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Abstract

Recent scholarship on reasoning in LLMs has
supplied evidence of impressive performance
and flexible adaptation to machine generated
or human feedback. Nonmonotonic reasoning,
crucial to human cognition for navigating the
real world, remains a challenging, yet under-
studied task. In this work, we study nonmono-
tonic reasoning capabilities of seven state-of-
the-art LLMs in one abstract and one com-
monsense reasoning task featuring generics,
such as ‘Birds fly’, and exceptions, ‘Penguins
don’t fly’ (see Fig. 1). While LLMs exhibit
reasoning patterns in accordance with human
nonmonotonic reasoning abilities, they fail to
maintain stable beliefs on truth conditions of
generics at the addition of supporting examples
(‘Owls fly’) or unrelated information (‘Lions
have manes’). Our findings highlight pitfalls
in attributing human reasoning behaviours to
LLMs, as well as assessing general capabilities,
while consistent reasoning remains elusive.1

1 Introduction

Generics are unquantified statements such as ‘Birds
fly’ or ‘Tigers are striped’ (Carlson and Pelletier,
1995; Mari et al., 2013). They are generalisations
about kinds even if exceptions are known (‘Pen-
guins don’t fly’; Fig. 1). Humans typically accept
generics even if the property in question is rare
among the kind (‘Ticks carry the lime disease’;
Brandone et al., 2012; Cimpian et al., 2010). Gener-
ics play a crucial role in human beliefs on whether
an example of a kind has a given property (Pelletier
and Asher, 1997). Human children master generics
before they are able to reason about quantified state-
ments (Hollander et al., 2002; Leslie and Gelman,
2012).

In defeasible or nonmonotonic reasoning (Slo-
man and Lagnado, 2005; Ginsberg, 1987; Koons,

1Resources available at: https://github.com/
aleidinger/nonmonotonic_reasoning_generics

Figure 1: Reasoning about generics and exceptions

2005), a hypothesis follows defeasibly from a
premise, if the hypothesis is true in most nor-
mal cases in which the premise holds. Generics
make for a rich test bed for testing nonmonotonic
reasoning capabilities (Pelletier and Asher, 1997;
Asher and Morreau, 1995). For example, given the
generic ‘Birds fly’ the inference ‘Tweety, the bird,
can fly’ is defeasibly valid (McCarthy, 1986; Reiter,
1988, i.a.), i.e., it is reasonable to assume ‘Tweety
can fly’ even if exceptions are possible (‘Tweety
is a penguin’) (Lascarides and Asher, 1991). A
classical reasoner however would reject the generic
‘Birds fly’ upon learning that ‘Penguins don’t fly’.

Nonmonotonic reasoning is an integral part of
human cognition (Russell, 2001), that helps us to
navigate the real-world, e.g., by planning (Sten-
ning and Van Lambalgen, 2012, Ch.5), a task that
LLMs still struggle with (Valmeekam et al., 2023;
Stechly et al., 2024). Nonmonotonic reasoning
poses a greater challenge for LLMs than other rea-
soning tasks (Han et al., 2024) and hasn’t been
featured prominently among natural language infer-
ence (NLI) (Gubelmann et al., 2023) or reasoning
benchmarks (see §2).

The question of whether LLMs reason nonmono-
tonically or classically about generics and excep-
tions is intricately linked to desiderata of LLMs
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as reasoners. LLMs are heralded for their abil-
ity to adapt to human or machine generated feed-
back (Shinn et al., 2023; Paul et al., 2023; Madaan
et al., 2024; Pan et al., 2024, i.a.). At the same
time, it is desired that they reason reliably when
presented with invalid counterarguments, irrelevant
information or user viewpoints. Sycophancy (Perez
et al., 2023) of LLMs, i.e., susceptibility to be
swayed by user belief, is a case in point that has
been investigated in recent studies (Ranaldi and
Pucci, 2023; Laban et al., 2023, i.a.).

As studies on reasoning patterns with generics
remain scarce (Ralethe and Buys, 2022; Lin et al.,
2020) and do not examine nonmonotonic reason-
ing, we address this gap by investigating the fol-
lowing research questions: 1) Do LLMs reason
nonmonotonically or classically about generics?
2) Are LLMs sensitive to counter-evidence in the
form of exceptions? 3) Do LLMs reason consis-
tently and reliably by maintaining their response
given supporting or unrelated examples? We test
seven state-of-the-art LLMs for their reasoning ca-
pabilities about generics in the presence of excep-
tions (‘Penguins don’t fly’), as well as support-
ing (‘Owls fly’) and irrelevant exemplars (‘Lions
have manes’). Across two datasets featuring both
abstract and commonsense generics, we find that
LLM behaviour mirrors human nonmonotonic rea-
soning patterns in the presence of exceptions (§5.1).
However, most LLMs are not able to consistently
maintain their agreement with generics given un-
related, or even supportive exemplars (§5.2). Our
study highlights challenges in comparing LLM be-
haviour to human reasoning patterns as well as as-
sessing reasoning capabilities more broadly, while
consistent reasoning cannot be guaranteed. In Sec-
tion 7, we present recommendations for a more
holistic evaluation practice encompassing logical
consistency measures.

2 Related Work

2.1 Generics in NLP

To date most works on generics focus on in-
jecting commonsense knowledge or generics into
LLMs (Gajbhiye et al., 2022; Liu et al., 2023a, i.a.),
or training LLMs for knowledge/generic genera-
tion (Bhagavatula et al., 2023). (See AlKhamissi
et al. (2022) for a review.) Bhakthavatsalam et al.
(2020) construct GenericsKG, a large knowledge
base of generics as an asset for downstream tasks
such as Question Answering or explanation gener-

ation. Bhagavatula et al. (2023) design a pipeline
for synthetic generation of generics using samples
from GenericsKB as seeds. Allaway et al. (2023)
in turn complement the data with exceptions and in-
stantiations for each generic, but do not investigate
nonmonotonic reasoning capabilities.

Most closely related to our work, Lin et al.
(2020) find that LMs struggle to predict numeri-
cal knowledge in generics such as ‘Birds have two
legs’. Ralethe and Buys (2022) find that pre-trained
masked LMs falsely overgeneralise (Leslie et al.,
2011) from generics (‘Ducks lay eggs’) to univer-
sally quantified statements (‘All ducks lay eggs’).

2.2 Nonmonotonic reasoning in NLP

Han et al. (2024) test nonmonotonic reasoning
among other inductive reasoning tasks and find that
only GPT-4 performs adequately. LLMs struggle
to reason with contradictory information (Kazemi
et al., 2024). Rudinger et al. (2020); Brahman
et al. (2021); Bhagavatula et al. (2019) develop
NLI tasks to test defeasible or abductive reasoning
in pragmatics, while Pyatkin et al. (2023); Ziems
et al. (2023); Rao et al. (2023) focus on defeasible
reasoning and social norms. Parmar et al. (2024)
introduce non-monotonic reasoning tasks inspired
by Lifschitz (1989) as part of their LogicBench.

2.3 Consistency in reasoning

Most recent studies on reliability and consistency in
reasoning examine sycophancy (Perez et al., 2023;
Laban et al., 2023; Ranaldi and Pucci, 2023), con-
sistency within multi-step reasoning or across ses-
sions and users (Chen et al., 2023a; Wang et al.,
2022). (See Liu et al. (2023b) for a review.)

Orthogonal to this, our work connects to studies
of reasoning in the presence of unrelated or conflict-
ing information. Shi et al. (2023) find that LLMs
are easily confounded by irrelevant information in
arithmetic reasoning. Across a variety of reason-
ing tasks, Wang et al. (2023a) find that OpenAI
models struggle to maintain stable responses given
irrelevant objections. Xie et al. (2023) find mixed
evidence of LLMs being sensitive to information
that contradicts prior knowledge, yet showing a
form of ‘confirmation bias’ when presented with
diverse viewpoints.

3 Tasks and datasets

We test nonmonotonic reasoning with generics
using two datasets, featuring commonsense and
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abstract generics. Both datasets contain gener-
ics (‘Birds fly’) accompanied by statements where
the generic holds (‘Owls fly’) or doesn’t (‘Pen-
guins don’t fly’). We refer to such examples as
instantiations or exceptions respectively, and to
both collectively as as exemplars.

As commonsense generics, we use the syn-
thetic dataset of generics and exemplars released
by Allaway et al. (2023) (henceforth referred to as
GEN-comm). The dataset consists of ∼ 650 generics
and ∼ 19.000 exemplars (E.g., ‘Hoes are used to
plow fields or clear snow’; ‘Hoes can be used to cut
grass’).2 Secondly, we construct an abstract reason-
ing dataset featuring generics (GEN-abs). Inspired
by Han et al. (2024), we use categories (‘birds’) and
examples (‘eagles’) from De Deyne et al. (2008) to
construct generics of the form ‘Birds have property
P’ and exemplars of the form ‘Eagles do (not) have
property P’. The dataset contains 260 tuples of a
generic paired with an exemplar.3

For both datasets, our goal is to prompt LLMs for
their agreement with a generic in the presence of
exemplars which confirm or contradict the generic.
We use the following prompt template, including
model-specific special tokens4 to signal a chat his-
tory between an assistant and a user.5

Example:
[INST] Is the following statement true: “Birds
fly.” \nPlease answer yes or no. [/INST]
yes
[INST] Penguins don’t fly.\nIs the following
statement true: “Birds fly.”\nPlease answer yes
or no. [/INST]

As a control study, we also replace the exception
in the prompt (‘Penguins don’t fly’) with an instanti-
ation (‘Owls fly’) or a random exemplar (‘Hoes can
be used to cut grass’). Since generics in GEN-abs
are abstract in nature, and to enable a consistent
set-up across both datasets, we retain generics in
GEN-comm that LLMs accepts when prompted with
the first part of the above template, e.g., [INST] Is
the following statement true: “Birds fly.” \nPlease
answer yes or no. [/INST].6

2See App. B for additional information on preprocessing.
3The dataset is available at: https://github.com/

aleidinger/nonmonotonic_reasoning_generics/blob/
main/data/abstract_generics.csv

4See Appendix A or https://huggingface.co/docs/
transformers/main/en/chat_templating for details.

5We also experiment with an alternative prompting tem-
plate and Chain-of-Thought prompting. Since results are simi-
lar, they are included in Appendix F.

6See App. B for details and results on discarded generics.

4 Method

4.1 Models
We conduct our experiments on medium-sized
open-weight models selected from the top of
AlpacaEval7 and LMSys8 leaderboards, namely
Llama-2-13b (Touvron et al., 2023), Mistral-7b-
Instruct-v0.2 (Jiang et al., 2023), Mixtral-8x7B-
Instruct-v0.1 (Jiang et al., 2024), Zephyr-7b-beta
(Tunstall et al., 2023), WizardLM-13B-V1.2 (Xu
et al., 2023), Starling-LM-7B-alpha (Zhu et al.,
2023a), and OpenHermes-2.5-Mistral-7B (Nous-
Research, 2023).9

4.2 Prompting set-up
Since LLM behaviour can vary considerably with
the phrasing of an instruction (Webson and Pavlick,
2022; Leidinger et al., 2023), we formulate three
different instructions to test if an LLM agrees
with a given generic: ‘Is the following statement
true’, ‘Do you believe the following statement to
be true’, ‘Do you believe that the following state-
ment is accurate’. Since the optimal model reply
is short and succinct, we follow the convention of
HELM (Liang et al., 2023, p.161) in setting tem-
perature to 0 for reproducibility across runs. We
format every prompt using the chat template appro-
priate for each model, with no system prompt.4 To
map LLM responses to labels disagree vs. agree,
we use pattern matching and record whether a re-
sponse starts with yes or no (Röttger et al., 2023).
We aggregate responses for the three instructions
via majority voting.

4.3 Statistical tests
To assess whether behaviour of LLMs is signif-
icantly different in the absence vs. presence of
exemplars we resort to non-parametric statistical
testing. Since our samples are paired, we use the
Wilcoxon signed-rank test (Wilcoxon, 1992).

5 Results

We present our main results in Figure 2. Additional,
accordant results are described in Appendix F.

5.1 Do LLMs reason nonmonotonically?
Since humans maintain their beliefs about truth
conditions of generics (‘Birds fly’) in the presence
of exceptions (‘Penguins do not fly’), we examine

7https://tatsu-lab.github.io/alpaca_eval/
8https://chat.lmsys.org/?leaderboard
9See App. C for checkpoints and additional information.
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Figure 2: LLM agreement with generics in the presence
of exemplars on GEN-comm (top) and GEN-abs (bottom).
Missing columns indicate agreement rates of 0%.

whether challenging LLMs with an exception de-
creases their agreement to generics significantly.
We find this to be the case for all models on both
datasets (p = 0.01; see App. E for statistical
test results). Notably, agreement rates drop to 0
for Llama-2, Mixtral, Starling and WizardLM on
GEN-abs.

5.2 Do LLMs reason consistently?

In the presence of supporting evidence (instanti-
ation) to a generic (‘Owls fly’), we expect LLM
agreement to remain at 100%, but this is not the

case. While agreement rates remain high in num-
bers, they drop significantly for all models. On
GEN-abs, only Mistral, OpenHermes, and Wiz-
ardLM maintain agreement rates of > 90%, while
agreement drops to < 10% for Mixtral.

Similarly, most LLMs are not able to disre-
gard irrelevant random exemplars (exception/in-
stantiation (shuffled)). Agreement rates decline
steeply below 50% for Llama-2, Mistral, Mixtral
and Zephyr on GEN-comm and to below 20% for
Llama-2, Mixtral, Starling, WizardLM and Zephyr
on GEN-abs. OpenHermes stands out as the only
model that maintains agreement rates above 85%
on both datasets. Notably, OpenHermes is the only
model which has been trained on additional code
data which has been shown to also help reasoning
in natural language (Liang et al., 2023; Yang et al.,
2024; Ma et al., 2023). Nevertheless, observed dif-
ferences are statistically significant for all models
on both datasets (App. E).

6 Analysis

6.1 How do LLMs reason about different
types of generics?

GEN-comm contains both bare plural (BP) generics
as well as indefinite singular (IS) generics (Leslie
et al., 2009). (For example, ‘Sea snails have a
hard shell, which protects them from predators’
(BP) and ‘A deciduous tree can be identified by its
leaves’ (IS)). We did not find notable differences be-
tween LLM agreement to BP or IS generics in the
presence of exemplars (see Figure 3). Aforemen-
tioned consistency failures persist for both types of
generics.

6.2 Qualitative analysis

Generics in GEN-comm which are accepted in isola-
tion, but are rejected in the presence of exceptions
or instantiations include ‘Stimulants can be used
to treat ADHD’ (Llama-2, Starling, Mixtral) or ‘A
bobsleigh is driven by a single driver’ (Starling,
Mistral, Mixtral, OpenHermes, WizardLM). Gener-
ics which are accepted no matter the exemplar pre-
sented in context include ‘Inflammatory diseases
may be caused by an imbalance of the immune sys-
tem’ (Llama-2, Starling, Mistral, OpenHermes), ‘A
processor should be able to run a program’ (Star-
ling, Mixtral, OpenHermes, WizardLM), ‘Experi-
mental evidence is used to support or refute theo-
ries’, ‘An adventure has a beginning, middle, end’
(Starling, OpenHermes, WizardLM), and ‘Coin-
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Figure 3: LLM agreement with bare plural (BP) and indefinite singular (IS) generics in the presence of exemplars
on GEN-comm.

cidence is part of the human condition’ (Starling,
Mistral, OpenHermes).

For GEN-abs, OpenHermes is the only LLM
which maintains its agreement to a generic (‘Birds
have property P’, ‘Mammals have property P’) in
the presence of any instantiation or unrelated exem-
plar, but flips its decision and outputs disagreement
in the presence of an exception. No LLM accepts
any of the generics regardless of the exemplar it is
paired with.

7 Discussion

With the advent of LLMs and reports of impressive
performance, including on reasoning tasks (Wei
et al., 2022; Kojima et al., 2022), recent investiga-
tions into failure modes in reasoning have focused,
e.g., on prompt attacks (Zhu et al., 2023b; Wang
et al., 2023b, i.a.), sycophancy (Perez et al., 2023;
Laban et al., 2023; Ranaldi and Pucci, 2023, i.a.) or
adaptability to critique or feedback (Madaan et al.,
2024; Chen et al., 2023b; Huang et al., 2023; Pan
et al., 2024). Such research trends might be seen
as emblematic of a view of LLMs as artificial natu-
ral artifacts (Kambhampati, 2022). Results in this
study demonstrate the difficulties of making claims
about reasoning capabilities of LLMs or comparing
them to human reasoners (Han et al., 2024; Ralethe

and Buys, 2022; Lin et al., 2020), while consistent
reasoning remains elusive even for state-of-the-art
LLMs. Research that predates the paradigm shift
to few-shot prompting, has advocated for arguably
simpler, systematic diagnostic tests (Ribeiro et al.,
2020; Ettinger, 2020; Kassner and Schütze, 2020).
We argue that such behavioural tests merit a revival,
so that performance metrics for reasoning are com-
plemented with measures of logical consistency
and robustness.

8 Conclusion

The present study focuses on nonmonotonic rea-
soning capabilities of LLMs in the context of gener-
ics. We evaluate seven state-of-the-art LLMs on
two datasets featuring both abstract and common-
sense generic statements. While LLM behaviour on
generics paired with exceptions is in line with non-
monotonic reasoning patterns, LLMs fail to reason
consistently and robustly when adding supporting
or unrelated exemplars.

9 Limitations

We acknowledge that our experiments exclusively
feature generics and exemplars in English. Fu-
ture research might profit from including additional
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languages to examine nonmonotonic reasoning ca-
pabilities in other languages, drawing on cross-
linguistic research on generics (Mari et al., 2013).
Such work might also highlight differences in con-
sistency failures between different languages. In
this work, we do not experiment with generics per-
taining to demographic groups or nationalities be-
cause of concerns around social bias. Future work
might examine LLM behaviour on generic state-
ments for larger LLMs or closed-source models.
We restrict ourselves to medium-sized open-weight
LLMs, due to their widespread use and availability,
as well as restrictions on our computational budget.
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Model # samples
Mistral-7B-Instruct 2093
Llama-2-13b 1245
Zephyr-7b-beta 1536
WizardLM-13B-V1.2 2225
OpenHermes-2.5-Mistral-7B 2153
Starling-LM-7B-alpha 2244
Mixtral-8x7B-Instruct-v0.1 1959

Table 1: # retained samples in GEN-comm

Prompt:

[INST] Do you believe that the following
statement is accurate: ‘Birds fly.’

Please answer yes or no. [/INST]
yes
[INST] Penguins do not fly.

Do you believe that the following statement is
accurate: ‘Birds fly.’

Please answer yes or no. [/INST]

B Additional information on data
preprocessing

For GEN-comm, we conduct additional process-
ing to obtain high quality generics and ensure a
parallel experimental setup between GEN-comm
and GEN-abs. We retain only generics that were
annotated as ‘valid’ by human annotators. We filter
generics for which both an exception and an in-
stantiation exists. Since generics are unquantified
statements, we remove any quantifiers such as ‘gen-
erally’, ‘usually’ and ‘typically’ at the beginning
of each generic. To enable consistent evaluation
on GEN-abs and GEN-comm, we evaluate each
LLM on generics contained in GEN-comm which
it accepts a priori. In an initial experiment, we
prompt LLMs using the first part of our template
(above; App. A). An example input for GEN-comm
would be, e.g., ‘[INST] Do you believe that the fol-
lowing statement is accurate: ‘Birds have property
P.’ Please answer yes or no[/INST]’. Generics for
which an LLM does not generate yes as a response
are discarded. We retain > 1200 samples for each
model (See Table 1 for details).

Results on the resultant dataset are presented
in the main body of the paper (Section 5). For
the reader’s interest, we include here also LLM re-

Figure 4: Results on generics contained in GEN-comm
that are rejected a priori. Missing bars for ‘no exemplar’
indicate agreement rates of zero.

sponses to generics contained in GEN-comm which
are rejected by LLMs, i.e., a given LLM generates
the response no to the prompt above (See Figure
4). As expected agreement rates soar for almost
all models when adding an instantiation which con-
firms the previously rejected generic. Nevertheless,
agreement rates also increase, albeit less, when
adding exceptions or unrelated random examplars,
particularly for Llama-2 and WizardLM. OpenHer-
mes and Starling show the least inconsistencies.

C Additional information on LLMs

In this section we provide additional details on
the models used in this study which are listed in
Section 4.1. The specific checkpoints we use can
be seen in Table 2 and are all available through the
HuggingFace Hub. All models we use are trained
for chat interaction.

Mixtral-8x7B-Instruct-v0.1 (MistralAI, 2023) is
a sparse mixture of expert model based on 8 Mis-
tral 7B models that has been further trained using
supervised finetuning and Direct Preference Opti-
misation. It ranks highest among its weight class
on AlpacaEval11 and chat.lmsys12 leaderboards (as
of Feb 6 2024). At its release it surpasses GPT-3.5
and LLaMA-2-70b.

11https://tatsu-lab.github.io/alpaca_eval/
12https://chat.lmsys.org/?leaderboard
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LLM Checkpoints
meta-llama/Llama-2-13b-chat-hf
mistralai/Mistral-7B-Instruct-v0.2
mistralai/Mixtral-8x7B-Instruct-v0.1
HuggingFaceH4/zephyr-7b-beta
berkeley-nest/Starling-LM-7B-alpha
WizardLM/WizardLM-13B-V1.2
teknium/OpenHermes-2.5-Mistral-7B

Table 2: LLM checkpoints used in this study.

StarlingLM-13B-V1.2 (Zhu et al., 2023a) has
been trained via Reinforcement Learning from AI
Feedback (RLAIF) on the Nectar dataset. In its
weight class, it is the second best performing model
on chat.lmsys and 4th on AlpacaEval (as of Feb 6
2024).

Amidst mounting evidence that training on code
enhances reasoning abilities also for natural lan-
guage (Liang et al., 2023; Yang et al., 2024; Ma
et al., 2023), we also use OpenHermes-2.5-Mistral-
7B (NousResearch, 2023) which ranks third in its
weight class on chat.lmsys. It is Mistral-based
model that has been finetuned on additional code
datasets. Notably, the developers detail that this
results in improvements on non-code tasks.13

WizardLM-13B-V1.2 (Xu et al., 2023) is a fine-
tuned version of Llama-2 13b and is ranked 8th in
its weight-class on both chat.lmsys and AlpacaE-
val.

Zephyr-7b-beta (Tunstall et al., 2023) is a fine-
tuned version of Mistral-7B-v0.1. It is ranked 9th
on chat.lmsys and 11th on AlpacaEval.

D Average runtime

Generating LLM responses for one LLM and all
generics across all settings took less than 0.5 GPU
hours. All experiments were conducted on one
NVIDIA A100 GPU.

E Statistical test results

Responses in the presence of exemplars are sig-
nificantly different from results obtained without
examplars (see Tables 3, 4, 5), for all types of exem-
plars and all models (significance level 0.01; sole
exception is Llama-2 with CoT prompting as can
be seen in Table 5 rows 1-2).

13https://huggingface.co/teknium/OpenHermes-2.
5-Mistral-7B

Figure 5: Results on GEN-comm. Alternative prompt
template described in Section F

F Additional experimental results

We demonstrate additional experimental results
based on an alternative prompting set-up in Fig-
ures 5 and 6.

To this end, we prompt LLMs using the
following template where [INST] is an example
of a model-specific special token used in chat
templating. For example:

Prompt
[INST] Do you believe that the following
statement is accurate: ‘Birds fly’

Please answer yes or no. [/INST]

For GEN-comm, we retain all generics to which
an LLM responds yes to the prompt above. We
then prompt LLMs anew supplying an exception,
instantiation or random exemplar together with a
generic for both datasets. For example:

Prompt
[INST] Penguins do not fly.

Do you believe that the following statement is
accurate: ‘Birds fly’

Please answer yes or no. [/INST]

We find that results differ significantly between
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Figure 6: Results on GEN-abs. Alternative prompt tem-
plate described in Section F.

the two conditions (no exemplar vs. with an exem-
plar) (see Table 4 for statistical test results). On
GEN-comm (Figure 5) agreement rates drop consid-
erably in the presence of exceptions which mir-
rors nonmonotonic reasoning patterns. Agreement
is higher, yet still drops significantly in the pres-
ence of instantiations. No LLM maintains perfectly
consistent responses at the addition of random in-
stantiations or exceptions. When prompting with
random exemplars surprisingly agreement drops,
most notably for Llama-2 and Zephyr.

For the reader’s interest, we also include results
on the portion of generics in GEN-comm which is
rejected by LLMs a priori (Table 7). As expected,
agreement increases from zero at the addition of
an instantiation to the prompt, most notably for
OpenHermes and Starling. However, LLMs should
maintain a response of no at the addition of an ex-
ception or random exemplar to the prompt. This is
visibly not the case with agreement rates increasing
significantly for all models.

On GEN-abs, agreement drops considerably at
the addition of an exception for all models except
OpenHermes (Figure 6). Notably OpenHermes and
Starling-LM appear to yield consistent responses in
the presence of our controls, the random exemplars,
while Llama-2 and Zephyr perform worst in that
regard.

Figure 7: Results on generics of GEN-comm that are re-
jected by LLMs a priori. Alternative prompt template
described in Section F. Missing bars indicate that agree-
ment for ‘no exemplar’ is zero.

F.1 Chain-of-thought prompting
Additionally, we ran experiments using zero-shot
Chain-of-Thought (CoT) prompting in the style of
(Kojima et al., 2022) by appending ‘Let’s think
step by step’ to our prompts. We present results
on GEN-comm in Figure 8 and results on GEN-abs
in Figure 9.

On GEN-comm, agreement rates drop significantly
for all models at the addition of exceptions, in-
stantiations or shuffled exemplars (with the excep-
tion of Llama-2 when we include instantiations;
see Table 5 for significance results). Agreement
rates drop more given exceptions in comparison to
instantiations or unrelated examplars for Mistral,
Mixtral, OpenHermes and Starling. For Llama-2
and Zephyr agreement rates fall below 10% at the
addition of unrelated exemplars.

On GEN-abs, agreement rates fall drastically
given exceptions and equal 0% for Llama-2, Mix-
tral, Starling and Zephyr. The same is true for shuf-
fled instantiations. OpenHermes is the only model
to maintain agreement rates above 90% when pre-
sented with instantiations or shuffled exceptions.

569



Figure 8: Results on GEN-comm using zero-shot CoT
prompting.

Figure 9: Results on GEN-abs using zero-shot CoT
prompting. Missing bars indicate agreement rate of
0%.
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Model prompt setting p-value
Llama-2-13b-chat-hf exception 1.2444035588550786e-84
Llama-2-13b-chat-hf instantiation 1.3944889010907487e-28
Llama-2-13b-chat-hf exception (shuffled) 1.3664041679452567e-86
Llama-2-13b-chat-hf instantiation (shuffled) 3.7504271121760947e-128
OpenHermes-2.5-Mistral-7B exception 2.0884875837625446e-45
OpenHermes-2.5-Mistral-7B instantiation 7.237829871739995e-08
OpenHermes-2.5-Mistral-7B exception (shuffled) 1.733880104231141e-27
OpenHermes-2.5-Mistral-7B instantiation (shuffled) 9.799073841979368e-26
Starling-LM-7B-alpha exception 1.0691632340127197e-102
Starling-LM-7B-alpha instantiation 7.247101964362887e-14
Starling-LM-7B-alpha exception (shuffled) 3.14927364689666e-77
Starling-LM-7B-alpha instantiation (shuffled) 5.588400099286033e-62
Mixtral-8x7B-Instruct-v0.1 exception 5.599059901868063e-84
Mixtral-8x7B-Instruct-v0.1 instantiation 4.84145282763492e-53
Mixtral-8x7B-Instruct-v0.1 exception (shuffled) 1.8855259265259482e-119
Mixtral-8x7B-Instruct-v0.1 instantiation (shuffled) 3.312378211336223e-151
WizardLM-13B-V1.2 exception 3.169934685227252e-109
WizardLM-13B-V1.2 instantiation 1.244192114854348e-15
WizardLM-13B-V1.2 exception (shuffled) 6.7440576522393956e-49
WizardLM-13B-V1.2 instantiation (shuffled) 3.312389179997469e-50
zephyr-7b-beta exception 3.2434215158679907e-99
zephyr-7b-beta instantiation 2.68778179464934e-25
zephyr-7b-beta exception (shuffled) 2.7464111838608292e-137
zephyr-7b-beta instantiation (shuffled) 2.671546422248841e-187
Mistral-7B-Instruct-v0.2 exception 6.521923113646968e-71
Mistral-7B-Instruct-v0.2 instantiation 2.0670658180782593e-15
Mistral-7B-Instruct-v0.2 exception (shuffled) 6.923699393684986e-120
Mistral-7B-Instruct-v0.2 instantiation (shuffled) 4.9982887921763924e-139

Table 3: Results of Wilcoxon signed ranked test for paired samples. We compare agreement of LLMs to generics
with and without an exemplar (one of exception, instantiation, exception (shuffled), instantiation (shuffled). Results
are obtained using the original prompt template described in section 5 and correspond to the main results in the
paper in Figure 2.
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Model prompt setting p-value
Llama-2-13b-chat-hf exception 1.2402659787920488e-62
Llama-2-13b-chat-hf instantiation 1.8577351435735865e-29
Llama-2-13b-chat-hf exception (shuffled) 6.558556037957885e-98
Llama-2-13b-chat-hf instantiation (shuffled) 9.990918651724453e-148
OpenHermes-2.5-Mistral-7B exception 9.041178413936276e-31
OpenHermes-2.5-Mistral-7B instantiation 0.025347318677468252
OpenHermes-2.5-Mistral-7B exception (shuffled) 9.236596617174027e-13
OpenHermes-2.5-Mistral-7B instantiation (shuffled) 1.2052982584446398e-13
Starling-LM-7B-alpha exception 4.84145282763492e-53
Starling-LM-7B-alpha instantiation 0.0009111188771537128
Starling-LM-7B-alpha exception (shuffled) 9.89884333064868e-40
Starling-LM-7B-alpha instantiation (shuffled) 6.7440576522393956e-49
Mixtral-8x7B-Instruct-v0.1 exception 2.6891242658680216e-51
Mixtral-8x7B-Instruct-v0.1 instantiation 2.8706760140807313e-27
Mixtral-8x7B-Instruct-v0.1 exception (shuffled) 7.287679729162835e-32
Mixtral-8x7B-Instruct-v0.1 instantiation (shuffled) 1.8712872006902566e-36
WizardLM-13B-V1.2 exception 5.8780179991539864e-33
WizardLM-13B-V1.2 instantiation 9.633570086430965e-07
WizardLM-13B-V1.2 exception (shuffled) 7.74421643104407e-06
WizardLM-13B-V1.2 instantiation (shuffled) 2.5802843041604163e-08
zephyr-7b-beta exception 3.525239394844374e-74
zephyr-7b-beta instantiation 2.476062658812572e-30
zephyr-7b-beta exception (shuffled) 3.7238080067294776e-86
zephyr-7b-beta instantiation (shuffled) 9.415767818703249e-116
Mistral-7B-Instruct-v0.2 exception 3.9328331793483447e-54
Mistral-7B-Instruct-v0.2 instantiation 2.0670658180782593e-15
Mistral-7B-Instruct-v0.2 exception (shuffled) 3.699479889932592e-64
Mistral-7B-Instruct-v0.2 instantiation (shuffled) 2.6476609044572044e-100

Table 4: Results of Wilcoxon signed ranked test for paired samples. We compare agreement of LLMs to generics
with and without an exemplar (one of exception, instantiation, exception (shuffled), instantiation (shuffled)). These
results correspond to the alternative prompting style and results described in section F.
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Model prompt setting p-value
Llama-2-13b-chat-hf exception 0.025347318677468252
Llama-2-13b-chat-hf instantiation 0.31731050786291415
Llama-2-13b-chat-hf exception (shuffled) 0.0009111188771537128
Llama-2-13b-chat-hf instantiation (shuffled) 3.737981840170154e-05
Starling-LM-7B-alpha exception 4.320463057827488e-08
Starling-LM-7B-alpha instantiation 5.733031437583866e-07
Starling-LM-7B-alpha exception (shuffled) 1.5417257900279904e-08
Starling-LM-7B-alpha instantiation (shuffled) 1.1825298845719069e-11
OpenHermes-2.5-Mistral-7B exception 2.3159484001346495e-35
OpenHermes-2.5-Mistral-7B instantiation 3.552964224155306e-33
OpenHermes-2.5-Mistral-7B exception (shuffled) 4.4044942248007814e-32
OpenHermes-2.5-Mistral-7B instantiation (shuffled) 1.773177466197228e-41
Mixtral-8x7B-Instruct-v0.1 exception 2.9303133449994263e-53
Mixtral-8x7B-Instruct-v0.1 instantiation 4.474661339129513e-39
Mixtral-8x7B-Instruct-v0.1 exception (shuffled) 6.758775639492622e-37
Mixtral-8x7B-Instruct-v0.1 instantiation (shuffled) 5.058648827940248e-40
zephyr-7b-beta exception 3.6136286243610392e-96
zephyr-7b-beta instantiation 8.956226067732092e-94
zephyr-7b-beta exception (shuffled) 1.2813208444193637e-111
zephyr-7b-beta instantiation (shuffled) 2.0076004412348868e-151
Mistral-7B-Instruct-v0.2 exception 3.294362383314041e-67
Mistral-7B-Instruct-v0.2 instantiation 6.210993425425191e-19
Mistral-7B-Instruct-v0.2 exception (shuffled) 2.380470154600155e-54
Mistral-7B-Instruct-v0.2 instantiation (shuffled) 1.2444035588550786e-84

Table 5: Results of Wilcoxon signed ranked test for paired samples. We compare agreement of LLMs to generics
with and without an exemplar (one of exception, instantiation, exception (shuffled), instantiation (shuffled)). These
results correspond to Chain-of-Thought prompting results described in section F.
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