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Abstract

Similar to vision-and-language navigation
(VLN) tasks that focus on bridging the gap be-
tween vision and language for embodied nav-
igation, the new Rendezvous (RVS) task re-
quires reasoning over allocentric spatial rela-
tionships (independent of the observer’s view-
point) using non-sequential navigation instruc-
tions and maps. However, performance sub-
stantially drops in new environments with no
training data. Using opensource descriptions
paired with coordinates (e.g., Wikipedia) pro-
vides training data but suffers from limited
spatially-oriented text resulting in low geoloca-
tion resolution. We propose a large-scale aug-
mentation method for generating high-quality
synthetic data for new environments using
readily available geospatial data. Our method
constructs a grounded knowledge-graph, cap-
turing entity relationships. Sampled entities
and relations (“shop north of school”) gener-
ate navigation instructions via (i) generating
numerous templates using context-free gram-
mar (CFG) to embed specific entities and rela-
tions; (ii) feeding the entities and relation into
a large language model (LLM) for instruction
generation. A comprehensive evaluation on
RVS, showed that our approach improves the
100-meter accuracy by 45.83% on unseen en-
vironments. Furthermore, we demonstrate that
models trained with CFG-based augmentation
achieve superior performance compared with
those trained with LLM-based augmentation,
both in unseen and seen environments. These
findings suggest that the potential advantages
of explicitly structuring spatial information for
text-based geospatial reasoning in previously
unknown, can unlock data-scarce scenarios.

1 Introduction

The ability to extract locations and paths from nat-
ural language descriptions of spatial information
holds immense significance. This capability proves

Meet me in the garden. Head northwest from St. Vin-
cent de Paul Church for 2 intersections. The garden
is right next to a fast-food restaurant. If you reach a
nail salon, you have gone too far.

Figure 1: Our method for generating spatial descrip-
tions samples from the graph-map (top) a path (mid-
dle image, red line), a starting point (green marker),
a goal point (red marker), and prominent landmarks
(black markers). It then generates an instruction (bot-
tom) from the spatial relations between these entities.

crucial in daily and disaster response scenarios, aid-
ing the billions globally lacking formal addresses
(UPU, 2012; Abebrese, 2019; Hu et al., 2023),
and enhancing Geographic Information Retrieval
(GIR), particularly leveraging web-based resources
(Spink et al., 2002; Sanderson and Kohler, 2004).

Echoing the vision-and-language navigation
(VLN) task’s goal, of bridging the gap between
visual perception and natural language (NL) in-
structions for embodied agents (Ku et al., 2020),
the recently introduced Rendezvous (RVS) navi-
gation task (Paz-Argaman et al., 2024) seeks to
achieve a similar connection, but specifically be-
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tween map representations and natural language
NL. While VLN focuses on navigating within an
environment based on visual cues and sequential
instructions, RVS emphasizes the ability to utilize
map information and non-sequential, often allo-
centric language descriptions to reach a specific
target location. This shift from vision-centric in-
structions to map-aided guidance presents unique
challenges, including reasoning about multiple spa-
tial relationships simultaneously, inferring implicit
actions from language, and navigating without ex-
plicit verification or step-by-step instructions.

However, there is a substantial gap between cur-
rent models and the human performance on the
RVS task, particularly in new environments that
lack human annotated data. One approach to ad-
dress this issue is to leverage naturally-occurring
open-source data such as Wikipedia. However,
these sources lack direct spatial information, which
can result in models’ low performance (Solaz and
Shalumov, 2023). Synthesizing data using large
language models (LLMs) is a common method for
addressing data scarcity in NLP (Yoo et al., 2021;
Edwards et al., 2021). However, for multimodal
scenarios requiring precise spatial relationships, ac-
curately generating such data without introducing
errors or “hallucinations” (i.e., spurious relation-
ships or entities), which severely undermines the
performance on the underlying downstream task,
remains a significant challenge.

We propose a method for generating high-quality
synthetic data for new environments using open-
source geospatial data (Figure 1). Our method
constructs a grounded knowledge-graph of the en-
vironment, capturing spatial relationships between
entities. By sampling these entities, abstract shapes
like ‘blocks’ (implicitly derived from street rela-
tionships), and relations (e.g., ‘the garden is next to
a restaurant’), we generate navigation instructions
by either (i) creating a large amount of templates
via a generative context-free grammar (CFG), in
which we embed the precise entities and relations
sampled, or (ii) feeding the entities and relation
into an LLM which generates the instructions.

Extensive evaluation on the RVS dataset demon-
strates the clear advantage of our CFG-based
method compared to the LLM approach. When nav-
igating unseen environments, our method achieves
a remarkable 9.1% absolute increase in 100-meter
accuracy and a substantial 39-meter decrease in
median distance error. Overall, our method helps

close the human-AI performance gap in unseen
environments by 45.83% in 100m accuracy and a
decrease of 1,183m in median distance error. For
the seen environment, our method results in an ab-
solute improvement of 19.56% in 100m accuracy
and a decrease of 151m in median distance error.

2 The Task

The Rendezvous (RVS, Paz-Argaman et al., 2024)
task evaluates a system’s ability to follow human-
generated, colloquial language navigation instruc-
tions within a dense urban environment depicted
by a map. The system is provided with three inputs:
(i) Detailed Map as Knowledge Graph: a compre-
hensive map of the environment represented as a
knowledge graph. This graph encodes spatial rela-
tionships between landmarks and other relevant fea-
tures. (ii) Explicit Starting Point (Geo-coordinates):
the starting location specified as a latitude and lon-
gitude coordinate pair. (iii) Navigation Instruction:
a natural language instruction describing the target
location’s relative position to landmarks and the
starting point. This instruction leverages colloquial
language typically used in navigation scenarios.
The RVS task demands the system to process these
inputs and generate the goal location’s coordinates
within the defined map boundaries.

3 Proposed: Relational Augmentation

Our augmentation method aims to generate natural
language location descriptions that are both accu-
rate and well grounded. To that end, we leverage
OpenStreetMap (OSM).1 It involves three stages:
(i) sampling paths; (ii) calculating spatial relations
between entities; and (iii) generating instructions
based on the spatial relations calculated in stage
(ii). We use the OSM-based graph provided in RVS
for the first and second parts and provide two meth-
ods for generating instructions based on the spatial
relations between entities calculated in that part.

3.1 Sampling paths
To generate RVS-like samples accurately, we fol-
low the RVS sampling protocol. We randomly
sample small entities for the end point (the entity’s
shape has a maximum radius of 100 meters). For
the start point, we randomly select an entity that
(i) is within 200–2000 meters of the end point; (ii)
has a name or type tag (e.g., a bookshop). This

1OpenStreetMap is a user-updated map of the world –
http://www.openstreetmap.org
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Figure 2: Instruction generation steps (for example presented in Figure 1): (i) Template creation via CFG; (ii)
replacing generic elements (in capital letters) with specific landmarks and spatial relations (above the lines).

information allows us to refer to the entity in the
instruction by its definite description and not by its
proper name. Finally, we pick a route that is the
shortest distance between the start and end points.

3.2 Calculating Spatial Relations between
Entities

Leveraging the Open Street Map (OSM) graph, we
identify prominent landmarks relevant to the sam-
pled paths for inclusion in navigation instructions.
However, not all paths necessarily contain all types
of landmarks and features. For instance, if the navi-
gation ends in a dead-end street, landmarks beyond
the leading path might not be relevant to the task.
This section details the criteria for landmark selec-
tion and the spatial relations computed with respect
to the start and end points, and the path.

Picking landmarks We pick three different
types of landmarks with a certain spatial relation
that will be referenced in the instruction: (i) land-
marks close to the end point (within 100 meters
from it); (ii) landmarks along the route; and (iii)
landmarks that are on the same street as the goal
location but beyond the route, such that if the agent
keeps on walking beyond the goal, it will reach
that landmark (“beyond landmark”). Priority for
landmark selection is given to those with the high-
est level of external recognition, as determined by
the following hierarchy: has a Wikipedia or Wiki-
data2 link, is a brand, is a tourism attraction, is an
amenity, is a shop. We randomly select all land-
marks from the most prominent level found. If in
the area there are multiple landmarks of the same
type, we group the landmarks according to their
type and quantity (e.g., ‘two book shops’). If a land-
mark is far (over 200 meters) from the end point
and it has a proper name, we can use its proper
name in the text generation, e.g., ‘the Empire State
Building’. If it is near (less than 200 meters) the
end point, we will always use the indefinite name

2Wikidata is Wikipedia’s free, open, and interconnected
knowledge base. https://www.wikidata.org/

of the landmark, e.g., ‘a bookshop’.

Calculating spatial relations The objective is
to determine the spatial relationship between land-
marks and the end point. There are several ways to
describe the relationship between two entities, such
as the number of blocks between them. The spa-
tial relations calculated are (i) allocentric relations,
i.e., cardinal directions, between landmarks, start
and end points. Cardinal direction is calculated by
the bearing θdegrees between two points (longitude,
latitude), (x1, y1) and (x2, y2):

θradians = (tan
−1 (sin(λ2 − λ1) cos(ϕ2),

cos(ϕ1) sin(ϕ2))
− sin(ϕ1) cos(ϕ2) cos(λ2 − λ1))
+360

◦) mod 360
◦)

θdegrees = θradians ⋅
180

◦

π
(1)

Where λ1 = x1⋅π
180◦

, λ2 = x2⋅π
180◦

, ϕ1 = y1⋅π
180◦

and
ϕ2 = y2⋅π

180◦
. Bearings θdegrees fall into different

ranges, each with a corresponding cardinal direc-
tion (e.g., ‘North-West’). (ii) Egocentric relations
between landmarks and end point to the path, e.g.,
‘on the right side’. To calculate egocentric relations,
we rely on two key angles (Eq. 1): the bearing
of the path itself θpdegrees, and the bearing of the
shortest imaginary line connecting the path to the
landmark’s point θldegrees:

∆θ
l−p = (θldegrees − θ

p
degrees) mod 360

◦ (2)

{‘RIGHT’, if ∆θ
l−p < 180

◦

‘LEFT’, otherwise

‘LEFT’ and ‘RIGHT’ indicate the landmark’s posi-
tion relative to the path. (iii) The number of blocks
and intersections the agent must pass through to
reach the end point. (iv) the end point’s egocentric
and allocentric position on the block, e.g., ‘middle
of the block’ and ‘north-east corner of the block’.
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Allocentric position on the block involves deter-
mining the bearing (Eq. 1) of the path along the
block and mapping it to cardinal direction as in (i).

3.3 Data Generation

Based on the sampling and spatial relations’ calcu-
lations we use two methods to generate the instruc-
tion: via templates created with a CFG (Chomsky,
1956), and via prompting an LLM — for enlarging
the vocabulary and the style of the text.

CFG-based Method Here the key idea is using a
CFG to generate templates that can then be adapted
according to the sampled data. The CFG we de-
sign requires defining terminal symbols (lexical
elements), nonterminal symbols, and production
rules. The nonterminals contain the main parts of
what a path description contains, such as descrip-
tions around the goal, along the path, what to avoid,
and so on. The terminals contain optional varia-
tions, for example, the verb for the agent to proceed
can be ‘go’, ‘walk’, and so on. The grammar cre-
ates templates that are processed into instructions,
as demonstrated in Figure 2. For a given sampled
path, we randomly pick a template that contains all
the landmark categories and spatial relations calcu-
lated for the path. We then generate the instruction
by replacing the variables in the chosen template
with the corresponding landmarks and spatial re-
lations (e.g., ‘NUMBER_INTERSECTIONS’ will
be replaced with the actual number of intersections
the agent should walk).

Prompting LLMs Using the aforementioned
template-based instructions, we prompted an LLM
to ‘rephrase the subsequent navigation instruction,
ensuring it explains how to travel from the starting
position to the destination: Navigation Instruction’,
where the Navigation Instruction is an instruction
based on the CFG generation process. For example,
based on the example in Figures 1 and 2 we get
the following sentence: ‘Head northwest from St.
Vincent de Paul Church for 2 intersections. The
garden is next to a fast-food restaurant.

4 Experimental Setup

4.1 Evaluation

We follow the RVS evaluation metrics: (i) 100m ac-
curacy; (ii) 250m accuracy for coarse-grained eval-
uation; (iii) mean absolute error distance (MAE);
(iv) median absolute error (Med.AE); (v) maximum
absolute error (Max.AE); and (vi) area under the

RVS Aug-CFG Aug-Prompt Aug-WikiGeo
Avg. Text Length 43.47 33.70 37.26 24.82
Avg.Entities 3.98 4.01 4.00 2.20

Table 1: Statistics over RVS, and augmentation data.

curve (AUC) of the error distance. Here are the
formulas for evaluating set S with metrics (iii-vi):

MAE(S) = 1∣S∣ ∑s∈S dist(loc(s), approx(s)) (3)

Med.AE(S) = {dist(loc(s), approx(s))∣s ∈ S}⌊∣S∣/2⌋ (4)

Max.AE(S) = max({dist(loc(s), approx(s))∣s ∈ S}) (5)

AUC(S) = ∫∞0 (log dist(loc(s),approx(s))+ε∣s∈S)↑ds
logHmax⋅(∣S∣−1) (6)

Where ε = 1e − 5 and Hmax = 20, 037 ⋅ 10
3,

approximately the maximum haversine distance.

4.2 Models for evaluation
T5-model We test our augmentation method
with T5 model, a transformer-based encoder-
decoder model designed with a text-to-text for-
mat (Raffel et al., 2020). Both encoder and de-
coder utilize multi-head, multi-layer self-attention
mechanisms (Vaswani et al., 2017). Given in-
put sequence text X = (x1, ..., xN) and a start-
ing point ps, the encoder encodes the instruction
and the starting point’s representation such that
E
l = (el1, ..., elN , elps) where l ∈ L, representing

the L hierarchical encoded layers. The output of
the final encoder layer is a sequence of hidden vec-
tors H = (h1, ..., hN , hps). The decoder generates
output tokens sequentially, predicting the probabil-
ity p(pt∣p1∶t−1, H) = softmax(Wo⊗ h

′
t) of token

pt at step t, based on the previous outputs and
hidden state h′t. Importantly, the model is trained
with a pre-defined high-level path P that guides
the generation process. This path starts at the start-
ing point, traverses through prominent landmarks
ordered by their direction relative to the goal, and
eventually reaches the goal itself.

Non-learning LANDMARK Baseline Predicts
the location of a prominent landmark (defined in
Sec. 3.2) in the map within a radius of 1 kilometer.

4.3 Data
RVS The RVS (Paz-Argaman et al., 2024)
dataset serves as a human-level benchmark for
the purpose of evaluating the ability to follow

2262



Method Training Set 100m Accuracy 250m Accuracy MAE Med.AE Max.AE AUC
Manhattan (Manh) Seen-city Development Results

1 HUMAN NA 88.12 95.64 74 4 2,996 0.10
2 LANDMARK NA 0.54 5.26 776 815 1,384 0.39
3 T5 RVS Train-set 27.92 (0.39) 52.63 (0.45) 362 (9) 231 (3) 2,957 (641) 0.32 (0.00)

4 T5 Aug-WikiGeo Manh 0.00 (0.00) 1.54 (0.00) 1,085 (0) 1,124 (0) 1,929 (0) 0.41 (0.00)

5 T5 Aug-CFG Manh 28.83 (0.63) 46.15 (0.77) 668 (17) 304 (27) 4,637 (2,207) 0.34 (0.00)

6 T5 Aug-Prompt Manh 21.32 (0.20) 37.01 (0.14) 963 (17) 658 (14) 6,731 (1,003) 0.36 (0.00)

7 T5 Aug-CFG Manh & RVS Train-set 45.97 (1.34) 64.01 (0.89) 377 (32) 121 (15) 5,317 (831) 0.3 (0.00)

Pittsburgh (Pitt) Unseen-Development Results
8 HUMAN NA 86.94 92.94 99 7 2,951 0.13
9 LANDMARK NA 1.47 9.48 677 691 1,345 0.38
10 T5 RVS Train-set 0.49 (1.47) 2.34 (1.44) 1,171 (24) 1,107 (14) 4,701 (101) 0.41 (0.00)

11 T5 Aug-WikiGeo Pitt 0.00 (0.00) 2.05 (0.00) 961 (0) 955 (0) 1,912 (0.00) 0.40 (0.00)

12 T5 Aug-CFG Pitt 46.63 (0.54) 63.73 (0.41) 466 (5) 120 (1) 5,251 (0.00) 0.31 (0.00)

13 T5 Aug-Prompt Pitt 37.10 (0.49) 58.30 (0.34) 492 (5) 159 (1) 5,251 (0) 0.32 (0.00)

14 T5 RVS Train-set & Aug-CFG Pitt 46.24 (0.30) 62.85 (0.41) 387 (17) 116 (4) 5,162 (103) 0.30 (0.00)

Philadelphia (Phila) Unseen-city Zero-shot Results
15 HUMAN NA 93.64 97.97 27 3 2,708 0.05
16 LANDMARK NA 1.02 7.90 707 713 1,384 0.38
17 T5 RVS Train-set 0.26 (0.05) 1.80 (0.27) 1,362 (43) 1,308 (35) 6,911 (454) 0.42 (0.00)

18 T5 RVS Train-set & Aug-CFG Phila 46.09 (0.50) 61.66 (0.00) 579 (2) 125 (3) 5,774 (715) 0.31 (0.01)

Table 2: Results are divided over RVS’s test (Philadelphia) and development sets (Manhattan and Pittsburgh).
The distance errors are presented in meters. For the learning models, we report the mean over three random
initializations, and the standard deviation (STD) is in brackets.

allocentric navigation instructions based on a
map. It consists of English navigation directives,
each paired with a start and end point. The data
is divided into four distinct sets: (i) Training-set
– containing 7,000 instructions from Manhattan;
(ii) Seen-city development-set – containing 1,103
instructions from Manhattan; (iii) Unseen-city
development-set – containing 1,023 instructions
from Pittsburgh; (iv) Test-set – containing 1,278
instructions from Philadelphia.

The following datasets are all synthetically gen-
erated. We generated 200,000 instructions per
dataset for each region, with the exception of Aug-
WikiGeo:

Aug-CFG Data created with the CFG method
described in Section 3. The CFG method created
194,721 templates with 15 production rules. The
vocabulary contains only unique 111 tokens. Table
1 shows that this method produces shorter instruc-
tions than the RVS, but with more entities in each
instruction. Figures 1 and 2 show an example of an
instruction generated based on this method.

Aug-CFG-Allocentric Data created with a CFG
including templates with allocentric spatial rela-
tions between entities. E.g., ‘the school is north of
the bar’. The data contains 69,720 templates.

Aug-CFG-Egocentric Data created using a
CFG which contains templates with egocentric spa-
tial relations between entities, e.g., ‘the bar on your
right’. The data contains 112,640 templates.

Aug-CFG-Minimal This dataset leverages a
minimal set of templates (64) to represent the full
range of entities and spatial relationships found
in the Aug-CFG data. We constructed Aug-CFG-
Minimal using a greedy selection process. We be-
gan by selecting the first template. Subsequently,
we added templates that introduced new spatial fea-
tures not covered by the existing set. This process
continued until we reached a final set of 64 tem-
plates that comprehensively capture all possible
spatial features.

Aug-Prompt Data generated by prompting
PaLM2 (Anil et al., 2023) with the prompting
method described in Section 3.3 Table 1 shows that
this method produces longer instructions than the
CFG-based method but with fewer entities.

Aug-WikiGeo To facilitate a comparison with
standard open-source location augmentation meth-
ods, such as Wikipedia-based (Krause and Co-
hen, 2023), we generated the comprehensive Wiki-
geo dataset by consolidating data from Wikipedia
(pages and backlinks), Wikidata (pages), and Open-
StreetMap (entities). The data for Manhattan
(Manh., 255,663 samples), Pittsburgh (Pitt., 27,401
samples), and Philadelphia (Phila., 52,367 samples)
are generated based on the same regions as in the
evaluation. Table 1 shows that this method pro-
duces shorter instructions and fewer entities than
the CFG-based and prompting-based methods.

3We use PaLM2 ‘models/text-bison-001’ - for more details,
see https://developers.generativeai.google
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Method Training Set 100m Accuracy 250m Accuracy MAE Med.AE Max.AE AUC
Manhattan (Manh) Seen-city Development Results

1 T5 Aug-CFG Manh 28.83 (0.63) 46.15 (0.77) 668 (17) 304 (27) 4,637 (2,207) 0.34 (0.00)

2 T5 Aug-CFG-Allocentric Manh 29.83 (1.22) 47.96 (2.95) 681 (39) 310 (66) 6,446 (88) 0.34 (0.01)

3 T5 Aug-CFG-Egocentric Manh 28.83 (0.38) 45.87 (0.13) 751 (29) 384 (5) 4,572 (77) 0.35 (0.00)

4 T5 Aug-CFG-Minimal Manh 23.21 (0.39) 39.62 (0.13) 880 (12) 567 (47) 5,463 (2,228) 0.36 (0.00)

5 T5 Aug-Dummy Manh 1.35 (0.13) 5.62 (0.13) 1,240 (28) 1,130 (41) 4,654 (0.00) 0.41 (0.00)

Pittsburgh (Pitt) Unseen-Development Results
6 T5 Aug-CFG Pitt 46.63 (0.54) 63.73 (0.41) 466 (5) 120 (1) 5,251 (0.00) 0.31 (0.00)

7 T5 Aug-CFG-Allocentric Pitt 45.94 (0.48) 63.64 (0.55) 453 (18) 119 (0) 4,835 (91) 0.31 (0.00)

8 T5 Aug-CFG-Egocentric Pitt 43.01 (0.48) 60.22 (1.60) 514 (2) 131 (1) 6,034 (399) 0.31 (0.00)

9 T5 Aug-CFG-Minimal Pitt 42.82 (2.07) 62.84 (0.20) 479 (26) 132 (3) 3,160 (1030) 0.31 (0.00)

10 T5 Aug-Dummy Pitt 6.26 (0.83) 13.88 (1.04) 1,069 (6) 933 (1) 3,197 (746) 0.39 (0.00)

Table 3: CFG-based Augmentation Ablation Results

Aug-Dummy To assess the contribution of the
text augmentation, as opposed to just learning all
possible paths from a known starting point, we use
an augmentation where the text does not convey
any spatial details of the location. To create the
non-spatial text, we used PaLM2 by requesting it
to rephrase the sentence “Meet me here” and got
a total of 31 versions. Path sampling followed the
method described in Section 3.1.

5 Results

5.1 Analysis of Quantitative Results

Table 2 shows the results of our experiments over
RVS’s seen-city development set (Manh.), unseen-
city development set (Pitt), and the unseen-city test
set (Phila.). For the seen environment (Manh.),
training on synthetic data only (line 5) outperforms
human-annotated data (line 3). The gap is small,
but if the model is first trained on synthetic data and
then on human data (line 7), the gap is a 65% ratio
in 100m accuracy and a 110m lower in Med.AE.

Training on real human data from other regions
(lines 10, 17) fails to translate to unseen environ-
ments like Pittsburgh and Philadelphia. However,
injecting region-specific synthetic data (line 12)
dramatically boosts performance: 46.14% higher
100m accuracy and 987m lower Med.AE. Wiki-
Geo’s emphasis on local features sacrifices spatial
relational understanding, leading to lower perfor-
mance on all development sets (lines 4, 11). How-
ever, its superior max distance estimation (up to
2km) and lower distance error over models trained
on human-annotated data from a different region
(lines 11 vs. 10), suggest a strong ability to learn
path boundaries based on localized information.

Aug-Prompt, while generating instructions with
richer language and stylistic diversity compared
to Aug-CFG’s template-based approach, exhibits
a marked decrease in performance (lines 6, 13 vs.
lines 5, 12). Sampling 20 instructions from Aug-

Prompt, we found that in two cases, the type of
goal was emitted, and in five cases, the model ‘hal-
lucinated’ – adding incorrect spatial relations. This
indicates a potential trade-off between linguistic
complexity and the fidelity of spatial information
within generated instructions.

Table 3 examines variations of CFG-based aug-
mentation. Consistent with the emphasis on allo-
centric spatial relations in RVS, training on Aug-
CFG-Allocentric (lines 2, 7) surpasses Aug-CFG-
Egocentric (lines 3, 8) in both development sets.
However, results are mixed regarding whether train-
ing on Aug-CFG-Allocentric is better than training
on Aug-CFG. In the seen environment, Aug-CFG-
Allocentric (line 2) outperforms Aug-CFG (line 1)
in accuracy but underperforms in error distance. In
the unseen-environment (Pittsburgh), the opposite
is true – Aug-CFG-Allocentric (line 7) underper-
forms Aug-CFG (line 6) in accuracy and overper-
forms error distance. This inconclusive evidence
suggests potential value in investigating a single
data approach for tasks with varying demands, such
as RUN’s reliance on egocentric relations.

Despite capturing identical spatial relations,
Aug-CFG-Minimal’s limited stylistic variations
and vocabulary size due to fewer templates hin-
der its performance compared to Aug-CFG across
both seen (line 1 vs. line 4) and unseen (line 6 vs.
line 9) sets. This suggests that the mere presence of
accurate spatial relations may not be sufficient for
optimal model learning, potentially due to insuf-
ficient exposure to diverse linguistic contexts and
syntactic structures.

Training on Aug-Dummy teaches the model
only the optional paths from a starting point, as
the instruction is a dummy one. The poor results
achieved over Aug-Dummy in both seen and un-
seen environments (lines 5, 10), prove that training
on Aug-CFG allows the model to learn spatial rela-
tions from the instructions. The Aug-Dummy for
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(a) Manhattan-dev: Accuracy (b) Manhattan-dev: Distance Error

(c) Pittsburgh-dev: Accuracy (d) Pittsburgh-dev: Distance Error

Figure 3: T5 performance (Y-axis) with varying AUG-CFG training samples (X-axis). (a,b) RVS seen-city (Man-
hattan), (c,d) RVS unseen-city (Pittsburgh).

Pittsburgh results are better as Manhattan is much
denser in entities than Pittsburgh, thus, it contains
more optional paths from the starting point.

5.2 Data Quantity Impact
Figure 3 shows four graphs of T5 performance
trained on different amounts of AUG-CFG data.
The results reveal a quality-quantity trade-off in-
fluencing T5’s performance. In seen cities (a, b),
7,000 high-quality human annotations (green lines)
outperform 7,000 synthetic AUG-CFG samples
(red lines) in 100m accuracy (27.92% vs. 8.93%)
and Med.AE (231m vs. 744m), indicating that the
human-annotated RVS data possesses substantially
higher quality than the synthetic data. The steep
curve of the RVS train-set (green lines) compared
to the mild curve of AUG-CFG (red lines) further
reinforces this conclusion. However, this trend
flips with 200K synthetic samples, showcasing the
power of quantity over quality when data is abun-
dant. This suggests ample data helps the model
grasp the environment and spatial relations. Addi-
tionally, while both RVS train-set (green line) and
AUG-CFG (red line) demonstrate strong perfor-
mance, the combined AUG-CFG + RVS train-set
(blue line) exhibits a sustained upward trend, con-
sistently surpassing the green and red lines in both
accuracy and distance error. This further indicates
that augmenting with a large amount of data can

potentially enhance performance beyond even high-
quality human annotations. This approach offers a
promising solution for the data scarcity challenges
often encountered in NLP geospatial tasks.

In the unseen-city split (c, d), the RVS train-set
(green line) exhibits steady improvements in ac-
curacy and error distance despite originating from
a different region. This demonstrates that high-
quality data, even when geographically distinct,
can benefit the model. However, the significant
performance gap between the RVS train-set (green)
and AUG-CFG (red) lines, even with equal data
quantities, reaffirms the importance of regionally-
specific data. While the RVS train-set (green) slope
nears AUG-CFG (red line), its accuracy improve-
ment remains significantly lagged (moderate slope),
suggesting the model primarily learns general direc-
tional understanding rather than fine-grained spa-
tial reasoning. Furthermore, the combined AUG-
CFG + RVS train-set (blue) offers only marginal
gains over AUG-CFG alone (red), indicating that
the benefits of high-quality non-regional data di-
minish when paired with large-scale augmentation.

5.3 Distribution Analysis
Figure 4 reports the performance of the various
augmentation methods through cumulative distri-
bution functions (CDFs). These CDFs show the
percentage of inferences with error distances below
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Figure 4: Cumulative distribution function (CDF) error.
Augmentation impact on distance error (meters).

a specific meter value (x-axis), effectively captur-
ing accuracy across all error values and exposing
underlying error distributions. Notably, CFG-based
methods (AUG-CFG and its variants) exhibit a re-
markably similar distribution, characterized by a
sharp accuracy ascent up to approximately 200m.
Aug-Dummy’s curve (yellow) resembles a ray em-
anating from the origin, suggesting a strong corre-
lation with the path distribution assimilated during
training. Aug-WikiGeo’s low-resolution nature is
evident in its CDF (pink). While it starts slow
(2̃00m) and climbs faster than the yellow line, its
limited accuracy holds it back. It only catches up to
the CFG-based methods at 1̃500m, but then fizzles
out (plateaus) before they even reach their peak.

6 Background and Related Work

Text-based navigation tasks constitute a multi-
modal challenge (Antol et al., 2015; Paz-Argaman
et al., 2020; Ji et al., 2022) demanding the integra-
tion of language comprehension and environmental
knowledge. This environment can be either indoor,
commonly represented through the agent’s visual
perception as it navigates (Anderson et al., 2018),
or outdoor. For outdoor environments, representa-
tion falls into three main categories: (i) Visual Rep-
resentation — similar to indoor settings, real-world
imagery can be employed, with agents learning the
environment through street-view like exploration
(Anderson et al., 2018); (ii) Map-based Represen-
tation — agents navigate based on map perception,
as seen in studies utilizing maps as the primary
input (Anderson et al., 1991; Paz-Argaman et al.,
2024); and (iii) Hybrid Representation — a combi-
nation of visual and map information (Vasudevan
et al., 2020; de Vries et al., 2018).

Realistically, we would like to learn to navigate
based on text in new environments, ones that our

models did not train on before. Furthermore, envi-
ronments constantly change, such that we need to
reacquaint our models with these changes in order
for them to stay relevant (Zhang and Choi, 2021).

Synthetic data generation, facilitated by LLMs,
has become a prominent approach in NLP to miti-
gate data (Sahu et al., 2022; Stylianou et al., 2023).
This technique is particularly attractive due to its
adaptability to various tasks and its ability to gener-
ate substantial volumes of data, allowing for robust
model training and improved performance. Data
generation has also been applied to multimodal
tasks, demonstrating performance close to that of
human-annotated data (Bitton et al., 2021).

Previous works on vision and language naviga-
tion tasks (VLN) tried to tackle the data scarcity
issue by generating synthetic data with a gener-
ative model trained with human annotated data
(Fried et al., 2018; Zhu et al., 2020; Majumdar
et al., 2020). However, the learned distribution was
limited to the environment the model was trained
on. ENVEDIT (Li et al., 2022b) tackled the VLN
task by generating new environments and synthetic
navigation instructions in order to teach models to
generalize to new environments. The new environ-
ments created differ in style, appearance, or the con-
figuration of the objects. However, a lack of new
objects hinders unseen object handling. Kamath
et al. (2023) leveraged image-to-image synthesis
via a Generative Adversarial Network (GAN) archi-
tecture (Koh et al., 2023) to create new viewpoints
for existing environments and subsequently gener-
ate synthetic instructions for these environments.

Several prior works have tackled unseen environ-
ments without employing data generation: (i) En-
tity abstraction – Paz-Argaman and Tsarfaty (2019)
propose learning spatial language independent of
specific entities by linking abstracted entities to
the agent’s perception. However, this approach is
limited to simple navigation tasks where the agent
has limited perception (i.e., line of sight). It strug-
gles with complex tasks like RVS, which require
allocentric spatial reasoning. (ii) cross-lingual aug-
mentation – Li et al. (2022a) leverage spatial data
across different languages for augmentation. How-
ever, it still requires some environment-specific
annotations, even if not in the target language. Ad-
ditionally, geolocation tasks utilizing open-source
datasets like Wikipedia often rely on grid-based
representations, suffering from spatially unoriented
descriptions. This leads to significant retrieval er-
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rors exceeding tens of kilometers, limiting their
accuracy (Wing and Baldridge, 2011). (iii) Graph-
based representation – representing the environ-
ment via a graph and learning the connection be-
tween environment and language (Paz-Argaman
et al., 2023, 2024). This approach lacks promis-
ing results due to challenges in encoding complex
spatial relationships within a graph format. Schu-
mann and Riezler (2021) trained a neural network
to generate synthetic navigation instructions based
on OpenStreetMap representations. However, these
instructions were limited to step-by-step, local line-
of-sight guidance. Furthermore, the model’s per-
formance was evaluated on unseen paths within the
same city it was trained on.

This work tackles the problem of generating syn-
thetic instructions for unseen environments, exem-
plified by the RVS dataset (Paz-Argaman et al.,
2024). We propose two techniques: an LLM-
based approach for its adaptability, and a CFG rule-
based approach for increased precision, highlight-
ing the trade-off between data-driven efficiency and
human-crafted accuracy.

7 Conclusion

This work presents a novel data-augmentation so-
lution for spatial NLP tasks. Leveraging spatial
relation extraction it generates a vast, albeit slightly
less refined, dataset compared to human annota-
tions. This quantitative advantage unlocks superior
performance, as evidenced by a 44.54% absolute
improvement in 100m accuracy and a 1,170m re-
duction in median absolute error distance on unseen
environments in the RVS dataset. These results
demonstrate the effectiveness of our approach in
handling novel environments with sparse or no hu-
man data. Moreover, our CFG-based augmentation
method offers adherence to correct spatial relations,
control over the content, and interpretability, over
LLMs in spatial descriptions and could serve as a
future tool for evaluation, detection, and mitigation
of artifacts such as ‘hallucinations’.

Limitations

Data Dependence This paper presents a promis-
ing data augmentation method for enhancing NLP
tasks like outdoor geolocation and navigation.
However, its effectiveness hinges on accessing com-
prehensive geospatial data, which can be difficult
to find in indoor (Anderson et al., 2018; Jain et al.,
2019; Nguyen et al., 2019; Thomason et al., 2020;

Qi et al., 2020; Ku et al., 2020) and virtual environ-
ments (MacMahon et al., 2006; Yan et al., 2018;
Misra et al., 2018; Shridhar et al., 2020; Kim et al.,
2020). Furthermore, the reliance on open-source
data introduces the risk of incompleteness or re-
gional unavailability.

Rule-based Scalability vs. LLM-Generated Ar-
tifacts In addition, the leading augmentation
method (CFG-based) used in this study is rule-
based, which, while offering control, precise-
ness, and interpretability, also requires careful
rule design. Crafting effective rules can be time-
consuming, laborious, and require substantial ex-
pertise in the specific domain. This complexity can
limit the scalability and adaptability of the method
to new situations or contexts. Furthermore, encod-
ing all necessary knowledge into explicit rules can
be challenging, especially for complex domains.
This can limit the method’s ability to capture subtle
nuances or unforeseen situations. This approach
also stands in contrast to the prevailing augmenta-
tion methods, which are grounded in LLMs (Schick
and Schütze, 2021; Wang et al., 2022). Using
LLMs to generate data for augmentation represents
a promising avenue but requires further research to
address issues like hallucinations, which are par-
ticularly critical in spatial descriptions. Therefore,
rule-based methods such as our CFG-based method,
which are not vulnerable to hallucination problems,
could serve as a valuable tool for future research ex-
ploring the evaluation, detection, and mitigation of
such artifacts in LLM-generated text. Furthermore,
by comparing augmentations generated using both
methods on specific tasks, we might gain insights
into the types of artifacts introduced by LLMs and
how rule-based methods can help mitigate them.

Limited Perception: Lack of Visual Cues Our
study primarily relied on map-based knowledge for
navigation tasks, which deviates from how humans
navigate in natural settings. Real-world navigation
often involves integrating both visual cues and spa-
tial knowledge acquired from maps, a complexity
not fully captured in our current approach. While
the StreetLearn dataset (Mirowski et al., 2019) of-
fers Google Street View imagery for the test envi-
ronments over both the Manhattan and Pittsburgh
regions in the RVS setup, we did not leverage this
visual information. Future research could extend
the scope of our study by integrating visual per-
ception and map-based knowledge into the text
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generation approach for augmentation.

Bridging the Human-AI Performance Gap In
spite of progress made in this research, a substan-
tial gulf still separates current models’ performance
from human performance in the RVS task. Even
with our augmentation methods, current models lag
behind human performance by 47.55% and 42.15%
in 100-meter accuracy for seen and unseen environ-
ments, respectively. Bridging this gap presents a
critical challenge and an exciting opportunity for fu-
ture research, potentially unlocking novel avenues
for pushing the boundaries of this task.

Acknowledgements

This research has been funded by the European
Research Council (ERC), grant number 677352
and by a grant from the Israeli Science Foundation
(ISF) number 670/23, for which we are grateful.
The research was further supported by a KAMIN
grant from the Israeli Innovation Authority, and
computing resources kindly funded by a VATAT
grant and via the Data Science Institute from Bar-
Ilan University (BIU-DSI). We are also grateful for
the additional support provided by a Google grant.

References
Kwasi Abebrese. 2019. Implementing street address-

ing system in an evolving urban center. A case study
of the Kumasi metropolitan area in Ghana. Ph.D.
thesis, Iowa State University.

Anne H Anderson, Miles Bader, Ellen Gurman Bard,
Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister,
Jim Miller, et al. 1991. The hcrc map task corpus.
Language and speech, 34(4):351–366.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 3674–3683.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international
conference on computer vision, pages 2425–2433.

Yonatan Bitton, Gabriel Stanovsky, Roy Schwartz,
and Michael Elhadad. 2021. Automatic generation
of contrast sets from scene graphs: Probing the
compositional consistency of gqa. arXiv preprint
arXiv:2103.09591.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on information
theory, 2(3):113–124.

Aleksandra Edwards, Asahi Ushio, Jose Camacho-
Collados, Hélène de Ribaupierre, and Alun Preece.
2021. Guiding generative language models for data
augmentation in few-shot text classification. arXiv
preprint arXiv:2111.09064.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna
Rohrbach, Jacob Andreas, Louis-Philippe Morency,
Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein,
and Trevor Darrell. 2018. Speaker-follower mod-
els for vision-and-language navigation. Advances in
Neural Information Processing Systems, 31.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 855–864.

Yingjie Hu, Gengchen Mai, Chris Cundy, Kristy Choi,
Ni Lao, Wei Liu, Gaurish Lakhanpal, Ryan Zhenqi
Zhou, and Kenneth Joseph. 2023. Geo-knowledge-
guided gpt models improve the extraction of location
descriptions from disaster-related social media mes-
sages. International Journal of Geographical Infor-
mation Science, pages 1–30.

Vihan Jain, Gabriel Magalhaes, Alexander Ku,
Ashish Vaswani, Eugene Ie, and Jason Baldridge.
2019. Stay on the path: Instruction fidelity in
vision-and-language navigation. arXiv preprint
arXiv:1905.12255.

Anya Ji, Noriyuki Kojima, Noah Rush, Alane Suhr,
Wai Keen Vong, Robert D Hawkins, and Yoav
Artzi. 2022. Abstract visual reasoning with tangram
shapes. arXiv preprint arXiv:2211.16492.

Aishwarya Kamath, Peter Anderson, Su Wang, Jing Yu
Koh, Alexander Ku, Austin Waters, Yinfei Yang, Ja-
son Baldridge, and Zarana Parekh. 2023. A new
path: Scaling vision-and-language navigation with
synthetic instructions and imitation learning. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 10813–
10823.

Hyounghun Kim, Abhay Zala, Graham Burri, Hao
Tan, and Mohit Bansal. 2020. Arramon: A
joint navigation-assembly instruction interpretation
task in dynamic environments. arXiv preprint
arXiv:2011.07660.

Jing Yu Koh, Harsh Agrawal, Dhruv Batra, Richard
Tucker, Austin Waters, Honglak Lee, Yinfei Yang,

2268



Jason Baldridge, and Peter Anderson. 2023. Sim-
ple and effective synthesis of indoor 3d scenes. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 37, pages 1169–1178.

Amir Krause and Sara Cohen. 2023. Geographic in-
formation retrieval using wikipedia articles. In Pro-
ceedings of the ACM Web Conference 2023, pages
3331–3341.

Alexander Ku, Peter Anderson, Roma Patel, Eugene
Ie, and Jason Baldridge. 2020. Room-Across-Room:
Multilingual vision-and-language navigation with
dense spatiotemporal grounding. In Conference on
Empirical Methods for Natural Language Process-
ing (EMNLP).

Jialu Li, Hao Tan, and Mohit Bansal. 2022a.
Clear: Improving vision-language navigation with
cross-lingual, environment-agnostic representations.
arXiv preprint arXiv:2207.02185.

Jialu Li, Hao Tan, and Mohit Bansal. 2022b. Envedit:
Environment editing for vision-and-language navi-
gation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
15407–15417.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, and action in route instructions. Def,
2(6):4.

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter
Anderson, Devi Parikh, and Dhruv Batra. 2020. Im-
proving vision-and-language navigation with image-
text pairs from the web. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part VI 16, pages
259–274. Springer.

Piotr Mirowski, Andras Banki-Horvath, Keith Ander-
son, Denis Teplyashin, Karl Moritz Hermann, Ma-
teusz Malinowski, Matthew Koichi Grimes, Karen
Simonyan, Koray Kavukcuoglu, Andrew Zisserman,
et al. 2019. The streetlearn environment and dataset.
arXiv preprint arXiv:1903.01292.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3d environ-
ments with visual goal prediction. arXiv preprint
arXiv:1809.00786.

Khanh Nguyen, Debadeepta Dey, Chris Brockett, and
Bill Dolan. 2019. Vision-based navigation with
language-based assistance via imitation learning
with indirect intervention. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 12527–12537.

Tzuf Paz-Argaman, Tal Bauman, Itai Mondshine,
Itzhak Omer, Sagi Dalyot, and Reut Tsarfaty. 2023.
Hegel: A novel dataset for geo-location from hebrew
text. arXiv preprint arXiv:2307.00509.

Tzuf Paz-Argaman, Sayali Kulkarni, John Palowitch,
Reut Tsarfaty, and Jason Baldridge. 2024. Where
do we go from here? multi-scale allocentric rela-
tional inferencefrom natural spatial descriptions. In
EACL2024. Association for Computational Linguis-
tics.

Tzuf Paz-Argaman and Reut Tsarfaty. 2019. RUN
through the streets: A new dataset and baseline mod-
els for realistic urban navigation. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6449–6455, Hong Kong,
China. Association for Computational Linguistics.

Tzuf Paz-Argaman, Reut Tsarfaty, Gal Chechik, and
Yuval Atzmon. 2020. ZEST: Zero-shot learning
from text descriptions using textual similarity and
visual summarization. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 569–579, Online. Association for Computa-
tional Linguistics.

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang,
William Yang Wang, Chunhua Shen, and Anton
van den Hengel. 2020. Reverie: Remote embod-
ied visual referring expression in real indoor environ-
ments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
9982–9991.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Gaurav Sahu, Pau Rodriguez, Issam Laradji, Parmida
Atighehchian, David Vazquez, and Dzmitry Bah-
danau. 2022. Data augmentation for intent classi-
fication with off-the-shelf large language models. In
Proceedings of the 4th Workshop on NLP for Con-
versational AI, pages 47–57, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Mark Sanderson and Janet Kohler. 2004. Analyzing ge-
ographic queries. In SIGIR workshop on geographic
information retrieval, volume 2, pages 8–10.

Timo Schick and Hinrich Schütze. 2021. Generating
datasets with pretrained language models. arXiv
preprint arXiv:2104.07540.

Raphael Schumann and Stefan Riezler. 2021. Gener-
ating landmark navigation instructions from maps
as a graph-to-text problem. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint

2269

http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/D19-1681
https://doi.org/10.18653/v1/D19-1681
https://doi.org/10.18653/v1/D19-1681
https://doi.org/10.18653/v1/2020.findings-emnlp.50
https://doi.org/10.18653/v1/2020.findings-emnlp.50
https://doi.org/10.18653/v1/2020.findings-emnlp.50
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2021.acl-long.41
https://doi.org/10.18653/v1/2021.acl-long.41
https://doi.org/10.18653/v1/2021.acl-long.41


Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 489–502, Online. As-
sociation for Computational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. Alfred:
A benchmark for interpreting grounded instructions
for everyday tasks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recogni-
tion, pages 10740–10749.

Yuval Solaz and Vitaly Shalumov. 2023. Transformer
based geocoding. arXiv preprint arXiv:2301.01170.

Amanda Spink, Bernard J Jansen, Dietmar Wol-
fram, and Tefko Saracevic. 2002. From e-sex
to e-commerce: Web search changes. Computer,
35(3):107–109.

Nikolaos Stylianou, Despoina Chatzakou, Theodora
Tsikrika, Stefanos Vrochidis, and Ioannis Kompat-
siaris. 2023. Domain-aligned data augmentation
for low-resource and imbalanced text classification.
In European Conference on Information Retrieval,
pages 172–187. Springer.

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2020. Vision-and-dialog naviga-
tion. In Conference on Robot Learning, pages 394–
406. PMLR.

UPU. 2012. Addressing the world – An address for
everyone.

Arun Balajee Vasudevan, Dengxin Dai, and Luc
Van Gool. 2020. Talk2nav: Long-range vision-and-
language navigation with dual attention and spatial
memory. International Journal of Computer Vision,
pages 1–21.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi Parikh,
Jason Weston, and Douwe Kiela. 2018. Talk the
walk: Navigating new york city through grounded
dialogue. arXiv preprint arXiv:1807.03367.

Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh
Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha
Jaques, Austin Waters, Jason Baldridge, and Pe-
ter Anderson. 2022. Less is more: Generating
grounded navigation instructions from landmarks.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
15428–15438.

Benjamin Wing and Jason Baldridge. 2011. Simple su-
pervised document geolocation with geodesic grids.
In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: Human lan-
guage technologies, pages 955–964.

Claudia Yan, Dipendra Misra, Andrew Bennnett,
Aaron Walsman, Yonatan Bisk, and Yoav Artzi.
2018. Chalet: Cornell house agent learning environ-
ment. arXiv preprint arXiv:1801.07357.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-
Woo Lee, and Woomyeong Park. 2021. Gpt3mix:
Leveraging large-scale language models for text aug-
mentation. arXiv preprint arXiv:2104.08826.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruom-
ing Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. 2021. Vector-
quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627.

Michael JQ Zhang and Eunsol Choi. 2021. Situat-
edqa: Incorporating extra-linguistic contexts into qa.
arXiv preprint arXiv:2109.06157.

Wanrong Zhu, Xin Eric Wang, Tsu-Jui Fu, An Yan,
Pradyumna Narayana, Kazoo Sone, Sugato Basu,
and William Yang Wang. 2020. Multimodal text
style transfer for outdoor vision-and-language nav-
igation. arXiv preprint arXiv:2007.00229.

A Data Generation

Our CFG rules define navigation instructions by
combining five key elements in various orders:

• Goal Description: This specifies the target
location.

• Main Path: It outlines the primary route us-
ing landmarks.

• Approaching Goal: This details how to get
close to the target.

• Goal Landmarks: It describes landmarks rel-
ative to the final position.

• Off-Path Awareness: This identifies ele-
ments to avoid while navigating.

Table 4 demonstrates five navigation instructions
and their corresponding CFG-templates.

B Models

We also test on the T5+GRAPH presented in RVS,
which is a T5 model incorporating an OSM-based
graph representation of the environment.
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Exaples of CFG generated templates Example of generated instruction from template
“Meet at the END_POINT. Go CARDINAL_DIRECTION
from MAIN_PIVOT for INTERSECTIONS intersections.
It will be near a NEAR_PIVOT. If you reach
BEYOND_PIVOT, you have gone too far.”

“Meet at the library. Go north-east from Starbucks for two
intersections. It will be near a book store. If you reach a
Zara cloth shop, you have gone too far.”

“Go CARDINAL_DIRECTION from MAIN_PIVOT for
BLOCKS blocks to arrive at the END_POINT, right
GOAL_POSITION. You will pass MAIN_NEAR_PIVOT
before reaching the destination. You’ve overshot the meeting
point if you reach BEYOND_PIVOT.”

“Go east from Grace Church for 3 blocks to arrive at the
parking lot, right in the middle of the block. You will pass
Jefferson Market Garden before reaching the destination.
You’ve overshot the meeting point if you reach Chipotle.”

“Go CARDINAL_DIRECTION from MAIN_PIVOT for
BLOCKS blocks to arrive at the END_POINT, right
GOAL_POSITION. You will see MAIN_NEAR_PIVOT
before reaching the destination. You’ve overshot the
meeting point if you reach BEYOND_PIVOT.”

“Go east from Grace Church for 3 blocks to arrive at the
parking lot, right in the middle of the block. You will see
Jefferson Market Garden before reaching the destination.
You’ve overshot the meeting point if you reach Chipotle.”

“Walk CARDINAL_DIRECTION and past MAIN_PIVOT
to reach the END_POINT. The END_POINT is not far
from NEAR_PIVOT.”

“Walk north and past Washington Square Park to reach
the cafe. The cafe is not far from a tobacco shop.”

“Head to MAIN_PIVOT and go CARDINAL_DIRECTION
and meet at the END_POINT, right GOAL_POSITION.”

“Head to Washington Square Park and go north and meet
at the cafe, right on the southeast corner of the block.”

Table 4: Examples of navigation instructions and the Context-Free Grammar (CFG)-derived templates they are
created from.

B.1 The Graph Representation

A location can be represented by its position (where
the location is) or by its semantics (what is present
at the location, e.g., ‘a bar’). Semantic knowledge
is crucial for grounding mentioned entities to their
physical references in the environment. To this
end, we aim to represent the semantics via the RVS
map-graph. We use the RVS map-graph and con-
nect each node to its corresponding S2-cells. As the
S2-geometry is a hierarchical structure, we allow
for multiple levels of S2-cells connections. Also
there are edges between neighboring S2-cells at
a given level (see bottom part in Figure 5). To
learn an embedding for each S2-cell in the envi-
ronment, we compute random walks on the graph
using node2vec algorithm (Grover and Leskovec,
2016). Following Yu et al. (2021), we use linear
projection to cluster the graph embeddings into K
categories using the k-means algorithm with cosine
similarity distance. A new token is assigned to
each category and added to the tokenizer’s vocab-
ulary. We perform multiple clusters and pass the
graph’s tokens with the instruction’s tokens to the
transformer encoder.

B.2 Experimental Setup Details

The Graph Embedding The graph was con-
structed using three levels of S2-Cells: 15, 16,
and 17. At level 16, each sub-graph consisting
of four neighboring S2-Cells was fully connected.
All S2-Cells in the graph were linked to their parent

S2-Cell based on the S2-geometry’s hierarchy (i.e.,
level 17 S2-Cells were connected to level 16 S2-
Cells and level 16 S2-Cells were connected to level
15 S2-Cells). Extracted entities from OSM and
Wikidata were linked to the smallest level 17 S2-
Cell that encompassed their geometry. The node of
the entity included additional data such as their ge-
ometry, type and name of entity. Random walks on
the graph were performed using node2vec (Grover
and Leskovec, 2016).

For both T5-base models we use a pre-trained
‘T5-Base’ model from Hugging Face Hub, which
is licensed under the Apache License 2.0. The T5
model was trained on the Colossal Clean Crawled
Corpus (C4, Raffel et al. (2020)). The cross-
entropy loss function was optimized with AdamW
optimizer (Loshchilov and Hutter, 2017). The hy-
perparameter tuning is based on the average results
run with three different seeds. We used a learning
rate of 1e-4. The S2-cell level was searched in [15,
16, 17, 18] and 16 was chosen. The number of clus-
ters for the quantization process was searched in
[50, 100, 150, 200, 250] and 150 was chosen. We
used 2 quantization layers. Number of epochs for
early stopping was based on their average learning
curve. We used the following parameters for the
node2vec algorithm: an embedding size of 1024,
a walk length of 20, 200 walks, a context window
size of 10, a word batch of 4, and 5 epochs.
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Figure 5: The RVS model based on a T5 transformer and a graph representation of the environment (Paz-Argaman
et al., 2024).

C Additional Results

Table 5 demonstrates the performance of
T5+GRAPH with CFG augmentation. The
T5+GRAPH model’s performance is improved by
the CFG augmentation in both seen and unseen
environments (lines 2 vs 4, and lines 8 vs 10).
In the seen environment, T5+GRAPH with CFG
augmentation achieves higher scores than T5
with CFG augmentation (lines 3 vs 4). However,
there is no clear evidence to suggest which model
performs better when using CFG augmentation
data in both seen and unseen environments. This
finding suggests that the explicit spatial knowledge
offered by CFG augmentation data provides an
easier path to learn spatial relations, making the
graph information in T5+GRAPH redundant or
even detrimental.
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Method Training Set 100m Accuracy 250m Accuracy MAE Med.AE Max.AE AUC
Manhattan (Manh) Seen-city Development Results

1 T5 RVS Train-set 27.92 (0.39) 52.63 (0.45) 362 (9) 231 (3) 2,957 (641) 0.32 (0.00)

2 T5+GRAPH RVS Train-set 29.40 (1.18) 54.67 (1.04) 357 (7) 216 (8) 3,889 (826) 0.31 (0.01)

3 T5 Aug-CFG Manh 28.83 (0.63) 46.15 (0.77) 668 (17) 304 (27) 4,637 (2,207) 0.34 (0.00)

4 T5+GRAPH Aug-CFG Manh 30.25 (0.95) 48.11 (0.92) 660 (24) 299 (17) 4,447 (677) 0.34 (0.01)

5 T5 Aug-CFG Manh & RVS Train-set 45.97 (1.34) 64.01 (0.89) 377 (32) 121 (15) 5,317 (831) 0.3 (0.00)

6 T5+GRAPH Aug-CFG Manh & RVS Train-set 45.42 (0.9) 63.1 (1.41) 388 (10) 131 12) 3,162 (43) 0.3 (0.01)

Pittsburgh (Pitt) Unseen-Development Results
7 T5 RVS Train-set 0.49 (1.47) 2.34 (1.44) 1,171 (24) 1,107 (14) 4,701 (101) 0.41 (0.00)

8 T5+GRAPH RVS Train-set 0.49 (1.01) 2.91 (1.37) 1,067 (77) 1,039 (56) 4,102 (727) 0.40 (0.00)

9 T5 Aug-CFG Pitt 46.63 (0.54) 63.73 (0.41) 466 (5) 120 (1) 5,251 (0) 0.31 (0.00)

10 T5+GRAPH Aug-CFG Pitt 46.67 (1.45) 63.1 (1.59) 474 (1) 119 (8) 5,251 (0) 0.31 (0.00)

11 T5 RVS Train-set & Aug-CFG Pitt 46.24 (0.30) 62.85 (0.41) 387 (17) 116 (4) 5,162 (103) 0.30 (0.00)

12 T5+GRAPH RVS Train-set & Aug-CFG Pitt 45.75 (0.62) 63.93 (0) 467 (7) 125 (1) 6,509 (755) 0.31 (0.00)

Table 5: T5+Graph Results: Results are divided over RVS’s development sets. The augmentations data used
for training depends on the method and region that corresponds to the evaluation region: Manhattan (Manh) and
Pittsburgh (Pitt). The distance errors are presented in meters. For the learning models, we report the mean over
three random initializations and the standard deviation (STD) is in brackets.
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