@inproceedings{ahmed-etal-2018-irony,
title = "Irony Detector at {S}em{E}val-2018 Task 3: Irony Detection in {E}nglish Tweets using Word Graph",
author = "Ahmed, Usman and
Zafar, Lubna and
Qayyum, Faiza and
Arshad Islam, Muhammad",
editor = "Apidianaki, Marianna and
Mohammad, Saif M. and
May, Jonathan and
Shutova, Ekaterina and
Bethard, Steven and
Carpuat, Marine",
booktitle = "Proceedings of the 12th International Workshop on Semantic Evaluation",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S18-1095/",
doi = "10.18653/v1/S18-1095",
pages = "581--586",
abstract = "This paper describes the Irony detection system that participates in SemEval-2018 Task 3: Irony detection in English tweets. The system participated in the subtasks A and B. This paper discusses the results of our system in the development, evaluation and post evaluation. Each class in the dataset is represented as directed unweighted graphs. Then, the comparison is carried out with each class graph which results in a vector. This vector is used as features by machine learning algorithm. The model is evaluated on a hold on strategy. The organizers randomly split 80{\%} (3,833 instances) training set (provided to the participant in training their system) and testing set 20{\%}(958 instances). The test set is reserved to evaluate the performance of participants systems. During the evaluation, our system ranked 23 in the Coda Lab result of the subtask A (binary class problem). The binary class system achieves accuracy 0.6135, precision 0.5091, recall 0.7170 and F measure 0.5955. The subtask B (multi-class problem) system is ranked 22 in Coda Lab results. The multiclass model achieves the accuracy 0.4158, precision 0.4055, recall 0.3526 and f measure 0.3101."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ahmed-etal-2018-irony">
<titleInfo>
<title>Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using Word Graph</title>
</titleInfo>
<name type="personal">
<namePart type="given">Usman</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lubna</namePart>
<namePart type="family">Zafar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Faiza</namePart>
<namePart type="family">Qayyum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="family">Arshad Islam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the Irony detection system that participates in SemEval-2018 Task 3: Irony detection in English tweets. The system participated in the subtasks A and B. This paper discusses the results of our system in the development, evaluation and post evaluation. Each class in the dataset is represented as directed unweighted graphs. Then, the comparison is carried out with each class graph which results in a vector. This vector is used as features by machine learning algorithm. The model is evaluated on a hold on strategy. The organizers randomly split 80% (3,833 instances) training set (provided to the participant in training their system) and testing set 20%(958 instances). The test set is reserved to evaluate the performance of participants systems. During the evaluation, our system ranked 23 in the Coda Lab result of the subtask A (binary class problem). The binary class system achieves accuracy 0.6135, precision 0.5091, recall 0.7170 and F measure 0.5955. The subtask B (multi-class problem) system is ranked 22 in Coda Lab results. The multiclass model achieves the accuracy 0.4158, precision 0.4055, recall 0.3526 and f measure 0.3101.</abstract>
<identifier type="citekey">ahmed-etal-2018-irony</identifier>
<identifier type="doi">10.18653/v1/S18-1095</identifier>
<location>
<url>https://aclanthology.org/S18-1095/</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>581</start>
<end>586</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using Word Graph
%A Ahmed, Usman
%A Zafar, Lubna
%A Qayyum, Faiza
%A Arshad Islam, Muhammad
%Y Apidianaki, Marianna
%Y Mohammad, Saif M.
%Y May, Jonathan
%Y Shutova, Ekaterina
%Y Bethard, Steven
%Y Carpuat, Marine
%S Proceedings of the 12th International Workshop on Semantic Evaluation
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F ahmed-etal-2018-irony
%X This paper describes the Irony detection system that participates in SemEval-2018 Task 3: Irony detection in English tweets. The system participated in the subtasks A and B. This paper discusses the results of our system in the development, evaluation and post evaluation. Each class in the dataset is represented as directed unweighted graphs. Then, the comparison is carried out with each class graph which results in a vector. This vector is used as features by machine learning algorithm. The model is evaluated on a hold on strategy. The organizers randomly split 80% (3,833 instances) training set (provided to the participant in training their system) and testing set 20%(958 instances). The test set is reserved to evaluate the performance of participants systems. During the evaluation, our system ranked 23 in the Coda Lab result of the subtask A (binary class problem). The binary class system achieves accuracy 0.6135, precision 0.5091, recall 0.7170 and F measure 0.5955. The subtask B (multi-class problem) system is ranked 22 in Coda Lab results. The multiclass model achieves the accuracy 0.4158, precision 0.4055, recall 0.3526 and f measure 0.3101.
%R 10.18653/v1/S18-1095
%U https://aclanthology.org/S18-1095/
%U https://doi.org/10.18653/v1/S18-1095
%P 581-586
Markdown (Informal)
[Irony Detector at SemEval-2018 Task 3: Irony Detection in English Tweets using Word Graph](https://aclanthology.org/S18-1095/) (Ahmed et al., SemEval 2018)
ACL