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Abstract

Large Language Models (LLMs), excel in
natural language understanding, but their ca-
pability for complex mathematical reasoning
with a hybrid of structured tables and unstruc-
tured text remain uncertain. This study ex-
plores LLMs’ mathematical reasoning on four
financial tabular question-answering datasets:
TATQA, FinQA, ConvFinQA, and Multihiertt.
Through extensive experiments with various
models and prompting techniques, we assess
how LLMs adapt to complex tables and math-
ematical tasks. We focus on sensitivity to
table complexity and performance variations
with an increasing number of arithmetic rea-
soning steps. The results provide insights
into LLMs’ capabilities and limitations in han-
dling complex mathematical scenarios for semi-
structured tables. Ultimately, we introduce a
novel prompting technique EEDP tailored to
semi-structured documents, matching or outper-
forming baselines performance while providing
a nuanced understanding of LLMs abilities.

1 Introduction

In the constantly evolving realm of artificial in-
telligence, Large Language Models (LLMs) have
risen as cutting-edge tools for natural language un-
derstanding. They excel in a wide array of NLP
tasks, including machine translation (MT), text
summarization, question answering, and code gen-
eration. One specific area where LLMs’ mathe-
matical reasoning abilities come under scrutiny is
the domain of numerical reasoning tasks. Past re-
search has delved into the potential of language
models for mathematical reasoning tasks, as seen
in studies such as in Amini et al. (2019); Upadhyay
and Chang (2017); Patel et al. (2021); Cobbe et al.
(2021). These investigations provide a means to
evaluate the performance of language models when
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The Goldman Sachs Group Incorporation

Notes to Consolidated Financial Statements
The table below presents a summary of Level
3 financial assets.

Financial Asset Dec. 2017
Cash Instruments $15,395
Derivatives $3,802
Other Financial Instruments $4

Q: What was the total value of Level 3 finan-
cial assets for Goldman Sachs in December
2017?

A: $15,395 + $3,802 + $4 = $19,201

Figure 1: An example of a semi-structured financial docu-
ment question answering.

it comes to solving mathematical problems, rang-
ing from straightforward math word problems to
more complex ones.

However, the problem becomes significantly
more challenging when we encounter a hybrid of
structured such as semi-structured tables and un-
structured text, as shown in example in figure 1.
Such tables are common in documents such as
invoices, health records, and financial reports in
corporate settings. In the financial domain, these
tables present numerical data in a structured for-
mat, including income statements, balance sheets,
cash flow statements, shareholder equity data, and
annual reports. The majority of NLP models are
primarily trained to handle raw unstructured tex-
tual data, which limits their ability to reason over
semi-structured data, such as tables, or more in-
tricate hybrids of tables and text, as seen in Chen
et al. (2020b); Aly et al. (2021); Chen et al. (2020a,
2021a). Tables, especially these with intricate rela-
tionships and dependencies, often necessitate multi-
hop reasoning, connecting information across mul-
tiple steps, as shown in Gupta et al. (2020).

NLP models may encounter difficulties in per-
forming such multi-step reasoning, particularly
when dealing with complex mathematical opera-
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tions involving tables, as highlighted in Li et al.
(2022). Previous research such as Chen (2023),
exemplified these issues and demonstrated LLM
capacity to process and reason with semi-structured
tables. However, these studies are somewhat con-
strained and don’t explicitly explore the models’
mathematical reasoning abilities. This is particu-
larly evident in data/tasks that involve a substantial
number of arithmetic reasoning steps, operate on
extreme orders of magnitude, or deal with intricate
tables where extracting the relevant information for
a query becomes challenging.

Moreover, when handling domain-specific docu-
ments, such as those in finance, a language model
must not only have the necessary domain knowl-
edge to craft the right approach for task-solving but
also the capability to manipulate structured data,
such as tables. Therefore, in this study, we aim
to fill this gap by providing both qualitative and
quantitative analyses of LLM’s ability to reason
on mathematical content on four finance datasets
i.e. FinQA (Chen et al., 2021b), TATQA (Zhu
et al., 2021), ConvFinQA (Chen et al., 2022b), and
Multihiertt (Zhao et al., 2022). These datasets fea-
ture questions demanding intricate numerical rea-
soning, combining semi-structured tables and text.
Each dataset provides pre-annotated executable pro-
grams for precise answer retrieval. Our goal is to
illustrate how model performance varies as the nu-
merical complexity of the underlying data and the
intricacy of the mathematical reasoning steps re-
quired to solve a query increase. Building upon
these observations, we propose a novel approach
termed (Elicit −→ Extract −→ Decompose −→
Predict) EEDP, designed to deconstruct model re-
sponses into discrete components. This innovative
method offers a deeper, more transparent insight
into the numerical limitations of the model when
tackling these tasks. Our contributions are as fol-
lows:

1. We conduct a comprehensive robust evalu-
ation of state-of-the-art Large Language Models
(LLMs) for tabular (hybrid) question answering,
with a specific focus on mathematical reasoning
tasks, using public financial tabular datasets to es-
tablish a thorough performance benchmark.

2. Our analysis is thorough and multifaceted,
encompassing both qualitative and quantitative as-
pects across several dimensions. We aim to provide
nuanced insights into the strengths and limitations
of LLMs in tabular (hybrid) question answering,

especially in scenarios involving mathematical rea-
soning.

3. Building upon qualitative analysis, we in-
troduce a novel and improved prompting method
called EEDP. Our novel approach not only en-
hances our understanding of model weaknesses
but also substantially enhances model performance
compared to existing prompting methods across
multiple models types.

Our metadata dataset and source code are avail-
able at https://vgupta123.github.io/eedp.

2 Metadata Annotations

We annotated four tabular datasets: FinQA,
TATQA, ConvFinQA, and Multihiertt with meta
information related to a.) reasoning steps, b.) ques-
tion category, c.) table length, d.) hierarchical
complexity e.) missing information. 1 Below, we
provide detailed information about these meta-data
annotations:

1. Number of Reasoning Steps: Including the
count of arithmetic operations in questions is cru-
cial. More operations reflect increased complexity
in reasoning, and their interdependence offers in-
sights into the models’ proficiency. This annotation,
applied across all four datasets, reveals their ability
in handling intricate arithmetic tasks. Refer to Fig-
ure 8 in Appendix A.4 for distribution of questions
based on the number of reasoning steps involved.

2. Question Categorization: In numerical rea-
soning, grasping the evolution from fundamental
arithmetic to advanced operations is crucial, mark-
ing a shift in cognitive complexity. As questions
advance, they typically involve more intricate com-
binations of operations and linguistic nuances. Our
research identify both the capabilities and limita-
tions of LLMs in understanding these concepts.

We establish 12 mathematical concept categories
(Table 1) with corresponding definitions, annotat-
ing each question. The dataset coverage across
these categories is shown in Figure 9 in Appendix
A.4. Notably, categories like DIVISION and RATIO

share similarities but differ in focus: DIVISION

involves the division operator, while RATIO en-
compasses ratios, fractions, and inverse problems.
CHANGE IN RATIO questions add complexity with
quantity changes requiring subtraction. Addition-
ally, we omit NEED-IN-DOMAIN-INFO due

1One author annotated the data, and the other checked for
accuracy; we took stringent measures to minimize errors.
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Concepts Definition

SUM Questions that require only the knowledge
of addition.

DIFFERENCE Questions that require only the knowledge
of subtraction.

PRODUCT Questions that require only the knowledge
of multiplication.

DIVISION Questions that require only the knowledge
of division.

RATIO Questions that require knowing fractional
forms, e.g., percentages, ratios.

CHANGE
RATIO

Questions involving the difference be-
tween two fractional forms, e.g., percent-
age changes, difference in ratios.

RANGE Questions requiring knowledge of the min-
imum and maximum of data observations.

COMPARE Questions necessitating a comparison
between mathematical quantities (e.g.,
greater than, less than).

AVERAGE Questions needing knowledge of the aver-
age, used to calculate the central tendency
of a group of data points.

IN-
DOMAIN-
INFO

Questions that require implicit knowledge
to understand domain-specific mathemati-
cal formulations (e.g., return on investment
(RoI), cost of goods sold (COGS), amorti-
zation rate, etc.).

TIME Questions explicitly involving mathemati-
cal operators for time-spans not in the table
or context.

COUNTING Questions requiring the counting of ele-
ments in a set or group of data points.

Table 1: Mathematical concept categories and definitions for
studying LLM concept comprehension abilities.

to domain-specific knowledge focus and TIME
questions due to limited sample size.

3. Table Length: Evaluating performance with
larger supporting tables is crucial. Larger tables
complicate multi-hop reasoning tasks by increas-
ing the amount of information, making it harder
to identify relevant evidence. We prioritize these
annotations for datasets like FinQA and Multihiertt,
where questions mainly use tables as supporting ev-
idence. Therefore, these annotations are confined
to these datasets. In Multihiertt, when multiple ta-
bles support evidence, we consider the one with the
highest row count i.e. maximum table length. The
dataset distribution for Multihiertt and FinQA w.r.t
table length (number of rows) is shown in Figure 6
in Appendix A.4.

4. Hierarchical Complexity: In hierarchical ta-
bles, such as those in Multihiertt, evaluating model
performance concerning the growing hierarchical
complexity in cells with critical information be-
comes paramount. To tackle this, we annotate each
example in Multihiertt with the hierarchy depth
of cells containing relevant information. For table

with multiple relevant cells, we consider the cell
with the highest hierarchical depth for our analysis.
Our approach to estimating hierarchy depth is illus-
trated in Figure 10. Figure 7(a) in Appendix A.4
illustrate how we calculate hierarchical complexity
for examples with multiple relevant rows at various
hierarchical depths.

5. Missing Information: Interpreting a table be-
comes challenging as the number of empty cells
increases. Empty cells indicate missing or unde-
fined information, leading to potential gaps in un-
derstanding.

Assessing empty cell proportions is crucial to
quantify data ambiguity. More empty cells sug-
gest higher uncertainty, which can hinder models’
ability to derive meaningful insights and impact rea-
soning accuracy. In Multihiertt, where tables are
hierarchical in nature and empty cells occur quite
frequently, we annotate examples with the empty
cells percentage, contributing to our understanding
of data ambiguity. For distribution of missing infor-
mation (empty cells proportions) across datasets,
refer to Figure 7 (b) in Appendix A.4.

Annotation Splits. We prioritized complex nu-
merical questions in our selection criteria, bal-
ancing this with resource constraints such as the
LLM context length limits. We also took into ac-
count tables with deeper hierarchies in Multihiertt
and multi-turn conversations in ConvFinQA. For
TATQA, we utilized 45% of the development set by
filtering out examples involving simple span selec-
tion. In the case of Multihiertt, we included 68% of
the test set by excluding examples where the table
length exceeds 40. For FinQA and ConvFinQA,
we employed the complete test and development
sets, respectively.

3 Experimental Results

In this study, we choose to experiment with LLMs
such as GPT-3.5-Turbo, GPT-4, PaLM-540B,
Mistral-7B-Instruct2, Llama-2-13B3 and
MAmmoTH-13B4. These LLMs are at the cutting
edge for both open-source and closed models
applications. Models like MAmmoTH-13B are
specifically fine-tuned during pre-training to excel
in mathematical reasoning tasks. For more detail
about the the model choices refer to Appendix A.2.

2https://huggingface.co/mistralai/Mistral-7B-Instruct-
v0.1

3https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
4https://huggingface.co/TIGER-Lab/MAmmoTH-13B
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LLMs Prompting Methods: For an instruction-
tuned LLM, it’s assumed that we give the model a
task-specific instruction I accompanied with a few
(usually k ∈ {2, 4}) demonstrations DT of a task
T. We experiment with the following prompting
techniques:

(a.) Direct: In this setup, we explicitly in-
struct the models to abstain from providing ex-
planations and just return the final answer to the
posed question. For this scenario, DT contains
{(pi, qi, ai)}ki=1 where p is the premise (table-text),
q is the question, and a is the ground-truth answer.

(b.) CoT: Moving forward, we experiment with
the chain-of-thoughts prompting strategy where
we instruct the model to output the explanation to
the answer derived by it. Here, our DT contains
{(pi, qi, ei)}ki=1 where p is the premise which in-
cludes the table and the associated text, q is the
question and e is the explanation of the answer.

(c.) PoT: In this case, the expected response
is a code derivation of the answer. Here, DT con-
tains {(pi, qi, ci)}ki=1 where p is the premise which
includes the table and the associated text, q is the
question and c is the code-derivation of the answer.

(d.) Decomposers: (Ye et al., 2023) proposed
to address the challenge of handling large tables
by decomposing them into more manageable sub-
tables. Similarly, complex questions are handled
by breaking them down into simpler subquestions.
Decomposition proves effective with SQL tables,
facilitating the removal of distracting details while
retaining all supporting evidence. Questions are
first parsed to break them down into simpler, more
manageable subquestions. The model then ad-
dresses each subquestion independently before
composing the answers to arrive at the final so-
lution. In this case, our demonstration set DT con-
tains {(p′

i, ⟨q1, q2, ..., qn⟩, ai)}ki=1 where p
′

is the
premise obtained by the irrelevant information re-
moval to the question from the original premise
p and ⟨q1, q2, ..., qn⟩ are the subquestions whose
answers lead to the final answer.

EEDP Prompting Strategy: We propose a
novel prompting strategy: Elicit −→ Extract −→
Decompose −→ Predict. Figure 4 show an illustra-
tion of our EEDP approach. Below are the detail
of each EEDP step:

1. Elicit: We prompt the model explicitly to first
elicit relevant domain knowledge for answer-

ing a given query.

2. Extract: Conditioned on the table, question
and the elicited domain knowledge, the model
extracts supporting evidences to answer a
given question.

3. Decompose: We instruct the LLM to break
a complex mathematical reasoning task into
multiple atomic operations and compose the
operations to arrive at the final answer.

4. Predict: The model finally returns the derived
answer in the above steps.

Figure 11 shows a example for EEDP strategy
with one shot.

Results and Analysis. Table 2 shows a compar-
ison in performance between different prompting
strategies. Despite being a single prompt, EEDP
demonstrates comparable or superior performance
compared to PoT. Notably, we outperform PoT
significantly for PaLM-2-540B and LLAMA-2-13B
across most datasets. Moreover, while PoT relies
on external tools for executing mathematical pro-
grams/code to obtain answers, EEDP exclusively
utilizes LLM for all tasks, including evidence ex-
traction, operation identification, and execution,
ensuring precision throughout the process.

As shown in Table 2, the Decomposers prompt-
ing strategy exhibits a much poorer performance
compared to other strategies. The reason behind
this was statistically found to be the inaccurate for-
mation of subtables from the main table, leading to
information loss as described in the previous para-
graph. The performance of EEDP either surpasses
or matches very closely with that of PoT. The num-
ber of shots was adjusted depending on the context
length of the model.

We can see that MAmmoTH-13B model, which is
fine-tuned on the MathInstruct dataset (Yue et al.,
2024) containing Instruction-Response pairs where
the responses are a hybrid of CoT and PoT ratio-
nales, fails to perform well with the EEDP method-
ology. We argue that this is due to two potential
reasons: (a.) Reduction of the number of shots
to adjust the context length as the EEDP response
is longer than that of the other methods, and (b.)
Finetuning may contribute to suboptimal perfor-
mance due to its alignment with a particular style
and format of responses, potentially limiting the
model’s adaptability and generalization to other
diverse contexts.
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Dataset Model Direct CoT PoT EEDP Decomposers

GPT-4 55.81 86.91 89.99 88.67 47.46
GPT-3.5-Turbo 31.38 77.57 82.11 79.73 28.53

TATQA PaLM 2-540B 44.66 62.93 61.60 81.51 57.94
Llama 2-13B 3.36 35.95 34.16 40.95 25.93
MAmmoTH-13B 19.11 56.25 10.02 4.37 22.89
Mistral-7B 10.92 59.14 16.53 56.06 7.24

GPT-4 65.12 72.38 75.26 76.05 44.93
GPT-3.5-Turbo 40.47 59.18 68.97 61.88 32.33

FinQA PaLM 2-540B 30.33 34.79 30.41 61.95 46.38
Llama 2-13B 1.80 25.34 12.97 30.47 11.91
MAmmoTH-13B 22.83 35.32 15.86 35.05 17.65
Mistral-7B 26.11 34.23 10.56 34.86 12.34

GPT-4 63.10 71.19 78.81 77.91 18.76
GPT-3.5-Turbo 37.62 48.33 61.19 61.75 10.50

ConvFinQA PaLM 2-540B 20.19 38.00 40.14 63.42 22.32
Llama 2-13B 3.80 29.45 29.92 39.42 10.35
MAmmoTH-13B 21.61 46.08 8.78 32.77 7.83
Mistral-7B 12.35 48.45 14.48 36.57 11.16

GPT-4 41.35 55.13 67.23 70.32 36.86
GPT-3.5-Turbo 25.88 42.33 52.18 49.65 20.61

Multihiertt PaLM 2-540B 14.20 20.67 36.52 37.97 20.19
Llama 2-13B 1.54 30.66 18.12 24.15 16.86
MAmmoTH-13B 10.12 18.56 6.57 18.36 11.87
Mistral-7B 14.909 22.92 14.94 10.97 11.63

Table 2: Comparison of performance of different models tested against a variety of prompting strategies

EEDP’s Computational Efficiency EEDP func-
tions as a unified single-prompt method, minimiz-
ing computational complexity. Unlike methods like
PoT, which rely on external tools, EEDP operates
independently. When assessing computational cost,
we consider API calls and token generation. Since
EEDP uses a single-step prompting approach, only
one API call is needed per query, making its com-
putational cost comparable to methods like CoT.
For inference with open-source models, we used
hardware with an A40 40GB GPU. Processing one
dataset per model using the vLLM library took
approximately 10 hours.

4 Where do LLMs fail?

Through manual inspection, we rigorously evaluate
the EEDP responses against the meta-annotations
from section 2 as ground-truth benchmarks for ex-
traction and model reasoning accuracy. The rea-
soning programs represent sequences of arithmetic
operations necessary to derive the final answer, uti-
lizing values extracted from supporting evidence as
operands. To assess calculation accuracy, we manu-
ally identify the model’s instantiation and precision
errors. Our EEDP prompt ensures that the model
predominantly outputs responses in the expected
format, with exceptions being rare. However, since
we manually analyze all outputs, we do not penal-
ize the model for format deviations but rather for

incorrect outputs. Penalties are applied only when
the model makes errors in extraction, reasoning,
and/or calculation. Below, we categorize the EEDP
response errors in detail based on their origins:

Dataset Error Type Per.(%)

FinQA

Extraction E1 10.38
E2 25

Reasoning R1 25
R2 15.57

Calculation C1/C2 24.06

ConvFinQA

Extraction E1 8.45
E2 14.08

Reasoning R1 19.72
R2 36.62

Calculation C1/C2 21.13

TATQA

Extraction E1 13.79
E2 31.03

Reasoning R1 22.41
R2 5.17

Calculation C1/C2 27.59

Multihiertt

Extraction E1 20.5
E2 31.5

Reasoning R1 15.5
R2 12

Calculation C1/C2 20.5

Table 3: Error Analysis on Various Datasets. In this table,
Extraction.E1: Missing Evidences, Extraction.E2: Wrong
Evidences, Reasoning.R1: Insufficient Domain Knowledge,
Reasoning.R2: Question Misinterpretation, Calculation: In-
stantiation (C1) and Precision errors (C2)

1. Incorrect Extraction: This category encom-
passes errors where the model faces difficulties
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in accurately identifying and extracting the perti-
nent information necessary for effective problem-
solving. These errors point to challenges in retriev-
ing precise information. These errors can further
be subdivided into two categories

• Missing/Incomplete Evidences (E1): The
model fails to extract all the necessary evi-
dences which serve as ingredients to derive
the final answer.

• Wrong Evidences (E2): The model extracts
wrong values for variables as supporting evi-
dences from the premise.

2. Incorrect Reasoning: Errors in reasoning oc-
cur when the model struggles to formulate an appro-
priate and contextually relevant approach to tackle
a given problem. Possible reasons include a lack of
domain knowledge or an inaccurate interpretation
of the posed question. Consequently, this error type
can arise from two sources.

• Deficit in Domain Knowledge (R1): These
errors occur when the model attempts to de-
rive an answer to the posed question using a
wrong formula for domain-specific measures,
for eg. COGS, ROI etc.

• Question Misinterpretation (R2): These
errors occur when the model interprets the
question differently and provides responses
that are not aligned with the intended query.
Overall, the model’s outputs lack grounding
in the original question posed to it.

3. Incorrect Calculation: This variety of errors
include those where the model commits mistakes
due to calculation mistakes. This can be of two
types as described below.

• Incorrect Instantiation (C1): These include
cases if the model extracts the right evidences,
uses the right derivation formula but instanti-
ates the variables incorrectly with the values
resulting in an incorrect answer.

• Precision Error (C2): Language models em-
ploy mathematical algorithms for arithmetic
operations, but their results may not always
be perfectly accurate due to insufficient data
pattern coverage or introduced biases during
training. Consequently, they can sometimes
generate outputs with slight inaccuracies or
deviations from correct results. We show a
detailed analysis in A.1.

Analysis: The above categorization provides a
nuanced understanding of the diverse challenges
and shortcomings exhibited in different facets of
mathematical reasoning. We observe that in a lot of
cases, the error propagates because of a deficiency
in domain knowledge. It is critical for both evi-
dence extraction and reasoning. Despite possessing
general domain knowledge owing to the massive
amount of data these models have been pre-trained
upon, these models may require explicit prompts
to elicit the specific domain knowledge needed for
a particular question. Furthermore, errors can arise
due to the models’ limited proficiency in multi-step
reasoning, especially in tackling questions involv-
ing multiple arithmetic operations in a sequence.

We give a quantitative measure of each type of
errors for each of the 4 datasets we consider for
our study in Table 3. We also provide examples
corresponding to each error category in figures 12,
13, 14, 15, 16 and 17. Statistically, we find that
reasoning errors contribute a significant chunk to
the total number of errors. In case of complex hier-
archical tables like that in Multihiertt, the model is
found to struggle with extracting the right support-
ing evidences from the premise for a given question.
Calculation errors can be taken care of if a third-
party calculation tool (an external agent) is chained
to the language model.

5 Analysis on Reasoning Annotations

We analyse model performance on the basis of fine-
grained annotations as described in the section 4.

1. Performance vs Number of Reasoning Steps.
We investigate model performance with increasing
mathematical reasoning steps, as shown in Figure 2.
This analysis provides insights into models’ ability
to handle varying task complexities. As expected,
performance decreases with more reasoning steps,
indicating LLMs’ challenges in retrieving informa-
tion and reasoning as complexity grows.

Anomalies are observed in ConvFinQA, where
accuracy improves after greater than or equal to
two reasoning steps, potentially due to questions
referring to answers of prior conversation turns.
Anomalies like these warrant further investigation
beyond this study’s scope.

2. Performance across Question Types. We
analyze the performance trends across different
question categories, as defined in Table 1, to assess
the models’ understanding of various mathematical
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Figure 2: A comparison showcasing the performance trends across various datasets with the increasing number of reasoning
steps. The analysis contrasts the effectiveness of EEDP (our method) against PoT in addressing complex reasoning.

and financial concepts. Figure 3 shows that EEDP
consistently performs better than or as well as PoT
across all datasets. The improvement is particu-
larly pronounced for PaLM-2-540B in all question
categories.

3. Performance across Arithmetic Operations.
Figure 5 in Appendix A.1 shows that for relatively
simpler arithmetic operations like addition and sub-
traction, the effect of order of magnitude of the
operands is less profound as compared to harder
arithmetic operations such as multiplication and
division. We observe the trend in the performance
accuracy with the growing and diminishing orders
of magnitude. We also observe bigger and more
capable models such as GPT-4, GPT-3.5-TURBO
and PaLM 2-540B perform much better on simpler
addition, subtraction task in comparison to multi-
plication, division task. For more details on refer
to the Appendix A.1.

6 Other Related Works

6.1 LLMs on Mathematical Reasoning
Pre-trained Language Models (PLMs) excel in
NLP tasks (Devlin et al., 2019; Zhuang et al., 2021)

by leveraging extensive textual corpora to acquire
world knowledge (Guu et al., 2020). Expanding
PLMs for math-related tasks has been challeng-
ing due to their non-specific training. Recent at-
tempts include MWP-BERT and Minerva (Liang
et al., 2022; Lewkowycz et al., 2022), but curating
high-quality math data remains difficult. To bridge
the gap, researchers fine-tune PLMs for specific
math tasks. Notable works, like Bhaskara, Self-
sampler, Aristo, FinQANet, TAGOP, MT2Net, and
others (Mishra et al., 2022; Ni et al., 2022; Clark
et al., 2021; Chen et al., 2021b; Zhu et al., 2021;
Zhao et al., 2022; Cao and Xiao, 2022; Welleck
et al., 2022), employ PLMs such as GPT-Neo and
RoBERTa for math problem-solving.

6.2 Tabular Question Answering

Handling diverse input formats in question answer-
ing, including structured tables and visual data,
poses challenges for language models. HybridQA
(Chen et al., 2020b) introduces questions requir-
ing reasoning over tables and text. MultimodalQA
(Talmor et al., 2021) adds visual inference. Our fo-
cus is on multi-hop question answering over tables
and text. TAPAS (Herzig et al., 2020) tackles table-
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Figure 3: A comparison showcasing the performance trends observed in various datasets across different question types. The
analysis contrasts the effectiveness of EEDP (our method) against Few-Shot PoT (PoT). Best viewed in color.

based questions without logical forms, while Tapex
(Liu et al., 2022) empowers generative models with
table reasoning.

Models like FinQANet, TagOP, and MT2Net
(Chen et al., 2021b; Zhu et al., 2021; Zhao et al.,
2022) employ a retriever module to extract sup-
porting facts from input financial reports, followed
by a reasoning module to derive the final answer.
Retrieving relevant evidence and conducting rea-
soning both demand domain-specific knowledge,
such as understanding financial transactions, iden-
tifying revenue trends, and interpreting complex
investment statements. Thus, reliance on an exter-
nal knowledge base becomes crucial for addressing
the challenges of domain-specific multi-hop ques-
tion answering.

6.3 Prompt Engineering

In-context Learning (ICL) equips Language Mod-
els (LLMs) with task examples and queries, en-
abling them to perform target tasks without updat-
ing model parameters (Brown et al., 2020; OpenAI,

2023). They excel in mathematical reasoning with
few-shot prompts but struggle with more complex
tasks. Methods like chain-of-thoughts (CoT) (Wei
et al., 2022) have improved LLM performance by
guiding them through intermediate reasoning steps.
Enhancing multi-step reasoning involves two main
approaches: improving in-context examples and
obtaining better reasoning steps. Some focus on
stable in-context example selection (Fu et al., 2023;
Rubin et al., 2022; Lu et al., 2023). Others adopt a
modular approach, using off-the-shelf tools (Schick
et al., 2023), program of thoughts (PoT) (Chen
et al., 2022a), or decomposition strategies (Zhou
et al., 2023; Dua et al., 2022; Khot et al., 2023).

Our task requires complex multi-step reason-
ing across diverse information sources. LLMs, as
demonstrated by (Chen, 2023), can reason over
structured tables without explicit encoding. They
also serve as versatile decomposers, breaking down
extensive evidence and complex questions (Ye
et al., 2023).
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7 Key Takeaways

Our Contributions. Our study aimed to delve
into the mathematical reasoning abilities of LLMs
within the context of financial documents where
models are tasked with complex hybrid (table-text)
question answering. This presents a significant
challenge, requiring models not only to provide ac-
curate numerical analysis but also to retrieve right
supporting evidence tailored to specific question
requirement. Moreover, it necessitates the extrac-
tion of necessary knowledge from the model’s pre-
trained parameters to address queries.

Firstly, we meticulously annotate popular finan-
cial datasets, such as FinQA, ConvFinQA, TATQA,
and Multihiertt, with detailed meta-information.
This includes specifying mathematical operations,
types of reasoning involved, table dimensions,
question types, and the depth of table hierarchy.
Furthermore, we conduct a manual error analy-
sis to quantify error types across multiple LLMs.
These detailed annotations are invaluable for an-
alyzing various dimensions where LLM models
encounter challenges. This, in turn, aids in the de-
velopment of better prompting techniques such as
EEDP, aimed at enhancing LLMs’ mathematical
reasoning abilities. The resulting improvement in
performance with EEDP across multiples datasets
serves as compelling evidence of the effectiveness
of this approach.

What did we learn? Our analysis revealed that
LLMs can accurately handle addition and subtrac-
tion tasks e.g. modle perform fairly when calcu-
lating total expenses or profits, but struggle with
multiplication and division e.g. model performs
poorly with questions requiring reasoning oper-
ations involving proportions, ratios, percentages,
and division. Moreover, as the complexity of the
data increases either through a higher absolute or-
der scale or more decimal numbers, model per-
formance degrades. Model performance also de-
grades with increasing number of reasoning steps
and lengthy complex hierarchical table structures.
e.g. in complex datasets with hierarchical struc-
tures such as Multiheirtt, TATQA, incorrect extrac-
tion leads to modeling errors. Similarly, on queries
involving multiple conversational turns, such as
those in ConvFinQA, model perform poorly due
to reasoning failures, like misinterpreting multiple
queries longer context. Across all models, incor-
rect reasoning and incorrect extraction consistently

emerge as common sources of errors. For smaller
models, even straightforward calculations, result in
errors due to imprecise calculations.

EEDP vs other methods

(a.) EEDP vs PoT: PoT enhances LLM infer-
ence with the use of variable names for the support-
ing values extracted from the premise and prompts
the LLM to express their thought process in the
form of programs. The model output is a program
which is executed externally to derive the final an-
swer. EEDP proposes to decompose a complex
reasoning task into simple atomic steps whose so-
lutions can be composed to give the final answer.
In PoT, they don’t make the language model do the
computation while in our case the language model
not only outputs the reason but also computes the
final answer. This distinction implies that PoT may
have an inherent advantage over EEDP.

(b.) EEDP vs Decomposers: The prompting
strategy proposed by (Ye et al., 2023) was orig-
inally designed for querying SQL tables, they
use LLMs to break down evidence and ques-
tions for SQL interpreters. In contrast, our ap-
proach addresses more complex scenarios involv-
ing both tables and text, requiring advanced reason-
ing skills beyond the capability of standard SQL
interpreters. Pruning a non-SQL table using this
method can lead to significant information loss
from the premise which can be a potential ingredi-
ent required to derive the final answer. Addition-
ally, this is an expensive method as it requires 3X
API calls as opposed to other prompting methods.
Moreover, EEDP is a unified prompting strategy
which integrates multiple solver elements into a
single unified prompt for elicitation, extraction, de-
composition and prediction.

8 Conclusion

In conclusion, our study delved into LLMs’ mathe-
matical reasoning in complex financial scenarios,
assessing their adaptability to mixed structured ta-
bles and unstructured text. Through rigorous ex-
perimentation, we uncovered insights into their
performance and limitations, presenting a tailored
prompting technique that outperformed other base-
line methods. Our findings advance understanding
of LLMs’ abilities in tackling intricate mathemat-
ical tasks within semi-structured documents, sug-
gesting directions for future research. Please refer
to appendix section A.3 for future work details.
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Limitations

The scope of this work is limited by the following
challenges:

Dataset Scarcity. There are not many datasets
dealing with numerical reasoning over semi-
structured data apart from the ones from financial
domain. As a future work, it would be interesting
to similar analysis across various domains such as
e-commerce, healthcare, sports and scientific tables
from research papers, uncovering new challenges
and insights. This expansion will enhance the appli-
cability and impact of our research within the NLP
community. However, creating tailored datasets for
these domains presents a significant challenge.

For now to ensure a comprehensive evaluation
of LLMs, we have integrated financial datasets that
offer diverse challenges. For instance, Multihiertt
evaluates model performance with intricate premise
structures, providing insights into handling com-
plex data hierarchies. ConvFinQA delves into the
intricate chains of numerical reasoning within con-
versational question answering contexts, offering a
unique perspective on dynamic data interpretation.
Moreover, FinQA and TAT-QA encompass a wide
array of reasoning types, with a significant por-
tion requiring domain-specific knowledge, thereby
broadening the evaluation spectrum.

Factors Isolation. It is essential to acknowledge
that there may be multiple factors influencing the
performance of large language models while deal-
ing with numerical reasoning over semi-structured
data. In our analysis, we have focused on specific
factors and trends, but it is important to recognize
that the overall performance is affected by a mul-
titude of variables. Marginalizing i.e. observing
the trend along one while keeping the rest as con-
stants or isolating a single factor is challenging and
cannot be done with real-world data. Additionally,
future investigations may benefit from simulating
controlled scenarios on synthetic and counterfac-
tual datasets to gain deeper insights into the impact
of individual factors on model performance.

Modeling Improvement. We emphasize our
analysis on prominent models such as GPT-4,
GPT-3.5-TURBO, and PaLM 2-540B due to their
substantial size and capabilities. Notably, other
open-sourced large language models like LLaMA
2-13B, MAmmoTH-13B and Mistral-7B-Instruct
did not exhibit satisfactory performance in numeri-

cal reasoning over semi-structured data. For more
detail about the the model choices refer to Ap-
pendix A.2. This accentuates the need for explor-
ing computationally feasible and cheaper models
that can deliver remarkable performance in tasks
involving numerical reasoning over heterogeneous
sources of information. Future experiments with
ample computational resources may involve explor-
ing larger open-source models like OLMo, Mixtral,
and DBRX, which have been recently released.
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A Appendix

A.1 How proficient are LLMs in performing
simple arithmetic operations?

To assess the effectiveness of Large Language Mod-
els in handling fundamental arithmetic tasks (ad-
dition (+), subtraction (-), multiplication (*), and

division (/)) across operands of varying magnitudes,
we generate a set of 2600 synthetic arithmetic ex-
pressions using GPT-4. This set includes 650 prob-
lems for each arithmetic operation. Within each
operation category, we categorize tasks into groups
based on a parameter denoted as τ :

τ = OOM( argmax
op

∥OOM(op)∥ )

where, argmax selects the operand op with the
greater absolute value of the order of magnitude,
and OOM represents the order of magnitude.

This approach is motivated by cognitive chal-
lenges commonly faced by humans, as they often
encounter difficulties with both high and low or-
ders of magnitude. Essentially, captures the order
of magnitude of the operand with the larger ab-
solute value among the two. For each arithmetic
operation, we establish groups with τ , ranging from
-6 to 6. Within each group, there are 50 arithmetic
expressions. This systematic grouping provides a
comprehensive assessment across various difficulty
levels based on operand magnitudes.

Analysis. Figure 5 illustrates that for simpler
arithmetic operations like addition and subtrac-
tion, the impact of the order of magnitude of the
operands is less significant compared to harder op-
erations like multiplication and division. We ob-
serve a trend in performance accuracy with increas-
ing and decreasing orders of magnitude. Larger
models such as GPT-4, GPT-3.5-TURBO, and PaLM
2-540B perform significantly better on addition and
subtraction tasks as compared to the multiplication
and division tasks.

A.2 Model Selection Criteria
Our model selection process was guided primarily
by resource constraints and the timeframe of our
research endeavor. We aimed to identify models
that represented the state-of-the-art (SOTA), such
as GPT-4, or those with a specific focus on mathe-
matical reasoning, such as MAmmoTH, aligning with
the parameters of our project. Here’s a breakdown:

1. Resource and Budget Constraints: Given
our limited computing resources and budget,
we meticulously selected models that could
provide valuable insights within the confines
of our project. Incorporating additional mod-
els would have been impractical given our
resource limitations.

The number of shots, indicated by shots = k,
was tailored to the context length of the model.
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Figure 4: Our EEDP Approach (a.) Instructions, and (b.) Demonstration.
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Figure 5: Accuracy of different arithmetic operations across different orders of magnitude.

Figure 6: Sample distribution of Multihiertt & FinQA datasets partitioned by number of rows in the supporting table.

3867



(a) Hierarchical Complexity (b) Empty Cells

Figure 7: Sample distribution of Multihiertt Dataset partitioned by (a) hierarchical complexity of the gold evidence.
(b) the percentage of empty cells in the supporting table.

Specifically, for models with a context length
exceeding the input length, we standardized
k to 4. For instance, we allocated 2 shots
for models like LLaMA and MammoTH due
to their constrained context length. However,
for other models capable of accommodating
larger contexts, we increased the number of
shots to 4. Additionally, we used a tempera-
ture of 0 and topp = 1 for our experiments.

2. Models with Mathematical Capabilities:
We prioritized models renowned for their
advanced mathematical prowess, such as
MAmmoTH, alongside state-of-the-art Large
Language Models (LLMs) like GPT-4. Our
goal was to gain deeper insights into the math-
ematical reasoning capabilities of cutting-
edge models within the context of financial
documents.

3. Better Prompting Approaches: Rather than
focusing solely on model diversity, we con-
centrated on exploring a variety of prompting
methods, particularly those aimed at enhanc-
ing mathematical reasoning. We believed this
approach would yield more valuable insights
into the performance of both LLMs and their
associated prompting techniques in real-world
financial tasks.

4. Excluding Underperforming Models:
While we experimented with various models,
such as Falcon-7B-Instruct and MPT-7B-
Instruct, we found them to underperform
significantly compared to models like LLaMA
and Mistral. Consequently, we excluded them

from detailed analysis. Future experiments
with ample computational resources may
involve exploring additional open-source
models like OLMo, Mixtral, and DBRX,
which have been recently released.

A.3 Other Modeling Techniques
Based on our research and the results obtained
from our proposed method ’EEDP’, we do have
several insights that could guide future model de-
velopment:

1. Domain-Specific Pre-training: Our method
"EEDP" suggests that LLMs could benefit
from pre-training that focuses on extracting
domain-specific knowledge. In the context of
financial documents, for instance, this could
involve training models on a corpus of finan-
cial texts, thereby enabling them to better un-
derstand and reason about financial concepts
and terminology.

2. Knowledge Elicitation: The elicitation step
in "EEDP" indicates the potential for design-
ing LLMs that can elicit or extract relevant
information from a given context more effec-
tively. This could involve developing mod-
els that are better at identifying and focusing
on key pieces of information in a document,
which is crucial for accurately answering ques-
tions about the document.

3. Modular Modeling: Our research introduce
a novel approach to the reasoning process,
wherein it’s broken down into modular steps.
In this methodology, Large Language Models
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(LLMs) handle different aspects of a task in
distinct stages. This division potentially en-
hances the overall accuracy and efficiency of
the model.

For instance, the model might begin by elic-
iting domain-specific knowledge, then pro-
ceed to extract relevant information from the
premise. Following this, it engages in reason-
ing about this information to answer a ques-
tion and finally derives the answer, using the
output from the preceding reasoning steps as
a reference point.

By potentially training individual expert mod-
els to handle each specific stage, we could
optimize performance for each distinct task.
This modular approach allows for specialized
processing of each step, thereby improving
the overall performance and interpretability of
the final output.

4. Hierarchical Structure Understanding:
Representing the input structure of the table
in a better format to the LLM could be benefi-
cial. One can also explore introducing special
positional encodings, similar to those used in
TAPAS, to serve as row and column IDs for
each cell. This approach would differ from
traditional positional encodings, which are de-
signed to capture the inherently linear struc-
ture of textual data. TThis integration would
facilitate the extraction of relvant information
from the table correctly, considering its struc-
ture more effectively, avoiding information ex-
traction errors. Another idea could be convert-
ing the premise containing the complex table
and text into a common representation such
as a knowledge graph. Furthermore, models
specifically tuned to answer to human queries
over complex documents in multiple conversa-
tional turns (like that in ConvFinQA) should
also be considered, as it’s a challenge for lan-
guage model’s to backtrack to their decisions
that were made previously in the conversation.

A.4 Metadata Annotations Dataset Coverage

Figure 6 displays the dataset distribution for Mul-
tihiertt and FinQA based on table length (number
of rows). Figure 7 (a) shows how we calculate hi-
erarchical complexity for examples with multiple
relevant rows at various hierarchical depths. For
the distribution of missing information (empty cell

proportions) across datasets, refer to Figure 7 (b).
Figure 8 for the distribution of questions by rea-
soning steps. We define 12 mathematical concept
categories, see Table 1) and annotate each ques-
tion accordingly. The dataset coverage for these
categories is shown in Figure 9. Our method for
estimating hierarchy depth is shown in Figure 10.
Figure 11 shows a example for EEDP strategy with
one shot. Figure 11 shows a example for EEDP
strategy with one shot.
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Figure 8: Sample distribution of examples in numerical reasoning on tabular datasets partitioned by the number of reasoning
steps involved. Clockwise (from top-left) : FinQA, ConvFinQA, TATQA, Multihiertt.

Figure 9: Sample distribution of Numerical & Tabular Reasoning Datasets partitioned by Question Concept Category types.
Clockwise (from top-left): FinQA, ConvFinQA, Multihiertt, TATQA.

3870



Years Ended December 31, 2009 2008

(in millions, except percentages)

Revenues
Management and financial advice fees $1,234 $1,339
Distribution fees $1,733 $1,912

Net investment income $297 $-43
Other revenues $85 $80
Total revenues $3,349 $3,288

Banking and deposit interest expense $133 $178

Total net revenues $3,216 $3,110

Expenses
Distribution expenses $1,968 $2,121
General and administrative expense $1,282 $1,138
Total expenses $3,250 $3,259

Pretax loss $-34 $-149

Question: What will Distribution fees reach in 2010 if it continues to grow at its current rate? (in millions)?

Gold Evidences:

• Table shows Distribution fees of Years Ended December 31, 2009 (in millions, except percentages) is

$1,733 .

• Table shows Distribution fees of Years Ended December 31, 2008 (in millions, except percentages) is

$1,912 .

Hierarchical Complexity: max(4, 4) = 4

Figure 10: This illustration demonstrates how the "hierarchical complexity" is determined for each supporting piece of evidence.
The hierarchical complexity corresponds to the number of levels or tiers of information structure within the table. The top
level (1) encompasses the table itself, which contains information about the results of operations in a firm’s Advice & Wealth
Management segment. The second level (2) includes columns specifying the years (2009, 2008), creating a substructure within
the table. The third level (3) involves the column "(in millions, except percentages)," and the fourth level (4) encompasses the
rows under categories like "Revenues," "Distribution fees," "Net investment income," and so on. To locate specific values like
"$1733" and "$1912", a retriever module needs to navigate through these four levels.
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Instruction: Please carefully analyze the provided information, perform necessary numerical calculations, and
provide accurate answers to the given question using the provided data. Take into account the pre-text, table, and
post-text when formulating your response.
When performing numerical calculations, ensure you gather the required information and follow a step-by-step
approach.

1. Elicit the most relevant domain fact or knowledge that might be useful for you to extract the right operands and
forming the right approach to the problem.

2. Translate table data into sentences and identify gold evidence for answering the question.

3. Define a sequence of atomic operations (Add, Subtract, Divide, Multiply, Greater, Min, Max, Exp) which take
into account only two operands at a time. Divide a complex task into a sequence of atomic operations defined
above.

4. Finally, conclude as: The final answer is <answer>.

Demonstration: “Effective Income Tax Rate”: A reconciliation of the United States federal statutory income tax rate
to our effective income tax rate is as follows: In 2019 and 2018 we had pre-tax losses of $19,573 and $25,403,
respectively, which are available for carry forward to offset future taxable income.

Year Ended Year Ended

December 31, 2018 December 31, 2019

United States federal statutory rate 21.00% 21.00%
Effective income tax rate 1.99% -0.01%

Question: What was the 2019 percentage change in pre-tax losses?

Response #:

Domain Knowledge: Pre-tax losses, or operating losses, refer to financial losses that a company incurs before
considering the effects of income taxes. To find the 2019 percentage change in pre-tax losses, we need to find the
difference between the new and the old value of the pre-tax losses, then divide the obtained difference by the old value
and multiply this value by 100.

Gold Evidences:

• The pre-tax losses in 2019 are $19,573.

• The pre-tax losses in 2018 are $25,403.

Steps:

1. Subtract 25403 from 19573.

• Response 1: 19573 - 25403 = -5830

2. Divide #1 by 25403.

• Response 2: −5830
25403

= −0.2295

3. Multiply #2 by 100.

• Response 3: −0.2295× 100 = −22.95

The final answer is -22.95%.

Figure 11: A Template for our proposed prompting strategy, EEDP with 1-shot demonstration.
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Regulatory capital, assets, and risk-based capital ratios for JPMorgan Chase and its significant IDI
subsidiaries under Basel III Standardized Transitional and Basel III Advanced Transitional at December
31, 2017, and 2016.

Basel III Standardized Transitional Basel III Advanced Transitional

(in millions) Dec 31, 2017 Dec 31, 2016 Dec 31, 2017 Dec 31, 2016

Regulatory capital
CET1 capital $184,375 $179,319 $184,375 $179,319
Tier 1 capital(a) $184,375 $179,341 $184,375 $179,341
Total capital $195,839 $191,662 $189,419 $184,637
Assets
Capital ratios(c)
CET1 13.8% 13.7% (e) 15.0%
Tier 1(a) 13.8% 13.7% (e) 15.0%
Total 14.7% 14.6% (e) 15.4%
Tier 1 leverage(d) 8.7% 8.6% 8.7%

Question: What is the sum of CET1 capital, Tier 1 capital, and Total capital in 2017? (in million)

Response #:

Domain Knowledge: In banking, CET1 capital, Tier 1 capital, and Total capital are used to measure a bank’s
financial health and stability. CET1 (Common Equity Tier 1) capital consists mainly of common shares and retained
earnings. Tier 1 capital is the core capital mainly comprising shareholders’ equity and disclosed reserves. Total capital
includes both Tier 1 capital and Tier 2 capital, which consists of hybrid capital instruments and subordinated debt.

Gold Evidences:

• Table shows JPMorgan Chase Bank, N.A. Basel III Standardized Transitional CET1 capital on Dec 31, 2017 as
$184,375 million.

• Table shows JPMorgan Chase Bank, N.A. Basel III Standardized Transitional Tier 1 capital on Dec 31, 2017 as
$184,375 million.

• Table shows JPMorgan Chase Bank, N.A. Basel III Standardized Transitional Total capital on Dec 31, 2017 as
$195,839 million.

Steps:

1. Add CET1 capital and Tier 1 capital.

• Response 1: $184,375 + $184,375 = $368,750

2. Add #1 and Total capital.

• Response 2: #1 + $195,839 = $564,589

The final answer is $564,589 million.

Ground-Truth Steps: $184,375 + $184,375 + $195,839 + $184,375 + $184,375 + $189,419 = $1,122,758

Reason: The model missed adding JPMorgan Chase Bank, N.A. Basel III Advanced Transitional CET1 capital
($184,375), Tier 1 ($184,375), and Total Capital ($189,419) in 2017.

Figure 12: Error due to missing evidences
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Year Life/Fin. Gen. Rtd. Fin. Asset Total
Ins. Ins. Services Services Mngmt

2006
Fixed Maturities:
Bonds available for sale $67,994 $288,018 $1,357 $29,500 — $386,869
Bonds held to maturity $21,437 — — — — $21,437
Bond trading securities $1 $10,835 — — — $10,836
Equity Securities:
Common stocks $4,245 $8,705 — $226 $80 $13,256
Preferred stocks $1,884 $650 $5 — — $2,539
Other Assets:
Mortgage and other loans $17 $21,043 $2,398 $4,884 $76 $28,418
Flight equipment — — $39,875 — — $39,875
Total Invested Assets $116,059 $428,825 $185,404 $68,280 $3,373 $801,941

Question: What is the proportion of Asset Management to the total Mortgage and other loans receivable, net of
allowance in 2006?

Response #:

Domain Knowledge: Proportion refers to the relationship between two quantities, where one quantity is considered
in relation to the other. To find the proportion of Asset Management to the total Mortgage and other loans receivable,
net of allowance in 2006, we need to divide the value of Asset Management by the total value of Mortgage and other
loans receivable, net of allowance in 2006.

Gold Evidences:

• Table shows Asset Management of Total invested assets in 2006 is $68,280.

• Table shows Mortgage and other loans receivable, net of allowance (in millions) in 2006 is $28,418.

Steps:

1. Divide Asset Management by the total Mortgage and other loans receivable, net of allowance in 2006.

• Response 1: 68280
28418

= 2.4024

The final answer is 2.4024.

Ground-truth steps: 4884.0
28418.0

= 0.172

Reason: Asset Management in 2006 is taken as $68,280.0 by the model instead of $4,884.0 due to error in the
extraction of the ground-truth.

Figure 13: Error due to wrong evidences
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2013 2014 2015 2016 2017

Masco $138.48 $155.26 $200.79 $227.08 $318.46
S&P 500 Index $132.04 $149.89 $151.94 $169.82 $206.49
S&P Industrials Index $140.18 $153.73 $149.83 $177.65 $214.55
S&P Consumer Durables & Apparel Index $135.84 $148.31 $147.23 $138.82 $164.39

Question: What was the difference in percentage cumulative total shareholder return on Masco common stock versus
the S&P 500 Index for the five-year period ended 2017?

Response #:

Domain Knowledge: Cumulative total shareholder return is a measure of the overall performance of a stock over a
given period of time. It includes the change in the stock’s price as well as any dividends paid to shareholders during
that time.

Gold Evidences:

• The cumulative total shareholder return for Masco in 2017 is $318.46.

• The cumulative total shareholder return for the S&P 500 Index in 2017 is $206.49.

Steps:

1. Divide the cumulative total shareholder return for Masco in 2017 (318.46) by the cumulative total shareholder
return for the S&P 500 index in 2017 (206.49)

• Response 1: 318.46 / 206.49 = 1.5422

2. Subtract 1 from the quotient obtained in #1

• Response 2: 1.5422 - 1 = 0.5422

3. Multiply the value obtained in #2 with 100 to find the percentage difference

• Response 3: 0.5422 * 100 = 54.22

The final answer is 54.22%.

Ground-truth steps: [((318.46 - 100.0)/100.0)*100.0 - ((206.49 - 100.0)/100.0)*100.0] = 111.97

Reason: Wrong formula for return on investment

Figure 14: Example of an error caused due to insufficient domain knowledge
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Accr. Yield Carrying Amt. Allowance
(Beginning) (Beginning) (Beginning)

Beginning Balance $27 $920 $95
Purchases $1 $130 $0
Disposals/Payments Received $-11 $-594 $0
Accretion $-44 $44 $0
Builds (Reductions) to the Allowance $0 $0 $-18
Increase to Expected Cash Flows $-2 $19 $0
FX/Other $17 $-50 $0
Balance at December 31, 2010 $116 $469 $77

Question: What percentage did this total represent in relation to the carrying amount?

Response #:

Domain Knowledge: To find the percentage of a value (A) in relation to another value (B), divide the first value (A)
by the second value (B) and multiply it by 100. To find the combined total, add the two values.

Gold Evidences:

• The carrying amount of the company’s purchased distressed loan portfolio at December 31, 2010, was $392
million.

• The net allowance was $77 million as of December 31, 2010.

Steps:

1. Find the combined total of net allowance and the carrying amount.

• Response 1: 392 + 77 = 469

2. Calculate the percentage of net allowance in relation to the carrying amount.

• Response 2: 77
392

× 100 = 19.64

3. Calculate the percentage of the combined total in relation to the carrying amount.

• Response 3:
(
469
392

)
× 100 = 119.64

The final answer is 119.64%.

Ground-truth steps: [(77/(392 + 77))*100] = 16.42%

Reason: By the phrase in relation to the question expected a ratio of quantity1/quantity2 but the model returned
quantity2/quantity1

Figure 15: Example of an error caused due to question misinterpretation
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2001 2000

Gain on Sales of Depreciable Properties $45428 $52067
Gain on Land Sales $5080 $9165
Impairment Adjustment $-4800 (4800) $-540 (540)
Total $45708 $60692

Question: What is the percent change in general and administrative expense from 2000 to 2001?

Response #:

Domain Knowledge: To find the percent change between two values, we need to find the difference between the new
and old values, divide the difference by the old value, and multiply the result by 100.

Gold Evidences:

• General and administrative expense decreased from $21.1 million in 2000 to $15.6 million for the year ended
December 31, 2001.

Steps:

1. Calculate the change in general and administrative expense by subtracting the 2001 value ($15.6 million) from
the 2000 value ($21.1 million).

• Response 1: 21.1 - 15.6 = 5.5

2. Divide the difference obtained in Step 1 by the general and administrative expense in 2000 ($21.1 million).

• Response 2: 5.5
21.1

= 0.2607

3. Multiply the result obtained in Step 2 by 100 to get the percent change.

• Response 3: 0.2607× 100 = 26.07

The final answer is 26.07%.

Ground-truth steps: [((15.6 - 21.1)/21.31)*100] = -26.07%

Reason: Incorrect Instantiation of variables resulting in a value with a flipped sign

Figure 16: Example of an error caused due to incorrect instantiation of variables
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2013 2014 2015 2016 2017

CME Group Inc. $164.01 $194.06 $208.95 $279.85 $370.32
S&P 500 $132.39 $150.51 $152.59 $170.84 $208.14
Peer Group $176.61 $187.48 $219.99 $249.31 $323.23

Question: What is the annualized return for s&p 500 from 2012 to 2017?

Response #:

Domain Knowledge: The annualized return refers to the average rate of return over a given period for an investment,
which has been adjusted for compounding. To find the annualized return for the S&P 500 from 2012 to 2017, we need
to use the formula:

Annualized return =

((
Ending value
Starting value

) 1
Number of years

− 1

)

Gold Evidences:

• Investment was $100 on December 31, 2012;Value of S&P 500 investment on December 31, 2017 is $208.14.

Steps:

1. Divide the ending value (208.14) by the starting value (100)

• Response 1: 208.14
100

= 2.0814

2. Calculate the number of years elapsed (2017 - 2012)

• Response 2: 2017 - 2012 = 5

3. Raise the value obtained in #1 to the power of (1/number of years)

• Response 3: (2.0814)
1
5 = 1.1606

4. Subtract 1 from the value obtained in #3

• Response 4: 1.1606 - 1 = 0.1606

5. Multiply the value obtained in #4 by 100 to get the annualized return in percentage

• Response 5: 0.1606 * 100 = 16.06

The final answer is 16.06%.

Ground-truth steps: [(208.14/100)(1/(2017− 2012)) - 1] = 0.1577 * 100 = 15.77

Reason: Inaccurate calculation

Figure 17: Example of an error caused due to imprecise calculations
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