@inproceedings{kim-etal-2024-non,
title = "Non-Essential Is {NE}cessary: Order-agnostic Multi-hop Question Generation",
author = "Kim, Kyungho and
Park, Seongmin and
Lee, Junseo and
Lee, Jihwa",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1075/",
pages = "12300--12306",
abstract = "Existing multi-hop question generation (QG) methods treat answer-irrelevant documents as non-essential and remove them as impurities. However, this approach can create a training-inference discrepancy when impurities cannot be completely removed, which can lead to a decrease in model performance. To overcome this problem, we propose an auxiliary task, called order-agnostic, which leverages non-essential data in the training phase to create a robust model and extract the consistent embeddings in real-world inference environments. Additionally, we use a single LM to perform both ranker and generator through a prompt-based approach without applying additional external modules. Furthermore, we discover that appropriate utilization of the non-essential components can achieve a significant performance increase. Finally, experiments conducted on HotpotQA dataset achieve state-of-the-art."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-etal-2024-non">
<titleInfo>
<title>Non-Essential Is NEcessary: Order-agnostic Multi-hop Question Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kyungho</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seongmin</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junseo</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jihwa</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing multi-hop question generation (QG) methods treat answer-irrelevant documents as non-essential and remove them as impurities. However, this approach can create a training-inference discrepancy when impurities cannot be completely removed, which can lead to a decrease in model performance. To overcome this problem, we propose an auxiliary task, called order-agnostic, which leverages non-essential data in the training phase to create a robust model and extract the consistent embeddings in real-world inference environments. Additionally, we use a single LM to perform both ranker and generator through a prompt-based approach without applying additional external modules. Furthermore, we discover that appropriate utilization of the non-essential components can achieve a significant performance increase. Finally, experiments conducted on HotpotQA dataset achieve state-of-the-art.</abstract>
<identifier type="citekey">kim-etal-2024-non</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1075/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>12300</start>
<end>12306</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Non-Essential Is NEcessary: Order-agnostic Multi-hop Question Generation
%A Kim, Kyungho
%A Park, Seongmin
%A Lee, Junseo
%A Lee, Jihwa
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F kim-etal-2024-non
%X Existing multi-hop question generation (QG) methods treat answer-irrelevant documents as non-essential and remove them as impurities. However, this approach can create a training-inference discrepancy when impurities cannot be completely removed, which can lead to a decrease in model performance. To overcome this problem, we propose an auxiliary task, called order-agnostic, which leverages non-essential data in the training phase to create a robust model and extract the consistent embeddings in real-world inference environments. Additionally, we use a single LM to perform both ranker and generator through a prompt-based approach without applying additional external modules. Furthermore, we discover that appropriate utilization of the non-essential components can achieve a significant performance increase. Finally, experiments conducted on HotpotQA dataset achieve state-of-the-art.
%U https://aclanthology.org/2024.lrec-main.1075/
%P 12300-12306
Markdown (Informal)
[Non-Essential Is NEcessary: Order-agnostic Multi-hop Question Generation](https://aclanthology.org/2024.lrec-main.1075/) (Kim et al., LREC-COLING 2024)
ACL