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Abstract

Recent neural news recommenders (NNRs)
extend content-based recommendation (1) by
aligning additional aspects (e.g., topic, senti-
ment) between candidate news and user history
or (2) by diversifying recommendations w.r.t.
these aspects. This customization is achieved
by “hardcoding“ additional constraints into the
NNR’s architecture and/or training objectives:
any change in the desired recommendation be-
havior thus requires retraining the model with
a modified objective. This impedes widespread
adoption of multi-aspect news recommenders.
In this work, we introduce MANNeR, a mod-
ular framework for multi-aspect neural news
recommendation that supports on-the-fly cus-
tomization over individual aspects at inference
time. With metric-based learning as its back-
bone, MANNeR learns aspect-specialized news
encoders and then flexibly and linearly com-
bines the resulting aspect-specific similarity
scores into different ranking functions, allevi-
ating the need for ranking function-specific re-
training of the model. Extensive experimental
results show that MANNeR consistently outper-
forms state-of-the-art NNRs on both standard
content-based recommendation and single- and
multi-aspect customization. Lastly, we validate
that MANNeR’s aspect-customization module
is robust to language and domain transfer.

1 Introduction

Neural content-based recommenders, trained to
infer users’ preferences from their click history,
represent the state of the art in news recommen-
dation (Li and Wang, 2019; Wu et al., 2023).
While previously consumed content clearly indi-
cates users’ preferences, aspects other than con-
tent alone, namely categorical features of the news
such as topical category, sentiment, news outlet,
or stance, contribute to their news consumption
decisions. Accordingly, some neural news recom-
menders (NNRs) leverage information on these

aspects in addition to text content, be it (i) directly
as model input (Wu et al., 2019a; Liu et al., 2020)
or (ii) indirectly, as auxiliary training tasks (Wu
et al., 2019c, 2020a).

Increased personalization is often at odds with
diversity (Pariser, 2011). NNRs optimized to max-
imize congruity to users’ preferences tend to pro-
duce suggestions highly similar in content to previ-
ously consumed news (Liu et al., 2021; Wu et al.,
2020a; Sertkan and Neidhardt, 2023). Another
strand of work thus focuses on increasing diver-
sity of recommendations w.r.t. aspects other than
content (e.g., sentiment). To this effect, prior work
either (i) re-ranks content-based recommendations
to decrease the aspectual similarity between them
(Rao et al., 2013; Gharahighehi and Vens, 2023), or
(ii) trains the NNR model by combining a content-
based personalization objective with an aspect-
based diversification objective (Wu et al., 2020a,
2022b; Shi et al., 2022; Choi et al., 2022).

Different users assign different importance to
various news aspects (e.g., following developing
events requires maximization of content-based
overlap with the user’s recent history; in another
use-case, a user may prefer content-wise diversi-
fication of recommendations, but within the same
topic of interest). Moreover, with personalization
and diversification as mutually conflicting goals,
users should be able to seamlessly define their own
optimal trade-offs between the two. The existing
body of work is ill-equipped for such multi-aspect
customization, because each set of preferences –
i.e., to personalize or diversify for each aspect –
requires a different NNR model to be trained from
scratch. Put differently, forcing global assumptions
on personalization and diversification preferences
(i.e., same for all users) into the model design and
training prevents customization at inference time.

Contributions. We propose a modular framework
for Multi-Aspect Neural News Recommendation
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(MANNeR) to address this limitation. It leverages
metric-based contrastive learning to induce a dedi-
cated news encoder for each aspect, starting from
a pretrained language model (PLM). This way, we
obtain linearly-combinable aspect-specific similar-
ity scores for pairs of news, allowing us to define
ad-hoc at inference a custom ranking function for
each user, reflecting their preferences across all
aspects. MANNeR’s modular design allows cus-
tomization for any recommendation objective spec-
ified over (i) standard (i.e., content-based) person-
alization, (ii) aspect-based diversification, and (iii)
aspect-based personalization. It also makes MAN-
NeR easily extendable: to support personalization
and diversification over a new aspect (e.g., news
outlet), one only needs to train the aspect-specific
news encoder for that aspect. Through extensive ex-
periments with topical categories and sentiment as
additional aspects next to content itself, we find that
MANNeR outperforms state-of-the-art NNRs on
standard content-based recommendation. Thanks
to its module-specific outputs being linearly com-
posable between objectives, we show – without
training numerous models with different objectives
– that depending on the recommendation goals, one
can either (i) vastly increase aspect diversity (e.g.,
over topics and sentiment) of recommendations or
(ii) improve aspect-based personalization, while
retaining much of the content-based personaliza-
tion performance. Finally, we demonstrate that
MANNeR with a multilingual PLM is robust to the
(cross-lingual) transfer of aspect-based encoders.

2 Related Work

Personalized NNR. Neural content-based mod-
els have become the main vehicle of personalized
news recommendation, replacing traditional rec-
ommenders relying on manual feature engineer-
ing (Wu et al., 2023). Most NNRs consist of a
dedicated (i) news encoder (NE) and (ii) user en-
coder (UE) (Wu et al., 2023). The NE transforms
input features into news embeddings (Wu et al.,
2023, 2019d,b), whereas UEs create user-level rep-
resentations by aggregating and contextualizing
the embeddings of clicked news from the user’s
history (Okura et al., 2017; An et al., 2019; Wu
et al., 2022c). The candidate’s recommendation
score is computed by comparing its embedding
against the user embedding (Wang et al., 2018;
Wu et al., 2019a). NNRs are primarily trained via
point-wise classification objectives with negative

sampling (Huang et al., 2013; Wu et al., 2021). Ex-
ploiting users’ past behavior as NNR supervision
leads to recommendations that are content-wise
closest to previously consumed news, in contrast to
methods based on non-personalized criteria (Son
et al., 2013; Chen et al., 2017; Ludmann, 2017).
More recent NNRs seek to augment content-based
personalization by considering other aspects, such
as categories, sentiment, emotions (Sertkan and
Neidhardt, 2022), entities (Iana et al., 2024), out-
lets, or recency (Wu et al., 2023). These are incor-
porated in the NNR either as additional input to
the NE (Wang et al., 2018; Gao et al., 2018; Wu
et al., 2019a; Liu et al., 2020; Sheu and Li, 2020;
Lu et al., 2020; Qi et al., 2021a; Xun et al., 2021),
or in the form of an auxiliary training objective for
the NE (Wu et al., 2019c, 2020a; Qi et al., 2021b).

Diversification. Personalized NNR reduces ex-
posure to news dissimilar from those consumed
in the past. Recommending “more of the same”
constrains access to diverse viewpoints and infor-
mation (Freedman and Sears, 1965; Heitz et al.,
2022) and leads to homogeneous news diets and
“filter bubbles” (Pariser, 2011), in turn reinforcing
users’ initial stances (Li and Wang, 2019). Con-
sequently, a significant body of work attempts to
diversify recommendations, either by re-ranking
them to increase some measure of diversity (e.g.
intra-list distance (Zhang and Hurley, 2008)) or by
resorting to multi-task training (Gabriel De Souza
et al., 2019; Wu et al., 2020a; Shi et al., 2022;
Wu et al., 2022b; Choi et al., 2022; Raza, 2023),
coupling the primary content-based personaliza-
tion objective with auxiliary objectives that force
aspect-based diversification.

Current NNR Limitations. Critically, existing ap-
proaches, by “hardcoding” aspectual requirements
(i.e., personalization or diversification for an as-
pect) into the NNR’s architecture and/or training
objectives, cannot be easily adjusted for varying
recommendation goals. Since even minor changes
in the recommendation objective require retrain-
ing the NNR, current models are generally limited
to fixed single-aspect recommendation scenarios
(e.g., content-based personalization with topical
diversification), and ill-equipped for multi-aspect
customization. In this work, we rethink personal-
ized news recommendation and propose a novel,
modular multi-aspect recommendation framework
that allows for ad-hoc creation of recommenda-
tion functions over aspects at inference time. This
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enables fundamentally different recommendation:
one that lets each user define their own custom
recommendation function, choosing the amount of
personalization or diversification for each aspect.

3 Methodology

Personalized news recommendation produces for
each candidate news nc and user u with correspond-
ing click history H={nu

1 , n
u
2 , ..., n

u
N}, a relevance

score s(nc, u) that quantifies the candidate’s rele-
vance for the user. We define an aspect Ap as a cat-
egorical variable that encodes a news attribute (e.g.
its category, stance, sentiment, provider), where
each news ni can belong only to one value of Ap

(e.g. if Ap is the topic, then ni may take exactly one
value from {politics, sports, ...}). As discussed in
§2, aspects are additional dimensions next to con-
tent over which to tailor recommendations, whether
by (i) personalizing or (ii) diversifying over them.
In line with earlier work, we define aspect-based
personalization as the level of homogeneity be-
tween a user’s recommendations and clicked news
w.r.t. the distribution of aspect Ap. In contrast, we
define aspect-based diversity as the level of unifor-
mity of aspect Ap’s distribution among the news in
the recommendation list.

We next introduce our proposed modular frame-
work MANNeR, illustrated in Fig. 1. Starting from
a PLM, during (1) training, we reshape the PLM’s
representation space via contrastive learning, in-
dependently for each aspect; this results in one
specialized NE for each aspect; at (2) inference,
we can, depending on the recommendation task,
aggregate the resulting aspect-specific similarity
scores to produce a final ranking function.

3.1 News Encoder

We adopt a dual-component architecture for the
NE coupling (i) a text and (ii) an entity encoder
(Qi et al., 2021b,c). The former, a PLM, trans-
forms the text input (i.e., concatenation of news ti-
tle and abstract) into a text-based news embedding
nt, given by the PLM’s output [CLS] token rep-
resentation. The latter learns an entity-level news
embedding ne by contextualizing pretrained em-
beddings of named entities (i.e., extracted from title
and abstract) in a layer that combines multi-head
self-attention (Vaswani et al., 2017) and additive
attention (Bahdanau et al., 2014). The final news
embedding n is the concatenation of nt and ne.

3.2 Modular Training
MANNeR comprises two module types, each with
a dedicated NE, responsible for content-based
(CR-Module) and aspect-based (A-Module) rec-
ommendation relevance, respectively. We train
both by minimizing the supervised contrastive loss
(SCL, Eq. 1) which aims to reshape the NE’s
representation space so that embeddings of same-
class instances become mutually closer (cf. a dis-
tance/similarity metric) than instances of different
classes (Khosla et al., 2020; Gunel et al., 2020). To
this end, we contrast the similarity score of a posi-
tive example (pair of same-class instances) against
scores of corresponding negative examples (paired
instances from different classes):

L=−
N∑

i=1

1

Nyi − 1

∑

j∈[1,N ]
i ̸=j,yi=yj

log
e(ni·nj/τ)

∑
k∈[1,N ]

i ̸=k

e(ni·nk/τ)
(1)

with yi as news ni’s label, N the batch size, Nyi the
number of batch instances with label yi, and τ >
0 the temperature hyperparameter controlling the
extent of class separation. We use the dot product
as the similarity metric for both module types.

CR-Module. Our CR-Module is a modification
of the common content-based NNR architecture
(Wu et al., 2023). Concretely, we encode both
candidate and clicked news with a dedicated NE.
However, following Iana et al. (2023b), we replace
the widely used UEs (i.e., early fusion of clicked
news representations) with the simpler (and non-
parameterized) mean-pooling of dot-product scores
between the candidate embedding nc and clicked
news embeddings nu

i : s(nc, u)= 1
N

∑N
i=1 n

c ·nu
i

(i.e., late-fusion). We thus reduce the computa-
tional complexity of the standard approaches with
elaborate parameterized UEs. We then update the
CR-Module’s encoder (i.e., fine-tune the PLM) by
minimizing SCL, with clicked candidates as posi-
tive and non-clicked news as negative examples for
the user. As there are many more non-clicked news,
we resort to negative sampling (Wu et al., 2022a).

A-Module. Each A-Module trains a specialized
NE for one aspect other than content. Via the
metric-based objective, we reshape the PLM’s rep-
resentation space to group news according to aspect
classes. Given a multi-class aspect, we first con-
struct the training set from the union of all news in
the dataset. Sets of news with the same aspect label
form the positive samples for SCL; we obtain the
corresponding negatives by pairing the same news
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Figure 1: Illustration of the MANNeR framework. 1⃝ We train aspect-specialized NEs (i.e. CR-Module for content-
based personalization, A-Module for aspect-based similarity) with metric-based contrastive learning. 2⃝ Inference:
we linearly aggregate aspect-specific similarity scores between candidate and clicked news for final ranking.

from positive pairs with news from other aspect
classes (e.g., for topical category as Ap, a news
from sports is paired with the news from politics
and/or weather). For each aspect, we independently
fine-tune a separate copy of the same initial PLM.
Note that the resulting aspect-specific NE encodes
no information on user preferences: it only encodes
the news similarity w.r.t. the aspect in question. Im-
portantly, this implies that extending MANNeR to
support a new aspect amounts to merely training
an additional A-Module for that aspect.

3.3 Inference: Custom Ranking Functions

At inference time, the NEs of the CR-Module and
of each of the A-Modules are leveraged identically:
we encode the candidate news as well as the user’s
clicked news with the respective NE, obtaining
their module-specific embeddings nc and nu

i – their
dot product s= nc ·nu

i quantifies their similarity
according to the module’s aspect (or content for
CR-Module’s NE). As different NEs produce sim-
ilarity scores of different magnitudes, we z-score
normalize each module’s scores per user. The final
ranking score constitutes a linear aggregation of
the content sCR and aspect sAp similarity scores:

sfinal(n
c,u)=sCR +

∑

Ap∈A

λApsAp (2)

where λAp is the scaling weight for the aspect score,
and A the set of all aspects of interest. This linear
composability of aspect-specific similarity scores
allows not only generalization to multi-aspect rec-
ommendation objectives, but also different ad-hoc

realizations of the ranking function that match cus-
tom recommendation goals: (i) with λAp = 0,
MANNeR performs standard content-based person-
alization, (ii) for λAp>0 it recommends based on
both content- and aspect personalization, whereas
(iii) for λAp<0 it simultaneously personalizes by
content but diversifies for the aspect(s).

4 Experimental Setup

We compare MANNeR against state-of-the-art
NNRs on a range of single- and multi-aspect recom-
mendation tasks. We experiment with two aspects:
topical categories (ctg) and news sentiment (snt).

Baselines. We evaluate several NNRs trained
on classification objectives. We follow Wu et al.
(2021) and replace the original NEs of all base-
lines that do not use PLMs (instead, contextual-
izing word embeddings with convolution or self-
attention layers) with the same PLM used in MAN-
NeR.1 We include two models optimized purely
for content personalization: (1) NRMS (Wu et al.,
2019d), and (2) MINER (Li et al., 2022). We
further evaluate seven NNRs that inject aspect in-
formation. Thereof, five incorporate topical cat-
egories, i.e., (3) NAML (Wu et al., 2019a), (4)
LSTUR (An et al., 2019), (5) MINS (Wang et al.,
2022), (6) CAUM (Qi et al., 2022), (7) TANR (Wu
et al., 2019c), and two the news sentiment: (8) Sen-
tiRec (Wu et al., 2020a), and (9) SentiDebias (Wu
et al., 2022d).

1The only exception is the final text embedding, where Wu
et al. (2021) pool tokens with an attention network.
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Data. We carry out the evaluation on two promi-
nent monolingual news recommendation bench-
marks: MINDlarge (denoted MIND) (Wu et al.,
2020b) with news in English and Adressa-1 week
(Gulla et al., 2017) (denoted Adressa) with Nor-
wegian news. Since Wu et al. (2020b) do not re-
lease test labels for MIND, we use the provided
validation portion for testing, and split the respec-
tive training set into temporally disjoint training
(first four days of data) and validation portions (the
last day). Following established practices on split-
ting the Adressa dataset (Hu et al., 2020; Xu et al.,
2023), we use the data of the first five days to con-
struct user histories and the clicks of the sixth day
to build the training dataset. We randomly sample
20% of the last day’s clicks to create the validation
set, and treat the remaining samples of the last day
as the test set.2 Since Adressa contains only pos-
itive samples (i.e., no data about users’ seen but
not clicked news), we randomly sample 20 news
as negatives for each clicked article to build im-
pressions following Yi et al. (2021).3 As Adressa
contains no disambiguated named entities, we use
only the news title as input to MANNeR’ NE, while
on MIND we use all news features as NE input.

Regarding aspects, the topical category annota-
tions are provided in both datasets. As no sentiment
labels exist in neither MIND nor Adressa, we use
a multilingual XLM-RoBERTa Base model (Con-
neau et al., 2020) trained on tweets and fine-tuned
for sentiment analysis (Barbieri et al., 2022) to clas-
sify news into three classes: positive (pos), neutral,
and negative (neg). We compute real-valued scores
using the model’s confidence scores si for class i,
and the predicted sentiment class label l̂ as follows:

ssent=





(+1)× spos, if l̂=pos

(−1)× sneg , if l̂=neg

(1− sneutral)×(spos − sneg), otherwise
(3)

Evaluation Metrics. We report performance with
AUC, MRR, nDCG@k (k={5, 10}). We measure
aspect-based diversity of recommendations at posi-
tion k as the normalized entropy of the distribution
of aspect Ap’s values in the recommendation list:

DAp@k=−
∑

j∈Ap

p(j) log p(j)

log(|Ap|)
(4)

where Ap ∈ {ctg, snt}, and |Ap| is the number
of Ap classes. If aspect-based personalization is

2Note that during validation and testing, we reconstruct
user histories with all the samples of the first six days of data.

3Table 4 summarizes the datasets’ statistics.

successful, aspect Ap’s distribution in the recom-
mendations should be similar to its distribution in
the user history. We evaluate personalization with
the generalized Jaccard similarity (Bonnici, 2020):

PSAp@k=

∑|Ap|
j=1 min(Rj ,Hj)

∑|Ap|
j=1 max(Rj ,Hj)

, (5)

where Rj and Hj represent the probability of a
news with class j of Ap to be contained in the rec-
ommendations list R, and, respectively, in the user
history H . As all metrics are bounded to [0, 1], we
measure the trade-off between content-based per-
sonalization (nDCG@k) and either aspect-based
diversity DAp@k or aspect-based personalization
PSAp@k with the harmonic mean. We denote this
TAp@k for single-aspect. For multi-aspect evalua-
tion, i.e., when ranking for content-personalization
by diversifying simultaneously over topics and sen-
timent, we adopt as evaluation metric the harmonic
mean between nDCG@k, Dctg@k (topical cate-
gory), and Dsnt@k (sentiment), denoted Tall@k.

Training Details. We use RoBERTa Base (Liu
et al., 2019) and NB-BERT Base (Kummervold
et al., 2021; Nielsen, 2023) in experiments on
MIND and Adressa, respectively. We set the maxi-
mum history length to 50. We tune the main hyper-
parameters of all NNRs. We train all models with
mixed precision, the Adam optimizer (Kingma and
Ba, 2014), the learning rate of 1e-5 on MIND, 1e-6
on Adressa, and 1e-6 for the sentiment A-Module
on both datasets. In A-Module training, we sample
20 instances per class,4 while in CR-Module train-
ing we sample four negatives per positive example.
We find the optimal temperature of 0.36 on MIND,
and 0.14 on Adressa, for the CR-Module, and of
0.9 for all A-Modules on both datasets. We train
all baselines and the CR-Module for 5 epochs on
MIND and 20 epochs on Adressa, with a batch size
of 8. We train each A-Module for 100 epochs, with
the batch size of 60 for sentiment and 360 for topics.
We repeat runs five times with different seeds and
report averages and standard deviations for all met-
rics. We refer to Appendices B.1 - B.2 for further
details about model sizes and hyperparameters.

5 Results and Discussion

We first discuss MANNeR’s content personaliza-
tion performance. We then analyze its capability

4For M class instances, we obtain M2−M
2

positive pairs
for that class for SCL.
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MIND Adressa

Model AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10
NRMS-PLM 63.0±1.5 35.5±0.6 33.4±0.7 39.9±0.6 72.3±3.3 43.0±2.7 44.3±2.8 51.3±2.3
MINER 63.1±1.2 35.5±1.1 33.7±1.1 40.0±1.0 70.1±4.9 37.3±4.1 38.5±5.1 46.3±4.1
NAML-PLM 60.6±3.4 37.6±0.4 35.9±0.4 42.2±0.4 50.0±0.0 45.0±5.0 47.2±5.5 52.5±4.1

LSTUR-PLM 54.6±3.0 33.3±1.5 31.7±1.8 38.3±1.7 65.0±7.2 43.1±1.7 44.8±2.6 51.2±2.0
MINS-PLM 61.3±2.7 36.2±0.3 34.5±0.4 40.8±0.3 74.3±3.2 44.2±2.9 47.3±3.3 53.0±3.4

CAUMno entities-PLM 66.2±3.0 36.6±2.0 34.6±2.0 41.0±1.9 76.5±1.2 43.6±1.3 46.9±1.3 52.0±1.2

CAUM-PLM 66.4±3.1 36.2±1.2 34.3±1.3 40.8±1.3 – – – –
TANR-PLM 63.3±1.1 37.0±1.0 35.2±1.0 41.6±0.9 50.0±0.0 43.8±1.0 45.6±1.3 51.4±0.6
SentiRec-PLM 62.2±0.7 35.7±0.4 33.9±0.4 40.5±0.4 67.6±2.7 33.1±2.4 32.9±3.8 40.8±2.4
SentiDebias-PLM 55.0±2.5 27.8±1.9 25.5±1.9 32.2±2.0 67.4±2.4 35.7±3.4 36.4±4.2 44.2±2.9
MANNeR (CR-Module) 69.7±0.9 38.6±0.6 37.0±0.6 43.2±0.6 79.4±1.7 47.0±2.4 48.9±2.8 54.3±2.5
Improvement (%) + 5.4 + 2.8 + 3.1 + 2.3 + 3.7 + 4.6 + 3.3 + 2.5

Table 1: Content-based recommendation performance. We average results across five runs, and report the relative
improvement over the best baseline. The best results per column are highlighted in bold, the second best underlined.

MIND Adressa

Model nDCG@10 Dctg@10 Tctg@10 Dsnt@10 Tsnt@10 Tall@10 nDCG@10 Dctg@10 Tctg@10 Dsnt@10 Tsnt@10 Tall@10
NRMS-PLM 39.9±0.6 50.0±1.1 44.3±0.4 66.4±0.5 49.8±0.5 49.9±0.3 51.3±2.3 31.8±1.0 39.2±0.5 61.5±0.5 55.9±1.2 44.6±0.5
MINER 40.0±1.0 49.4±1.2 44.2±0.4 65.7±0.9 49.7±1.0 49.6±0.5 46.3±4.1 31.1±0.6 37.1±1.6 60.9±0.5 52.5±2.8 42.7±1.5

NAML-PLM 42.2±0.4 47.3±0.3 44.6±0.3 65.1±0.4 51.2±0.3 49.9±0.3 52.5±4.1 30.6±2.4 38.6±2.1 61.6±0.6 56.7±2.6 44.0±1.9
LSTUR-PLM 38.3±1.7 50.0±1.2 43.4±0.7 65.6±0.3 48.4±1.3 48.9±0.5 51.2±2.0 29.9±4.6 37.7±5.2 61.4±0.5 55.8±1.2 43.2±3.8
MINS-PLM 40.8±0.3 49.1±1.0 44.6±0.3 66.3±0.9 50.5±0.1 50.0±0.4 53.0±3.4 33.6±1.7 41.0±1.0 61.8±0.6 57.0±1.8 46.2±0.9

CAUMno entities-PLM 41.0±1.9 47.4±1.0 43.9±0.9 65.8±1.2 50.5±1.3 49.4±0.6 52.0±1.2 34.4±0.3 41.4±0.4 62.1±0.5 56.6±0.7 46.6±0.3
CAUM-PLM 40.8±1.3 47.8±0.9 44.0±1.0 66.1±0.5 50.6±1.0 49.6±0.9 – – – – – –
TANR-PLM 41.6±0.9 48.9±0.9 45.0±0.3 66.1±0.8 51.1±0.7 50.3±0.3 51.4±0.6 32.9±1.7 40.1±1.1 61.8±0.7 56.1±0.2 45.4±1.0

SentiRec-PLM 40.5±0.4 49.4±0.4 44.5±0.1 67.0±0.6 50.4±0.4 50.1±0.2 40.8±2.4 35.6±0.6 38.0±1.1 68.5±0.2 51.1±1.9 44.6±1.0
SentiDebias-PLM 32.2±2.0 52.0±2.2 39.7±1.1 68.6±1.2 43.8±1.8 46.2±1.0 44.2±2.9 32.3±1.0 37.3±1.2 61.2±0.2 51.3±2.0 42.9±1.1

MANNeR (CR-Module) 43.2±0.6 49.3±0.3 46.0±0.3 65.4±0.6 52.0±0.4 51.1±0.2 54.3±2.5 31.7±0.2 40.0±0.7 61.4±0.3 57.6±1.5 45.3±0.6

MANNeR (λctg = −0.2/− 0.3, λsnt = 0) 42.0±0.6 51.5±0.3 46.2±0.3 65.6±0.6 51.2±0.4 51.3±0.3 50.9±2.5 34.1±0.3 40.8±0.8 61.9±0.3 55.8±1.6 46.0±0.7

MANNeR (λctg = 0, λsnt = −0.3/− 0.2) 42.8±0.7 49.8±0.2 46.0±0.4 68.7±0.3 52.7±0.4 51.7±0.3 53.8±2.5 32.4±0.2 40.4±0.7 63.0±0.3 58.0±1.5 45.9±0.6

Table 2: Single-aspect diversification. For MANNeR, we list the best results (cf. TAp ) of single-aspect diversification
as λAp (MIND/Adressa). The best results per column are highlighted in bold, the second best underlined.

for single- and multi-aspect (i) diversification and
(ii) personalization. In the aspect customization se-
tups, we treat MANNeR’s CR-Module as a baseline.
Lastly, we evaluate its ability to re-use pretrained
aspect-specific modules in cross-lingual transfer.

5.1 Content Personalization

Table 1 summarizes the results on content personal-
ization. Since the task does not require any aspect-
based customization, we evaluate the MANNeR
variant that uses only its CR-Module at inference
time (i.e., λ=0). MANNeR consistently outper-
forms all state-of-the-art NNRs in terms of both
classification and ranking metrics on both datasets.
Given that MANNeR’s CR-Module derives the user
embedding by merely averaging clicked news em-
beddings, these results question the need for com-
plex parameterized UEs, present in all the baselines,
in line with the findings of Iana et al. (2023b).

We ablate the CR-Module’s content personaliza-
tion performance for (i) different inputs to the NE
and (ii) alternative architecture designs and training
objectives. We find that all groups of features (e.g.,
abstract, named entities) contribute to the overall
performance (cf. Fig. 6a). Moreover, we confirm

the findings of Iana et al. (2023b) that (i) late fusion
outperforms a parameterized UE (i.e., early fusion),
and that (ii) SCL better separates classes than cross-
entropy loss, in line with other similarity-oriented
NLP tasks (Reimers and Gurevych, 2019).

5.2 Single-Aspect Customization

Diversification. Table 2 summarizes the results on
aspect diversification tasks. Most baselines (includ-
ing MANNeR’s CR-Module without aspect diversi-
fication) obtain similar diversification scores (Dctg
and Dsnt). The sentiment-aware SentiRec-PLM,
with an explicit auxiliary sentiment diversification
objective, yields the highest sentiment diversity
on Adressa; this comes at the expense of content
personalization quality (lowest nDCG). On MIND,
the sentiment-specific SentiDebias-PLM achieves
the highest sentiment diversity, but also exhibits
lower content personalization performance. Over-
all, these results point to a trade-off between con-
tent personalization and aspectual diversity: mod-
els with higher DAp tend to have a lower nDCG.

Unlike all other models, MANNeR can trade
content personalization for diversity (and vice-
versa) with different values of the aspect coeffi-
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(d) Category personalization.

Figure 2: Results of single-aspect customization for MANNeR and the best baseline on MIND.

(a) Category-shaped embedding space. (b) Sentiment-shaped embedding space.

Figure 3: t-SNE plots of the news embeddings in the test set of MIND.

cients λAp . Figs. 2a-2b illustrate its performance
in single-aspect sentiment and category diversifi-
cation tasks for different values of λsnt, and λctg,
respectively, on MIND. The steady drop in nDCG
together with the steady increase in DAp indeed
indicate the existence of a trade-off between con-
tent personalization and aspect diversification. For
topical categories we observe a steeper decline in
content personalization quality with improved di-
versification than for sentiment. Sentiment diver-
sity reaches peak performance for λsnt = −0.4,
whereas category diversity continues to increase
up to λctg =−0.9. Intuitively, content-based rec-
ommendation is more aligned with the topical than
with the sentiment consistency of recommenda-
tions. The best trade-off (i.e., maximal perfor-
mance w.r.t. TAp@10) is achieved for λsnt=−0.3
for sentiment, and λctg = −0.2 for topics.5 We
attribute these effects to the representation spaces
of the A-Modules. Fig. 3 shows the 2-dimensional
t-SNE visualizations (Van der Maaten and Hin-

5We report analogous results on Adressa in Figs. 7a-7b.

ton, 2008) of the news embeddings produced with
category-specialized, and respectively, sentiment-
specialized NEs trained on MIND. The results con-
firm that the encoder’s latent representation space
was reshaped to group same-class instances. The
separation of classes, however, is less prominent for
the representation spaces of the encoders trained
on Adressa (cf. Fig. 8, e.g., the effect is stronger
on the category-shaped embedding space).6

Personalization. Table 3 displays the results on as-
pect personalization tasks. TANR, trained with an
auxiliary topic classification task, underperforms
NAML, which uses topical categories as NE in-
put features, in category personalization on both
datasets. MANNeR’s CR-Module alone (i.e., with-
out any aspect customization) yields competitive
category personalization performance. We believe
that this is because (i) the CR-Module is best in
content personalization and (ii) category personal-
ization is well-aligned with content personalization

6We believe that this is because Adressa has 10 times fewer
news than MIND, with over half of the topical categories in
Adressa being represented with fewer than 100 examples.
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MIND Adreesa

Model nDCG@10 PSctg@10 Tctg@10 PSsnt@10 Tsnt@10 Tall@10 nDCG@10 PSctg@10 Tctg@10 PSsnt@10 Tsnt@10 Tall@10
NRMS-PLM 39.9±0.6 23.9±0.2 29.9±0.3 35.1±0.1 37.3±0.3 31.5±0.2 51.3±2.3 34.3±0.4 41.1±1.0 41.8±0.1 46.1±1.0 41.3±0.7
MINER 40.0±1.0 23.9±0.4 29.9±0.5 35.0±0.2 37.3±0.4 31.5±0.4 46.3±4.1 34.4±0.2 39.4±1.5 42.0±0.0 43.9±1.8 40.2±1.0

NAML-PLM 42.2±0.4 25.5±0.2 31.8±0.2 35.1±0.2 38.4±0.2 32.8±0.2 52.5±4.1 36.1±0.8 42.7±1.7 41.8±0.1 46.5±1.7 42.4±1.1

LSTUR-PLM 38.3±1.7 24.0±1.0 29.5±1.2 34.8±0.3 36.5±0.9 31.1±1.0 51.2±2.0 35.1±2.1 41.6±1.0 41.8±0.1 46.0±0.8 41.7±0.7
MINS-PLM 40.8±0.3 25.0±0.3 31.0±0.3 34.7±0.2 37.5±0.2 32.1±0.3 53.0±3.4 33.9±0.7 41.3±1.4 41.8±0.1 46.7±1.3 41.5±1.0
CAUMno entities-PLM 41.0±1.9 24.8±0.6 30.9±1.0 35.0±0.2 37.8±0.9 32.2±0.7 52.0±1.2 33.5±0.2 39.6±1.1 40.8±0.4 46.3±0.5 41.1±0.3
CAUM-PLM 40.8±1.3 25.1±0.3 31.1±0.4 35.0±0.1 37.7±0.6 32.3±0.3 – – – – – –
TANR-PLM 41.6±0.9 25.2±0.5 31.4±0.6 35.0±0.2 38.0±0.4 32.5±0.5 51.4±0.6 34.0±0.5 41.0±0.5 41.8±0.1 46.1±0.3 41.2±0.4

SentiRec-PLM 40.5±0.4 24.2±0.3 30.3±0.3 34.6±0.0 37.3±0.2 31.6±0.2 40.8±2.4 32.4±0.3 36.1±1.0 39.3±0.1 40.0±1.2 37.1±0.7
SentiDebias-PLM 32.2±2.0 20.8±1.3 25.2±1.5 34.1±0.3 33.1±1.2 27.6±1.2 44.2±2.9 34.1±0.6 38.5±1.3 41.8±0.1 42.9±1.4 39.5±1.0

MANNeR (CR-Module) 43.2±0.6 24.7±0.1 31.4±0.2 35.1±0.1 38.7±0.2 32.6±0.2 54.3±2.5 34.5±0.1 42.2±0.8 42.0±0.1 47.3±0.9 42.1±0.5

MANNeR (λctg = 0.7/0.4, λsnt = 0) 42.9±0.3 27.2±0.1 33.3±0.1 35.2±0.0 38.7±0.1 33.9±0.1 53.6±1.9 36.2±0.1 43.2±0.7 42.1±0.1 47.2±0.7 42.9±0.4
MANNeR (λctg = 0, λsnt = 0.2/0.1) 42.8±0.5 24.7±0.1 31.3±0.2 35.8±0.1 39.0±0.2 32.7±0.1 54.1±2.4 34.7±0.1 42.2±0.8 42.2±0.1 47.4±0.9 42.2±0.5

Table 3: Single-aspect personalization. For MANNeR, we list the best results (cf. TAp ) of single-aspect diversification
as λAp

(MIND/Adressa). The best results per column are highlighted in bold, the second best underlined.

(i.e., news with similar content tend to belong to
the same category). Fig. 2d explores the trade-off
between content and category personalization, for
positive values of λctg on MIND. The best topi-
cal category personalization (PSctg), obtained for
λctg>0.7, comes at the small expense of content
personalization: too much weight on the category
similarity of news dilutes the impact of content rele-
vance. Increased sentiment personalization (cf. Fig.
2c), however, is much more detrimental to content
personalization. Intuitively, users do not choose
articles based on sentiment. Tailoring recommen-
dations according to the sentiment of previously
clicked news thus leads to more content-irrelevant
suggestions.

5.3 Multi-Aspect Customization

We further explore the trade-off between content
personalization and multi-aspect diversification, i.e.
diversifying over both topical categories and senti-
ments. We achieve the highest Tall for λctg=−0.2
and λsnt=−0.25 on MIND (cf. Fig. 4a). In line
with single-aspect diversification results, we ob-
serve that improving diversity in terms of topical
categories rather than sentiments has a more neg-
ative effect on content personalization quality, i.e.
steeper decline in Tall. These results confirm that
MANNeR can generalize to diversify for multiple
aspects at once by weighting individual aspect rel-
evance scores less than in the single-aspect task.
Weighting several aspects higher simultaneously
acts as a double discounting for content personal-
ization, diluting content relevance disproportion-
ately. Similarly, for multi-aspect personalization,
we achieve the best multi-aspect trade-off on MIND
(cf. Fig. 4b) for λctg = 0.45 and λsnt = 0.25.
Stronger enforcing of alignment of candidate news
with the user’s history is needed for topical cate-
gories than for sentiment (i.e., λctg >λsnt). This

is because sentiment exhibits low variance within
categories (e.g., politics news are mostly negative)
and enforcing categorical personalization partly
also achieves sentiment personalization.7

5.4 Cross-Lingual Transfer

We next analyze the transferability of MANNeR
across datasets and languages in single-aspect cus-
tomization experiments.8 Concretely, we train the
CR-Module and A-Modules on both MIND (i.e., in
English) and Adressa (i.e., in Norwegian), respec-
tively. At inference, we evaluate all combinations
of pretrained CR-Module and A-Modules on the
test set of MIND. We now use a multilingual Dis-
tilBERT Base (Sanh et al., 2019) as MANNeR’s
NE to enable cross-lingual transfer (XLT). Fig. 5
summarizes the XLT results for single-aspect diver-
sification.9 As expected, MANNeR trained fully
on Adressa suffers a large drop in content personal-
ization performance, compared to the counterpart
trained on MIND. In contrast, transferring only the
A-Module, i.e., training the CR-Module on MIND
and the A-Module on Adressa, yields performance
comparable to that of complete in-language train-
ing (i.e., both CR-Module and A-Module trained
on MIND). This is particularly the case for the
sentiment A-Module, since the sentiment labels
between the datasets are more aligned than those
for topical categories. These results indicate that
the plug-and-play of A-Modules enables zero-shot
XLT, as modules trained on the much smaller Nor-
wegian Adressa transfer well to the large English
MIND. This suggests that, coupled with multi-
lingual PLMs, MANNeR can be used for effec-

7We refer to Fig. 9 for analogous results on Adressa.
8We evaluate only the title-based version of MANNeR, as

the full version cannot be trained on Adressa.
9Figs. 10 and 11 provide similar results for single-aspect

personalization and single-aspect customization on MIND,
and respectively, Adressa, as target-language datasets.
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Figure 4: Results of multi-aspect customization for MANNeR on MIND.
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Figure 5: XLT in single-aspect diversification, with modules trained on different (combinations of) source-language
datasets and evaluated on the target-language dataset MIND. The line style indicates the metric, the color the
source-language datasets used in training.

tive news recommendation in lower-resource lan-
guages, where training data and aspectual labels
are scarce. Furthermore, the results demonstrate
that the A-Modules could be trained on general-
purpose classification datasets (e.g. topic or senti-
ment classification datasets), alleviating the need
for aspect-specific annotation of news stories.

5.5 Computational Complexity
While A-Modules add extra parameters, their aver-
age training time is two orders of magnitude faster
than that of the CR-Module.10 This is a one-time
increase in training time: the resulting modules can
then be arbitrarily combined for any recommenda-
tion goal without additional training. In contrast,
all other NNRs require re-training or fine-tuning
if the recommendation objective changes as the
model weights have to be adjusted each time. This
translates into much higher computational costs in
practice. We emphasize that MANNeR also has
a much lower inference latency due to the (i) CR-
Module’s lean architecture without a parameterized
UE, and (ii) ability to parallelize loading and de-
ploying different modules, for which only the final
score has to be combined.11 Overall, considering

10On MIND (Adressa), the A-Module for topical category
trains 277 (51) times faster and that for sentiment 204 (53)
times faster on average per epoch than the CR-Module.

11We provide the average inference times in Appendix C.5.

both training and inference, MANNeR is more effi-
cient and flexible in a realistic setup with differing
recommendation goals that may vary by user or for
the same user over time.

6 Conclusion

We proposed MANNeR, a modular framework
for multi-aspect neural news recommendation. It
learns aspect-specialized NEs with supervised con-
trastive learning, and linearly combines the corre-
sponding aspect-specific similarity scores for final
ranking. Its modular design allows defining ad-
hoc multi-aspect ranking functions at inference.
Our experiments show that MANNeR consistently
outperforms state-of-the-art NNRs on both (i) stan-
dard content-based recommendation, and on single-
and multi-aspect (ii) diversification and (iii) per-
sonalization of recommendations. Moreover, we
can identify on-the-fly optimal trade-offs between
content-based recommendation performance and
aspect-based customization. Equipped with a mul-
tilingual PLM, MANNeR can successfully cross-
lingually transfer aspect-specific NEs. This sup-
ports use cases where aspect-specific labels (e.g.,
sentiment) are not available for news in the tar-
get languages of interest. We hope that our work
stimulates more research towards modular, easily
extendable, and reusable news recommenders.
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Limitations

MANNeR targets exclusively content-based neural
news recommendation and leverages solely textual
features. In practice, recommender systems may
incorporate content features from various other
modalities (e.g., image, video), as well as simi-
larities between users in a collaborative filtering
manner. We leave the extension of MANNeR with
multi-modal content for future work.

MANNeR independently handles each aspect
and aggregates them by weighting the aspect-
specific similarities. While it could be argued that
direct interactions between different aspects might
improve the recommendation performance, train-
ing a separate A-Module for each aspect is exactly
what drives MANNeR’s flexibility. The A-modules
allow the user to arbitrarily define the preferences
for any concrete recommendation, by defining how
much diversification or personalization is desired
over each aspect. As illustrated by the results of our
experiments, MANNeR outperforms all the state-
of-the-art systems, including the ones where addi-
tional aspects are directly integrated in the training
objective or in the news encoder. MANNeR is
thus, besides being drastically more flexible (as it
supports arbitrary recommendation objectives at
inference time), also more performant, despite the
fact that no interactions exist between the aspect
modules at training time.

Our framework fully fine-tunes a PLM
per aspect-specific module (either for content-
relevance in the CR-Module or for aspect similarity
in the A-Module). As all modules share the same
PLM as backbone, parameter efficient fine-tuning
(PEFT), e.g. LoRA (Hu et al., 2021), would bypass
the need to repeatedly load the entire PLM per mod-
ule into memory. PEFT has been shown to closely
meet the performance of full fine-tuning. This rep-
resents a key advantage for deploying MANNeR
in real-world applications. We however fully fine-
tuned models to avoid PEFT as a confounding fac-
tor in our experiments. We further chose base-sized
PLMs as the backbone of the NE in all models due
to computational constraints. While in fine-tuning
they remain competitive to large language models
(LLMs), the latter may capture richer semantics,
which can prove particularly useful for XLT appli-
cations. With a PEFT approach, MANNeR could
easily leverage LLMs without a corresponding in-
crease in computational resources.

Lastly, there exist varied approaches for mea-

suring the descriptive (Castells et al., 2021) and
normative (Vrijenhoek et al., 2023) diversity of
recommendations. While some of these metrics
can be tailored to support arbitrary aspects (i.e.,
to measure the diversity of recommendations w.r.t.
to a particular categorical feature), we opted to
quantify aspect-based diversity as generally as pos-
sible, leveraging only the distribution of an aspect’s
values in the recommendation list. We leave explo-
ration of further diversity metrics to future work.

Ethical Considerations

We consider several ethical considerations that
arise when working with recommender systems
and open benchmark datasets. On the one hand,
any biases or misinformation that might exist in the
news and user data provided in the public datasets
could be propagated through the recommendation
pipeline. Similarly, the PLMs used as the recom-
menders’ backbone could contain social biases cap-
tured from the training data. On the other hand,
the A-Modules in MANNeR could be abused to
reduce the diversity of recommendations by over-
weighting the aspectual-similarity with the user’s
history, particularly for sensitive aspects such as
news stance. This, in turn, could lead to reinforc-
ing the users’ existing worldviews and stances (Li
and Wang, 2019). Therefore, safeguards should
be incorporated in the recommendation models to
ensure not only that the outputs are accurate and
truthful, but also that the systems are not misused
to constrain access to diverse viewpoints.
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A Dataset Statistics

MIND (large) Adressa (one week)

Statistic Train Test Train Test
# News 101,527 72,023 11,207 11,207
# Users 698,365 196,444 96,801 68,814
# Impressions 2,186,683 365,201 218,848 146,284
# Categories 18 17 18 18
Avg. history length 33.7 33.6 13.9 15.6
Avg. # candidates / user 37.4 37.4 21.0 21.0

Table 4: MIND and Adressa dataset statistics.

B Reproducibility Details

B.1 Model Parameters.

MIND Adressa

Model Non-trainable Trainable Total Trainable Total
NRMS-PLM 56.7 73 129 126 182
MINER 56.7 68.2 124 121 178
NAML-PLM 56.7 70.8 127 124 180
LSTUR-PLM 56.7 633 690 200 257
MINS-PLM 56.7 73.3 130 126 183
CAUMno entities-PLM 56.7 73.2 129 126 183
CAUM-PLM 56.7 74.9 131 – –
TANR-PLM 56.7 70.6 127 123 180
SentiRec-PLM 56.7 73 129 126 182
SentiDebias-PLM 56.7 73.3 130 126 183
MANNeR (CR-Moduletitle / A-Moduletitle) – monolingual 56.7 67.9 124 121 177
MANNeR (CR-Module / A-Module) – monolingual 56.7 70.3 126 – –
MANNeR (CR-Moduletitle / A-Moduletitle) – multilingual 0 134 134 134 134

Table 5: Number of model parameters (in millions). CR-
Moduletitle / A-Moduletitle denote the MANNeR mod-
ules trained with only the news title as input to the NE.

B.2 Hyperparameters and Implementation

Hyperparameter Optimization. We use
RoBERTa Base (Liu et al., 2019) and NB-BERT
Base (Kummervold et al., 2021; Nielsen, 2023) as
the backbone PLMs of all models, in experiments
on MIND and Adressa, respectively. In both cases,
we fine-tune only the PLM’s last four layers.12 In

12In preliminary results, we did not see significant differ-
ences between full fine-tuning of all layers and fine-tuning

the cross-lingual transfer experiments from $5.4,
we fine-tune all of the 6 layers of DistilBERT. We
use 100-dimensional TransE embeddings (Bordes
et al., 2013) pretrained on Wikidata as input to the
entity encoder in the NE of the knowledge-aware
NNRs. We perform hyperparameter tuning on the
main hyperparameters of MANNeR and the base-
lines using grid search. Table 6 lists the search
spaces for all the optimized hyperparameters, as
well as the best values. We repeat each experiment
five times with the seeds ({42, 43, 44, 45, 46}) set
with PyTorch Lightning’s seed_everything.

Code. We train MANNeR, as well as all the base-
lines, using the implementations provided in the
NewsRecLib library (Iana et al., 2023a).13

Infrastructure and Compute. We conduct all
experiments on a cluster with virtual machines. We
train MANNeR on both datasets, as well as the
baselines on MIND, on a single NVIDIA A100
40GB GPU. We train the baselines on Adressa on
a single NVIDIA Tesla V100 32GB GPU.

C Additional Results

C.1 Content Personalization

Fig. 6a shows MANNeR’s performance on MIND
for different inputs to the NE. Even the CR-Module
exposed to titles only (i.e., no abstract or entity
information) outperforms all of the baselines on
content recommendation. Fig. 6b illustrates MAN-
NeR’s performance for alternative architecture de-
signs and training objectives (cf. $5.1).14

C.2 Single-Aspect Customization

Figure 7 explores the trade-off between content and
aspect diversification, and respectively, personaliza-
tion tasks for different values of λctg and λsnt on the
Adressa dataset. Fig. 8 shows the 2-dimensional
t-SNE visualizations (Van der Maaten and Hin-
ton, 2008) of the news embeddings produced with
aspect-specialized NEs trained on Adressa.

C.3 Multi-Aspect Customization

Fig. 9 explores the trade-off between content per-
sonalization and multi-aspect diversification on
Adressa.

only the last four layers. In the interest of computational effi-
ciency, we thus froze the first eight layers of the transformer.

13https://github.com/andreeaiana/newsreclib
14For brevity, we report results on MIND; findings on

Adressa exhibit identical trends.
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lr numheads querydim UE agg K score agg λ µ α τCR−Module τA−Module

Search Space [1e−4, 1e−6] {8, 12, 16, 24, 32} [50, 200] {ini, con} {8, 16, 32, 48} {mean, max, weighted} [0.1, 0.3] [5, 15] [0.05, 0.2] [0.1, 0.5] [0.1, 0.9]
Step 1e−1 – 50 – – – 0.05 5 0.05 0.02 0.05
NRMS-PLM 1e−5 / 1e−6 32 / 8 150 / 200 – – – – – – – –
MINER 1e−5 / 1e−6 – – – 32 / 48 mean / mean – – – – –
NAML-PLM 1e−5 / 1e−6 16 / 8 200 / 200 – – – – – – – –
LSTUR-PLM 1e−5 / 1e−6 24 / 8 150 / 50 ini / ini – – – – – – –
MINS-PLM 1e−5 / 1e−6 32 / 12 100 / 200 – – – – – – – –
CAUM-PLM 1e−5 / 1e−6 16 / 16 50 / 150 – – – – – – – –
TANR-PLM 1e−5 / 1e−6 32 / 8 150 / 50 – – – 0.3 / 0.15 – – – –
SentiRec-PLM 1e−5 / 1e−6 32 / 8 200 / 200 – – – – 5 / 5 – – –
SentiDebias-PLM 1e−5 / 1e−6 8 / 12 100 / 150 – – – – – 0.15 / 0.15 – –
MANNeR 1e−5 / 1e−6 – 200 / 200 – – – – – – 0.36 / 0.14 0.9 / 0.9

Table 6: Search spaces used for hyperparameter optimization and best values found for all models. We report
the optimal values in the format valueMIND / valueAdressa. We use the following abbreviations: lr = learning rate,
numheads = number of attention heads, querydim = dimensionality of the query vector in additive attention, UE agg
= aggregation method used to combine the long-term and the short-term user representations into a final user
embedding in LSTUR (An et al., 2019), K = number of context codes in MINER (Li et al., 2022), score agg =
aggregation function for the final user click score calculation in MINER (Li et al., 2022), λ = weight of the topic
classification task in TANR (Wu et al., 2019c), µ = weight of the sentiment diversity regularization loss in SentiRec
(Wu et al., 2020a), α = adversarial loss coefficient in SentiDebias (Wu et al., 2022d), τ = temperature parameter in
SCL in MANNeR, ini = initialize, con = concatenate, categ = category.
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Figure 6: Effect of different (a) NE inputs and (b) model design/training choices on MANNeR’s content-based
personalization performance.
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Figure 7: Results of single-aspect customization for MANNeR and the best baseline on Adressa.

C.4 Cross-Lingual Transfer

Fig. 10 summarizes the XLT results for single-
aspect personalization on the target-language
dataset MIND, whereas Fig. 11 shows the anal-
ogous XLT results for single-aspect diversification
and personalization, respectively, on the target-
language dataset Adressa.

C.5 Time Complexity Analysis

Table 7 shows the average inference time for the en-
tire MIND (365,201 impressions), and respectively,
Adressa (146,284 impressions) test sets. Note that
runtimes heavily depend on the computing infras-
tructure used, as well as on the parallel usage of
the infrastructure for other tasks, as experiments
are conducted on a HPC cluster. We highlight that

9569



(a) Category-shaped embedding space. (b) Sentiment-shaped embedding space.

Figure 8: t-SNE plots of the news embeddings in the test set of Adressa.
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Figure 9: Results of multi-aspect customization for MANNeR on Adressa.
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Figure 10: XLT in single-aspect personalization, with modules trained on different (combinations of) source-language
datasets and evaluated on the target-language dataset MIND. The line style indicates the metric, the color the
source-language datasets used in training.
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Figure 11: XLT in single-aspect diversification and personalization, with modules trained on different (combinations
of) source-language datasets and evaluated on the target-language dataset Adressa. The line style indicates the
metric, the color the source-language datasets used in training.
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MANNeR achieves a much lower inference time
than the other NNRs.

Model MIND Adressa

NRMS-PLM 17.53±0.48 7.13±0.27
MINER 16.03±1.66 9.96±0.73
NAML-PLM 33.99±0.51 7.09±0.14
MINS-PLM 27.50±10.87 7.81±0.21
CAUMno entities-PLM 22.67±2.46 8.12±0.13
CAUM-PLM 25.22±0.45 –
TANR-PLM 17.02±1.07 6.98±0.08
SentiRec-PLM 17.93±0.34 7.02±0.08
SentiDebias-PLM 21.01±3.03 13.28±0.83
MANNeR (CR-Module) 1.34±0.03 2.09±0.06
MANNeR (CR-Module + ctg A-Module) 1.68±0.08 2.78±0.10
MANNeR (CR-Module + snt A-Module) 1.65±0.01 2.73±0.06
MANNeR (CR-Module + 2 A-Modules) 2.13±0.05 3.17±0.01

Table 7: Inference time (in thousands of seconds) for
the different NNRs on the test portions of the MIND
and Adressa datasets, respectively.
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