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Abstract

Spurred by advancements in scale, large lan-
guage models (LLMs) have demonstrated
strong few-shot learning ability via in-context
learning (ICL). However, the performance of
ICL has been shown to be highly sensitive to
the selection of few-shot demonstrations. Se-
lecting the most suitable examples as context
remains an ongoing challenge and an open
problem. Existing literature has highlighted the
importance of selecting examples that are di-
verse or semantically similar to the test sample
while ignoring the fact that the optimal selec-
tion dimension, i.e., diversity or similarity, is
task-specific. Based on how the test sample is
answered, we propose Iterative Demonstration
Selection (IDS) to leverage the merits of both
dimensions. Using zero-shot chain-of-thought
reasoning (Zero-shot-CoT), IDS iteratively se-
lects examples that are diverse but still strongly
correlated with the test sample as ICL demon-
strations. Specifically, IDS applies Zero-shot-
CoT to the test sample before demonstration se-
lection. The output reasoning path is then used
to choose demonstrations that are prepended
to the test sample for inference. The generated
answer is followed by its corresponding rea-
soning path for extracting a new set of demon-
strations in the next iteration. After several
iterations, IDS adopts majority voting to obtain
the final result. Through extensive experiments
on tasks including reasoning, question answer-
ing, and topic classification, we demonstrate
that IDS can consistently outperform existing
ICL demonstration selection methods.

1 Introduction

With the recent advancements in scaling up model
parameters, large language models (LLMs) show-
case promising results on a variety of few-shot
tasks through in-context learning (ICL), where the
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Text: LeBron James ...         Topic: Sports

Text: ChatGPT ...         Topic: Technology

Text: Lionel Messi ...               Topic: Sports

Text: OpenAI ...         Topic:

Input

Frozen LLM

Output Technology

Figure 1: Illustration of in-context learning (ICL) on
topic classification. A frozen large language model
directly generates the topic ‘Technology’ for the test
sample ‘OpenAI ...’ by taking the demonstrations and
the test sample as input.

model is expected to directly generate the output of
the test sample without updating parameters. This
is achieved by conditioning on a manually designed
prompt consisting of an optional task description
and a few demonstration examples (Brown et al.,
2020). Fig. 1 shows an example describing how
LLMs perform ICL on the topic classification task.
Given a few text-topic pairs as demonstrations, ICL
combines them with the test sample as input, to the
LLM for inference. The output, i.e., ‘Technology’,
is generated by the model autoregressively without
any parameter updates.

Despite the effectiveness, the performance of
ICL has been shown to be highly sensitive to the
selection of demonstration examples (Zhao et al.,
2021). Different sets of demonstrations can yield
performance ranging from nearly random to com-
parable with state-of-the-art models (Gao et al.,
2021; Lu et al., 2022). To alleviate the above is-
sue, researchers in ICL have proposed a number
of methods to select a set of examples as few-shot
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demonstrations (Rubin et al., 2022; Liu et al., 2022;
Li and Qiu, 2023; Wang et al., 2023b; Li et al.,
2023a; Ma et al., 2023; An et al., 2023b). However,
for LLMs for which parameters or detailed output
distributions are not available (Sun et al., 2022),
it is still a common practice to randomly select
examples or select examples that are semantically
similar to the test sample as demonstrations, i.e.,
considering diversity or similarity. While several
approaches investigate the combination of similar-
ity and diversity when prompting with explanations,
exploring compositional generalization, or choos-
ing examples for annotation (Ye et al., 2023b; An
et al., 2023a; Su et al., 2023), it is not yet clear how
to determine and leverage the optimal dimension
for different tasks in ICL and how the rationale for
answering the query benefits the balance between
these two dimensions.

Actually, the optimal dimension for selecting
demonstration examples is task-specific. As we
will show in §4, the diversity dimension is superior
to the similarity dimension on CommonsenseQA
while the similarity dimension outperforms the di-
versity dimension on AGNews and BoolQ. Thus, it
is unreasonable to claim that one dimension is con-
sistently better than the other across different tasks.
To fully leverage the merits of both dimensions, we
propose Iterative Demonstration Selection (IDS)
for ICL (Fig. 2) by utilizing how the test sample is
answered. IDS can iteratively select demonstration
examples that are diverse but still have a strong
correlation with the test sample through zero-shot
chain-of-thought reasoning (Zero-shot-CoT) (Ko-
jima et al., 2022). Specifically, Zero-shot-CoT, e.g.,
“Let’s think step by step.”, is first applied to the
test sample before selecting demonstrations to ob-
tain a reasoning path. The training examples that
are most semantically similar to the generated rea-
soning path are then selected as demonstrations.
They are prepended to the test sample for inference.
Note that IDS ensures that the generated answer
is accompanied by the reasoning path through de-
signed prompts. The new reasoning path is then
used for extracting another set of demonstration
examples by semantic similarity in the next itera-
tion. After a few iterations, IDS adopts majority
voting to obtain the final result. Empirical results
on tasks spanning mathematical reasoning, com-
monsense reasoning, logical reasoning, question
answering, and topic classification show that IDS
can consistently outperform previous ICL demon-
stration selection baselines. In summary, our main

contributions are:

• We consider both the diversity and similarity
dimensions of ICL demonstration selection for
LLMs. We identify that the optimal dimension
for selecting demonstrations is task-specific and
propose Iterative Demonstration Selection (IDS)
based on how the test query is answered to fully
leverage the merits of both dimensions.

• With extensive experiments and analysis, we
demonstrate the effectiveness of IDS on a variety
of tasks.

2 Related Work

This work mainly explores how to select few-shot
in-context learning demonstrations for LLMs by
leveraging Zero-shot-CoT. In light of this, we re-
view four lines of research that form the basis of
this work: few-shot learning, in-context learning
basics, demonstration selection for in-context learn-
ing, and chain-of-thought reasoning.

2.1 Few-shot Learning
Few-shot learning aims to learn tasks with only a
few labeled samples, which results in a big chal-
lenge, i.e., over-fitting, for models as they typically
require large amounts of data for training. Prior
methods to address over-fitting mainly focused on
augmenting the few-shot data (Gao et al., 2020;
Qin and Joty, 2022), reducing the hypothesis space
(Triantafillou et al., 2017; Hu et al., 2018), or opti-
mizing the strategy for searching the best hypothe-
sis (Ravi and Larochelle, 2017; Finn et al., 2017).
More recently, LLMs have demonstrated strong
few-shot learning ability through in-context learn-
ing without any parameter updates (Brown et al.,
2020).

2.2 In-context Learning
Brown et al. (2020) first showed that a frozen GPT-
3 model can achieve impressive results on a vari-
ety of few-shot NLP tasks through conditioning
on manually designed prompts consisting of task
descriptions and several demonstration examples.
Since then many efforts have been made on in-
context learning (ICL) (Dong et al., 2022). Chen
et al. (2022); Min et al. (2022a); Wei et al. (2023a)
demonstrated that the ICL ability of language mod-
els can be further improved through self-supervised
or supervised training. Some analytical studies at-
tempted to understand what factors affect ICL per-
formance (Zhao et al., 2021; Shin et al., 2022; Wei
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et al., 2022a; Min et al., 2022b; Yoo et al., 2022;
Wei et al., 2023b) and why ICL works (Xie et al.,
2022; Olsson et al., 2022; Li et al., 2023b; Pan et al.,
2023; Dai et al., 2023). Other ongoing research on
ICL has also explored (i) demonstration designing,
including demonstration selection (Liu et al., 2022;
Rubin et al., 2022; Wang et al., 2023b), demonstra-
tion ordering (Lu et al., 2022), and demonstration
formatting (Wei et al., 2022b; Wang et al., 2022c;
Zhou et al., 2023; Zhang et al., 2023a), (ii) appli-
cations of ICL (Ding et al., 2022; Meade et al.,
2023; Zheng et al., 2023), and (iii) ICL beyond text
(Wang et al., 2023c; Huang et al., 2023; Zhu et al.,
2023; Wang et al., 2023a).

2.3 Demonstration Selection for In-context
Learning

The performance of ICL has been shown to be
highly sensitive to the selection of demonstration
examples (Zhao et al., 2021). Existing methods
to solve this problem can be mainly divided into
two categories. First, unsupervised methods rely
on pre-defined metrics. Liu et al. (2022) pro-
posed to select the closest neighbors as demon-
strations. In contrast, Levy et al. (2022) selected
diverse demonstrations to improve in-context com-
positional generalization. More recent studies have
explored leveraging the output distributions or pre-
dictive uncertainty of language models to select
few-shot demonstrations (Wu et al., 2022; Nguyen
and Wong, 2023; Li and Qiu, 2023; Ma et al.,
2023; Ling et al., 2024; Xu and Zhang, 2024) or
self-generating demonstrations (Chen et al., 2023).
Second, supervised methods involve model train-
ing. Rubin et al. (2022); Ye et al. (2023a); Li et al.
(2023a); Luo et al. (2023); Wang et al. (2024) pro-
posed to learn to retrieve demonstration examples.
Wang et al. (2023b) posited LMs as implicit topic
models to facilitate demonstration selection. In ad-
dition, some studies (Zhang et al., 2022; Scarlatos
and Lan, 2023) attempted to select demonstrations
based on reinforcement learning. However, it is
still a common practice to randomly select exam-
ples or select examples that are semantically simi-
lar to the test sample as demonstrations for LLMs
for which parameters or detailed output distribu-
tions are not available (Sun et al., 2022). Several
methods investigated the combination of diversity
and similarity in different scenarios, e.g., prompt-
ing with explanations (Ye et al., 2023b), choos-
ing examples for annotation (Su et al., 2023) and
exploring compositional generalization (An et al.,

2023a). Nevertheless, it remains unclear to us how
to determine and leverage the optimal dimension
for different tasks in ICL and how the reason for
answering the test sample benefits the balance be-
tween the two dimensions, which motivates us to
propose our simple but effective approach (IDS).

2.4 Chain-of-Thought Reasoning

Chain-of-thought (CoT) reasoning induces LLMs
to produce intermediate reasoning steps before gen-
erating the final answer (Wei et al., 2022b). De-
pending on whether there are manually designed
demonstrations, current CoT reasoning methods
mainly include Manual-CoT and Zero-shot-CoT.
In Manual-CoT, human-labeled reasoning paths
are used to perform CoT reasoning (Wei et al.,
2022b; Zhou et al., 2022; Wang et al., 2022b;
Li et al., 2022; Wang et al., 2022a). In contrast,
LLMs leverage self-generated rationales for rea-
soning in Zero-shot-CoT (Kojima et al., 2022; Ze-
likman et al., 2022; Zhang et al., 2023a; Diao et al.,
2023). The ongoing research on CoT reasoning
has also explored (i) multimodal reasoning (Zhang
et al., 2023b; Wu et al., 2023), (ii) distilling knowl-
edge from LLMs (Ho et al., 2022; Fu et al., 2023),
and (iii) iterative optimization (Shinn et al., 2023;
Madaan et al., 2023; Paul et al., 2023).

3 Problem Formulation

Given the test set Dtest and the training set Dtrain,
the goal of ICL demonstration selection is to find
an optimal subset S = {(x1, y1), ..., (xk, yk)} (k-
shot) of Dtrain as demonstration examples for each
test sample (x̂i, ŷi) to maximize the overall task
performance on Dtest. More formally, the optimal
selection method h̃ is defined as:

h̃ = argmax
h∈H

∣Dtest∣
∑
i=1

δLLM([h(Dtrain,x̂i,ŷi),x̂i]),ŷi (1)

where H is the hypothesis space for searching
demonstration examples, h(Dtrain, x̂i, ŷi) refers to
demonstrations selected for (x̂i, ŷi) using h, [, ]
stands for concatenation, and δa,b is the Kronecker
delta function: δa,b = 1 if a equals b, otherwise
δa,b = 0. In this work, we aim to find the optimal
method h̃ by leveraging Zero-shot-CoT.
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CommonsenseQA BoolQ AGNews

Similar-ICL-Consistency (Similarity) 76.0 85.0 90.0
Random-ICL-Voting (Diversity) 79.0 84.0 88.0

Table 1: Results of different methods on Common-
senseQA, BoolQ and AGNews. The optimal dimension
for selecting ICL demonstrations is task-specific.

4 What Makes Good In-Context
Demonstrations?

As demonstrated in previous work (Zhao et al.,
2021), the overall task performance is highly sen-
sitive to the selection method h. Different sets
of demonstration examples can yield significantly
different performance. For example, Zhang et al.
(2022) show that the minimum and maximum ICL
performance due to random sampling differs by
> 30% on 4 classification tasks, which emphasizes
the importance of selecting good demonstrations
for LLMs.

A natural question is: what makes good in-
context demonstrations? For LLMs, it is still a
common practice to select a subset S consisting of
examples that are diverse or semantically similar
to the test sample as demonstrations, i.e., consider-
ing the diversity or similarity of S. To investigate
whether one dimension is consistently better than
the other one across different tasks, we conduct
some pilot experiments on CommonsenseQA (Tal-
mor et al., 2019), BoolQ (Clark et al., 2019) and
AGNews (Zhang et al., 2015). Specifically, we ran-
domly sample 100 examples from the original test
set for experiments and conduct 4-shot learning
using GPT-3.5 (gpt-3.5-turbo).

Following Zhang et al. (2023a), we use Sentence-
BERT (Reimers and Gurevych, 2019) to encode
all samples. For each test sample, the Similar-
ICL method selects the top-4 similar training data
based on cosine similarity while the Random-ICL
method randomly samples 4 training examples as
few-shot demonstrations. Inspired by Wang et al.
(2022b), we apply self-consistency with 3 decod-
ing paths (temperature 0.7) to Similar-ICL (named
Similar-ICL-Consistency) and run Random-ICL
3 times before majority voting (named Random-
ICL-Voting) to improve the robustness.

The results of different methods on four datasets
are reported in Table 1. We can observe that the
diversity dimension outperforms the similarity di-
mension on CommonsenseQA while the similarity
dimension is superior to the diversity dimension
on BoolQ and AGNews. Therefore, the optimal

dimension for selecting demonstration examples is
task-specific. Thus, it is unreasonable to claim that
one dimension is consistently better than the other
one in ICL demonstration selection.

Intuitively, semantically similar examples can
help the model correctly answer the test query
as they might share similar input-output patterns
with the test sample which could unleash GPT-
3.5’s power of text generation. To further under-
stand why the similarity dimension underperforms
the diversity dimension on CommonsenseQA, we
present a case study in Table 2. We can see that
the answer of the final demonstration example
extracted by Similar-ICL-Consistency, i.e., ‘most
buildings’ is also in the options list of the test sam-
ple, which misleads the decision process of the
model, leading to a wrong answer. In addition, the
selected demonstrations might not include enough
important information as high similarity also re-
sults in redundancy.

Considering the strengths and weaknesses of
both dimensions, we aim to design a method that
can select demonstration examples that are di-
verse (minimizing misleading information) but still
strongly correlated with the test sample, which is
introduced in the next section.

5 Iterative Demonstration Selection

Based on the observations and considerations in
§4, we introduce Iterative Demonstration Selection
(IDS) for ICL demonstration selection by leverag-
ing how the test sample is answered (see Fig. 2 for
an illustration). Intuitively, the demonstrations that
are similar to the reason for answering a sample are
strongly correlated with this sample. Therefore, we
propose to incorporate zero-shot chain-of-thought
reasoning (Zero-shot-CoT) into IDS to iteratively
select demonstration examples that are diverse but
still have a strong correlation with the test sample.

Specifically, for each test sample x̂i, IDS mainly
consists of four steps:

1. We apply Zero-shot-CoT, i.e., “Let’s think step
by step.” to the test sample x̂i before selecting
demonstrations to obtain a reasoning path R.

2. The reasoning path R is then used to
select top-k (k is the number of shot)
most semantically similar training examples{(x1, y1), ..., (xk, yk)} as few-shot demonstra-
tions. We use Sentence-BERT (Reimers and
Gurevych, 2019) to encode the reasoning path
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Similar-ICL-Consistency Random-ICL-Voting

Which choice is the correct answer to the question? Which choice is the correct answer to the question?

Examples:
Question: If you have cleaned off dust here it may be dif-
ficult to do your homework where? Answer Choices: (A)
desktop (B) closet (C) most buildings (D) surface of earth
(E) stove
Answer: A
Question: Where is dust likely to be under? Answer Choices:
(A) closet (B) ground (C) windowsill (D) attic (E) carpet
Answer: E
Question: Where would you find a dustbin that is being
used? Answer Choices: (A) utility closet (B) ground (C)
cupboard (D) broom closet (E) kitchen
Answer: E
Question: Dust accumulates where? Answer Choices: (A)
ceiling (B) library (C) surface of earth (D) most buildings
(E) desktop
Answer: D

Examples:
Question: She had a busy schedule, she had to run errands
and pick up the kids the second she did what? Answer
Choices: (A) make time for (B) take money (C) go outdoors
(D) leave work (E) field
Answer: D
Question: What is the worst outcome of an injury? Answer
Choices: (A) cause death (B) cause bleeding (C) falling
down (D) become infected (E) claim insurance
Answer: A
Question: Mom said that Sarah should stay in bed until she
was able to go to school again. What did mom say to Sarah
when she tried to get up? Answer Choices: (A) you’re sick
(B) were sick (C) more rest (D) rest more (E) get back under
the covers
Answer: A
Question: John got a raise, but he lost rank. Overall, it was a
good what? Answer Choices: (A) demotion (B) push down
(C) go off strike (D) lower (E) go off strike
Answer: A

The response should follow the format: Answer: {A, B, C,
D or E}

The response should follow the format: Answer: {A, B, C,
D or E}

Here is the test data. Here is the test data.
Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Question: John wanted to clean all of the dust out of his
place before settling down to watch his favorite shows. What
might he hardest do dust? Answer Choices: (A) closet (B)
under the bed (C) television (D) attic (E) most buildings

Answer: E ✗ Answer: D ✓

Table 2: Examples of Similar-ICL-Consistency (first decoding path) and Random-ICL-Voting (first run) for
constructing demonstration examples. The upper part is the input to LLMs, including few-shot demonstrations, and
the lower part is the predicted answer. Similar-ICL-Consistency gives the wrong answer ‘most buildings’ which is
actually the output of the final demonstration example, indicating that the decision process of the model is misled by
this similar sample.

R and training examples to obtain the contex-
tual representations and use cosine similarity to
measure the similarity between representations.

3. The selected k training examples{(x1, y1), ..., (xk, yk)} are then prepended to
the test sample x̂i for ICL. During inference, we
ensure that the generated answer Â is accom-
panied by its corresponding reasoning path R̂
through designed prompts, e.g., “The response
should follow the format: Topic: {world, sports,
business or technology}\nReason: {reason}”.
Note that Zero-shot-CoT is also applied in
this step to improve the quality of generated
reasoning paths. After ICL, we go back to Step
2 for iterations using the new reasoning path R̂.

4. After q rounds of iterations between Step 2 and
3, we adopt majority voting on all Â to obtain
the final result Âfinal.

Obviously, the selected demonstration examples

Algorithm 1 Selection process of IDS

Require: Training set Dtrain, test set Dtest, LLMθ , number of
demonstrations k, number of iterations q and answer set
Âall = ∅

1: ENCODE all samples in Dtrain using Sentence-BERT ▷
Encode training set

2: for x̂i in Dtest do
3: APPLY Zero-shot-CoT to x̂i to obtain the reasoning

path R ▷ Zero-shot-CoT
4: for j = 1, . . . , q do
5: ENCODE R using Sentence-BERT ▷ Encode

reasoning path
6: USE R to select top-k most similar examples S ={(x1, y1), ..., (xk, yk)} from Dtrain as demonstrations ▷

KNN selection
7: (Â, R̂) = LLMθ(S, x̂i) ▷ ICL with

Zero-shot-CoT
8: R = R̂, Âall = Âall ∪ {Â} ▷ Update reasoning

path and answer set
9: end for

10: ADOPT majority voting for Âall to obtain the final
result Âfinal for the test sample x̂i ▷ Majority voting

11: end for

are strongly correlated with the original test sample,
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What is the topic of the input? World, sports, 
business or technology?
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Input: Lionel Messi won the World Cup ...
Let's think step by step.

Task description

Frozen 
LLM

Topic: sports
Reason: The mention of Lionel Messi, a highly 
renowned soccer player ... Therefore, the topic of 
the given input is sports.

KNN 
selection

What is the topic of the input? World, sports, 
business or technology?
Examples:
Input: The 22nd World Cup was held in Qatar ... 
Topic: sports

...
Input: Denver Nuggets won the NBA Finals ...
Topic: sports
The response should follow the format: Topic: 
{world, sports, business or technology}\nReason: 
{reason}
Here is the test data.
Input:  Lionel Messi won the World Cup ...
Let's think step by step.

Training 
examples

Topic: sports
Reason: The World Cup and NBA Finals are both 
famous sporting events ... So the topic is sports.

Update reasoning path for next iteration

1

2

3

Majority 
voting

4

Output format instruction
Test sample

Zero-shot-CoT trigger
Few-shot demonstrations

Reasoning path

Figure 2: Illustration of our proposed Iterative Demonstration Selection (IDS). IDS first applies Zero-shot-CoT
to the test sample to obtain a reasoning path, which is then used to select few-shot demonstrations from training
examples through KNN. The selected demonstration examples are prepended to the test sample for ICL. To obtain
the new reasoning path for extracting another set of demonstrations in the next iteration, an instruction for output
format is inserted before the test sample. After several iterations, IDS uses majority voting to obtain the final result.

i.e., achieving similarity, as they are selected by the
generated reasoning paths (see Appendix A.4 for
quantitative analysis of reasoning paths). And they
can be different during iterations to achieve diver-
sity because the reasoning paths vary in different
iterations. Note that there is no reasoning path in
few-shot demonstrations (as shown in the green
part in Fig. 2). The reasoning path only exists in
the output of LLMs.

In addition, we illustrate the whole selection
process in Alg. 1 and show the instructions and
input formats of different types of tasks for ICL in
Appendix A.1.

6 Experiments

In this section, we first describe the tasks and
datasets, and then introduce methods compared
in our work. Finally, we present the experimental
results.

6.1 Experimental Setup

Tasks and Datasets We mainly investigate 6 dif-
ferent datasets covering 5 representative task cate-
gories: mathematical reasoning (GSM8K (Cobbe
et al., 2021) and MATH (Hendrycks et al., 2021)),
commonsense reasoning (CommonsenseQA (Tal-
mor et al., 2019)), logical reasoning (LogiQA (Liu
et al., 2020)), question answering (BoolQ (Clark
et al., 2019)) and topic classification (AGNews
(Zhang et al., 2015)). For each dataset, we ran-
domly sample at most 10000 examples from the
original training set as Dtrain and at most 2000 test
examples as Dtest for evaluating the performance of
selected demonstrations. The detailed information
of different datasets is shown in Appendix A.2. To
reduce the randomness, we run every experiment
five times with different random seeds (resulting in
different training and test samples if not using the
whole set) and report the average results. Without
specification, we use k = 4 number of demonstra-
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Method BoolQ GSM8K MATH CommonsenseQA LogiQA AGNews Average

Vote-k 86.7±0.7 76.5±0.5 35.7±0.2 75.2±0.3 45.4±0.3 88.1±1.2 67.9±0.2
MMR 86.4±0.8 75.5±0.7 34.8±0.3 74.9±0.2 44.7±0.3 87.6±1.1 67.3±0.3
G-fair-Prompting 84.8±0.7 76.9±0.6 34.6±0.3 75.5±0.3 43.8±0.4 88.9±1.0 67.4±0.2
Skill-KNN 85.9±0.5 76.5±0.3 35.1±0.2 75.2±0.2 44.6±0.2 88.7±0.9 67.7±0.1
Top-k-Consistency 87.1±0.2 76.1±0.5 35.6±0.3 74.5±0.2 45.7±0.4 89.3±0.8 68.1±0.1
Random-Voting 87.3±0.6 75.6±0.4 35.4±0.1 77.0±0.2 45.1±0.3 87.0±1.6 67.9±0.2
Cluster-Voting 86.4±0.7 76.8±0.3 34.9±0.4 76.5±0.3 44.1±0.3 86.8±1.2 67.6±0.3
IDS 87.8±0.8 78.5±0.4 37.5±0.2 78.1±0.1 46.9±0.2 89.8±0.8 69.8±0.1

Table 3: Accuracy (%) of different methods on 6 datasets. Bold indicates the best result. IDS is consistently better
than all previous baselines.

tions following Wang et al. (2023b) and set the
number of iterations q to 3.

Methods Compared We mainly use GPT-3.5
(gpt-3.5-turbo) as the LLM and compare our IDS
with the following methods in the experiments for
selecting ICL demonstrations:

• Top-k-Consistency (Liu et al., 2022) selects the
top-k semantically similar examples from the
training set Dtrain as demonstrations for each test
sample and applies self-consistency (Wang et al.,
2022b) with q decoding paths (temperature 0.7)
to match the number of iterations. Following
Zhang et al. (2023a), all samples are encoded by
Sentence-BERT (Reimers and Gurevych, 2019)
to obtain contextual representations for calculat-
ing the cosine similarity.

• Random-Voting randomly selects k examples
from Dtrain as few-shot demonstrations for every
test sample and runs experiments q times before
majority voting.

• Cluster-Voting partitions Dtrain into k clusters
and selects a representative example from each
cluster to form demonstrations. Following Zhang
et al. (2023a), we choose the sample closest to
the centroid in each cluster as the representative
example. Same as Random-Voting, after run-
ning experiments q times, Cluster-Voting adopts
majority voting to obtain the final result.

Besides, we also compare IDS with several latest
ICL demonstration selection approaches: Vote-k
(Su et al., 2023), MMR (Ye et al., 2023b), G-fair-
Prompting (Ma et al., 2023) and Skill-KNN (An
et al., 2023b) (see Appendix A.3 for more details
of baselines). Similar to Top-k-Consistency, we
apply self-consistency to these baselines to match
the number of iterations q. Note that we find that

Top-k-Consistency IDS Random-Voting

Average Similarity Score 0.68 0.48 0.32

Table 4: Average similarity scores between test exam-
ples and the corresponding selected demonstrations of
three methods (Top-k-Consistency, IDS and Random-
Voting).

1 3 5 7 Average

66

68

70

72

A
cc

ur
ac

y 
(%

)

Top-k-Consistency IDS

Figure 3: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of reasoning paths or iterations.

simultaneously generating answers and reasoning
paths can improve the ICL performance in general
even if the target task is not a reasoning task in the
conventional sense, e.g., topic classification. There-
fore, we apply the same prompt, e.g., “The response
should follow the format: Topic: {world, sports,
business or technology}\nReason: {reason}”, and
Zero-shot-CoT to baseline methods.

6.2 Main Results

Table 3 shows the average performance scores
of different methods on all investigated datasets.
From the results, we can observe that
• Our proposed IDS consistently outperforms pre-
vious baselines on all datasets with a negligible
increase in API request cost (Zero-shot-CoT in the
first step), which demonstrates that our method
can indeed effectively and efficiently select better
ICL demonstration examples by incorporating the
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reason for answering the test query.
• On average, IDS yields about 1.7% perfor-
mance boost compared with the best baseline Top-
k-Consistency as it can fully leverage the merits
of both selection dimensions (diversity and similar-
ity). While the performance gain on a few simple
benchmarks looks somewhat small (because the
baseline results are already pretty high, e.g., the
baseline performance of BoolQ and AGNews is
above 85%), IDS performs much better than base-
lines on more complex tasks. For example, IDS can
bring an average relative improvement of about 4%
on mathematical reasoning tasks compared with
Top-k-Consistency.

To delve deeper into how different dimensions
are leveraged in selected demonstrations, we report
the average similarity scores between test samples
and the corresponding demonstrations of different
methods in Table 4. Specifically, we randomly
select 500 test examples for each dataset and use
Sentence-BERT to obtain contextual representa-
tions for calculating similarity scores. We can see
that the average similarity score of IDS is between
that of Top-k-Consistency and Random-Voting,
indicating that it can indeed strike a balance be-
tween two selection dimensions (see Appendix A.5
for more analysis on the diversity of the selected
demonstration examples).

6.3 Analysis

Different Numbers of Iterations Our experi-
ments and analysis so far use q = 3 iterations. To
verify whether the performance gain of IDS is con-
sistent across different numbers of iterations, we
conduct controlled experiments with q = {1, 5, 7}.
The average results of the 6 datasets with a ran-
domly selected seed are reported in Fig. 3. IDS
consistently outperforms the best baseline Top-k-
Consistency with different q (even q = 1, i.e., with-
out voting), emphasizing the importance of ratio-
nales in selecting demonstration examples. Inter-
estingly, the performance of ICL does not always
improve with the number of iterations, which might
be because increased iterations can also lead to un-
necessary noise; we provide an in-depth analysis
in Appendix A.6.

Robustness to Model Types To demonstrate the
robustness of IDS to model types, we conduct con-
trolled experiments with GPT-4. Specifically, we
randomly select one seed and sample 200 test ex-
amples per dataset for experiments due to the ex-

GPT-3.5 GPT-4

Top-k-Consistency 68.3 73.9
IDS 69.9 75.4

Table 5: Accuracy (%) of Top-k-Consistency and IDS
with different LLMs (GPT-3.5 and GPT-4). For GPT-4,
we randomly sample 200 test examples per dataset due
to the high cost.

BoolQ GSM8K

7B 13B 70B 7B 13B 70B

Top-k-Consistency 77.1 81.3 84.2 14.6 24.8 49.6
IDS 78.5 82.2 85.4 16.6 27.1 51.4

Table 6: Accuracy (%) of different methods with Llama-
2-chat models.

pensive cost. From the average results shown in
Table 5, we can observe that IDS still achieves
better performance than Top-k-Consistency when
using GPT-4 as the LLM, showing its robustness
to different LLMs.

Generalization to Open-source LLMs To bet-
ter verify the generalization ability of IDS, we
use vLLM (Kwon et al., 2023) to serve Llama-2-
chat models (Touvron et al., 2023) for experiments
and compare IDS with Top-k-Consistency on two
datasets: BoolQ and GSM8K. We randomly sam-
ple 500 test examples for experiments and report
the results in Table 6, which demonstrates that IDS
can successfully generalize to open-source LLMs
of different sizes.

Case Study To further understand the advantage
of IDS, we show several cases in Fig. 4. As shown
in the upper part of the figure, IDS can iteratively
select more diverse demonstration examples than
Top-k-Consistency which may be able to correct
errors from previous iterations. Compared with
Random-Voting, IDS can find examples that share
more similar input-output patterns with the test
sample to induce the LLM to generate correct an-
swers (the lower part of the figure).

In addition, we show the results with different
numbers of demonstrations, the robustness of IDS
to different embedding models and Zero-shot-CoT
triggers in Appendix A.7 ∼ A.9, respectively.

7 Conclusion

In this work, we have introduced Iterative Demon-
stration Selection (IDS) that can iteratively select
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Iterative Demonstration Selection Top-k-Consistency
Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Iteration 1: Answer: B\nReason: ...
Iteration 2: Answer: D\nReason: ...
Iteration 3: Answer: D\nReason: ...

Question: The homeowner frowned at the price 
of gas, what did he have to do later? Answer 
Choices: (A) own home (B) mail property tax 
payments (C) board windows (D) cut grass (E) 
receive mail
Response: Answer: B\nReason: ...; Answer: 
B\nReason: ...; Answer: B\nReason: ...

Label: D Label: D

Iterative Demonstration Selection Random-Voting
Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Input: Texas entrepreneur wants to kick computer 
gaming up to the next level by offering players a 
chance at some real-live killing via mouse and 
modem.

Label: Technology Label: Technology

Iteration 1
Examples: 
Input: Six days a week, teens crowd the Blue 
Screen Gaming cybercafe to hunt each other 
down with assault rifles inside virtual computer 
worlds...
Topic: Technology

...
Response: Topic: Technology\nReason: ...

Iteration 2: ... Response: Topic: Technology ...
Iteration 3: ... Response: Topic: Technology ...

Iteration 1
Examples: 
Input: The Boston Celtics added a healthy Tom 
Gugliotta and deleted injured Delonte West. Tom, 
34, was activated Wednesday from the injured list 
after missing seven games ...
Topic: Sports

...
Response: Topic: Sports\nReason: ...

Iteration 2: ... Response: Topic: Business ...
Iteration 3: ... Response: Topic: Sports ...

Figure 4: Several case studies of model responses. We
color correct outputs in green, and wrong outputs in red.

examples that are diverse but still strongly correlate
with the test sample as demonstrations to improve
the performance of in-context learning (ICL) by
leveraging the rationale for answering the test sam-
ple. Extensive experimental results and analysis
show that IDS can consistently outperform previ-
ous ICL demonstration selection baselines.

Limitations

This work has several limitations. First, due to
the inference cost of ChatGPT, we do not conduct
experiments on the entire test set. Besides, we
include 6 datasets covering 5 different task types
in this work. A further improvement could be to
explore more diverse types of tasks.
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A Appendix

A.1 Instructions and Input Formats of
Different Tasks

We show the instructions and input formats of
different types of tasks for in-context learning in
Fig. 5.

A.2 Datasets Information

We show the detailed information of different
datasets in Table 7.

A.3 Details of Baselines

In this work, we compare IDS with the following
latest ICL demonstration selection approaches:

• Vote-k (Su et al., 2023) is an unsupervised,
graph-based selective annotation method used
for selecting and annotating diverse, represen-
tative examples. The annotated examples then
serve as a pool for demonstration retrieval.

• MMR (Ye et al., 2023b) proposes a maximal
marginal relevance-based approach for demon-
stration selection.

• G-fair-Prompting (Ma et al., 2023) leverages
greedy search to select the example with the high-
est fairness score at each step.

• Skill-KNN (An et al., 2023b) generates skill-
based descriptions for test queries and then uses
these descriptions to select similar examples as
demonstrations.

A.4 Measure of Reasoning Path Correlation
We report the average similarity score between test
samples and the corresponding generated reasoning
paths (scorereason), the average similarity score be-
tween test samples and randomly selected training
examples (scorerandom), and the average similarity
score between test samples and the most similar
training examples (scoresimilar) in Table 8. For each
dataset, we randomly select 500 test samples and
use Sentence-BERT for similarity calculation. We
can observe that scorereason is slightly worse than
scoresimilar and much higher than scorerandom, indi-
cating that the generated reasoning path is indeed
strongly correlated with the test sample.

A.5 Analysis on Demonstration Diversity
In addition to the average similarity score between
test samples and demonstrations, we further cal-
culate the following metrics for IDS and Top-k-
Consistency:

QS = ∑
1≤i<j≤∣S∣ g(Si, Sj)/C(∣S∣, 2) (2)

where S is the set of the selected demonstration
examples, and g is the function of measuring simi-
larity. Q calculates the average pairwise similarity
score of the demonstrations, which can be used to
reflect whether they are diverse from each other. As
can be seen from the results in Table 9, the average
pairwise similarity score of IDS is much lower than
that of Top-k-Consistency, verifying the diversity
of demonstration examples selected by IDS.

A.6 Noise Caused by Increased Iterations
As observed from Fig. 3, the performance of ICL
does not always improve with the number of it-
erations. We speculate that this is because too
many iterations may also lead to unnecessary noise.
As the number of iterations increases, the demon-
strations selected in the latest iteration are more
likely to have been chosen in previous iterations.
Therefore, if these demonstrations result in wrong
answers in previous iterations, these errors may
be propagated to later iterations, i.e., unnecessary
noise caused by increased iterations. To better ver-
ify our hypothesis, we calculate (i) the proportion
of demonstrations selected in iteration 5 or 7 that
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What is the topic of the input? World, sports, business or technology?
Examples:
Input: Cavs earn fourth straight win ...
Topic: Sports

...
The response should follow the format: Topic: {world, sports, business or technology}\nReason: {reason}
Here is the test data.
Input: Microsoft intros new mice, keyboards ...
Let's think step by step.

Topic Classification

Please answer the question based on the context.
Examples:
Context: Sikma was voted as one of the ...
Question: is jack sikma in the hall of fame
Answer: Yes

...
The response should follow the format: Answer: {yes or no}\nReason: {reason}
Here is the test data.
Context: Blue is a playful female puppy ...
Question: is blue off of blue's clues a girl
Let's think step by step.

Question Answering

Which choice is the correct answer to the question?
Examples:
Question: If you poke yourself ... Answer Choices: (A) have fun ...
Answer: C

...
The response should follow the format: Answer: {A, B, C, D or E}\nReason: {reason}
Here is the test data.
Question: How can I store ... Answer Choices: ...
Let's think step by step.

Commonsense Reasoning

Please solve the following mathematical problem.
Examples:
Question: Eric, Ben, and Jack have some money. Eric has $10 less than Ben ...
Answer: The answer is 50

...
The response should follow the format: {reason} The answer is {your answer}
Here is the test data.
Question: Kim raises $320 more than Alexandra, who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money did they all raise in total?

Mathematical Reasoning

Which choice is the correct answer to the question?
Examples:
Context: Li Lin is a civil servant, but not a college graduate.
Question: Which of the following is necessarily true? Answer Choices: (A) Not all university ...
Answer: B

...
The response should follow the format: Answer: {A, B, C or D}\nReason: {reason}
Here is the test data.
Context: The people in Harbin are all northerners, and some people in Harbin are not workers.
Question: If the above proposition is true, then which answer must be true? Answer Choices: ...
Let's think step by step.

Logical Reasoning

Figure 5: Instructions and input formats of five different categories of tasks (topic classification, question answering,
commonsense reasoning, logical reasoning, and mathematical reasoning) for ICL. For Zero-shot-CoT in the first
step of IDS, there is no demonstration example and the instruction “Here is the test data.”.

BoolQ GSM8K MATH CommonsenseQA LogiQA AGNews

# Training Samples 9427 (full) 7473(full) 5000 9741 (full) 7376(full) 10000
# Test Samples 2000 1000 1000 1221 (full) 500 1000

Table 7: Deailed information of different datasets. # refers to ‘the number of’ and ‘full’ means the whole set. Note
that different random seeds do not result in different samples if the whole set is used.

scorereason scorerandom scoresimilar

Average Similarity Score 0.59 0.32 0.68

Table 8: Comparison between different average similar-
ity scores.

Top-k-Consistency IDS

Average Pairwise Similarity 0.55 0.39

Table 9: Comparison of average pairwise similarity
scores of demonstrations selected by different methods.

were also chosen in previous iterations (Proppre),
and (ii) the proportion of demonstrations selected
in iteration 5 or 7 that were chosen in previous iter-
ations and resulted in wrong answers (Propwrong

pre ).
We can see from Table 10 that the results of the
7th iteration are much higher than those of the 5th
iteration, indicating the correctness of our claim.

A.7 Different Numbers of Demonstrations
While we use k = 4 demonstration examples for
all experiments, we also evaluate the effectiveness

Iteration 5 7

Proppre 31.9% 60.4%

Propwrong
pre 13.1% 38.7%

Table 10: Comparison between different iterations.

2 4 6 8

Top-k-Consistency 68.0 68.3 68.5 68.4
IDS 69.4 69.9 69.9 69.7

Table 11: Accuracy (%) of Top-k-Consistency and IDS
with different numbers of demonstrations k.

of IDS with different k. We randomly choose one
seed for experiments and report the average results
of the 6 datasets in Table 11. We can see that IDS
consistently outperforms Top-k-Consistency with
different numbers of demonstrations. In addition,
more demonstrations do not guarantee better ICL
performance, which is consistent with the observa-
tion in Wang et al. (2023b).
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BoolQ CommonsenseQA GSM8K

Top-k-Consistency 86.0 75.4 75.8
IDS 87.2 78.0 77.6

Table 12: Accuracy (%) of different methods with Ope-
nAI embedding model (text-embedding-ada-002) on
three datasets.

Default Trigger1 Trigger2

IDS 70.1 70.3 70.0

Table 13: Accuracy (%) of IDS with different Zero-shot-
CoT triggers.

A.8 Robustness to Embedding Models
Instead of using Sentence-BERT, we also ex-
plore adopting the OpenAI embedding model (text-
embedding-ada-002) as the encoder. Specifically,
we conduct experiments on 3 datasets: BoolQ,
CommonsenseQA and GSM8K. For each dataset,
we randomly sample 500 test examples and com-
pare IDS with the baseline Top-k-Consistency. The
results reported in Table 12 demonstrate IDS’s ro-
bustness to different embedding models.

A.9 Robustness to Zero-shot-CoT Triggers
To verify the robustness of IDS to Zero-shot-CoT
triggers, we conduct controlled experiments with
two new triggers: “Let’s work this out in a step
by step way to be sure we have the right answer.”
(Trigger1) and “Let’s solve this problem step by
step” (Trigger2). Specifically, we randomly sam-
ple 500 test examples per dataset for experiments
and report the average results in Table 13, which
demonstrates that IDS is indeed robust to different
Zero-shot-CoT triggers.
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