys-
tem, the same way that clusters of examples are
used to represent senses in clustering approaches
to WSD (Purandare and Pedersen, 2004).

One of the problems of unsupervised systems
is that of managing to do a fair evaluation.
Most of current unsupervised systems are evalu-
ated in-house, with a brief comparison to a re-
implementation of a former system, leading to a
proliferation of unsupervised systems with little
ground to compare among them.

In preliminary work (Agirre et al., 2006), we
have shown that HyperLex compares favorably
to other unsupervised systems. We defined a
semi-supervised setting for optimizing the free-
parameters of HyperLex on the Senseval-2 En-
glish Lexical Sample task (S2LS), which con-
sisted on mapping the induced senses onto the
official sense inventory using the training part of
S2LS. The best parameters were then used on the
Senseval-3 English Lexical Sample task (S3LS),
where a similar semi-supervised method was used
to output the official sense inventory.

This paper extends the previous work in sev-
eral aspects. First of all, we adapted the PageR-
ank graph-based method (Brin and Page, 1998)
for WSD and compared it with HyperLex.

We also extend the previous evaluation scheme,
using measures in the clustering community which
only require a gold standard clustering and no
mapping step. This allows for having a purely
unsupervised WSD system, and at the same time
comparing supervised and unsupervised systems
according to clustering criteria.

We also include the Senseval-3 English All-
words testbed (S3AW), where, in principle, unsu-
pervised and semi-supervised systems have an ad-
vantage over purely supervised systems due to the
scarcity of training data. We show that our sys-
tem is competitive with supervised systems, rank-
ing second.

This paper is structured as follows. We first
present two graph-based algorithms, HyperLex
and PageRank. Section 3 presents the two evalu-
ation frameworks. Section 4 introduces parameter
optimization. Section 5 shows the experimental
setting and results. Section 6 analyzes the results

and presents related work. Finally, we draw the
conclusions and advance future work.

2 A graph algorithm for corpus-based
WSD

The basic steps for our implementation of Hyper-
Lex and its variant using PageRank are common.
We first build the cooccurrence graph, then we se-
lect the hubs that are going to represent the senses
using two different strategies inspired by Hyper-
Lex and PageRank. We are then ready to use the
induced senses to do word sense disambiguation.

2.1 Building cooccurrence graphs
For each word to be disambiguated, a text corpus
is collected, consisting of the paragraphs where
the word occurs. From this corpus, a cooccur-
rence graph for the target word is built. Vertices
in the graph correspond to words2 in the text (ex-
cept the target word itself). Two words appear-
ing in the same paragraph are said to cooccur, and
are connected with edges. Each edge is assigned
a weight which measures the relative frequency of
the two words cooccurring. Specifically, let wij be
the weight of the edge3 connecting nodes i and j,
then wij = 1 − max[P (i | j), P (j | i)], where
P (i | j) =

freqij

freqj
and P (j | i) =

freqij

freqi
.

The weight of an edge measures how tightly
connected the two words are. Words which always
occur together receive a weight of 0. Words rarely
cooccurring receive weights close to 1.

2.2 Selecting hubs: HyperLex vs. PageRank
Once the cooccurrence graph is built, Véronis pro-
poses a simple iterative algorithm to obtain its
hubs. At each step, the algorithm finds the ver-
tex with highest relative frequency4 in the graph,
and, if it meets some criteria, it is selected as a hub.
These criteria are determined by a set of heuristic
parameters, that will be explained later in Section
4. After a vertex is selected to be a hub, its neigh-
bors are no longer eligible as hub candidates. At
any time, if the next vertex candidate has a relative
frequency below a certain threshold, the algorithm
stops.

Another alternative is to use the PageRank algo-
rithm (Brin and Page, 1998) for finding hubs in the

2Following Véronis, we only work on nouns.
3The cooccurrence graph is undirected, i.e. wij = wji
4In cooccurrence graphs, the relative frequency of a vertex

and its degree are linearly related, and it is therefore possible
to avoid the costly computation of the degree.
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coocurrence graph. PageRank is an iterative algo-
rithm that ranks all the vertices according to their
relative importance within the graph following a
random-walk model. In this model, a link between
vertices v1 and v2 means that v1 recommends v2.
The more vertices recommend v2, the higher the
rank of v2 will be. Furthermore, the rank of a ver-
tex depends not only on how many vertices point
to it, but on the rank of these vertices as well.

Although PageRank was initially designed to
work with directed graphs, and with no weights
in links, the algorithm can be easily extended
to model undirected graphs whose edges are
weighted. Specifically, let G = (V, E) be an undi-
rected graph with the set of vertices V and set of
edges E. For a given vertex vi, let In(vi) be the set
of vertices pointing to it5. The rank of vi is defined
as:

P (vi) = (1− d) + d
∑

j∈In(vi)

wji∑
k∈In(vj)

wjk

P (vj)

where wij is the weight of the link between ver-
tices vi and vj , and 0 ≤ d ≤ 1. d is called the
damping factor and models the probability of a
web surfer standing at a vertex to follow a link
from this vertex (probability d) or to jump to a ran-
dom vertex in the graph (probability 1 − d). The
factor is usually set at 0.85.

The algorithm initializes the ranks of the ver-
tices with a fixed value (usually 1

N
for a graph with

N vertices) and iterates until convergence below a
given threshold is achieved, or, more typically, un-
til a fixed number of iterations are executed. Note
that the convergence of the algorithms doesn’t de-
pend on the initial value of the ranks.

After running the algorithm, the vertices of the
graph are ordered in decreasing order according to
its rank, and a number of them are chosen as the
main hubs of the word. The hubs finally selected
depend again of some heuristics and will be de-
scribed in section 4.

2.3 Using hubs for WSD

Once the hubs that represent the senses of the word
are selected (following any of the methods pre-
sented in the last section), each of them is linked
to the target word with edges weighting 0, and
the Minimum Spanning Tree (MST) of the whole
graph is calculated and stored.

5As G is undirected, the in-degree of a vertex v is equal
to its out-degree.

The MST is then used to perform word sense
disambiguation, in the following way. For every
instance of the target word, the words surrounding
it are examined and looked up in the MST. By con-
struction of the MST, words in it are placed under
exactly one hub. Each word in the context receives
a set of scores s, with one score per hub, where all
scores are 0 except the one corresponding to the
hub where it is placed. If the scores are organized
in a score vector, all values are 0, except, say, the
i-th component, which receives a score d(hi, v),
which is the distance between the hub hi and the
node representing the word v. Thus, d(hi, v) as-
signs a score of 1 to hubs and the score decreases
as the nodes move away from the hub in the tree.

For a given occurrence of the target word, the
score vectors of all the words in the context are
added, and the hub that receives the maximum
score is chosen.

3 Evaluating unsupervised WSD systems

All unsupervised WSD algorithms need some ad-
dition in order to be evaluated. One alternative, as
in (Véronis, 2004), is to manually decide the cor-
rectness of the hubs assigned to each occurrence
of the words. This approach has two main disad-
vantages. First, it is expensive to manually verify
each occurrence of the word, and different runs of
the algorithm need to be evaluated in turn. Sec-
ond, it is not an easy task to manually decide if
an occurrence of a word effectively corresponds
with the use of the word the assigned hub refers
to, specially considering that the person is given a
short list of words linked to the hub. Besides, it is
widely acknowledged that people are leaned not to
contradict the proposed answer.

A second alternative is to evaluate the system
according to some performance in an application,
e.g. information retrieval (Schütze, 1998). This is
a very attractive idea, but requires expensive sys-
tem development and it is sometimes difficult to
separate the reasons for the good (or bad) perfor-
mance.

A third alternative would be to devise a method
to map the hubs (clusters) returned by the system
to the senses in a lexicon. Pantel and Lin (2002)
automatically mapped the senses to WordNet, and
then measured the quality of the mapping. More
recently, tagged corpora have been used to map
the induced senses, and then compare the sys-
tems over publicly available benchmarks (Puran-
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dare and Pedersen, 2004; Niu et al., 2005; Agirre
et al., 2006), which offers the advantage of com-
paring to other systems, but converts the whole
system into semi-supervised. See Section 5 for
more details on these systems. Note that the map-
ping introduces noise and information loss, which
is a disadvantage when comparing to other sys-
tems that rely on the gold-standard senses.

Yet another possibility is to evaluate the induced
senses against a gold standard as a clustering task.
Induced senses are clusters, gold standard senses
are classes, and measures from the clustering lit-
erature like entropy or purity can be used. In this
case the manually tagged corpus is taken to be the
gold standard, where a class is the set of examples
tagged with a sense.

We decided to adopt the last two alternatives,
since they allow for comparison over publicly
available systems of any kind.

3.1 Evaluation of clustering: hubs as clusters

In this setting the selected hubs are treated as
clusters of examples and gold standard senses are
classes. In order to compare the clusters with the
classes, hand annotated corpora are needed (for in-
stance Senseval). The test set is first tagged with
the induced senses. A perfect clustering solution
will be the one where each cluster has exactly the
same examples as one of the classes, and vice
versa. The evaluation is completely unsupervised.

Following standard cluster evaluation prac-
tice (Zhao and Karypis, 2005), we consider three
measures: entropy, purity and Fscore. The entropy
measure considers how the various classes of ob-
jects are distributed within each cluster. In gen-
eral, the smaller the entropy value, the better the
clustering algorithm performs. The purity mea-
sure considers the extent to which each cluster
contained objects from primarily one class. The
larger the values of purity, the better the cluster-
ing algorithm performs. The Fscore is used in a
similar fashion to Information Retrieval exercises,
with precision and recall defined as the percent-
age of correctly “retrieved” examples for a clus-
ter (divided by total cluster size), and recall as the
percentage of correctly “retrieved” examples for a
cluster (divided by total class size). For a formal
definition refer to (Zhao and Karypis, 2005). If the
clustering is identical to the original classes in the
datasets, FScore will be equal to one which means
that the higher the FScore, the better the clustering

is.

3.2 Evaluation as supervised WSD: mapping
hubs to senses

(Agirre et al., 2006) presents a straightforward
framework that uses hand-tagged material in or-
der to map the induced senses into the senses used
in a gold standard . The WSD system first tags the
training part of some hand-annotated corpus with
the induced hubs. The hand labels are then used
to construct a matrix relating assigned hubs to ex-
isting senses, simply counting the times an occur-
rence with sense sj has been assigned hub hi. In
the testing step we apply the WSD algorithm over
the test corpus, using the hubs-to-senses matrix to
select the sense with highest weights. See (Agirre
et al., 2006) for further details.

4 Tuning the parameters

The behavior of the original HyperLex algorithm
was influenced by a set of heuristic parameters,
which were set by Véronis following his intuition.
In (Agirre et al., 2006) we tuned the parameters us-
ing the mapping strategy for evaluation. We set a
range for each of the parameters, and evaluated the
algorithm for each combination of the parameters
on a fixed set of words (S2LS), which was differ-
ent from the final test sets (S3LS and S3AW). This
ensures that the chosen parameter set can be used
for any noun, and is not overfitted to a small set of
nouns.

In this paper, we perform the parameter tuning
according to four different criteria, i.e., best su-
pervised performance and best unsupervised en-
tropy/purity/FScore performance. At the end, we
have four sets of parameters (those that obtained
the best results in S2LS for each criterion), and
each set is then selected to be run against the S3LS
and S3AW datasets.

The parameters of the graph-based algorithm
can be divided in two sets: those that affect how
the cooccurrence graph is built (p1–p4 below), and
those that control the way the hubs are extracted
from it (p5–p8 below).

p1 Minimum frequency of edges (occurrences)
p2 Minimum frequency of vertices (words)
p3 Edges with weights above this value are removed
p4 Context containing fewer words are not processed
p5 Minimum number of adjacent vertices in a hub
p6 Max. mean weight of the adjacent vertices of a hub
p7 Minimum frequency of hubs
p8 Number of selected hubs
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Vr opt Pr fr (p7) and Pr fx (p8)
Vr Range Best Range Best

p1 5 1-3 1 1-3 2
p2 10 2-4 3 2-4 3
p3 .9 .3-.7 .4 .4-.5 .5
p4 4 4 4 4 4
p5 6 1-7 1 – –
p6 .8 .6-.95 .95 – –
p7 .001 .0009-.003 .001 .0015-.0025 .0016
p8 – – – 50-65 55

Table 1: Parameters of the HyperLex algorithm

Both strategies to select hubs from the coocur-
rence graph (cf. Sect. 2.2) share parameters p1–
p4. The algorithm proposed by Véronis uses p5–
p6 as requirements for hubs, and p7 as the thresh-
old to stop looking for more hubs: candidates with
frequency below p7 are not eligible to be hubs.

Regarding PageRank the original formulation
does not have any provision for determining which
are hubs and which not, it just returns a weighted
list of vertices. We have experimented with two
methods: a threshold for the frequency of the hubs
(as before, p7), and a fixed number of hubs for ev-
ery target word (p8). For a shorthand we use Vr for
Veronis’ original formulation with default param-
eters, Vr opt for optimized parameters, and Pr fr
and Pr fx respectively for the two ways of using
PageRank.

Table 1 lists the parameters of the HyperLex al-
gorithm, with the default values proposed for them
in the original work (second column), the ranges
that we explored, and the optimal values according
to the supervised recall evaluation (cf. Sect. 3.1).
For Vr opt we tried 6700 combinations. PageRank
has less parameters, and we also used the previous
optimization of Vr opt to limit the range of p4, so
Pr fr and Pr fx get respectively 180 and 288 com-
binations.

5 Experiment setting and results

To evaluate the HyperLex algorithm in a standard
benchmark, we will first focus on a more exten-
sive evaluation of S3LS and then see the results
in S3AW (cf. Sec. 5.4). Following the design
for evaluation explained in Section 3, we use the
standard train-test split for the supervised evalua-
tion, while the unsupervised evaluation only uses
the test part.

Table 2 shows the results of the 4 variants of
our algorithm. Vr stands for the original Vero-
nis algorithm with default parameters, Vr opt to
our optimized version, and Pr fr and Pr fx to the

Sup. Unsupervised
Rec. Entr. Pur. FS

Vr 59.9 50.3 58.2 44.1
Vr opt 64.6 18.3 78.5 35.0
Pr fr 64.5 18.7 77.2 34.3
Pr fx 62.2 25.4 72.2 33.3
1ex-1hub 40.1 0.0 100.0 14.5
MFS 54.5 53.2 52.8 28.3
S3LS-best 72.9 19.9 67.3 63.8
kNN-all 70.6 21.2 64.0 60.6
kNN-BoW 63.5 22.6 61.1 57.1
Cymfony (10%-S3LS) 57.9 25.0 55.7 52.0
Prob0 (MFS-S3) 54.2 28.8 49.3 46.0
clr04 (MFS-Sc) 48.8 25.8 52.5 46.2
Ciaosenso (MFS-Sc) 48.7 28.0 50.3 48.8
duluth-senserelate 47.5 27.2 51.1 44.9

Table 2: Results for the nouns in S3LS using the 4 meth-
ods (Vr, Vr opt, Pr fr and Pr fx). Each of the methods was
optimized in S2LS using the 4 evaluation criteria (Supervised
recall, Entropy, Purity and Fscore) and evaluated on S3LS ac-
cording to the respective evaluation criteria (in the columns).
Two baselines, plus 3 supervised and 5 unsupervised systems
are also shown. Bold is used for best results in each category.

two variants of PageRank. In the columns we find
the evaluation results according to our 4 criteria.
For supervised evaluation we indicate only recall,
which in our case equals precision, as the cover-
age is 100% in all cases (values returned by the
official Senseval scorer). We also include 2 base-
lines, a system returning a single cluster (that of
the most frequent sense, MFS), and another re-
turning one cluster for each example (1ex-1hub).
The last rows list the results for 3 supervised and
5 unsupervised systems (see Sect. 5.1). We will
comment on the result of this table from different
perspectives.

5.1 Supervised evaluation

In this subsection we will focus in the first four
evaluation rows in Table 2. All variants of the al-
gorithm outperform by an ample margin the MFS
and the 1ex-1hub baselines when evaluated on
S3LS recall. This means that the method is able
to learn useful hubs. Note that we perform this su-
pervised evaluation just for comparison with other
systems, and to prove that we are able to provide
high performance WSD.

The default parameter setting (Vr) gets the
worst results, followed by the fixed-hub imple-
mentation of PageRank (Pr fx). Pagerank with
frequency threshold (Pr fr) and the optimized
Veronis (Vr opt) obtain a 10 point improvement
over the MFS baseline with very similar results
(the difference is not statistically significant ac-
cording to McNemar’s test at 95% confidence
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level).

Table 2 also shows the results of three super-
vised systems. These results (and those of the
other unsupervised systems in the table) where ob-
tained from the Senseval website, and the only
processing we did was to filter nouns. S3LS-best
stands for the the winner of S3LS (Mihalcea et al.,
2004), which is 8.3 points over our method. We
also include the results of two of our in-house sys-
tems. kNN-all is a state-of-the-art system (Agirre
et al., 2005) using wide range of local and top-
ical features, and only 2.3 points below the best
S3LS system. kNN-BoW which is the same super-
vised system, but restricted to bag-of-words fea-
tures only, which are the ones used by our graph-
based systems. The table shows that Vr opt and
Pr fr are one single point from kNN-BoW, which
is an impressive result if we take into account the
information loss of the mapping step and that we
tuned our parameters on a different set of words.

The last 5 rows of Table 2 show several un-
supervised systems, all of which except Cym-
fony (Niu et al., 2005) and (Purandare and Ped-
ersen, 2004) participated in S3LS (check (Mihal-
cea et al., 2004) for further details on the systems).
We classify them according to the amount of “su-
pervision” they have: some have access to most-
frequent information (MFS-S3 if counted over
S3LS, MFS-Sc if counted over SemCor), some use
10% of the S3LS training part for mapping (10%-
S3LS). Only one system (Duluth) did not use in
any way hand-tagged corpora.

The table shows that Vr opt and Pr fr are more
than 6 points above the other unsupervised sys-
tems, but given the different typology of unsuper-
vised systems, it’s unfair to draw definitive con-
clusions from a raw comparison of results. The
system coming closer to ours is that described in
(Niu et al., 2005). They use hand tagged corpora
which does not need to include the target word to
tune the parameters of a rather complex clustering
method which does use local features. They do use
the S3LS training corpus for mapping. For every
sense of the target word, three of its contexts in
the train corpus are gathered (around 10% of the
training data) and tagged. Each cluster is then re-
lated with its most frequent sense. The mapping
method is similar to ours, but we use all the avail-
able training data and allow for different hubs to
be assigned to the same sense.

Another system similar to ours is (Purandare

and Pedersen, 2004), which unfortunately was
evaluated on Senseval 2 data and is not included
in the table. The authors use first and second or-
der bag-of-word context features to represent each
instance of the corpus. They apply several cluster-
ing algorithms based on the vector space model,
limiting the number of clusters to 7. They also
use all available training data for mapping, but
given their small number of clusters they opt for a
one-to-one mapping which maximizes the assign-
ment and discards the less frequent clusters. They
also discard some difficult cases, like senses and
words with low frequencies (10% of total occur-
rences and 90, respectively). The different test set
and mapping system make the comparison diffi-
cult, but the fact that the best of their combina-
tions beats MFS by 1 point on average (47.6% vs.
46.4%) for the selected nouns and senses make us
think that our results are more robust (nearly 10%
over MFS).

5.2 Clustering evaluation
The three columns corresponding to fully unsu-
pervised evaluation in Table 2 show that all our
3 optimized variants easily outperform the MFS
baseline. The best results are in this case for the
optimized Veronis, followed closely by Pagerank
with frequency threshold.

The comparison with the supervised and unsu-
pervised systems shows that our system gets better
entropy and purity values, but worse FScore. This
can be explained by the bias of entropy and purity
towards smaller and more numerous clusters. In
fact the 1ex-1hub baseline obtains the best entropy
and purity scores. Our graph-based system tends
to induce a large number of senses (with averages
of 60 to 70 senses). On the other hand FScore pe-
nalizes the systems inducing a different number of
clusters. As the supervised and unsupervised sys-
tems were designed to return the same (or similar)
number of senses as in the gold standard, they at-
tain higher FScores. This motivated us to compare
the results of the best parameters across evaluation
methods.

5.3 Comparison across evaluation methods
Table 3 shows all 16 evaluation possibilities for
each variant of the algorithm, depending of the
evaluation criteria used in S2LS (in the rows)
and the evaluation criteria used in S3LS (in the
columns). This table shows that the best results (in
bold for each variant) tend to be in the diagonal,
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that is, when the same evaluation criterion is used
for optimization and test, but it is not decisive. If
we take the first row (supervised evaluation) as the
most credible criterion, we can see that optimiz-
ing according to entropy and purity get similar and
sometimes better result (Pr fr and Pr fx). On the
contrary the Fscore yields worse results by far.

This indicates that a purely unsupervised sys-
tem evaluated according to the gold standard
(based on entropy or purity) yields optimal param-
eters similar to the supervised (mapped) version.
This is an important result, as it shows that the
quality in performance does not come from the
mapping step, but from the algorithm and opti-
mal parameter setting. The table shows that op-
timization on purity and entropy criteria do corre-
late with good performance in the supervised eval-
uation.

The failure of FScore based optimization, in our
opinion, indicates that our clustering algorithm
prefers smaller and more numerous clusters, com-
pared to the gold standard. FScore prefers cluster-
ing solutions that have a similar number of clusters
to that of the gold standard, but it is unable to drive
the optimization or our algorithm towards good re-
sults in the supervised evaluation.

All in all, the best results are attained with
smaller and more numerous hubs, a kind of micro-
senses. This effect is the same for all three vari-
ants tried and all evaluation criteria, with Fscore
yielding less clusters. At first we were uncom-
fortable with this behavior, so we checked whether
HyperLex was degenerating into a trivial solution.
This was the main reason to include the 1ex-1hub
baseline, which simulates a clustering algorithm
returning one hub per example, and its precision
was 40.1, well below the MFS baseline. We also
realized that our results are in accordance with
some theories of word meaning, e.g. the “indef-
initely large set of prototypes-within-prototypes”
envisioned in (Cruse, 2000). Ted Pedersen has
also observed a similar behaviour in his vector-
space model clustering experiments (PC). We now
think that the idea of having many micro-senses
is attractive for further exploration, specially if we
are able to organize them into coarser hubs in fu-
ture work.

5.4 S3AW task

In the Senseval-3 all-words task (Snyder and
Palmer, 2004) all words in three document ex-

Sup. Unsupervised
Alg. Opt. Rec. Entr. Pur. FS
Vr Sup 64.6 18.4 77.9 30.0

Ent 64.6 18.3 78.3 29.1
Pur 63.7 19.0 78.5 30.8
Fsc 60.4 38.2 63.5 35.0

Pr fr Sup 64.5 20.8 76.1 28.6
Ent 64.6 18.7 77.7 27.2
Pur 64.7 19.3 77.2 27.6
Fsc 61.2 36.0 65.2 34.3

Pr fx Sup 62.2 28.2 69.3 29.5
Ent 63.1 25.4 72.2 28.4
Pur 63.1 25.4 72.2 28.4
Fsc 54.5 32.9 66.5 33.3

Table 3: Cross-evaluation comparison. In the rows the eval-
uation method for optmizing over S2LS is shown, and in the
columns the result over S3LS according to the different eval-
uation methods.

recall
kuaw 70.9
Pr fr 70.7
Vr opt 70.1
GAMBL 70.1
MFS 69.9
LCCaw 68.6

Table 4: Results for the nouns in S3AW, compared to the
most frequent baseline and the top three supervised systems

cerpts need to be disambiguated. Given the
scarce amount of training data available in Sem-
cor (Miller et al., 1993), supervised systems barely
improve upon the simple most frequent heuris-
tic. In this setting the unsupervised evaluation
schemes are not feasible, as many of the target
words occur only once, so we used the map-
ping strategy with Semcor to produce the required
WordNet senses in the output.

Table 4 shows the results for our systems with
the best parameters according to the supervised
criterion on S2LS, plus the top three S3AW super-
vised systems and the most frequent sense heuris-
tic. In order to focus the comparison, we only kept
noun occurrences of all systems and filtered out
multiwords, target words with two different lem-
mas and unknown tags, leaving a total of 857 oc-
currences of nouns. We can see that Pr fr is only
0.2 from the S3AW winning system, demonstrat-
ing that our unsupervised graph-based systems
that use Semcor for mapping are nearly equivalent
to the most powerful supervised systems to date.
In fact, the differences in performance for the sys-
tems are not statistically significant (McNemar’s
test at 95% significance level).
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6 Conclusions and further work

This paper has explored the use of two graph algo-
rithms for corpus-based disambiguation of nomi-
nal senses. We have shown that the parameter op-
timization learnt over a small set of nouns signifi-
cantly improves the performance for all nouns, and
produces a system which (1) in a lexical-sample
setting (Senseval 3 dataset) is 10 points over the
Most-Frequent-Sense baseline, 1 point over a su-
pervised system using the same kind of informa-
tion (i.e. bag-of-words features), and 8 points be-
low the best supervised system, and (2) in the all-
words setting is à la par the best supervised sys-
tem. The performance of PageRank is statistically
the same as that of HyperLex, with the advantage
of PageRank of using less parameters.

In order to compete on the same test set as su-
pervised systems, we do use hand-tagged data, but
only to do the mapping from the induced senses
into the gold standard senses. In fact, we believe
that using our WSD system as a purely unsuper-
vised system (i.e. returning just hubs), the per-
fomance would be higher, as we would avoid the
information loss in the mapping. We would like
to test this on Information Retrieval, perhaps on a
setting similar to that of (Schütze, 1998), which
would allow for an indirect evaluation of the qual-
ity and a comparison with supervised WSD system
on the same grounds.

We have also shown that the optimization ac-
cording to purity and entropy values (which does
not need the supervised mapping step) yields very
good parameters, comparable to those obtained in
the supervised optimization strategy. This indi-
cates that we are able to optimize the algorithm
in a completely unsupervised fashion for a small
number of words, and then carry over to tag new
text with the induced senses.

Regarding efficiency, our implementation of
HyperLex is extremely fast. Trying the 6700 com-
binations of parameters takes 5 hours in a 2 AMD
Opteron processors at 2GHz and 3Gb RAM. A
single run (building the MST, mapping and tag-
ging the test sentences) takes only 16 sec. For this
reason, even if an on-line version would be in prin-
ciple desirable, we think that this batch version is
readily usable as a standalone word sense disam-
biguation system.

Both graph-based methods and vector-based
clustering methods rely on local information, typ-
ically obtained by the occurrences of neighbor

words in context. The advantage of graph-
based techniques over over vector-based cluster-
ing might come from the fact that the former are
able to measure the relative importance of a vertex
in the whole graph, and thus combine both local
and global cooccurrence information.

For the future, we would like to look more
closely the micro-senses induced by HyperLex,
and see if we can group them into coarser clus-
ters. We would also like to integrate different
kinds of information, specially the local or syn-
tactic features so successfully used by supervised
systems, but also more heterogeneous information
from knowledge bases.

Graph models have been very successful in
some settings (e.g. the PageRank algorithm of
Google), and have been rediscovered recently
for natural language tasks like knowledge-based
WSD, textual entailment, summarization and de-
pendency parsing. Now that we have set a ro-
bust optimization and evaluation framework we
would like to test other such algorithms (e.g.
HITS (Kleinberg, 1999)) in the same conditions.
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Abstract

In this paper we approach word sense
disambiguation and information extrac-
tion as a unified tagging problem. The
task consists of annotating text with the
tagset defined by the 41 Wordnet super-
sense classes for nouns and verbs. Since
the tagset is directly related to Wordnet
synsets, the tagger returns partial word
sense disambiguation. Furthermore, since
the noun tags include the standard named
entity detection classes – person, location,
organization, time, etc. – the tagger, as
a by-product, returns extended named en-
tity information. We cast the problem of
supersense tagging as a sequential label-
ing task and investigate it empirically with
a discriminatively-trained Hidden Markov
Model. Experimental evaluation on the
main sense-annotated datasets available,
i.e., Semcor and Senseval, shows consid-
erable improvements over the best known
“first-sense” baseline.

1 Introduction

Named entity recognition (NER) is the most stud-
ied information extraction (IE) task. NER typi-
cally focuses on detecting instances of “person”,
“location”, “organization” names and optionally
instances of “miscellaneous” or “time” categories.
The scalability of statistical NER allowed re-
searchers to apply it successfully on large col-
lections of newswire text, in several languages,
and biomedical literature. Newswire NER per-
formance, in terms of F-score, is in the upper

∗The first author is now at Yahoo! Research. The tag-
ger described in this paper is free software and can be down-
loaded from http://www.loa-cnr.it/ciaramita.html.

80s (Carreras et al., 2002; Florian et al., 2003),
while Bio-NER accuracy ranges between the low
70s and 80s, depending on the data-set used for
training/evaluation (Dingare et al., 2005). One
shortcoming of NER is its over-simplified onto-
logical model, leaving instances of other poten-
tially informative categories unidentified. Hence,
the utility of named entity information is limited.
In addition, instances to be detected are mainly re-
stricted to (sequences of) proper nouns.

Word sense disambiguation (WSD) is the task
of deciding the intended sense for ambiguous
words in context. With respect to NER, WSD
lies at the other end of the semantic tagging spec-
trum, since the dictionary defines tens of thou-
sand of very specific word senses, including NER
categories. Wordnet (Fellbaum, 1998)1, possibly
the most used resource for WSD, defines word
senses for verbs, common and proper nouns. Word
sense disambiguation, at this level of granularity,
is a complex task which resisted all attempts of
robust broad-coverage solutions. Many distinc-
tions are too subtle to be captured automatically,
and the magnitude of the class space – several
orders larger than NER’s – makes it hard to ap-
proach the problem with sophisticated, but scal-
able, machine learning methods. Lastly, even if
the methods would scale up, there are not enough
manually tagged data, at the word sense level, for
training a model. The performance of state of
the art WSD systems on realistic evaluations is
only comparable to the “first sense” baseline (cf.
Section 5.3). Notwithstanding much research, the
benefits of disambiguated lexical information for
language processing are still mostly speculative.

This paper presents a novel approach to broad-

1When referring to Wordnet, throughout the paper, we
mean Wordnet version 2.0.
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NOUNS
SUPERSENSE NOUNS DENOTING SUPERSENSE NOUNS DENOTING
act acts or actions object natural objects (not man-made)
animal animals quantity quantities and units of measure
artifact man-made objects phenomenon natural phenomena
attribute attributes of people and objects plant plants
body body parts possession possession and transfer of possession
cognition cognitive processes and contents process natural processes
communication communicative processes and contents person people
event natural events relation relations between people or things or ideas
feeling feelings and emotions shape two and three dimensional shapes
food foods and drinks state stable states of affairs
group groupings of people or objects substance substances
location spatial position time time and temporal relations
motive goals Tops abstract terms for unique beginners

VERBS
SUPERSENSE VERBS OF SUPERSENSE VERBS OF
body grooming, dressing and bodily care emotion feeling
change size, temperature change, intensifying motion walking, flying, swimming
cognition thinking, judging, analyzing, doubting perception seeing, hearing, feeling
communication telling, asking, ordering, singing possession buying, selling, owning
competition fighting, athletic activities social political and social activities and events
consumption eating and drinking stative being, having, spatial relations
contact touching, hitting, tying, digging weather raining, snowing, thawing, thundering
creation sewing, baking, painting, performing

Table 1. Nouns and verbs supersense labels, and short description (from the Wordnet documentation).

coverage information extraction and word sense
disambiguation. Our goal is to simplify the disam-
biguation task, for both nouns and verbs, to a level
at which it can be approached as any other tagging
problem, and can be solved with state of the art
methods. As a by-product, this task includes and
extends NER. We define a tagset based on Word-
net’s lexicographers classes, or supersenses (Cia-
ramita and Johnson, 2003), cf. Table 1. The size
of the supersense tagset allows us to adopt a struc-
tured learning approach, which takes local depen-
dencies between labels into account. To this ex-
tent, we cast the supersense tagging problem as a
sequence labeling task and train a discriminative
Hidden Markov Model (HMM), based on that of
Collins (2002), on the manually annotated Semcor
corpus (Miller et al., 1993). In two experiments
we evaluate the accuracy of the tagger on the Sem-
cor corpus itself, and on the English “all words”
Senseval 3 shared task data (Snyder and Palmer,
2004). The model outperforms remarkably the
best known baseline, the first sense heuristic – to
the best of our knowledge, for the first time on the
most realistic “all words” evaluation setting.

The paper is organized as follows. Section 2
introduces the tagset, Section 3 discusses related
work and Section 4 the learning model. Section 5
reports on experimental settings and results. In
Section 6 we summarize our contribution and con-
sider directions for further research.

2 Supersense tagset

Wordnet (Fellbaum, 1998) is a broad-coverage
machine-readable dictionary which includes
11,306 verbs mapped to 13,508 word senses,
called synsets, and 114,648 common and proper
nouns mapped to 79,689 synsets. Each noun or
verb synset is associated with one of 41 broad
semantic categories, in order to organize the
lexicographer’s work of updating and managing
the lexicon (see Table 1). Since each lexicog-
rapher category groups together many synsets
they have been also called supersenses (Ciaramita
and Johnson, 2003). There are 26 supersenses
for nouns, 15 for verbs. This coarse-grained
ontology has a number of attractive features, for
the purpose of natural language processing. First,
the small size of the set makes it possible to build
a single tagger which has positive consequences
on robustness. Second, classes, although fairly
general, are easily recognizable and not too
abstract or vague. More importantly, similar word
senses tend to be merged together.

As an example, Table 2 summarizes all senses
of the noun “box”. The 10 synsets are mapped
to 6 supersenses: “artifact”, “quantity”, “shape”,
“state”, “plant”, and “act”. Three similar senses
(2), (7) and (9), and the probably related (8), are
merged in the “artifact” supersense. This process
can help disambiguation because it removes sub-
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1. {box} (container) ”he rummaged through a box of
spare parts” - n.artifact

2. {box, loge} (private area in a theater or grandstand
where a small group can watch the performance) ”the
royal box was empty” - n.artifact

3. {box, boxful} (the quantity contained in a box) ”he
gave her a box of chocolates” - n.quantity

4. {corner, box} (a predicament from which a skillful or
graceful escape is impossible) ”his lying got him into a
tight corner” - n.state

5. {box} (a rectangular drawing) ”the flowchart contained
many boxes” - n.shape

6. {box, boxwood} (evergreen shrubs or small trees) -
n.plant

7. {box} (any one of several designated areas on a ball
field where the batter or catcher or coaches are posi-
tioned) ”the umpire warned the batter to stay in the bat-
ter’s box” - n.artifact

8. {box, box seat} (the driver’s seat on a coach) ”an armed
guard sat in the box with the driver” - n.artifact

9. {box} (separate partitioned area in a public place for a
few people) ”the sentry stayed in his box to avoid the
cold” - n.artifact

10. {box} (a blow with the hand (usually on the ear)) ”I
gave him a good box on the ear” - n.act

Table 2. The noun “box” in Wordnet: each line lists one
synset, the set of synonyms, a definition, an optional
example sentence, and the supersense label.

tle distinctions, which are hard to discriminate and
increase the size of the class space. One possi-
ble drawback is that senses which one might want
to keep separate, e.g., the most common sense
box/container (1), can be collapsed with others.
One might argue that all “artifact” senses share
semantic properties which differentiate them from
the other senses and can support useful semantic
inferences. Unfortunately, there are no general so-
lutions to the problem of sense granularity. How-
ever, major senses identified by Wordnet are main-
tained at the supersense level. Hence, supersense-
disambiguated words are also, at least partially,
synset-disambiguated.

Since Wordnet includes both proper and com-
mon nouns, the new tagset suggests an extended
notion of named entity. As well as the usual
NER categories, “person”, “group”, “location”,
and “time”2, supersenses include categories such
as artifacts, which can be fairly frequent, but usu-
ally neglected. To a greater extent than in stan-
dard NER, research in Bio-NER has focused on
the adoption of richer ontologies for information
extraction. Genia (Ohta et al., 2002), for exam-
ple, is an ontology of 46 classes – with annotated

2The supersense category “group” is rather a superordi-
nate of “organization” and has wider scope.

corpus – designed for supporting information ex-
traction in the molecular biology domain. In addi-
tion, there is growing interest for extracting rela-
tions between entities, as a more useful type of IE
(cf. (Rosario and Hearst, 2004)).

Supersense tagging is inspired by similar con-
siderations, but in a domain-independent setting;
e.g., verb supersenses can label semantic interac-
tions between nominal concepts. The following
sentence (Example 1), extracted from the data –
further described in Section 5.1 – shows the infor-
mation captured by the supersense tagset:

(1) Clara Harrisn.person, one of the
guestsn.person in the boxn.artifact, stood
upv.motion and demandedv.communication

watern.substance.

As Example 1 shows there is more information
that can be extracted from a sentence than just
the names; e.g. the fact that “Clara Harris” and
the following “guests” are both tagged as “person”
might suggest some sort of co-referentiality, while
the coordination of verbs of motion and commu-
nication, as in “stood up and demanded”, might be
useful for language modeling purposes. In such a
setting, structured learning methods, e.g., sequen-
tial, can help tagging by taking the senses of the
neighboring words into account.

3 Related Work

Sequential models are common in NER, POS tag-
ging, shallow parsing, etc.. Most of the work in
WSD, instead, has focused on labeling each word
individually, possibly revising the assignments of
senses at the document level; e.g., following the
“one sense per discourse” hypothesis (Gale et al.,
1992). Although it seems reasonable to assume
that occurrences of word senses in a sentence can
be correlated, hence that structured learning meth-
ods could be successful, there has not been much
work on sequential WSD. Segond et al. (1997) are
possibly the first to have applied an HMM tag-
ger to semantic disambiguation. Interestingly, to
make the method more tractable, they also used
the supersense tagset and estimated the model on
Semcor. By cross-validation they show a marked
improvement over the first sense baseline. How-
ever, in (Segond et al., 1997) the tagset is used dif-
ferently, by defining equivalence classes of words
with the same set of senses. From a similar per-
spective, de Loupy et al. (de Loupy et al., 1998)
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also investigated the potential advantages of using
HMMs for disambiguation. More recently, vari-
ants of the generative HMM have been applied to
WSD (Molina et al., 2002; Molina et al., 2004)
and evaluated also on Senseval data, showing per-
formance comparable to the first sense baseline.

Previous work on prediction at the supersense
level (Ciaramita and Johnson, 2003; Curran, 2005)
has focused on lexical acquisition (nouns exclu-
sively), thus aiming at word type classification
rather than tagging. As far as applications are con-
cerned, it has been shown that supersense infor-
mation can support supervised WSD, by provid-
ing a partial disambiguation step (Ciaramita et al.,
2003). In syntactic parse re-ranking supersenses
have been used to build useful latent semantic fea-
tures (Koo and Collins, 2005). We believe that
supersense tagging has the potential to be useful,
in combination with other sources of information
such as part of speech, domain-specific NER mod-
els, chunking or shallow parsing, in tasks such
as question answering and information extraction
and retrieval, where large amounts of text need
to be processed. It is also possible that this kind
of shallow semantic information can help build-
ing more sophisticated linguistic analysis as in full
syntactic parsing and semantic role labeling.

4 Sequence Tagging

We take a sequence labeling approach to learn-
ing a model for supersense tagging. Our goal is
to learn a function from input vectors, the obser-
vations from labeled data, to response variables,
the supersense labels. POS tagging, shallow pars-
ing, NP-chunking and NER are all examples of
sequence labeling tasks in which performance can
be significantly improved by optimizing the choice
of labeling over whole sequences of words, rather
than individual words. The limitations of the gen-
erative approach to sequence tagging, i. e. Hidden
Markov Models, have been overcome by discrim-
inative approaches proposed in recent years (Mc-
Callum et al., 2000; Lafferty et al., 2001; Collins,
2002; Altun et al., 2003). In this paper we apply
perceptron trained HMMs originally proposed in
(Collins, 2002).

4.1 Perceptron-trained HMM

HMMs define a probabilistic model for observa-
tion/label sequences. The joint model of an obser-

vation/label sequence (x,y), is defined as:

P (y,x) =
∏

i

P (yi|yi−1)P (xi|yi)), (2)

where yi is the ith label in the sequence and xi is
the ith word. In the NLP literature, a common ap-
proach is to model the conditional distribution of
label sequences given the label sequences. These
models have several advantages over generative
models, such as not requiring questionable inde-
pendence assumptions, optimizing the conditional
likelihood directly and employing richer feature
representations. This task can be represented as
learning a discriminant function F : X ×Y → IR,
on a training data of observation/label sequences,
where F is linear in a feature representation Φ de-
fined over the joint input/output space

F (x,y;w) = 〈w,Φ(x,y)〉. (3)

Φ is a global feature representation, mapping each
(x,y) pair to a vector of feature counts Φ(x,y) ∈
IRd, where d is the total number of features. This
vector is given by

Φ(x,y) =
d∑

i=1

|y|∑
j=1

φi(yj−1, yj ,x). (4)

Each individual feature φi typically represents a
morphological, contextual, or syntactic property,
or also the inter-dependence of consecutive la-
bels. These features are described in detail in Sec-
tion 4.2. Given an observation sequence x, we
make a prediction by maximizing F over the re-
sponse variables:

fw(x) = arg max
y∈Y

F (x,y;w). (5)

This involves computing the Viterbi decoding with
respect to the parameter vector w ∈ IRd. The
complexity of the Viterbi algorithm scales linearly
with the length of the sequence.

There are different ways of estimating w for the
described model. We use the perceptron algorithm
for sequence tagging (Collins, 2002). The per-
ceptron algorithm focuses on minimizing the error
rate, without involving any normalization factors.
This property makes it very efficient which is a de-
sirable feature in a task dealing with a large tagset
such as ours. Additionally, the performance of
perceptron-trained HMMs is very competitive on
a number of tasks; e.g., in shallow parsing, where
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Algorithm 1 Hidden Markov average perceptron
algorithm.

1: Initialize w0 = ~0
2: for t = 1...., T do
3: Choose xi

4: Compute ŷ = arg maxy∈Y F (xi,y;w)
5: if yi 6= ŷ then
6: wt+1 ← wt + Φ(xi,yi)− Φ(xi, ŷ)
7: end if
8: w = 1

T

∑
t wt

9: end for
10: return w

the perceptron performance is comparable to that
of Conditional Random Field models (Sha and
Pereira, 2003), The tendency to overfit of the per-
ceptron can be mitigated in a number of ways in-
cluding regularization and voting. Here we apply
averaging and straightforwardly extended Collins
algorithm, summarized in Algorithm 1.

4.2 Features

We used the following combination of
spelling/morphological and contextual fea-
tures. For each observed word xi in the data φ
extracts the following features:

1. Words: xi, xi−1, xi−2, xi+1, xi+2;

2. First sense: supersense baseline prediction
for xi, fs(xi), cf. Section 5.3;

3. Combined (1) and (2): xi + fs(xi);

4. Pos: posi (the POS of xi), posi−1, posi−2,
posi+1, posi+2, posi[0], posi−1[0], posi−2[0],
posi+1[0], posi+2[0], pos commi if xi’s POS
tags is “NN” or “NNS” (common nouns), and
pos propi if xi’s POS is “NNP” or “NNPS”
(proper nouns);

5. Word shape: sh(xi), sh(xi−1), sh(xi−2),
sh(xi+1), sh(xi+2), where sh(xi) is as
described below. In addition shi = low
if the first character of xi is lowercase,
shi = cap brk if the first character of xi is up-
percase and xi−1 is a full stop, question or
exclamation mark, or xi is the first word of
the sentence, shi = cap nobrk otherwise;

6. Previous label: supersense label yi−1.

Word features (1) are morphologically simplified
using the morphological functions of the Word-
net library. The first sense feature (2) is the label
predicted for xi by the baseline model, cf. Sec-
tion 5.3. POS labels (4) were generated using
Brants’ TnT tagger (Brants, 2002). POS features
of the form posi[0] extract the first character from
the POS label, thus providing a simplified repre-
sentation of the POS tag. Finally, word shape fea-
tures (5) are regular expression-like transforma-
tion in which each character c of a string s is sub-
stituted with X if c is uppercase, if lowercase, c
is substituted with x, if c is a digit it is substituted
with d and left as it is otherwise. In addition each
sequence of two or more identical characters c is
substituted with c∗. For example, for s = “Merrill
Lynch& Co.”, sh(s) = Xx ∗ Xx ∗&Xx..

Exploratory experiments with richer feature
sets, including syntactic information, affixes, and
topic labels associated with words, did not result
in improvements in terms of performance. While
more experiments are needed to investigate the
usefulness of other sources of information, the fea-
ture set described above, while basic, offers good
generalization properties.

5 Experiments

5.1 Data

We experimented with the following data-sets3.
The Semcor corpus (Miller et al., 1993), a frac-
tion of the Brown corpus (Kuc̆era and Francis,
1967) which has been manually annotated with
Wordnet synset labels. Named entities of the cat-
egories “person”, “location” and “group” are also
annotated. The original annotation with Wordnet
1.6 synset IDs has been converted to the most re-
cent version 2.0 of Wordnet. Semcor is divided
in three parts: “brown1” and “brown2”, here re-
ferred to as “SEM”, in which nouns, verbs, adjec-
tives and adverbs are annotated. In addition, the
section “brownv”, “SEMv” here, contains annota-
tions only for verbs. We also experimented with
the Senseval-3 English all-words tasks data (Sny-
der and Palmer, 2004), here called “SE3”. The
Senseval all-words task evaluates the performance
of WSD systems on all open class words in com-
plete documents. The Senseval-3 data consists of
two Wall Street Journal Articles, “wsj 1778” and

3These datasets are available in a con-
sistent format and can be downloaded from
http://www.cs.unt.edu/ rada/downloads.html
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Dataset
Counts SE3 SEM SEMv
Sentences 300 20,138 17,038
Tokens 5,630 434,774 385,546
Supersenses 1,617 135,135 40,911
Verbs 725 47,710 40,911
Nouns 892 87,425 0
Avg-poly-N-WS 4.66 4.41 4.33
Avg-poly-N-SS 2.86 2.75 2.66
Avg-poly-V-WS 11.17 10.87 11.05
Avg-poly-V-SS 4.20 4.11 4.16

Table 3. Statistics of the datasets. The row “Super-
senses” lists the number of instances of supersense
labels, partitioned, in the following two rows, between
verb and noun supersense labels. The lowest four rows
summarize average polysemy figures at the synset and
supersense level for both nouns and verbs.

“wsj 1695”, and a fiction excerpt, “cl 23”, from
the unannotated portion of the Brown corpus. Ta-
ble 3 summarizes a few statistics about the compo-
sition of the datasets. The four lower rows report
the average polysemy of nouns (“N”) and verbs
(“V”), in each dataset, both at the synset level
(“WS”) and supersense (“SS”) level. The average
number of senses decreases significantly when the
more general sense inventory is considered.

We substituted the corresponding supersense to
each noun and verb synset in all three data-sets:
SEM, SEMv and SE3. All other tokens were
labeled “0”. The supersense label “noun.Tops”
refers to 45 synsets which lie at the very top
of the Wordnet noun hierarchy. Some of these
synsets are expressed by very general nouns such
as “biont”, “benthos”, “whole”, and “nothing”.
However, others undoubtedly refer to other super-
senses, for which they provide the label, such as
“food”, “person”, “plant” or “animal”. Since these
nouns tend to be fairly frequent, it is confusing
and inconsistent to label them “noun.Tops”; e.g.,
nouns such as “chowder” and “Swedish meatball”
would be tagged as “noun.food”, but the noun
“food” would be tagged as “noun.Tops”. For this
reason, in all obvious cases, we substituted the
“noun.Tops” label with the more specific super-
sense label for the noun4.

The SEMv dataset only includes supersense la-
bels for verbs. In order to avoid unwanted false
negatives, that is, thousands of nouns labeled “0”,

4The nouns which are left with the “noun.Top” label are:
entity, thing, anything, something, nothing, object, living
thing, organism, benthos, heterotroph, life, and biont.

we applied the following procedure. Rather than
using the full sentences from the SEMv dataset,
from each sentence we generated the fragments in-
cluding a verb but no common or proper nouns;
e.g., from a sentence such as “Karns’ ruling per-
tainedverb.stative to eight of the 10 cases.” only the
fragment “pertainedverb.stative to eight of the 10”
is extracted and used for training.

Sometimes more than one label is assigned to
a word, in all data-sets. In these cases we adopted
the heuristic of only using the first label in the data
as the correct synset/supersense. We leave the ex-
tension of the tagger to the multilabel case for fu-
ture research. As for now, we can expect that this
solution will simply lower, somewhat, both the
baseline and the tagger performance. Finally, we
adopted a beginning (B) and continuation of entity
(I) plus no label (0), encoding; i.e., the actual class
space defines 83 labels.

5.2 Setup

The supersense tagger was trained on the Semcor
datasets SEM and SEMv. The only free parame-
ter to set in evaluation is the number of iterations
to perform T (cf. Algorithm 1). We evaluated the
model’s accuracy on Semcor by splitting the SEM
data randomly in training, development and evalu-
ation. In a 5-fold cross-validation setup the tagger
was trained on 4/5 of the SEM data, the remain-
ing data was split in two halves, one used to fix T
the other for evaluating performance on test. The
full SEMv data was always added to the training
portion of SEM. We also evaluated the model on
the Senseval-3 data, using the same value for T set
by cross-validation on the SEM data5. The order-
ing of the training instances is randomized across
different runs, therefore the algorithm outputs dif-
ferent results after each run, even if the evaluation
set is fixed, as is the case for the Senseval evalu-
ation. The variance in the results on the SE3 data
was measured in this way.

5.3 Baseline tagger

The first sense baseline is the supersense of the
most frequent synset for a word, according to
Wordnet’s sense ranking. This baseline is very
competitive in WSD tasks, and it is extremely hard
to improve upon even slightly. In fact, the baseline
has been proposed as a good alternative to WSD

5On average T is equal to 12 times the size of the training
data.
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Semcor Senseval-3
Method Recall Precision F-score [σ] Recall Precision F-score [σ]
Rand 42.99 38.17 40.44 42.09 35.84 38.70
Baseline 69.25 63.90 66.47 68.65 60.10 64.09
Supersense-Tagger 77.71 76.65 77.18 0.45 73.74 67.60 70.54 0.21

Table 4. Summary of results for random and first sense baselines and supersense tagger, σ is the standard error
computed on the five trials results.

altogether (cf. (McCarthy et al., 2004)). For this
reason we include the first sense prediction as one
of the features of our tagging model.

We apply the heuristic as follows. First, in each
sentence, we identify the longest sequence which
has an entry in Wordnet as either noun or verb.
We carry out this step using the Wordnet’s library
functions, which perform also morphological sim-
plification. Hence, in Example 1 the entry “stand
up” is detected, although also “stand” has an en-
try in Wordnet. Then, each word identified in
this way is assigned its most frequent sense – the
only one available if the word is unambiguous. To
reduce the number of candidate supersenses we
distinguish between common and proper nouns;
e.g. “Savannah” (city/river) is distinguished from
“savannah” (grassland). This method improves
slightly the accuracy of the baseline which does
not distinguish between different types of nouns.

5.4 Results
Table 4 summarizes overall performance6. The
first line shows the accuracy of a baseline which
assigns possible supersenses of identified words at
random. The second line shows the performance
of the first sense baseline (cf. Section 5.3), the
marked difference between the two is a measure of
the robustness of the first sense heuristic. On the
Semcor data the tagger improves over the base-
line by 10.71%, 31.19% error reduction, while
on Senseval-3 the tagger improves over the base-
line by 6.45%, 17.96% error reduction. We can
put these results in context, although indirectly,
by comparison with the results of the Senseval-
3 all words task systems. There, with a base-
line of 62.40%, only 4 out of 26 systems per-
formed above the baseline, with the two best sys-
tems (Mihalcea and Faruque, 2004; Decadt et al.,
2004) achieving an F-score of 65.2% (2.8% im-
provement, 7.45% error reduction). The system
based on the HMM tagger (Molina et al., 2004),

6Scoring was performed with a re-implementation of the
“conlleval” script .

achieved an F-score of 60.9%. The supersense
tagger improves mostly on precision, while also
improving on recall. Overall the tagger achieves
F-scores between 70.5 and 77.2%. If we compare
these figures with the accuracy of NER taggers
the results are very encouraging. Given the con-
siderably larger – one order of magnitude – class
space some loss has to be expected. Experiments
with augmented tagsets in the biomedical domain
also show performance loss with respect to smaller
tagsets; e.g., Kazama et al. (2002) report an F-
score of 56.2% on a tagset of 25 Genia classes,
compared to the 75.9% achieved on the simplest
binary case. The sequence fragments from SEMv
contribute about 1% F-score improvement.

Table 5 focuses on subsets of the evaluation.
The upper part summarizes the results on Sem-
cor for the classes comparable to standard NER’s:
“person”, “group”, “location” and “time”. How-
ever, these categories here are composed of com-
mon nouns as well as proper names/named enti-
ties. On this four tags the tagger achieves an aver-
age 82.46% F-score, not too far from NER results.
The lower portion of Table 5 summarizes the re-
sults on the five most frequent noun and verb su-
persense labels on the Senseval-3 data, providing
more specific evidence for the supersense tagger’s
disambiguation accuracy. The tagger outperforms
the first sense baseline on all categories, with the
exception of “verb.cognition” and “noun.person”.
The latter case has a straightforward explanation,
named entities (e.g., “Phil Haney”, “Chevron” or
“Marina District”) are not annotated in the Sense-
val data, while they are in Semcor. Hence the tag-
ger learns a different model for nouns than the one
used to annotate the Senseval data. Because of this
discrepancy the tagger tends to return false posi-
tives for some categories. In fact, the other noun
categories on which the tagger performs poorly in
SE3 are “group” and “location” (baseline 52.10
tagger 44.72 and baseline 47.62% tagger 47.54%
F-score). Naturally, the lower performance on
Senseval is also explained by the fact that the eval-

600



NER supersenses in Semcor
Supersense-Tagger Baseline

Supersense # Supersenses R P F R P F
n.person 1526 92.04 87.94 89.94 56.29 77.35 65.16
n.group 665 75.38 79.56 77.40 62.42 66.81 64.54
n.location 459 77.21 75.37 76.25 67.88 63.33 65.53
n.time 412 88.36 84.30 86.27 78.26 83.88 80.98

5 most frequent verb supersenses in Senseval-3
Supersense # Supersenses R P F R P F
v.stative 184 80.33 81.30 80.81 72,83 63.81 68.02
v.communication 88 77.53 83.36 80.33 71.91 74.42 73.14
v.motion 81 69.63 64.54 66.98 58.02 60.26 59.12
v.cognition 61 73.44 67.91 70.56 75.41 71.87 73.60
v.change 60 68.33 67.47 67.89 56.67 57.63 57.14

5 most frequent noun supersenses in Senseval-3
Supersense # Supersenses R P F R P F
n.person 148 92.24 60.49 73.06 89.12 79.39 83.97
n.artifact 131 80.91 77.73 79.29 74.24 75.97 75.10
n.act 96 61.46 72.37 66.45 58.33 65.12 61.54
n.cognition 67 45.80 52.87 49.06 49.28 46.58 47.89
n.event 60 70.33 89.83 78.87 71.67 75.44 73.50

Table 5. Summary of results of baseline and tagger on selected subsets of labels: NER categories evaluated on
Semcor (upper section), and 5 most frequent verb (middle) and noun (bottom) categories evaluated on Senseval.

uation comes from different sources than training.

6 Conclusions

In this paper we presented a novel approach to
broad-coverage word sense disambiguation and
information extraction. We defined a tagset based
on Wordnet supersenses, a much simpler and gen-
eral semantic model than Wordnet which, how-
ever, preserves significant polysemy information
and includes standard named entity recognition
categories. We showed that in this framework it is
possible to perform accurate broad-coverage tag-
ging with state of the art sequence learning meth-
ods. The tagger considerably outperformed the
most competitive baseline on both Semcor and
Senseval data. To the best of our knowledge the re-
sults on Senseval data provide the first convincing
evidence of the possibility of improving by con-
siderable amounts over the first sense baseline.

We believe both the tagset and the structured
learning approach contribute to these results. The
simplified representation obviously helps by re-
ducing the number of possible senses for each
word (cf. Table 3). Interestingly, the relative im-
provement in performance is not as large as the
relative reduction in polysemy. This indicates that

sense granularity is only one of the problems in
WSD. More needs to be understood concerning
sources of information, and processes, that affect
word sense selection in context. As far as the tag-
ger is concerned, we applied the simplest feature
representation, more sophisticated features can be
used, e.g., based on kernels, which might con-
tribute significantly by allowing complex feature
combinations. These results also suggest new di-
rections of research within this model. In partic-
ular, the labels occurring in each sequence tend
to coincide with predicates (verbs) and arguments
(nouns and named entities). A sequential depen-
dency model might not be the most accurate at
capturing the grammatical dependencies between
these elements. Other conditional models, e.g.,
designed on head to head, or similar, dependen-
cies could prove more appropriate.

Another interesting issue is the granularity of
the tagset. Supersenses seem more practical then
synsets for investigating the impact of broad-
coverage semantic tagging, but they define a very
simplistic ontological model. A natural evolution
of this kind of approach might be one which starts
by defining a semantic model at an intermediate
level of abstraction (cf. (Ciaramita et al., 2005)).
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Abstract

Named-entity recognition systems extract
entities such as people, organizations, and
locations from unstructured text. Rather
than extract these mentions in isolation,
this paper presents a record extraction sys-
tem that assembles mentions into records
(i.e. database tuples). We construct a
probabilistic model of the compatibility
between field values, then employ graph
partitioning algorithms to cluster fields
into cohesive records. We also investigate
compatibility functions over sets of fields,
rather than simply pairs of fields, to ex-
amine how higher representational power
can impact performance. We apply our
techniques to the task of extracting contact
records from faculty and student home-
pages, demonstrating a 53% error reduc-
tion over baseline approaches.

1 Introduction

Information extraction (IE) algorithms populate a
database with facts discovered from unstructured
text. This database is often used by higher-level
tasks such as question answering or knowledge
discovery. The richer the structure of the database,
the more useful it is to higher-level tasks.

A common IE task is named-entity recognition
(NER), the problem of locating mentions of en-
tities in text, such as people, places, and organi-
zations. NER techniques range from regular ex-
pressions to finite-state sequence models (Bikel et
al., 1999; Grishman, 1997; Sutton and McCallum,
2006). NER can be viewed as method of populat-
ing a database with single-tuple records, e.g. PER-
SON=Cecil Conner or ORGANIZATION= IBM.

We can add richer structure to these single-tuple
records by extracting the associations among en-
tities. For example, we can populate multi-field
records such as a contact record [PERSON=Steve
Jobs, JOBTITLE = CEO, COMPANY = Apple,
CITY = Cupertino, STATE = CA]. The relational
information in these types of records presents a
greater opportunity for text analysis.

The task of associating together entities is of-
ten framed as a binary relation extraction task:
Given a pair of entities, label the relation be-
tween them (e.g. Steve Jobs LOCATED-IN Cuper-
tino). Common approaches to relation extraction
include pattern matching (Brin, 1998; Agichtein
and Gravano, 2000) and classification (Zelenko et
al., 2003; Kambhatla, 2004).

However, binary relation extraction alone is not
well-suited for the contact record example above,
which requires associating together many fields
into one record. We refer to this task of piecing
together many fields into a single record as record
extraction.

Consider the task of extracting contact records
from personal homepages. An NER system may
label all mentions of cities, people, organizations,
phone numbers, job titles, etc. on a page, from
both semi-structured an unstructured text. Even
with a highly accurate NER system, it is not obvi-
ous which fields belong to the same record. For
example, a single document could contain five
names, three phone numbers and only one email.
Additionally, the layout of certain fields may be
convoluted or vary across documents.

Intuitively, we would like to learn the compat-
ibility among fields, for example the likelihood
that the organization University of North Dakota
is located in the state North Dakota, or that phone
numbers with area code 212 co-occur with the
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city New York. Additionally, the system should
take into account page layout information, so that
nearby fields are more likely to be grouped into the
same record.

In this paper, we describe a method to induce a
probabilistic compatibility function between sets
of fields. Embedding this compatibility func-
tion within a graph partitioning method, we de-
scribe how to cluster highly compatible fields into
records.

We evaluate our approach on personal home-
pages that have been manually annotated with
contact record information, and demonstrate a
53% error reduction over baseline methods.

2 Related Work

McDonald et al. (2005) present clustering tech-
niques to extract complex relations, i.e. relations
with more than two arguments. Record extraction
can be viewed as an instance of complex relation
extraction. We build upon this work in three ways:
(1) Our system learns the compatibility between
sets of fields, rather than just pairs of field; (2) our
system is not restricted to relations between en-
tities in the same sentence; and (3) our problem
domain has a varying number of fields per record,
as opposed to the fixed schema in McDonald et al.
(2005).

Bansal et al. (2004) present algorithms for the
related task of correlational clustering: finding an
optimal clustering from a matrix of pairwise com-
patibility scores. The correlational clustering ap-
proach does not handle compatibility scores calcu-
lated over sets of nodes, which we address in this
paper.

McCallum and Wellner (2005) discriminatively
train a model to learn binary coreference deci-
sions, then perform joint inference using graph
partitioning. This is analogous to our work, with
two distinctions. First, instead of binary coref-
erence decisions, our model makes binary com-
patibility decisions, reflecting whether a set of
fields belong together in the same record. Second,
whereas McCallum and Wellner (2005) factor the
coreference decisions into pairs of vertices, our
compatibility decisions are made between sets of
vertices. As we show in our experiments, factoring
decisions into sets of vertices enables more power-
ful features that can improve performance. These
higher-order features have also recently been in-
vestigated in other models of coreference, both

discriminative (Culotta and McCallum, 2006) and
generative (Milch et al., 2005).

Viola and Narasimhan (2005) present a prob-
abilistic grammar to parse contact information
blocks. While this model is capable of learn-
ing long-distance compatibilities (such as City and
State relations), features to enable this are not ex-
plored. Additionally, their work focuses on la-
beling fields in documents that have been pre-
segmented into records. This record segmentation
is precisely what we address in this paper.

Borkar et al. (2001) and Kristjannson et al.
(2004) also label contact address blocks, but ig-
nore the problem of clustering fields into records.
Also, Culotta et al. (2004) automatically extract
contact records from web pages, but use heuristics
to cluster fields into records.

Embley et al. (1999) provide heuristics to de-
tect record boundaries in highly structured web
documents, such as classified ads, and Embley
and Xu (2000) improve upon these heuristics for
slightly more ambiguous domains using a vector
space model. Both of these techniques apply to
data for which the records are highly contiguous
and have a distinctive separator between records.
These heuristic approaches are unlikely to be suc-
cessful in the unstructured text domain we address
in this paper.

Most other work on relation extraction focuses
only on binary relations (Zelenko et al., 2003;
Miller et al., 2000; Agichtein and Gravano, 2000;
Culotta and Sorensen, 2004). A serious difficulty
in applying binary relation extractors to the record
extraction task is that rather than enumerating over
all pairs of entities, the system must enumerate
over all subsets of entities, up to subsets of size
k, the maximum number of fields per record. We
address this difficulty by employing two sampling
methods: one that samples uniformly, and another
that samples on a focused subset of the combina-
torial space.

3 From Fields to Records

3.1 Problem Definition

Let a field F be a pair 〈a, v〉, where a is an attribute
(column label) and v is a value, e.g. Fi = 〈CITY,
San Francisco〉. Let record R be a set of fields,
R = {F1 . . . Fn}. Note that R may contain mul-
tiple fields with the same attribute but different
values (e.g. a person may have multiple job ti-
tles). Assume we are given the output of a named-
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entity recognizer, which labels tokens in a doc-
ument with their attribute type (e.g. NAME or
CITY). Thus, a document initially contains a set
of fields, {F1 . . . Fm}.

The task is to partition the fields in each anno-
tated document into a set of records {R1 . . . Rk}
such that each record Ri contains exactly the set
of fields pertinent to that record. In this paper, we
assume each field belongs to exactly one record.

3.2 Solution Overview
For each document, we construct a fully-
connected weighted graph G = (V,E), with ver-
tices V and weighted edges E. Each field in the
document is represented by a vertex in V , and the
edges are weighted by the compatibility of adja-
cent fields, i.e. a measure of how likely it is that
Fi and Fj belong to the same record.

Partitioning V into k disjoint clusters uniquely
maps the set of fields to a set of k records. Be-
low, we provide more detail on the two principal
steps in our solution: (1) estimating the compati-
bility function and (2) partitioning V into disjoint
clusters.

3.3 Learning field compatibility
Let F be a candidate cluster of fields forming a
partial record. We construct a compatibility func-
tion C that maps two sets of fields to a real value,
i.e. C : Fi × Fj → R. We abbreviate the value
C(Fi,Fj) as Cij . The higher the value of Cij the
more likely it is that Fi and Fj belong to the same
record.

For example, in the contact record domain, Cij

can reflect whether a city and state should co-
occur, or how likely a company is to have a certain
job title.

We represent Cij by a maximum-entropy clas-
sifier over the binary variable Sij , which is true if
and only if field set Fi belongs to the same record
as field set Fj . Thus, we model the conditional
distribution

PΛ(Sij |Fi,Fj) ∝ exp

(∑
k

λkfk(Sij ,Fi,Fj)

)
where fk is a binary feature function that com-
putes attributes over the field sets, and Λ = {λk}
is the set of real-valued weights that are the pa-
rameters of the maximum-entropy model. We set
Cij = PΛ(Sij =true|Fi,Fj). This approach can
be viewed as a logistic regression model for field
compatibility.

Examples of feature functions include format-
ting evidence (Fi appears at the top of the docu-
ment, Fj at the bottom), conflicting value infor-
mation (Fi and Fj contain conflicting values for
the state field), or other measures of compatibility
(a city value in Fi is known to exist in a state in
Fj). A feature may involve more than one field,
for example, if a name, title and university occurs
consecutively in some order. We give a more de-
tailed description of the feature functions in Sec-
tion 4.3.

We propose learning the Λ weights for each of
these features using supervised machine learning.
Given a set of documents D for which the true
mapping from fields to set of records is known,
we wish to estimate P (Sij |Fi,Fj) for all pairs of
field sets Fi,Fj .

Enumerating all positive and negative pairs of
field sets is computationally infeasible for large
datasets, so we instead propose two sampling
methods to generate training examples. The first
simply samples pairs of field sets uniformly from
the training data. For example, given a document
D containing true records {R1 . . . Rk}, we sam-
ple positive and negative examples of field sets of
varying sizes from {Ri . . . Rj}. The second sam-
pling method first trains the model using the exam-
ples generated by uniform sampling. This model
is then used to cluster the training data. Additional
training examples are created during the clustering
process and are used to retrain the model parame-
ters. This second sampling method is an attempt to
more closely align the characteristics of the train-
ing and testing examples.

Given a sample of labeled training data, we set
the parameters of the maximum-entropy classi-
fier in standard maximum-likelihood fashion, per-
forming gradient ascent on the log-likelihood of
the training data. The resulting weights indi-
cate how important each feature is in determin-
ing whether two sets of fields belong to the same
record.

3.4 Partitioning Fields into Records

One could employ the estimated classifier to con-
vert fields into records as follows: Classify each
pair of fields as positive or negative, and perform
transitive closure to enforce transitivity of deci-
sions. That is, if the classifier determines that A
and B belong to the same record and that B and
C belong to the same record, then by transitivity
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A and C must belong to the same record. The
drawback of this approach is that the compatibility
between A and C is ignored. In cases where the
classifier determines that A and C are highly in-
compatible, transitive closure can lead to poor pre-
cision. McCallum and Wellner (2005) explore this
issue in depth for the related task of noun corefer-
ence resolution.

With this in mind, we choose to avoid transitive
closure, and instead employ a graph partitioning
method to make record merging decisions jointly.

Given a document D with fields {F1 . . . Fn},
we construct a fully connected graph G = (V,E),
with edge weights determined by the learned com-
patibility function C. We wish to partition vertices
V into clusters with high intra-cluster compatibil-
ity.

One approach is to simply use greedy agglom-
erative clustering: initialize each vertex to its own
cluster, then iteratively merge clusters with the
highest inter-cluster edge weights. The compati-
bility between two clusters can be measured using
single-link or average-link clustering. The clus-
tering algorithm converges when the inter-cluster
edge weight between any pair of clusters is below
a specified threshold.

We propose a modification to this approach.
Since the compatibility function we have de-
scribed maps two sets of vertices to a real value,
we can use this directly to calculate the compati-
bility between two clusters, rather than performing
average or single link clustering.

We now describe the algorithm more concretely.

• Input: (1) Graph G = (V,E), where each
vertex vi represents a field Fi. (2) A threshold
value τ .

• Initialization: Place each vertex vi in its own
cluster R̂i. (The hat notation indicates that
this cluster represents a possible record.)

• Iterate: Re-calculate the compatibility func-
tion Cij between each pair of clusters. Merge
the two most compatible clusters, R̂∗

i , R̂
∗
j .

• Termination: If there does not exist a pair of
clusters R̂i, R̂j such that Cij > τ , the algo-
rithm terminates and returns the current set of
clusters.

A natural threshold value is τ = 0.5, since this
is the point at which the binary compatibility clas-
sifier predicts that the fields belong to different

records. In Section 4.4, we examine how perfor-
mance varies with τ .

3.5 Representational power of cluster
compatibility functions

Most previous work on inducing compatibility
functions learns the compatibility between pairs of
vertices, not clusters of vertices. In this section,
we provide intuition to explain why directly mod-
eling the compatibility of clusters of vertices may
be advantageous. We refer to the cluster compat-
ibility function as Cij , and the pairwise (binary)
compatibility function as Bij .

First, we note that Cij is a generalization of
single-link and average-link clustering methods
that use Bij , since the output of these methods
can simply be included as features in Cij . For ex-
ample, given two clusters R̂i = {v1, v2, v3} and
R̂j = {v4, v5, v6}, average-link clustering calcu-
lates the inter-cluster score between R̂i and R̂j as

SAL(R̂i, R̂j) =
1

|R̂i||R̂j |

∑
a∈R̂i,b∈R̂j

Bab

SAL(R̂i, R̂j) can be included as a feature for
the compatibility function Cij , with an associated
weight estimated from training data.

Second, there may exist phenomena of the data
that can only be captured by a classifier that con-
siders “higher-order” features. Below we describe
two such cases.

In the first example, consider three vertices of
mild compatibility, as in Figure 1(a). (For these
examples, let Bij , Cij ∈ [0, 1].) Suppose that
these three phone numbers occur nearby in a doc-
ument. Since it is not uncommon for a person to
have two phone numbers with different area codes,
the pairwise compatibility function may score any
pair of nearby phone numbers as relatively com-
patible. However, since it is fairly uncommon for
a person to have three phone numbers with three
different area codes, we would not like all three
numbers to be merged into the same record.

Assume an average-link clustering algorithm.
After merging together the 333 and 444 numbers,
Bij will recompute the new inter-cluster compat-
ibility as 0.51, the average of the inter-cluster
edges. In contrast, the cluster compatibility func-
tion Cij can represent the fact that three numbers
with different area codes are to be merged, and can
penalize their compatibility accordingly. Thus, in
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Dakota, 

Pleasantville
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Dakota
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    B = 0.485

.9

(b)

Figure 1: Two motivating examples illustrating why the cluster compatibility measure (C) may have
higher representational power than the pairwise compatibility measure (B). In (a), the pairwise measure
over-estimates the inter-cluster compatibility when there exist higher-order features such as A person
is unlikely to have phone numbers with three different area codes. In (b), the pairwise measure under-
estimates inter-cluster compatibility when weak features like string comparisons can be combined into a
more powerful feature by examining multiple field values.

this example, the pairwise compatibility function
over-estimates the true compatibility.

In the second example (Figure 1(b)), we con-
sider the opposite case. Consider three edges,
two of which have weak compatibility, and one of
which has high compatibility. For example, per-
haps the system has access to a list of city-state
pairs, and can reliably conclude that Pleasantville
is a city in the state North Dakota.

Deciding that Univ of North Dakota, Pleas-
antville belongs in the same record as North
Dakota and Pleasantville is a bit more difficult.
Suppose a feature function measures the string
similarity between the city field Pleasantville and
the company field Univ of North Dakota, Pleas-
antville. Alone, this string similarity might not
be very strong, and so the pairwise compatibil-
ity is low. However, after Pleasantville and North
Dakota are merged together, the cluster compat-
ibility function can compute the string similarity
of the concatenation of the city and state fields,
resulting in a higher compatibility. In this ex-
ample, the pairwise compatibility function under-
estimates the true compatibility.

These two examples show that the cluster com-
patibility score can have more representational
power than the average of pairwise compatibility
scores.

FirstName MiddleName
LastName NickName

Suffix Title
JobTitle CompanyName

Department AddressLine
City1 City2
State Country

PostalCode HomePhone
Fax CompanyPhone

DirectCompanyPhone Mobile
Pager VoiceMail
URL Email

InstantMessage

Table 1: The 25 fields annotated in the contact
record dataset.

4 Experiments

4.1 Data
We hand-labeled a subset of faculty and student
homepages from the WebKB dataset1. Each page
was labeled with the 25 fields listed in Table 1.
In addition, we labeled the records to which each
field belonged. For example, in Figure 2, we la-
beled the contact information for Professor Smith
into a separate record from that of her administra-
tive assistant. There are 252 labeled pages in total,
containing 8996 fields and 16679 word tokens. We
perform ten random samples of 70-30 splits of the
data for all experiments.

4.2 Systems
We evaluate five different record extraction sys-
tems. With the exception of Transitive Closure,
all methods employ the agglomerative clustering

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/
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Professor Jane Smith
Somesuch University

555-555-5555

Professor Smith is the Director of the Knowledge Lab ...

Mr. John Doe
Administrative Assistant

555-367-7777

Record 1

Record 2

Figure 2: A synthetic example representative of the labeled data. Note that Record 1 contains information
both from an address block and from free text, and that Record 2 must be separated from Record 1 even
though fields from each may be nearby in the text.

algorithm described previously. The difference is
in how the inter-cluster compatibility is calculated.

• Transitive Closure: The method described
in the beginning of Section 3.4, where hard
classification decisions are made, and transi-
tivity is enforced.

• Pairwise Compatibility: In this approach,
the compatibility function only estimates the
compatibility between pairs of fields, not sets
of fields. To compute inter-cluster compat-
ibility, the mean of the edges between the
clusters is calculated.

• McDonald: This method uses the pairwise
compatibility function, but instead of calcu-
lating the mean of inter-cluster edges, it cal-
culates the geometric mean of all pairs of
edges in the potential new cluster. That is,
to calculate the compatibility of records Ri

and Rj , we construct a new record Rij that
contains all fields of Ri and Rj , then calcu-
late the geometric mean of all pairs of fields
in Rij . This is analogous to the method used
in McDonald et al. (2005) for relation extrac-
tion.

• Cluster Compatibility (uniform): Inter-
cluster compatibility is calculated directly by
the cluster compatibility function. This is the
method we advocate in Section 3. Training
examples are sampled uniformly as described
in Section 3.3.

• Cluster Compatibility (iterative): Same as
above, but training examples are sampled us-

ing the iterative method described in Section
3.3.

4.3 Features
For the pairwise compatibility classifier, we ex-
ploit various formatting as well as knowledge-
based features. Formatting features include the
number of hard returns between fields, whether
the fields occur on the same line, and whether the
fields occur consecutively. Knowledge-based fea-
tures include a mapping we compiled of cities and
states in the United States and Canada. Addition-
ally, we used compatibility features, such as which
fields are of the same type but have different val-
ues.

In building the cluster compatibility classifier,
we use many of the same features as in the bi-
nary classifier, but cast them as first-order existen-
tial features that are generated if the feature exists
between any pair of fields in the two clusters. Ad-
ditionally, we are able to exploit more powerful
compatibility and knowledge-base features. For
example, we examine if a title, a first name and a
last name occur consecutively (i.e., no other fields
occur in-between them). Also, we examine multi-
ple telephone numbers to ensure that they have the
same area codes. Additionally, we employ count
features that indicate if a certain field occurs more
than a given threshold.

4.4 Results
For these experiments, we compare performance
on the true record for each page. That is, we cal-
culate how often each system returns a complete
and accurate extraction of the contact record per-
taining to the owner of the webpage. We refer to
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this record as the canonical record and measure
performance in terms of precision, recall and F1
for each field in the canonical record.

Table 2 compares precision, recall and F1 across
the various systems. The cluster compatibility
method with iterative sampling has the highest F1,
demonstrating a 14% error reduction over the next
best method and a 53% error reduction over the
transitive closure baseline.

Transitive closure has the highest recall, but it
comes at the expense of precision, and hence ob-
tains lower F1 scores than more conservative com-
patibility methods. The McDonald method also
has high recall, but drastically improves precision
over the transitivity method by taking into consid-
eration all edge weights.

The pairwise measure yields a slightly higher
F1 score than McDonald mostly due to precision
improvements. Because the McDonald method
calculates the mean of all edge weights rather
than just the inter-cluster edge weights, inter-
cluster weights are often outweighed by intra-
cluster weights. This can cause two densely-
connected clusters to be merged despite low inter-
cluster edge weights.

To further investigate performance differences,
we perform three additional experiments. The first
measures how sensitive the algorithms are to the
threshold value τ . Figure 3 plots the precision-
recall curve obtained by varying τ from 1.0 to 0.1.
As expected, high values of τ result in low recall
but high precision, since the algorithms halt with
a large number of small clusters. The highlighted
points correspond to τ = 0.5. These results indi-
cate that setting τ to 0.5 is near optimal, and that
the cluster compatibility method outperforms the
pairwise across a wide range of values for τ .

In the second experiment, we plot F1 versus
the size of the canonical record. Figure 4 indi-
cates that most of the performance gain occurs
in smaller canonical records (containing between
6 and 12 fields). Small canonical records are
most susceptible to precision errors simply be-
cause there are more extraneous fields that may
be incorrectly assigned to them. These precision
errors are often addressed by the cluster compati-
bility method, as shown in Table 2.

In the final experiment, we plot F1 versus the
total number of fields on the page. Figure 5 indi-
cates that the cluster compatibility method is best
at handling documents with large number of fields.

F1 Precision Recall
Cluster (I) 91.81 (.013) 92.87 (.005) 90.78 (.007)

Cluster (U) 90.02 (.012) 93.56 (.007) 86.74 (.011)
Pairwise 90.51 (.013) 91.07 (.004) 89.95 (.006)

McDonald 88.36 (.012) 83.55 (.004) 93.75 (.005)
Trans Clos 82.37 (.002) 70.75 (.009) 98.56 (.020)

Table 2: Precision, recall, and F1 performance for
the record extraction task. The standard error is
calculated over 10 cross-validation trials.
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Figure 3: Precision-recall curve for cluster, pair-
wise, and mcdonald. The graph is obtained by
varying the stopping threshold τ from 1.0 to 0.1.
The highlighted points correspond to τ = 0.5.

When there are over 80 fields in the document, the
performance of the pairwise method drops dramat-
ically, while cluster compatibility only declines
slightly. We believe the improved precision of the
cluster compatibility method explains this trend as
well.

We also examine documents where cluster com-
patibility outperforms the pairwise methods. Typ-
ically, these documents contain interleaving con-
tact records. Often, it is the case that a single pair
of fields is sufficient to determine whether a clus-
ter should not be merged. For example, the cluster
classifier can directly model the fact that a con-
tact record should not have multiple first or last
names. It can also associate a weight with the fact
that several fields overlap (e.g., the chances that
a cluster has two first names, two last names and
two cities). In contrast, the binary classifier only
examines pairs of fields in isolation and averages
these probabilities with other edges. This averag-
ing can dilute the evidence from a single pair of
fields. Embarrassing errors may result, such as
a contact record with two first names or two last
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Figure 4: Field F1 as the size of the canonical
record increases. This figure suggests that clus-
ter compatibility is most helpful for small records.
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Figure 5: Field F1 as the number of fields in
the document increases. This figure suggests that
cluster compatibility is most helpful when the doc-
ument has more than 80 fields.

names. These errors are particularly prevalent in
interleaving contact records since adjacent fields
often belong to the same record.

5 Conclusions and Future Work

We have investigated graph partitioning methods
for discovering database records from fields anno-
tated in text. We have proposed a cluster compat-
ibility function that measures how likely it is that
two sets of fields belong to the same cluster. We
argue that this enhancement to existing techniques
provides more representational power.

We have evaluated these methods on a set of
hand-annotated data and concluded that (1) graph

partitioning techniques are more accurate than per-
forming transitive closure, and (2) cluster compat-
ibility methods can avoid common mistakes made
by pairwise compatibility methods.

As information extraction systems become
more reliable, it will become increasingly impor-
tant to develop accurate ways of associating dis-
parate fields into cohesive records. This will en-
able more complex reasoning over text.

One shortcoming of this approach is that fields
are not allowed to belong to multiple records,
because the partitioning algorithm returns non-
overlapping clusters. Exploring overlapping clus-
tering techniques is an area of future work.

Another avenue of future research is to consider
syntactic information in the compatibility func-
tion. While performance on contact record extrac-
tion is highly influenced by formatting features,
many fields occur within sentences, and syntactic
information (such as dependency trees or phrase-
structure trees) may improve performance.

Overall performance can also be improved by
increasing the sophistication of the partitioning
method. For example, we can examine “block
moves” to swap multiple fields between clusters
in unison, possibly avoiding local minima of the
greedy method (Kanani et al., 2006). This can be
especially helpful because many mistakes may be
made at the start of clustering, before clusters are
large enough to reflect true records.

Additionally, many personal web pages con-
tain a time-line of information that describe a per-
son’s educational and professional history. Learn-
ing to associate time information with each con-
tact record enables career path modeling, which
presents interesting opportunities for knowledge
discovery techniques, a subject of ongoing work.
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Abstract 

We present two discriminative methods 
for name transliteration. The methods 
correspond to local and global modeling 
approaches in modeling structured output 
spaces. Both methods do not require 
alignment of names in different lan-
guages – their features are computed di-
rectly from the names themselves. We 
perform an experimental evaluation of 
the methods for name transliteration from 
three languages (Arabic, Korean, and 
Russian) into English, and compare the 
methods experimentally to a state-of-the-
art joint probabilistic modeling approach. 
We find that the discriminative methods 
outperform probabilistic modeling, with 
the global discriminative modeling ap-
proach achieving the best performance in 
all languages.  

1 Introduction 

Name transliteration is an important task of tran-
scribing a name from alphabet to another. For 
example, an Arabic “وليام”, Korean “윌리엄”, and 
Russian “Вильям” all correspond to English 
“William”. We address the problem of translit-
eration in the general setting: it involves trying to 
recover original English names from their tran-
scription in a foreign language, as well as finding 
an acceptable spelling of a foreign name in Eng-
lish. 

We apply name transliteration in the context 
of cross-lingual information extraction. Name 
extractors are currently available in multiple lan-
guages. Our goal is to make the extracted names 
understandable to monolingual English speakers 
by transliterating the names into English. 

The extraction context of the transliteration 
application imposes additional complexity con-
straints on the task. In particular, we aim for the 
transliteration speed to be comparable to that of 
extraction speed. Since most current extraction 
systems are fairly fast (>1 Gb of text per hour), 
the complexity requirement reduces the range of 
techniques applicable to the transliteration. More 
precisely, we cannot use WWW and the web 
count information to hone in on the right translit-
eration candidate. Instead, all relevant translitera-
tion information has to be represented within a 
compact and self-contained transliteration model. 

We present two methods for creating and ap-
plying transliteration models. In contrast to most 
previous transliteration approaches, our models 
are discriminative. Using an existing translitera-
tion dictionary D (a set of name pairs {(f,e)}), we 
learn a function that directly maps a name f from 
one language into a name e in another language. 
We do not estimate either direct conditional 
p(e|f) or reverse conditional p(f|e) or joint p(e,f) 
probability models. Furthermore, we do away 
with the notion of alignment: our transliteration 
model does not require and is not defined of in 
terms of aligned e and f. Instead, all features 
used by the model are computed directly from 
the names f and e without any need for their 
alignment. 

The two discriminative methods that we pre-
sent correspond to local and global modeling 
paradigms for solving complex learning prob-
lems with structured output spaces. In the local 
setting, we learn linear classifiers that predict a 
letter ei from the previously predicted letters 
e1…ei-1 and the original name f. In the global set-
ting, we learn a function W mapping a pair (f,e) 
into a score W(f,e)∈ R. The function W is linear 
in features computed from the pair (f,e). We de-
scribe the pertinent feature spaces as well as pre-
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sent both training and decoding algorithms for 
the local and global settings. 

We perform an experimental evaluation for 
three language pairs (transliteration from Arabic, 
Korean, and Russian into English) comparing 
our methods to a joint probabilistic modeling 
approach to transliteration, which was shown to 
deliver superior performance. We show experi-
mentally that both discriminative methods out-
perform the probabilistic approach, with global 
discriminative modeling achieving the best per-
formance in all languages. 

2 Preliminaries 

Let E and F be two finite alphabets. We will use 
lowercase latin letters e, f to denote letters e∈E, 
f∈F, and we use bold letters e∈E*, f∈F* to de-
note strings in the corresponding alphabets. The 
subscripted ei, fj denote ith and jth symbols of the 
strings e and f, respectively. We use e[i,j] to rep-
resent a substring ei…ej of e. If j<i, then e[i,j] is 
an empty string Λ. 
 
A transliteration model is a function mapping a 
string f to a string e. We seek to learn a translit-
eration model from a transliteration dictionary 
D={(f,e)}.  We apply the model in conjunction 
with a decoding algorithm that produces a string 
e from a string f. 
 

3 Local Transliteration Modeling 

In local transliteration modeling, we represent a 
transliteration model as a sequence of local pre-
diction problems. For each local prediction, we 
use the history h representing the context of mak-
ing a single transliteration prediction. That is, we 
predict each letter ei based on the pair h=(e[1,i-
1], f) ∈ H.  

Formally, we map H×E into a d-dimensional 
feature space ϕ: H×E → Rd, where each 
ϕk(h,e)(k∈{1,..,d}) corresponds to a condition 
defined in terms of the history h and the cur-
rently predicted letter e. 

In order to model string termination, we aug-
ment E with a sentinel symbol $, and we append 
$ to each e from D.  

Given a transliteration dictionary D, we trans-
form the dictionary in a set of |E| binary learning 
problems. Each learning problem Le corresponds 
to predicting a letter e∈E. More precisely, for a 
pair (f[1,m],e[1,n]) ∈ D and i ∈ {1,…,n}, we 
generate a positive example ϕ((e[1,i-1], f),ei) for 

the learning problem Le, where e=ei, and a nega-
tive example ϕ((e[1,i-1], f),e) for each Le, where 
e≠ei. 

Each of the learning problems is a binary clas-
sification problem and we can use our favorite 
binary classifier learning algorithm to induce a 
collection of binary classifiers {ce : e∈E}. From 
most classifiers we can also obtain an estimate of 
conditional probability p(e|h) of a letter e given a 
history h. 

For decoding, in our experiments we use the 
beam search to find the sequence of letters (ap-
proximately) maximizing p(e|h).  

3.1 Local Features 

The features used in local transliteration model-
ing correspond to pairs of substrings of e and f. 
We limit the length of substrings as well as their 
relative location with respect to each other. 

• For ϕ((e[1,i-1], f),e), generate a feature 
for every pair of substrings (e[i-w,i-1],f[j-
v,j]), where 1≤w<W(E) and  0≤v<W(F) 
and |i-j| ≤ d(E,F). Here, W(·) is the upper 
bound on the length of strings in the corre-
sponding alphabet, and d(E,F) is the upper 
bound on the relative distance between 
substrings. 

• For ϕ((e[1,i-1], f[1,m]),e), generate the 
length difference feature ϕlen=i-m. In ex-
periments, we discretize ϕlen to obtain 9 
binary features: ϕlen=l (l∈[-3,3]), ϕlen ≤ -4, 
4 ≤ ϕlen. 

• For ϕ((e[1,i-1], f[1,m]),e), generate a 
language modeling feature p(e| e[1,i-1]). 

• For ϕ((e[1,i-1], f),e) and i=1, generate 
“start” features: (^f1,^e), (^f1f2,^e). 

• For ϕ((e[1,i-1], f),e) and i=2, generate 
“start” features: (^f1,^e1e2), (^f1f2,^e1e2).  

• For ϕ((e[1,i-1], f),e) and e=$, generate 
“end” features: (fm$,e$), (fm-1fm$,e$). 

The parameters W(E), W(F), and d(E,F) are, in 
general, language-specific, and we will show, in 
the experiments, that different values of the pa-
rameters are appropriate for different languages. 

4 Global Transliteration Modeling 

In global transliteration modeling, we directly 
model the agreement function between f and e. 
We follow (Collins 2002) and consider the 
global feature representation Φ: F*×E*  → Rd. 
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Each global feature corresponds to a condition 
on the pair of strings. The value of a feature is 
the number of times the condition holds true for 
a given pair of strings. In particular, for every 
local feature ϕk((e[1,i-1], f),ei) we can define the 
corresponding global feature: 
      )),],1,1[((),( ∑ −=Φ

i
ikk ei feef ϕ         (1) 

We seek a transliteration model that is linear 
in the global features. Such a transliteration 
model is represented by d-dimensional weight 
vector W∈ Rd. Given a string f, model applica-
tion corresponds to finding a string e such that  

∑ Φ=
k

kkW ),(maxarg
e'

e'fe             (2) 

As with the case of local modeling, due to 
computational constraints, we use beam search 
for decoding in global transliteration modeling. 

(Collins 2002) showed how to use the Voted 
Perceptron algorithm for learning W, and we use 
it for learning the global transliteration model. 
We use beam search for decoding within the 
Voted Perceptron training as well. 

4.1 Global Features 

The global features used in local transliteration 
modeling directly correspond to local features 
described in Section 3.1.  

• For e[1,n] and f[1,m], generate a feature 
for every pair of substrings (e[i-w,i],f[j-
v,j]), where 1≤w<W(E) and  0≤v<W(F) 
and |i-j| ≤ d(E,F).  

• For e[1,n] and f[1,m], generate the 
length difference feature Φlen=n-m. In ex-
periments, we discretize Φlen to obtain 9 
binary features: Φlen=l (l∈[-3,3]), ϕlen ≤ -4, 
4 ≤ ϕlen. 

• For e[1,n], generate a language model-
ing feature (p(e))1/n. 

• For e[1,n] and f[1,m],, generate “start” 
features: (^f1,^e1), (^f1f2,^e1), (^f1,^e1e2), 
(^f1f2,^e1e2).  

• For e[1,n] and f[1,m], generate “end” 
features: (fm$,en$), (fm-1fm$,en). 

5 Joint Probabilistic Modeling 

We compare the discriminative approaches to a 
joint probabilistic approach to transliteration in-
troduced in recent years. 

In the joint probabilistic modeling approach, 
we estimate a probability distribution p(e,f). We 

also postulate hidden random variables a repre-
senting the alignment of e and f. An alignment a 
of e and f is a sequence a1,a2,…aL, where al =  
(e[il-wl,il],f[jl-vl,jl]), il-1+1=il-wl, and jl-1+1=jl-vl. 
Note that we allow for at most one member of a 
pair al to be an empty string. 

Given an alignment a, we define the joint 
probability p(e,f|a): 

]),[],,[()|,( l
l

lllll jvjiwipp ∏ −−= feafe  

We learn the probabilities p(e[il-wl,il],f[jl-vl,jl]) 
using a version of EM algorithm. In our experi-
ments, we use the Viterbi version of the EM al-
gorithm: starting from random alignments of all 
string pairs in D, we use maximum likelihood 
estimates of the above probabilities, which are 
then employed to induce the most probable 
alignments in terms of the probability estimates. 
The process is repeated until the probability es-
timates converge. 

During the decoding process, given a string f, 
we seek both a string e and an alignment a such 
that p(e,f|a) is maximized. In our experiments, 
we used beam search for decoding. 

Note that with joint probabilistic modeling use 
of a language model p(e) is not strictly neces-
sary. Yet we found out experimentally that an 
adaptive combination of the language model with 
the joint probabilistic model improves the trans-
literation performance. We thus combine the 
joint log-likelihood log(p(e,f|a)) with log(p(e)): 

score(e|f) = log(p(e,f|a))+ αlog(p(e))          (3) 
We estimate the parameter α on a held-out set 

by generating, for each f, the set of top K=10 
candidates with respect to log(p(e,f|a)), then us-
ing (3) for re-ranking the candidates, and picking 
α to minimize the number of transliteration er-
rors among re-ranked candidates.  

6 Experiments 

We present transliteration experiments for three 
language pairs. We consider transliteration from 
Arabic, Korean, and Russian into English. For all 
language pairs, we apply the same training and 
decoding algorithms.  

6.1 Data 

The training and testing transliteration dataset 
sizes are shown in Table 1. For Arabic and Rus-
sian, we created the dataset manually by keying 
in and translating Arabic, Russian, and English 
names. For Korean, we obtained a dataset of 
transliterated names from a Korean government 
website. The dataset contained mostly foreign 
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names transliterated into Korean. All datasets 
were randomly split into training and (blind) test-
ing parts.  

 
 Training Testing 

Arabic 935 233 
Korean 11973 1363 
Russian 545 121 

Table 1. Transliteration Data. 
 

Prior to transliteration, the Korean words of 
the Korean transliteration data were converted 
from their Hangul (syllabic) representation to 
Jamo (letter-based) representation to effectively 
reduce the alphabet size for Korean. The conver-
sion process is completely automatic (see Uni-
code Standard 3.0 for details). 

6.2 Algorithm Details 

For language modeling, we used the list of 
100,000 most frequent names downloaded from 
the US Census website. Our language model is a  
5-gram model with interpolated Good-Turing 
smoothing (Gale and Sampson 1995). 

We used the learning-to-classify version of 
Voted Perceptron for training local models 
(Freund and Schapire 1999). We used Platt’s 
method for converting scores produced by 
learned linear classifiers into probabilities (Platt 
1999). We ran both local and global Voted Per-
ceptrons for 10 iterations during training.  

6.3 Transliteration Results 

 Our discriminative transliteration models 
have a number of parameters reflecting the 
length of strings chosen in either language as 
well as the relative distance between strings. 
While we found that choice of W(E)=W(F) = 2 
always produces the best results for all of our 
languages, the distance d(E,F) may have differ-
ent optimal values for different languages.  

Table 2 presents the transliteration results for 
all languages for different values of d. Note that 
the joint probabilistic model does not depend on 
d. The results reflect the accuracy of translitera-
tion, that is, the proportion of times when the top 
English candidate produced by a transliteration 
model agreed with the correct English translitera-
tion. We note that such an exact comparison may 
be too inflexible, for many foreign names may 
have more than one legitimate English spelling. 
In future experiments, we plan to relax the re-
quirement and consider alternative variants of 

transliteration scoring (e.g., edit distance, top-N 
candidate scoring). 

 
 Local Global Prob 

Arabic (d=1) 31.33 32.61 
Arabic (d=2) 30.04 30.04 
Arabic (d=3) 26.61 27.03 

 
25.75 

 
Korean (d=1) 26.93 30.44 
Korean (d=2) 28.84 34.26 
Korean (d=3) 30.96 35.28 

 
26.93 

 
Russian (d=1) 44.62 46.28 
Russian (d=2) 38.84 41.32 
Russian (d=3) 38.01 38.01 

 
39.67 

 
Table 2. Transliteration Results for Different  
              Values of Relative Distance (d). 
 
Table 2 shows that, for all three languages, the 

discriminative methods convincingly outperform 
the joint probabilistic approach. The global dis-
criminative approach achieves the best perform-
ance in all languages. It is interesting that differ-
ent values of relative distance are optimal for 
different languages. For example, in Korean, the 
Hangul-Jamo decomposition leads to fairly re-
dundant strings of Korean characters thereby 
making transliterated characters to be relatively 
far from each other. Therefore, Korean requires a 
larger relative distance bound. In Arabic and 
Russian, on the other hand, transliterated charac-
ters are relatively close to each other, so the dis-
tance d of 1 suffices. While for Russian such a 
small distance is to be expected, we are surprised 
by such a small relative distance for Arabic. Our 
intuition was that omitting short vowels in spell-
ing names in Arabic will increase d.  

We have the following explanation of the low 
value of d for Arabic from the machine learning 
perspective: incrementing d implies adding a lot 
of extraneous features to examples, that is, in-
creasing attribute noise. Increased attribute noise 
requires a corresponding increase in the number 
of training examples to achieve adequate per-
formance. While for Korean the number of train-
ing examples is sufficient to cope with the attrib-
ute noise, the relatively small Arabic training 
sample is not. We hypothesize that with increas-
ing the number of training examples for Arabic, 
the optimal value of d will also increase. 

7 Related Work 

Most work on name transliteration adopted a 
source-channel approach (Knight and Grael 
1998; Al-Onaizan and Knight 2002a; Virga and 
Khudanpur 2003; Oh and Choi 2000) incorporat-
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ing phonetics as an intermediate representation. 
(Al-Onaizan and Knight 2002) showed that use 
of outside linguistic resources such as WWW 
counts of transliteration candidates can greatly 
boost transliteration accuracy. (Li et al. 2004) 
introduced the joint transliteration model whose 
variant augmented with adaptive re-ranking we 
used in our experiments. 

Among direct (non-source-channel) models, 
we note the work of (Gao et al. 2004) on apply-
ing Maximum Entropy to English-Chinese trans-
literation, and the English-Korean transliteration 
model of (Kang and Choi 2000) based on deci-
sion trees. 

All of the above models require alignment be-
tween names. We follow the recent work of 
(Klementiev and Roth 2006) who addressed the 
problem of discovery of transliterated named 
entities from comparable corpora and suggested 
that alignment may not be necessary for translit-
eration. 

Finally, our modeling approaches follow the 
recent  work on both local classifier-based mod-
eling of complex learning problems (McCallum 
et al. 2000; Punyakanok and Roth 2001), as well 
as global discriminative approaches based on 
CRFs (Lafferty et al. 2001), SVM (Taskar et al. 
2005), and the Perceptron algorithm (Collins 
2002) that we used in our experiments. 

 

8 Conclusions 

We presented two novel discriminative ap-
proaches to name transliteration that do not em-
ploy the notion of alignment. We showed ex-
perimentally that the approaches lead to superior 
experimental results in all languages, with the 
global discriminative modeling approach achiev-
ing the best performance. 

The results are somewhat surprising, for the 
notion of alignment seems very intuitive and use-
ful for transliteration. We will investigate 
whether similar alignment-free methodology can 
be extended to full-text translation. It will also be 
interesting to study the relationship between our 
discriminative alignment-free methods and re-
cently proposed discriminative alignment-based 
methods for transliteration and translation 
(Taskar et al. 2005a; Moore 2005). 

We also showed that for name transliteration, 
global discriminative modeling is superior to 
local classifier-based discriminative modeling. 
This may have resulted from poor calibration of 
scores and probabilities produced by individual 

classifiers. We plan to further investigate the re-
lationship between the local and global ap-
proaches to complex learning problems in natural 
language. 
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Abstract

The end-to-end performance of natural
language processing systems for com-
pound tasks, such as question answering
and textual entailment, is often hampered
by use of a greedy 1-best pipeline archi-
tecture, which causes errors to propagate
and compound at each stage. We present
a novel architecture, which models these
pipelines as Bayesian networks, with each
low level task corresponding to a variable
in the network, and then we perform ap-
proximate inference to find the best la-
beling. Our approach is extremely sim-
ple to apply but gains the benefits of sam-
pling the entire distribution over labels at
each stage in the pipeline. We apply our
method to two tasks – semantic role la-
beling and recognizing textual entailment
– and achieve useful performance gains
from the superior pipeline architecture.

1 Introduction

Almost any system for natural language under-
standing must recover hidden linguistic structure
at many different levels: parts of speech, syntac-
tic dependencies, named entities, etc. For exam-
ple, modern semantic role labeling (SRL) systems
use the parse of the sentence, and question answer-
ing requires question type classification, parsing,
named entity tagging, semantic role labeling, and
often other tasks, many of which are dependent
on one another and must be pipelined together.
Pipelined systems are ubiquitous in NLP: in ad-
dition to the above examples, commonly parsers
and named entity recognizers use part of speech
tags and chunking information, and also word seg-

mentation for languages such as Chinese. Almost
no NLP task is truly standalone.

Most current systems for higher-level, aggre-
gate NLP tasks employ a simple 1-best feed for-
ward architecture: they greedily take the best out-
put at each stage in the pipeline and pass it on to
the next stage. This is the simplest architecture to
build (particularly if reusing existing component
systems), but errors are frequently made during
this pipeline of annotations, and when a system
is given incorrectly labeled input it is much harder
for that system to do its task correctly. For ex-
ample, when doing semantic role labeling, if no
syntactic constituent of the parse actually corre-
sponds to a given semantic role, then that seman-
tic role will almost certainly be misidentified. It
is therefore disappointing, but not surprising, that
F-measures on SRL drop more than 10% when
switching from gold parses to automatic parses
(for instance, from 91.2 to 80.0 for the joint model
of Toutanova (2005)).

A common improvement on this architecture is
to passk-best lists between processing stages, for
example (Sutton and McCallum, 2005; Wellner et
al., 2004). Passing on ak-best list gives useful
improvements (e.g., in Koomen et al. (2005)), but
efficiently enumeratingk-best lists often requires
very substantial cognitive and engineering effort,
e.g., in (Huang and Chiang, 2005; Toutanova et
al., 2005).

At the other extreme, one can maintain the
entire space of representations (and their proba-
bilities) at each level, and use this full distribu-
tion to calculate the full distribution at the next
level. If restricting oneself to weighted finite state
transducers (WFSTs), a framework applicable to a
number of NLP applications (as outlined in Kart-
tunen (2000)), a pipeline can be compressed down
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into a single WFST, giving outputs equivalent
to propagating the entire distribution through the
pipeline. In the worst case there is an exponential
space cost, but in many relevant cases composition
is in practice quite practical. Outside of WFSTs,
maintaining entire probability distributions is usu-
ally infeasible in NLP, because for most intermedi-
ate tasks, such as parsing and named entity recog-
nition, there is an exponential number of possible
labelings. Nevertheless, for some models, such as
most parsing models, these exponential labelings
can be compactly represented in a packed form,
e.g., (Maxwell and Kaplan, 1995; Crouch, 2005),
and subsequent stages can be reengineered to work
over these packed representations, e.g., (Geman
and Johnson, 2002). However, doing this normally
also involves a very high cognitive and engineer-
ing effort, and in practice this solution is infre-
quently adopted. Moreover, in some cases, a sub-
sequent module is incompatible with the packed
representation of a previous module and an ex-
ponential amount of work is nevertheless required
within this architecture.

Here we present an attractive middle ground
in dealing with linguistic pipelines. Rather than
only using the 1 ork most likely labelings at each
stage, we would indeed like to take into account
all possible labelings and their probabilities, but
we would like to be able to do so without a lot of
thinking or engineering. We propose that this can
be achieved by use of approximate inference. The
form of approximate inference we use is very sim-
ple: at each stage in the pipeline, we draw a sam-
ple from the distribution of labels, conditioned on
the samples drawn at previous stages. We repeat
this many times, and then use the samples from
the last stage, which corresponds to the ultimate,
higher-level task, to form a majority vote classifier.
As the number of samples increases, this method
will approximate the complete distribution. Use of
the method is normally a simple modification to an
existing piece of code, and the method is general.
It can be applied not only to all pipelines, but to
multi-stage algorithms which are not pipelines as
well.

We apply our method to two problems: seman-
tic role labeling and recognizing textual entail-
ment. For semantic role labeling we use a two
stage pipeline which parses the input sentence, and
for recognizing textual entailment we use a three
stage pipeline which tags the sentence with named

entities and then parses it before passing it to the
entailment decider.

2 Approach

2.1 Overview

In order to do approximate inference, we model
the entire pipeline as a Bayesian network. Each
stage in the pipeline corresponds to a variable in
the network. For example, the parser stage cor-
responds to a variable whose possible values are
all possible parses of the sentence. The probabil-
ities of the parses are conditioned on the parent
variables, which may just be the words of the sen-
tence, or may be the part of speech tags output by
a part of speech tagger.

The simple linear structure of a typical linguis-
tic annotation network permits exact inference that
is quadratic in the number of possible labels at
each stage, but unfortunately our annotation vari-
ables have a very large domain. Additionally,
some networks may not even be linear; frequently
one stage may require the output from multiple
previous stages, or multiple earlier stages may be
completely independent of one another. For ex-
ample, a typical QA system will do question type
classification on the question, and from that ex-
tract keywords which are passed to the informa-
tion retreival part of the system. Meanwhile, the
retreived documents are parsed and tagged with
named entities; the network rejoins those outputs
with the question type classification to decide on
the correct answer. We address these issues by
using approximate inference instead of exact in-
ference. The structure of the nodes in the network
permits direct sampling based on a topological sort
of the nodes. Samples are drawn from the condi-
tional distributions of each node, conditioned on
the samples drawn at earlier nodes in the topolog-
ical sort.

2.2 Probability of a Complete Labeling

Before we can discuss how to sample from these
Bayes nets, we will formalize how to move from
an annotation pipeline to a Bayes net. LetA be
the set ofn annotatorsA1, A2, ..., An (e.g., part
of speech tagger, named entity recognizer, parser).
These are the variables in the network. For annota-
tor ai, we denote the set of other annotators whose
input is directly needed asParents(Ai) ⊂ A

and a particular assignment to those variables is
parents(Ai). The possible values for a particu-
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lar annotatorAi areai (e.g., a particular parse tree
or named entity tagging). We can now formulate
the probability of a complete annotation (over all
annotators) in the standard way for Bayes nets:

PBN(a1, a2, ..., an) =
N
∏

i=1

P (ai|parents(Ai))

(1)

2.3 Approximate Inference in Bayesian
Networks

This factorization of the joint probability distri-
bution facilitates inference. However, exact in-
ference is intractable because of the number of
possible values for our variables. Parsing, part of
speech tagging, and named entity tagging (to name
a few) all have a number of possible labels that is
exponential in the length of the sentence, so we
use approximate inference. We chose Monte Carlo
inference, in which samples drawn from the joint
distribution are used to approximate a marginal
distribution for a subset of variables in the dis-
tribution. First, the nodes are sorted in topologi-
cal order. Then, samples are drawn for each vari-
able, conditioned on the samples which have al-
ready been drawn. Many samples are drawn, and
are used to estimate the joint distribution.

Importantly, for many language processing
tasks our application only needs to provide the
most likely value for a high-level linguistic an-
notation (e.g., the guessed semantic roles, or an-
swer to a question), and other annotations such as
parse trees are only present to assist in performing
that task. The probability of the final annotation is
given by:

PBN(an) =
∑

a1,a2,...,an−1

PBN(a1, a2, ..., an) (2)

Because we are summing out all variables other
than the final one, we effectively use only the sam-
ples drawn from the final stage, ignoring the labels
of the variables, to estimate the marginal distribu-
tion over that variable. We then return the label
which had the highest number of samples. For
example, when trying to recognize textual entail-
ment, we count how many times we sampled “yes,
it is entailed” and how many times we sampled
“no, it is not entailed” and return the answer with
more samples.

When the outcome you are trying to predict is
binary (as is the case with RTE) orn-ary for small

n, the number of samples needed to obtain a good
estimate of the posterior probability is very small.
This is true even if the spaces being sampled from
during intermediate stages are exponentially large
(such as the space of all parse trees). Ng and
Jordan (2001) show that under mild assumptions,
with only N samples the relative classification er-
ror will be at mostO( 1

N
) higher than the error of

the Bayes optimal classifier (in our case, the clas-
sifier which does exact inference). Even if the out-
come space is not small, the sampling technique
we present can still be very useful, as we will see
later for the case of SRL.

3 Generating Samples

The method we have outlined requires the ability
to sample from the conditional distributions in the
factored distribution of (1): in our case, the prob-
ability of a particular linguistic annotation, condi-
tioned on other linguistic annotations. Note that
this differs from the usual annotation task: taking
the argmax. But for most algorithms the change is
a small and easy change. We discuss how to ob-
tain samples efficiently from a few different anno-
tation models: probabilistic context free grammars
(PCFGs), and conditional random fields (CRFs).

3.1 Sampling Parses

Bod (1995) discusses parsing with probabilistic
tree substitution grammars, which, unlike simple
PCFGs, do not have a one-to-one mapping be-
tween output parse trees and a derivation (a bag of
rules) that produced it, and hence the most-likely
derivation may not correspond to the most likely
parse tree. He therefore presents a bottom-up ap-
proach to sampling derivations from a derivation
forest, which does correspond to a sample from the
space of parse trees. Goodman (1998) presents a
top-down version of this algorithm. Although we
use a PCFG for parsing, it is the grammar of (Klein
and Manning, 2003), which uses extensive state-
splitting, and so there is again a many-to-one cor-
respondence between derivations and parses, and
we use an algorithm similar to Goodman’s in our
work.

PCFGs put probabilities on each rule, such as
S→ NP VPandNN→ ‘dog’. The probability of
a parse is the product of the probabilities of the
rules used to construct the parse tree. A dynamic
programing algorithm, theinside algorithm, can
be used to find the probability of a sentence. The
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inside probabilityβk(p, q) is the probability that
words p throughq, inclusive, were produced by
the non-terminalk. So the probability of the sen-
tenceThe boy pet the dog.is equal to the inside
probability βS(1, 6), where the first word,w1 is
Theand the sixth word,w6, is [period]. It is also
useful for our purposes to view this quantity as the
sum of the probabilities of all parses of the sen-
tence which haveSas the start symbol. The prob-
ability can be defined recursively (Manning and
Schütze, 1999) as follows:

βk(p, q) =


















P (Nk → wp) if p = q

∑

r,s

q−1
∑

d=p

P (Nk → N rN s)βr(p, d)βs(d + 1, q)

otherwise
(3)

whereNk, N r andN s are non-terminal symbols
andwp is the word at positionp. We have omit-
ted the case of unary rules for simplicity since it
requires a closure operation.

These probabilities can be efficiently computed
using a dynamic program. or memoization of each
value as it is calculated. Once we have computed
all of the inside probabilities, they can be used to
generate parses from the distribution of all parses
of the sentence, using the algorithm in Figure 1.

This algorithm is called after all of the inside
probabilities have been calculated and stored, and
take as parametersS, 1, andlength(sentence). It
works by building the tree, starting from the root,
and recursively generating children based on the
posterior probabilities of applying each rule and
each possible position on which to split the sen-
tences. Intuitively, the algorithm is given a non-
terminal symbol, such asS or NP, and a span of
words, and has to decide (a) what rule to apply to
expand the non-terminal, and (b) where to split the
span of words, so that each non-terminal result-
ing from applying the rule has an associated word
span, and the process can repeat. The inside prob-
abilities are calculated just once, and we can then
generate many samples very quickly;DrawSam-
plesis linear in the number of words, and rules.

3.2 Sampling Named Entity Taggings

To do named entity recognition, we chose to use
a conditional random field (CRF) model, based on
Lafferty et al. (2001). CRFs represent the state of

function DRAWSAMPLE(Nk, r, s)
if r = s

tree.label = Nk

tree.child = word(r)
return (tree)

for eachrule m ∈ {m′ : head(m′) = Nk}
N i ← lChild(m)
Nj ← rChild(m)
for q ← r to s− 1

scores(m,q)← P (m)βi(r, q)βj(q + 1, s)
(m, q)← SAMPLEFROM(scores)
tree.label = head(m)
tree.lChild = DRAWSAMPLE(lChild(m), r, q)
tree.rChild = DRAWSAMPLE(rChild(m), q + 1, s)
return (tree)

Figure 1: Pseudo-code for sampling parse trees from a PCFG.
This is a recursive algorithm which starts at the root of the
tree and expands each node by sampling from the distribu-
tion of possible rules and ways to split the span of words. Its
arguments are a non-terminal and two integers corresponding
to word indices, and it is initially called with argumentsS, 1,
and the length of the sentence. There is a call tosampleFrom,
which takes an (unnormalized) probability distribution, nor-
malizes it, draws a sample and then returns the sample.

the art in sequence modeling – they are discrimi-
natively trained, and maximize the joint likelihood
of the entire label sequence in a manner which
allows for bi-directional flow of information. In
order to describe how samples are generated, we
generalize CRFs in a way that is consistent with
the Markov random field literature. We create a
linear chain ofcliques, each of which represents
the probabilistic relationship between an adjacent
set ofn states using afactor tablecontaining|S|n

values. These factor tables on their own should
not be viewed as probabilities, unnormalized or
otherwise. They are, however, defined in terms of
exponential models conditioned on features of the
observation sequence, and must be instantiated for
each new observation sequence. The probability
of a state sequence is then defined by the sequence
of factor tables in the clique chain, given the ob-
servation sequence:

PCRF(s|o) =
1

Z(o)

N
∏

i=1

Fi(si−n . . . si) (4)

where Fi(si−n . . . si) is the element of the fac-
tor table at positioni corresponding to statessi−n

through si, and Z(o) is the partition function
which serves to normalize the distribution.1 To in-

1To handle the start condition properly, imagine also that
we define a set of distinguished start statess−(n−1) . . . s0.
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fer the most likely state sequence in a CRF it is
customary to use the Viterbi algorithm.

We then apply a process calledclique tree cal-
ibration, which involves passingmessagesbe-
tween the cliques (see Cowell et al. (2003) for
a full treatment of this topic). After this pro-
cess has completed, the factor tables can be
viewed as unnormalized probabilities, which can
be used to compute conditional probabilities,
PCRF(si|si−n . . . si−1, o). Once these probabili-
ties have been calculated, generating samples is
very simple. First, we draw a sample for the label
at the first position,2 and then, for each subsequent
position, we draw a sample from the distribution
for that position, conditioned on the label sampled
at the previous position. This process results in
a sample of a complete labeling of the sequence,
drawn from the posterior distribution of complete
named entity taggings.

Similarly to generating sample parses, the ex-
pensive part is calculating the probabilities; once
we have them we can generate new samples very
quickly.

3.3 k-Best Lists

At first glance,k-best lists may seem like they
should outperform sampling, because in effect
they are thek best samples. However, there are
several important reasons why one might prefer
sampling. One reason is that thek best paths
through a word lattice, or thek best derivations in
parse forest do not necessarily correspond to the
k best sentences or parse trees. In fact, there are
no known sub-exponential algorithms for the best
outputs in these models, when there are multiple
ways to derive the same output.3 This is not just a
theoretical concern – the Stanford parser uses such
a grammar, and we found that when generating a
50-best derivation list that on average these deriva-
tions corresponded to about half as many unique
parse trees. Our approach circumvents this issue
entirely, because the samples are generated from
the actual output distribution.

Intuition also suggests that sampling should
give more diversity at each stage, reducing the
likelihood of not even considering the correct out-
put. Using the Brown portion of the SRL test
set (discussed in sections 4 and 6.1), and50-
samples/50-best, we found that on average the50-

2Conditioned on the distinguished start states.
3Many thanks to an anonymous reviewer for pointing out

this argument.

samples system considered approximately25%
more potential SRL labelings than the50-best sys-
tem.

When pipelines have more than two stages, it
is customary to do a beam search, with a beam
size of k. This means that at each stage in the
pipeline, more and more of the probability mass
gets “thrown away.” Practically, this means that
as pipeline length increases, there will be in-
creasingly less diversity of labels from the earlier
stages. In a degenerate10-stage,k-best pipeline,
where the last stage depends mainly on the first
stage, it is probable that all but a few labelings
from the first stage will have been pruned away,
leaving something much smaller than ak-best
sample, possibly even a1-best sample, as input to
the final stage. Using approximate inference to es-
timate the marginal distribution over the last stage
in the pipeline, such as our sampling approach, the
pipeline length does not have this negative impact
or affect the number of samples needed. And un-
like k-best beam searches, there is an entire re-
search community, along with a large body of lit-
erature, which studies how to do approximate in-
ference in Bayesian networks and can provide per-
formance bounds based on the method and the
number of samples generated.

One final issue with thek-best method arises
when instead of a linear chain pipeline, one is us-
ing a general directed acyclic graph where a node
can have multiple parents. In this situation, doing
thek-best calculation actually becomes exponen-
tial in the size of the largest in-degree of a node –
for a node withn parents, you must try allkn com-
binations of the values for the parent nodes. With
sampling this is not an issue; each sample can be
generated based on a topological sort of the graph.

4 Semantic Role Labeling

4.1 Task Description

Given a sentence and a target verb (thepredicate)
the goal of semantic role labeling is to identify and
label syntactic constituents of the parse tree with
semantic roles of the predicate. Common roles
are agent, which is the thing performing the ac-
tion, patient, which is the thing on which the ac-
tion is being performed, andinstrument, which is
the thing with which the action is being done. Ad-
ditionally, there aremodifier argumentswhich can
specify the location, time, manner, etc. The fol-
lowing sentence provides an example of a predi-
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cate and its arguments:

[The luxury auto maker]agent [last
year]temp [sold]pred [1,214 cars]patient

in [the U.S]location.

Semantic role labeling is a key component for
systems that do question answering, summariza-
tion, and any other task which directly uses a se-
mantic interpretation.

4.2 System Description

We modified the system described in Haghighi
et al. (2005) and Toutanova et al. (2005) to test
our method. The system uses both local models,
which score subtrees of the entire parse tree inde-
pendently of the labels of other nodes not in that
subtree, and joint models, which score the entire
labeling of a tree with semantic roles (for a partic-
ular predicate).

First, the task is separated into two stages, and
local models are learned for each. At the first
stage, theidentification stage, a classifier labels
each node in the tree as eitherARG, meaning that
it is an argument (either core or modifier) to the
predicate, orNONE, meaning that it is not an argu-
ment. At the second stage, theclassification stage,
the classifier is given a set of arguments for a pred-
icate and must label each with its semantic role.

Next, a Viterbi-like dynamic algorithm is used
to generate a list of thek-best joint (identification
and classification) labelings according to the lo-
cal models. The algorithm enforces the constraint
that the roles should be non-overlapping. Finally,
a joint model is constructed which scores a com-
pletely labeled tree, and it is used to re-rank thek-
best list. The separation into local and joint mod-
els is necessary because there are an exponential
number of ways to label the entire tree, so using
the joint model alone would be intractable. Ide-
ally, we would want to use approximate inference
instead of ak-best list here as well. Particle fil-
tering would be particularly well suited - particles
could be sampled from the local model and then
reweighted using the joint model. Unfortunately,
we did not have enough time modify the code of
(Haghighi et al., 2005) accordingly, so thek-best
structure remained.

To generate samples from the SRL system, we
take the scores given to thek-best list, normalize
them to sum to1, and sample from them. One
consequence of this, is that any labeling not on the
k-best list has a probability of0.

5 Recognizing Textual Entailment

5.1 Task Description

In the task of recognizing textual entailment
(RTE), also commonly referred to as robust textual
inference, you are provided with two passages, a
textand ahypothesis, and must decide whether the
hypothesis can be inferred from the text. The term
robust is used because the task is not meant to be
domain specific. The terminferenceis used be-
cause this is not meant to be logical entailment, but
rather what an intelligent, informed human would
infer. Many NLP applications would benefit from
the ability to do robust textual entailment, includ-
ing question answering, information retrieval and
multi-document summarization. There have been
two PASCAL workshops (Dagan et al., 2005) with
shared tasks in the past two years devoted to RTE.
We used the data from the 2006 workshop, which
contains 800 text-hypothesis pairs in each of the
test and development sets4 (there is no training
set). Here is an example from the development
set from the first RTE challenge:

Text: Researchers at the Harvard School of Pub-
lic Health say that people who drink coffee
may be doing a lot more than keeping them-
selves awake – this kind of consumption ap-
parently also can help reduce the risk of dis-
eases.

Hypothesis: Coffee drinking has health benefits.

The positive and negative examples are bal-
anced, so the baseline of guessing either allyes
or all nowould score 50%. This is a hard task – at
the first challenge no system scored over 60%.

5.2 System Description

MacCartney et al. (2006) describe a system for do-
ing robust textual inference. They divide the task
into three stages – linguistic analysis, graph align-
ment, and entailment determination. The first of
these stages,linguistic analysisis itself a pipeline
of parsing and named entity recognition. They use
the syntactic parse to (deterministically) produce
a typed dependency graph for each sentence. This
pipeline is the one we replace. The second stage,
graph alignmentconsists of trying to find good
alignments between the typed dependency graphs

4The dataset and further information from both
challenges can be downloaded fromhttp://www.pascal-
network.org/Challenges/RTE2/Datasets/

623



NER parser RTE

Figure 2: The pipeline for recognizing textual entailment.

for the text and hypothesis. Each possible align-
ment has a score, and the alignment with the best
score is propagated forward. The final stage,en-
tailment determination, is where the decision is
actually made. Using the score from the align-
ment, as well as other features, a logistic model
is created to predict entailment. The parameters
for this model are learned from development data.5

While it would be preferable to sample possible
alignments, their system for generating alignment
scores is not probabilistic, and it is unclear how
one could convert between alignment scores and
probabilities in a meaningful way.

Our modified linguistic analysis pipeline does
NER tagging and parsing (in their system, the
parse is dependent on the NER tagging because
some types of entities are pre-chunked before
parsing) and treats the remaining two sections of
their pipeline, the alignment and determination
stages, as one final stage. Because the entailment
determination stage is based on a logistic model, a
probability of entailment is given and sampling is
straightforward.

6 Experimental Results

In our experiments we compare the greedy
pipelined approach with our sampling pipeline ap-
proach.

6.1 Semantic Role Labeling

For the past two years CoNLL has had shared
tasks on SRL (Carreras and Màrquez (2004) and
Carreras and Màrquez (2005)). We used the
CoNLL 2005 data and evaluation script. When
evaluating semantic role labeling results, it is com-
mon to present numbers on both the core argu-
ments (i.e., excluding the modifying arguments)
and all arguments. We follow this convention and
present both sets of numbers. We give precision,

5They report their results on the first PASCAL dataset,
and use only the development set from the first challenge for
learning weights. When we test on the data from the second
challenge, we use all data from the first challenge and the
development data from the second challenge to learn these
weights.

SRL Results – Penn Treebank Portion
Core Args Precision Recall F-measure

Greedy 79.31% 77.7% 78.50%
K-Best 80.05% 78.45% 79.24%

Sampling 80.13% 78.25% 79.18%
All Args Precision Recall F-measure
Greedy 78.49% 74.77% 76.58%
K-Best 79.58% 74.90% 77.16%

Sampling 79.81% 74.85% 77.31%
SRL Results – Brown Portion

Core Args Precision Recall F-measure
Greedy 68.28% 67.72% 68.0%
K-Best 69.25% 69.02% 69.13%

Sampling 69.35% 68.93% 69.16%
All Args Precision Recall F-measure
Greedy 66.6% 60.45% 63.38%
K-Best 68.82% 61.03% 64.69%

Sampling 68.6% 61.11% 64.64%

Table 1: Results for semantic role labeling task. The sampled
numbers are averaged over several runs, as discussed.

recall and F-measure, which are based on the num-
ber of arguments correctly identified. For an argu-
ment to be correct both the span and the classifica-
tion must be correct; there is no partial credit.

To generate sampled parses, we used the Stan-
ford parser (Klein and Manning, 2003). The
CoNLL data comes with parses from Charniak’s
parser (Charniak, 2000), so we had to re-parse
the data and retrain the SRL system on these new
parses, resulting in a lower baseline than previ-
ously presented work. We choose to use Stan-
ford’s parser because of the ease with which we
could modify it to generate samples. Unfortu-
nately, its performance is slightly below that of the
other parsers.

The CoNLL data has two separate test sets; the
first is section 23 of the Penn Treebank (PTB),
and the second is “fresh sentences” taken from the
Brown corpus. For full results, please see Table 1.
On the Penn Treebank portion we saw an absolute
F-score improvement of 0.7% on both core and all
arguments. On the Brown portion of the test set we
saw an improvement of 1.25% on core and 1.16%
on all arguments. In this context, a gain of over
1% is quite large: for instance, the scores for the
top 4 systems on the Brown data at CoNLL 2005
were within 1% of each other. For both portions,
we generated 50 samples, and did this 4 times, av-
eraging the results. We most likely saw better per-
formance on the Brown portion than the PTB por-
tion because the parser was trained on the Penn
Treebank training data, so the most likely parses
will be of higher quality for the PTB portion of
the test data than for the Brown portion. We also
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RTE Results
Accuracy Average Precision

Greedy 59.13% 59.91%
Sampling 60.88% 61.99%

Table 2: Results for recognizing textual entailment. The sam-
pled numbers are averaged over several runs, as discussed.

ran the pipeline using a50-best list, and found the
two results to be comparable.

6.2 Textual Entailment

For the second PASCAL RTE challenge, two dif-
ferent types of performance measures were used
to evaluate labels and confidence of the labels for
the text-hypothesis pairs. The first measure is ac-
curacy – the percentage of correct judgments. The
second measure isaverage precision. Responses
are sorted based on entailment confidence and then
average precision is calculated by the following
equation:

1

R

n
∑

i=1

E(i)
# correct up to pairi

i
(5)

wheren is the size of the test set,R is the number
of positive (entailed) examples,E(i) is an indi-
cator function whose value is1 if the ith pair is
entailed, and theis are sorted based on the entail-
ment confidence. The intention of this measure is
to evaluate how well calibrated a system is. Sys-
tems which are more confident in their correct an-
swers and less confident in their incorrect answers
will perform better on this measure.

Our results are presented in Table 2. We gen-
erated 25 samples for each run, and repeated the
process 7 times, averaging over runs. Accuracy
was improved by 1.5% and average precision by
2%. It does not come as a surprise that the average
precision improvement was larger than the accu-
racy improvement, because our model explicitly
estimates its own degree of confidence by estimat-
ing the posterior probability of the class label.

7 Conclusions and Future Work

We have presented a method for handling lan-
guage processing pipelines in which later stages
of processing are conditioned on the results of
earlier stages. Currently, common practice is to
take the best labeling at each point in a linguistic
analysis pipeline, but this method ignores informa-
tion about alternate labelings and their likelihoods.
Our approach uses all of the information available,

and has the added advantage of being extremely
simple to implement. By modifying your subtasks
to generate samples instead of the most likely la-
beling, our method can be used with very little ad-
ditional overhead. And, as we have shown, such
modifications are usually simple to make; further,
with only a “small” (polynomial) number of sam-
plesk, under mild assumptions the classification
error obtained by the sampling approximation ap-
proaches that of exact inference. (Ng and Jordan,
2001) In contrast, an algorithm that keeps track
only of thek-best list enjoys no such theoretical
guarantee, and can require an exponentially large
value fork to approach comparable error. We also
note that in practice,k-best lists are often more
complicated to implement and more computation-
ally expensive (e.g. the complexity of generat-
ing k sample parses or CRF outputs is substan-
tially lower than that of generating thek best parse
derivations or CRF outputs).

The major contribution of this work is not
specific to semantic role labeling or recognizing
textual entailment. We are proposing a general
method to deal with all multi-stage algorithms. It
is common to build systems using many different
software packages, often from other groups, and to
string together the1-best outputs. If, instead, all
NLP researchers wrote packages which can gen-
erate samples from the posterior, then the entire
NLP community could use this method as easily
as they can use the greedy methods that are com-
mon today, and which do not perform as well.

One possible direction for improvement of this
work would be to move from a Bayesian network
to an undirected Markov network. This is desir-
able because influence should be able to flow in
both directions in this pipeline. For example, the
semantic role labeler should be able to tell the
parser that it did not like a particular parse, and
this should influence the probability assigned to
that parse. The main difficulty here lies in how
to model this reversal of influence. The problem
of using parse trees to help decide good semantic
role labelings is well studied, but the problem of
using semantic role labelings to influence parses is
not. Furthermore, this requires building joint mod-
els over adjacent nodes, which is usually a non-
trivial task. However, we feel that this approach
would improve performance even more on these
pipelined tasks and should be pursued.
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