
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 687–696
November 12-16, 2024 ©2024 Association for Computational Linguistics

Learning to Route for Dynamic Adapter Composition in Continual
Learning with Language Models

Vladimir Araujo, Marie-Francine Moens, Tinne Tuytelaars
KU Leuven

vladimir.araujo@kuleuven.be

Abstract
Parameter-efficient fine-tuning (PEFT) meth-
ods are increasingly used with pre-trained lan-
guage models (PLMs) for continual learning
(CL). These methods typically involve train-
ing a PEFT module for each new task and em-
ploying similarity-based selection to route mod-
ules during inference. However, they face two
major limitations: 1) interference during mod-
ule training with already learned modules and
2) suboptimal routing when composing mod-
ules. In this paper, we present L2R, a method
that isolates the training of new PEFT mod-
ules to ensure their task specialization. L2R
then learns to compose the learned modules by
training a network of routers that leverages a
small memory containing examples of previ-
ously seen tasks. We evaluate our method in
two CL setups using various benchmarks. Our
results demonstrate that L2R provides an ef-
fective composition of PEFT modules, leading
to improved generalization and performance
compared to other methods.

1 Introduction

CL aims to continuously learn new tasks with-
out forgetting previously learned knowledge from
old tasks (McCloskey and Cohen, 1989). Recent
advancements in PLMs and PEFT methods have
shown potential in CL for NLP (Zhou et al., 2024).

PEFT methods, like prompts or adapters, are
lightweight modules that can be trained for down-
stream tasks while keeping the PLM frozen. Recent
work shows that these methods can be competitive
with, or even superior to, full fine-tuning of PLMs
(Li and Liang, 2021; Hu et al., 2022). Additionally,
research (Wang et al., 2023, 2024, 2022b; Smith
et al., 2023) demonstrates their effectiveness in CL.

However, PEFT approaches for CL have two
significant limitations: 1) When a new task arises,
a new PEFT module is added, and the previously
learned ones remain frozen but activated (Razdai-
biedina et al., 2023). Previous modules may inter-

fere with optimal task knowledge acquisition by the
current PEFT module. 2) They rely on a similarity-
based selection mechanism (Wang et al., 2024) that
may not accurately represent a routing function that
effectively composes the PEFT modules.

To address these issues, we introduce Learning
to Route for dynamic PEFT composition (L2R).
L2R is a simple but effective method that trains
PEFT modules in isolation to avoid interference
from previous knowledge when learning new tasks
(Wang et al., 2023). Then, it uses previous exam-
ples stored in a memory to learn a routing function
for dynamically composing PEFT modules during
inference, a process analogous to local adaptation
(d'Autume et al., 2019). Our extensive evaluations
show that L2R is competitive against other PEFT-
based methods across benchmarks and CL setups.

Unlike existing methods that focus on develop-
ing routing mechanisms within the training phase,
our method learns to route adapters prior to test-
time inference. From a practitioner’s perspective,
the ultimate goal of CL is to develop a model that
can learn new tasks while maintaining high perfor-
mance (Prabhu et al., 2020). Our method addresses
this by incrementally adding PEFT modules for
new tasks. Additionally, in real-world applications,
systems are primarily constrained by computational
and time budgets rather than storage (Prabhu et al.,
2023; Verwimp et al., 2024). By leveraging a mem-
ory along PEFT, our approach achieves a better
trade-off between performance and efficiency.

2 Related Work

Continual Learning with PLMs CL in NLP
has grown with the advent of robust PLMs from
pre-training, beneficial for CL (Zhou et al., 2024).
Existing NLP approaches include replay-based
(d'Autume et al., 2019; Araujo et al., 2022b), meta-
learning-based (Wang et al., 2020), amount others.

Recent techniques use PEFT for CL, adding new

687



PLMPLM

(a) Training (b) Router Learning

PLM PLM PLM

1) Weigthed average 
L2R-wavg

2) Adapters Merging 
L2R-mergeTrainable Frozen Shared Backbone

[CLS] [CLS]

Figure 1: Overview of the L2R method. (a) Adapters A attached to the backbone are sequentially trained on a
series of tasks D. Each adapter undergoes isolated training to prevent interference. (b) Before performing inference,
our method utilizes a memory M to learn a routing function R, facilitating composition either by 1) computing a
weighted average of the adapters’ outputs or 2) merging the parameters of the adapters.

modules as tasks arise while freezing previous ones
to maintain a robust backbone and leverage past
knowledge (Razdaibiedina et al., 2023). This ap-
proach has been extended to learn the composition
of PEFT modules based on similarity (Wang et al.,
2024). While effective, these methods may suffer
from interference during learning new modules and
suboptimal module composition during inference.

Our work focuses on the PEFT setup. We rely
on the parameter isolation strategy (Wang et al.,
2023; Cheng et al., 2024) to let the PLM learn task-
specific modules independently. We also adopt
a memory as in replay-based methods, not to re-
hearse examples but to learn a routing function for
effective module composition before inference.

Local Adaptation Memory-based parameter
adaptation (MbPA) (Sprechmann et al., 2018), also
known as local adaptation, allows a model to deal
with changes and shifts in data distributions. In CL,
it leverages labeled data stored in memory for brief
fine-tuning before making predictions to improve
model performance (d'Autume et al., 2019).

Our work builds on the concept of local adapta-
tion to maintain model generalization and perfor-
mance across tasks in CL. Rather than retraining
model components, we introduce a new compo-
nent (a router) that learns to dynamically compose
appropriate PEFT modules based on input.

Learning to Route In mixture-of-experts (MoE)
models, routing activates subnetworks based
on their specialized capabilities for prediction
(Shazeer et al., 2017a). Recently, adapters—a class
of PEFT methods—have been employed to imple-
ment MoE-style models (Wang et al., 2022a) and
routing functions (Ponti et al., 2023).

Existing approaches in CL use task centroids
(Cheng et al., 2024), learnable task vectors (Wang

et al., 2024), or record task distributions (Wang
et al., 2023) to select modules. However, these
act as a proxy for routing and may not effectively
direct input to modules based on their specialties.

Our work builds on studies showing the benefits
of a well-learned router in MoE models (Dikkala
et al., 2023). We propose a router learning ap-
proach that takes place prior to inference and en-
ables dynamic utilization of modules by the model.

3 Method

We consider a CL setup for NLP (d'Autume et al.,
2019), where a model needs to learn from a se-
quence of T tasks: D = {D1, ..., DT }. Each task
t consists of a new data distribution Dt = (Xt, Yt),
where Xt are the input instances and Yt are the
labels. A model in this setup consists of a PLM
that processes input x and a classifier for predicting
class y. We extend this setup with PEFT modules,
specifically adapters, which consistently achieve
superior predictive performance than other tech-
niques in CL (Wistuba et al., 2024).

Task-specific Adapters L2R employs a set of
adapters A = {A1, ..., AT } that learn task-specific
knowledge from a data stream (Figure 1a). Specifi-
cally, an adapter At is activated and trained when
a new task Dt emerges. Previous adapters are de-
activated, allowing At to learn in isolation and spe-
cialize in task t (Wang et al., 2023). We keep the
backbone frozen and train only the adapter At on
the current task t. To simplify the explanation, we
omit the fact that each task uses L adapters that
match the number of PLM layers.

Adapters offer significant benefits (Wistuba
et al., 2024). Their robust modeling capabilities al-
low them to effectively capture distribution-specific
details from each task and the high parameter ef-

688



ficiency enables efficient training of our method
whenever a new task emerges.

Memory Our method is equipped with a non-
parametric memory M = {(xi, yi)} that stores
input-output pairs of previously seen training ex-
amples. A similar component is used in replay
methods (d'Autume et al., 2019), where memory is
used to perform replay during training. However,
our memory is leveraged prior to test inference to
learn a routing function resembling the local adap-
tation process to improve generalization.

We determine the memory capacity as a percent-
age of the total dataset size and populate it by ran-
domly sampling examples from the training data
M = {sample(D1), ..., sample(DT )}. Random
sampling effectively captures the global distribu-
tion of the data stream and has proven successful
in experience replay (Araujo et al., 2022a), so we
hypothesize that it will similarly support router
training. While more advanced memory popula-
tion methods could enhance router performance
(Hurtado et al., 2023; Hayes and Kanan, 2021), we
leave this exploration for future work.

Memory-based Router Learning Once the
adapters A have been trained, they can be com-
bined for inference (Figure 1b). For this, we imple-
ment a router network R within the model. Note
that, for simplicity, we omit the detail that a sepa-
rate R is added for each of the L layers. This router
computes the probability of the input being sent to
each adapter. This provides two advantages: 1) the
routers learn to route based on input structure, and
2) can produce different combinations at different
layers based on the model’s abstraction hierarchy.

In practice, the router takes the [CLS] represen-
tation as input to generate an allocation vector
z = R(h[CLS]), which is then used to compute
the output distribution. Rather than applying Soft-
max across adapters, where modules compete for
activation, we adopt an approach inspired by Ponti
et al. (2023), emphasizing task-level modularity
that respects task hierarchy, with more complex
tasks encompassing simpler ones as sub-tasks. In
this case, the router would output a binary scalar
for each adapter, indicating whether it is active for a
given input. As a binary vector is not differentiable,
this is implemented as a collection of Bernoulli
distributions, relaxed through a Gumbel-sigmoid to
ensure stochasticity: ẑt = σ log

[
σ(zt)u

(1−σ(zt))(1−u)

]
,

where u ∼ Uniform(0, 1).

To obtain a competent router, we propose a
memory-based router learning process. Inspired
by local adaptation, we leverage the elements in
memory to train the router network parameters.
However, unlike local adaptation, which adjusts
the model for every inference example, our method
performs this process only once after the training
phase to learn the routing functions, enabling infer-
ence on any example without further adaptation.

Adapter Composition Given routing probabili-
ties, the model can compose its adapters in different
ways. We consider two options: 1) a weighted aver-
age of their outputs (Shazeer et al., 2017b), denoted
as L2R-wavg, and 2) merging adapter parameters
via a weighted average of their weights (Wortsman
et al., 2022), referred to as L2R-merge.

Note that these approaches differ slightly. The
first uses all adapters for inference and returns
a weighted average of the hidden state outputs:
Hwavg =

∑T
t=1 ẑt ∗Ht, where Ht = At(x), while

the second merges all adapters into a single one to
be used to produce a unique hidden state output:
Amerge =

∑T
t=1 ẑt ∗At.

4 Experimental Setup

Benchmarks We adopt two CL setups: 1)
Class-Incremental Learning (CIL) and 2) Task-
Incremental Learning (TIL). Both setups aim to in-
crementally learn new tasks (and thus new classes),
but TIL always has access to task identity, making
CIL a more challenging and realistic scenario.

Based on this, we consider three benchmarks.
MTL5 (d'Autume et al., 2019): 5 text classification
tasks. WOS (Kowsari et al., 2017): 7 document
classification tasks. AfriSenti (Muhammad et al.,
2023): 12 (multilingual) sentiment analysis tasks.
More details and training orders are in Appendix A.

Baselines We focus our experimentation on com-
paring PEFT-based CL methods. Lower-Bound
trains task-specific adapters, summing their outputs
during inference. Upper-Bound trains task-specific
adapters, using only the corresponding adapter for
inference. ProgPrompt (Razdaibiedina et al., 2023)
progressively adds new prompts for new tasks. All
prompts are used for inference (only for TIL). DAM
(Cheng et al., 2024) learns task-specific adapters
and creates task vectors by averaging training ex-
ample representations. At inference, it uses simi-
larity scores between the input and task vectors to
route (only for CIL). EPI (Wang et al., 2023) learns

689



Setup Method MTL5 WOS AfriSenti
Lower-Bound 16.2 15.07 33.64
Upper-Bound 79.4 90.06 62.16
DAM 27.4 10.00 48.78
EPI† 77.3 77.83 43.10

CIL MoCL† 73.8 79.23 45.61
L2R-wavg 78.0 79.90 60.04
L2R-merge 77.7 79.98 52.82
ProgPrompt† 77.9 89.93 49.07
EPI† 77.3 77.83 43.10

TIL MoCL† 79.4 90.59 56.77
L2R-wavg 79.4 89.24 62.62
L2R-merge 79.3 89.16 53.97

Table 1: Accuracy results on MTL5, WOS, and
AfriSenti benchmarks for (top) CIL and (bottom) TIL
setups. We present the average performance across all
orders. † indicates results from (Wang et al., 2024).

1 5 10 20 30
Memory Size (%)

50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0

Ac
cu

ra
cy

 (%
)

WOS (CIL)
WOS (TIL)
AfriSenti (CIL)
AfriSenti (TIL)
MTL5 (CIL)
MTL5 (TIL)

Figure 2: L2R-wavg performance across tasks and CL
setups. Results for order 3 are shown for MTL5 and
AfriSenti, and for order 1 for WOS.

task-specific prompts and records task distributions.
At inference, it selects the nearest task’s prompt
based on input comparison with all distributions.
MoCL (Wang et al., 2024) progressively adds new
prompts and learns a task vector. At inference, it
uses task vectors to compute similarity scores to
combine the prompts.

Implementation Details We use BERT (Devlin
et al., 2019) for MTL5 and WOS while AfroXLMR
(Alabi et al., 2022) for AfriSenti. To implement
our adapters, We adopt LoRA (Hu et al., 2022) due
to its efficiency and performance. Our memory is
similar to that of (d'Autume et al., 2019), but we ac-
cumulate only 10% of each task’s, training dataset a
negligible amount when using efficient storage for-
mats. Our router network consists of a linear trans-
formation followed by a Gumbel-sigmoid (Mad-
dison et al., 2017). In CIL, routers are trained
using all memory examples to route inputs univer-
sally across tasks. In TIL, leveraging task identity,
routers are trained with task-specific memory ele-
ments. For more details, see Appendix B.

5 Results

In this section, we present our results, summarized
in Table 1, which reports the average performance
across orders for each benchmark. Full results
are provided in Appendix C. Additionally, a brief
efficiency analysis is available in D.

Results on CIL Table 1 presents the results under
the CIL setup. Both L2R-wavg and L2R-merge out-
perform comparable baselines such as DAM, EPI,
and MoCL. DAM shows the worst performance of
the group, as it relies on task vectors created from
training data, which are insufficient for properly
routing the adapters. However, for Afrisenti, DAM
achieves competitive results since this benchmark
resembles a domain incremental learning scenario
where task vectors effectively help distinguish task
identity. EPI and MoCL perform better than DAM
but still fall short of our method despite their sophis-
ticated techniques. This highlights the importance
of a well-learned router, which enables the router’s
ability to intelligently route and confer a significant
performance advantage (Dikkala et al., 2023).

Regarding L2R versions, we observe that L2R-
wavg has a clear advantage over L2R-merge. This
may be due to interference between the parameters
of multiple adapters, which can cause performance
drops when they are merged (Yadav et al., 2024).

Results on TIL Table 1 presents the results un-
der the TIL setup. L2R-wavg performs best in the
MTL5 and AfriSenti benchmarks, while it lags be-
hind in the WOS benchmark. Interestingly, both
L2R-wavg and MoCL reach the Upper-Bound per-
formance, suggesting that the learned routing func-
tion likely emulates the full activation of the cor-
responding adapter or an effective combination of
the adapters. We hypothesize that L2R-wavg tends
toward the latter, as evidenced by its performance
in AfriSenti, where it surpasses the Upper-Bound.

In the WOS benchmark, our methods perform
competitively but fall behind MoCL. We attribute
this to the amount of data used to train the routing
function. WOS consists of very small datasets, re-
sulting in a memory populated with approximately
100 elements per task, which may not be sufficient
for router learning. In fact, Dikkala et al. (2023)
have shown that as the number of examples in-
creases, the routing function reaches its optimal
performance. We explore this in the next section.

Impact of Memory Size Figure 2 shows the per-
formance for all benchmarks with memory sizes

690



1 2 3 4 5
0.00

0.20

0.40

MTL5 - Task 2 (Gumbel-sigmoid)

1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

WoS - Task 3 (Gumbel-sigmoid)

1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.05

0.10

0.15

AfriSenti - Task 4 (Gumbel-sigmoid)

1 2 3 4 5
0.00

0.20

0.40

0.60

0.80
MTL5 - Task 2 (Softmax)

1 2 3 4 5 6 7
0.00

0.10

0.20

WoS - Task 3 (Softmax)

1 2 3 4 5 6 7 8 9 10 11 12
0.00

0.10

0.20

0.30

AfriSenti - Task 4 (Softmax)

Task-specific adapter number

Ro
ut

er
 sc

or
es

Figure 3: Average router scores for task 2 of MTL5 (order 4), task 3 of WOS (order 1), and task 4 of AfriSenti
(order 1) using Gumbel-sigmoid (top) and Softmax (bottom). Scores were computed on the test sets.

Method: L2R-wavg MTL5 WOS AfriSenti
Gumbel-sigmoid 78.0 79.90 60.04
Softmax 77.8 60.74 59.90

Table 2: Accuracy results on MTL5, WOS, and
AfriSenti benchmarks for the CIL setup of L2R-wavg
using Gumbel-sigmoid and Softmax.

ranging from 1% to 30%. As expected, we find
that the performance of L2R-wavg increases with
larger memory sizes. Notably, the performance on
WOS improves to match that of MoCL, support-
ing our assertion about the importance of using
more examples for effective router adaptation. For
MTL5 and AfriSenti, their performance gets close
to the Upper-Bound, demonstrating that L2R may
be learning better compositions for the adapters,
leading to high performance across tasks.

Impact of Gumbel-sigmoid Distribution As
discussed in section 3, we use Gumbel-sigmoid
distribution during the training of the routers to
theoretically enhance task-level modularity over
activation competency offered by Softmax. To val-
idate this, we compare the resulting routing scores
from L2R-wavg in CIL with the ones from a ver-
sion trained using Softmax function.

Table 2 shows the results, highlighting that using
Gumbel-sigmoid during the training of the rout-
ing function consistently outperforms the use of
Softmax activation. The improvement is observed
across all benchmarks, with accuracy gains rang-
ing from 0.1 to 19.2 points. The WOS benchmark
exhibits the most significant improvement, likely
because it consists of more tasks, which allows for
more modules to be leveraged.

Figure 3 shows router probabilities for the test
sets of MTL5 (order 4), WoS (order 1), and
AfriSenti (order 1). On the left, for MTL5 task 2
(news classification), adapter 2 is the most activated
in both model versions. However, the Softmax
version predominantly uses adapter 2, while the
Gumbel-sigmoid version also leverages adapters 1
and 4, which specialize in sentiment analysis.

In the middle, for the WOS task 3, both mod-
els activate multiple adapters because all tasks are
document categorization across various domains.
With Gumbel-sigmoid, adapter 3 (the correct one)
is primarily activated, while the Softmax version
strongly activates adapter 7, with less use of others.

On the right, for AfriSenti task 4 (sentiment anal-
ysis with varying input languages), the Gumbel-
sigmoid version strongly activates adapters 3 and
4, with lighter activation of the rest. Adapters 3
and 4 correspond to Hausa and Igbo, both spoken
in Nigeria, explaining their activation. Adapter 4 is
slightly more activated, showing the router’s ability
to detect the target task while using other adapters.
In contrast, the Softmax version primarily activates
adapter 3, with less activation of others.

6 Conclusion

We introduced L2R, a method for routing in CL that
enables PLMs to dynamically combine adapters,
improving generalization and performance. Ex-
periments across benchmarks demonstrate L2R’s
effectiveness in both TIL and the challenging CIL
setting. We also show that larger memory enhances
routing function learning and that L2R effectively
leverages diverse adapter combinations.

691



Limitations

Our method focuses on developing an effective
routing function to enhance generalization and
performance on downstream tasks learned from
a stream. To achieve this, we use a non-parametric
memory to store previous examples, similar to
replay-based methods. This approach may be lim-
ited in environments with storage constraints or
data privacy concerns.

Our experimental setup primarily focuses on
small-scale PLMs, which is a limitation since ex-
ploring large language models (LLMs) would be
desirable given their dominance in the current NLP
landscape. Although we have not tested our method
with LLMs due to computational resource limita-
tions, we anticipate similar results.

7 Acknowledgements

This work was funded by the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation pro-
gramme: CALCULUS project (Grant Agreement
No. 788506) and KeepOnLearning project (Grant
Agreement No. 101021347).

References
Jesujoba O. Alabi, David Ifeoluwa Adelani, Marius

Mosbach, and Dietrich Klakow. 2022. Adapting pre-
trained language models to African languages via
multilingual adaptive fine-tuning. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 4336–4349, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Vladimir Araujo, Helena Balabin, Julio Hurtado, Al-
varo Soto, and Marie-Francine Moens. 2022a. How
relevant is selective memory population in lifelong
language learning? In Proceedings of the 2nd Con-
ference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 12th In-
ternational Joint Conference on Natural Language
Processing, pages 154–160, Online. Association for
Computational Linguistics.

Vladimir Araujo, Julio Hurtado, Alvaro Soto, and Marie-
Francine Moens. 2022b. Entropy-based stability-
plasticity for lifelong learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pages 3721–
3728.

Feng Cheng, Ziyang Wang, Yi-Lin Sung, Yan-Bo Lin,
Mohit Bansal, and Gedas Bertasius. 2024. Dy-
namic adapter merging for continual video question-
answering learning.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Nishanth Dikkala, Nikhil Ghosh, Raghu Meka, Rina
Panigrahy, Nikhil Vyas, and Xin Wang. 2023. On
the benefits of learning to route in mixture-of-experts
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9376–9396, Singapore. Association for Com-
putational Linguistics.

Cyprien de Masson d'Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Tyler L Hayes and Christopher Kanan. 2021. Selective
replay enhances learning in online continual analogi-
cal reasoning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 3502–3512.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Julio Hurtado, Alain Raymond-Sáez, Vladimir Araujo,
Vincenzo Lomonaco, Alvaro Soto, and Davide Bac-
ciu. 2023. Memory population in continual learn-
ing via outlier elimination. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV) Workshops, pages 3481–3490.

Kamran Kowsari, Donald E. Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S. Gerber,
and Laura E. Barnes. 2017. Hdltex: Hierarchical
deep learning for text classification. In 2017 16th
IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pages 364–371.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2017. The concrete distribution: A continuous relax-
ation of discrete random variables. In International
Conference on Learning Representations.

Michael McCloskey and Neal J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The

692

https://aclanthology.org/2022.coling-1.382
https://aclanthology.org/2022.coling-1.382
https://aclanthology.org/2022.coling-1.382
https://aclanthology.org/2022.aacl-short.20
https://aclanthology.org/2022.aacl-short.20
https://aclanthology.org/2022.aacl-short.20
https://openreview.net/forum?id=L1FeTLOwzr
https://openreview.net/forum?id=L1FeTLOwzr
https://openreview.net/forum?id=L1FeTLOwzr
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://doi.org/10.18653/v1/2023.emnlp-main.583
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.1109/ICMLA.2017.0-134
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.1016/S0079-7421(08)60536-8


sequential learning problem. volume 24 of Psychol-
ogy of Learning and Motivation, pages 109–165. Aca-
demic Press.

Shamsuddeen Muhammad, Idris Abdulmumin, Abinew
Ayele, Nedjma Ousidhoum, David Adelani, Seid Yi-
mam, Ibrahim Ahmad, Meriem Beloucif, Saif Mo-
hammad, Sebastian Ruder, Oumaima Hourrane, Ali-
pio Jorge, Pavel Brazdil, Felermino Ali, Davis David,
Salomey Osei, Bello Shehu-Bello, Falalu Lawan,
Tajuddeen Gwadabe, Samuel Rutunda, Tadesse Be-
lay, Wendimu Messelle, Hailu Balcha, Sisay Chala,
Hagos Gebremichael, Bernard Opoku, and Stephen
Arthur. 2023. AfriSenti: A Twitter sentiment analysis
benchmark for African languages. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 13968–13981,
Singapore. Association for Computational Linguis-
tics.

Edoardo Maria Ponti, Alessandro Sordoni, Yoshua Ben-
gio, and Siva Reddy. 2023. Combining parameter-
efficient modules for task-level generalisation. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 687–702, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

A. Prabhu, H. Al Kader Hammoud, P. Dokania, P. S.
Torr, S. Lim, B. Ghanem, and A. Bibi. 2023. Com-
putationally budgeted continual learning: What does
matter? In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
3698–3707, Los Alamitos, CA, USA. IEEE Com-
puter Society.

Ameya Prabhu, Philip H. S. Torr, and Puneet K. Doka-
nia. 2020. Gdumb: A simple approach that questions
our progress in continual learning. In Computer Vi-
sion – ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part II,
page 524–540, Berlin, Heidelberg. Springer-Verlag.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, and Amjad Almahairi.
2023. Progressive prompts: Continual learning for
language models. In The Eleventh International Con-
ference on Learning Representations.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof
Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. 2017a. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representa-
tions.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017b. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
Preprint, arXiv:1701.06538.

James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta,
Paola Cascante-Bonilla, Donghyun Kim, Assaf Ar-
belle, Rameswar Panda, Rogerio Feris, and Zsolt

Kira. 2023. Coda-prompt: Continual decomposed
attention-based prompting for rehearsal-free contin-
ual learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 11909–11919.

Pablo Sprechmann, Siddhant Jayakumar, Jack Rae,
Alexander Pritzel, Adria Puigdomenech Badia, Be-
nigno Uria, Oriol Vinyals, Demis Hassabis, Razvan
Pascanu, and Charles Blundell. 2018. Memory-based
parameter adaptation. In International Conference
on Learning Representations.

Eli Verwimp, Rahaf Aljundi, Shai Ben-David, Matthias
Bethge, Andrea Cossu, Alexander Gepperth, Tyler L.
Hayes, Eyke Hüllermeier, Christopher Kanan,
Dhireesha Kudithipudi, Christoph H. Lampert, Mar-
tin Mundt, Razvan Pascanu, Adrian Popescu, An-
dreas S. Tolias, Joost van de Weijer, Bing Liu, Vin-
cenzo Lomonaco, Tinne Tuytelaars, and Gido M
van de Ven. 2024. Continual learning: Applica-
tions and the road forward. Transactions on Machine
Learning Research.

Mingyang Wang, Heike Adel, Lukas Lange, Jannik
Strötgen, and Hinrich Schütze. 2024. Rehearsal-free
modular and compositional continual learning for
language models. Preprint, arXiv:2404.00790.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee,
Xiaodong Liu, Jing Gao, Ahmed Hassan Awadal-
lah, and Jianfeng Gao. 2022a. AdaMix: Mixture-
of-adaptations for parameter-efficient model tuning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5744–5760, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Zhicheng Wang, Yufang Liu, Tao Ji, Xiaoling Wang,
Yuanbin Wu, Congcong Jiang, Ye Chao, Zhencong
Han, Ling Wang, Xu Shao, and Wenqiu Zeng. 2023.
Rehearsal-free continual language learning via effi-
cient parameter isolation. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10933–
10946, Toronto, Canada. Association for Computa-
tional Linguistics.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. 2022b. Learning to
prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 139–149.

Zirui Wang, Sanket Vaibhav Mehta, Barnabas Poczos,
and Jaime Carbonell. 2020. Efficient meta lifelong-
learning with limited memory. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 535–548,
Online. Association for Computational Linguistics.

Martin Wistuba, Prabhu Teja Sivaprasad, Lukas Balles,
and Giovanni Zappella. 2024. Choice of peft tech-
nique in continual learning: Prompt tuning is not all
you need. Preprint, arXiv:2406.03216.

693

https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.emnlp-main.862
https://doi.org/10.18653/v1/2023.eacl-main.49
https://doi.org/10.18653/v1/2023.eacl-main.49
https://doi.org/10.1109/CVPR52729.2023.00360
https://doi.org/10.1109/CVPR52729.2023.00360
https://doi.org/10.1109/CVPR52729.2023.00360
https://doi.org/10.1007/978-3-030-58536-5_31
https://doi.org/10.1007/978-3-030-58536-5_31
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=UJTgQBc91_
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://openreview.net/forum?id=rkfOvGbCW
https://openreview.net/forum?id=rkfOvGbCW
https://openreview.net/forum?id=axBIMcGZn9
https://openreview.net/forum?id=axBIMcGZn9
https://arxiv.org/abs/2404.00790
https://arxiv.org/abs/2404.00790
https://arxiv.org/abs/2404.00790
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2022.emnlp-main.388
https://doi.org/10.18653/v1/2023.acl-long.612
https://doi.org/10.18653/v1/2023.acl-long.612
https://doi.org/10.18653/v1/2020.emnlp-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.39
https://arxiv.org/abs/2406.03216
https://arxiv.org/abs/2406.03216
https://arxiv.org/abs/2406.03216


Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Car-
mon, Simon Kornblith, and Ludwig Schmidt. 2022.
Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing
inference time. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages
23965–23998. PMLR.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raf-
fel, and Mohit Bansal. 2024. Ties-merging: resolving
interference when merging models. In Proceedings
of the 37th International Conference on Neural In-
formation Processing Systems, NIPS ’23, Red Hook,
NY, USA. Curran Associates Inc.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia
Ye, and De-Chuan Zhan. 2024. Continual learn-
ing with pre-trained models: A survey. Preprint,
arXiv:2401.16386.

694

https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.mlr.press/v162/wortsman22a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://arxiv.org/abs/2401.16386
https://arxiv.org/abs/2401.16386


A Additional Benchmark Details

MTL5 is a benchmark for text classification. It
consists of five datasets from (Zhang et al., 2015).
AGNews classification, Yelp sentiment analysis,
Amazon sentiment analysis, DBPedia article clas-
sification, and Yahoo questions and answers cate-
gorization. Both sentiment analysis tasks share the
same labels. In line with d'Autume et al. (2019), we
use 575,000 training and 38,000 test examples with
33 classes from all datasets using 4 task orders:

(i) AGNews → Yelp → Amazon → Yahoo → DBpedia
(ii) Yelp → Yahoo → Amazon → DBpedia → AGNews

(iii) DBPedia → Yahoo → AGNews → Amazon → Yelp
(iv) Yelp → AGNews → DBPedia → Amazon → Yahoo

Web-of-science (WOS) (Kowsari et al., 2017)
initially began as a hierarchical dataset for catego-
rizing documents. It includes research papers from
seven distinct fields: biochemistry, civil engineer-
ing, computer science, electrical engineering, med-
ical science, mechanical engineering, and psychol-
ogy. Each of these fields represents a high-level
category for document classification, with multiple
subcategories within each field. This dataset has
about 11,967 instances and 33 classes. In line with
Wang et al. (2023), we split to train/val/test set in
the ratio of 0.6:0.2:0.2 and structured 7 sequential
learning tasks based on the high-level categories of
the dataset:

(i) 1 → 2 → 3 → 4 → 5 → 6 → 7

AfriSenti (Muhammad et al., 2023) is a multi-
lingual sentiment analysis dataset comprising 12
low-resource African languages. These languages
include Amharic (am), Algerian Arabic (dz), Hausa
(ha), Igbo (ig), Kinyarwanda (kr), Moroccan Ara-
bic (ma), Nigerian Pidgin (pcm), Mozambican Por-
tuguese (pt), Swahili (sw), Xitsonga (ts), Twi (twi),
and Yoruba (yo). The dataset contains over 110,000
annotated tweets and spans three sentiment classes
across all languages. In line with (Wang et al.,
2023), we use 3 task orders:

(i) am → dz → ha → ig → kr → ma → pcm → pt → sw
→ ts → twi → yo

(ii) ma → pcm → kr → pt → ig → sw → ha → ts → dz
→ twi → am → yo

(iii) am → dz → ha → ma → ig → kr → sw → ts → twi
→ yo → pcm → pt

Following Wang et al. (2023), we categorize
benchmarks based on task domain similarity. WOS
and Afrisenti serve as near-domain benchmarks due

to their closely related tasks. MTL5, on the other
hand, represents far-domain benchmarks where dis-
tinct domain boundaries among tasks are evident.

B Additional Implementation Details

As backbones, we use BERT-base (Devlin et al.,
2019) for MTL5 and WOS and AfroXLMR-base
(Alabi et al., 2022) for AfriSenti. Additionally, we
adopt LoRA (Hu et al., 2022) as our PEFT modules,
using a rank of 8 and dropout of 0.1. We applied
LoRA to Wq and Wv, and it has been demonstrated
to be a competitive configuration. These adapters
allow efficient fine-tuning, representing less than
0.7% of the PLM’s parameters in our experiments.

Our memory is non-parametric, which means
that it stores raw examples with labels sampled
from training examples. We only sample 10% of
each task’s training dataset, representing less than
3.8MB per dataset in our experiments, as we use
Parquet, an efficient storage format.

During the training phase, we use a batch size
of 8 and a learning rate of 3e-4. Additionally, we
use a linear scheduler with warmup and AdamW
optimizer. On the other hand, we use the same
configuration to train the router networks. However,
we use a learning rate of 3e-4 or 3e-5 for MTL5
and AfriSenti, and a learning rate of 3e-3 or 3e-4
for WOS.

C Full Results

Table 3 and Table 4 show the full results for CIL
and TIL setups, respectively. We observe that our
method consistently outperforms the best baseline
(MoCL) across orders in CIL. Interestingly, our
model achieves a similar performance across or-
ders. This is because the isolation strategy helps
the model to have a very specialized adapter regard-
less of the order of training. However, order (iii,iv)
of MTL5 and order (ii) of AfriSenti show slightly
superior performance, indicating that memory pop-
ulation methods could be leveraged to further im-
prove performance (Araujo et al., 2022a).

Regarding TIL experiments, we find that L2R-
wavg obtains a similar performance to MoCL and
Upper-Bound. Interestingly, L2R-merge lags be-
hind the performance of MoCL, potentially due to
the need for more data to properly train its router,
as shown in our experiments. This is more evident
for our L2R-merge, which has also been shown to
be less effective to L2R-wavg possible for interfer-
ence produced by merging the adapters.

695



MTL5
Method i ii iii iv Avg

Lower-Bound 16.2 16.2 16.2 16.2 16.2
Upper-Bound 79.4 79.4 79.4 79.4 79.4
DAM 27.4 27.4 27.4 27.4 27.4
EPI† 77.4 77.3 77.2 77.4 77.3
MoCL† 73.0 74.0 74.8 73.6 73.8
L2R-wavg 77.8 77.9 78.2 78.1 78.0
L2R-merge 77.7 77.7 77.6 77.8 77.7

WOS
i

15.07
90.06
10.00
77.83
79.23
79.90
79.98

AfriSenti
i ii iii Avg

33.64 33.64 33.64 33.64
62.16 62.16 62.16 62.16
48.78 48.78 48.78 48.78
42.96 42.97 43.36 43.10
45.57 44.32 46.95 45.61
59.14 60.8 60.18 60.04
53.36 52.07 53.03 52.82

Table 3: Results on MTL5, WOS, and AfriSenti for CIL. † indicates that the results come from (Wang et al., 2024).

MTL5
Method i ii iii iv Avg

Lower-Bound 16.2 16.2 16.2 16.2 16.2
Upper-Bound 79.4 79.4 79.4 79.4 79.4
ProgPrompt† 78.0 77.9 77.9 77.9 77.9
EPI† 77.4 77.3 77.2 77.4 77.3
MoCL† 79.3 79.6 79.2 79.4 79.4
L2R-wavg 79.4 79.4 79.5 79.4 79.4
L2R-merge 79.2 79.3 79.4 79.3 79.3

WOS
i

15.07
90.06
89.93
77.83
90.59
89.24
89.16

AfriSenti
i ii iii Avg

33.64 33.64 33.64 33.64
62.16 62.16 62.16 62.16
50.16 46.74 50.30 49.07
41.49 42.65 45.16 43.10
57.05 56.52 56.74 56.77
62.68 62.78 62.39 62.62
54.06 53.3 54.55 53.97

Table 4: Results on MTL5, WOS, and AfriSenti for TIL. † indicates that the results come from (Wang et al., 2024).

D Efficiency Comparison: FLOPs
Analysis

We compute the theoretical amount of FLOPs
(floating-point operations) of our methods and
some baselines for the MTL5 benchmark (i.e., 5
tasks). In Table 5, we observe BERT for classifica-
tion as the more efficient model. This is expected
as all the other methods augment BERT with PEFT
modules. Our methods are the second most effi-
cient models. L2R-wave is the less efficient one,
as it always uses all the adapters and composes
the input them. L2R-merge and DAM have the
same amount of FLOPs as these models merge the
adapters in one, making the computation more effi-
cient. Although MoCL is the direct competitor to
our methods in performance, it is not in terms of
efficiency as this model extends the input, resulting
in more operations.

Method FLOPs
BERT 325.42 GFLOPS
DAM 326.49 GFLOPS
MoCL 477.85 GFLOPS

L2R-wavg 330.80 GFLOPS
L2R-merge 326.49 GFLOPS

Table 5: Theoretical FLOPs when processing a batch
size 1 and a sequence of 128 tokens.

696


