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Abstract

Pinyin input method engine (IME) refers to
the transformation tool from pinyin sequence
to Chinese characters, which is widely used
on mobile phone applications. Due to the ho-
mophones, Pinyin IME suffers from the one-
to-many mapping problem in the process of
pinyin sequences to Chinese characters. To
solve the above issue, this paper makes the first
exploration to leverage an effective conditional
variational mechanism (CVM) for pinyin IME.
However, to ensure the stable and smooth op-
eration of Pinyin IME under low-resource con-
ditions (e.g., on offline mobile devices), we
should balance diversity, accuracy, and effi-
ciency with CVM, which is still challenging.
To this end, we employ a novel strategy that
simplifies the complexity of semantic encoding
by facilitating the interaction between pinyin
and the Chinese character information during
the construction of continuous latent variables.
Concurrently, the accuracy of the outcomes is
enhanced by capitalizing on the discrete latent
variables. Experimental results demonstrate the
superior performance of our method.

1 Introduction

Input method engines (IMEs)1 are important tools
to connect users with mobile applications, drawing
dramatic attentions (Chen and Lee, 2000; Li et al.,
2004; Zheng et al., 2011; Han and Chang, 2013;
Chen et al., 2013; Jia and Zhao, 2014; Huang et al.,
2015, 2018; Zhang et al., 2019; Liu et al., 2021;
Tan et al., 2022; Ding et al., 2023). In China, there
are two common Pinyin IMEs2 for cellphones: the
9-key IMEs and the 26-key IMEs, which are used
by more than 97% of Chinese people (Hu et al.,
2022). As shown in Figure 1, the 26-key keyboard

*Work done at WeChat AI, Tencent Inc.
†Corresponding Author

1https://en.wikipedia.org/wiki/Input_method
2https://en.wikipedia.org/wiki/Pinyin_input_method

Figure 1: The 9-key and 26-key IME.

uses the 26 English letters as Chinese pinyin sylla-
bles, while the 9-key keyboard maps the 26 pinyin
syllables onto 8 keys.

Due to the Chinese homophones, the process of
converting pinyin sequences to Chinese character
sequences inevitably presents a one-to-many map-
ping challenge for Pinyin IME. In the perfect pinyin
mode of a 26-key IME, 500 pinyin combinations
need to correspond to nearly 10,000 Chinese char-
acters (Jia and Zhao, 2014; Zhang et al., 2019). For
instance, inputting the pinyin sequence "bei zi" can
map to various Chinese characters with completely
different meanings, such as "被子" (blanket), "杯
子" (cup), and "辈子" (lifetime). In the case of
the abbreviated pinyin mode, entering the initial
letters "b z" for "bei zi" can result in not only the
aforementioned characters but also others like "不
止" (more than), "不在" (not present), and "步骤"
(steps). As for 9-key IMEs, each key can represent
3 to 4 pinyin syllables, which means that inputting
"23494" offers 323 possible pinyin combinations
except "beizi". While some pinyin combinations
that do not adhere to standard rules can be pruned,
this undoubtedly expands the solution space.

One effective method to alleviate the one-to-
many problem is to generate more candidates for
users to autonomously choose the one they need.
Existing methods typically employ beam search to
generate additional candidates. However, Holtz-
man et al. (2020) found that unlike beam search,
which selects the token with the highest probabil-
ity, humans tend to choose more surprising and
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diverse tokens. Furthermore, beam search requires
sorting multiple candidates during the generation
process, and in some low-resource scenarios (such
as on offline mobile devices), it is challenging to
ensure stable and rapid generation due to the lack
of sufficient memory and computational resources.

To alleviate the aforementioned problems, we
take inspirations from conditional variational mech-
anism, which models the one-to-many cases
through the latent variable space and generate
various results by sampling different latent vari-
ables (Shen et al., 2017; Zhao et al., 2017; Bao
et al., 2020; Lin et al., 2020; Fang et al., 2021; Sun
et al., 2021). Therefore, instead of prioritizing the
arrangement of the highest-scoring candidate re-
sult, our primary study of interest is to recall more
eligible candidates within the same inference time.
To this end, we propose a conditional variational
IME model (CV-IME) with a novel hybrid latent
variables strategy. Please refer to § 2.2 for details.

Our contributions are as follow: To the best of
our knowledge, this is the first exploration and in-
vestigation of the impact of CVM on the perfor-
mance of Pinyin IME in low-resource scenarios,
specifically on offline mobile platforms. Further-
more, we propose a novel hybrid latent variable that
designed to balance the performance and efficiency
of our CV-IME model.

2 Methodology

2.1 Base Model
With the advancement of technology, the latest
Pinyin IMEs, e.g., PinyinGPT (Tan et al., 2022) and
GeneInput (Ding et al., 2023), primarily adopt mod-
els based on the transformer architecture (Vaswani
et al., 2017). Therefore, we have adopted the trans-
former structure and conducted a series of experi-
ments to identify the most suitable configuration.

2.2 Conditional Variational IME
Following the previous work of CVM, CV-IME
primarily consists of four components: a encoder-
decoder model, a prior network pθ(z|c), a recog-
nition network qϕ(z|r, c) and a discrete latent vari-
able matrix M . c, r and z represent the user input
(i.e., context and pinyin sequence), the character
result and the continues latent variable.

Hybrid Latent Variable. Previous researches in-
dicate that continuous latent variables can enhance
diversity but may reduce relevance, whereas dis-
crete latent variables strengthen relevance but lack

diversity (Gao et al., 2019; Bao et al., 2020; Sun
et al., 2021, 2023). Therefore, a promising direc-
tion is to hybrid the continuous and discrete la-
tent variables, leveraging their respective strengths
to complement and offset their weaknesses. To
build the hybrid latent variables H , we follow Sun
et al. (2023), adding sentence-level continuous la-
tent variable z′s to the discrete latent variables M :
H = (z′s +M [1], · · · , z′s +M [k]), where K rep-
resents the number of discrete latent variables.

Continuous Latent Variables. We initially em-
ploy the model encoder to transform c and c+r into
prior memory h and posterior memory h′. Given
that there is a degree of alignment between the
pinyin and character sequences in the task of pinyin-
to-character conversion, relying solely on the en-
coder’s self-attention mechanism for interaction
may not yield effective information. Therefore, we
have introduced an interaction between the prior
memory and the posterior memory:

h′ = SoftMax(h · h′T ) · h′ (1)

To enhance the recognition process, we use h and
h′ together to estimate the isotropic Gaussian dis-
tribution qϕ(z|c, r) ∼ N (µ′, σ′2I) :

(
µ′1, ..., µ

′
n

log(σ′21 ), ..., log(σ
′2
n )

)
=



[h1;h

′
1]

· · ·
[hn;h

′
n]


W ′

u ,

where W ′
u is trainable parameters of qϕ(z|r, c). Af-

ter that, we follow additive Gaussian mixing (Wang
et al., 2017) to obtain the sentence-level continuous
latent variables. (see more details in Appendix B)

3 Experimental Settings

Benchmarks. We used two public benchmarks,
namely the People’s Daily (PD) corpus (Yang et al.,
2012) and WD dataset (Tan et al., 2022), in the ex-
periments. PD is extracted from the People’s Daily
from 1992 to 1998, while WD is extracted from
the WuDaoCorpora (Yuan et al., 2021). Different
from PD, WD contains test cases from 16 different
domains of test cases.

Evaluation Metrics. We use the precision of top-
N, indicating whether the desired result is included
in the generated top-N results. We also use the
inference time for one instance as a metric.
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Training Dataset. To train our CV-IME and base
model, we built a training dataset for the pinyin-to-
character task based on the news2016 corpus3. We
randomly extract sentence from news2016 corpus
and incorporate “pypinyin” tool to convert Chinese
Characters into Pinyin syllables. Table 1 shows the
statistics of this dataset. (Please refer to appendix C
for more details)

Number of Samples Average Sequence Length

# Perfect 9692887 Context 18.28
# Abbreviated 9637283 Pinyin 14.68
# Total 19330170 Character 7.31

Table 1: Key statistics of our training dataset.

Baseline Models. We introduced some IMEs,
i.e., Google IME4, On-OMWA (Zhang et al., 2017)
and On-P2C (Zhang et al., 2019) as baselines.

• GoogleIME is a commercial Chinese IME that
offers an API with debugging capabilities.

• On-OMWA system, introduced by Zhang et al.
(2017), is an adaptive online model designed
for the acquisition of new words, specifically
tailored for Chinese IMEs.

• On-P2C model, as described in Zhang et al.
(2019) on open vocabulary learning, is a neu-
ral network-based Pinyin-to-Chinese conver-
sion system that improves its performance by
dynamically updating its word database to fa-
cilitate learning of an open vocabulary.

Training Detail. The hidden size of all models
is set to 512. Our CV-IME employs a Transformer
model with 2 encoder layers and 1 decoder layer,
and additionally incorporates two fully-connected
layers as a prior network. We set the batch sizes to
1024 and 256 for base model and CV-IME, respec-
tively. Adam is used for optimization. The initial
learning rate is set to 0.0001. We also introduce
KL annealing trick to leverage the KL divergence
during the training. The KL weight increases lin-
early from 0 to 1 in the first 3000000 batches. We
train all models in 100 epochs on four A100 GPU
cards with Pytorch, and save the model parameters
when the validation loss reaching minimum.

3https://github.com/brightmart/nlp_chinese_corpus
4https://www.google.com/inputtools/services/features/input-

method.html

Figure 2: Results of different encoder-decoder layer
configurations over PD using 9-key IME.

Model # Enc # Dec # Parameters

Base Model

1 1 21.89M
2 1 24.89M
3 1 27.90M
4 1 30.91M
5 1 33.91M

CV-IME 2 1 28.90M

Table 2: The number of parameters contained in differ-
ent configurations of base model and CV-IME.

4 Result and Analysis

4.1 Model Structure Selection.

Figure 2 and Table 2 show the generation latency,
accuracy and parameters of base models with differ-
ent configurations, which illustrates that: (1) main-
taining a fixed number of encoder while solely in-
creasing decoder layers significantly raises latency
(≈10ms) without notably improving accuracy. (2)
while the increase in the number of encoder layers
leads to a gradual rise in latency (≈2ms), accom-
panied by an upward trend in accuracy. (3) the
number of parameters in an encoder is to some
extent positively correlated with accuracy.

In selecting the final encoder-decoder configura-
tion, we primarily considered constraints on mem-
ory storage and latency. In this work, we posit
that under low-resource constraints, with a storage
ceiling of no more than 32MB and a generation
latency not exceeding 30ms for a single candidate,
the system can operate reliably.

Regarding storage, we aimed to emulate a real-
istic mobile environment, mindful of the fact that
an IME system houses multiple models, such as
PinyinIME, speech recognition, handwriting recog-
nition, etc. Given the overall storage consumption
of the system must remain low, we endeavored to
limit the size of the PinyinIME model to within
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Figure 3: Comparative results of different methods to
generate delay.

32MB. To ensure stable performance, the model
was restricted to using at most INT8 quantization,
which means the parameters had to be kept under
32M. As for latency, we set a strict benchmark:
the CPU latency for generating a single case un-
der lengthy text conditions must not exceed 30ms.
Since the model needs to regenerate results imme-
diately with each pinyin character input by the user,
to prevent perceptible delays, we aimed to set even
more stringent latency requirements.

Therefore, a configuration comprising a 4-layer
encoder and a 1-layer decoder represents the most
cost-effective choice.

4.2 Generation Latency.

Figure 3 shows a comparative analysis of the la-
tency incurred by CV-IME (ours), Base+Beam
search (beam) and Base+TopK sample (topk) (Fan
et al., 2018) in generating a varying number of can-
didates. As can be observed from the figure, the la-
tency of CV-IME when generating four candidates
is nearly identical to that of the base model when
producing two candidates, which demonstrates the
superiority of the CV-IME approach in recalling
more candidate results under low-resource condi-
tions. We also observed that the latency of the topk
significantly increases when generating on CPU
devices, which may be attributed to the higher com-
putational complexity of the multinomial function
in PyTorch on CPU.

4.3 PD Benchmark.

Table 3, 4 show the results of PD. CV-IME-imeans
the results of CV-IME using i-th hybrid latent vari-
able. Beam represents the beam search. From these
results, we can observe that: (1) Our models out-
perform the baselines on the PD benchmark; (2)
our models show more significant results in the
task of converting from a abbreviated pinyin to
characters; (3) Under the condition of equivalent

Model Top-N 26-key IME Time
Perfect Abbreviated

Google IME P@1 70.90% – –
On-OMWA P@1 64.40% – –

On-P2C P@1 71.30% – –
Base-Beam1 P@1 71.53% 21.65% 20

CV-IME-1 P@1 71.43% 23.04% 20
CV-IME-2 P@1 67.14% 21.20% 20
CV-IME-3 P@1 68.82% 22.09% 20
CV-IME-4 P@1 68.64% 20.18% 20

Google IME P@10 82.30% – –
On-OMWA P@10 77.90% – –

On-P2C P@10 81.30% – –
Base-Beam2 P@2 81.08% 27.32% 27

CV-IME P@4 82.97% 29.90% 27

Table 3: Results of different methods over PD. Each
score is averaged over all context-target configurations.

Model Top-N 9-key IME Time
Perfect Abbreviated

Base-Beam1 P@1 54.49% 10.14% 20
CV-IME-1 P@1 45.54% 12.04% 20
CV-IME-2 P@1 52.05% 9.90% 20
CV-IME-3 P@1 57.85% 10.80% 20
CV-IME-4 P@1 49.22% 10.22% 19

Base-Beam2 P@2 65.62% 13.84% 27
CV-IME P@4 66.06% 15.94% 27

Table 4: Results of different 9-key IMEs over PD.

time expenditure, our model is capable of generat-
ing more candidates and achieve better accuracy
compared to the baselines; (4) The four hybrid la-
tent variables exhibited a clustering effect in the
9-key IME, where CV-IME-1 excelled in abbrevi-
ated pinyin and CV-IME-3 in perfect pinyin. How-
ever, this phenomenon was not replicated in the 26-
key IMEs. These results suggest that the current
training methodology for hybrid latent variables
has certain limitations, as it struggles to encourage
different latent variables to focus on distinct data
categories during training. This will be a direction
for our future research.

4.4 WD Benchmark.
Table 5 reports the results of different domains
over WD. We have selected the results from four
domains where the differences between CV-IME
and the Base model are the smallest and the largest
under various pinyin input patterns. This result
demonstrates that the CV-IME achieves a superior
performance than base model in terms of all do-
mains in WD. We also conduct experiments with
different configurations on WD, which are detailed
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26-key Perfect Entertainment (%) Education (%) Journey (%) Agriculture (%)
Base+Beam2 77.67±0.00 80.99±0.00 74.71±0.00 73.68%±0.00
CV-IME 79.48±0.29 (∆ 1.80) 83.26±0.10 (∆ 2.27) 78.73±0.02 (∆ 4.02) 78.65±0.19 (∆ 4.97)

9-key Perfect Entertainment (%) Sports (%) Real Estate (%) Agriculture (%)
Base+Beam2 60.55±0.00 59.93±0.00 60.94±0.00 57.02±0.00
CV-IME 62.48±0.20 (∆ 1.94) 62.12±0.06 (∆ 2.19) 65.76±0.07 (∆ 4.82) 61.94±0.14 (∆ 4.92)

26-key Abbreviated Journey (%) Sports (%) Real Estate (%) Economy (%)
Base+Beam2 19.75±0.00 20.65±0.00 20.40±0.00 20.85±0.00
CV-IME 20.87±0.09 (∆ 1.12) 22.18±0.20 (∆ 1.53) 24.38±0.02 (∆ 3.98) 25.32±0.22 (∆ 4.47)

9-key Abbreviated Agriculture (%) Automobile (%) Real Estate (%) International (%)
Base+Beam2 8.60±0.00 9.25±0.00 8.60±0.00 7.85±0.00
CV-IME 9.35±0.07 (∆ 0.75) 10.33±0.15 (∆ 1.08) 12.15±0.15 (∆ 3.55) 11.40±0.08 (∆ 3.55)

Table 5: Results of different domains over WD.

9-key IMEs Perfect Abbreviated

PD (%) WD (%) PD (%) WD (%)

CLS 65.690 62.901 15.878 10.190
CHVT 65.781 62.992 15.924 10.165

CV-IME 66.056 63.269 15.935 10.310
w/o. CLV 66.343 62.656 16.899 10.259
w/o. DLV 57.649 53.446 7.885 4.420

Table 6: The results of ablation study.

in the appendix D.3.

4.5 Ablation Study.

Table 6 presents the results of ablation experiments,
where “CLS” and “CHVT” are two alternative
strategies for constructing hybrid latent variables
that differ from our approach:

• “CLS” means using the [CLS] token to de-
termine the prior distribution of continuous
latent variables.

• “CHVT” stands for Conditional Hybrid Varia-
tional Transformer (Sun et al., 2023), which
also utilizes hybrid latent variables, but it is
primarily used in dialogue tasks.

Compared to CLS and CHVT, CV-IME achieves
better performance on PD and WD benchmarks, in-
dicating the effectiveness of the proposed strategy
in the pinyin-to-character task. Moreover, “w/o.
CLV” and “w/o. DLV” denote the CV-IME model
variants with the continuous latent variables (CLV)
and discrete latent variables (DLV) removed, re-
spectively. The findings indicate that DLV may ex-
cel in accuracy but fall short in generalizing across
diverse scenarios. Therefore, the “w/o. CLV” per-
forms well on news data (PD) similar to the training
set but not as well on OOD data (WD). Similarly,

CLV may excel in diversity but compromise on
precision, which exhibit a marked decline in per-
formance when the DLV is removed. Furthermore,
from perfect to abbreviated pinyin, the degradation
in performance becomes more pronounced.

4.6 Discussion on Top-1 Results.
For the Pinyin-to-character task, there is a clear cor-
relation between the top-1 accuracy and the distri-
bution differences between training and testing data.
This is due to the presence of one-to-many samples
in the data, where identical Pinyin corresponds to
completely different outcomes. If the most propor-
tionate samples in the test data also happen to be
the highest probability samples in the training data,
the model’s top-1 results are likely to be high. The
CV-IME is proposed to internalize one-to-many
data through latent variables, mitigating the exces-
sive influence of training data distribution on the
test data distribution. Experimental results reveal
differentiated outcomes presented by various hy-
brid latent variables, indicating that latent variables
can indeed diversify data distributions. However,
the current training is unsupervised, and the overall
differentiation effect is not pronounced, necessitat-
ing further research.

5 Conclusion

This paper introduces the conditional variational
mechanism into the IME model, presenting the CV-
IME model. By incorporating hybrid latent vari-
ables, CV-IME enhances diversity while maintain-
ing the quality of generated results. In comparison
to existing IME models, the experimental results
demonstrate that CV-IME can recall more diverse
and accurate results within similar time constraints,
exhibiting significant advantages in low-resource
scenarios, such as offline mobile devices.
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Limitations

Application Scenarios. The CV-IME model is
proposed to effectively mitigate the severe one-to-
many problem in the task of pinyin-to-character
conversion under low-resource conditions (e.g., on
the mobile phone devices). Therefore, under con-
ditions of abundant computational and storage re-
sources, the introduction of larger pre-trained lan-
guage models with more parameters may yield bet-
ter results. After all, the practical application of la-
tent variable-based pre-training techniques remains
to be tested, which also constitutes one of our fu-
ture research directions.

Data Distribution. The training data and evalua-
tion benchmarks are extracted from different Chi-
nese corpora, which are not not consistent with
the data generated by real users of the Pinyin IME,
and there are certain differences in their distribu-
tions. Consequently, in constructing our training
dataset, we selected news data closely aligned with
the PD benchmark to approximate independent and
identically distributed scenarios (comparison with
PD), and out of domain scenarios (comparison with
WD). Through the aforementioned configurations,
we have rudimentarily simulated real-world scenar-
ios of general distribution and user-specific person-
alization, which to some extent, demonstrates the
efficacy of our approach in practical applications.

Flexibility and Differentiation. The hyper-
parameters (e.g., the number of discrete latent
variables, the annealing steps of KL and so on)
need to be determined through multiple experi-
ments, which cannot be set adaptively. Addition-
ally, the experimental results indicate that the dif-
ferent mixed latent variables are not sufficiently
independent, as the corresponding generated texts
are not entirely distinct. This may be attributed to
the current training methodology being guided by
unsupervised gradient backpropagation. It might
be necessary to introduce regularization terms or
to devise a novel training approach to enhance the
discriminability between the mixed latent variables.
These initial promising results for distinguishing
different hybrid latent variables for recalling di-
verse candidate results will hopefully lead to future
work in this interesting direction.
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A Related Work

A.1 Input Method Engine
Input method engines (IMEs) are important tools
to connect users with mobile applications, By pro-
viding an efficient and user-friendly interface, it
enables users to input text with ease, thereby en-
hancing their overall experience with the apps. Dif-
ferent from alphabetic languages, the input of some
Asian language (i.e. Chinese) characters must rely
on the IMEs. In China, there are two common
Pinyin IMEs for cellphones: the 9-key IMEs and
the 26-key IMEs (Hu et al., 2022). Previous re-
search on Chinese IMEs primarily focused on three
tasks associated with the 26-key keyboard:

(1) The perfect (abbreviated) pinyin to Chinese
characters (PTC) task (Chen and Lee, 2000; Li
et al., 2004; Zhang et al., 2017; Huang et al., 2018;
Zhang et al., 2019; Tan et al., 2022). This task rep-
resents the most fundamental aspect of the Pinyin
IME, revealing the core performance capabilities
of the IME model.

(2) The input noise correction tasks, such as in-
put typo correction (Zheng et al., 2011; Jia and
Zhao, 2014; Liu et al., 2021) and Chinese spelling
check (Chiu et al., 2013; Han and Chang, 2013;
Chen et al., 2013). Due to the limited screen size
of mobile phones, users may accidentally press the
wrong keys on a 26-key keyboard, leading to incor-
rect pinyin syllables being entered. For instance,
while typing ‘songgei’ (送给, give), the ‘i’ might
be mistakenly hit as ‘u’, resulting in ‘songgeu’.
Identifying the noise caused by these accidental
touches and correcting them to output what the
user intended is a significant challenge.

(3) The intelligent association task (Huang et al.,
2015; Huang and Zhao, 2018; Ding et al., 2023).
Usually Pinyin IMEs simply predict a list of char-
acter sequences for user choice only according to
the pinyin input. However, Chinese inputting is
a multi-turn procedure, which can be supposed to
be exploited for further user experience promot-
ing. This task is a commonly used input assistance
function, which predicts possible next sentences

based on the content already entered by the user
for selection, to improve input efficiency.

A.2 Conditional Variational Mechanism
Conditional variational mechanisms (Kingma and
Welling, 2014; Sohn et al., 2015; Yan et al., 2016;
Bowman et al., 2016) are powerful tools in text gen-
eration task, and they are usually used in dialogue
generation models. By using continuous latent vari-
ables, previous conditional variational mechanisms
are introduced into dialogue generation models to
tackle short, dull and general responses problem
(Shen et al., 2017; Zhao et al., 2017; Chen et al.,
2018; Lin et al., 2020; Fang et al., 2021; Sun et al.,
2021; Chen et al., 2022; Sun et al., 2023).

The conditional variational mechanism estimates
the posterior probability distributions p(z|c, r) and
the prior probability distribution p(z|c) of latent
variable z based on the dialogue corpora, where c
denotes the context, r denotes the response, and a
context and a response together constitute a single-
turn dialogue pair. During training, these mod-
els sample the continuous latent variable z from
p(z|c, r) and maximize the conditional probabil-
ity p(r|c, z) to encode context and response into
latent space. Meanwhile, they also minimize the
KL-divergence DKL(p(z|c, r)||p(z|c)) to bring the
two distributions closer together, thus constraining
the continuous latent variables z sampled from the
prior distribution p(z|c) for inference.

In practically, the continuous latent variables ef-
fectively help dialogue models to generate diverse
responses. Nevertheless, owing to the one-to-many
and many-to-one phenomena, the continuous latent
variables frequently struggle to encapsulate the pre-
cise contextual semantics, leading to responses that
are irrelevant and lack coherence (Sun et al., 2021).
Different from the continuous latent variables, dis-
crete latent variables are better at producing rel-
evant and coherent responses. For example, Bao
et al. (2020) uses Latent Act Recognition to model
the relationship between discrete latent variables
and multiple responses, and proposes Response Se-
lection to chose the generated responses of most
coherent with the context. However, owing to their
limited scale, discrete latent variables might encap-
sulate a narrower range of features compared to
their continuous counterparts.

Therefore, combining continuous and discrete
latent variables presents a promising direction. By
doing so, the strengths of each can be harnessed and
their weaknesses mitigated, allowing for a more
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balanced approach that capitalizes on the diversity
provided by continuous variables and the speci-
ficity afforded by discrete variables. This hybrid ap-
proach could potentially lead to more robust and nu-
anced models that better capture the complexities
of the data they are designed to represent. Based on
this, (Sun et al., 2023) propose a hybrid latent vari-
able strategy and a Conditional Hybrid Variational
Transformer (CHVT) for dialogue generation task.
Different from the CHVT, our CV-IME focus on
the pinyin-to-characters task. Owing to the pro-
nounced alignment between the input pinyin se-
quences and the target character sequences within
IME data, the conventional approach to informa-
tion interchange employed during the construction
of continuous latent variables in the CHVT frame-
work can inadvertently overlook salient character
sequence details. This oversight has the potential
to compromise model performance. In response to
this challenge, we introduce an innovative strategy
for the formulation of continuous latent variables.
This strategy is designed to intensify the interac-
tion of information between pinyin and character
sequences, consequently bolstering the efficacy of
the training phase.

A.3 Generation Methods
Beam Search (BS), a popular breadth-first decoding
method, is widely used in text generation task. Un-
fortunately, they inherently exhibit a deficiency in
diversity, which frequently results in performance
degradation within human-like contexts (Holtzman
et al., 2020). Additionally, BS necessitates the
computation of cumulative scores for each can-
didate during the decoding process, and concur-
rently requires the sorting and recombination of
samples, thereby augmenting the computational
burden. Under conditions of constrained computa-
tional resources, this may impede the realization of
its advantages.

To enrich the diversity of BS, stochastic de-
coding strategies are introduced in the generation
phrase. Ancestral sampling (AS) (Bishop and
Nasrabadi, 2006) is the most straightforward but
less effective sampling method. Temperature sam-
pling (Ackley et al., 1985) is an improvement of
AS, which introduces temperature to shape the
probability distribution. However, due to the ran-
domness, both of them will damage the quality
of generated results. To mitigate this problem,
top-k (Fan et al., 2018), nucleus sampling (Holtz-
man et al., 2020), and locally typical (Meister

et al., 2022) sampling are proposed to truncate
the distributions, which aim at improving quality
while preserving diversity. However, the truncation
and re-scaling of probabilities also demand addi-
tional computational effort, similarly presenting
challenges with respect to latency.

Diverging from the aforementioned approaches,
we introduce a conditional variational mechanism
into the IME model, optimizing the sampling pro-
cess through adjustments to the model structure,
while exclusively employing greedy search to cir-
cumvent additional computational overhead. Lever-
aging the latent variables in sampling, CV-IME is
capable of enhancing the diversity of generated
results under conditions of limited latency.

B Method

Construction of Continuous Latent Variables.
The prior and recognition network are responsible
for estimating the prior and the posterior distribu-
tion of continues latent variables. We first use the
Transformer encoder to encode the input sequence
(x = x1, x2, · · · , xn) to obtain its final hidden state
(h = h1, h2, · · · , hn) as prior memory, where n
denotes the length of c. Then, we use the same
encoder to encode the input and target sequence
(x′ = x1, · · · , xn, · · · , xn+m) to obtain the pos-
terior memory (h′ = h′1, · · · , h′n, · · · , h′n+m),
where m means the length of r. Next, we use
prior memory to recompute the posterior memory:

h′ = SoftMax(h · h′T ) · h′ (2)

Finally, similar with previous works (Bowman
et al., 2016; Zhao et al., 2017; Shen et al., 2017)
that assume z follows isotropic Gaussian distribu-
tion, we use fully-connected networks as pθ(z|c) ∼
N (µ, σ2I) and qϕ(z|c, r) ∼ N (µ′, σ′2I) :

(
µ1, ..., µn

log(σ21), ..., log(σ
2
n)

)
= tanh(



h1
· · ·
hn


Wd)Wu

(
µ′1, ..., µ

′
n

log(σ′21 ), ..., log(σ
′2
n )

)
=



[h1;h

′
1]

· · ·
[hn;h

′
n]


W ′

u ,

whereW{d,u},W ′
u are trainable parameters of prior

network and recognition network. At this point we
have n token-level probability distributions for n to-
kens in c. To take full use of these distributions, we
follow the additive Gaussian mixing (Wang et al.,
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2017) to compute the sentence-level distribution:

pθ(zs|c) ∼ N (
n∑

i=1

wiµi,
n∏

i=1

σ2wi
i )

qϕ(z
′
s|c, r) ∼ N (

n∑

i=1

wiµ
′
i,

n∏

i=1

σ′2wi
i ) ,

where zs represents the sentence-level latent vari-
able, wi denotes the weight of the i-th distribution.

Finally, we use the reparameterization trick
(Kingma and Welling, 2014; Zhao et al., 2017) to
obtain samples of zs either from p(zs|c, r) (train-
ing) or p(zs|c) (inference). The sentence-level la-
tent variable zs will be used for constructing the
hybrid latent variable afterwards.

Construction of Hybrid Latent Variables. To
build the hybrid latent variables H , during training,
we first sample the z′s from the p(z′s|c, r) and then
expandedK times that make it added to the discrete
latent variables M :

H =



z′s +M [1]

· · ·
z′s +M [K]


 ,

where K represents the number of discrete latent
variables.

Loss Function. During training, CV-IME intro-
duce the self-separation training and aims to max-
imizing the variational lower bound of the condi-
tional log likelihood (Kingma and Welling, 2014;
Sohn et al., 2015; Yan et al., 2016):

L(θ, ϕ,Ω,M ; r, c)

=

K∑

i=1

αiEqϕ(z′s|r,c) [log p(r|[Hi; c])]

− λDKL(qϕ(z
′
s|r, c)||pθ(zs|c))

αi =

{
1 if Ei = max(E1, · · · ,EK)
0 otherwise

Ei = Eqϕ(z′s|r,c)[log p(r|[Hi; c])],

where θ, ϕ, ψ,Ω,M are parameters of CV-IME,
and λ is the scale factor of KL divergence.

Inference Phase. During inference, CV-IME
use the prior distribution p(zs|c) to sample the
sentence-level continuous latent variable zs and
mix zs with discrete latent variables to construct
hybrid latent variables. Based on the K discrete
latent variables, CV-IME can directly generate K
results for the same input.

C Experimental Settings

Benchmarks. We used two benchmarks:
(1) PD benchmark, a commonly used benchmark

dataset for the Chinese IME task, is extracted from
the People’s Daily from 1992 to 1998 that has word
segmentation annotations by Peking University. It
contains 2,000 segments of consecutive Chinese
characters for testing. For each test case, the input
pinyin are all perfect pinyin and the context is null.

(2) WD benchmarks is extracted from the Wu-
DaoCorpora (Yuan et al., 2021) that contains 3TB
Chinese corpus collected from 822 million Web
pages. Tan et al. (2022) randomly select 16 do-
mains from WuDaoCorpora, and segment those
documents into sentences. For each sentence, they
randomly selected a context ranging from 0-3, 4-9,
and 10+ words, while continuously selecting a tar-
get of 1-3, 4-9, or 10+ words. Each context-target
length tuple like (0-3, 1-3) serves as an evaluation
configuration and contains 2,000 test instances.

Training Data. To train our CV-IME and the
base model, we built a new pinyin-to-character
dataset based on the news2016 corpus5. The
news2016 corpus comprises 2.5 million news ar-
ticles, each containing keywords and descriptions.
Initially, we extract paragraphs from the data and
segment them into sentences using periods, excla-
mation points, and question marks as delimiters.
Subsequently, we divide each sentence from the
end into two parts: context and target, omitting
segmentation points where the target part includes
numbers or special characters. Following this, we
retain the case with a probability of 50%. Subse-
quent to the initial processing, we incorporate the
’pypinyin’ package to construct Pinyin sequences
for the target portion of the retained cases. For each
case, we determine with a 50% probability whether
the data will represent a ’perfect’ Pinyin or an ’ab-
breviated’ Pinyin. Ultimately, we retained a total
of 19,330,170 training samples. Table 1 shows the
statistics of our training set.

Training Detail. The hidden size of all models is
set to 512. The base model consists of 4 layers of
encoder and 1 layer of decoder. The CV-IME em-
ploys a Transformer model with 2 encoder layers
and 1 decoder layer, and additionally incorporates
two fully-connected layers as a prior network. The
maximum length of input sequence (pinyin + con-
text) and result are set to 42 and 20, respectively.

5https://github.com/brightmart/nlp_chinese_corpus
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Figure 4: Results of different encoder-decoder layers configurations over PD using 9-key IME

Perfect Sample-1 Sample-2 Sample-3 Sample Aver. Time

Base+Beam1 84.434%±0.00% 76.002%±0.00% 69.624%±0.00% 56.040%±0.00% 71.525% 19
CV-IME-1 83.050%±0.29% 76.536%±0.10% 70.075%±0.12% 56.040%±0.52% 71.425% 20
CV-IME-2 80.097%±0.21% 71.543%±0.29% 65.681%±0.21% 51.221%±0.43% 67.135% 19
CV-IME-3 81.465%±0.21% 73.480%±0.05% 66.917%±0.22% 53.421%±0.31% 68.821% 20
CV-IME-4 79.696%±0.17% 73.163%±0.14% 67.034%±0.40% 54.675%±0.11% 68.642% 19

Base+Beam2 90.841%±0.00% 85.471%±0.00% 79.950%±0.00% 68.053%±0.00% 81.079% 27
CV-IME 93.093%±0.15% 87.141%±0.09% 82.038%±0.13% 69.593%±0.33% 82.966% 27

Abbreviated Sample-1 Sample-2 Sample-3 Sample Aver. Time

Base+Beam1 44.645%±0.00% 24.649%±0.00% 13.677%±0.00% 3.614%±0.00% 21.646% 20
CV-IME-1 45.362%±0.23% 26.703%±0.18% 15.715%±0.17% 4.367%±0.21% 23.037% 20
CV-IME-2 41.508%±0.17% 24.933%±0.17% 14.412%±0.09% 3.932%±0.09% 21.196% 20
CV-IME-3 42.809%±0.05% 26.486%±0.05% 15.230%±0.04% 3.849%±0.06% 22.094% 20
CV-IME-4 37.504%±0.31% 24.516%±0.17% 14.763%±0.15% 3.932%±0.06% 20.179% 19

Base+Beam2 55.355%±0.00% 30.962%±0.00% 18.337%±0.00% 4.618%±0.00% 27.318% 27
CV-IME 58.909%±0.15% 34.469%±0.22% 20.107%±0.31% 6.108%±0.13% 29.898% 27

Table 7: Results of different context-target length configurations over PD using 26-key IME.

We set the batch sizes to 1024 and 256 for base
model and CV-IME, respectively. Adam is used
for optimization. The initial learning rate is set
to 0.0001. We also introduce KL annealing trick
to leverage the KL divergence during the training.
The KL weight increases linearly from 0 to 1 in the
first 3000000 batches. We train all models in 100
epochs on four A100 GPU cards with Pytorch, and
save the model parameters when the validation loss
reaching minimum.

D Experimental Results

D.1 Model Structure Selection

Figure 4 elucidates the following points: (1) Merely
augmenting the number of layers in the decoder sig-
nificantly increases the generation latency without

improving the accuracy of the generated results;
(2) A model with a single-layer encoder and a six-
layer decoder exhibits a base latency of 69.62 on
CPU devices, yet its accuracy is inferior to that of a
model with a four-layer encoder and a single-layer
decoder; (3) Increasing the number of encoder lay-
ers effectively enhances the accuracy of the gener-
ated results. Consequently, retaining a single-layer
decoder offers the best cost-effectiveness in low-
resource scenarios, and, where possible, augment-
ing the number of encoder layers under constrained
conditions contributes to improved accuracy.

D.2 PD Benchmark

Table 7 and Table 8 show the results of different
context-target length configurations over PD bench-
makrs. Sample-i means that the target in the set
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Perfect Sample-1 Sample-2 Sample-3 Sample Aver. Time

Base+Beam1 72.322%±0.00% 60.521%±0.00% 50.877%±0.00% 34.257%±0.00% 54.494% 19
CV-IME-1 48.415%±0.25% 54.142%±0.38% 48.488%±0.20% 31.122%±0.61% 45.542% 20
CV-IME-2 66.867%±0.36% 58.333%±0.10% 50.192%±0.33% 32.827%±0.10% 52.055% 19
CV-IME-3 75.592%±0.10% 63.945%±0.40% 54.737%±0.25% 37.118%±0.21% 57.848% 19
CV-IME-4 56.390%±0.31% 56.446%±0.16% 49.925%±0.05% 34.103%±0.45% 49.216% 19

Base+Beam2 81.431%±0.00% 72.295%±0.00% 63.058%±0.00% 45.677%±0.00% 65.615% 27
CV-IME 83.600%±0.23% 72.495%±0.40% 63.442%±0.33% 44.686%±0.20% 66.056% 27

Abbreviated Sample-1 Sample-2 Sample-3 Sample Aver. Time

Base+Beam1 27.327%±0.00% 9.469%±0.00% 3.507%±0.00% 0.251%±0.00% 10.139% 20
CV-IME-1 29.696%±0.43% 12.391%±0.13% 4.843%±0.23% 1.222%±0.03% 12.038% 20
CV-IME-2 24.975%±0.49% 9.786%±0.30% 4.225%±0.10% 0.602%±0.13% 9.897% 20
CV-IME-3 27.127%±0.28% 11.055%±0.32% 4.409%±0.05% 0.602%±0.13% 10.798% 20
CV-IME-4 25.325%±0.18% 10.387%±0.38% 4.242%±0.03% 0.937%±0.03% 10.223% 19

Base+Beam2 35.836%±0.00% 13.778%±0.00% 5.110%±0.00% 0.653%±0.00% 13.844% 27
CV-IME 39.256%±0.19% 16.433%±0.35% 6.480%±0.12% 1.573%±0.03% 15.935% 27

Table 8: Results of different context-target length configurations over PD using 9-key IME.

Model Sports Journey Games Culture
Base+Beam2 77.190%±0.000% 74.714%±0.000% 75.684%±0.000% 69.808%±0.000%
CV-IME 80.439%±0.107% 78.730%±0.024% 78.833%±0.235% 72.760%±0.073%

Model Military Real Estate Technology Finance
Base+Beam2 73.007%±0.000% 77.650%±0.000% 79.677%±0.000% 79.300%±0.000%
CV-IME 75.977%±0.195% 81.027%±0.107% 82.560%±0.149% 82.959%±0.154%

Model Education Economy Entertainment International
Base+Beam2 80.995%±0.000% 78.486%±0.000% 77.675%±0.000% 77.207%±0.000%
CV-IME 83.264%±0.099% 80.802%±0.191% 79.475%±0.294% 79.803%±0.297%

Model Medical Automobile Agriculture Society
Base+Beam2 81.584%±0.000% 78.486%±0.000% 73.684%±0.000% 78.127%±0.000%
CV-IME 84.260%±0.227% 81.393%±0.242% 78.655%±0.190% 80.666%±0.310%

Table 9: Results of different domains over WD using 26-key IME perfect pinyin mode.

Model Sports Journey Games Culture
Base+Beam2 20.650%±0.000% 19.750%±0.000% 16.650%±0.000% 17.150%±0.000%
CV-IME 22.183%±0.201% 20.867%±0.094% 20.117%±0.062% 18.967%±0.085%

Model Military Real Estate Technology Finance
Base+Beam2 16.150%±0.000% 20.400%±0.000% 19.450%±0.000% 21.750%±0.000%
CV-IME 19.033%±0.094% 24.383%±0.024% 23.183%±0.103% 25.650%±0.212%

Model Education Economy Entertainment International
Base+Beam2 22.000%±0.000% 20.850%±0.000% 19.850%±0.000% 19.150%±0.000%
CV-IME 24.967%±0.306% 25.317%±0.225% 23.450%±0.283% 22.300%±0.204%

Model Medical Automobile Agriculture Society
Base+Beam2 26.800%±0.000% 20.850%±0.000% 19.250%±0.000% 21.100%±0.000%
CV-IME 30.183%±0.295% 24.017%±0.272% 23.200%±0.082% 23.517%±0.287%

Table 10: Results of different domains over WD using 26-key IME abbreviated pinyin mode.

contains i tokens, and Sample means that the num-
ber of tokens in the context in this data set is 0, and
all tokens are in the target. CV-IME-i means the
results of CV-IME using i-th hybrid latent variable.
Base+Beam represents the results of base model
with beam search. In the tables presented, we ob-
serve that our model outperforms across nearly all
configurations of context-target lengths.

D.3 WD Benchmark

We conducted experiments on the WD dataset
across different domains and with various context-
target length configurations.

Table 9, Table 10, Table 11 and Table 12 report
the results of different domains over WD. From
these tables, it can be observed that: (1) Our CV-
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Model Sports Journey Games Culture
Base+Beam2 59.927%±0.000% 56.542%±0.000% 57.976%±0.000% 52.356%±0.000%
CV-IME 62.122%±0.065% 61.025%±0.065% 60.317%±0.175% 57.034%±0.088%

Model Military Real Estate Technology Finance
Base+Beam2 54.299%±0.000% 60.940%±0.000% 61.907%±0.000% 62.990%±0.000%
CV-IME 56.609%±0.130% 65.762%±0.065% 64.947%±0.089% 65.656%±0.043%

Model Education Economy Entertainment International
Base+Beam2 63.874%±0.000% 63.764%±0.000% 60.545%±0.000% 60.177%±0.000%
CV-IME 67.138%±0.193% 66.269%±0.129% 62.483%±0.198% 63.517%±0.107%

Model Medical Automobile Agriculture Society
Base+Beam2 67.471%±0.000% 59.634%±0.000% 57.018%±0.000% 59.032%±0.000%
CV-IME 70.497%±0.089% 63.708%±0.259% 61.937%±0.135% 63.287%±0.064%

Table 11: Results of different domains over WD using 9-key IME perfect pinyin mode.

Model Sports Journey Games Culture
Base+Beam2 8.600%±0.000% 7.300%±0.000% 6.600%±0.000% 6.750%±0.000%
CV-IME 9.633%±0.047% 9.633%±0.103% 8.633%±0.094% 8.400%±0.147%

Model Military Real Estate Technology Finance
Base+Beam2 7.000%±0.000% 8.600%±0.000% 8.200%±0.000% 9.650%±0.000%
CV-IME 8.183%±0.085% 12.150%±0.147% 10.533%±0.024% 11.417%±0.125%

Model Education Economy Entertainment International
Base+Beam2 8.650%±0.000% 9.050%±0.000% 7.550%±0.000% 7.850%±0.000%
CV-IME 10.517%±0.062% 11.700%±0.122% 9.267%±0.165% 11.400%±0.082%

Model Medical Automobile Agriculture Society
Base+Beam2 11.700%±0.000% 9.250%±0.000% 8.600%±0.000% 8.650%±0.000%
CV-IME 13.933%±0.170% 10.333%±0.155% 9.350%±0.071% 9.883%±0.094%

Table 12: Results of different domains over WD using 9-key IME abbreviated pinyin mode.

IME model consistently outperforms the baseline
model across various domains. (2) The improve-
ment ratio varies across different domains, ranging
from a minimum of 0.75 points to a maximum of
4.97 points. We hypothesize that this variability
may be attributed to the fact that the training data is
extracted from news data, which differs in domain
information from the various domains in WD.

Table 13 presents the results of different context-
target length configurations over WD. The data
from the tables indicate the following observations:
(1) CV-IME model achieves superior performance
over the baseline in most configurations; (2) As
the length of the target increases, the difficulty of
achieving an exact match between the generated
results and the ground truth progressively rises;
(3) Extending the length of the context portion ef-
fectively enhances the accuracy of the generated
outcomes; (4) CV-IME model exhibits improved
performance in the target length phases of 0-3 and
4-9, yet its performance diminishes in scenarios
where the target length exceeds 10. This may be
attributed to the diversity introduced by latent vari-
ables, which leads to a discrepancy between the
generated content and the ground-truth.

D.4 Case Study
Table 14 presents examples of perfect Pinyin mode
in 9-key IME. From the table, it can be observed
that our CV-IME can recall more diverse and ac-
curate results within similar generation time con-
straints. However, since CV-IME utilizes unsuper-
vised training of latent variables, the 4 generated re-
sults from CV-IME only represent the correspond-
ing mixed latent variables and do not imply the
priority of the results. Thus, identifying a time-
efficient sorting method is our future research.
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26-key Perfect model 0-3 4-9 10+

0-3 Base+Beam2 77.082%±0.00% 61.814%±0.00% 35.983%±0.00%
CV-IME 79.354%±0.19% 62.709%±0.20% 35.556%±0.61%

4-9 Base+Beam2 80.541%±0.00% 65.011%±0.00% 35.520%±0.00%
CV-IME 84.136%±0.16% 67.356%±0.17% 37.841%±0.63%

10+ Base+Beam2 82.148%±0.00% 68.041%±0.00% 38.764%±0.00%
CV-IME 85.800%±0.11% 69.952%±0.16% 39.700%±0.73%

26-key Abbreviated model 0-3 4-9 10+

0-3 Base+Beam2 19.744%±0.00% 4.497%±0.00% 0.363%±0.00%
CV-IME 21.653%±0.20% 4.507%±0.11% 0.308%±0.03%

4-9 Base+Beam2 26.144% ±0.00% 6.188%±0.00% 0.457%±0.00%
CV-IME 30.340%±0.22% 7.105%±0.12% 0.451%±0.02%

10+ Base+Beam2 28.278%±0.00% 6.897%±0.00% 0.463%±0.00%
CV-IME 32.977%±0.17% 8.064%±0.10% 0.487%±0.02%

9-key Perfect model 0-3 4-9 10+

0-3 Base+Beam2 60.258%±0.00% 39.708%±0.00% 15.755%±0.00%
CV-IME 62.053%±0.19% 39.197%±0.23% 14.759%±0.39%

4-9 Base+Beam2 64.176%±0.00% 42.432%±0.00% 15.764%±0.00%
CV-IME 69.329%±0.14% 44.543%±0.13% 16.488%±0.45%

10+ Base+Beam2 67.647%±0.00% 45.197%±0.00% 16.923%±0.00%
CV-IME 71.851%±0.18% 47.567%±0.16% 17.588%±0.49%

9-key Abbreviated model 0-3 4-9 10+

0-3 Base+Beam2 7.463%±0.00% 0.606%±0.00% 0.000%±0.00%
CV-IME 8.932%±0.11% 0.690%±0.04% 0.002%±0.00%

4-9 Base+Beam2 12.194% ±0.00% 1.022%±0.00% 0.009%±0.00%
CV-IME 14.793%±0.16% 1.251%±0.05% 0.019%±0.00%

10+ Base+Beam2 13.253%±0.00% 1.125%±0.00% 0.006%±0.00%
CV-IME 16.345%±0.12% 1.447%±0.04% 0.008%±0.00%

Table 13: Results of different context-target length configuration over WD. Each score is averaged over all domains.

id Case Predictions

1

Context 经常有这样的 Base+Beam CV-IME
Pinyin 8432 1. 体罚 1. 同行对比(peer comparison)

Abbreviated No (physical punishment) 2. 提法(statement)
Target 提法 2. 提法 3. 体罚(physical punishment)

Translation
There is often such a (statement) 4. 体会答案
statement (experience solution)

2

Context - Base+Beam CV-IME
Pinyin 94 1. 恣(wantonly) 1. 中国(China)

Abbreviated No 2. 一(one) 2. 优惠(discount)
Target 以 3. 以(with)

Translation with 4. 香菇(mushroom)

3

Context - Base+Beam CV-IME
Pinyin 9824364 1. 组成(composition) 1. 五成(fifty percent)

Abbreviated No 2. 无成(no success) 2. 组成(composition)
Target 组成 3. 禹城(Yucheng)

Translation composition 4. 吴城(Wucheng)

Table 14: Case study.
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