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Abstract

This paper presents HW-TSC’s submission to
the IWSLT 2024 Offline Speech Translation
Task and Speech-to-Speech Translation Task.
The former includes three translation directions:
English to German, English to Chinese, and En-
glish to Japanese, while the latter only includes
the translation direction of English to Chinese.
We attend all three tracks (Constraint train-
ing, Constrained with Large Language Mod-
els training, and Unconstrained training) of of-
fline speech translation task, using the cascade
model architecture. Under the constrained train-
ing track, we train an ASR model from scratch,
and then employ R-Drop and domain data selec-
tion to train the NMT model. In the constrained
with Large Language Models training track,
we use Wav2vec 2.0 and mBART50 for ASR
model training initialization, and then train
the LLama2-7B-based MT model using con-
tinuous training with sentence-aligned parallel
data, supervised fine-tuning, and contrastive
preference optimization. In the unconstrained
training track, we fine-tune the whisper model
for speech recognition, and then ensemble the
translation results of NMT models and LLMs
to produce superior translation output. For the
speech-to-speech translation Task, we initially
employ the offline speech translation system
described above to generate the translated text.
Then, we utilize the VITS model to generate
the corresponding speech and employ the Open-
Voice model for timbre cloning.

1 Introduction

Recent advances in deep learning allow us to ad-
dress traditional NLP tasks in a new and signifi-
cantly different manner. One such task is speech
translation, involving automatic speech recognition
(ASR) (Gulati et al., 2020) system and machine
translation (MT) (Vaswani et al., 2017) system.
Another task is speech-to-speech translation (S2S),
which involves ASR system, MT system, and text-
to-speech (TTS) (Ren et al., 2020) system. Recent

trends tend to utilize a single neural network to
directly translate input speech from one language
to text or speech in another language, bypassing
intermediate symbolic representations. The results
shows that the performance of end-to-end models
is nearing that of cascade solutions, but the effec-
tiveness comparison between the two technologies
remains unclear. Both methods face specific chal-
lenges. The primary challenge with the end-to-end
approach is the lack of training data, while the cas-
cade method has to go through the ASR, MT and
even TTS processes, leading to the errors accumu-
lation. Due to the data insufficiency in end-to-end
training, We ultimately chose the cascade approach
on the IWSLT 2024 offline speech translation task
and speech-to-speech translation task.

For the IWSLT offline speech translation task,
we apply different training strategies across the
three tracks, adapting to diverse data and model
conditions. In the constrained training track, we ini-
tiate training with an ASR model from scratch, fol-
lowed by the utilization of R-Drop (Wu et al., 2021)
and domain data selection (Wang et al., 2019b)
techniques to train the NMT model. Within the
constrained with Large Language Models (LLMs)
training track, we commence ASR model training
initialization using Wav2vec 2.0 (Baevski et al.,
2020) and mBART50 (Tang et al., 2020). Sub-
sequently, we train the LLama2-7B-based (Tou-
vron et al., 2023) MT model through continual
pre-training with sentence-aligned parallel data
(Guo et al., 2024), supervised fine-tuning (Xu
et al., 2023), and contrastive preference optimiza-
tion (CPO) (Xu et al., 2024). In the unconstrained
training track, we fine-tune the whisper model
(Radford et al., 2023) for speech recognition, and
then ensemble (Farinhas et al., 2023) the transla-
tion outputs of NMT models and LLMs to gen-
erate superior translation result. For the IWSLT
S2S translation task, we initially employ the of-
fline speech translation system described above to
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generate the translated text. Next, we utilize the
VITS (Kim et al., 2021) model to generate the cor-
responding speech and employ the OpenVoice (Qin
et al., 2023) model for timbre cloning.

In comparison to last year, our cascade offline
speech translation system and S2S translation sys-
tem is performing significantly better, particularly
following translation hypothesis ensembling with
NMT models and LLMs.

2 Datasets and Preprocessing

2.1 ASR Data

There are six different datasets used in the training
of our ASR models, such as MuST-C V2 (Cat-
toni et al., 2021), LibriSpeech (Panayotov et al.,
2015), TED-LIUM 3 (Hernandez et al., 2018),
CoVoST 2(Wang et al., 2020), VoxPopuli (Wang
et al., 2021), Europarl-ST (Iranzo-Sánchez et al.,
2020), as described in Table 1. We use the exactly
same data processing strategy to train our ASR
models following the configuration of (Wang et al.,
2022). We extend one data augmentation method
(Zhang et al., 2022): adjacent voices are concate-
nated to generate longer training speeches. Tsiamas
et al. (2022) propose Supervised Hybrid Audio Seg-
mentation (SHAS), a method that can effectively
learn the optimal segmentation from any manually
segmented speech corpus. In the test phase, we use
SHAS to split long audios into shorter segments.

Dataset Duration(h)
LibriSpeech 960
MuST-C 590
CoVoST 1802
TEDLIUM3 453
Europarl 161
VoxPopuli 1270

Table 1: Data statistics of ASR corpus.

2.2 MT Data

We use the same data processing strategy following
(Wu et al., 2023) to extract our MT data from the
officially available text-parallel and speech-to-text-
parallel data. Table 2 illustrates the bilingual data
sizes after labse filtering (Feng et al., 2022) and
domain selection (Wang et al., 2019b).

language pairs en2de en2ja en2zh
Clean Data 5.8M 5.6M 2.2M
Domain Data 0.4M 0.4M 0.4M

Table 2: Bilingual data sizes of MT corpus.

3 ASR Model

3.1 Constrained training

In this track, we train the constrained ASR model
using the Conformer (Gulati et al., 2020) and U2
(Zhang et al., 2020) model architectures. The
first model is standard auto-regressive ASR mod-
els built upon the Transformer architecture. The
last one is a unified model that can perform both
streaming and non-streaming ASR, supported by
the dynamic chunking training strategy. The model
configurations are as follows:

1) Conformer: The encoder is composed of 2
layers of VGG and 16 layers of Conformer, and the
decoder is composed of 6 layers of Transformer.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

2) U2: Two convolution subsampling layers with
kernel size 3*3 and stride 2 are used in the front of
the encoder. We use 12 Conformer layers for the
encoder and 6 Transformer layers for the decoder.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

During the training of ASR models, we set the
batch size to the maximum of 20,000 frames per-
card. Inverse sqrt is used for lr scheduling with
warm-up steps set to 10,000 and peak lr set as 5e-4.
Adam is used as the optimizer. All ASR models
are trained on 8 NPUs for 100 epochs. Parameters
for last 5 epochs are averaged. Audio features are
normalized with utterance-level CMVN for Con-
former, and with global CMVN for U2. All audio
inputs are augmented with spectral augmentation
(Park et al., 2019), and Connectionist Temporal
Classification (CTC) is added to make the model
converge better.

3.2 Constrained with LLMs training

LLM is currently the mainstream method in the
field of artificial intelligence. In ASR, the pre-
training model has been proved to be an effective
means to improve the quality, especially the mod-
els such as wav2vec (Schneider et al., 2019) and
Hubert (Hsu et al., 2021) have been proposed in
recent years. Li et al. (2020) combine the encoder
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of wav2vec2 (Baevski et al., 2020) and the decoder
of mBART50 (Tang et al., 2020) to fine-tune an
end2end model. We also adopt a similar strategy,
but combine the encoder of wav2vec2 and the de-
coder of mBART50 to fine-tune an ASR model
(w2v2-mBART). Due to the modality mismatch be-
tween pre-training and fine-tuning, in order to bet-
ter train cross-attention, we freeze the self-attention
of the encoder and decoder. We first use all the
constrained data for fine-tuning, and only use the
MUST-C data after 30 epochs of training.

3.3 Unconstrained training

Whisper (Radford et al., 2023) is an automatic
speech recognition (ASR) system trained on
680,000 hours of multilingual and multitask su-
pervised data collected from the web. It show that
the use of such a large and diverse dataset leads to
improved robustness to accents, background noise
and technical language. The Whisper architecture
is a simple end-to-end approach, implemented as an
encoder-decoder Transformer. Even though it en-
ables transcription in multiple languages, we only
use its speech recognition feature, transcribing au-
dio files to English text. In this task, we use it as a
pre-trained model, and use the MUST-C dataset for
fine-tuning to improve its performance in specific
domains. We trained for 2 epochs with a small
learning rate of 10e-6.

4 MT Model

4.1 Constrained training

Transformer stands as the state-of-the-art model
in recent machine translation evaluations. Re-
search to enhance this model type is divided into
two main avenues: one focuses on using wider
networks (e.g., Transformer-Big) (Vaswani et al.,
2017), while the other emphasizes deeper language
representations (e.g., Deep Transformer (Wang
et al., 2017, 2019a)). Under the constrained condi-
tions, we combine these two improvements, adopt
the Deep Transformer-Big model structure, and
utilize the clean bilingual data filtered by the
labse model (Feng et al., 2022) to train the NMT
model from scratch. The primary features of Deep
Transformer-Big include pre-layer normalization,
a 25-layer encoder, a 6-layer decoder, 16-head self-
attention, 1024-dimensional embedding, and 4096-
dimensional FFN embedding.

To regularize the training of NMT and alleviate
the inconsistency between training and inference

caused by the randomness of dropout(Srivastava
et al., 2014; Gao et al., 2022), we introduce R-
Drop(Wu et al., 2021), which forces the output
distributions of different sub-models generated by
dropout to be consistent with each other.

Since the quality of the translation model is eas-
ily affected by the domain, we try to select domain-
related data to incrementally train the model. We
adopted the domain adaptation strategy by (Wang
et al., 2019b). The strategy uses a small amount
of in-domain data to tune the base model, and then
leverages the differences between the tuned model
and the base to score bilingual data. The score is
calculated based on formula 1.

score =
logP (y|x; θin)− logP (y|x; θbase)

|y| (1)

Where θbase denotes the base model; θin denotes
the model after fine-tuning on a small amount of
in-domain data, and |y| denotes the length of the
sentence. Higher score means higher quality.

Specifically, we use TED and MUST-C data as
in-domain data. We score all the training bilingual
data through Equation 1, and filter out 80% - 90%
of the data according to the score distribution. We
use the remaining 0.4M in-domain data to continue
training on the previous model.

In the training of NMT models, each model un-
dergoes training utilizing 8 NPUs. The batch size
remains fixed at 6144, the update frequency is 2,
the dropout is 0.1, and the learning rate is main-
tained at 5e-4. A total of 4000 warmup steps are
executed, and the model is saved every 2000 steps.
Additionally, λ is set to 5 for R-Drop.

4.2 Constrained with LLMs training
Generative LLMs have made significant strides in
various NLP tasks. However, these advancements
have not fully translated to translation tasks, partic-
ularly for medium-sized models, which still trail be-
hind traditional supervised encoder-decoder trans-
lation models. Previous studies have attempted
to enhance the translation ability of these LLMs
through prompt translation (Zhang et al., 2023;
Moslem et al., 2023), but the improvements re-
main limited. Fortunately, recent research is mak-
ing more progress through supervised fine-tuning
(SFT) (Zeng et al., 2024), and showing that it is pos-
sible to break away from the reliance on massive
amounts of parallel data that traditional translation
models typically require.
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Translate this from [source language] to [target language]:
[source language]: <source_sentence>
[target language]:

Figure 1: The translation prompt used for training and evaluation. [source language] and [target language] represent
the full name of the language written in English format, e.g., Translate this from English to Chinese.

Among the officially designated LLMs, we opt
to perform MT tasks based on the Llama2-7B base
model. To enhance the cross-lingual capability of
Llama2-7B, we first adopt the method of contin-
ual pre-training with sentence-aligned parallel data
(Guo et al., 2024). We construct the data for this
format from the clean data listed in Table 2.

Since Guo et al. discovered that constructing
translation instruction written in the source lan-
guage notably improves performance. We then use
the domain data to construct a dataset of transla-
tion instructions in English format, and leverage
this source-language consistent instruction for SFT.
The translation prompt used for training and evalu-
ation is shown in Figure 1.

Finally, we introduce CPO (Xu et al., 2024),
which trains the model to avoid producing ade-
quate but imperfect translations. To generate the
triplet data, we additionally fine-tune a relatively
small LM (BLOOM (Shoeybi et al., 2019)) and
generate the output for each instance using a sim-
ple sampling strategy. With examples of correct
and incorrect translations, the model is optimized
to distinguish high-quality translations.

During the fine-tuning of LLMs, We adopt LoRA
(Hu et al., 2021) method to fine-tune the LLM on
8 NPUs. The epoch size is 1, the batch size is 128,
the maximum text length is 512, and the learning
rate is 2e-3. Additionally, the weight decay is 0.01.

4.3 Unconstrained training

LLMs are becoming a one-fits-many solution, but
they sometimes hallucinate or produce unreliable
output. In the unconstrained track, we utilize
translation hypothesis ensembling with NMT mod-
els and LLMs (Farinhas et al., 2023). First, we
gather translation hypotheses from various NMTs
and LLMs. Next, we utilize the external model
COMET (Rei et al., 2022) to select the optimal re-
sult. This involves calculating the average COMET
score between each translation hypothesis and the
other hypotheses to determine its quality score.
Subsequently, we choose the translation hypothesis
with the highest quality score as the best result.

5 TTS Model

Several recent end-to-end TTS models enabling
single-stage training and parallel sampling have
been proposed, but their sample quality does not
match that of two-stage TTS systems. VITS (Kim
et al., 2021) is a parallel end-to-end TTS method
that generates more natural sounding audio than
current two-stage models. The method adopts
variational inference augmented with normalizing
flows and an adversarial training process, which
improves the expressive power of generative mod-
eling. In the S2S translation system, we first use the
speech translation system to generate the transla-
tion text, and then use the VITS model to generate
the corresponding speech.

To improve the similarity of synthesized audio’s
timbre to that of the source language audio, we also
use OpenVoice (Qin et al., 2023) model for timbre
cloning. It is a versatile voice cloning approach that
requires only a short audio clip from the reference
speaker to replicate their voice and generate speech
in multiple languages.

6 Experiments and Results

The only difference between our S2S translation
system and speech translation system is the addi-
tion of TTS and timbre cloning modules. Since we
did not perform additional training on these two
modules, we only present the experimental results
of the speech translation system.

We utilize the open-source fairseq (Ott et al.,
2019) for training the NMT model, the open-source
ALMA (Xu et al., 2023) for fine-tuning LLM
model. We assess the ASR models using the word
error rate (WER) and evaluate the MT models us-
ing case-sensitive SacreBLEU (Post, 2018) and
COMET scores. Our ASR system is evaluated on
the test sets of tst-COM, while our MT system is
evaluated on the test sets of tst-COM and tst2022.

Table 3 presents our final evaluation results for
three language pairs across the constrained training,
constrained with LLM training, and unconstrained
training tracks. As the final evaluation result shows,
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en2de en2ja en2zh
Cascade System BLEU COMET BLEU COMET BLEU COMET
Constrained 33.64 0.7762 19.19 0.7992 34.77 0.8046
Constrained with LLMs 22.55 0.7646 15.70 0.8253 32.66 0.8230
Unconstrained 33.18 0.7925 18.46 0.8325 33.76 0.8358

Table 3: BLEU and COMET of speech translation on tst-2022 test set.

the cascade system based on the NMT model per-
form better in the BLEU metric, while the cascade
system based on the LLM model perform better in
the COMET metric. When ensembling the transla-
tion results of both NMT and LLM, the cascade sys-
tem is performing well in both BLEU and COMET.

6.1 ASR Results

We compare the results of different model architec-
tures, the overall experimental results about ASR
is described in Table 4. We evaluated our system
on tst-COM test set. For long audio in the test set,
we use SHAS for segmentation. We calculate the
WER after the reference and hypothesis are lower-
cased and the punctuation is removed. In Table 4,
all ASR systems achieve good performance, and
the results are relatively close.

ASR System tst-COM
Conformer 5.3
U2 6.1
w2v2-mBART 4.9
Whisper 4.5
Whisper fine-tuning 4.3

Table 4: WER of ASR on tst-COM test set.

6.2 MT Results

When evaluating the MT model, we use the Whis-
per fine-tuning model transcription results as the
source text. Since the NMT model performs well
on BLEU, we are using BLEU to evaluate the per-
formance of the NMT model at each stage on the
tst-COM test set. While the LLM model performs
well on COMET, we are using COMET to evaluate
the performance of the LLM model at each stage
on the tst-2022 test set.

Table 5 is illustrating the BLEU of the NMT
model being trained in each phase on the tst-COM
test set. These results highlight the importance of
employing the domain data selection method to
carefully choose domain-specific data for further
fine-tuning the model to facilitate domain adapta-

tion. Following this, we utilize tst-dev as a more
precise domain dataset for additional fine-tuning,
resulting in even greater quality improvements.

NMT System en2de en2ja en2zh
R-Drop baseline 32.65 13.88 27.14
+ Domain data selection 36.33 16.42 27.48
+ tst-dev fine-tuning 38.12 20.05 28.86

Table 5: BLEU of NMT model on tst-COM test set.

Table 6 shows the COMET of the LLM model
fine-tuning at each stage on the tst-2022 test set.
From the results, it becomes evident that the three
methods of continuous training with Interlinear
Text Format Documents, SFT, and CPO are orthog-
onal and can all improve the machine translation
capabilities of LLM.

LLM System en2de en2ja en2zh
Llama2-7B 0.5966 0.6925 0.6934
+ continual pre-training 0.7555 0.8016 0.8141
+ SFT 0.7641 0.8150 0.8220
+ CPO 0.7646 0.8253 0.8230

Table 6: COMET of LLM model on tst-2022 test set.

7 Conclusion

This paper presents our cascade speech translation
system and S2S translation system in the IWSLT
2024 evaluation. We try several ASR model train-
ing strategies and achieve good performance. For
the MT system, we explore two research direc-
tions based on NMT and LLM, and enhanced
them through various technical means. Finally,
we achieve further improvements by ensembling
the translation results of NMT models and LLMs.
For the TTS, we directly use open source models
to generate speech and timbre clones. Our experi-
mental results show that LLM-based ASR and MT
are promising research directions.
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