@inproceedings{huang-etal-2017-improving,
title = "Improving Slot Filling Performance with Attentive Neural Networks on Dependency Structures",
author = "Huang, Lifu and
Sil, Avirup and
Ji, Heng and
Florian, Radu",
editor = "Palmer, Martha and
Hwa, Rebecca and
Riedel, Sebastian",
booktitle = "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D17-1274/",
doi = "10.18653/v1/D17-1274",
pages = "2588--2597",
abstract = "Slot Filling (SF) aims to extract the values of certain types of attributes (or slots, such as person:cities{\_}of{\_}residence) for a given entity from a large collection of source documents. In this paper we propose an effective DNN architecture for SF with the following new strategies: (1). Take a regularized dependency graph instead of a raw sentence as input to DNN, to compress the wide contexts between query and candidate filler; (2). Incorporate two attention mechanisms: local attention learned from query and candidate filler, and global attention learned from external knowledge bases, to guide the model to better select indicative contexts to determine slot type. Experiments show that this framework outperforms state-of-the-art on both relation extraction (16{\%} absolute F-score gain) and slot filling validation for each individual system (up to 8.5{\%} absolute F-score gain)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2017-improving">
<titleInfo>
<title>Improving Slot Filling Performance with Attentive Neural Networks on Dependency Structures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lifu</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avirup</namePart>
<namePart type="family">Sil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="family">Florian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Martha</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rebecca</namePart>
<namePart type="family">Hwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Slot Filling (SF) aims to extract the values of certain types of attributes (or slots, such as person:cities_of_residence) for a given entity from a large collection of source documents. In this paper we propose an effective DNN architecture for SF with the following new strategies: (1). Take a regularized dependency graph instead of a raw sentence as input to DNN, to compress the wide contexts between query and candidate filler; (2). Incorporate two attention mechanisms: local attention learned from query and candidate filler, and global attention learned from external knowledge bases, to guide the model to better select indicative contexts to determine slot type. Experiments show that this framework outperforms state-of-the-art on both relation extraction (16% absolute F-score gain) and slot filling validation for each individual system (up to 8.5% absolute F-score gain).</abstract>
<identifier type="citekey">huang-etal-2017-improving</identifier>
<identifier type="doi">10.18653/v1/D17-1274</identifier>
<location>
<url>https://aclanthology.org/D17-1274/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>2588</start>
<end>2597</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Slot Filling Performance with Attentive Neural Networks on Dependency Structures
%A Huang, Lifu
%A Sil, Avirup
%A Ji, Heng
%A Florian, Radu
%Y Palmer, Martha
%Y Hwa, Rebecca
%Y Riedel, Sebastian
%S Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F huang-etal-2017-improving
%X Slot Filling (SF) aims to extract the values of certain types of attributes (or slots, such as person:cities_of_residence) for a given entity from a large collection of source documents. In this paper we propose an effective DNN architecture for SF with the following new strategies: (1). Take a regularized dependency graph instead of a raw sentence as input to DNN, to compress the wide contexts between query and candidate filler; (2). Incorporate two attention mechanisms: local attention learned from query and candidate filler, and global attention learned from external knowledge bases, to guide the model to better select indicative contexts to determine slot type. Experiments show that this framework outperforms state-of-the-art on both relation extraction (16% absolute F-score gain) and slot filling validation for each individual system (up to 8.5% absolute F-score gain).
%R 10.18653/v1/D17-1274
%U https://aclanthology.org/D17-1274/
%U https://doi.org/10.18653/v1/D17-1274
%P 2588-2597
Markdown (Informal)
[Improving Slot Filling Performance with Attentive Neural Networks on Dependency Structures](https://aclanthology.org/D17-1274/) (Huang et al., EMNLP 2017)
ACL