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Abstract

Compared to identifying binary versions of the
same function under different compilation op-
tions, existing Learning-Based Binary Code
Similarity Detection (LB-BCSD) methods ex-
hibit lower accuracy in recognizing functions
with the same functionality but different im-
plementations. To address this issue, we in-
troduces an adversarial attack method called
FuncFooler, which focuses on perturbing crit-
ical code to generate multiple variants of the
same function. These variants are then used
to retrain the model to enhance its robustness.
Current adversarial attacks against LB-BCSD
mainly draw inspiration from the FGSM (Fast
Gradient Sign Method) method in the image
domain, which involves generating adversarial
bytes and appending them to the end of the ex-
ecutable file. However, this approach has a sig-
nificant drawback: the appended bytes do not
affect the actual code of the executable file, thus
failing to create diverse code variants. To over-
come this limitation, we proposes a gradient-
guided adversarial attack method based on crit-
ical code—FuncFooler. This method designs
a series of strategies to perturb the code while
preserving the program’s semantics. Specifi-
cally, we first utilizes gradient information to
locate critical nodes in the control flow graph.
Then, fine-grained perturbations are applied to
these nodes, including control flow, data flow,
and internal node perturbations, to obtain adver-
sarial samples. The experimental results show
that the application of the FuncFooler method
can increase the accuracy of the state-of-the-art
(SOTA) LB-BCSD model by 5%-7%.

1 Introduction

Binary code similarity detection methods can iden-
tify and return a set of functions most similar to
a given binary function. These functions usually
originate from the same source code but differ due
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to various compilation settings. Binary code simi-
larity detection plays a crucial role in various secu-
rity applications such as malware detection (Cesare
et al., 2013; Ming et al., 2015; Chandramohan et al.,
2016; You et al., 2020; Jia et al., 2023a; Lucas
et al., 2021), software plagiarism detection (Luo
et al., 2017; Yu et al., 2020; Luo et al., 2017; Saj-
nani et al., 2016; Walker et al., 2020; Zhang et al.,
2023), vulnerability discovery (David et al., 2016;
Jia et al., 2024; David and Yahav, 2014), and patch
analysis (Mashhadi and Hemmati, 2021; Pewny
et al., 2014; Hu et al., 2016; Wang and Wu, 2017).

In recent years, with the rise of artificial intelli-
gence technologies, Learning-Based Binary Code
Similarity Detection (LB-BCSD) techniques have
emerged. Leveraging the powerful learning capabil-
ities of machine learning models, these techniques
excel in instruction semantic recognition, signif-
icantly improving detection accuracy and speed
compared to traditional methods (Ding et al., 2019;
Jia et al., 2023b; Zhang et al., 2024). However, in
the field of software development, differences in
programmers’ coding habits, skill levels, and de-
sign approaches lead to various implementations
of functions with the same functionality. This di-
versity is already evident at the source code level
and becomes even more complex at the compiled
binary code level. Although these different code
implementations functionally align, their internal
structures and design logics may differ significantly.
This situation presents substantial challenges for
software analysis, maintenance, and security detec-
tion.

Currently, LB-BCSD methods are primarily used
to assess the similarity of the same function un-
der different compilation options. However, this
study reveals that when the LB-BCSD model en-
counters functions with identical functionality but
different implementations, its identification accu-
racy decreases by 13% compared to identifying
versions of the same function compiled under dif-
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ferent options (O2 and O3). This finding highlights
the limitations of existing LB-BCSD methods in
handling diverse code implementations.

To improve the model’s capability in recogniz-
ing such function variants, an intuitive solution
is to retrain the model using a large number of
function samples with the same functionality but
different implementations. However, implement-
ing this strategy faces several challenges. The pri-
mary challenge is collecting a sufficient number of
function samples with the same functionality but
different implementations. Although online coding
platforms like LeetCode offer many implementa-
tions of functions with the same functionality, these
are mainly concentrated on specific coding prob-
lems and do not fully reflect the diversity of real-
world programs. For more extensive real-world pro-
grams, collecting samples with the same function-
ality but significantly different implementations is
extremely difficult. When implementing the same
function, each programmer may choose different
algorithms, data structures, or coding techniques
based on specific requirements and their own ex-
perience, leading to a myriad of implementation
methods. Theoretically, the different implementa-
tion methods for a function are infinite. Another
important consideration is that not all different im-
plementations will interfere with the LB-BCSD
model’s identification. Therefore, it is crucial to
explore which subtle code variations mislead the
model, as this has significant practical implications.

To address the above issues, this study proposes
a gradient-guided white-box attack method based
on critical code, called FuncFooler. This method
generates multiple variants of the same function
by designing perturbation strategies for the control
flow, data flow, and internal nodes of executable
files, such as altering control flow structures. Addi-
tionally, this study transforms the generation pro-
cess of adversarial examples into an optimization
problem and uses gradient algorithms to select
critical nodes in the executable file’s control flow
graph for perturbation. Experimental results show
that FuncFooler can improve the SOTA LB-BCSD
model’s accuracy by 5%-7%, demonstrating the
effectiveness of this method in enhancing model
robustness.

The main contributions of this paper are as fol-
lows:

• This study finds that the existing LB-BCSD
method overly focuses on the accuracy of

functions with the same functionality and im-
plementation method, while neglecting the
accuracy of functions with the same function-
ality but different implementation methods.
When the LB-BCSD model handles functions
that have the same functionality but different
implementation methods, its recognition ac-
curacy decreases by 13% compared to recog-
nizing different versions of the same function
under different compilation options (O2 and
O3).

• We thoroughly explore the limitations of
FGSM in the field of important code identifi-
cation in binary programs, pointing out that it
cannot be directly applied to this scenario. To
overcome this issue, we innovatively propose
an important code identification method based
on dominator nodes, which generates multiple
variants of the same function by perturbing the
important code.

• This study retrains the model using adversarial
samples generated by FuncFooler, and exper-
imental results indicate that FuncFooler can
improve the accuracy of the SOTA LB-BCSD
model by 5%-7%, demonstrating its effective-
ness in enhancing model robustness.

2 Related Work

Researchers have explored the field of white-box
adversarial attacks and pointed out issues with ad-
versarial samples in LB-BCSD methods. Early
studies (Al-Dujaili et al., 2018; Verwer et al.,
2020) drew inspiration from attack methods such
as FGSM in the image domain, using gradients to
locate and modify critical bytes in executable files
to construct adversarial samples. However, these
methods have not been very effective when applied
to binary programs. The reason lies in the highly
structured nature of binary programs, which are ex-
tremely sensitive to minor modifications. The ELF
file includes complex structures such as executable
file header tables, data section information, code
section information, etc. Any arbitrary modifica-
tion of these bytes can disrupt the integrity of the
executable file’s functionality.

To generate adversarial samples without com-
promising the functionality of executable files, re-
searchers (Kolosnjaji et al., 2018; Demetrio et al.,
2021) have started modifying non-functional areas
in the executable file that are not loaded into mem-
ory, such as appending invalid bytes at the end of
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the executable file or adding new sections in the
sections that are not loaded. However, these per-
turbations do not affect the program’s execution
logic or code regions significantly, thus failing to
meet the requirement of generating multiple code
variants for the same function.

3 Challenges

In the field of image processing, white-box ad-
versarial attacks induce misclassification in image
recognition systems by making imperceptible ad-
justments to the image. The core challenge lies
in creating adversarial samples that cause model
misjudgments while ensuring the samples remain
visually indistinguishable to humans. Methods like
FGSM in image processing calculate gradients of
the model’s loss function with respect to the input,
take their sign, multiply by a small step size (per-
turbation magnitude), and add this perturbation to
the original input to generate adversarial samples.
FGSM uses gradient information to pinpoint criti-
cal pixels that are most likely to affect the model’s
accuracy.

In contrast, this study perturbs binary functions,
posing unique challenges compared to image-based
approaches:

Challenge 1: Identifying critical code in func-
tions. In the LB-BCSD domain, a similar white-
box attack strategy can theoretically be employed,
utilizing gradient information to identify critical
code and perturb it to generate adversarial samples.
However, to enhance the accuracy of LB-BCSD
methods, approaches such as Asm2Vec and JTrans
encode the control flow information of functions
into vector embeddings. The Asm2Vec method, for
instance, adopts the concept of random walks, start-
ing from the entry point of a function and randomly
sampling edges in the control flow graph. For each
sampled edge, the corresponding assembly code
is concatenated to construct a new instruction se-
quence. This random walk strategy simulates the
actual execution flow of the program. By perform-
ing multiple random walk operations, it covers as
many edges in the control flow graph as possible,
thereby revealing and expressing the semantic fea-
tures of the function more comprehensively.

However, random walk makes gradient informa-
tion inconsistent, making it challenging to identify
and perturb the critical code effectively. Every ran-
dom walk randomly samples a subgraph from the
control flow graph, resulting in unique instruction

sequences per walk. This means that if a specific
subgraph is selected for perturbation and subse-
quently attacked using an adversarial sample, the
model might embark on a new random walk, which
may not resample the previously perturbed node,
hence failing to achieve an attack. Therefore, to
resolve the instability caused by random walk, a
corresponding strategy must be developed to ensure
an effective implementation of the attack.

Challenge 2: Designing the perturbation
method. In image processing, adversarial samples
can be generated by directly adjusting the values of
critical pixels and limiting the perturbation magni-
tude to ensure the adversarial samples look similar
to the original image. However, in the domain of
binary code, it is crucial to ensure the functionality
of the code remains intact. Directly modifying byte
values of instructions can potentially destroy the
functionality of the code. Therefore, the design
of the perturbation method must ensure that the
original function’s functionality is not adversely
affected.

4 Design

The workflow of FuncFooler is illustrated in Fig-
ure 1. At the top of the process, the training phase
of the model is shown, which includes initial train-
ing and fine-tuning on the training dataset, followed
by evaluation of the model’s accuracy on the test
dataset.

Training Set

Augmented Training Set

 Training

 Trained Model

1. Identify Dominate Nodes

3. select 
perturbation 
method

Perturbed Sample

Testing Set

Testing

Fine Tuned Model

6. Fine Tuning

2. Compute 
     node 
 importance

4. Perturb

Ori. Sample Ori. Sample Perturbation Method

5. Add Adversarial Samples to the Training Set

Fine Tuning

Fine Tuned Model

Figure 1: Workflow of FuncFooler

FuncFooler takes the training set as input with
the goal of generating multiple variants of the
original samples and enhancing the robustness of
the model through fine-tuning. Specifically, Func-
Fooler first identifies dominating nodes in the origi-
nal samples and uses gradient information to deter-
mine critical dominating nodes. Then, it evaluates
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different perturbation methods and selects the most
effective method to perturb the original samples. If
the perturbed sample can cause the target model
to make incorrect judgments, it is considered an
effective adversarial sample and is added to the
training set to augment it. Finally, the model is re-
trained using the augmented training set to improve
its robustness and generalization ability.

4.1 Node Gradient Calculation Method

The LB-BCSD method employs random walks to
sample nodes in the function’s control flow graph.
Each random walk generates a sequence of instruc-
tions that represent the execution flow of the func-
tion. This random walk strategy aims to simulate
the actual execution process of the program. By
conducting multiple random walks, the LB-BCSD
method can cover the majority of edges in the con-
trol flow graph, thereby revealing and expressing
the function’s semantics more comprehensively.

However, the inherent uncertainty in the results
of random walks can lead to instability in the gener-
ated adversarial samples. To address this issue, we
first calculate the dominator nodes in the function.
Dominator nodes are those that are guaranteed to
be executed in any path from the function’s entry
to its exit. Therefore, perturbing these dominator
nodes ensures that the perturbations will be sam-
pled during the random walks. In the control flow
graph of the function, certain dominator nodes will
be accessed in any execution path from entry to
exit, resulting in a 100% access probability for
these nodes.

Algorithm 1: Node Gradient Calculation
Input :G is the model to be attacked,

f = [I1, I2, . . . , IM ] is a function
f composed of instructions

Output :Gradients of nodes in function f
1 DN ← Compute dominant nodes in

function f using the algorithm
2 v ← Embedding(G, f)

3 gf ← ∂L(f)
∂v ## Compute gradients of each

instruction in function f
4 grads = []
5 foreach node in CFG(f ) do
6 grad(node) = sum of gradients of

instructions in node
7 grads.append(grad(node))

8 return grads

This process is described by Algorithm 1. The
algorithm takes as input the LB-BCSD model G
to be attacked and a function f = [I1, I2, . . . , IM ]
composed of M instructions. First, the algorithm
identifies and extracts all dominant nodes in func-
tion f . Next, it uses model G to encode function f ,
obtaining its embedding representation v. Then, it
computes the gradients of each instruction in func-
tion f with respect to the loss function of model
G through backpropagation. Finally, the algorithm
sums the gradients of all instructions within each
node in the control flow graph of function f to
obtain the total gradient value for each node.

4.2 Disturbance Method Design

To address the challenges outlined in Section 3, this
paper proposes a targeted comprehensive perturba-
tion method. By fine-tuning the control flow, data
flow, and internal nodes of functions, this approach
effectively generates multiple code variants.

4.2.1 Control Flow Disturbance
Control flow disturbance is a method aimed at per-
turbing the program’s control flow paths and struc-
ture, thereby increasing the complexity and analy-
sis difficulty of the program. We designs five con-
trol flow disturbance methods: edge hiding, code
cloning, loop fabrication, termination node trans-
formation, and function entry point obfuscation.

Edge Hiding: In order to hinder the LB-BCSD
method from accurately capturing the real execu-
tion flow of programs, we proposes a new pertur-
bation method — edge concealment perturbation.
As shown in Figure 2(a), this method changes di-
rect jumps between basic blocks to indirect jumps,
preventing the LB-BCSD method from statically
analyzing the jump targets, effectively "eliminat-
ing" edges in the control flow graph.

Code Cloning: To increase the complexity of
the function control flow graph, we proposes a
code cloning technique. As shown in Figure 2(b),
this technique involves cloning existing code and
causing the control flow to alternate between the
original and the clone.

Loop Forgery: Loops are important structures
in programs, typically used for processing core data
or implementing core logic. In a control flow graph,
a loop is represented as a closed loop of nodes
and edges, which represents the looping execution
path in the program. Given that many binary code
similarity detection methods rely on loops to assess
the similarity between two functions, as shown in
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Figure 2(c), we introduces loop forging techniques
aimed at disrupting the accuracy of the LB-BCSD
method by forging loops.

Termination Node Transformation: Termina-
tion nodes are the exits of functions, represent-
ing the end points of functions and are important
features on the control flow graph. As shown in
Figure 2(d), we proposes a termination node trans-
formation technique, which can convert ordinary
nodes in a function into termination nodes, thereby
affecting the accuracy of the LB-BCSD method.

Function Entry Point Obfuscation: Unlike
edge hiding perturbation, function entry hiding con-
ceals the actual entry point of a function within a
meticulously designed complex control flow. As
shown in Figure 2(e), the purpose of this method is
to make it difficult for the LB-BCSD method to lo-
cate the true starting point of the function, thereby
preventing accurate tracking of the function’s exe-
cution flow.

4.2.2 Data Flow Perturbation
To perturb the data flow of functions, we proposes
a constant expansion technique. As shown in Fig-
ure 2(f), this technique converts a simple constant
expression into a series of complex calculations to
increase the complexity of the function’s data flow.

4.2.3 Intra-Node Perturbation Design
In addition to perturbing the number of nodes and
edges in the control flow graph and data flow graph
of executable files, we also delves into intra-node
perturbation methods. These methods further in-
crease the complexity of analysis by hiding func-
tion calls within the code and adding ways to in-
voke functions in the code.

Function Call Hiding: A function call is the
process of one function calling another to accom-
plish a specific task. Since many binary code sim-
ilarity detection methods rely on function calls to
assess the similarity between different codes, we
introduces a function call hiding technique. As
shown in Figure 3(a), this technique aims to disrupt
the accuracy of the LB-BCSD method by replacing
direct function calls with indirect calls.

Function Call Expansion: Since function calls
are a key feature in the control flow graph, this pa-
per designs a function call augmentation technique
to increase the number of function calls in the code.
As shown in Figure 3(b), this technique increases
the function call count by extracting instructions
from the code and encapsulating them into new
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int k = rand();
int x = (k*k + 1) % 2;
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int z = 2 * y;   
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Figure 2: Design diagram of perturbation methods at
the control flow and data flow levels
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3:
  ...
  call foo
  jmp BB-4

3:
  ...
  call *table[0]
  jmp BB-4
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(a) Function call hiding

3:
  ...
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  jmp BB-4
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  ...
  call newFunc
  jmp BB-4
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3

4

newFunc:
  mov rax,1
  ret

(b) Function call expansion

Figure 3: Illustration of disturbance strategy design
inside the node

functions.

4.3 Adversarial Example Generation

Algorithm 2 details how to generate adversarial
examples in a white-box setting. The input to the
algorithm is a function f = [I1, I2, . . . , IM ]. The
algorithm perturbs the function f and outputs the
adversarial example f̂ . Additionally, this algorithm
can be applied to attack binary executables by pro-
cessing each function in the binary file one by one
using Algorithm 2.

The algorithm starts by using the node gradi-
ent computation algorithm to calculate the gradi-
ent value for each dominating node. Next, this
paper selects the top N nodes with the largest
gradients, which are considered important nodes.
This strategy aims to efficiently generate adversar-
ial samples by minimizing the number of neces-
sary perturbations. Although perturbing dominator
nodes beyond the top N can also yield adversarial
samples, it typically requires more perturbations.
Subsequently, control flow, data flow, and intra-
node perturbations are applied to these important
nodes. When choosing specific perturbation meth-
ods, FuncFooler tries each perturbation method and
selects the one that causes the greatest reduction
in similarity as the final perturbation strategy for
the ith important node in the sample. This process
iterates until f̂ is no longer similar to the original

function f , or until the preset maximum number
of perturbations N is reached (in practice, N is
set to 10). To measure the similarity between two
functions, in line with the approach in the litera-
ture (Sato et al., 2018), we uses top-10 accuracy
as the criterion. This criterion focuses on whether,
when f̂ is used as input, the correct answer (i.e.,
the original function f ) appears within the top 10
scoring options among all prediction results. We
designs five control flow perturbation methods, one
data flow perturbation method, and two intra-node
perturbation methods. Each perturbation method
increases the complexity of the executable file to
some extent. These perturbation methods can be
used collaboratively and repeatedly, thus construct-
ing a large search space of (5 × 1 × 2)i, where i
represents the number of iterations.

Algorithm 2: Adversarial Example Gener-
ation Algorithm

Input :f = [I1, I2, . . . , IM ], Function f
consisting of instructions

Output :Adversarial example f̂
1 grads← Compute gradients of dominating

nodes using the node gradient computation
algorithm

2 Sort dominating nodes in the control flow by
gradient and select the top N nodes as
important nodes

3 f̂ ← f
4 i← 0
5 while i < N do
6 t← Compute the effect of each

perturbation method and assign the
method that causes the greatest
reduction in similarity to t

7 f̂ ← Transform(f̂ , t, i) ## Perturb the
ith important node in f̂

8 i← i+ 1

9 if Similar(f, f̂ ) == False then
10 return f̂

11 return None

5 Experimental Evaluation

The experimental evaluation in this paper primarily
revolves around the following core research ques-
tions:

• RQ1: Does the implementation of functions
with the same functionality but different ap-
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proaches affect the accuracy of the LB-BCSD
model?

• RQ2: Can adversarial examples generated by
FuncFooler enhance the robustness of the LB-
BCSD model?

5.1 Experimental Setup
5.1.1 Baseline Models and Evaluation Metric
We selects three LB-BCSD models as baseline
models: a) Safe (Massarelli et al., 2019), which
uses an RNN structure with a self-attention mech-
anism to generate semantic embeddings for func-
tions; b) Asm2Vec (Ding et al., 2019), which uses
the PV-DM model combined with control flow in-
formation of executable files to generate seman-
tic embeddings for functions; c) JTrans (Wang
et al., 2022) encodes control flow information into
a Transformer to generate semantic embeddings
for functions, with JTrans being the SOTA ap-
proach. For each model, we uses the authors’ pro-
vided models and fine-tunes them on the public
dataset BinaryCorp-3M (Wang et al., 2022) to bet-
ter suit the needs of binary code similarity detection
tasks. The BinaryCorp-3M dataset covers approx-
imately 3 million binary functions. During fine-
tuning, the default hyperparameters of the models
are used to fine-tune both the original models and
the FuncFooler-enhanced models. In the experi-
mental evaluation process, we used top-10 accuracy
as the primary evaluation metric. This metric fo-
cuses on whether the correct answer appears within
the top 10 ranked predictions.

5.1.2 Test Datasets
We constructs two test datasets to comprehensively
evaluate the model’s accuracy in binary code simi-
larity detection. Dataset I contains functions that
have the same functionality but different implemen-
tations. In creating this dataset, 400 programs were
selected from LeetCode and GitHub, with 10 dif-
ferent implementations collected for each program.
When choosing these different implementations,
performance scores from online programming plat-
forms like LeetCode were referenced to ensure
diversity in the selected solutions. The primary
objective of this dataset is to assess the model’s
accuracy when handling functions with identical
functionality but varying implementations. Dataset
II is derived from six real-world projects, including
Curl, Coreutils, Binutils, SQLite, OpenSSL, and
Putty. This dataset aims to evaluate the enhance-
ment effect of FuncFooler on the model’s accuracy

with real programs. Given that O0 completely dis-
ables compiler optimizations, while O1 enables
basic optimizations such as dead code elimination
and simple loop optimizations, the code differences
between O0 and O1 are significant. Therefore,
this paper employs the llvm-10 compiler with O2
and O3 optimization options to compile the pro-
grams in both datasets. This design aims to test
the model’s accuracy in recognizing functions opti-
mized to varying degrees, striving to minimize the
discriminative differences caused by compilation
optimizations.

5.2 Impact of Functionally Equivalent but
Differently Implemented Functions on
Model Accuracy

In this experiment, we evaluate the impact of dif-
ferent implementations of the same function on the
accuracy of the LB-BCSD model. The experiment
is conducted in two steps: first, we assess the ac-
curacy of the LB-BCSD model in recognizing the
same function compiled with different options (O2
and O3). In this step, only functions compiled with
the O3 option are considered as correct answers.
Secondly, we evaluate the model’s accuracy in rec-
ognizing functions with the same functionality but
different implementations. In this step, the other 9
implementations of the function are considered cor-
rect answers, and the model’s average accuracy for
these 9 implementations is calculated as accuracy
indicator. By comparing the accuracy differences
between the O2 and O3 compilation options and
the average accuracy for functionally equivalent but
differently implemented functions, we can quan-
tify the impact of different implementations on the
robustness of the LB-BCSD model.

Table 1: The impact of functionally equivalent but differ-
ently implemented functions on model accuracy. Here,
DCO refers to the accuracy of the model for the same
function with different compilation options, while DI
refers to the accuracy of the model for different imple-
mentation functions with the same functionality.

Asm2Vec SAFE JTrans
DCO 0.76 0.72 0.81

DI 0.64 0.6 0.65

For this study, we use Dataset I and randomly
select 50 programs from it. Since each program
contains 10 different implementations, a test pool
of 500 functions is constructed. We follow the
experimental design consistent with existing stud-
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Table 2: This table illustrates the impact of FuncFooler on model accuracy. "Ori." represents the original accuracy
of the models, while "FF" denotes the accuracy after fine-tuning the models with adversarial examples generated by
FuncFooler. "Impr." indicates the difference between the fine-tuned accuracy and the original accuracy.

Program
Asm2Vec SAFE JTrans

Ori. FF impr. Ori. FF impr. Ori. FF impr.
Curl 0.78 0.81 0.03 0.75 0.76 0.01 0.79 0.83 0.04

Binutils 0.75 0.78 0.03 0.73 0.75 0.02 0.77 0.8 0.03
Coreutils 0.81 0.82 0.01 0.78 0.79 0.01 0.8 0.86 0.06
SQLite 0.71 0.77 0.06 0.68 0.7 0.02 0.76 0.84 0.08

OpenSSL 0.74 0.78 0.04 0.76 0.77 0.01 0.79 0.85 0.06
Putty 0.78 0.81 0.03 0.77 0.78 0.01 0.8 0.84 0.04

Average 0.76 0.79 0.03 0.75 0.77 0.01 0.79 0.83 0.05
Dataset I 0.64 0.7 0.06 0.6 0.63 0.03 0.65 0.72 0.07

ies (Hu et al., 2018; Marcelli et al., 2022; Wang
and Wu, 2017; Xu et al., 2023) to ensure compa-
rability and consistency. During the experiment,
each function in the dataset is compiled with the
O2 option, and the search matches are conducted
within a test pool of 500 functions generated by the
O3 option.

The experimental results are shown in Table 1.
As can be seen, the LB-BCSD models exhibit high
accuracy in recognizing different versions of the
same function generated by the same functional-
ity but different compilation options (O2 and O3),
with an average accuracy of 76%. However, when
recognizing functions with the same functionality
but different implementations, the models’ aver-
age accuracy drops to 63%, a decrease of 13%
compared to recognizing the same function. It is
noteworthy that although these functionally equiva-
lent functions were also obtained through O2 and
O3 compilation options, the implementation differ-
ences by different programmers lead to a decrease
in the accuracy of the LB-BCSD models during
recognition.

5.3 Effectiveness of FuncFooler in Improving
Model Accuracy

In this experiment, we evaluate the effectiveness of
FuncFooler in improving model accuracy. For each
function in the original training set BinaryCorp-
3M, adversarial examples are generated using Func-
Fooler, and these samples are used to fine-tune the
models. To ensure comprehensive and accurate
evaluation, we use two datasets for testing. Dataset
I focuses on evaluating the accuracy of the mod-
els for functionally equivalent but differently im-
plemented functions. Dataset II is derived from
six real-world projects, focusing on evaluating the

models’ accuracy for functions in real applications.
Other settings in this experiment are the same as
those in Section 5.2.

The experimental results are shown in Table 2.
In this table, "Ori." represents the original accu-
racy of the model. "FF" indicates the accuracy
after fine-tuning the model with adversarial sam-
ples generated by FuncFooler. "Impr." denotes the
difference between the fine-tuned accuracy and the
original accuracy. From the data in the table, it
can be seen that for the JTrans model, by applying
the method proposed in this paper, we successfully
achieved accuracy improvements of 5% and 7% on
two different datasets, demonstrating the effective-
ness and potential of our approach. In contrast, the
accuracy improvements on the SAFE and Asm2Vec
models were relatively limited. This is primarily
due to the relatively simple structure of these two
models, which may have limitations in capturing
subtle changes in the code, making it difficult to
significantly enhance their accuracy.

6 Conclusion

To improve the model’s ability to recognize func-
tion variants, we designed FuncFooler to generate
multiple variants of a function and then use these
code variants to retrain the model to enhance its
robustness. When given a function, FuncFooler
first uses gradient information to determine the im-
portance of each node in its control flow graph.
Subsequently, specific control flow, data flow, and
intra-node perturbations are applied to these key
nodes to generate adversarial samples. Experimen-
tal results show that FuncFooler can improve the
accuracy of SOTA LB-BCSD models by 5%-7%.
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7 Limitation

In our study, we are committed to enhancing the
robustness of the LB-BCSD model. To achieve
this goal, we generate multiple variants of the same
function and fine-tune the model with these vari-
ants in order to improve its generalization capabili-
ties. Specifically, we create multiple variants of the
same function through control flow, data flow, and
perturbations within nodes.

However, our method has its limitations. Al-
though we can generate functionally equivalent
variants for a given function, we are unable to
generate variants that have the same functional-
ity but drastically different implementation logic.
Programmers may use different algorithms or logi-
cal structures to implement the same functionality.
This diversity is not fully reflected in our method.
When faced with functions that have the same func-
tionality but different implementations, the accu-
racy of the LB-BCSD model decreases by 13%. In
contrast, using variants generated by FuncFooler
only improves the SOTA model’s accuracy by 5%
to 7%. This finding highlights an important direc-
tion for future research: exploring how to generate
functionally identical but logically distinct function
variants.

In terms of experimental design, we also encoun-
tered challenges. Due to the lack of programs with
various different implementations in real-world en-
vironments, we constructed a test dataset using dif-
ferent solutions to the same problem from program-
ming websites. Currently, the LB-BCSD method
primarily focuses on evaluating the similarity of the
same function under different compilation options,
and existing datasets are mainly built on this basis,
lacking datasets that reflect different implementa-
tions of the same functionality. Therefore, in future
work, we aim to collect and analyze different im-
plementations of real programs to more accurately
assess the impact of FuncFooler on improving the
accuracy of the LB-BCSD model. This will help us
to more comprehensively understand the model’s
performance and provide stronger support for its
deployment in practical applications.

8 Ethics Statement

Our work focuses on enhancing the robustness of
the LB-BCSD model. To achieve this goal, our ap-
proach generates multiple variants of the same func-
tion and fine-tunes the model using these variants
to improve its generalization capability. This exper-

iment was conducted on a high-performance server
with the following configuration: an Intel Xeon
Gold 6132 CPU (2.60 GHz), 256 GB of memory,
eight Tesla V100 GPUs, and running the Ubuntu
18.04 operating system.
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.1 Ablation Study
In this experiment, it is demonstrated that the
model’s accuracy is enhanced by FuncFooler rather
than by the random walk strategy. For each func-
tion in the original training set, BinaryCorp-3M,
the training set was expanded using both the ran-
dom walk strategy and FuncFooler, followed by
retraining the model. Dataset II was then used as
a test set to evaluate the accuracy of both models,
with the differences in accuracy relative to the orig-
inal model reflecting the effectiveness of these two
approaches.

Table 3: This table demonstrates that the accuracy of the
model is improved by FuncFooler rather than the ran-
dom walk strategy. Here, "Ori." represents the original
accuracy of the models, while "FF" represents the accu-
racy after fine-tuning the models with adversarial exam-
ples generated by FuncFooler, and "RW" represents the
accuracy after fine-tuning the models with adversarial
examples generated by the random walk strategy.

Asm2Vec SAFE JTrans

ori. FF RW ori. FF RW ori. FF RW

0.76 0.79 0.76 0.75 0.77 0.69 0.79 0.83 0.71

The experimental results are shown in Table 3.
The results indicate that when the training set is
expanded using the random walk strategy and the
model is retrained, the accuracy of SAFE decreases
by 6%, the accuracy of Asm2Vec remains un-
changed, and the accuracy of JTrans decreases by
8%. This is because SAFE and JTrans encode the
instructions within basic blocks and the control
flow transfer relationships between them, while
the random walk produces a sequence of instruc-
tions, disrupting the original model’s design and po-
tentially introducing noise that interferes with the
learning process. In contrast, the Asm2Vec model
is trained based on the concept of random walks,
which is why its accuracy is unaffected in the abla-
tion study. This suggests that the random walk strat-
egy decreases model accuracy, while FuncFooler
enhances it.

.2 The Enhancement Effect of FuncFooler on
Model Robustness

In this experiment, we investigate the enhancement
effect of FuncFooler on model robustness. Specifi-
cally, adversarial samples generated by FuncFooler
were used to conduct adversarial testing on both
the original model and the fine-tuned optimized
model. For each baseline model, function samples
were carefully perturbed using FuncFooler, and
the changes in accuracy of the LB-BCSD model
on these samples were compared to evaluate the
enhancement of model robustness by FuncFooler.

Table 4: This table demonstrates the enhancement effect
of FuncFooler on model robustness. In this context,
adversarial samples generated by FuncFooler are used to
attack both the original model (labeled as Ori.) and the
model retrained with FuncFooler, and their respective
accuracy rates are provided.

Asm2Vec SAFE JTrans

ori. FF ori. FF ori. FF

0.03 0.25 0.03 0.22 0.04 0.26

The experimental results are shown in Table 4:
for the original model, FuncFooler significantly re-
duces its accuracy, causing the average accuracy
of the three models to drop below 4%; for the fine-
tuned model, the attack effectiveness of FuncFooler
is weakened, only lowering the average accuracy of
the three models to below 26%. This indicates that
the fine-tuned model exhibits a robustness improve-
ment of 22% against FuncFooler attacks compared
to the original model.
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