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Abstract

Recent works on linear text segmentation have
shown new state-of-the-art results nearly every
year. Most times, however, these recent ad-
vances include a variety of different elements
which makes it difficult to evaluate which indi-
vidual components of the proposed methods
bring about improvements for the task and,
more generally, what actually works for linear
text segmentation. Moreover, evaluating text
segmentation is notoriously difficult and the
use of a metric such as Pk, which is widely
used in existing literature, presents specific
problems that complicates a fair comparison
between segmentation models. In this work,
then, we draw from a number of existing works
to assess which is the state-of-the-art in linear
text segmentation, investigating what architec-
tures and features work best for the task. For
doing so, we present three models representa-
tive of a variety of approaches, we compare
them to existing methods and we inspect ele-
ments composing them, so as to give a more
complete picture of which technique is more
successful and why that might be the case. At
the same time, we highlight a specific feature
of Pk which can bias the results and we report
our results using different settings, so as to give
future literature a more comprehensive set of
baseline results for future developments. We
then hope that this work can serve as a solid
foundation to foster research in the area, over-
coming task-specific difficulties such as evalua-
tion setting and providing new state-of-the-art
results1.

1code available at: https://github.com/Ighina/NSE-
TopicSegmentation

1 Introduction

Linear text segmentation, also known as topic seg-
mentation, is a well known problem in natural lan-
guage processing, and the first step for a number
of downstream applications. The task consists in
the automatic segmentation of a text into topically
coherent units and this has many use cases: a long
transcript from a news show, e.g., could be divided
into single news stories so as to help an end user in
retrieving more relevant and specific information
(Reynar, 1999) or a long article could be divided
into subsections to aid its reading (Hearst, 1997).

Recent works have presented a series of advance-
ments in the field, from which a number of conclu-
sions could be drawn, such as the fact that Trans-
former architectures work better than traditional re-
current models (Lo et al., 2021) and that fine-tuned
LLMs need no additional contextual information
to perform the task (Lee et al., 2023).

The results of different recent works, however,
can be contradictory and not pointing towards a
clear direction forward in terms of what works and
what does not in text segmentation. Part of the
reason for this, we show, is the fact that existing
and popular metrics such as Pk (Beeferman et al.,
1999) might lead to very different results under
different conditions and, therefore, the final results
from which to draw our conclusions are unstable.

Based on this, we draw on existing literature to
present our own topic segmentation models. We
show that carefully designed recurrent neural net-
works are still relevant in the field as they can ob-
tain state-of-the-art results in most occasions given
a fixed and fair evaluation setting. We draw conclu-
sions on why this might be the case and we show
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that this evidence makes sense given previous liter-
ature on the subject.

2 Related Work

2.1 Models for Topic Segmentation

Traditionally, text segmentation involves the seg-
mentation of text like books or articles (Beefer-
man et al., 1999; Koshorek et al., 2018), business
meeting or TV news transcripts (Misra et al., 2010;
Purver et al., 2006; Sehikh et al., 2018).

An early text segmentation system, TextTiling,
used two adjacent sliding windows over sentences
and compared the two by means of cosine similar-
ity between the relative bag-of-words vector rep-
resentations (Hearst, 1994). The same algorithm
was then successfully used with different, more in-
formative sentence representations, such as Term-
Frequency Inverse-Document-Frequency (TF-IDF)
rescoring of bag-of-words (Galley et al., 2003) and
features derived from generative topic models like
Latent Dirichlet Allocation (LDA, Riedl and Bie-
mann, 2012). More recently, these topic features
have been replaced with sentence representations
extracted from large language models, again ap-
parently showing improvements (Ghinassi, 2021;
Harrando and Troncy, 2021; Solbiati et al., 2021).

Recent research has also seen a surge of large
annotated datasets for the task, usually exploiting
the headers of Wikipedia articles to obtain large
datasets without requiring human annotation. The
first such dataset was proposed by Koshorek et al.
(2018), but the most popular datasets in this cate-
gory are the two Wikisection datasets proposed by
Arnold et al. (2019), as their smaller sizes allow for
faster experimentation.

With the availability of such larger, publicly
available datasets, supervised methods became the
preferred approach for the task. Koshorek et al.
(2018) trained a hierarchical, Bidirectional Long-
Short Term Memory (BiLSTM) neural network to
segment paragraphs in a large Wikipedia corpus,
showing good improvements over non-neural and
unsupervised methods. Since then, most of the lit-
erature has focused on using hierarchical recurrent
neural networks (Tsunoo et al., 2017; Lukasik et al.,
2020a; Sehikh et al., 2018) or, more recently, hierar-
chical transformers (Lukasik et al., 2020b; Glavaš
and Somasundaran, 2020). In recent works, BERT
used as a sentence encoder has been included ei-
ther to instill additional general knowledge to end-
to-end systems (Xing et al., 2020) or to extract

standalone features (Lo et al., 2021).
Transformer-based Large Language Models

(LLMs) like BERT are extremely popular for many
NLP tasks, often reaching state-of-the-art results.
The same seemed to apply to text segmentation
and recent literature has focused on the use of such
models to perform text segmentation based only
on local context, such as pairs of sentences, show-
ing state-of-the-art results (Lee et al., 2023). In
particular, the use of LLMs which were previously
fine-tuned for sentence similarity together with ad-
ditional fine-tuning of these models on the text
segmentation task itself seemed to lead to best re-
sults, while the inclusion of additional context is,
according to the authors, detrimental.

However, these last findings run counter to pre-
vious research, where the use of (limited) context
was observed as generally beneficial (Lukasik et al.,
2020a; Lo et al., 2021; Xing and Carenini, 2021;
Xia et al., 2022) and the use of LLMs fine-tuned for
sentence similarity did not lead to significant im-
provements (Solbiati et al., 2021). A more in depth
exploration of state-of-the-art models shows further
apparent contradictions. For example, the current
second best model on Wikisection datasets shows
significant improvements via the use of hierarchical
transformers (Lo et al., 2021), while other sources
have shown that, at least for certain datasets, BiL-
STM networks can outperform transformers on this
task (Lukasik et al., 2020a); this would be theoreti-
cally justified by the fact that recurrent neural net-
works such as BiLSTMs do give more importance
to closer context, shown to be more relevant for the
task (Xing and Carenini, 2021).

The current situation is therefore confusing, with
different results suggesting quite different conclu-
sions about the best choice of model architecture
and settings. In this work, therefore, we focus
on systematic comparison, and show that some of
these discrepancies are explainable by the evalu-
ation settings. When using a fixed evaluation set-
ting, we can instead assess more convincingly what
works best for the task and, as we show, this is
indeed in line with our understanding of text seg-
mentation as a task drawing from local coherence.

2.2 Evaluating Text Segmentation

Evaluating topic segmentation systems is itself an
open problem. Classification metrics such as F1
score are not necessarily a good choice for topic
segmentation: they consider a false positive bound-
ary predicted just next to a true boundary, and one
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Figure 1: Pseudo-code and examples of Pk. Sub-figures
a, b and c show the Pk result for the same ground truth
and predicted boundaries but using k = 2, k = 3 and
k = 4 respectively. It can be noticed how the Pk results
vary greatly according to the parameter.

predicted ten sentences away, as equally bad misses.
To overcome this problem Beeferman et al. (1999)
proposed the Pk metric, which assesses how likely
it is for two points a distance k apart (usually set to
half the average true segment length) to be incor-
rectly separated by the hypothesized boundaries.
However, Pk also has many reported problems
(Pevzner and Hearst, 2002), failing to penalize in-
correct separation by multiple boundaries more
than single ones, and favouring false positives over
true positives (Georgescul et al., 2006). Many other
metrics have been proposed to overcome the limita-
tions of Pk (Pevzner and Hearst, 2002; Scaiano and
Inkpen, 2012; Fournier and Inkpen, 2012) but none
of them has ever been widely adopted, and most
literature still uses the Pk metric, notwithstanding
its limitations.

Among the shortcomings of Pk is also the high
sensitivity of the metric to its parameter k (see
figure 1). This, as we will show, makes misunder-
standings in the evaluation more likely, as the k
parameter can be set in ways that are different from
other evaluation settings, leading to differences in
results that do not reflect actual meaningful differ-
ences in segmentation.

3 Methodology

3.1 Our Models

Here we describe our proposed models, which are
chosen to represent the main state-of-the-art ap-
proaches in the literature and aim to find which
architectural and feature factors determine a good
text segmentation performance.

3.1.1 Architectures
We experiment with three different architectures
(see their visual representation in figure 2):

BiLSTM: This architecture was first proposed
for topic segmentation by Koshorek et al. (2018)
and it has been widely used by following litera-
ture with various modifications (Xing and Carenini,
2021; Barrow et al., 2020; Badjatiya et al., 2018).
In its original form, this model consists of n layers
of Bidirectional Long-Short Memory (BiLSTM)
recurrent neural network modelling the word-level
features, a pooling layer to obtain sentence repre-
sentations and n additional BiLSTM layers mod-
elling the sentence-level features, followed by a
linear layer and a Softmax activation yielding a
series of probabilities Ŷ . In our case, we follow
recent literature (Lukasik et al., 2020a; Xing and
Carenini, 2021) and we substitute the word-level
BiLSTM with embeddings extracted from sentence
encoders during pre-processing. Schematically, if
we define BiLSTM as a series of n BiLSTM lay-
ers each having h hidden units, W ∈ (R)h×1 as
the final linear layer and Softmax as the softmax
activation function, our BiLSTM model predicts

Ŷ = Softmax(W T (BiLSTM(E))) (1)

where E := {e0, e1, ..., en} is the collection of all
the sentence embeddings ei ∈ Rd extracted from
the given document’s sentences.

At test time, we choose a threshold th by search-
ing values between 0.05 to 0.95 with a step of 0.05
and choosing the one yielding best results on val-
idation set. Threshold th is employed such that a
topic boundary is placed after each sentence si for
which ŷi > th.

Dot-BiLSTM: this architecture is similar to that
of Sehikh et al. (2018) and Arnold et al. (2019),
both having the intuition of separating the forward
and the backward directions of the last BiLSTM
layer in a network similar to the BiLSTM model
described above, so as to directly compute a simi-
larity score between the two, therefore forcing the
model to exploit notions of semantic similarities
more closely related to the downstream task. Hav-
ing a stack of n BiLSTM layers we obtain

H = BiLSTM(E) (2)

Then, we separate H’s forward direction
−→
H and

backward direction
←−
H , which are used to predict

Ŷ = 1− Sigmoid(W T
for

−→
H ·W T

bac

←−
H ) (3)
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with Sigmoid being the sigmoid activation func-
tion, · being dot product and Wfor ∈ Rh and
Wfor ∈ Rh both learnable parameters. The
sigmoid-activated score is subtracted from 1, as
we want the model to make sentences from two
different topic segments further apart in the hidden
space, thus closer to 0, while our objective labels
define the identification of a topic boundary as 1.

We employ the same strategy as BiLSTM model
to search the optimal threshold th.

Transformer: This architecture substitutes the
BiLSTM to model sentences’ context with a Trans-
former network (Vaswani et al., 2017). Similarly
to above, we predict

Ŷ = Softmax(W T (Transformer(E))) (4)

where Transformer represents the stack of n
transformer layers substituting BiLSTM from
above and, in this case, W ∈ Rd×2 reflecting the
specific transformer architecture.

In this case, we set the threshold th to 0.5, as
searching the threshold as described above consis-
tently led to worse results.

3.1.2 Sentence Encoders
We experiment with two different sentence en-
coders further fine-tuned for topic segmentation.

RoBERTa last-mean (RoB): the popular
RoBERTa architecture (Liu et al., 2019) consists
of a 12-layer transformer encoder that was pre-
trained on the masked language task in a more
robust way than the original BERT architecture
(Devlin et al., 2019), leading to considerable im-
provements on several benchmarks. Here we use
the pre-trained model2 and we obtain a single repre-
sentation for each input sentence by averaging the
last layer, shown to be an effective pooling strategy
for sentence-level tasks (Huang et al., 2021).

All-MiniLM-L12-v2 (miniLM): this model is a
version of the portable MiniLM language model, a
comparatively smaller transformer encoder that is
trained to mimic the last self-attention module of its
larger counter-part, a process known as knowledge
distillation (Wang et al., 2020). The version we use
was further fine-tuned with a contrastive objective
using cosine similarity between pairs of sentences
that should be closer in space; it was used by Lee
et al. (2023) as the backbone of their model, and
here we compare it against larger, more popular
transformer LLMs such as RoBERTa. Again, the

2Model available at https://huggingface.co/roberta-base.

sentence representation is obtained by averaging
the last layer.

Both the above encoders were further fine-tuned
on the topic segmentation task with this loss:

L = ||label(i;i+1) −
ei · ei+1

||ei||2 · ||ei+1||2
||2 (5)

where ei and ei+1 are the sentence embeddings
for sentences i and i + 1, extracted by the sen-
tence encoders. The corresponding label(i;i+1) = 1
if they belong to the same segment, otherwise
label(i;i+1) = −1.

3.2 Other Baselines

We also report results from other baseline mod-
els for which existing implementations were avail-
able, so that the evaluation setting could be ver-
ified for each baseline. In our baseline compar-
isons we include Transformer2BERT

3 (Lo et al.,
2021), PairSegMTL

4 (Lee et al., 2023), TextSeg5

(Koshorek et al., 2018), BiLSTM-BERT6 (Xing
and Carenini, 2021), SECTOR7 (Arnold et al.,
2019) and TopicTiling8 (Riedl and Biemann, 2012).

We also include NoPred, a baseline consisting in
always predicting the majority class (i.e. no topic
boundary): this simple baseline, in fact, can high-
light how different k can determine very different
results when using Pk, even when the predictions
are just a constant value.

Other models have been variously proposed dur-
ing the years and especially the ones proposed by
Lukasik et al. (2020a) and Barrow et al. (2020)
have been often used for baseline comparisons. As
an official implementation for the two models is
missing, however, we leave them out of our analy-
sis, for the moment, leaving their inclusion in the
revised ranking for future research.

3.3 Evaluation Setting

In evaluation, we used the mentioned Pk metric.
Most literature already settled on the use of

half the average segment lengths when choosing k.
Something that is not often specified is whether the
average segment length should be computed based
on the entire corpus or on single documents (there-
fore possibly leading to a different k for each test

3github.com/kelvinlo-uni/Transformer-squared
4github.com/JHlee95/TxtSeg MTL
5github.com/koomri/text-segmentation
github.com/lxing532/improve topic seg
7github.com/sebastianarnold/SECTOR
8github.com/riedlma/topictiling

https://github.com/kelvinlo-uni/Transformer-squared
https://github.com/JHlee95/TxtSeg_MTL
https://github.com/koomri/text-segmentation
https://github.com/lxing532/improve_topic_seg
https://github.com/sebastianarnold/SECTOR
https://github.com/riedlma/topictiling


412

LSTM LSTMLSTM LSTM

Dense Layer
1 − S𝑖𝑔𝑚𝑜𝑖𝑑(𝑊

் 𝐻 ȉ 𝑊
் 𝐻)

thNon boundary
Non boundary

Text Input

Sentence Encoder(s):
𝑒𝑛𝑐 𝑠

Now: sport news.
No one was hurt.
Bad car accident.

𝑌

𝑠

𝑠ଵ

𝑠ଶ

𝑒

𝐵𝑖𝐿𝑆𝑇𝑀(𝐸) 𝐻

𝑒ଵ 𝑒ଶ

Boundary

𝐻

𝐻

LSTM LSTMLSTM LSTM

Dense Layer
S𝑖𝑔𝑚𝑜𝑖𝑑(𝑊் (𝐻))

thNon boundary
Non boundary

Text Input

Sentence Encoder(s):
𝑒𝑛𝑐 𝑠

Now: sport news.
No one was hurt.
Bad car accident.

𝑌

𝑠

𝑠ଵ

𝑠ଶ

𝑒

𝐵𝑖𝐿𝑆𝑇𝑀(𝐸)

𝑒ଵ 𝑒ଶ

Boundary

Transformer

Dense Layer
Softmax(𝑊் (𝐻))

th=0.5Non boundary
Non boundary

Text Input

Sentence Encoder(s):
𝑒𝑛𝑐 𝑠

Now: sport news.
No one was hurt.
Bad car accident.

𝑌

𝑠

𝑠ଵ

𝑠ଶ

𝑒

𝐻

𝑒ଵ 𝑒ଶ

Boundary

Transformer(𝐸)

a b c

Figure 2: The three models we present: a BiLSTM; b Dot-BiLSTM; c Transformer.

document), but considering the existing implemen-
tations listed above it can be inferred that usually k
is computed separately for each test document: this
is also our default setting. Formally, given an input
document doc having N segments, we compute:

k =

∑N
i=1 seglengthi

2
(6)

with seglengthi being the length of the ith seg-
ment in the document.

We also report results for different k to highlight
how this can lead to divergent results.

3.4 Data

We use the Wikisection dataset proposed by Arnold
et al. (2019). The dataset was obtained by scrap-
ing Wikipedia articles concerning specific macro-
topics and using the existing headers to obtain
ground truth labels for segmentation. The dataset
is considerably smaller than the Wiki-757 dataset
proposed by Koshorek et al. (2018) and it is there-
fore more popular in recent literature, as it allows
for quicker experimentation. The dataset is divided
in two languages, English and German, and two
macro-topics for each language, cities and diseases.

In our setting we follow recent literature and sep-
arate languages and macro-topics, therefore we
obtain four separate datasets each having their pre-
defined training, test and validation sets. Table 1
shows datasets statistics and general information.

Language Macro-Topic Abbrev. Documents
English Disease en disease 3900
English City en city 19539
German Disease de disease 2323
German City de city 12537

Table 1: Wikisection datasets details: for more in-details
information see the original paper (Arnold et al., 2019).

3.5 Experimental Setup
In our experiments we used the original parameters
for all the baseline models, including the two state-
of-the-art models described in section 3.1.

For BiLSTM and Dot-BiLSTM we followed the
conventional setting of Koshorek et al. (2018) using
2 bidirectional LSTM layers, each direction having
128 hidden units. In training we minimised a binary
cross entropy loss and we used a learning rate of
0.001 and Adam optimizer (Kingma and Ba, 2015).
We applied dropout between input features and the
first hidden layer, as well as between hidden lay-
ers, using for both probability values in the range
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{0.2, 0.5}, where the optimal dropout probability
was chosen based on validation results.

For our Transformer model, we followed the set-
ting of Lo et al. (2021) using 5 transformer layers
and a hidden dimension for the feedforward layer
of 1024 hidden units. We have kept the dropout
probability value to 0.2 as we observed no improve-
ment in changing it and in training we minimised
the cross entropy loss between the no-boundary and
boundary class (where in our BiLSTM model we
had a single output probability), using a learning
rate of 0.0001 and Adam optimizer.

4 Results

4.1 Baseline Comparison with Standard Pk

Table 2 shows our results for the baselines and our
models on the English Wikisection datasets.

A first look immediately shows that different k
values affect not only absolute performance but the
ranking of models; we discuss this in more detail in
Section 4.2 below. However, even by looking just
at the P def

k columns (containing the results with the
k we defined as standard), we can see that previous
rankings do not hold in this consistent evaluation
setting. Specifically, Transformer2BERT does
not seem to perform better than Bi-LSTM+BERT
for en city, and performs worse than all the other
supervised baselines for en disease; we discuss this
in more detail later when analysing the influence of
the Transformer architecture. The same holds for
Pair MTL, but in this case the model also underper-
forms with respect to SECTOR. Both these results
contradict existing literature, suggesting that in fact
the improvements that were noted in this case were
due to a difference in evaluation setting, rather than
in actual segmentation performance.9

Our BiLSTM-based models all perform better
than most other baselines in both datasets, while
our Transformer-based model shows extremely
poor performance.

4.2 Sensitivity of Pk to k

The results using different k show conflicting re-
sults. By looking at the best performing models for
P 10
k , it is evident that changing k does not influence

the results in the same way for all models: if we set
k = 10, Transformer2BERT figures as the best
model, while PairSeg MTL under-performs; when
changing to k = 2, the Transformer-based models

9By looking at the implementations listed above, Lo et al.
(2021) set k = 10 and Lee et al. (2023) set k = 2.

Figure 3: Pk results for different values of k and differ-
ent models on en disease test set.

are instead the worst performing ones. Even just
never predicting a topic boundary produces very
different Pk values according to which k we use,
as shown in the first row of the table. The non-
linear variation of results according to k is visually
exemplified by figure 3.

4.3 Comparison of Different Architectures

Our results show that the Dot-BiLSTM architec-
ture consistently outperforms other architectures;
especially the Transformer-based model, which is
consistently the worst.

The difference between Dot-BiLSTM and BiL-
STM models is quite small, but this could be ex-
pected given the similarity of these two architec-
tures. Still, Dot-BiLSTM always outperforms BiL-
STM on both datasets, showing that the intuition
of Sehikh et al. (2018) and of Arnold et al. (2019)
was correct in the sense that forcing the model to
directly modelling the similarity between adjacent
units of text helps in the task of text segmenta-
tion. This was variously observed by including
auxiliary losses during training (Xing and Carenini,
2021; Glavaš and Somasundaran, 2020), but here
we observe how using this approach directly for
segmentation works as well.

Given the consistent failure of the Trans-
former architecture, the relative success of
Transformer2BERT is more likely attributable to
the use of pairwise embeddings from BERT, rather
than some advantage of Transformer over BiLSTM
on these datasets. If improvements using Trans-
former have previously been shown (Glavaš and
Somasundaran, 2020; Lukasik et al., 2020a), such
improvements were obtained on the much bigger
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en city en disease

Model P def
k P 10

k P 2
k P def

k P 10
k P 2

k

NoPred 32.93 32.39 22.13 40.53 70.71 27.21
TopicTiling 30.5 - - 43.4 - -

TextSeg 19.3 - - 24.3 - -
SECTOR 15.5 - - 26.3 - -

Bi-LSTM+BERT 9.3 - - 21.1 - -
Transformer2BERT 12.37 8.2 7 32.20 18.8 16.95

PairSeg MTL 16.92 12.15 4.9 26.97 31.27 14.1
BiLSTMRoB 8.97 5.33 5.32 22.29 13.26 12.51

BiLSTMminiLM 8.9 8.49 5.19 22.75 16.8 13.03
TransformerRoB 22.31 14.07 15.86 43.72 19.2 30.03

TransformerminiLM 21.94 14.36 15.81 41.59 20.78 28.27
Dot-BiLSTMRoB 8.68 8.62 5.12 20.69 16.36 11.89

Dot-BiLSTMminiLM 8.77 8.39 5.17 22.49 15.8 12.7

Table 2: Results for all the presented models on en city and en disease datasets. For Transformer2BERT ,
PairSegMTL and our models we present Pk results with the fixed k we established in section 3.3 (P def

k ), with
k = 10 as used by Lo et al. (2021) (P 10

k ) and with k = 2 as used by Lee et al. (2023)(P 2
k ). In all cases, the lower

the better. Best results for each dataset are highlighted in bold.

Figure 4: Probability of topic boundary output by Dot-
BiLSTMRoB model for a test document. True bound-
aries are marked by the fixed-length vertical red lines
at the top of the plot, while the output probabilities are
represented by the variable-length blue lines.

Wiki-727 dataset. We hypothesise that the Wiki-
section datasets are too small to effectively train a
Transformer model, especially considering that the
setting by Lo et al. (2021) is considerably deeper
and bigger than the BiLSTM setting.

However, preliminary experiments with reduc-
ing the size of the Transformer model did not show
any improvement either, and there could be some
additional explanation to this. The role of local
context in text segmentation is well known and has
been exploited by much previous literature (Xia
et al., 2022; Hearst, 1997; Choi et al., 2001). In
this context, the advantage of the Transformer ar-
chitecture in capturing long-distance dependencies
(Vaswani et al., 2017) may not add any useful infor-
mation for the task at hand, but instead potentially
add noise, making the learning more difficult espe-
cially on small datasets.

Figure 5: Probability of topic boundary output by
TransformerRoB model for the same test document
of figure 4. True boundaries are marked by the fixed-
length vertical red lines at the top of the plot. The blue
lines are the output probabilities.

This intuition is also confirmed by a qualitative
comparison of the output from the best performing
architecture shown in figure 4 against the output
from the Transformer model using the same en-
coder (figure 5). In the first case, in fact, proba-
bilities appear to be quite low everywhere but for
the places in which the model is confident in out-
putting a boundary (which is mostly correct). The
Transformer model clearly outputs noisier probabil-
ities, with clusters of high probabilities rather than
isolated peaks. Following the above reasoning, we
hypothesise that this is an effect of the global self
attention module introducing noise in the form of
similarities between far away sentences, which are
irrelevant for the task.

We further tested this hypothesis by re-training
our Transformer models for all our settings, but
restricting the context window of the self-attention
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Figure 6: Effect of restricting the window of the self
attention in our Transformer model. Y axis includes
Pk values, while x axis includes the n parameter, rep-
resenting the left and right context in the self attention
module.

module to n sentences: at each time step, each sen-
tence will have the information just from the n ad-
jacent sentences. Figure 6 shows the results: for the
Transformer architecture, restricting the available
context always leads to better segmentation results,
confirming our intuition. Still, the BiLSTM models
outperform even the best performing Transformer
setting, which might suggest that some character-
istic of the BiLSTM architecture makes it more
suitable for capturing the type of local context re-
quired for this task. Whether this is an effect of
dataset size being too small for properly training a
Transformer, or there is indeed some specific char-
acteristic giving an edge to recurrent networks in
this task, is an interesting question that we leave
for future research.

4.4 Comparison of Different Encoders

Figure 7 shows the differences between encoders
when using Dot-BiLSTM on the two English
datasets. In the figure we also included the results
for using the encoders without fine-tuning them, so
as to isolate the effect of fine-tuning.

The differences between fine-tuned RoB and
miniLM are small for en city, while RoB per-
forms more convincingly better on en disease, even
though the bigger difference could be an effect of
bigger variation due to the dataset’s smaller size.

In general, the choice of encoders does not seem
to be extremely important when fine-tuning the
encoders on the task. However, this changes when
we do not fine-tune the encoders: in this case RoB
outperforms miniLM by a larger margin on both
datasets.

Figure 7: Comparison of results in terms of Pkdef for
the DotBiLSTM model using RoB and miniLM en-
coders on en city (top) and en disease (bottom). We
include results for both fine-tuned and base version of
the encoders to evaluate the effect of fine-tuning.

The two versions of RoB (i.e. fine-tuned and
base model) do not seem to present relevant dif-
ferences for en city, while fine-tuning seems to
have a bigger effect on en disease. When looking
at miniLM, instead, the differences between fine-
tuned and base models are much more noticeable
for both datasets and this adds to the evidence from
the comparison between RoB and miniLM in sug-
gesting that RoB is probably a better encoder for
text segmentation on these datasets.

Fine-tuning the encoders for text segmentation
confirms itself as somewhat useful, but not at the
level previously suggested by Lee et al. (2023).

4.5 Results on German Dataset

Model de city de disease
TopicTiling 41.3 45.4

TextSeg 27.5 35.7
SECTOR 16.2 27.5

Bi-LSTM+BERT 11.3 28
Transformer2DeBERT 13.30 27.89

PairSeg MTL 41.08 33.40
BiLSTMDeBERT 10.35 22.61

TransformerDeBERT 26.11 37.46
Dot-BiLSTMDeBERT 10.27 23.69

Table 3: Results using P def
k for all the presented mod-

els on de city and de disease datasets. In all cases, the
lower the better. Best results for each dataset are high-
lighted in bold.

Here we include the results obtained on de city
and de disease. In carrying out these experiments
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we used the German version of BERT, DEBERT,10

so as to match the setting in Lo et al. (2021).
For our models, we previously fine-tuned the base
model on each training set as previously described.

The results on the German subsets of Wikisec-
tion (table 3) mostly confirm the observations from
their English counterparts. Particularly, we also
see here that the BiLSTM models are better than
the Transformer-based ones, including the reported
state-of-the-art, Transformer2DeBERT .

It is interesting to notice how in this case the
PairSeg MTL model seems to fail completely. This
might be caused by more specific characteristics of
these datasets rather than the difference in language,
but it is an effect that could be investigated further
in future. Finally, the simple BiLSTM model in this
case outperforms the Dot-BiLSTM for de disease;
the results from the two models are always very
similar given the similarity in the architecture and
it is likely that this difference is not significant.

5 Conclusion

In this work, we have given a systematic, fair com-
parison of three state-of-the-art models for linear
text segmentation with two fine-tuned sentence en-
coders as feature extractors for the task, so as to
highlight what techniques proposed by recent liter-
ature work in a fair setting.

Consistent with existing literature, we have
shown that the popular Pk metric is not very sta-
ble. Specifically, the influence of different k used
in the metric is noticeable; with the result that if
models are compared under different evaluation
settings, the conclusions that could be drawn are
very different and potentially misleading.

By keeping the evaluation setting fixed, how-
ever, we show that BiLSTM-based models actually
outperform Transformers, at least on the current
datasets, and that fine-tuning the sentence encoders
does bring improvements but not necessarily as big
as previously suggested. Restricting the context
available to Transformer models leads to perfor-
mance gains, as previously noticed by Lukasik et al.
(2020a) and Lee et al. (2023); but Bi-LSTM-based
systems always outperform even the best perform-
ing Transformer models, perhaps suggesting that
some architectural element of LSTMs makes them
more apt for the task at hand. This is indeed inter-
esting evidence, which we aim to develop further
in future work.

10https://huggingface.co/bert-base-german-cased
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