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Abstract

Parameter-efficient fine-tuning (PEFT) has
emerged as an effective method for adapting
pre-trained language models to various tasks
efficiently. Recently, there has been a growing
interest in transferring knowledge from one or
multiple tasks to the downstream target task
to achieve performance improvements. How-
ever, current approaches typically either train
adapters on individual tasks or distill shared
knowledge from source tasks, failing to fully
exploit task-specific knowledge and the cor-
relation between source and target tasks. To
overcome these limitations, we propose PEMT,
a novel parameter-efficient fine-tuning frame-
work based on multi-task transfer learning.
PEMT extends the mixture-of-experts (MoE)
framework to capture the transferable knowl-
edge as a weighted combination of adapters
trained on source tasks. These weights are de-
termined by a gated unit, measuring the cor-
relation between the target and each source
task using task description prompt vectors. To
fully exploit the task-specific knowledge, we
also propose the Task Sparsity Loss to improve
the sparsity of the gated unit. We conduct
experiments on a broad range of tasks over
17 datasets. The experimental results demon-
strate our PEMT yields stable improvements
over full fine-tuning, and state-of-the-art PEFT
and knowledge transferring methods on var-
ious tasks. The results highlight the effec-
tiveness of our method which is capable of
sufficiently exploiting the knowledge and cor-
relation features across multiple tasks. Our
code is available at https://github.com/
JachinLin2022/PEMT

1 Introduction

Fine-tuning pre-trained models (PLMs) has be-
come an effective way to migrate model capabili-
ties to downstream tasks (Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2020). However, training
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Figure 1: Performance of different parameter-efficient
fine-tuning approaches. All results are based on T5-base
for a fair comparison. The proposed PEMT achieves
significant improvements over all compared methods
while fine-tuning only a small number of parameters.

and storing a full copy of the model parameters for
each task becomes expensive as the scale of PLM
increases. To mitigate this problem, parameter-
efficient fine-tuning methods (Houlsby et al., 2019;
Schick and Schütze, 2021b; Pfeiffer et al., 2020;
Lester et al., 2021; Liu et al., 2023) have been pro-
posed to reduce the number of trainable parameters.
Despite their efficiency gains, these methods often
sacrifice performance compared to full fine-tuning
(Gao et al., 2021a; Hu et al., 2021; Li and Liang,
2021).

Recent work has proposed to distill knowledge
from one or multiple source tasks and adapt it to
various downstream target tasks to achieve further
improvements (Vu et al., 2022; Asai et al., 2022;
Wang et al., 2022c). Despite significant success,
there remains a substantial performance gap be-
tween these methods and full fine-tuning. The limi-
tations of existing methods can be categorized as
follows: (1) Most existing methods primarily fo-
cus on utilizing shared knowledge across all source
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tasks, neglecting task-specific knowledge during
adaptation to downstream tasks. (2) Task-specific
representations of source and target tasks are typi-
cally trained independently, leading to insufficient
exploitation of the correlation between them. As
a result, the performance of multi-task transfer of-
ten lags behind that of distilling knowledge from a
single source task. (3) The formulation of source
and target tasks may be inconsistent, hindering
cross-task adaptation. (4) The knowledge from
source tasks is typically used as an initialization,
but during fine-tuning, this knowledge may become
intertwined with downstream tasks and gradually
forgotten.

To mitigate these challenges, we propose PEMT,
a parameter efficient fine-tuning framework based
on multi-task transfer learning. PEMT comprises
two training stages for source task learning and
target task adaptation, respectively. (1) In Stage
1, we follow adapter-based tuning (e.g., Adapter
(Houlsby et al., 2019) and LoRA (Hu et al., 2021))
to train task-specific adapters on multiple source
tasks. We incorporate a sequence of task-specific
prompt vectors to distinguish different source tasks
and utilize task descriptions to initialize each task
prompt effectively. (2) In Stage 2, we train the
adapter for the downstream task while incorporat-
ing knowledge from source tasks into the model.
To enable multi-task transfer learning and pre-
vent knowledge forgetting, we freeze the source
adapters and integrate them using a mixture-of-
experts architecture (MoE). Instead of relying on a
single source task, the knowledge of source tasks is
incorporated as a soft combination of all adapters
trained during Stage 1. We employ an MoE gated
unit to measure the correlation between the tar-
get task and each source task, leveraging the task-
specific prompt vectors. To ensure the effective
utilization of the specific knowledge from source
tasks, we introduce the Task Sparsity Loss, encour-
aging the MoE gate to prioritize the most relevant
source expert.

We conduct experiments on 17 NLP datasets in-
volving multiple tasks and domains to evaluate the
effectiveness of our approach. On all benchmarks,
PEMT achieves an overall improvement of more
than 2 points over full fine-tuning and all the com-
pared PEFT methods as shown in Figure 1. Under
the few-shot setting, PEMT also proves a signifi-
cant improvement of 10 points over the compared
transfer learning models. Further analysis on the

weights of different task experts demonstrates that
the model tends to incorporate knowledge from the
most relevant source task expert, which explains
the efficiency and adaptability of our method.

Overall, this work makes the following contribu-
tions:

• We propose PEMT, a two-stage parameter-
efficient fine-tuning method facilitating multi-
task transfer learning. PEMT captures the trans-
ferable knowledge through a combination of
adapters trained on source tasks, effectively lever-
aging task-specific knowledge.

• We propose a task-correlation-based gated unit to
determine the weight of each source adapter by
measuring the correlation between source and
target downstream tasks. To capture interde-
pendency across tasks, we introduce a sequence
of task-specific prompt vectors to describe each
task.

• Experimental results indicate PEMT consistently
outperforms full fine-tuning and state-of-the-art
PEFT methods across a broad range of tasks,
which demonstrates the robustness and adaptabil-
ity of our method. PEMT is proven to be also
effective for few-shot learning using 4-32 labels.

• We also conduct extensive experiments to ana-
lyze how the performance changes under various
settings, which provides a clear interpretation for
the effectiveness of the proposed method.

2 Related Work

Parameter-Efficient Fine-tuning. Parameter-
efficient fine-tuning freezes the original PLM and
introduces a small number of additional parameters
for fine-tuning. Existing works can be categorized
into two classes, adapter-based tuning and prompt-
based tuning. Adapter-based methods (Houlsby
et al., 2019; Pfeiffer et al., 2020) incorporate a train-
able bottleneck module to each transformer layer.
Prompt-based tuning (Lester et al., 2021; Schick
and Schütze, 2021a; Gao et al., 2021b) prepends
continuous or discrete prompt vectors to the in-
put. Recently, some methods are proposed (Pfeiffer
et al., 2021; Vu et al., 2022; Wang et al., 2022a;
Gururangan et al., 2022; Diao et al., 2023; He
et al., 2022; Asai et al., 2022; Wang et al., 2022c;
Zhao et al., 2023) to transfer knowledge of trained
adapters to downstream tasks.
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Multi-Task Transfer Learning. Transferring
knowledge from tasks has been proven to be an
effective approach (Ma et al., 2018; Aghajanyan
et al., 2021; Zhong et al., 2021; Clark et al., 2019b;
Singh et al., 2022; Gupta et al., 2022; Frohmann
et al., 2023). Many studies (Sanh et al., 2022; Wei
et al., 2021; Wang et al., 2022b; Liu et al., 2022)
show the zero-shot or few-shot transferring capa-
bilities of language models through massive multi-
task training over a broad range of tasks. However,
the corresponding overhead could be enormous. To
overcome the issue, some more recent works (Vu
et al., 2022; Asai et al., 2022; Wang et al., 2022c;
Diao et al., 2023) propose to transfer the knowledge
shared by various tasks using parameter-efficient
fine-tuning.

Among the related works, AdaMix (Wang et al.,
2022a) and MPT (Wang et al., 2022c) are the
most relevant methods. Compared to our PEMT,
AdaMix trains the representation of source and
target tasks independently and fails to sufficiently
leverage the interdependency across tasks. MPT
learns a single prompt by distilling the shared
knowledge while ignoring the rich task-specific
information.

3 Approach

Task. Given a set of K source tasks S = {S1,S2,
· · · ,SK} and a set of M target tasks T =
{T1, T2, · · · , TM}, our goal is to capture the knowl-
edge of S and adapt it to any target task Tm ∈ T .

Overview. To sufficiently exploit the task-
specific knowledge of each source task, we di-
vide the training process of PEMT into two stages,
which are illustrated in Figure 2 and Figure 3 re-
spectively. In the first stage, we follow the vanilla
adapter-based (e.g., LoRA (Hu et al., 2021) or
Adapter (Houlsby et al., 2019)) to train the source
task adapters. For each source task, we freeze the
original PLM parameters and inject a task-specific
adapter to the feed-forward layer (FFN) for each
Transformer layer. Besides, to learn a better rep-
resentation of each task, we incorporate a task-
specific description prompt which is used to mea-
sure the correlation between tasks. In Stage 2, we
distill the knowledge of source tasks as a weighted
combination of the source adapters. The Mixture-
of-experts architecture (MoE) is exploited to in-
tegrate the frozen source adapters and the MoE
gate measures the weight of each source expert us-
ing the task prompts learned in Stage 1. The task

Pre-trained
Model

Initialization

Description

Embedding

Multi-Head
Attention

Add & Norm

Forward
Output

Add & Norm

Source
Adapter

Feed-Forward
Input

Layer Output

Description
Prompt

Figure 2: The training process of Stage 1. The task-
specific adapters and task representation prompts are
trained on multiple source tasks.

prompt for the target task is a correlation-based
combination of the trainable prompt vectors and
the frozen prompts of the source tasks. To adapt to
a downstream task, another task adapter is injected
after the MoE module as shown in Figure 3.

3.1 Source Training
The goal of Stage 1 is to capture the task-specific
knowledge of each source task. To this end, we
fine-tune the PLM on multiple source tasks using
adapter-based PEFT methods.

Source Task Adapter. As shown in Figure 2, the
task adapter is injected in each transformer layer,
which works parallel to the FFN layer to learn the
task-specific knowledge. This design is inspired
by recent studies (Geva et al., 2021; De Cao et al.,
2021; Meng et al., 2022) that FFN captures the
major knowledge of the training data. To be spe-
cific, a transformer FFN consists of two stacked
layers, an up projection layer and a down projection
layer. We integrate an adapter module to the FFN
using either a parallel Adapter (He et al., 2021)
or a LoRA, which works parallel to the up projec-
tion layer. The task adapter is implemented as two
stacked low-rank matrices for reducing overheads.

Task Description Prompts. We introduce a task
description prompt for each source task. The
prompt describes the task formulation and is uti-
lized to measure the correlation between tasks. Ex-
isting methods (Vu et al., 2022; Asai et al., 2022;
Wang et al., 2022c) train the representations of
various tasks from scratch independently, which
brings a gap between tasks. To address this issue,
we propose a simple but effective method to use

6871



Embedding

Multi-Head
Attention

Add & Norm

Forward
Output

Add & Norm

Task-Specific
Adapter

Mixture
Expert

Feed-Forward
Input

Add & Norm

Correlat ion
Prefix Input

Experts Output
Weighted Sum

Generated
Weights

Layer Output

MoE Output

ℒ𝑡𝑠

Pre-trained
Model

Task A

Task B

Task C

Target Task

Description

Attention

Add

Source Prompt
Library

Query

Initialization

Initialization

Correlation
Prompt

tuned

frozen

Correlation
Gating Network

Expert A
Up

Expert A
Down

Expert B
Up

Expert B
Down

Others
Up

Others
Down

Figure 3: The training process of Stage 2. A MoE module is employed to distill knowledge from source tasks. The
source task adapters are used as the experts and combined with a MoE gate which measures the correlation between
the target task and each source task. The specific adapter for the target task is injected after the MoE module. The
task sparsity loss Lts is incorporated to improve the sparsity of the MoE gate. The task prompt for the target task is
a task-correlation-based combination of the trainable prompt vectors and the frozen prompts of the source tasks.

handcrafted task descriptions as the initialization
for the prompt vectors. Concretely, given a source
task Sk ∈ S, we prepend a trainable prompt matrix
Pk ∈ RNk×d to the input tokens of PLM, where
d is the embedding dimension and Nk denotes the
length of the task description (i.e. prompt length).
The task description is a sentence consisting of a
task definition and input-output format based on the
distinctive features of various tasks. It should be
noted that the description length for different tasks
could be different. The details for the template of
the task descriptions are provided in Appendix A.

Training on Source Tasks. Both the task
adapters and task description prompts are trained
following the typical PEFT procedure. There is no
particular requirement for the source tasks. To
bridge the gap between different tasks, we uni-
formly formulate all source tasks as text-to-text
generation. We follow the format as proposed by
Raffel et al. (2020).

3.2 Target Adaptation

In the second stage, PEMT is guided by the correla-
tion between tasks to utilize the distilled knowledge

of all source tasks for adaptation to the downstream
target task.

Mixture of Source Task Adapters. We employ
a Mixture-of-Experts (MoE) module to combine
the source adapters as the transferable knowledge.
Instead of only focusing on the shared knowledge,
we maintain the task-specific information of each
source task during adapting to the downstream task.
As illustrated in Figure 3, the task adapters trained
in Stage 1 are exploited as the experts in the MoE
module. Instead of fine-tuning the source task
adapters, we freeze the parameters of the experts
to avoid the catastrophic forgetting problem. For-
mally, the output of the MoE module in the l-th
layer is calculated as:

Hl
e =

K∑

k=1

wl
k ·El

k, (1)

where El
k is the task adapter in the l-th Transformer

layer trained on the k-th source task Sk, and K is
the total number of source tasks. wl

k denotes the
weight of El

k, which is obtained by the MoE gate,
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calculated as:

wl
k = softmax

(
Wl

g · avg (H)
)
k
, (2)

where Wl
g ∈ Rd×K is a trainable matrix, and avg

is an average pooling layer. H is the prompt ma-
trix for the current target task, which captures the
correlation between tasks.

Correlation-Guided Task Prompt. As afore-
mentioned, existing methods train source and tar-
get representations independently, which leaves
an obstacle to acquire knowledge interdependency
across tasks. To exploit the correlation between
tasks sufficiently, we propose to incorporate the
prompts trained on source tasks into the target adap-
tation process based on attention mechanism. Fol-
lowing (Vaswani et al., 2017), the attention func-
tion attn(Q,K, V ) takes three inputs, query, key,
and value respectively. Here, we utilize the target
prompt as a query and the source prompts as key
and value. Formally, let Q = (q1, · · · ,qT ) de-
notes the trainable prompt matrix of the target task.
Q ∈ RT×d is initialized with a task description
of T tokens following the same way as in Stage 1
and qt denotes the t-th prompt vector. Given the
prompt of the k-th source task Pk, the correlation
feature between source task Sk and the target task
is obtained as:

Ck = attn(Q,Pk,Pk) ∈ RT×d. (3)

Once the correlation feature for each source task
is obtained, we simply add all the correlation in-
formation to the original prompt of the target task.
Concretely, the final prompt matrix H ∈ RT×d for
the target task is calculated by:

H = Q+

K∑

k=1

Ck. (4)

This design is inspired by the additive composition-
ality of word embedding (Mikolov et al., 2013),
which is proven to be simple but effective accord-
ing to the experimental results. The prompt for
the target task captures the representation informa-
tion and interdependency across source and target
tasks, and is exploited to measure the weight of
each source task adapter (Eq 2). It should be noted
that all Transformer layers of PEMT share the same
H for the sake of efficiency.

Target Task Adapter. To adapt to the down-
stream task, we incorporate another task-specific
adapter into each Transformer layer. The target
task adapter, which is inserted after the MoE mod-
ule, is exploited to mine the knowledge which is
not covered by the experts trained on source tasks.
The combination of source and target adapters fa-
cilitates the model to take advantage of both the
rich knowledge learned from each source task and
the task-specific knowledge of the target task.

Fine-Tuning on the Target Tasks To sufficiently
utilize the knowledge of the source tasks, we pro-
pose the Task Sparsity Loss (TSL) to improve the
sparsity of the MoE module. The intuition is to
ensure the MoE gate assigns a higher priority to
the top-1 source task expert by measuring the simi-
larity between specific expert output and the final
layer output. Formally, the TSL is defined as:

Lts = − 1

LK
L∑

l=1

K∑

k=1

wl
k · sim(Hl

o,E
l
k), (5)

where Hl
o denotes the final hidden state of the l-th

Transformer layer, L is the total number of lay-
ers, and sim is a similarity score function and we
choose cosine similarity in this paper.

Similar to the training process on source tasks,
we formulate the target tasks as a text-to-text gen-
eration problem. The training objective is to mini-
mize the negative log-likelihood of output y con-
ditioned on the input text x and the task prompt
H. Finally, the fine-tuning loss on the target task is
defined as:

L = −
∑

j

P (yj |y<j ;x,H) + αLts, (6)

where α is a hyperparameter to balance the losses.

4 Experiment

We conduct experiments on a comprehensive range
of NLP datasets to demonstrate the effectiveness
of PEMT. The performance of different methods
is compared under both full-dataset and few-shot
settings.

4.1 Datasets and Tasks
As in Wang et al. (2022c), we use 6 high-resource
datasets as the source tasks: MNLI (Williams et al.,
2018), QNLI (Demszky et al., 2018), QQP (Wang
et al., 2018), SST-2 (Socher et al., 2013), SQuAD
(Rajpurkar et al., 2016), and ReCoRD (Zhang et al.,
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Method GLUE & SuperGLUE
STS-B MRPC RTE CoLA Multi BoolQ WiC WSC CB Avg.

FT 89.7 89.1 71.9 61.8 72.8 81.1 70.2 59.6 85.7 75.8
PT 89.5 68.1 54.7 10.6 58.7 61.7 48.9 51.9 67.9 56.9

BitFit 90.9 86.8 67.6 58.2 74.5 79.6 70.0 59.6 78.6 74.0
Adapter 90.7 85.3 71.9 64.0 75.9 82.5 67.1 67.3 85.7 76.7
LoRA 91.1 86.8 74.1 61.5 75.2 81.8 69.2 65.4 85.7 76.7
SPoT 90.0 79.7 69.8 57.1 74.0 77.2 48.9 51.9 67.9 68.5

ATTEMPT 89.7 85.7 73.4 57.4 74.4 77.1 66.8 53.8 78.6 73.0
MPT 90.4 89.1 79.4 62.4 74.8 79.6 69.0 67.3 79.8 76.9

MixDA 90.8 88.2 66.9 60.8 59.2 61.7 48.9 50.0 78.6 67.2
Adamix 91.0 88.2 70.5 58.7 72.9 80.2 63.6 51.9 85.7 73.6
PEMT 91.10.22 88.70.40 83.01.36 67.02.12 75.50.36 82.60.38 68.70.89 67.30.0 94.11.68 79.80.17

Table 1: Results on GLUE and SuperGLUE. The metrics are Pearson correlation for STS-B, F1 for MultiRC
(Multi), and accuracy for other tasks as evaluation metrics. Our results are averaged over three runs, and subscripts
denote standard deviation.

2018). We use other datasets from four benchmarks
as target tasks: MultiRC (Khashabi et al., 2018),
BoolQ (Clark et al., 2019a), WiC (Pilehvar and
Camacho-Collados, 2019), WSC (Levesque et al.,
2012) and CB (De Marneffe et al., 2019) from Su-
perGLUE (Wang et al., 2019); RTE (Giampiccolo
et al., 2007), CoLA (Warstadt et al., 2019), STS-
B (Cer et al., 2017), MRPC (Dolan and Brock-
ett, 2005) from GLUE (Wang et al., 2018); Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
HotpotQA (HP) (Yang et al., 2018), NewsQA
(News) (Trischler et al., 2017), and SearchQA
(SQA) (Dunn et al., 2017) from MRQA (Fisch
et al., 2019); WinoGrande (Sakaguchi et al., 2021),
Yelp-2 (Zhang et al., 2015), SciTail (Khot et al.,
2018), and PAWS-Wiki (Zhang et al., 2019) from
the Others benchmark as in (Asai et al., 2022).

Compared Methods We compare PEMT with
the state-of-the-art fine-tuning methods: (1) Full
fine-tuning (FT), which fine-tunes all parameters
of the pre-trained model. (2) Prompt-based tun-
ing, including vanilla prompt tuning (PT) (Lester
et al., 2021), SPoT (Vu et al., 2022), ATTEMPT
(Asai et al., 2022) and MPT (Wang et al., 2022c).
(3) Adapter-based tuning, including vanilla adapter
(Houlsby et al., 2019), AdaMix (Wang et al.,
2022a) and MixDA (Diao et al., 2023). (4)
Other parameter-efficient tuning methods, includ-
ing LoRA (Hu et al., 2021) and BitFit (Zaken et al.,
2022).

4.2 Implementation

Following existing works, we use the publicly avail-
able pre-trained T5-Base model (Raffel et al., 2020)

with 220M parameters from HuggingFace1 as the
backbone.

Following (Karimi Mahabadi et al., 2021), if a
dataset does not have a publicly available test split
with annotations, we use the full set of a subset of
the developing partition or a subset of the for test-
ing. PEMT is trained on 4 x NVIDIA A800 GPUs.
The implementation details and hyper-parameters
are listed in Appendix B.

We run all the experiments three times with dif-
ferent random seeds, and report the mean values
and standard deviations. Under the few-shot set-
ting, for each number of shots k ∈ {4, 16, 32}, we
randomly collect k samples from the downstream
task data. The random seed is shared by all com-
pared methods for a fair comparison.

4.3 Results
Full Data. Experimental results in Table 1 and
2 show that PEMT significantly outperforms full
fine-tuning and all other parameter-efficient tuning
methods. As observed from Table 1, PEMT estab-
lishes the new state-of-the-art results for parameter-
efficient fine-tuning on GLUE and SuperGLUE.
According to the results, Adapter and MPT are
the most competitive methods, while our method
yields an improvement of 2.75% and 2.91%. Es-
pecially, On CB task, the improvement comes to
13.06% and 7.16%. On RTE task, PEMT outper-
forms all other methods with over 10 points, which
illustrates the capability of knowledge transferring
of our method.

Table 2 shows the performance of different meth-
ods on MRQA and Others benchmark. Compared

1https://huggingface.co/
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Method MRQA Others
NQ HP SQA News Avg. WG Yelp SciTail PAWS Avg.

FT 75.1 77.5 81.1 65.2 74.7 61.9 96.7 95.8 94.1 87.1
PT 67.9 72.9 75.7 61.1 69.4 49.6 95.1 87.9 55.8 72.1

BitFit 70.7 75.5 77.7 64.1 72.0 57.2 94.7 94.7 92.0 84.7
Adapter 74.2 77.6 81.4 65.6 74.7 59.2 96.9 94.5 94.3 86.2
LoRA 73.9 77.1 80.1 64.9 74.0 60.2 96.4 94.5 94.2 86.3
SPoT 68.2 74.8 75.3 58.2 69.1 50.4 95.4 91.2 91.1 82.0

ATTEMPT 70.4 75.2 77.3 62.8 71.4 57.6 96.7 93.1 92.1 84.9
MPT 72.0 75.8 77.2 63.7 72.2 56.5 96.4 95.5 93.5 85.5

MixDA 71.2 76.1 78.3 63.9 72.4 55.2 95.7 50.8 82.7 71.1
Adamix 73.2 77.5 80.4 65.2 74.1 59.8 96.6 96.0 94.0 86.6
PEMT 75.10.04 78.30.10 81.80.09 65.90.12 75.30.02 62.30.08 97.00.06 96.90.69 94.30.08 87.60.18

Table 2: Results on MRQA and the Others benchmark. Our results are averaged over three runs and subscripts
indicate standard deviation.

k-shot Method GLUE & SuperGLUE
STS-B MRPC RTE CoLA Multi BoolQ WiC WSC CB Avg.

4
PT 88.8 68.1 56.3 27.4 61.8 61.6 51.2 60.4 53.5 58.8

MPT 89.1 68.1 62.6 34.8 62.2 62.2 52.9 67.3 73.6 63.6
PEMT 89.2 78.4 64.0 44.7 72.0 71.0 62.1 44.2 78.6 67.1

16
PT 87.8 68.1 54.7 28.5 60.3 61.9 48.9 44.2 63.5 57.5

MPT 89.1 70.1 64.8 32.1 64.5 63.3 49.8 67.3 78.6 64.4
PEMT 89.8 86.8 69.8 43.4 72.4 74.0 66.5 44.2 82.1 69.9

32
PT 87.5 68.1 54.7 23.2 59.2 61.7 52.6 67.3 67.8 60.2

MPT 89.7 74.5 59.7 30.8 63.3 68.9 53.9 67.3 82.1 65.6
PEMT 89.8 86.3 71.9 45.5 72.2 74.4 61.8 51.9 85.7 71.1

Table 3: Few-shot learning results on GLUE with 4, 16, and 32 training examples.

with GLUE and SuperGLUE, the data sizes of these
two datasets are larger, and the contexts of the sam-
ples are longer. Due to these complexities, the
performance of previous PEFT methods is signifi-
cantly inferior to full fine-tuning. From the results,
PEMT successfully outperforms full fine-tuning
on these datasets, suggesting the stability and ro-
bustness of PEMT across different data sizes and
context lengths.

Few-shot. Following prior works, we conduct
few-shot experiments on GLUE and SuperGLUE
benchmark to measure the generalization of PEMT
to new tasks with only a few training examples
available (k ∈ {4, 16, 32}). Table 3 shows the
results. With limited data resources, our method
still yields a significant improvement, especially
on some tasks such as WiC, MultiRC, CoLA, and
MRPC. Another interesting observation is that the
improvement of PEMT over baselines becomes
more pronounced as the number of training sam-
ples increases. This further underscores that the
task-shared knowledge of MPT gradually fades dur-
ing the training process of downstream tasks when

more training data is provided. In contrast, PEMT
freezes the source task adapters, which not only
preserves shared knowledge to the greatest extent
possible but also sufficiently exploits the associa-
tions and distinctions across various tasks.

5 Analysis

We conduct further analysis to investigate the ef-
fectiveness of different components of PEMT.

Weights of Source Adapters. In order to ex-
plore how the weights of source experts change on
various target tasks, we collect the outputs of the
MoE gate and visualize them through histograms
as shown in Figure 4. As observed, there are obvi-
ous tendencies and priorities in the weight distri-
bution. For GLUE and SuperGLUE benchmarks,
the knowledge of the MNLI plays a dominant role,
with a weighting of more than 50% of all tasks. The
contributions of some individual tasks are close to
0 under the constraint of Task Sparsity Loss. Con-
trastively, the distribution of weights on MRQA
is totally different, where the two tasks SQuAD
and ReCorD account for about 80% of the weights.
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Figure 4: The source expert weight distribution in GLUE, SuperGLUE, MRQA and Others benchmarks.

Number of Source Task STS-B MRPC RTE CoLA Multi BoolQ WiC WSC CB Avg.
1 91.3 86.8 80.6 66.3 76.1 81.5 65.4 67.3 92.9 78.7
2 91.0 87.8 83.5 64.3 75.4 82.1 68.3 67.3 92.9 79.2
4 91.3 89.2 82.0 64.2 74.9 82.6 68.7 67.3 92.9 79.2
6 91.1 89.7 83.0 67.0 75.5 82.6 68.7 67.3 94.1 79.8

Table 4: Average scores on GLUE and SuperGLUE benchmark with different number of source tasks.

Method Train(s) Infer(s) Mem(GB)
FT 493.17 0.78 8.57

LoRA 391.60 0.76 5.28
Adapter 377.00 0.79 5.74

MPT 2163.30 5.53 50.57
ATTEMPT 2177.41 5.58 50.86

Number of Source Task for PEMT
1 364.35 0.73 5.56
2 433.96 0.85 8.78
4 478.60 0.95 10.77
6 551.39 1.11 12.64

Table 5: Comparison of efficiency on CoLA task.

The reason is that all the three datasets MRQA,
SQuAD and ReCorD belong to the Q&A category,
which also indicates the correlation guided MoE
module and the task sparsity loss effectively work
as expected.

Number of Source Tasks To substantiate the
scalability of PEMT, we investigate how the perfor-
mance changes when different numbers of source
tasks are used in Stage 1. As shown in Table
4, compared to MixDA, PEMT exhibits a grad-
ual improvement as the number of source tasks
increases, which is different from the results of
existing methods (Diao et al., 2023). This obser-
vation suggests the capability of PEMT to suffi-
ciently capture the commonalities and differences
among various tasks, which demonstrates a cer-

No. Ablation Avg. Score
1 PEMT with LoRA 79.8
2 w/o description 79.0
3 w/o correlation 78.3
4 w/o correlation and MoE 76.6
5 PEMT with Adapter 79.0

Table 6: Results of ablation studies on GLUE and
SuperGLUE benchmark.

tain degree of continual learning proficiency. We
also conducted efficiency experiments on the CoLA
task, with specific experimental details provided
in Appendix B. As shown in Table 5, compared to
MPT and ATTEMPT, PEMT used a more concise
prompt, achieving advantages in training, infer-
ence efficiency, and memory usage. However, we
also observed that as the number of source tasks
increased, the computational efficiency of PEMT
gradually declined.

Task Description Prompts. As introduced in
Section 3.1, we initialize the task prompt with a sen-
tence of task description. To measure the effective-
ness of this method in maintaining consistency in
task representation, we replace it with a randomly
initialized prompt and keep the prompt length the
same. As shown in Table 6 (Row 2), the averaged
score on the two benchmarks decreases by 0.8%
without initialization with task descriptions.
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Correlation Guided Task Prompt. We conduct
experiments to evaluate the effectiveness of task
correlation features in facilitating the model to se-
lect the optimal source expert. We remove the
entire prompt module in both source task training
and target adaptation while maintaining the MoE
module. For the MoE gate, we use an average pool-
ing on the hidden states of the previous FFN layer
as input. The ablation study in Table 6 (Row 3)
shows that task correlation features produce a 1.5%
average performance improvement.

Mixture-of-Source-Adapters. We further inves-
tigate the effectiveness of the source adapters on
target adaptation. To this end, we remove both the
target prompt and the source adapters, while only
maintaining the task-specific adapter after each
FFN layer. This change degenerates the model
to the simple variant of Adapter which inserts an
adapter module into each multi-head attention and
FFN layer. We evaluate the performance on target
adaptation without training on source tasks. The
results in Table 6 (Row 4) show that, without the
task prompt and source adapters, the performance
drops sharply by 3.2% on average.

6 Conclusion

In this paper, we propose PEMT, a new parameter-
efficient fine-tuning framework that is capable of
adapting the knowledge from multiple tasks to the
downstream target tasks. PEMT is facilitated with
the correlation features between tasks and suffi-
ciently leverages the task-specific knowledge of
source tasks with prompt tuning and the mixture-of-
experts architecture. We also introduce novel meth-
ods to improve prompt initialization and model
sparsity. Experiments are conducted on a compre-
hensive range of datasets involving multiple tasks
and domains and the results demonstrate PEMT
significantly outperforms existing SOTA methods.

Limitations

The model’s inference latency rises proportionally
with the number of experts, prompting the necessity
to identify a stable reparameterization for merging
the weights of multiple experts or to explore a re-
liable pruning method. Additionally, the entire
framework involves a two-stage transfer learning
process. Although this two-stage architecture sig-
nificantly enhances performance on downstream
tasks, it incurs substantial training overhead and

data costs, and also introduces potential risks of
data leakage or model attacks.
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A Task Description Details

We designed task descriptions based on the dis-
tinctive features of various tasks. Take MNLI
task as an example, we use a description “Given a
premise sentence and a hypothesis sentence, pre-
dict whether the premise entails the hypothesis,
contradicts the hypothesis, or neither” to initialize
the continuous prompt vectors prepended to the
input. The descriptions for all tasks are shown as
Table 9.

Param Value
Optimizer AdamW

Learning rate 5e-4
Batch size 128

Warmup steps 500
Expert dimension 64
Training epochs 5

Learning rate schedule linear decay

Table 7: Stage 1 training: experimental setup.

Param Value
Optimizer AdamW

Learning rate {6e-4, 1e-3}
Batch size {64, 128}

Expert dimension 64
Training epochs 20

Seed {42, 1024, 4096}
MoE loss factor 0.1

Learning rate schedule linear decay

Table 8: Stage 2 training: experimental setup.

B Implementation Details

We use down projection dimension r = 64 in both
source training and target adaptation. For source
training, we train PEMT on each source task for 5
epochs. For target adaptation, we train all of the
baselines for 20 epochs on small datasets with less
than 10k examples, 10 epochs on medium size data
with more than 10k examples, and 5 epochs on
MRQA datasets. We limit the maximum training
data number of Yelp-2 to be 100k samples. We
run inferences on the test data using the model
with the best development performance. We set
the maximum token length to be 512 for MRQA
datasets, 348 for MultiRC and 256 for all of other
datasets. We set the maximum length of the input
to be 256, 256, 512, 256 for GLUE, SuperGLUE,

MRQA 2019, and Others task set, respectively. We
set the maximum length of input to be 348 for
MultiRC. The details for training parameters are
shown in Table 7 and Table 8. For the efficiency
experiments in Table 5, we meticulously measured
the time and memory consumption during both the
training and inference stages. All the efficiency ex-
periments were conducted on a single A800 GPU
with a batch size of 128 and precision set to fp32,
with a prompt length of 100 to ensure consistency
with their papers for MPT and ATTEMPT. We uti-
lized the Transformers library to calculate GPU
memory usage.
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Task Description
QNLI Given a question and a context sentence, determine whether the context sentence contains the

answer to the question.
MNLI Given a premise sentence and a hypothesis sentence, predict whether the premise entails the

hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral).
QQP Given a pair of sentences, determine if the two sentences are semantically equivalent or not.
SST-2 Given a sentence, predict whether a given sentence expresses a positive or negative sentiment.
ReCoRD Given a passage and a cloze-style question about the article in which one entity is masked out,

predict the masked out entity from a list of possible entities in the provided passage.
SQuAD Given an article and a corresponding question about the article, answer the question accurately

based on the provided context in the articles.
CoLA Given a sentence, judge the grammatical acceptability of the sentence.
RTE Given a premise sentence and a hypothesis sentence, determine whether the hypothesis can be

inferred from the premise.
MRPC Given a pair of sentences, determine whether the two sentences are semantically equivalent or not.
STS-B Given a pair of sentences, measure the degree of semantic similarity or relatedness between pairs

of sentences.
CB Given a premise and a hypothesis, determine the type and strength of the commitment being

expressed.
WiC Given a target word and a pair of sentences, determine if a given target word in a sentence has the

same meaning in two different contexts.
WSC Given a set of sentences that contain an ambiguous pronoun, determine the referent of the ambiguous

pronoun based on the context provided.
BoolQ Given a question and a paragraph, determine if a given question can be answered with a simple

"true" or "false" based on a given passage of text.
Multi Given a passage of text and a set of related multiple-choice questions, where each question is

accompanied by several answer choices, select the correct answer choice for each question based
on the information provided in the passage.

MRQA Given an article and a corresponding question about the article, answer the question accurately
based on the provided context in the articles.

SciTail Given a premise and a hypothesis, classify the relationship between the premise and the hypothesis
as entail or neutral.

Yelp Given a Yelp sentence, predict the sentiment polarity (positive or negative) of customer reviews
from the Yelp dataset.

WG Given a sentence and two options, choose the right option for a given sentence which requires
commonsense reasoning.

PAWS Given a pair of sentence, where one sentence is a paraphrase of the other. Determine if the given
sentence pair is a paraphrase or not.

Table 9: Tasks descriptions for prompt Initialization
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