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Abstract

The digital humanities (DH) community fun-
damentally embraces the use of computerized
tools for the study and creation of knowledge
related to language, history, culture, and hu-
man values, in which natural language plays a
prominent role. Many successful DH tools rely
heavily on Natural Language Processing meth-
ods, and several efforts exist within the DH
community to promote the use of newer and
better tools. Nevertheless, most NLP research
is driven by web corpora that are noticeably
different from texts commonly found in DH
artifacts, which tend to use richer language and
refer to rarer entities. Thus, the near-human
performance achieved by state-of-the-art NLP
tools on web texts might not be achievable on
DH texts. We introduce a dataset1 carefully cre-
ated by computer scientists and digital human-
ists intended to serve as a reference point for
the development and evaluation of NLP tools.
The dataset is a subset of a born-digital textbase
resulting from a prominent and ongoing experi-
ment in digital literary history, containing thou-
sands of multi-sentence excerpts that are suited
for information extraction tasks. We fully de-
scribe the dataset and show that its language
is demonstrably different than the corpora nor-
mally used in training language resources in
the NLP community.

1 Introduction

The digital humanities (DH) research community
makes up a large user base for natural language pro-
cessing (NLP) tools and algorithms (McGillivray
et al., 2020; Biemann et al., 2014). Digital human-
ists have long been using cultural heritage data for
meaningful NLP work, where NLP in DH includes
everything from linguistic analysis of change over
time within large linguistic corpora (Schlechtweg
et al., 2020) to narratology (Piper et al., 2021) to

*Contributed equally to this work.
1https://doi.org/10.5683/SP3/RCVANO

literary history (Underwood et al., 2018) and sty-
lometry (Stamatatos, 2009).

However, there are risks associated with LLMs
that are particularly relevant to DH. Unlike the av-
erage web document, texts in the humanities tend
to use rich and complex writing styles, historical
language, and references to under-represented long-
tail entities (Olieman et al., 2017; Nurmikko-Fuller,
2023). LLMs have known problems with bias to-
wards the contemporary and popularity bias (Dai
et al., 2024). Chen et al. (2024) warn of a "Spiral of
Silence" where over time, by iteratively training on
LLM-generated content, LLM-based retrieval sys-
tems deprioritize accurate human-generated con-
tent and lose diversity in the information they re-
turn. If future NLP is dominated by LLMs that
ignore the outliers that are so important to humani-
ties scholarship (D’Ignazio, 2021; Jockers, 2013),
this will negatively impact humanities research,
our sense of history, and the public. As Brown and
Simpson (2013) assert, "marginality and unique-
ness are what humanities scholars often seek to
discover and analyse". We need curated datasets
for evaluating and fine-tuning LLMs with the prior-
ities and expertise of humanists at their core.

For LLMs to effectively and responsibly lever-
age this data and become reliable for DH needs,
researchers developing these models and the tools
that use the models, need to collaborate with data
experts. As McGillivray et al. (2020) point out,
there is a need for cross-fertilization of ideas and
more communication across the NLP and DH com-
munities. LINCS (Brown et al., 2023) is an ex-
ample of computer science (CS) and humanities
practitioners working together to extract knowledge
from DH texts in the form of linked data connected
to web pages to create machine-readable data that
could ultimately enhance LLMs. However, the in-
ability of current systems to handle the ontological
nuances of the source data plus the absence of en-
tities from popular knowledge bases (KBs) like

https://doi.org/10.5683/SP3/RCVANO
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Wikipedia and Wikidata (Vrandecic and Krötzsch,
2014) necessitates manual entity linking, ontology
mapping, and data validation. There is an oppor-
tunity here for NLP developers to better support
such projects with systems optimized for cultural
heritage data.

To contribute to these efforts, we create an NLP
dataset through a collaborative effort between
computer scientists and humanists. Our dataset,
Orlando (Release) (Hervieux et al., 2024), con-
sists of 12,627 unique text chunks with over 40,000
entity mentions across four entity types that are
manually linked to external entity URIs and anno-
tated with 79 unique inter- and cross-sentence rela-
tions. The source texts are biographies of historical
writers from a large and representative born-digital
humanities corpus created by the Orlando Project
(Brown et al., 2022) (Appendix A). These source
biographies are originally expressed as XML docu-
ments, written and thoughtfully hand-annotated in
English by DH scholars, using language demonstra-
bly richer than that found in typical LLM training
corpora. We extract our dataset from the source
while ensuring a high rate of long-tail entities, and
preserving the ontological nuances of the source
texts’ entity and relationship annotations, which
we augment with manually-confirmed entity URIs
(§3). This makes the dataset particularly well-
suited for information extraction tasks such as en-
tity linking (EL) and relation extraction (RE), as
elaborated in §5.

Orlando’s text complexity (examples in Ap-
pendix A.1) makes it an interesting subject of study
for what machine-aided tools can process. We con-
duct a series of linguistic analyses (§4) to show
that, compared to other genres of text such as news,
encyclopedia, or web pages, the Orlando data is
more complex in terms of both lexical and syn-
tactic aspects. In light of that, we test whether
the Orlando data is out-of-distribution for state-
of-the-art large language models such as Llama
2 (Touvron et al., 2023), using metrics based on
Mahalanobis distance (Ren et al., 2023) and kernel
density estimation (Kirchenbauer et al., 2024). The
test highlights that the Orlando data is evidently fur-
ther from the distributions of the training corpora
of LLMs than baseline corpora. This suggests that
LLMs, when used out-of-the-box, may suffer from
poorer generalization, lower accuracy and higher
aleatoric uncertainty (Baan et al., 2023) when pro-
cessing complex DH text like that from Orlando.

We hope that this data will encourage NLP tool

developers to embrace the challenges posed by DH
texts and seek collaboration with the data experts,
leading to research, data, tools and systems that
would be valuable across disciplines.

2 Related Work

Our dataset is a unique addition to the important
yet disproportionally scarce collection of informa-
tion extraction datasets derived from humanities
texts and created collaboratively by NLP and DH
researchers. There are countless datasets created to
benchmark information extraction models (Nasar
et al., 2022) and many works that perform such
benchmark evaluations (Wang et al., 2022; Chang
et al., 2024), but they typically lack the humanities
perspective. There are exceptions, with examples
including but not limited to Menini et al. (2022)’s
information extraction benchmark relevant to cul-
tural historians interested in textual descriptions
of smells in historical documents; Delmonte and
Busetto (2023)’s investigation of BERT’s limita-
tions when applied to linguistically complex italian
poetry; Pedinotti et al. (2021)’s diagnostic dataset
and evaluation of transformer-based language mod-
els on generalized event knowledge; and Bamman
et al. (2020)’s challenging coreference resolution
dataset for literary texts. These works focus on
other genres of text than that of Orlando, and our
domain allows us to provide hand-curated cross-
database annotations for entity mentions, which
is crucial for the evaluation of EL. Compared
to works that evaluate BERT and other special-
ized models, we focus on the suitability of LLMs
for humanities-related information extraction tasks.
This is critical as LLMs are becoming the status
quo for many NLP tasks (Chang et al., 2024) and
LLMs are often used with a different paradigm:
zero-shot prompting rather than fitting to the target
domain.

There are many other valuable datasets coming
out of the humanities2,3,4. Major differences be-
tween these datasets and ours are that most of these
projects release their entire research corpora as raw
text with humanities research as the target task
rather than information extraction or LLM bench-
marking or fine-tuning. Our approach was to look
at a prominent humanities dataset with challenging
language, consult with DH scholars to understand

2https://rutgersdh.github.io/dh-sources/
3https://humanitiesdata.com/resources
4https://melaniewalsh.github.io/

Intro-Cultural-Analytics

https://rutgersdh.github.io/dh-sources/
https://humanitiesdata.com/resources
https://melaniewalsh.github.io/Intro-Cultural-Analytics
https://melaniewalsh.github.io/Intro-Cultural-Analytics
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what level of information was important to keep,
and then selectively sample it with the intent of
keeping difficult chunks that contain many diverse
entities and relations.

Our text analysis of Orlando draws on work in
evaluating text readability (Crossley et al., 2011;
Lu, 2010), but our work deviates as we apply read-
ability measures to compare corpora used in NLP
models. We use the popular Flesh-Kincaid grade
level (Kincaid et al., 1975) which suits our chunk-
level data compared to other metrics like Coh-
Metrix (Graesser et al., 2004) which requires para-
graph statistics and discourse coherence. See Lu’s
(2014) work for a corpus linguist’s review of com-
putational corpus analysis. Our work interrogates
whether a corpus is out-of-distribution of an LLM’s
training corpus, picking the best-performing indica-
tors in recent discussions (Ren et al., 2023; Yauney
et al., 2023; Kirchenbauer et al., 2024).

3 Creating the Orlando Dataset

Derived from the original Orlando XML docu-
ments, we release a simplified and easily ma-
chine processable JSON dataset, Orlando (Release).
Through this collaboration with the data experts,
we simplify the complexly nested embedded an-
notations into an easy-to-use benchmark, without
abstracting the nuance of the original entity and
relation types.

According to the license, we can release 10% of
the Orlando textbase. Instead of uniformly sam-
pling from all sentences or entire documents, we
release text chunks of up to 4 sentences each that
capture valuable cross-sentence relationships and
helpful context for coreference resolution and EL
tasks. We filter out text chunks containing too
few entities or relations to ensure a high density
of useful text. When our extractions come from
overlapping chunks, we merge smaller ones into
larger ones. We select the included text chunks
randomly but with constraints to keep the original
frequency distribution for relations and to priori-
tize the inclusion of person mentions with external
entity links. Our sampling process does not alter
the distribution of data as it is uniform sampling
in a stratified fashion that preserves the long tail
distributions of relation and entity types.

Orlando (Release) has 12,627 unique text chunks
with over 40 thousand entity mentions across four
entity types, with the majority being person men-
tions. Table 1 lists entity mention counts by type

Mentions Entities
person
bio subjects 14,168 1,389
bio subjects with links 14,122 1,379
others 10,627 6,257
others with links 6,951 3,145
organization 2,910 1,466
place 11,638 4,785
creative work 1,127 928

Table 1: Mention and unique entity count for each entity
type in Orlando (Release). Place and creative work types
were not de-duplicated so entity count is the number of
unique mentions. “with links” rows are subsets of the
row directly above.

and presence of external entity links, and breaks
down person mentions into the primary subjects of
the biographies and other mentioned persons.

Compared to typical RE benchmarks with few
broad relations, our dataset contains 79 unique re-
lations, 30 of which are present in at least two
contextual categories. The full list of relations and
categories with frequency statistics are in the Ap-
pendix B Tables 8, 9, and 10.

3.1 Source Textbase

The original Orlando documents are densely anno-
tated XML biocritical profiles of authors (biogra-
phies). Tags are applied on the word level to iden-
tify and add context to entities and concepts, and
on the sentence or paragraph level for contextual
themes and relations. Figure 1 presents an exam-
ple. The annotations signal what is most relevant
to the domain researchers, which means that not
all possible entities and relations are tagged. The
data is unique in that the included annotations are
extremely detailed, as we discussed in noting the
wide range of relations.

Each biography focuses on one person, who we
refer to as the biography subject. The biographies
are sectioned in two: (1) their birth, death, and the
people, places, and activities in between; (2) their
writing and its reception. We sample only from
the first to prioritize capturing relations between
persons without the added complexity of written
and often fictional works.

Entity Tags There are four entity types explicitly
tagged in the XML documents that we include in
our dataset: person, place, organization, and cre-
ative work. Pronouns are not flagged by annotators
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<HEADING>Marriage</HEADING> 
<FAMILY> 
  <MEMBER RELATION="HUSBAND"> 
    <MARRIAGE> 
      <CHRONSTRUCT RELEVANCE="COMPREHENSIVE"> 
        <DATE VALUE="1834-09-24">24 September 1834</DATE> 
          <CHRONPROSE> 
            <NAME STANDARD="Adams, Sarah Flower" 
                  REF="...d681ef"> 

     Sarah Flower 
   </NAME> married 

            <NAME STANDARD="Adams, William Bridges" 
                  REF="...9f83e2"> 
              William Bridges Adams 
            </NAME>, 
            <JOB>engineer</JOB> and 
            <JOB>inventor</JOB>, at 
            <PLACE> 
              <PLACENAME REG="St John's Church, Hackney"> 
                St John's parish church</PLACENAME>, 
              <SETTLEMENT CURRENT="London">Hackney</SETTLEMENT> 
              <REGION REG="Middlesex"/> 
              <GEOG REG="England"/> 
            </PLACE>. 
        </CHRONPROSE> 
      </CHRONSTRUCT> 
    </MARRIAGE> 
  </MEMBER> 
</FAMILY>

(a) The original Orlando documents are XML in which text
is embedded within deeply-nested relation and entity tags.

(b) Author profile corresponding to the XML in Figure 1a.

.

On 24 September 1834, Sarah Flower married 

William Bridges Adams, engineer and inventor, 

at St John's parish church, Hackney.

husband

paid_occupation

(c) We release JSON documents with the same information as
the XML but with text extracted and cleaned and lists of relations
and entities enhanced with external identifiers.

Figure 1: Representation of an Orlando text chunk displayed as its source XML document (a), its published form on
the web (b), and its extracted form in our released dataset (c).

and thus do not appear as mentions in our data.
However, there are cases where a person’s relation-
ship to another is used as the mention. For example,
“Elizabeth Singer Rowe returned to Frome to live
with her father” contains the mention “father”. We
include such mentions because a human annota-
tor could confirm a match using the context, so a
sophisticated EL method may also be able to.

Relation Tags The XML relation tags indicate
how something in the text relates back to the bi-
ography subject, making them the subject of all
extracted relations. There is, therefore, no specific
text span to connect them to a given relation. The
only exception is that the occupations of family
members are explicitly tagged.

Rather than tagging specific verbs to represent
explicit relations, the annotators tag multi-sentence
and sometimes multi-paragraph chunks with spe-
cific categorical terms5. For each category, there
are certain nested tags that we use to extract rela-
tions. For example, within a <FAMILY> tag, there
can be a nested <MARRIAGE> element, within which
the first <NAME> element represents the biography
subject’s spouse, and within <DEATH>, we may find
<DATE>, <CAUSE>, and <PLACE> with details of the
biography subject’s death.

5https://orlando.cambridge.org/index.php/
about/tag-diagrams

3.2 Extracted Dataset
Pre-processing We apply an automated text-
cleaning step before extracting our dataset from
the XML, correcting typographic whitespace er-
rors and integrating dates at the starts of sentences
rather than as headings. Originally, the biogra-
phy subjects are mentioned with project-specific
acronyms, which we replace with full names as
defined by the annotators. As such, a subject is
always mentioned with the same text, except for
female subjects when called their birth name early
on and their married name later.

Finding Entity Links 20 annotators with back-
grounds in humanities and CS6 manually searched,
using OpenRefine (Delpeuch et al., 2024), for exter-
nal identifiers for a subset of the over 27,000 unique
person entities. To get a broad sample, the review
began with the first 8,500 persons by alphabeti-
cal order, then 3,240 remaining persons with the
highest mention count across all biographies. All
biography subjects had been previously searched
for by earlier annotators who also found matches
for many places in GeoNames (Unxos, 2013).

We instructed annotators to choose one match
per entity from VIAF (Tillett, 2002), Wikidata,
or Getty ULAN (Harpring, 2010). The Orlando
Project leads deemed those sources useful for creat-

6The annotators were undergraduate students enrolled in
humanities and CS programs and were paid employees of the
authors’ universities.

https://orlando.cambridge.org/index.php/about/tag-diagrams
https://orlando.cambridge.org/index.php/about/tag-diagrams
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ing meaningful linked open data. Using any avail-
able context from the biographies or the web, an-
notators confirmed matches when they were “def-
inite” or “reasonably certain” on our four-point
scale. These scores required multiple pieces of evi-
dence, such as matching birth and death dates, titles
of written works, or family members. When annota-
tors could not confirm a match, either because of in-
adequate evidence or absence of a viable candidate,
our data specifies “unable to confirm match.” If an
entity was not reviewed by our annotators, we mark
it as “match not searched for.” Using the confirmed
matches, we query Wikidata’s SPARQL endpoint
to get equivalent URIs across the three sources
and Wikipedia. All found links are included in our
dataset to facilitate benchmarking systems that use
different KBs.

4 Corpus Comparison

We compare Orlando with corpora of varying gen-
res to determine its complexity for human readers
and automated processing.

4.1 Baseline Corpora

We select baselines by two criteria. They spread
across diverse genres, including news, encyclope-
dia, and webpages. They also represent the typ-
ical corpora used in training LLMs to provide a
more accurate projection of the difficulty of Or-
lando for LLMs. Each corpus is pre-processed
using the same pipeline as Orlando (detailed in
Appendix C.1). The corpora are:

C4 Common Crawl7 is a large corpus of web-
pages, reflecting the proportions of different tex-
tual content available on the Internet. We use the
derived C4 dataset (Raffel et al., 2020a), a cleaned
version of Common Crawl that only contains En-
glish webpages, as it is the backbone training cor-
pus for many LLMs (Raffel et al., 2020b; Chalkidis
et al., 2022; Groeneveld et al., 2024).

CC-News We use the subset of CC-News (Nagel,
2016) prepared by Liu et al. (2019) using news-
please (Hamborg et al., 2017), which is a dataset of
708,241 English-only news articles extracted from
Common Crawl. It is part of the mixture of training
corpora of smaller scale language models such as
RoBERTa (Liu et al., 2019).

7https://commoncrawl.org

Corpus FKGL Avg. Entities

C4 9.56 1.13
CC-News 9.66 1.88
Wikipedia 11.75 2.84
Simple Wiki 8.93 2.16
Orlando (Full) 11.47 2.40
Orlando (Release) 11.90 3.15

Table 2: Flesch-Kincaid Grade Level (FKGL) and aver-
age number of entities per sentence of the corpora.

Wikipedia The English Wikipedia is a large en-
cyclopedia that is also widely used as a training
corpus for a full spectrum of language models as
summarized by Alshahrani et al. (2023).

Simple Wiki As a reference point for text com-
plexity, we include Simple English Wikipedia. It
is a version of Wikipedia that is written in simple
English and is intended for people with different
language proficiency levels.

Orlando (Full) As a baseline, our comparison
includes the full text of all biographies in the Or-
lando Project (Brown et al., 2022). The dataset
we release, designated as Orlando (Release), is a
subset of the full Orlando dataset that only contains
high-quality chunks of text satisfying the criteria
described in §3.

4.2 Lexical Complexity
Metrics We count the number of entities in
each sentence and report the Flesch-Kincaid Grade
Level (FKGL; Kincaid et al., 1975) in Table 2.
FKGL maps the number of syllables and words
in a sentence to the number of years of education
required to understand the sentence, and is widely
used in the automatic evaluation of text complexity
(Alva-Manchego et al., 2019).

Discussion Overall, Orlando is among the most
complex corpora in terms of lexical complexity
which could pose difficulties for human readers.
The similarity between Orlando and Wikipedia is
expected, as they share a similar genre with bio-
graphical text comprising a large part of Wikipedia.
They contain more named entities per sentence than
the other corpora. In particular, the distribution of
the number of entities in our released subset skews
towards the right, with the highest mean.

From an information extraction perspective, the
high number of entities per sentence makes Or-
lando harder to process as it requires more EL,

https://commoncrawl.org
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coreference resolution, and RE operations. The
released subset is selected with a preference to
contain sentences with more entities and relations,
which makes it more suitable for EL and RE bench-
marking and leads to a more challenging dataset.

4.3 Syntactic Complexity

Metrics We use the L2 Syntactic Complexity An-
alyzer (L2SCA; Lu, 2010) to analyze the syntactic
complexity of the corpora. This widely adopted
tool enumerates a list of patterns in a parse tree
and produces 13 variables associated with five as-
pects of syntactic complexity: length, subordina-
tion, coordination, overall complexity, and phrasal
sophistication. We plot the scores of the corpora
concerning each of the five aspects in Figure 2.

Discussion L2SCA shows that Orlando has
higher syntactical complexity than the other cor-
pora. It ranks high in all five aspects of syntactic
complexity, with the highest scores in length of
production units and amounts of coordination. In
comparison, CC-News has high number of subor-
dinations, but fewer coordination and shorter pro-
duction units. Wikipedia has more subordinations
than CC-News and the highest ratio of complex
nominals, but it has fewer coordination and shorter
production units.

4.4 In-distribution Assessment

Metrics There is mounting theoretical (Saunshi
et al., 2021) and empirical (Razeghi et al., 2022;
Kandpal et al., 2023; Ren et al., 2023; Kirchen-
bauer et al., 2024) evidence that suggests a positive
correlation between the similarity of the distribu-
tions of training and test data and LLM’s perfor-
mance. Therefore, assessing whether a test dataset
(Orlando in our case) is in-distribution, i.e. it fol-
lows the same distribution of a model’s training
distribution, could be indicative of the model’s rel-
ative performance on the Orlando dataset.

We adapt two metrics to measure whether Or-
lando is in-distribution: Mahalanobis distance
(MD; Ren et al., 2023) and kernel density estima-
tion (KDE; Kirchenbauer et al. 2024) with respect
to the training data distribution. The metrics are
shown to be correlated with model’s performance
on translation and language understanding respec-
tively. Both methods represent training and test
samples in the embedding space. Ren et al. (2023)
fits the training data to a Gaussian distribution
N (µ,Σ) and computes the squared Mahalanobis

distance MD(x) = (x−µ)TΣ−1(x−µ) for each
test sample. Kirchenbauer et al. (2024) takes a non-
parametric approach and estimates the probability
density of each test sample directly from the train-
ing data using the approximate KDE algorithm by
Karppa et al. (2022).

The two metrics both require access to the train-
ing data of a model, while MD also relies on the
internal activations of LLMs. The former is gen-
erally unavailable except for works from the LLM
open-science community such as (Soldaini et al.,
2024) and (Groeneveld et al., 2024). The latter is
also unavailable for blackbox LLMs such as GPT-
4. For MD, we analyze two open-weight LMs:
decoder-only Llama-2-7B (Touvron et al., 2023)
and encoder-decoder BART-large (Lewis et al.,
2020), and assume C4 to be a good approxima-
tion of the training data based on the observations
in §4.1. For KDE, we use Soldaini et al.’s (2024)
open-science replica to approximate frontier LLMs’
training data.

Discussion As shown in Figure 3, both MD and
KDE show that Orlando as test data has lower den-
sity in LLM’s training data distribution, indicating
that Orlando contains more long-tail information
(to be discussed in §4.5) and is more likely to be
out of the distribution, compared to general web-
pages, news or Wikipedia articles. While existing
research does not establish a clear density threshold
for ensuring the acceptable performance of LLMs,
the findings indicate a need for extra caution, as the
use of LLMs with DH data may lead to relatively
degraded performance. As a future direction, we
suggest more directly benchmarking LLMs on DH
datasets such as Orlando.

4.5 A High Percentage of Long-tail Entities

Thanks to our URI attribution, we find the percent-
age of Orlando (Full) person entities in common
KBs: Wikipedia for notable people, Wikidata as
a larger and more diverse KB, VIAF for people
with publications which are relevant to Orlando,
and Getty ULAN as an example relevant to many
humanities texts but less so Orlando.

Table 3 presents the results for 1,434 subjects
and 8,510 randomly sampled other people. Unsur-
prisingly, over 90% of subjects notable enough to
have biographies written about them are found in
each of the three relevant KBs. However, 50.8%,
41.1%, and 37.5% of the other people could not be
found in Wikipedia, Wikidata, and VIAF, respec-
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C4 CC-News Wikipedia Simple  
Wiki

Orlando 
(Full)

Orlando 
(Release)MLCMLS

MLT

C/S

C/T

CT/T
DC/C DC/T

VP/T
CN/T

CN/C

T/S

CP/T
CP/C

Length of UnitsOverall Complexity Amounts of Subordination Amounts of Subordination Phrasal Sophistication

Figure 2: L2SCA values of the six corpora, with each corpus plotted as an individual circle. Within a circle,
each polygon represents an aspect of L2SCA and each vertex represents a variable. Starting from 12 o’clock and
iterating counterclockwise, the respective aspects of the polygons are listed in the legend. The area of the polygon is
proportional to the scores of the aspect. For illustration, the values are normalized by min-max scaling. Definitions
of the abbreviated variable names and raw values of the 14 variables of L2SCA (Lu, 2010) in Tables 11, 12 and 13.

C4 CC-
News Wikipedia Simple 

Wiki
Orlando  
(Full)

Orlando  
(Release)

Llama-2
-7B

BART 
-large

(a) Mean squared Mahalanobis distance.

15.0 17.5 20.0 22.5 25.0 27.5 30.0
Density (LMD3, ×10 3)

C4

CC-News

Wikipedia

Simple
Wiki

Orlando
(Full)

Orlando
(Release)

(b) Kernel density estimation.

Figure 3: Both MD and KDE show that Orlando is
relatively more out-of-distribution. Higher chance of
samples being out-of-distribution results in higher MD
and lower KDE.

tively by our human annotators – either because
the entity was not present or there was insufficient
evidence to make a match. These rates highlight
that a large percentage of Orlando entities are not
considered notable and demonstrate Orlando’s high
concentration of long-tail entities (Kandpal et al.,
2023).

Kandpal et al. (2023) explore the relationship
between question answering performance and the
number of documents about an entity in the training
data, and report reduced performance in connection
with long-tail entities. This raises questions about

how LLMs and associated tools will perform on
entity-based tasks with data such as Orlando. There
is an opportunity here for LLMs to harness more
humanities data to work better for long-tail entities
– ultimately reducing historical biases and uplifting
historically silenced and overlooked individuals. It
also highlights the importance of datasets such as
ours so that systems can be evaluated on a mix of
popular and long-tail entities.

Bio Subjects Others
Wikipedia 93.6% 49.2%
Wikidata 98.7% 58.9%
VIAF 94.3% 62.5%
ULAN 13.2% 8.0%

Table 3: Percentage of unique person entities reviewed
by annotators that have matches in each KB. This is
a sample of 1434 biography subjects and 8510 others
mentioned in Orlando (Full).

5 Exploring Dataset Use Cases

The unique linguistic features of Orlando texts have
made them subjects of study in applications like
text simplification (Yao et al., 2024). Our dataset
enriches the texts with annotations focused on en-
tity and relation mentions, making it well suited for
information extraction tasks. We demonstrate the
data’s usefulness through off-the-shelf EL and RE
systems simple to use without customization.

Entity Linking We use the zero-shot EL sys-
tem BLINK (Wu et al., 2020, details in Appendix
D.1), which uses transfer learning and is potentially
useful when applied to the humanities because it
should not require training data from the target do-
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Bio Subjects Others

By Entity 0.89 0.80
By Mention 0.92 0.81

Table 4: BLINK entity linking accuracy on Orlando
(Release) using BLINK’s pre-trained Wikipedia model.

main. We link the 13,727 mentions of the 1,307
unique biography subjects and the 5,920 mentions
of the unique 2,528 other persons that have con-
firmed Wikipedia links in Orlando (Release).

Many EL systems consist of an end-to-end
pipeline for both recognition (finding mentions to
entities) and linking (matching each mention to a
database entry). Orlando (Release) enables the eval-
uation of both steps, but we limit this evaluation to
the linking step because BLINK uses a third-party
named entity recognition (NER) system. As such,
and as is standard in this setting where the system
is not able to abstain from making a prediction, we
report only accuracy8 (Wu et al., 2020; Botha et al.,
2020; Hoffart et al., 2011).

Table 4 presents the accuracy broken down by
mention and unique entity for each person type.
The two rows “By Mention” and “By Entity” refer
to two common ways to aggregate results in EL lit-
erature. “By Mention” accuracy is micro-averaged
as in Hoffart et al. (2011) or the number of cor-
rect matches divided by the number of mentions.
“By Entity” is the macro-average, calculated as the
number of correct matches divided by the number
of mentions of entity e, for each entity e in our
dataset and then taking the average.

BLINK performs similarly on Orlando subjects
to what Wu et al. (2020) report on TACKBP-
2010 (0.92 here compared to their best accuracy
of 0.945). However, we see a 0.09 to 0.11 point
decrease between the notable subjects set and that
of the other people, which contains more long-tail
entities. It is also important to note that, follow-
ing Wu et al. (2020)’s problem setup and because
of BLINK’s inability to make NIL prediction, we
report accuracy only of the entities for which we
have confirmed Wikipedia links. This results in
artificially inflated scores that are not reflective of
the reality of EL on humanities texts. These issues
highlight the potential our data has as a challenging
entity linking benchmark.

8Accuracy and precision are equal in this task setting.

Relation Extraction We use the end-to-end RE
system PURE (Zhong and Chen, 2021) on a ran-
dom sample of 50 text chunks from Orlando (Re-
lease), pre-processed as described in Appendix D.2.
PURE uses a small set of generic predicates based
on those used in the ACE05 dataset (Walker et al.,
2006), where a predicate is the connecting term
in the subject-predicate-object representation of
an extracted relation. On this sample, PURE’s re-
sults include six unique predicates, while Orlando
(Release) includes 34. Table 5 shows our map-
ping between Orlando and PURE predicates for
the relations that were correctly present in both the
Orlando annotations and in PURE’s results for this
sample.

PURE Orlando

General-
Affiliation

relocation

Person-
Social

brother, husband,
interpersonal_relationship,

instructor

Physical
habitation, relocation,

travel, visit

Table 5: The mapping between PURE predicates and
Orlando predicates on the relations that both PURE and
Orlando correctly identify on a sample of 50 random
Orlando (Release) text chunks. This is only 8 of 34
unique Orlando predicates from this sample that PURE
found equivalents to.

Even in this small sample of overlapping pred-
icates, we see PURE abstracting away the valu-
able specificity in Orlando’s thoughtfully created
predicates. Of course there are systems with predi-
cate sets ranging in size and specificity, but we use
PURE as a demonstration that our data can be used
to evaluate and improve systems across that range.

We manually verify each relation in PURE’s
results. Of the 115 relations that PURE extracts,
83% are correct and 65% are both correct and not
found in our Orlando annotations. However, the
predicates that PURE uses are so high-level that
it is challenging to derive meaning from many of
the new extractions. PURE only finds 10% of the
174 annotated relations in this sample. This indi-
cates that the detail contained in Orlando poses
a significant challenge for such RE systems. Ta-
ble 6 provides an example, showing the relations
that PURE finds for the text in Appendix D.3 that
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subject predicate object

her Person-Social parents
student Organization-Affiliation school
her Organization-Affiliation school
school General-Affiliation Canada

Annie Louisa Walker social_class professional but not wealthy
rank among the middle classes

Annie Louisa Walker nationality English
Annie Louisa Walker race_colour white
Annie Louisa Walker religion Christian
Annie Louisa Walker religion Evangelicals
Annie Louisa Walker gendered_political_activity Temperance movement
Annie Louisa Walker political_involvement Temperance movement

Table 6: An example of PURE (top) and Orlando (Release) (bottom) relations on the same text sample.
PURE abstracts away Orlando’s valuable detailed predicates.

subject predicate object

Philip Larkin school St John’s College, Oxford
Philip Larkin subject_studied English language and literature
Philip Larkin degree Honours BA
Philip Larkin education_companion Bruce Montgomery
Philip Larkin education_companion Kingsley Amis
Philip Larkin contested_behaviour Amis and Larkin constituted themselves a two-man

parody factory mocking every aspect of university life:
the syllabus, the dons, and the aspiring
writers such as John Heath-Stubbs.

Table 7: An example of Orlando (Release) relation annotations on text where PURE was not able to
identify any relations.

are technically correct, but that lack specificity –
even if we were to incorporate coreference reso-
lution into the results. Table 7 shows the detailed
and varied relation annotations included in Orlando
(Release) for the text in Appendix D.4 on which
PURE returns no results.

6 Conclusion

We argue that the impressive results reported by
fast-paced NLP research might not reach tools in
the DH community due to inherent differences in
the kinds of texts they use. In particular, we note
that LLMs have been shown to underperform with
out-of-distribution inputs compared to experiments
where test data comes from the same distribution
as the training data (which is the norm in NLP
research). While there is currently no machinery to
predict the gap in observed performance for a given
dataset, we report statistics derived using state-of-

the-art methods that indicate noticeable differences
between a corpus derived from a prominent born-
digital DH textbase and corpora commonly used
as training data in NLP research. We contribute
this collaboratively developed dataset and argue
for its potential to help close the gap between DH
scholars and NLP system developers by serving as
a benchmark for existing (and future) tools, as well
as a resource for tool development.

Limitations

While we provide extensive statistical analysis us-
ing state-of-the-art methods, we consider only one
(albeit prominent) DH dataset. Many avenues for
future work exist. First, a similar analysis with
a larger sample of prominent texts from the DH
community, covering a range of genres, is needed.
From a tool development point of view, an im-
mediate use of our dataset would be fine-tuning
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existing large language models to improve their
ability to handle similar texts. We hope that our
data will also be used in the evaluation and devel-
opment of NER, EL, and RE tools that are better
equipped to handle rich and complex texts with
mentions of rarer entities compared to news and
other kinds of texts found on the web. More impor-
tantly, we see tremendous potential in using other
extant resources from the DH community in the
development and evaluation of NLP tools. Such an
approach can only lead to more robust tools.
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A The Orlando Project

The Orlando Project is an ongoing experiment in
digital literary history that began in 1995. Its flag-
ship output is a regularly updated online “textbase”,
Orlando: Women’s Writing in the British Isles
from the Beginnings to the Present. As of 2023,
the textbase comprises 1444 biocritical profiles
of authors from 612 BCE onward, 1261 of them
women, contextualized by more than 29,361 free-
standing events. 2,995,455 semantic tags anno-
tate its 9,043,111 words with structured references
to 37,374 unique persons, 8,696 organizations,
12,114 place names, 47,067 titles, and 30,441 bib-
liographic sources, as well as embedding relation-
ships among them.

The textbase data has been used for analysis,
visualization, and interface design research; its con-
tent has fed other DH projects in women’s writing;
and its XML schema has served as a foundation for
similar projects in the Canadian Writing Research
Collaboratory12.

Few born-digital DH resources feature such ex-
tensive annotation, since hand-annotation is costly.
However, Orlando is representative of much DH
work in being organized around profiles of signifi-
cant individuals that refer to other related entities,
and in using complex, nuanced language. Linking
entities is a key component of DH infrastructure
(Waters, 2023). More efficient and accurate EL
for text such as Orlando’s would provide immense
benefits to DH scholars wishing to enhance their
data for publication or analysis, and relationship
extraction would provide even further value. Suit-
ably packaged fine-tuned LLMs better equipped to
deal with the long and elaborate sentences found
in Orlando would be equally welcome by the DH
community.
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A.1 Illustrating Orlando’s Complexity

The density of facts and complex sentence struc-
tures in Orlando make it a valuable DH research
tool and present an interesting and potentially quite
challenging dataset for NLP systems trained on
simpler text.

Sentences contain lists of people with multiple
parenthetical clauses and nested relations:

“Dora Carrington formed a lively group
(the Wild Group, as they were known at
the Slade) with women she remained in
close contact with for many years, includ-
ing Dorothy Brett (later the Honourable),
Barbara Hiles (later Bagenal), Ruth
Humphries, and Alix Sargant-Florence
(the daughter of painter Mary Sargant-
Florence and later the wife of James Stra-
chey).”

It is often ambiguous, even to a human reader, as
to which relationship is referring to which entity:

“One of her sisters and a niece, Horatia
Katherine Frances Gatty (later Eden) and
Christabel Maxwell, published writings
about her.”

There are multi-step person relations with an un-
named mother in the middle:

“Rosina’s mother’s uncle, Sir John
Doyle, was Lieutenant Governor of
Guernsey at this time.”

With a high count of meaningful clauses per sen-
tence:

“Louisa Baldwin’s mother, a Welsh-
woman born Hannah Jones, was George
Macdonald’s second wife.”

“Her mother, born Ann Bee, died on 5
October 1766, and a widowed aunt, an-
other Cassandra, came to keep house for
the family.”

B Understanding the Benchmark Dataset

Here we describe and contextualize the fields
present in the Orlando (Release) JSON dataset.

Entities For each text chunk, we list entity men-
tions under entities with their start and end offsets
using utf-8 encoding. For each mention, we include
all text tagged by the annotators, as well as con-
textual information they added as attributes. This
includes full_name, which for persons and organi-
zations is a more explicit name or a reformatted
name, while for places it is typically the name of
the encompassing region. Person and organization
mentions have manually deduplicated internal Or-
lando identifiers, id.

For each person mention, we indicate if the asso-
ciated entity is the primary subject of an Orlando
biography through biography_subject. This does
not necessarily indicate the source document of a
text chunk as the subject of one biography could
be mentioned in another biography. It can be used
as one indicator of a person’s notoriety and allows
for separate analyses of the writers and the people
connected to their lives.

Relations We use the subject-predicate-object
formation to represent extracted relations as triples.
Many relations are commutative but we only explic-
itly list one direction. Table 8, Table 9, and Table
10 detail the relations and contextual categories
present in our released dataset.

The predicate_category for a relation represents
the high level XML tag for the text chunk while
predicate_id and predicate_name represent the
specific relation. The predicate_name is the
relation, while, when available, predicate_id is
a URI from the CWRC Ontology13 that either
exactly represents the relation or gives more
specific information about the relation. For
example, the number_of_children relation can
have predicate_id cwrc:adoption to contextualize.
Note that the same relation can be present under
multiple categories, giving the relation slightly
different meaning. For example subject_studied
can have institutional_education_context,
self_taught_education_context, or domes-
tic_education_context.

We do provide utf-8 text spans for the objects
of the triples. object_text contains the exact men-
tion text of that entity, while object_id gives con-
text about that entity from the annotations, when
available. For places, the id is either a GeoNames
URI for the place or an encompassing region, or
a string listing such regions. For people and orga-
nizations, it is the de-duplicated Orlando ID. For

13https://sparql.cwrc.ca/

https://sparql.cwrc.ca/
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other types like occupations, id can be an identifier
from sources such as the CWRC ontology or Li-
brary of Congress Subject Headings14. For dates,
it is standard form YYYY or YYYY-MM-DD, and
for nationalities, it is an ISO 3166-2 code.

C Details of Baseline Corpora

C.1 Dataset Version and Pre-processing
The English Wikipedia and Simple English
Wikipedia corpora that we use in our com-
parisons are compiled from recent dumps:
enwiki-20230320 for ordinary English Wikipedia
and simplewiki-20230101 for Simple English.

Every corpus is pre-processed using the same
pipeline as Orlando, including sentence splitting
using PySBD (Sadvilkar and Neumann, 2020) fol-
lowed by tokenization and entity recognition using
the en_core_web_sm model of spaCy (Honnibal
et al., 2020). For a consistent comparison across
corpora, we count all entities identified by the en-
tity recognition model of spaCy without relying on
the manual entity annotations of Orlando.

C.2 Additional Lexical Complexity Statistics
We count the number of characters, tokens, and
entities in each sentence and report the distribu-
tions in Figure 6 and 5 for each corpus. The lexical
complexity score we use is proposed by Martin
et al. (2018) which is based on the mean log-rank
of word frequencies in a sentence and yields higher
scores if more rare words are present in the sen-
tence.

The distribution of sentence length in Orlando,
measured by the number of tokens or characters,
is similar to that of Wikipedia, with a mean higher
than that of C4, CC-News, and Simple Wiki. Sen-
tences in Orlando and Wikipedia contain more syl-
lables and tokens, which is also reflected in the
higher FKGL.

C.3 L2SCA Variables
Definitions of the 14 variables of L2SCA (Lu,
2010) are listed in Table 11. For illustration pur-
poses, when plotting the L2SCA variables in Fig-
ure 2, we normalize the variables by min-max scal-
ing to the range of [0, 1]: suppose x is the vector of
raw score of a variable across all corpora, then the
normalized score is

x′ =
x−min(x)

max(x)−min(x)
.

14http://id.loc.gov/authorities/subjects/

The raw values of the variables are reported in
Tables 12 and 13.

D Configuration and Results of Dataset
Use Cases

D.1 BLINK Entity Linking Configuration
We use the model that Wu et al. (2020) trained on
a 2019 Wikipedia dump. We set the parameter k
to 10, according to the authors’ suggestion, so the
candidate generation step selects 10 candidates, the
ranking step ranks those 10, and we compute accu-
racy using the one highest ranked prediction. We
test three options for the maximum number of con-
textual tokens: (1) full right and left context within
the given text chunk, (2) maximum of 32 tokens
on each side of the mention, and (3) maximum of
32 total context tokens as Wu et al. (2020) suggest,
but the treatments all had the same results.

D.2 PURE Relation Extraction Configuration
We pre-process the chunks with PySBD (Sadvilkar
and Neumann, 2020) for sentence splitting and
NLTK (Bird et al., 2009) for word tokenization.

D.3 PURE Relation Extraction Example 1
PURE results are identified with square brackets
and Orlando’s with curly brackets.

“Coming from a {professional but not
wealthy rank among the middle classes},
she seems to have had to contribute to the
family income, by teaching and writing,
even before [her] [parents]’ deaths. A
[student] at [her] [school] in [Canada]
described the Walker sisters as very
{English}, very dignified, and somewhat
exclusive, but... excellent teachers, espe-
cially in the departments of history and
English literature. Presumably she was
{white} and a {Christian} —, one of her
verses was appropriated as a hymn by
the American {Evangelicals} Dwight L.
Moody and Ira Sankey —and she may
well have supported the {Temperance
movement}.”

D.4 PURE Relation Extraction Example 2
Orlando’s annotations are identified with curly
brackets.

“In October 1940 he went up to {St
John’s College, Oxford}. He studied

http://id.loc.gov/authorities/subjects/
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{English language and literature}, and
took a {first-class Honours BA} in 1943.
Important friendships formed in his un-
dergraduate days were those with {Bruce
Montgomery} (who became a highly suc-
cessful detective-novel writer under the
name of Edmund Crispin, and dedicated
one of his earliest books to Larkin) and
especially the future writer {Kingsley
Amis}. {Amis and Larkin constituted
themselves a two-man parody factory
mocking every aspect of university life:
the syllabus, the dons, and the aspiring
writers such as John Heath-Stubbs.}”

C4
CC-

NewsWikipedia
Simple

Wiki
Orlando

(Full)
Orlando

(Release)

Test Set

C4

CC-
News

Wikipedia

Simple
Wiki

Orlando
(Full)

Orlando
(Release)

As
su

m
ed

 Tr
ai

ni
ng

 S
et

0.0 10.2 23.9 30.6 187.2 261.1

7.5 0.0 45.2 55.7 298.8 407.0

49.4 44.5 0.0 4.1 53.5 68.7

41.2 51.9 5.6 0.0 83.9 107.6

266.8 254.9 155.3 153.1 0.0 1.2

498.8 406.4 240.4 233.4 1.2 0.0
0

100

200

300

400

500

(a) Llama-2-7B

C4
CC-

NewsWikipedia
Simple

Wiki
Orlando

(Full)
Orlando

(Release)

Test Set

C4

CC-
News

Wikipedia

Simple
Wiki

Orlando
(Full)

Orlando
(Release)

As
su

m
ed

 Tr
ai

ni
ng

 S
et

0.0 9.6 15.7 23.3 102.1 134.6

5.1 0.0 30.6 41.7 154.8 200.0

48.5 47.3 0.0 2.8 27.0 32.3

40.6 54.7 2.8 0.0 35.7 42.3

227.5 229.6 88.2 98.1 0.0 0.7

400.4 363.6 137.1 143.6 0.7 0.0
0

100

200

300

400

500

(b) BART-large

Figure 4: Mean squared Mahalanobis distance of the
corpora in comparison to the assumed training data of
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predicate_category count

spatial_context 6818
friends_and_associates_context 5633
cultural_form_context 3275
occupation_context 3101
family_context 2236
birth_context 2210
significant_activity_context 1896
death_context 1816
institutional_education_context 1814
political_context 1676
religion_context 1006
domestic_education_context 826
intimate_relationship_context 728
social_class_context 296
self_taught_education_context 229
nationality_context 141
race_ethnicity_context 113
sexuality_context 107

Table 8: Orlando contextual categories that the relation predicates belong to, with mention counts in our Orlando
(Release) dataset.
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predicate_name count predicate_name count

interpersonal_relationship 5700 sexuality 137
paid_occupation 2952 brother 136
travel 2336 sister 110
habitation 1846 family_based_occupation 109
relocation 1554 occupation_income 103
subject_studied 1477 son 93
religion 1256 emigration 87
social_class 1011 daughter 85
member_of 974 education_award 55
occupation 940 ethnicity 48
visit 839 cohabitant 47
date_of_birth 803 education_companion 45
place_of_birth 748 other_family 42
date_of_death 695 non_erotic_relationship 42
birth_position 659 intimate_relationship 41
place_of_death 600 contested_behaviour 40
school 594 linguistic_ability 40
nationality 545 grandfather 38
employment 540 uncle 36
activist_involvement_in 525 degree_subject 36
national_heritage 498 wife 35
husband 461 cousin 25
gendered_political_activity 424 grandmother 24
father 399 aunt 21
erotic_relationship 384 native_linguistic_ability 19
cause_of_death 361 spatial_relationship 15
volunteer_occupation 353 forebear 13
political_involvement 336 stepfather 9
mother 307 niece 9
instructor 288 grandson 8
number_of_children 262 nephew 8
political_membership 246 stepmother 7
race_colour 242 granddaughter 5
possibly_erotic_relationship 239 child 3
education_text 179 stepbrother 2
political_affiliation 175 partner 2
burial_location 160 guardian 2
degree 155 stepsister 1
migration 141 stepdaughter 1
geographic_heritage 138

Table 9: Orlando relation predicates with the mention counts in our Orlando (Release) dataset.
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predicate_name count predicate_name count predicate_name count

birth_context friends_and_associates_context religion_context
date_of_birth 803 interpersonal_relationship 5608 religion 572
place_of_birth 748 cohabitant 25 member_of 346
birth_position 659 institutional_education_context social_class 28
cultural_form_context subject_studied 736 nationality 18
social_class 768 school 585 national_heritage 11
religion 657 instructor 154 activist_involvement_in 7
nationality 434 degree 152 race_colour 4
member_of 432 education_award 52 gendered_political_activity 3
national_heritage 406 education_companion 43 geographic_heritage 3
race_colour 193 degree_subject 36 political_affiliation 3
geographic_heritage 106 education_text 29 sexuality 3
political_affiliation 44 contested_behaviour 27 ethnicity 2
political_involvement 41 intimate_relationship_context linguistic_ability 2
sexuality 39 erotic_relationship 384 political_involvement 2
ethnicity 35 possibly_erotic_relationship 239 political_membership 2
activist_involvement_in 29 non_erotic_relationship 42 self_taught_education_context
linguistic_ability 28 intimate_relationship 41 subject_studied 174
political_membership 27 cohabitant 22 education_text 32
gendered_political_activity 23 nationality_context instructor 15
native_linguistic_ability 13 nationality 50 education_award 3
death_context national_heritage 46 contested_behaviour 2
date_of_death 695 social_class 16 degree 2
place_of_death 600 geographic_heritage 8 school 1
cause_of_death 361 religion 8 sexuality_context
burial_location 160 race_colour 5 sexuality 93

domestic_education_context member_of 4 activist_involvement_in 3
subject_studied 567 ethnicity 2 gendered_political_activity 3
instructor 119 native_linguistic_ability 2 social_class 3
education_text 118 occupation_context nationality 1
contested_behaviour 11 paid_occupation 1560 political_affiliation 1
school 8 employment 540 political_membership 1
education_companion 2 occupation 520 race_colour 1
degree 1 volunteer_occupation 314 religion 1
family_context occupation_income 103 significant_activity_context
husband 461 family_based_occupation 64 paid_occupation 1392
father 399 political_context occupation 420
mother 307 activist_involvement_in 481 family_based_occupation 45
number_of_children 262 gendered_political_activity 391 volunteer_occupation 39
brother 136 political_involvement 289 social_class_context
sister 110 political_membership 213 social_class 183
son 93 member_of 177 nationality 32
interpersonal_relationship 92 political_affiliation 123 national_heritage 20
daughter 85 religion 2 member_of 12
other_family 42 race_colour 29 race_colour 10
grandfather 38 national_heritage 15 geographic_heritage 9
uncle 36 social_class 13 religion 9
wife 35 geographic_heritage 12 activist_involvement_in 4
cousin 25 nationality 10 gendered_political_activity 4
grandmother 24 linguistic_ability 9 political_affiliation 4
aunt 21 ethnicity 8 political_involvement 3
forebear 13 religion 7 political_membership 3
niece 9 native_linguistic_ability 4 ethnicity 1
stepfather 9 member_of 3 linguistic_ability 1
grandson 8 activist_involvement_in 1 sexuality 1
nephew 8 political_involvement 1 spatial_context
stepmother 7 sexuality 1 travel 2336
granddaughter 5 habitation 1846
child 3 relocation 1554
guardian 2 visit 839
partner 2 migration 141
stepbrother 2 emigration 87
stepdaughter 1 spatial_relationship 15
stepsister 1

Table 10: Orlando relation predicates with mention counts in our Orlando (Release) dataset. Predicates are repeated
in each contextual category (bolded text) in which they appear.



104

Code Measure Definition

MLC Mean length of clause # of words / # of clauses
MLS Mean length of sentence # of words / # of sentences
MLT Mean length of T-unit # of words / # of T-units

C/S Sentence complexity ratio # of clauses / # of sentences

C/T T-unit complexity ratio # of clauses / # of T-units
CT/T Complex T-unit ratio # of complex T-units / # of T-units
DC/C Dependent clause ratio # of dependent clauses / # of clauses
DC/T Dependent clauses per T-unit # of dependent clauses / # of T-units

CP/C Coordinate phrases per clause # of coordinate phrases / # of clauses
CP/T Coordinate phrases per T-unit # of coordinate phrases / # of T-units
T/S Sentence coordination ratio # of T-units / # of sentences

CN/C Complex nominals per clause # of complex nominals / # of clauses
CN/T Complex nominals per T-unit # of complex nominals / # of T-units
VP/T Verb phrases per T-unit # of verb phrases / # of T-units

Table 11: Descriptions and definitions of variables of L2SCA. The code is used in Figure 2. The table is adapted
from Lu, 2010 (pp. 479).

Corpus MLC MLS MLT C/S C/T CT/T DC/C

C4 11.4955 17.7755 16.8636 1.5463 1.467 0.3563 0.3292
CC-News 11.4438 21.5108 19.6258 1.8797 1.715 0.4279 0.3662
Wikipedia 14.5312 21.079 19.6803 1.4506 1.3543 0.2726 0.2524
Simple Wiki 11.8485 15.5475 14.9764 1.3122 1.264 0.2092 0.2056
Orlando (Full) 13.8285 24.5383 21.1579 1.7745 1.53 0.4033 0.3378
Orlando (Release) 16.0128 26.7895 23.6033 1.673 1.474 0.3696 0.3138

Table 12: Raw scores of the first seven L2SCA variables of the six corpora.

Corpus DC/T CP/C CP/T T/S CN/C CN/T VP/T

C4 0.4829 0.305 0.4474 1.0541 1.2147 1.7819 1.9977
CC-News 0.6281 0.2355 0.4039 1.096 1.2628 2.1656 2.2858
Wikipedia 0.3419 0.3694 0.5003 1.0711 1.6486 2.2327 1.6942
Simple Wiki 0.2599 0.2829 0.3576 1.0381 1.3151 1.6622 1.4589
Orlando (Full) 0.5169 0.3188 0.4877 1.1598 1.3471 2.0611 1.9369
Orlando (Release) 0.4625 0.3607 0.5316 1.135 1.4648 2.1592 1.8236

Table 13: Continuation of Table 12. Raw scores of the rest of L2SCA variables of the six corpora.
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