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Abstract

This paper introduces the innovative “LLMs-
as-Instructors” framework, which leverages the
advanced Large Language Models (LLMs) to
autonomously enhance the training of smaller
target models. Inspired by the theory of “Learn-
ing from Errors”, this framework employs an
instructor LLM to meticulously analyze the
specific errors within a target model, facil-
itating targeted and efficient training cycles.
Within this framework, we implement two
strategies: “Learning from Error,” which fo-
cuses solely on incorrect responses to tailor
training data, and “Learning from Error by
Contrast,” which uses contrastive learning to
analyze both correct and incorrect responses
for a deeper understanding of errors. Our em-
pirical studies, conducted with several open-
source models, demonstrate significant im-
provements across multiple benchmarks, in-
cluding mathematical reasoning, coding abil-
ities, and factual knowledge. Notably, the re-
fined Llama-3-8b-Instruction has outperformed
ChatGPT, illustrating the effectiveness of our
approach. By leveraging the strengths of both
strategies, we have attained a more balanced
performance improvement on both in-domain
and out-of-domain benchmarks. Our code can
be found at https://yingjiahao14.github.
io/LLMs-as-Instructors-pages/.

1 Introduction

LLMs have achieved great success in various tasks,
while it is still time-consuming and labor-intensive
for further training, e.g., adapting to specific do-
mains, following instructions, or aligning with hu-
man preference. To ensure continuous improve-
ment during training, developers usually keep an-
alyzing the model’s responses and modifying/sup-
plementing the corpus accordingly. Some advanced
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Figure 1: Compared with previous traditional data aug-
mentation method (Dai et al., 2023; Xu et al., 2023) —
used stronger models to generate training data with-
out considering the target model’s features, we pro-
pose an LLMs-as-Instructor framework based on the
“Learning from Errors” theory (Metcalfe, 2017), where
a stronger model analyzes and targets the specific errors
of a smaller model to facilitate direct improvements.

LLMs, such as GPT-4 (OpenAI, 2023) and Claude-
3 (Anthropic, 2024), have been introduced to im-
prove efficiency and reduce cost via data augmen-
tation (Dai et al., 2023) or labeling (Rafailov et al.,
2024). As shown in Figure 1, once LLMs are found
poor performance in mathematical capability, more
math data will be integrated deliberately into the
next training cycle.

In this paper, we argue that conventional meth-
ods, which generate data indiscriminately to aug-
ment training corpus, are inefficient. They fail
to fully leverage the capabilities of the advanced
LLMs. Except for data generation, advanced LLMs
actually also exhibit exceptional analytical and
evaluative competencies (Bai et al., 2023; Dai
et al., 2023). We are thus inspired by Bloom’s
theory (Bloom, 1984), which suggests that person-
alized tutoring is a highly effective educational
approach for students, to enhance LLMs’ further
training by mirroring the personalized and focused
strategies in human education.

To do so, we tailor advanced LLMs to serve as
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instructors to automate model improvement with
minimal human intervention. The basic idea is
that advanced LLMs first analyze those error-prone
tasks and then augment training data to the point.
That is, it would be more efficient by “Learning
from Errors" as discussed in (Metcalfe, 2017). This
theory indicates that errorful learning followed by
corrective feedback is beneficial to learning for
humans. As illustrated in Figure 1, different from
conventional methods, we focus on those problem-
atic responses. By analyzing specific errors, it is
determined that the target model exhibited poor ca-
pacity in computational precision. Thus, numerous
precision-focused questions are generated to en-
hance this capability in the next round of training.

In specific, our “LLMs-as-Instructors” has two
strategies: 1) Learning from Error: where the
instructor model analyzes only the incorrect re-
sponses and corresponding question samples, facil-
itating identifying the underlying errors and gen-
erating tailored training data, 2) Learning from
Error by Contrast: building on the concept of
contrastive learning, it involves both correct and
incorrect samples. Correct samples closely re-
lated to each incorrect one will be paired for
analysis. This strategy allows the Instructor to
conduct a comprehensive analysis, enabling it to
pinpoint the subtle distinctions between correct
and incorrect responses. Our experiments, uti-
lizing several open-source models serving as tar-
get models, have demonstrated that after improve-
ments, our “LLMs-as-Instructors” framework sig-
nificantly enhances the baseline performance of
these target models across various benchmarks,
which include testing mathematical reasoning with
GSM8k (Cobbe et al., 2021), coding abilities with
HumanEval (Chen et al., 2021), and factual knowl-
edge with MMLU (Hendrycks et al., 2021). The
outcomes also reveal that each strategy offers
unique benefits contigent upon the nature of the
data. 1) In contexts where the question samples are
granular and there is an abundance of both correct
and incorrect cases, the use of contrast samples
substantially benefits the Instructor, 2) On the other
hand, for more general and less frequent questions,
the “Learning from error” strategy is directly more
efficacious in augmenting the model’s capabilities.
By combining the strengths of both strategies, we
have realized a more balanced improvement in per-
formance on the involved benchmarks.

Our main contributions can be summarized as:

• We have proposed the LLMs-as-Instructors
framework, which leverages the capabilities of
advanced LLMs to autonomously analyze the
characteristics of the target model and enhance it
through iterative training cycles.

• We have introduced and effectively implemented
two distinct analysis strategies: “Learning from
Errors” and “Learning from Errors by Contrast,”
which are adaptable to various scenarios and fa-
cilitate learning from errors.

• Our evaluation spans multiple benchmarks and
diverse domains, including factual knowledge,
mathematical reasoning, and coding, confirming
that our framework significantly improves the
performance of target models.

2 LLMs-as-Instructors Framework

The framework depicted in Figure 2 illustrates
our LLMs-as-Instructors approach, which is char-
acterized by undergoing a series of n iterations
across four integral stages: 1) Data Selection (Sec-
tion 2.2) is the initial step where we meticulously
select target data samples designed to evaluate the
capabilities we intend to enhance in subsequent
iterations. 2) Result Collection (Section 2.2) fol-
lows, where we scrutinize the performance of the
target model and meticulously gather its responses
for in-depth subsequent analysis. 3) Instructor
Analysis and Data Supply (Section 2.3) is the
phase where the instructor, employing a prede-
fined analytical strategy, dissects the errors made
by the target model. This analysis is pivotal in
formulating strategies for improvement and craft-
ing tailored training corpora to facilitate the target
model’s learning process. 4) Target Model Train-
ing and Evaluation (Section 2.4) concludes the cy-
cle, where the target model undergoes fine-tuning
with the supplemented training corpus. It is then
evaluated to measure the extent of improvement
using a dedicated evaluation dataset.

Upon receiving a target LLMM0
target, we engage

a stronger model as the “Instructor” (MInstructor),
utilizing responses from the target model to ana-
lyze the errors, and then generating customized
training materials to guide the model to learn from
the errors for performance increase. The process
of this method is outlined in Algorithm 1.
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Help! I have these questions right 
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Let me 
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Question: Goldie makes $5 an hour for pet-sitting. Last week, she worked for 20 hours while 
this week, she worked for 30 hours. How much did Goldie earn in two weeks for pet-sitting?

Question: Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes 
of babysitting. How much did she earn?

Step 2: Result Collection

Instructor Model
Eval

Strategy 1：Learning from Errors

Code

Fact
Math

Goldie the first week earned $100, the 
second week, Goldie worked for 30 hours at 
$5 earned $150, Total earnings $250

earned $9.996 for babysitting yesterday
developm\First, convert the minutes to hours: 50 

minutes = 0.833 hours. Therefore, Weng 
earned $9.996 for babysitting yesterday.

Vectorization

Oops! Good!

Instructor Model

Follow my instruction and learn.

Follow my instruction and learn.
Question: Alex earns $15 an hour for tutoring. On one afternoon, Alex tutored 
for 40 minutes. How much did Alex earn for this session?
Answer: To solve this problem we first convert the minutes to hours in fraction...

Question: Mia earns $10 an hour. She walked dogs for 30 minutes. How 
much did she earn?
Answer: To solve this problem we first convert the minutes to hours ...

Question: Weng earns $12 an hour for...
My answer: First, convert the minutes : ...

Help! I have this question wrong on 
my test,  and here is my answer. Sample

Strategy 2:  Learning from Errors by Contrast

Distance

Paired
Question: Goldie makes $5 an hour for 
pet-sitting. Last week, she worked for....

but get this question  wrong on the test

Let me analyze! 
You are not good at calculating monetary values.

Get Paired

 Let me analyze!  Perhaps you struggle with calculating monetary values,
especially when division is involved and the result is a decimal.

Figure 2: Our LLMs-as-Instructors framework consists of four steps in each iteration cycle to improve the target
model: 1. Data Selection (Section 2.2), where target data samples are selected to challenge and assess the capabilities
we intend to enhance. 2. Result Collection (Section 2.2), involving the evaluation of the target model on these
samples and collection of responses for analysis. 3. Instructor Analysis and Data Supply (Section 2.3), where
the instructor conducts analysis and generates tailored training data. 4. Target Model Training and Evaluation
(Section 2.4), having the target model learn from the errors and conducting the assessment of the improvements.

2.1 Preliminary

To simplify the subsequent discussion, we establish
a set of definitions: The dataset D is defined as fol-
lows: D = {d | d = (q, aref)}, where each sample
d includes a question q and a reference answer aref.
We designate an erroneous case as (d−, r−) when
d− = (q, aref) and the target model’s response r−

to question q does not match aref. Conversely, a
correct case is denoted as (d+, r+).

2.2 Data Selection and Result Collection

“If you can’t measure it, you can’t improve it.” To
initiate the model enhancement process, we first
engage in the critical task of measuring and iden-
tifying the errors of target model. As outlined in
line 4 of Algorithm 1, this is achieved by carefully
selecting a subset of the target dataset, denoted
as Di

target, from the base Dtarget. Utilizing the cho-
sen samples from Di

target, we proceed to evaluate
the performance of the current iteration of the tar-
get model,Mi

target, with the potential support the
instructor modelMInstructor, if required. This eval-
uation results in a collection of responses, denoted
as Ri, as outlined in line 5 of Algorithm 1.

Following this initial assessment, the instructor

model delves deeper into the analysis of these re-
sponses, aiming to identify areas for improvement
and to provide valuable insights for the subsequent
enhancement of the target model in Section 2.3.

2.3 Instructor Analysis and Data Supply
Subsequently, the instructor MInstructor further
leverages the collected responses Ri and applies
the following two strategic analyses to aid the target
modelMi

target in learning from its errors.

• Learning from Errors (LE): The instructor
MInstructor focuses the analysis solely on the in-
correct responses r− from Ri, along with the cor-
responding target sample d− from Di

target. The
training dataset Di

train is then generated to help
the target model learn from its errors. In this
context, Algorithm 1, line 6, is adapted to:

Di
train ← Generate(MInstructor,Di

−), (1)

where Di
− = {(d−, r−) | d− ∈ Di

target, r
− ∈ Ri}. Fol-

lowing a set of instructions outlined in Ap-
pendix C.2, the instructor modelMInstructor scru-
tinizes the current state of the target model
Mtarget. It then crafts tailored training materi-
als Di

train aimed at enhancing the target model’s
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Algorithm 1 Given a target modelM0
target, target

dataset including Dtarget and evaluation datasets
Deval, we deploy the instructor model MInstructor.
This instructor analyzes the responses from the tar-
get modelMi

target at each iteration i. Based on this
analysis, it generates corresponding supplemental
training corpora designed to iteratively enhance the
target model’s performance.
1: procedure LLMS-AS-INSTRUCTORS

(M0
target,MInstructor Dtarget,Deval)

2: i← 0
3: while i < n do
4: Di

target ← DataSelect(Dtarget)

5: Ri ← Evaluate(Mi
target,Di

target,MInstructor)

6: Di
train ← Generate(MInstructor,Di

target, R
i)

7: Mi
target ← Finetune(Mi

target,Di
train)

8: Evaluate(Mi
target,Deval,MInstructor)

9: i← i+ 1
10: end while
11: end procedure

performance. This process is primarily driven by
the identification and rectification of errors.

• Learning from Errors by Contrast (LEC):
Beyond the erroneous cases (d−, r−), inspired
by “Contrastive Learning” (Hadsell et al., 2006;
Chen et al., 2020), which highlights learning by
comparing negative and positive samples, we in-
corporate correct cases (d+, r+) for contrast to
enhance learning from errors. Specifically, for
each erroneous case (d−, r−), the vectorized fea-
tures v(d−, r−) are used to calculate and retrieve
the k most similar correct cases:

D(d−,r−)
paired =

{
argmin

(d+,r+)∈Di
+,k

∥v(d−, r−)− v(d+, r+)∥2
}
, (2)

where Di
+ = {(d+, r+) | d+ ∈ Di

target, r
+ ∈ Ri}. These

k retrieved paired cases, along with the incorrect
case, form the contrast set. This set is provided to
the instructor for detailed comparative analysis
and to generate a training dataset that specifically
targets the errors. Consequently, the procedure
outlined in line 6 of Algorithm 1 is modified as:

Di
train ← Generate(MInstructor,Di

paired), (3)

in which Di
paried =

{
(d−, r−, p) | (d−, r−) ∈ Di

−, p ∈ D(d−,r−)
paried

}
.

Note during the training process, the selection
of strategies is not static; it is amenable to modifi-
cation in accordance with the evolving state of the
target model. We will delve deeper into this aspect
of adaptability in our experimental Section 4.3.

2.4 Target Model Training and Evaluation

Using the supplemental training data Di
train from

the instructor model, the target model is fine-tuned
to learn from its errors (line 7 of Algorithm 1). To
fairly evaluate the improvements after training, we
utilize additional evaluation datasets, Deval, consid-
ering that using the same datasets for both training
and evaluation can lead to an overestimation of the
model’s performance (Ying et al., 2024; Zhou et al.,
2023) (lines 8 of Algorithm 1). After evaluating
the enhancements, we can proceed with further it-
erations of learning. This iterated learning process
allows for continual refinement.

3 Experimentation

3.1 Experimental Datasets

Following (Wang et al., 2023a), we focus on three
practical abilities: factual knowledge, mathemat-
ical reasoning, and coding. We select a relevant
public dataset for each, amalgamating their train-
ing data into the target dataset Dtarget, and their test
data into the evaluation dataset Deval. Given the
similarity in the distributions of in-domain training
and testing sets, learning from errors potentially in-
flates performance. Thus, for each ability, we also
incorporate an “Out-of-Domain” (OOD) dataset in
Deval. This setup allows us to assess the model’s
ability to generalize and enhance its performance
beyond its initial In-Domain (ID) training context.

• For Factual Knowledge, we select Mas-
sive Multitask Language Understanding dataset
(MMLU) (Hendrycks et al., 2021), with ques-
tions across 57 subjects, as the ID dataset. For
OOD evaluation, we use the ARC-Challenge
dataset (Clark et al., 2018), which comprises sci-
ence questions that also test factual knowledge.

• For Mathematical Reasoning, we select
GSM8k (Cobbe et al., 2021), a Grade School
Math dataset, as our ID dataset. For OOD eval-
uation, we use GSM8k-PLUS (Li et al., 2024b),
an extension of GSM8k augmented with various
mathematical perturbations.

• For Coding, we use the MBPP (Austin et al.,
2021) as the ID dataset. For OOD evaluation, we
select HumanEval (Chen et al., 2021).

We also utilize BIG-bench Hard (BBH) (Suz-
gun et al., 2023), a holistic benchmark containing
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MMLU ARCc GSM8k GSM-PLUS MBPP HumanEval BBH Average
(factuality) (factuality) (math) (math) (coding) (coding) (holistic)

EM EM EM EM P@1 P@1 EM
(0-shot) (0-shot) (0-shot) (0-shot) (0-shot) (0-shot) (3-shot)

Closed-source model and Open-source models
GPT-3.5-turbo 65.3 84.4 71.1 61.5 68.5 61.6 61.7 67.7
Gemma-7B-Instruct 50.4 72.8 35.7 27.0 34.3 25.0 44.8 41.4
Llama-2-70b-Chat 60.0 77.2 51.0 42.0 41.1 36.0 49.6 51.0
Mixtral-8×7B-Instruct-v0.1 67.2 81.5 50.4 41.4 27.9 36.0 44.9 49.9

Mistral-7b-Instruct-v0.2 based
Vanilla 57.3 73.9 43.2 32.5 38.0 28.6 44.3 45.4
+ Fine-tuning 59.8 74.5 58.0 43.6 31.5 22.6 50.4 48.6
+ AugGPT 58.9 76.0 54.4 44.0 44.1 37.8 53.4 52.6
+ LLMs-as-Instructors (LE) 60.9 76.3 56.2 46.0 51.5 38.4 55.9 55.0
+ LLMs-as-Instructors (LEC) 61.5 77.2 54.0 46.0 47.0 43.3 56.8 55.1

Llama-3-8b-Instruction based
Vanilla 66.3 82.2 79.2 64.6 56.1 59.7 65.5 67.7
+ Fine-tuning 66.3 82.3 79.5 64.6 55.1 59.8 65.5 67.6
+ AugGPT 66.5 83.0 77.8 64.1 56.1 56.7 65.3 67.1
+ LLMs-as-Instructors (LE) 66.1 82.5 81.2 65.9 56.5 60.4 65.8 68.3
+ LLMs-as-Instructors (LEC) 66.2 82.8 80.2 66.0 56.5 61.6 66.1 68.5

Table 1: Performance (%) of Mistral-7b-Instruct after three iterations of improvement under the LLMs-as-Instructors
framework and Llama-3-8b-Instruction after one iteration, across seven selected benchmarks. The benchmarks
highlighted in green denote the ID datasets. LE denotes the exclusive use of analysis strategy: Learning from Errors,
in all three iterations. LEC denotes the use of analysis strategy: Learning from Errors by Contrast. AugGPT denotes
following work (Dai et al., 2023; Li et al., 2024a) to generate augmented samples (a total of 27,000) for training
detailed in Section 3.2. Bold indicates the best in each setting, bold underline indicates the best in the table.

23 challenging tasks from Big-Bench (bench au-
thors, 2023), to evaluate the models’ overall gen-
eral reasoning capabilities. For those ID datasets
that lack an official training set, we use the valida-
tion datasets instead. For time considerations, we
have limited the size of GSM8k-PLUS to match
that of GSM8k. Statistical result for the selected
benchmarks is shown in Table 3 and detailed task
descriptions are shown in Appendix A.1.

3.2 Experimental Setups

We use Mistral-7b-Instruct (Jiang et al., 2023) and
Llama-3-8b-Instruction (Meta, 2024) as the target
modelM0

target, with GPT-4-preview (OpenAI, 2023)
as the instructor modelMInstructor:

For Data Selection, we pick training data from
the three ID datasets for each round; for Result
Collection, except for BBH that uses 3-shot ex-
amples from the original benchmark, all other re-
sponses are generated in a zero-shot manner, de-
tails of which are provided in Appendix A.2. For
these benchmark-based assessments, we follow
their standard metrics elaborated in Appendix A.1.

For Instructor Analysis and Data Supply, we
employ BERT embeddings (Devlin et al., 2019)
to transform the erroneous cases into vectors and
apply ℓ2 distance to get paired cases in Equation 2.
Recognizing that the examination of question fea-
tures is more prevalent in human analysis, we uti-
lize the feature vector of the question q from d−,

denoted as v(q), in lieu of v(d−, r−). To ensure
the quality of the pairings, we stipulate d− and d+

must hail from the same source dataset and set the
parameter k = 3 within Equation 2. We regulate
the volume of the generated training dataset Di

train

to a cap of 9,000, thereby allocating 3,000 samples
to each of the three target datasets per iteration.

As for the phase of Target Model Training
and Evaluation, we conduct experiments on 16
NVIDIA A800 GPUs in a full parameter fine-
tuning settings. Details of training configurations
are provided in Appendix A.2.

3.3 Experimental Baselines

In addition to closed-source ChatGPT (OpenAI,
2022) (GPT-3.5-turbo), we also incorporate a
range of open-source models including Gemma-7b-
Instruct (Googl3, 2024), Llama-2-70b-Chat (Tou-
vron et al., 2023), and Mixtral-8×7B-Instruct-
v0.1 (Jiang et al., 2024). Furthermore, we have
integrated the data augmentation method, which
employs more advanced models to aid in train-
ing, without considering the target model’s features.
Specifically, we have 1. Fine-tuning, where we use
the training part of the target (Section 3.1) to train
the target model. 2. AugGPT, here we use sample
Di

target as a seed to generate training data through
the instructor, following previous work (Dai et al.,
2023; Li et al., 2024a), but without any filtering
(prompt is in Appendix C.1).
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3.4 How effective is the LLMs-as-Instructors
framework for LLMs improvement?

Utilizing GPT-4-preview as the instructor, we have
successfully enhanced both the Mistral-7b-Instruct
and Llama-3-8b-Instruction models, employing
two distinct analysis strategies. This enhancement
is achieved through three iterative training phases
for Mistral-7b-Instruct and one iterative phase for
Llama-3-8b-Instruction, due to time and cost con-
siderations. The final model’s accuracy on seven
selected benchmarks is shown in Table 1. The out-
comes underscore several key points:

1) The two models realize significant enhance-
ments on both ID and OOD benchmarks, irre-
spective of the strategy employed. Specifically,
the Mistral-7b-Instruct achieves average improve-
ments of 9.4% and 9.5% for the two strategies,
and Llama-3-8b-Instruction shows gains of 0.6%
and 0.8%. These results substantiate the efficacy
of our approach. 2) When juxtaposed with the
two data augmentation methods, our LLMs-as-
instructors strategy exhibits a pronounced advan-
tage, outperforming all seven benchmarks with an
average lead of 2.5% over AugGPT augmentation
and 6.4% over fine-tuning for Mistral. Similarly,
for Llama3, the improvements are 1.3% and 0.7%,
respectively. This aligns with our expectations,
as our customized approach, which is sensitive to
the model’s unique characteristics, emerges as a
more potent learning mechanism. 3) In compar-
ison with open-source models of similar or even
larger scale, such as Gemma-7B-Instruct, Llama-2-
70b-Chat, and Mixtral-8×7B-Instruct, the refined
Mistral-7b-Instruct demonstrates a clear superior-
ity, particularly in coding, mathematical reasoning,
and overall general reasoning. Both strategies sur-
pass these models by an average of 14%. More-
over, the refined Llama-3-8b-Instruction surpasses
the performance of ChatGPT by 0.7% averagely,
achieving state-of-the-art results as shown in the
table. Considering that the performance of Llama-
3-8b-Instruction is already high, the fact that our
framework could further enhance it underscores the
effectiveness of our approach.

4 Discussion

Given the proven effectiveness of our LLMs-as-
Instructors method, we further delve deeper to as-
certain the various contributing factors to its suc-
cess. Specifically, we have examined the impact
of the training set size (Section 4.1), and the num-
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Figure 3: Performance (%) of Mistral-7b-Instruct after
the first iteration of improvement under the LLMs-as-
Instructors framework, varied by the size of the training
set. We compare three different training set sizes: 3,000,
6,000, and 9,000 total samples.

ber of training iterations (Section 4.2), the distinct
impacts of the two analysis strategies on iterative
improvement in Section 4.3. Furthermore, we have
conducted preliminary experiments aimed at amal-
gamating the two strategies to achieve a balanced
improvement (Section 4.3). Due to contextual and
time constraints, this discussion focuses only on the
impact of these variables on the Mistral-7b-Instruct.
The results concerning the Llama-3-8b-Instruction
model are detailed in Appendix B.

4.1 Impact of Training Set Size

In this experiment, we elucidate the rationale be-
hind selecting a training set size of 9,000 for our
experimental configuration. Employing consistent
parameters, we train the target model, Mistral-7b-
Instruct, across a range of training set sizes, as
depicted in Figure 3 (with more results presented
in Figure 7 and Figure 8). In the case of using
the Learning from Error by Contrast strategy, pre-
liminary experiments reveal that k = 3 provided
the best performance on the in-domain datasets
(detail is shown in Figure 6). Therefore, we set
k to 3 for our quantitative experiments. Our ob-
servations indicate that the model’s performance
on ARCc only commence to escalate once the ag-
gregate number of training samples surpasses the
threshold of 6,000. Moreover, as the sample size
expands from 6,000 to 9,000, the enhancements in
performance on the GSM8k benchmark, particu-
larly with strategy LEC, begin to level off. Thus,
we opt for a training set size of 9,000 samples to
conduct improvement iteratively.

4.2 Impact of Iterations on Improvement

We continue to investigate how the model itera-
tively improves. Through three successive training
iterations of Mistral-7b-Instruct, we present the out-
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Figure 4: Performance (%) of Mistral-7b-Instruct under the LLMs-as-Instructors framework across different
numbers of iterations. The benchmarks highlighted in green denote the ID datasets.

comes for each iteration in Figure 4. Our findings
reveal that under both strategies, the model consis-
tently achieves either progressive improvement or
sustains a performance level on par with the pre-
ceding iteration in each round. However, as the it-
erations accumulate, the rate of enhancement tends
to diminish. To delve deeper into the underlying
causes, we examine the evolution of the model’s
learning and forgetting dynamics across consecu-
tive iterations. Utilizing the GSM8k dataset, we
calculate the Forgotten Rate and Learned Rate for
iteration i where i > 1 as follow:

Forgotten Ratei =
|Di−1

eval+ −Di
eval+|

|Deval|
,

Learned Ratei =
|Di

eval+ −Di−1
eval+|

|Deval|
,

(4)

where Di
eval+ denotes samples that the target model

Mi
target correctly addresses. The results, as illus-

trated in Figure 5, demonstrate that with an increas-
ing number of iterations, both the learned rate and
the forgotten rate of the model exhibit a decline.
Notably, the decrease in the learned rate is more
pronounced than that in the forgotten rate, leading
to a nearly balanced state between learning and for-
getting in the third iteration. This learning pattern
contributes to the diminishing marginal gains in
model performance as the iterations continue. This
also suggests that increasing the initial learning rate
or mitigating the forgotten issues during the learn-
ing process might further improve performance.
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Figure 5: The target model’s learning and forgetting
behaviors evolving with successive iterations using strat-
egy 1: Learning from Errors.

4.3 Impact of Analysis Strategies on Iterative
Improvement

The analysis reveals that the two strategies exhibit
different patterns of improvement. As depicted in
Figure 4, focusing solely on error cases for learn-
ing from mistakes yields better results in in-domain
math and coding skills, with increases of 1.8% and
4.5% respectively, compared to using contrast sets.
However, for the MMLU benchmark, contrastive
pairs perform better. This discrepancy may stem
from the contrast set quality, D(d−,r−)

paired . The MMLU’s
fine-grained categorization of subjects into various
disciplines means that while similar correct and
incorrect pairs are formed, they may not cover the
same knowledge domains, thus not enhancing the
comprehensiveness of the analysis. This indicates
the varied applicability of the strategies — Learn-
ing from Error by Contrast is advantageous in sce-
narios with a rich set of question samples, while
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Learning from Errors is more effective for general
questions. Also, OOD evaluations show an aver-
age 1.7% performance boost with contrastive pairs,
indicating that it produces more generalizable data.

Leveraging the unique strengths of both strate-
gies, we undertake preliminary experiments to en-
hance the model’s performance more evenly:

1. Sequential Application of Strategies. Ac-
knowledging strategy LE’s advantage in mathemat-
ical and coding tasks within in-domain contexts, we
apply it to the target model M2

target, which had al-
ready undergone two rounds of improvement with
strategy LEC. In the subsequent training round, we
observe further progress, as in Table 2. Notably, the
model sustains its OOD capabilities while achiev-
ing a 1.9% increase in ID coding proficiency.

2. Capitalizing on Strategy LEC’s Generalizabil-
ity. Benefiting from the enhanced generalizability
of data generated by strategy LEC, we implement
an extra round of improvement on the target model
M2

target, which has been previously augmented by
Strategy LE. The results in Table 2 reveal that this
refinement maintains the model’s ID performance
while also securing a 0.6% advancement in OOD
coding. More results are provided in Table 4.

GSM8k GSM-PLUS MBPP HumanEval
(math) (math) (coding) (coding)

EM EM P@1 P@1
Mistral-7b (0-shot) (0-shot) (0-shot) (0-shot)

+ LaI (LEC) 54.0 46.0 47.0 43.3
+ LaI (LEC + LE) 53.9 45.7 48.9 42.7

+ LaI (LE) 56.2 46.0 51.5 38.4
+ LaI (LE + LEC) 55.9 46.1 51.5 39.0

Table 2: LaI (LEC + LE) denotes using strategy LEC
for the first two iterations and strategy LE for the third
iteration using LLMs-as-Instructors. LaI (LE + LEC)
denotes the application of strategy LE for the first two
iterations and strategy LEC for the third iteration. LaI
(LEC), and LaI (LE) donate using strategy LEC and
strategy LE for three iterations respectively. Blue cells
indicate reduced performance, Red cells indicate im-
proved performance.

5 Generated Training Sample Analysis

Results indicate that the model achieves substan-
tial improvements on both in-domain and out-of-
domain datasets, thereby affirming the generaliz-
ability of our method. In this section, we conduct
a quantitative analysis of the characteristics of the
training data generated to further demonstrate that
these performance enhancements are not merely
due to similarities between the training and evalua-
tion data. For each generated training sample, we

calculate the closest match within the evaluation
dataset Deval using ROUGE-L (Lin, 2004) score.
The results, presented in Table 5, indicate that the
characteristics of the generated training data are
not closely aligned with those of the test data, with
an average ROUGE-L score of 0.30.

6 Related Work

Instructor Model Guided Model Improvement:
Enhancing a target model is a widely adopted
methodology that leverages the capabilities of
LLMs to create innovative training datasets (Dai
et al., 2023) like: Wizardlm (Xu et al., 2023), Orca-
math (Mitra et al., 2024), TÜLU (Wang et al., 2024;
Ivison et al., 2023) and etc. (Chen et al., 2023; Mi-
tra et al., 2023; Fu et al., 2023; Kumar et al., 2020;
Li et al., 2024a, 2023a). Concurrent with this, an-
other study (Lee et al., 2024) employs an “Instruc-
tor” model to facilitate learning from the target
model’s errors. However, this method trains indi-
vidual models for each dataset, thereby overlook-
ing the potential advantages of integrating correct
samples into the training.

Self-Improving LLMs: Recent research has
seen multiple efforts to explore self-improvement
in language models. Some studies, such as Tong et
al. (2024) (Tong et al., 2024), focus on training the
target model with incorrect samples, while Tang et
al. (2024) (Tang et al., 2024) utilize the base model
to generate context for performance improvement.
Other works (Wu et al., 2023; Madaan et al., 2024;
Wang et al., 2023b; Yuan et al., 2024; Sun et al.,
2024; Burns et al., 2023; Li et al., 2023b) employ
the target model itself to generate training samples.
While these studies predominantly concentrate on
autonomous iterations without external influences,
our approach diverges by incorporating feedback
mechanisms. These mechanisms not only capital-
ize on the target models’ errors but also introduce
direct intervention through strategic analysis. Such
an integration mainly aims to refine the model’s
learning process, thereby fostering a more sophisti-
cated and dynamic model evolution.

7 Conclusion

In this work, we introduced the innovative “LLMs-
as-Instructors” framework, leveraging advanced
Large Language Models (LLMs) to guide smaller
target models in learning from their errors, in-
spired by human learning theory. Our experiments
demonstrated significant improvements for Mistral-
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7b-Intruct and Llama-3-8b-Intruction across seven
benchmarks, underscoring the generalizability and
efficacy of our approach. Notably, the improved
Llama-3-8b-Intruction model surpassed ChatGPT’s
performance, highlighting the effectiveness of
our method. Our two strategies each have dis-
tinct characteristics, allowing them to be used in
combination depending on the specific data sce-
nario. In the future, we aim to focus on exploring
more model analysis strategies, thereby enhancing
the adaptability and effectiveness of our LLMs-
as-Instructors framework and integrating explicit
and fine-grained error analysis into the training
stage, potentially through methods like “Meaning-
ful Learning” (Xiong et al., 2024a,b).

8 Limitation

The proposed methods have achieved the SOTA
performance. However, there exist some limita-
tions which we leave as future works. First, In this
study, we do not explore the adjustment of dataset
ratios or conduct a more granular data extraction
and analysis strategy to better help model to learn
from errors, which we leave for our feature work.
Second, our evaluations were solely based on the
selected benchmark performances. In the future,
we plan to expand the scope of our framework to
include a wider range of tasks and utilize more
comprehensive evaluation methods like “LLM-as-
examiner”. Third, utilizing GPT as an instructor
is costly. In the future, we consider switching to
more powerful open-source models for guidance
or exploring self-learning capabilities within this
framework. Fourth, Our work primarily focuses
on targeted data augmentation rather than explicit
error identification and correction. While the in-
structor LLM conducts internal analysis to generate
training samples, this analysis is not decoded into
natural language or directly incorporated into the
training process. Future work could explore in-
tegrating explicit error analysis into the training
stage, potentially through methods like “meaning-
ful learning” (Xiong et al., 2024a,b).
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A Experimental Details

A.1 Benchmark Details
Following (Wang et al., 2023a), we focus on three practical abilities: factual knowledge, mathematical

reasoning, and coding which we belive are important in our daily application. For each ability, we select a
specific publicly available dataset (In-domain, ID), and one different publicly used dataset which we refer
to as “Out-of-Domain” (OOD) to assess the model’s improvement.

Task #Training #Testing
ID-Factuality: MMLU Dev + Val: 1,816 14,042
OOD-Factuality: ARCc - 1,172

ID-Math: GSM8K 7,473 1,319
OOD-Math: GSM-PLUS - 1,400

ID-Code: MBPP Train + Val: 464 499
OOD-Code: HumanEval - 164

OOD-Holistic: BBH - 6,511

Table 3: The statistical detail of the selected benchmarks. MMLU has no official training data so we combine the
development and validation datasets to form the training set. For time considerations, we have limited the size
of GSM8k-PLUS to match that of GSM8k. We equalize the samples by selecting subsets from five enhancement
methods, ultimately obtaining a total of 1,400 samples.

For factuality, we select MMLU (Hendrycks et al., 2021) as our ID dataset. Considering that it has no
official training set, we combine the development set and validation set We evaluate using 0-shot only and
use Exact Match as our matrix following the original setup of MMLU. We deploy ARC Challenge (Clark
et al., 2018) as our OOD dataset. We evaluate using 0-shot only and use Exact Match as our matrix.

For the Math Reasoning test, we select GSM8k (Cobbe et al., 2021) as our ID datast. We conduct
evaluation in zero-shot. Because all answers are numbers, we extract the last number in the model response
as the final answer. For OOD dataset, GSM-PLUS (Li et al., 2024b), a newly published data building
upon GSM8k, we use the same evaluation setting with GSM8k. For time considerations, we have limited
the size of GSM8k-PLUS to 1400 to match that of GSM8k. To achieve this, we equalized the samples by
selecting subsets from five enhancement methods, ultimately obtaining a total of 1,400 samples.

For code testing, we select MBPP (Austin et al., 2021) as our ID dataset for it has a training dataset.
We combine the validation datset into the training set. To better extract the generated code part, we add an
"entry point" for each question following Humaneval (Chen et al., 2021). For the matrix, we compute
unbiased estimates of pass@k to measure the functional correctness of models’ outputs. We report pass@1
conduct in temperature 0.0. We select Humaneval as our OOD dataset, we evaluate the target model
following the original paper and report pass@1.

For BBH (Suzgun et al., 2023), we follow the setup described in the original paper Suzgun et al. (2023).
We evaluate using 3-shot. The few-shot examples are provided officially by Suzgun et al. (2023).

A.2 Model Settings
A.2.1 Answer Generation
Answer generation across the involved models is conducted in a zero-shot setting, with all models set to a
temperature of 0.0 and a maximum token length of 1024.

A.2.2 Full Parameter Fine-tuning
Full parameter fine-tuning involves adjusting the learning rate (from 7−6 to 2−10), number of epochs 1,
and batch size (from 4 to 128), with the best performance for each iteration. In our experiments, we find
that gradually decreasing the initial learning rate at the start of each training round can generally ensure
continuous improvement in the model’s performance. The experiment is conducted on 16 NVIDIA A800
GPUs. Our most resource-intensive experiment takes 200 A800 GPU hours.
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B More Experiment Results
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Figure 6: Performance (%) of Mistral-7b-Instruct after the first iteration of improvement under the LLMs-as-
Instructors framework, varied by the variable k value in Equation 2. In the case of using the Learning from Error by
Contrast strategy, experiments reveal that k = 3 provided the best performance on the in-domain datasets
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Figure 7: Performance (%) of Mistral-7b-Instruct after the first iteration of improvement under the LLMs-as-
Instructors framework, varied by the size of the training set. We compare three different training set sizes: 3000,
6000, and 9000 total samples. Our observations indicate that the model’s performance on ARCc only commence to
escalate once the aggregate number of training samples surpasses the threshold of 6,000. As the sample size expands
from 6,000 to 9,000, the enhancements in performance on the GSM8k benchmark, particularly with strategy LEC,
begin to level off. Thus, we opt for a training set size of 9,000 samples to conduct improvement iteratively.
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Figure 8: Performance (%) of Llama-3-8b-Instruct after the first iteration of improvement under the LLMs-as-
Instructors framework, varied by the size of the training set. We compare three different training set sizes: 3000,
6000, and 9000 total samples.

MMLU ARCc GSM8k GSM-PLUS MBPP HumanEval BBH
(factuality) (factuality) (math) (math) (coding) (coding) (holistic)

EM EM EM EM P@1 P@1 EM
(0-shot) (0-shot) (0-shot) (0-shot) (0-shot) (0-shot) (3-shot)

Mistral-7b-Instruct-v0.2 based
+ LLMs-as-Instructors (LE) 60.9 76.3 56.2 46.0 51.5 38.4 55.9
+ LLMs-as-Instructors (LE + LEC) 60.8 76.0 55.9 46.1 51.5 39.0 55.8

Mistral-7b-Instruct-v0.2 based
+ LLMs-as-Instructors (LEC) 61.5 77.2 54.0 46.0 47.0 43.3 56.8
+ LLMs-as-Instructors (LEC + LE) 61.6 76.9 53.9 45.7 48.9 42.7 56.8

Table 4: LLMs-as-Instructors (LEC + LE) denotes using strategy LEC for the first two iterations and strategy LE
for the third iteration using LLMs-as-Instructors. LLMs-as-Instructors (LE + LEC) denotes the application of
strategy LE for the first two iterations and strategy LEC for the third iteration. LLMs-as-Instructors (LEC), and
LLMs-as-Instructors (LE) denote using strategy LEC and strategy LE for three iterations respectively.

MMLU ARCc GSM8k GSM-PLUS MBPP HumanEval
(factuality) (factuality) (math) (math) (coding) (coding)

Iteration1 (LE) 38.4 29.1 29.3 28.0 33.0 25.7
Iteration1 (LEC) 39.4 28.5 27.7 26.7 33.5 24.5
Iteration2 (LE) 38.1 29.1 28.6 27.4 32.3 25.6
Iteration2 (LEC) 38.2 28.7 27.4 26.6 32.6 24.4
Iteration3 (LE) 38.2 29.6 28.3 27.4 32.6 25.6
Iteration3 (LEC) 38.3 28.5 27.8 26.8 32.5 24.3

Table 5: Similarity score (ROUGE-L (Lin, 2004)) between the generated training dataset Di
train and the evaluation

set Deval for each iteration i. We present the mean of the maximum Rouge L(%) scores for each generated
question from Diterationi

train compared to the question from Deval. This is calculated on a case-to-case basis. For
time considerations, in some iterations, we apply a sampling rate of 0.3, indicated by a superscript asterisk ∗. It
is important to note that we calculate the scores for all samples generated in each iteration, which could be larger
than the number of samples actually used for training. LEC, and LE denote using strategy LEC and strategy LE for
analysis respectively.
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C Instruction Details

C.1 Prompt for AugGPT Implementation

For the prompt for AugGPT Implementation, we set two settings: one unified prompt (shown below), and
one the same as the prompt for the LLMs-as-Instructors method (removed the instruction for “analyzing
incorrect samples”). We use the best performance as the implementation result for AugGPT.

You are an educational AI. Your goal is to create high-quality problems to help students. You
will be given an example question. Please create new questions based on the Given Question and
follow the instructions below.

### Requirements:
1. Please generate similar but new questions according to the Given Question.
2. Ensure that your solutions are accurate.

### Return Format:
Return your samples in the following format:
1. Question: [QUESTION]
Answer: [ANSWER]

C.2 Prompt for LLMs-as-Instructors

GSM8K with Learning from Errors

You are an educational AI designed to help students improve their math skills by analyzing their
incorrect answers and generating targeted practice problems.
Your role is to create questions that address the specific errors made in their responses, ensuring
each new problem helps them understand and correct their mistakes.

### Requirements:
1. Create clear and high-quality questions.
2. Ensure the complexity of the problems is appropriate for the student’s level and similar to the
original problem provided.
3. Provide accurate mathematical calculations and the correct final answer in your samples.
4. Keep these requirements in mind while generating the sample.

### Return Format:
Return your samples in the following format:
1. Question: [QUESTION]
Answer: [Answer]

The student was given the following question: [QUESTION]
The student’s wrong answer: [Student’s WRONG ANSWER]
Please follow the requirements and generate x samples.

11199



GSM8K with Learning from Errors by Contrast

You are an educational AI designed to help students improve their math skills by analyzing their
incorrect answers and generating targeted practice problems.
Your role is to create questions that address the specific errors made in their responses, ensuring
each new problem helps them understand and correct their mistakes.

### Requirements:
1. Create clear and high-quality questions.
2. Ensure the complexity of the problems is appropriate for the student’s level and similar to the
original problem provided.
3. Provide accurate mathematical calculations and the correct final answer in your samples.
4. Keep these requirements in mind while generating the sample.

### Return Format:
Return your samples in the following format:
1. Question: [QUESTION]
Answer: [Answer]

The student correctly answer the following question: [QUESTION1] ... [QUESTIONk]
While the following is the question that the student got wrong: [QUESTION]
The student’s wrong answer: [Student’s WRONG ANSWER]
Please follow the requirements and generate x samples.

MBPP with Learning from Errors

You are an educational AI whose purpose is to analyze mistakes students make on the MBPP
benchmark and generate tailored Python coding problems to help them practice and improve their
programming skills.
Your goal is to create a set of new coding questions that address the specific errors made in previous
attempts
### Requirements:
1. Generate clear and high-quality coding questions.
2. Adjust the complexity of the problems to be appropriate for the student’s level and similar to the
issues found in the original code submitted.
3. Ensure accuracy in your sample solutions, demonstrating correct coding practices.
4. The coding problem should be presented in English, and the solution must be provided as
Python code.
5. Keep these requirements in mind as you create each coding problem.
### Return Format:
Provide your sample in the following format:
1. Question: [QUESTION]
Code: [PYTHON CODE]
The student was given the following coding writing question: [QUESTION]
The student’s wrong code answer, which failed to pass the test cases, to the question is [Student’s
WRONG ANSWER]
Please follow the requirements and generate x code samples, along with the correct code and
annotation.
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MBPP with Learning from Errors by Contrast

You are an educational AI whose purpose is to analyze mistakes students make on the MBPP
benchmark and generate tailored Python coding problems to help them practice and improve their
programming skills.
Your goal is to create a set of new coding questions that address the specific errors made in previous
attempts
### Requirements:
1. Generate clear and high-quality coding questions.
2. Adjust the complexity of the problems to be appropriate for the student’s level and similar to the
issues found in the original code submitted.
3. Ensure accuracy in your sample solutions, demonstrating correct coding practices.
4. The coding problem should be presented in English, and the solution must be provided as
Python code.
5. Keep these requirements in mind as you create each coding problem.
### Return Format:
Provide your sample in the following format:
1. Question: [QUESTION]
Code: [PYTHON CODE]
The student correctly answer the following question: [QUESTION1] ... [QUESTIONk]
While the following is the question that the student got wrong: [QUESTION]
The student’s wrong code answer, which failed to pass the test cases, to the question is [Student’s
WRONG ANSWER]
Please follow the requirements and generate x code samples, along with the correct code and
annotation.

MMLU with Learning from Errors

You are an educational AI whose purpose is to analyze errors that students make on the MMLU
benchmark and generate example problems to help them improve their understanding and skills.
Your goal is to create a set of new problems that address the specific errors made in the example
questions

### Requirements: 1. Create each problem to directly address the errors found in the student’s
original responses.
2. Ensure that the complexity of the problems is appropriate for the student’s level and reflective
of the types of questions they struggled with. 3. Ensure that your sample solutions are accurate.
4. Keep these requirements in mind while generating the sample.

### Return Format:
Return your samples in the form:
1. Question: [Question] A. [OPTION 1] B. [OPTION 2] C. [OPTION 3] D. [OPTION 4]
Answer: [ANSWER] - [Brief explanation]

The following is a multiple choice question that the student got wrong: [QUESTION]
The student’s wrong answer: [Student’s WRONG ANSWER]
Please follow the requirements and generate x samples, along with 4 different holding options, the
correct answer and the brief explanation.
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MMLU with Learning from Errors by Contrast

You are an educational AI whose purpose is to analyze errors that students make on the MMLU
benchmark and generate example problems to help them improve their understanding and skills.
Your goal is to create a set of new problems that address the specific errors made in the example
questions
### Requirements: 1. Create each problem to directly address the errors found in the student’s
original responses.
2. Ensure that the complexity of the problems is appropriate for the student’s level and reflective
of the types of questions they struggled with. 3. Ensure that your sample solutions are accurate.
4. Keep these requirements in mind while generating the sample.
### Return Format:
Return your samples in the form:
1. Question: [Question] A. [OPTION 1] B. [OPTION 2] C. [OPTION 3] D. [OPTION 4]
Answer: [ANSWER] - [Brief explanation]

The student correctly answer the following question: [QUESTION1] ... [QUESTIONk]
While the student can not correctly answer the question: [QUESTION]
The student’s wrong answer: [Student’s WRONG ANSWER]
Please follow the requirements and generate x samples, along with 4 different holding options, the
correct answer and the brief explanation.
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D Case Study

D.1 Training Data Generation

GSM8k: Using Strategy 1: Learn from Errors

You are an educational AI designed to help students improve their math skills by analyz-
ing their incorrect answers and generating targeted practice problems.
Your role is to create questions that address the specific errors made in their responses, ensuring
each new problem helps them understand and correct their mistakes.

### Requirements:
1. Create clear and high-quality questions.
2. Ensure the complexity of the problems is appropriate for the student’s level and similar to the
original problem provided.
3. Provide accurate mathematical calculations and the correct final answer in your samples.
4. Keep these requirements in mind while generating the sample.

### Return Format:
Return your samples in the following format:
1. Question: [QUESTION]
Answer: [Answer]

The student was given the following question:
Samantha’s last name has three fewer letters than Bobbie’s last name. If Bobbie took two letters
off her last name, she would have a last name twice the length of Jamie’s. Jamie’s full name is
Jamie Grey. How many letters are in Samantha’s last name?

The student’s wrong response is:
Let’s break down the information given and find the answer step by step:
1. Jamie’s last name is G̈rey,ẅhich has 5 letters.
2. Bobbie’s last name has two more letters than Jamie’s last name, so Bobbie’s last name has 5 + 2
= 7 letters.
3. Samantha’s last name has three fewer letters than Bobbie’s last name, so Samantha’s last name
has 7 - 3 = 4 letters.
Therefore, Samantha’s last name has 4 letters.

Instructor:
### Question:Michael’s last name has two fewer letters than Clara’s last name. If Clara removed
three letters from her last name, she would have a last name three times the length of Alex’s. Alex’s
full name is Alex Stone. How many letters are in Michael’s last name? ### Answer: Let’s break
down the information given and find the answer step by step:
1. Alex’s last name is S̈tone,ẅhich contains 5 letters.
2. Clara’s last name, after removing three letters, is three times the length of Alex’s last name. So,
Clara’s last name minus three letters is 5 * 3 = 15 letters.
3. To find the original length of Clara’s last name, we add back the three letters she removed: 15 +
3 = 18 letters.
4. Michael’s last name has two fewer letters than Clara’s, so Michael’s last name has 18 - 2 = 16
letters.
#### Therefore, Michael’s last name has 16 letters.
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GSM8k: Using Strategy 2: Learn from Errors by Contrast

You are an educational AI designed to help students improve their math skills by analyzing their
incorrect answers and generating targeted practice problems.
Your role is to create questions that address the specific errors made in their responses, ensuring
each new problem helps them understand and correct their mistakes.
### Requirements:
1. Create clear and high-quality questions.
2. Ensure the complexity of the problems is appropriate for the student’s level and similar to the
original problem provided.
3. Provide accurate mathematical calculations and the correct final answer in your samples.
4. Keep these requirements in mind while generating the sample.
### Return Format:
Return your samples in the following format:
1. Question: [QUESTION]
Answer: [Answer]

The student correctly answer the following question:
QUESTION1: Jonathan’s full name contains 8 letters for the first name and 10 letters for the
surname. His sister’s name has 5 letters for the first name and 10 letters for the second name.
What’s the total number of letters in their names?
QUESTION2: Lavinia’s daughter is 10 years younger than Katie’s daughter. Lavinia’s son is 2
times the age of Katie’s daughter. If Katie’s daughter is 12 years old, how many years older is
Lavinia’s son than Lavinia’s daughter?
QUESTION3: Jasmine and her older sister Alexa went to the store to buy shoes. Alexa’s shoes are
twice as big as Jasmine’s shoes. If Jasmine’s shoe size is 7, what’s the combined shoe size for both
of them?
While the student can not correcly answer the question:
Samantha’s last name has three fewer letters than Bobbie’s last name. If Bobbie took two letters
off her last name, she would have a last name twice the length of Jamie’s. Jamie’s full name is
Jamie Grey. How many letters are in Samantha’s last name?

The student’s wrong response is:
Let’s break down the information given and find the answer step by step:
1. Jamie’s last name is G̈rey,ẅhich has 5 letters.
2. Bobbie’s last name has two more letters than Jamie’s last name, so Bobbie’s last name has 5 + 2
= 7 letters.
3. Samantha’s last name has three fewer letters than Bobbie’s last name, so Samantha’s last name
has 7 - 3 = 4 letters.
Therefore, Samantha’s last name has 4 letters.

Instructor:
###Question: Carl’s surname is five letters shorter than Angela’s surname. If Angela could double
the length of her surname by adding 8 letters to it, how many letters are there in Carl’s surname?
###Answer: Let’s solve the problem step by step:
1. Let’s denote the original length of Angela’s surname as A.
2. Doubling the length of Angela’s surname by adding 8 letters means (A + 8 = 2A).
3. Solving the equation (A + 8 = 2A) for (A), we subtract (A) from both sides to get (8 = A),
meaning Angela’s surname originally has 8 letters.
4. Carl’s surname is five letters shorter than Angela’s, so Carl’s surname has (8 - 5 = 3) letters.
### Carl’s surname has 3 letters.
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MBPP: Using Strategy 1: Learn from Errors

You are an educational AI whose purpose is to analyze mistakes students make on the MBPP
benchmark and generate tailored Python coding problems to help them practice and improve their
programming skills.
Your goal is to create a set of new coding questions that address the specific errors made in
previous attempts

### Requirements:
1. Generate clear and high-quality coding questions.
2. Adjust the complexity of the problems to be appropriate for the student’s level and similar to the
issues found in the original code submitted.
3. Ensure accuracy in your sample solutions, demonstrating correct coding practices.
4. The coding problem should be presented in English, and the solution must be provided as
Python code.
5. Keep these requirements in mind as you create each coding problem.

### Return Format:
Provide your sample in the following format:
1. Question: [QUESTION]
Code: [PYTHON CODE]
The student was given the following coding writing question:

def first_repeated_word(s: str) -> str:
""" Find the first repeated word in a given string.
>>> first_repeated_word ("ab ca bc ab")
’ab’
>>> first_repeated_word ("ab ca bc")
’None’
>>> first_repeated_word ("ab ca bc ca ab bc")
’ca’
"""

The student’s code answer, which failed to pass the test cases, to the question is

def first_repeated_word(s: str) -> str:
words = s.split()
for word in words:

if words.count(word) > 1:
return word

return "None"

Instructor:
Question: Write a Python function to find the first character that appears more than once in the
given string. Return the character as a string. If there is no duplicate character, return ’None’.

def find_first_duplicate_char(s: str) -> str:
char_set = set()
for char in s:

if char in char_set:
return char

char_set.add(char)
return ’None’
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MBPP: Using Strategy 2: Learn from Errors by Contrast

You are an educational AI whose purpose is to analyze mistakes students make on the MBPP
benchmark and generate tailored Python coding problems to help them practice and improve their
programming skills.
Your goal is to create a set of new coding questions that address the specific errors made in
previous attempts

### Requirements:
....
The student correctly answer the following question:

def remove_spaces(s: str) -> str:\n
""" Remove all spaces from the given string.
>>> remove_spaces ("a b c")
’abc’
>>> remove_spaces ("1 2 3")
’123’
"""

The student was given the following coding writing question:

def first_repeated_word(s: str) -> str:
""" Find the first repeated word in a given string.
>>> first_repeated_word ("ab ca bc ab")
’ab’
>>> first_repeated_word ("ab ca bc")
’None’
>>> first_repeated_word ("ab ca bc ca ab bc")
’ca’
"""

The student’s code answer, which failed to pass the test cases, to the question is

def first_repeated_word(s: str) -> str:
words = s.split()
for word in words:

if words.count(word) > 1:
return word

return "None"

Instructor:
Write a Python function to solve the following problem:
Find the first unique word (appears only once) in a given string. If there is no such word, return
’None’

def find_unique_word(s: str) -> str:
words = s.split()
word_count = {}
for word in words:

word_count[word] = word_count.get(word , 0) + 1
for word , count in word_count.items ():

if count == 1:
return word

return ’None’
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MMLU: Using Strategy 1: Learn from Errors

You are an educational AI whose purpose is to analyze errors that students make on the MMLU
benchmark and generate example problems to help them improve their understanding and skills.
Your goal is to create a set of new problems that address the specific errors made in the example
questions

### Requirements: 1. Create each problem to directly address the errors found in the student’s
original responses.
2. Ensure that the complexity of the problems is appropriate for the student’s level and reflective
of the types of questions they struggled with. 3. Ensure that your sample solutions are accurate.
4. Keep these requirements in mind while generating the sample.

### Return Format:
Return your samples in the form:
1. Question: [Question] A. [OPTION 1] B. [OPTION 2] C. [OPTION 3] D. [OPTION 4]
Answer: [ANSWER] - [Brief explanation]

The student was given the following question:
QUESTION: Pharyngeal mucosa is innervated by the glossopharyngeal nerves because it develops
from the A. first pharyngeal arch. B. second pharyngeal arch. C. third pharyngeal arch. D. fourth
pharyngeal arch.

The student’s wrong response is:
The answer is B. The second pharyngeal arch is the source of the glossopharyngeal nerve, which
innervates the pharyngeal mucosa.
Instructor:
###Question: The muscles of mastication are primarily innervated by which cranial nerve? A.
Facial nerve (VII) B. Glossopharyngeal nerve (IX) C. Trigeminal nerve (V) D. Vagus nerve (X)
###Answer: C. Trigeminal nerve (V) - The muscles of mastication are innervated by the mandibular
branch of the trigeminal nerve (cranial nerve V), which is the main sensory and motor nerve of the
face.
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MMLU: Using Strategy 2: Learn from Errors by Contrast

You are an educational AI whose purpose is to analyze errors that students make on the MMLU
benchmark and generate example problems to help them improve their understanding and skills.
Your goal is to create a set of new problems that address the specific errors made in the example
questions

### Requirements: 1. Create each problem to directly address the errors found in the student’s
original responses.
2. Ensure that the complexity of the problems is appropriate for the student’s level and reflective
of the types of questions they struggled with. 3. Ensure that your sample solutions are accurate.
4. Keep these requirements in mind while generating the sample.

### Return Format:
Return your samples in the form:
1. Question: [Question] A. [OPTION 1] B. [OPTION 2] C. [OPTION 3] D. [OPTION 4]
Answer: [ANSWER] - [Brief explanation]
The student correctly answer the following question:

QUESTION: Which of the following structures travel through the substance of the parotid gland?
A. The maxillary artery B. The maxillary artery and retromandibular vein C. The maxillary artery,
retromandibular vein and facial artery D. The maxillary artery, retromandibular vein, facial artery
and buccal branch of the mandibular nerve
QUESTION: Which of these branches of the trigeminal nerve contain somatic motor processes?
A. The supraorbital nerve B. The infraorbital nerve C. The mental nerve D. None of the above
While the following is the question that the student got wrong:
QUESTION: Pharyngeal mucosa is innervated by the glossopharyngeal nerves because it develops
from the A. first pharyngeal arch. B. second pharyngeal arch. C. third pharyngeal arch. D. fourth
pharyngeal arch.

The student’s wrong answer:
The answer is B. The second pharyngeal arch is the source of the glossopharyngeal nerve, which
innervates the pharyngeal mucosa.
Instructor:
###Question: The vagus nerve provides parasympathetic innervation to which of the following
organs? A. The kidneys B. The liver C. The spleen D. The heart
###Answer: D. The heart - The vagus nerve is crucial for parasympathetic innervation to the heart,
influencing heart rate among other functions.
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